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Abstract

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB po-

larization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star

formation at high redshift and in our local universe and our galaxy, require large-format arrays of

millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave

light present numerous advantages for control of systematics, for simultaneous coverage of both po-

larizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming

light. This enables the application of many traditional “RF” structures such as hybrids, switches,

and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium

nitride are an attractive sensor option for large-format arrays because they are highly multiplexable

and because they can have sensitivities reaching the condition of background-limited detection. A

KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance

of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a

Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector

of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per

unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of

the impedance mismatch between the microstrip transmission line exiting these architectures and

the high resistivity of titanium nitride. Mitigating direct absorption of light through free space

coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID

design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip

in such a way as to form a lossy termination without creating an impedance mismatch. A parallel-

plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields

acceptable noise. We show that the optimized design can yield expected sensitivities very close to

the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from
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90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level

systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence

of the noise on resonator internal power and temperature. However, there is still a lack of a unified

microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we

derive the noise power spectral density due to the coupling of TLS with phonon bath based on an

existing model and compare the theoretical predictions about power and temperature dependences

with experimental data. We discuss the limitation of such a model and propose the direction for

future study.
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Chapter 1

Background

1.1 Scientific Motivation

1.1.1 Introduction to mm/submm astrophysics

Most of the submillimeter- and millimeter- wave photons in the universe are emitted by the dense

interstellar gases and dusts, which are the “cradles” of new stars[1]. Interestingly, these interstellar

materials are almost transparent to the sub/millimeter waves, but many orders more opaque for

the optical wave bands. Therefore the sub/millimeter wave astronomy is an important platform to

study star and galaxy formations.

Deep surveys at sub/millimeter wavelengths also make it possible to study the characteristics

of galaxies as a function of the red shift. Figure 1.1 shows a typical spectra of emission from the

galaxies. The discovery that the radiation intensity is a fast increasing function of frequency at

sub/millimeter wavelength (∼200-1000 µm) establishes the fact that the flux intensity of emission

from a galaxy measured in this wave band is almost independent of the redshift, which is considerably

different from other wavelengths and opens up the possibility of discovering and studying very distant

galaxies.
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Figure 1.1: Typical (normalized) spectra of galaxy emission at frequencies from the radio to IR wave
bands[2].

Moreover, observations at sub/millimeter wavelengths provide important information about

CMB physics. The cosmic microwave background (CMB), which peaks at 2 mm, is the thermal

radiation left over from the Big Bang of the universe. The tiny anisotropy or temperature fluctua-

tion corresponds to regions of slightly different densities, which evolved into the stars and galaxies

of today. Study of CMB physics provides a crucial test of the cosmological models.

Another important application of sub/millimeter wave astronomy is through the Sunyaev-Zeldovich

effect (SZE). SZE states that the CMB photons are inverse Compton scattered to high energy state

when interacting with hot electron gases, resulting in a decrease in the CMB intensity below 218

GHz and a corresponding increase at higher frequencies. This phenomenon is shown in Figure 1.2.

The SZE consists of the thermal component, kinetic correction, and relativistic correction. The

kinetic component of SZE is due to the relative motion of the cluster with respect to the rest frame

of the CMB, so it can provide measurements of cluster peculiar velocities. The thermal SZ spectrum

is temperature-independent in non-relativistic limit (only the amplitude depends on temperature),

but relativistic correction makes its shape temperature dependent. The relativistic SZE correction

therefore provides measurements of cluster temperature.
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Figure 1.2: Thermal SZE model spectra (dashed red line) (credit to Mike Zemcov) with y=1×10−4.
The Kompaneets y parameter is defined as y = τ × (kBT/mc

2), where τ is the optical depth or
the fraction of photons scattered and (kBT/mc

2) is the electron temperature in unit of the rest
mass of the electron. Also shown is the distorted spectrum (solid black line) after the addition
of relativistic corrections with Te = 5 keV (dashed orange line), and kinetic SZE corrections with
vpec=+500 km/s (dashed blue line). The sub-mm source line (another solid black line) refers to
the typical spectrum of the dust-obscured galaxies. The radio source line (dashed black line) refers
to the galaxies that are bright at radio wavelengths, due usually to large amounts of synchrotron
radiation from electrons accelerated by energetic phenomena like shock waves and active galactic
nuclei (super massive black holes at the centers of galaxies). The color bars refer to typical spectral
bands based on the atmospheric transmission windows.

1.1.2 Scientific motivation of long wavelength imager

We propose a design study for the long-wavelength imager for Cerro Chajnantor Atacama Telescope

(CCAT): LWCam. CCAT is a 25 meter telescope at an excellent cite in Chile and would be one of

the highest permanent, ground-based telescopes in the world. LWCam will cover a 20′ field-of-view

in six spectral bands (required for subtraction of radio and mm/submm galaxy foregrounds) from

0.75 to 3.3 mm. The six bands are expected to have 14080, 14080, 3520, 3520, 880, and 880 pixels

with per-pixel sensitivities of 5.9, 3.7, 1.6, 1.8, 1.7, 1.8 mJy s1/2. The fine angular resolution (0.24′

at 1.1 mm), wide field-of-view, broad spectral coverage, and large mapping speed of LWCam will

enable a variety of scientific studies, including the dusty star-forming galaxy (DSFG) population

and the intra-cluster medium (ICM) in galaxy clusters.

The dusty star-forming galaxy population plays a crucial role in galaxy evolution over cosmic
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time. It is known that the flux ratio of wavelengths 350 µm to 850 µm S350/S850 drops from 4-7 at

z (redshift)∼2 to 2-4 at z∼4 and 1-2 at z∼6. Therefore only with the 850 µm data from LWCam,

low-luminosity z∼2 DSFG, and ultra-luminous higher-z sources can be distinguished. Also, the

large pixel counts and high mapping speed of LWCam would yield thousands of z>4 DSFG and

enable the first measurement of high-z clustering, which is to be compared with strong clustering

of lower z-DSFG, and hundreds of z>5 DSFGs that can connect the epoch of dusty star formation

with the end of re-ionization. Finally, the multiple spectral bands of LWCam provide approximate

redshift information and probe the highest redshifts that can most incisively test models of galaxy

formation because of the wavelength-dependent nature of the emissivity history, as shown in Figure

1.3. Note that those sources are so optically obscured that one cannot obtain the redshift by optical

spectroscopy. Submm spectroscopy is quite difficult though, and it is only possible with the Atacama

Large Millimeter/submillimeter Array (ALMA) and on small samples of sources so far.

Figure 1.3: The emissivity history of the universe as a function of redshift at a range of
wavelengths[4].

Imaging in multiple spectral bands in the 80-420 GHz (0.715 to 3.75 mm) range will also enable

new studies of the ICM in galaxy clusters via SZ effects, specifically the mapping of thermal and non-

thermal pressure using the thermal SZ effect, the detection and study of high temperature regions

using its relativistic corrections, and the study of unvirialized bulk velocities in the ICM and the

peculiar motions of entire galaxy clusters using the kinetic SZ effect.
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1.2 Review of light-coupling architectures

In this section we consider the way in which the mm/submm radiation described in the previous

section can be coupled to the detectors. Among the many existing coupling architectures (direct

absorption, lens-coupled dual-slot-dipole antenna, sinuous antenna, etc.), we will briefly review feed-

horn and phased-array antenna.

1.2.1 Feedhorn

A horn antenna is an antenna consisting of a flaring structure that directs the waves in a beam.

The smooth-walled horn can accommodate a wide spectrum of signals since it does not contain any

resonant elements. Horns have the advantages of moderate directivity, simple construction, and

adjustment. The different flare angles and expansion curves also make possible a variety of different

beam profiles. The common types of horns include pyramidal horns, sectoral horns, conical horns,

exponential horns, and corrugated horns. Figure 1.4 shows a picture of a corrugated horn. There

are two techniques for the horn to couple light to the detector: direct absorption and microstrip

coupling. In the direct absorption scheme the absorber/detector is placed in a cavity behind the

horn. In the microstrip coupling scheme, waveguide probes are placed at the output of the horn and

connect to the microstrip that terminates in a detector.

Figure 1.4: Left: A drawing of a preliminary horn design incorporating ring loaded slots[5]. The
zoom shows the geometry of the ring-loaded grooves more clearly. Three photographs show prototype
layers etched using a three layer mask and a deep reactive ion-etch (DRIE) machine. Right: The
predicted band-averaged beam pattern in both the 90 and 150 GHz bands. These patterns were
constructed by simulating the beam pattern at 5 GHz increments and averaging these results within
the predicted detector passband. These simulations show the input reflection to be below -20 dB
and the cross-polarization below -30 dB across both bands.
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1.2.2 Phased array antenna

A phased array antenna is an array of antenna, the signal phases of which are varied spatially so

that the combined radiation pattern is reinforced in one direction and suppressed in other directions.

There are dual-polarization single band designs and single-polarization multi-band designs. In both

cases, the light is received through the silicon substrate. The advantages of phased array antenna

include great directivity and excellent steering ability. Figure 1.5 (Left) shows an array of single-scale

slot antennas.

Figure 1.5: Left: schematic layout of single-scale phased-array antenna array showing slot dipoles,
taps, summing tree, bandpass filters, and coplanar waveguide microwave kinetic inductance detec-
tors. Right: conceptual design of multi-scale phased array.

A multi-scale phased array antenna as shown in Figure 1.5 (Right) is an extension of the above

mentioned single-scale phased array antenna. To match the pixel size to the wavelength, larger

pixels at longer wavelengths can be synthesized from the smaller pixels matched to the shortest

wavelengths. For LWCam, it would be optimal to have three scales of pixel size to ensure good Airy

function matching. The bandwidth of the antenna is set by the feed density (smallest wavelength)

and the slot length (largest wavelength). The width of the microstrip at the slots is about 1 µm to

match the slot impedance. The width expands in the summing tree (not trivially: every summing

junction doubles the width, but then it is tapered back down before the next summing junction so

that the tree does not get too wide). The microstrip transmission line at the output of the antenna

is 4 µm wide.

LWCam will use multi-scale phased array antenna for the following reasons.

• The phased array can be fabricated on the same substrate as the detectors so that a separate light

coupling structure is not required.
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• One can cover many spectral bands with the same focal plane because the array can be designed

to have a very broad intrinsic bandwidth (up to 10:1).

1.3 Introduction to kinetic inductance detector

Light received at the antenna is transferred to the photon detector. The design of LWCam is based

on the concept of the kinetic inductance detector (KID) due to the excellent multiplexability, which

motivates their use in applications that require a large arrays of detectors. In this section we will

review KID’s principles of operation, limiting factors of sensitivity, and applications.

1.3.1 Principles of operation

Superconductors have zero dc resistance below the transition temperature Tc. At absolute zero

temperature electrons in the superconducting phase stay in the form of Cooper pairs with a bonding

energy 2∆ via phonon mediated attractive interaction. The Cooper pairs accelerate under an ex-

ternal electric field like free electrons and acquire a kinetic energy. Such an energy can be retrieved

by reversing the direction of the electric field. Therefore the exchange between electron kinetic en-

ergy and the electromagnetic energy induces a reactive impedance for an ac field, called the kinetic

inductance Lk. On the other hand, the excitations of the BCS ground state, the quasiparticles,

experience dissipation as normal-state electrons, resulting in a real part of the impedance.

The superconductor can be engineered to form the inductor of a LC resonator, whose resonant

frequency f0 and quality factor Qr are determined by the ac impedance Z. When a photon with

sufficient energy hν > 2∆ is absorbed by the superconductor, Cooper pairs will be broken and quasi-

particles are created, altering both the imaginary and real parts of the impedance. The change δZ is

therefore translated into a shift δf0 and δQr, which can be read out by examining the transmission

of the probe signal (normally in the microwave band). Such a photon detector is called the kinetic

inductance detector (KID)[6].

The most attractive part of KID is its multiplexing ability. The traditional cryogenic detectors

like transition-edge sensor are generally used with individual preamplifiers and wiring for the out-

put. Multiplexing schemes have been developed along the way but require complex, custom-designed

superconducting electronics, located close to the detector array. In contrast, KID allows a straight-

forward frequency domain approach to multiplexing. This results in a dramatic simplification of

the detector arrays and the associated cryogenic electronics, making it possible to produce a large
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format array involving thousands of detectors.

Figure 1.6: Left: The basic operation of a KID[6]. (a) Photons with energy hν are absorbed in a
superconducting film, producing a number of excitations, called quasiparticles. (b) To sensitively
measure these quasiparticles, the film is placed in a high frequency planar resonant circuit. (c) The
increase in the kinetic inductance and surface resistance of the film following a photon absorption
event pushes the resonance to lower frequency and changes its amplitude. (d) If the detector (res-
onator) is excited with a constant on-resonance microwave signal, the energy of the absorbed photon
can be determined by measuring the degree of phase and amplitude shift. Right: An example of
frequency domain multiplexed (FDM) KIDs.

1.3.2 Sensitivity

There are generally four types of noises in the kinetic inductance detectors[7, 8]. The first is the

photon noise. The incident millimeter wave photons from the background (dewar, telescope, and

sky) obey Bose-Einstein statistics and have an intrinsic fluctuation in each mode. The second is the

quasiparticle generation-recombination noise. In the steady state under optical loading the detector

maintains a dynamic equilibrium of the quasiparticles. The quasiparticles can recombine to emit

phonons, which is a point Poisson process and induces the fluctuation in quasiparticle density and

recombination noise. The reverse process, in which thermal phonons break Cooper pairs, gives

the generation noise. The first two types of noise are called fundamental noise. The third is the

amplifier noise. KID uses a cryogenic low noise amplifier, either a high-electron-mobility transistor

(HEMT) or a silicon-germanium bipolar-junction transistor (BJT), to amplify the transmitted signal.

The amplifier adds voltage fluctuations to the probe signal when amplifying it, which is usually

characterized by a noise temperature of a few Kelvin. The fourth is the two-level-system (TLS) noise.

There exist extensively the two-level states in amorphous materials, which respond to the external

field and contribute to the dielectric constant. A certain mechanism regarding the TLS, which is

conjectured to be TLS-TLS interaction in the most recent studies[11, 12, 13], causes the fluctuation

in the corresponding dielectric constant and leads to a jittering of KID’s resonant frequency[9]. Since
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we are interested in the noise in the measurement of the incoming optical power, we convert all these

four types of noises to“noise-equivalent power” (NEP) or the effective noise on the incoming power

measurement due to each noise component, so that they can be compared with each other. Our goal

is to make the amplifier noise and TLS noise subdominant to the fundamental noise. Experiments

have shown that the amplifier noise can be well suppressed by using a strong probe signal. So

the difficult part is the TLS noise. Various methods have been developed along the way for its

reduction[10].

Initially, KIDs were fabricated from aluminium since it is a simple, well-behaved, and easy-

to-fabricate superconductor. The kinetic inductance fraction of Al was low (∼ 5%) and so was the

responsivity, which led to the TLS noise that is substantially larger than fundamental noises in noise-

equivalent power unit. While it became clear one could reduce TLS noise using large capacitors, this

presented engineering challenges for detectors. So new materials were sought out that could offer

a larger kinetic inductance signal. Recently titanium nitride (TiN) arises as an excellent candidate

for KID materials since it promises greatly improved sensitivity relative to aluminum for a given

resonator geometry as discussed in [31]. Specifically:

• The kinetic inductance of a superconductor is proportional to its normal-state resistivity. The

highly resistive material TiN has a nearly unity kinetic inductance fraction α and leads to a lower

resonant frequency f0 for the resonator:

α =
Lk
Ltot

=
Lk

Lk + Lg
∼ 1 (1.1)

f0 = (LtotC)−1/2 = ((Lk + Lg)C)−1/2 � (LgC)−1/2 (1.2)

where Lg is the geometric inductance which results from the magnetic energy stored in the struc-

ture. MKID’s responsivity benefits from both the larger α and lower f0[7], rendering TLS noise

equivalent power much smaller for fixed resonator quality factor Qr.

• TiN’s high resistivity is a better match to the wave impedance of silicon
√
µ/εSi than aluminum

or other low resistivity materials, making it much easier to build free space coupled KID[15, 16].

Because of these advantages, this thesis focuses on a design for LWCam that uses TiN KIDs1.

1It is worth pointing out that the metallic glass, for example NbSi[33], might be a better KID material than TiN.
NbSi has a normal-state resistivity several times larger than TiN. NbSi can make perfect thin film down to 10 nm free
of inhomogeneity (a common problem for TiN KID). The Tc is tunable: 15% silicon might reduce Tc down to 1 K.
We use TiN since its fabrication and testing techniques had been mature at JPL when this design work was carried
out.
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1.3.3 Applications

The KID technology have been most intensively applied and tested in the area of sub/millimeter

imaging. The multi-wavelength sub/millimeter inductance camera (MUSIC) is designed to have

2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm[14].

The KIDs are made of Al and operate at several GHz. MUSIC is used to to study dusty star-

forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect and star formation in our own

and nearby galaxies. MUSIC has been deployed since 2012 at Caltech Submillimeter Observatory

(CSO). MAKO is a scalable 350 µm pathfinder instrument with a prototype of couple of hundreds

of pixels[15, 16]. MAKO uses lumped element kinetic inductance detectors (LEKID) patterned from

TiN films. The resonators are designed to operate at 100 MHz, which presents numerous advantages,

including an improved pixel noise equivalent power, a simplified analog readout circuit, and a higher

achievable multiplexing density. MAKO saw the first light in 2013 at CSO and reached the condition

of photon-noise-limited detection in 2014. Superspec is a ultra-compact spectrometer-on-a-chip for

high redshift observations[17, 18]. It applied the LEKID technology to R∼500 spectrometers covering

the 190-310 GHz band. Both MAKO and Superspec are originally proposed for CCAT too, aiming

ultimately towards 106 detector arrays. KID is also under development for other applications such

as optical/X-ray detection[19] and dark matter search[20, 21].
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Chapter 2

Study of two-level-system noise in
dielectric materials

In Chapter 1 we discussed the fact that TLS noise is an important contributor to total NEP for KIDs.

While its behavior is by now well understood phenomenologically[8], providing engineering recipes

for its minimization, a fundamental understanding of TLS noise is desirable. In this chapter we

will first go through the experimentally established properties of TLS noise in KID and introduce

the standard tunneling model that serves historically as the theoretical basis for the many TLS-

relevant phenomenons. We will then relate the dielectric constant to the state of each individual

TLS and derive an expression for its power spectral density (PSD). The evolution of individual TLS

that takes into account of the interaction with the phonon bath is subsequently elaborated. Finally

we carry out numerical analysis of the frequency dependence, power dependence, and temperature

dependence of TLS frequency noise and compare it with the data.

2.1 General properties of TLS noise in KID

2.1.1 Noise measurement

A diagram of the experimental set-up for noise measurement in KID is shown in Figure 2.1. A

synthesizer generates a microwave signal with frequency f as the probe. Part of the signal couples

with KID in the fridge, gets amplified (by a HEMT and a room temperature amplifier), and feeds

into the RF (radio frequency) port of an IQ mixer. The rest of the signal goes directly into the

LO (local oscillator) port of the mixer. The output I and Q (audio frequency ports) voltages are

proportional to the in-phase and in-quadrature amplitudes of the transmitted signal.
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Figure 2.1: A diagram of the homodyne readout system used for the noise measurement.

When f is varied, the output ξ = [I,Q]T traces a circle in the 2D IQ plane called the resonance

circle as shown in figure 2.2. With f fixed, ξ is seen to fluctuate around its mean and the fluctuations

δξ(t) = [δI(t), δQ(t)]T are digitized for noise analysis. δξ(t) can be projected onto two directions:

the one that is tangent to the circle δξ‖(t) and the one in the orthogonal direction δξ⊥(t). δξ‖(t) and

δξ⊥(t) correspond to the fluctuations of the phase and amplitude of the resonator’s electric field ~E.

Their power spectral densities Sff (ν) and Saa(ν) are therefore measures of the phase (frequency)

and amplitude noises in KID.

Figure 2.2: (a) Resonance circle of a 200 nm Nb on Si resonator at 120 mK (solid line)[8], quasi-
particle trajectory calculated from the Mattis-Bardeen theory (dashed line). For this figure, the
readout point ξ = [I,Q]T is located at the resonance frequency fr. (b) Noise ellipse (magnified by
a factor of 30). Other parameters are fr = 4.35 GHz, Qr = 3.5 × 105 (coupling limited), readout
power Pr ≈-84 dBm, and internal power Pint ≈-30 dBm.
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2.1.2 Experimental results of TLS noise in KID

Experiments have revealed several characteristic properties of TLS noise in KID[27, 28, 29]: the

frequency noise has a power law dependence on the noise frequency Sff (ν) ∼ ν−1/2; the frequency

noise has a power law dependence on the amplitude of the electric field Sff (ν) ∼ P−1/2
int ∼ | ~E|−1; the

frequency noise has a power law dependence on the temperature Sff (ν) ∼ T−2 for T > 100 mK; the

frequency noise is several orders of magnitude stronger than the amplitude noise Sff (ν)� Saa(ν).

The data are shown in Figure 2.3 to Figure 2.5.

Figure 2.3: Noise spectra[8] of a 200 nm Nb on Si resonator at 120 mK in the phase (frequency) (solid
line) and amplitude (dashed line) directions. Other parameters are fr = 4.35 GHz, Qr = 3.5× 105,
readout power Pr ≈ −84 dBm, and internal power Pint ≈ −30 dBm.
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Figure 2.4: Frequency noise[8] at 1kHz Sδfr (1kHz)/f2
r vs. internal power Pint falls on to straight lines

of slope -1/2 in the log-log plot, indicating a power law dependence: Sδfr/fr∝P
−1/2
int . Data points

marked “+”, “�” and “*” indicate the on-resonance (f = fr) noise of three different resonators
(with different fr and Qr on the same chip) under four different readout power Pµω. Data points
marked with “◦” indicate the noise of resonator (marked with “*”) measured at half-bandwidth away
from the resonant frequency (f = fr ± fr/2Qr) under the same four Pµω. The data is measured
from a 200 nm thick Al on sapphire device.

Figure 2.5: Frequency noise at 30 Hz as a function of temperature measured at Pint=-78, -86, -94,
and -102 dBm from Nb on sapphire with SiO2 dielectric microstrip device. At T > 100 mK, the
noise roughly scales as T−2.

2.2 Standard model of two level systems

With the goal of explaining the TLS noise observed in KIDs, we will develop a model for the fluc-

tuations in the dielectric properties of a medium containing TLS and their impact on the resonator

frequency and dissipation fluctuation spectra.
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2.2.1 Localized representation and energy representation

Various experiments regarding the thermal properties and response to external electric field have

shown that the glass can behave in a substantially different manner compared with perfect crystal

at low temperature. The two-level-state tunneling model[22] was initially proposed in 1970s and

subsequently achieved huge success in explaining the experimental results. Such a model postulates

that a broad spectrum of two level systems extensively exists in glass, in which an atom or group

of atoms can occupy one of the two potential minima. The Hamiltonian of the system can be

conveniently expressed using the basis set φ1 and φ2 in the localized representation, where φ1 and

φ2 are the ground state wave functions of the two adjacent potential wells:

H0 =
1

2

−∆ ∆0

∆0 ∆

 (2.1)

where ∆ is the asymmetric energy which equals the energy difference between the right and left

potential wells and ∆0 is the tunneling energy.

In the standard TLS model, a uniform distribution in ∆ and a log uniform distribution in ∆0 is

usually assumed:

P (∆,∆0)d∆d∆0 =
P0

∆0
d∆d∆0 (2.2)

where P0 is the two level density of states found to be on the order of 1044/J·m3. The Hamiltonian

can be diagonalized to obtain the eigenstates. The wave functions of these eigenstates in the position

representation, ψ1 and ψ2, are shown in Figure 2.6.

H0 =
1

2
εσz (2.3)

ε = (∆2 + ∆2
0)−1/2 (2.4)
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Figure 2.6: Double potential wells, localized wave functions φ1 and φ2, and eigenstates ψ1 and ψ2

of a two-level system

2.2.2 Analysis of interaction with external fields

TLS can interact with the external electric field and strain field through the perturbation of the

asymmetric energy ∆.

In the electric problem, we can define the electric dipole moments of the two localized states φ1

(lower energy state) and φ2 (higher energy state) as ∓~d0 where ~d0 = − 1
2∇~E∆( ~E), though the atom

or group of atoms under investigation has no net charge. Here∇~E∆( ~E) represents the gradient of the

asymmetric energy ∆ in the parametric space spanned by the electric field ~E. Note the consistency

between the definitions of φ1, φ2, and ~d0: when ~E is anti-parallel with ~d0, the asymmetric energy

∆ is increased by ~d0 · ~E (by the definition of gradient). The interaction Hamiltonian has a simple

form in the localized representation:

He
int = −σz ~d0 · ~E (2.5)

The same Hamiltonian has a slightly different form in the energy representation:

He
int = −

[
∆

ε
σz +

∆0

ε
σx

]
~d0 · ~E = −(

1

2
σz ~d′ + σx~d) · ~E (2.6)

~d′ = 2~d0
∆

ε
is called the permanent electric dipole moment. It is “permanent” because it appears

in the thermodynamic equilibrium state of the TLS, which is a classical state, or in other words, a
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mixed state with absolutely no coherence. ~d′ can be also expressed as ~d′ = −∇~Eε(
~E) and ∓ 1

2d
′ can

be regarded in the same fashion as the electric dipole moments of the two eigenstates ψ1 (ground

state) and ψ2 (excited state). ~d = ~d0
∆0

ε
is called the transition electric dipole moment. The

transition dipole moment only appears when the TLS is driven to be in a superposition of ψ1 and

ψ2 (so that 〈σx ~d〉 is not vanishing). The factors
∆

ε
and

∆0

ε
in ~d′ and ~d come from the change of

basis from localized representation to energy representation.

In the acoustic problem, the interaction Hamiltonian can be similarly written as

Ha
int = −

[
∆

ε
σz +

∆0

ε
σx

]
γe (2.7)

where γ is the elastic dipole moment and e is the strain field. The interaction Ha
int with phonon bath

can both relax the TLS back to its thermodynamic equilibrium state (the mixed state mentioned

above) and cause it to lose the coherence (mathematically 〈σx〉) between ground state and excited

state (real dephasing effect). We characterize the strength of the relaxation by rate T−1
1 . The real

dephasing rate is therefore 1
2T
−1
1 according to the master equation. Then, in the absence of any

electric field, we have

d〈σz(t)〉
dt

= −〈σz(t)〉 − σ
eq
z (ε)

T1
(2.8)

σeqz (ε) = − tanh(
ε

2kT
) (2.9)

d〈σ+(t)〉
dt

= −〈σ+(t)〉
2T1

(2.10)

d〈σ−(t)〉
dt

= −〈σ−(t)〉
2T1

(2.11)

where the time-dependent operators are in the Heisenberg picture, σz represents the difference of

the probabilities in the excited state and ground state, σ+ and σ− represent the coherence. The

solutions are simply exponential decays.

Next we analyze how the state of the TLS would physically evolve under an external electric field

~E(t) = ~E0(eiωt + e−iωt). We consider two toy Hamiltonian Hrel
int = − 1

2σzd
′ · ~E and Hres

int = −σxd · ~E,

the two components of the interaction Hamiltonian in Eq. 2.6 in the electric problem.

• Hrel
int: Hrel

int causes the eigenenergy of the TLS to oscillate with time sinusoidally with a small

amplitude ε(t) = ε−2~d′ · ~E0 cos(ωt). The TLS would be simultaneously relaxed by the interaction

with the phonon bath Ha
int toward the instantaneous equilibrium state, which results in a delayed

oscillation of the permanent dipole moment 〈~d′σ̂z〉 also with angular frequency ω. In the low
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frequency regime ω � T−1
1 , the phase delay is approximately zero since the TLS relaxes relatively

fast. In the high frequency regime ω � T−1
1 , in analogy to a classical damped harmonic oscillator,

the phase delay should approach π/2. The amplitude of the oscillation of 〈~d′σ̂z〉 would, however,

become increasingly small as the frequency ω goes up since there is not enough time for the TLS

to relax to the instantaneous equilibrium state corresponding to ε(t). We call such a response the

relaxation response.

• Hres
int : This is the standard Rabi problem if we do not take into account of the acoustic relaxation

induced by Ha
int. The TLS is driven coherently by the external electric field to oscillate between

the ground state and excited state in a harmonic manner with frequency ΩR =
√

Ω2 + ∆2
d, where

Ω = 2 ~E0 · ~d/~ is the Rabi frequency and ∆d = ωL−ωTLS = ω− ε/~ is the detuning of the electric

field with respect to the TLS. During the Rabi oscillation, the amplitude of the transition dipole

moment of the TLS 〈~dσ̂x〉 also swings harmonically between zero (in either ground state or excited

state) and the maximum (equal superposition between the ground state and excited state). The

Rabi oscillation will be modified but still continue if Ha
int is incorporated. We call such a response

the resonance response.

Let’s move back to the full interaction Hamiltonian He
int. Since the perturbation in ε provided

by Hrel
int is so small that the Rabi oscillation is affected very little, the state of TLS would evolve

basically as there is only Hres
int . Although Hrel

int still induces the oscillation in the permanent dipole

moment 〈~d′σ̂z〉, it is actually minuscule because the microwave signal used by KID is in the high

frequency regime fL ∼ 1 GHz with respect to the dielectric materials with T1 > 1 µs.

2.2.3 Rigorous solution of electric susceptibiities

We can solve the equations of motion of the TLS with the full interaction Hamiltonian He
int rigor-

ously. Note that the Hamiltonian of TLS in an external electric field

H = H0 +He
int (2.12)

has a formal analogy to that of a spin 1/2 system in a magnetic field

H = −~γ ~B · ~S = −~γ( ~B0 · ~S)− ~γ( ~B′ · ~S) (2.13)
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where ~B0 is the static magnetic field, ~B′ is the oscillating perturbation field, and ~S = ~σ/2. We can

identify the following correspondence:

−~γ ~B0 = (0, 0, ε) (2.14)

−~γ ~B′ = (−2~d · ~E, 0,−~d′ · ~E) (2.15)

Without any relaxation or dephasing process, the dynamic equation for a free spin in a magnetic

field is

d

dt
~S(t) = γ~S × ~B (2.16)

where ~S(t) can be interpreted as the spin operator in Heisenberg picture.

In order to precisely describe the evolution of the state of TLS, the relaxation process, real

dephasing process, and ensemble dephasing process must all be incorporated. The relaxation process

and real dephasing process have been discussed above. We will focus on the ensemble dephasing

process here. It is known that TLS can interact with each other via strain field. The interaction leads

to a random fluctuation of the eigenenergy δε(t). The coherence operator in the Heisenberg picture

of a free TLS evolves as σ̂+(t) = σ̂+(0) exp(−j ε~ t). When the TLS-TLS interaction is incorporated,

the independent fluctuations δε(t) will cause destructive interferences among the TLS if we consider

the ensemble average, which can be regarded as an effective dephasing process. We characterize the

strength of such a process by rate (T ens2 )−1 ∼ ∆ε/~, where ∆ε is the amplitude of the fluctuation.

We use T−1
2 = (2T1)−1 + (T ens2 )−1 to denote the total dephasing rate.

Having all the three processes included, the evolution of the ensemble average of spin operator

〈Si〉 can be described by the following Bloch equations:

d

dt
〈Sx(t)〉 = γ(〈Sy〉Bz − 〈Sz〉By)− 〈Sx〉

T2
= 0

d

dt
〈Sy(t)〉 = γ(〈Sz〉Bx − 〈Sx〉Bz)−

〈Sy〉
T2

= 0

d

dt
〈Sz(t)〉 = γ(〈Sx〉By − 〈Sy〉Bx)− 〈Sz〉 − S

eq
z [Bz(t)]

T1
= 0 (2.17)

where

Seqz [Bz(t)] =
1

2
tanh(

~γBz(t)
2kT

) (2.18)
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is the instantaneous equilibrium value of Sz.

The electric susceptibility tensors for the relaxation response χrel(ω) and resonance response

χres(ω) can be calculated by solving the Bloch equations[8] and substitute the B field components

by their counterparts in the electric problem:

〈~d′〉 = χrel(ω) · ~E0 (2.19)

〈~d〉 = χres(ω) · ~E0 (2.20)

χrel(ω) = −dσ
eq
z (ε)

dε

1− jωT1

1 + ω2T 2
1

~d′~d′ (2.21)

χres(ω) = −σ
0
z

~

[
1

ωε − ω + jT−1
2

+
1

ωε + ω − jT−1
2

]
~d~d (2.22)

where 1
2 〈~d′〉 is the induced oscillation of the permanent dipole moment and 〈~d〉 is the induced

oscillation of the transition dipole moment. Both 1
2 〈~d′〉 and 〈~d〉 have the same angular frequency ω

as the driving field. σeqz (ε) and σ0
z are the expectation values of σ̂z in the steady state without and

with the driving field.

σeqz (ε) = − tanh(
ε

2kT
) (2.23)

σ0
z =

1 + (ωε − ω)2T 2
2

1 + Ω2T1T2 + (ωε − ω)2T 2
2

σeqz (ε) (2.24)

where ωε = ε/~ and Ω = 2~d · ~E0/~ is the Rabi frequency. When the drive amplitude goes to zero,

the Rabi frequency vanishes and σ0
z → σeqz . When the drive amplitude gets large, σ0

z → 0 indicating

equal probability in the excited and ground states.

The susceptibility χres(ω) ∼ ~d~d is a tensor. One of ~d determines the strength of the coupling

with external electric field ∼ ~d · ~E0/~(ωε − ω+ jT−1
2 ) and the other ~d is a measure of the transition

dipole moment of the particular TLS. For the same TLS, ~d is fixed and its resonance response is

always along this direction, and the magnitude of the response depends on the alignment between

~d and ~E0 via ~d · ~E0. Similar physical meanings hold for χrel(ω) and ~d′.

The forms of χrel(ω) in the low and high frequency limits are consistent with the analysis in

section 2.2.2:

χrel(ω → 0)→
∣∣∣∣dσeqz (ε)

dε

∣∣∣∣ ~d′~d′ (2.25)

χrel(ω � T−1
1 ) = −j

∣∣∣∣dσeqz (ε)

dε

∣∣∣∣ 1

ωT1

~d′~d′ → 0 (2.26)
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where in the low frequency limit, the phase delay is zero, in the high frequency limit the phase delay

is π/2 and the amplitude of response is vanishing.

The first term ∼ (ωε−ω+ jT−1
2 )−1 and second term ∼ (ωε+ω− jT−1

2 )−1 of χres(ω) correspond

to the contributions from rotating wave and counter rotating wave components in the precession of

the Bloch vector ~r = (rx, ry, rz), where rx = 2Re(ρ12), ry = 2Im(ρ12), rz = ρ22 − ρ11. ρij with

i = 1, 2 and j = 1, 2 are the elements of the density matrix of the TLS. Geometrically, rx(t) and

ry(t) are the projection of ~r(t) in the x− y plane whose amplitude |~r| is mainly determined by its z

component rz. That is why the susceptibility χres(ω) is proportional to the expectation value of σ̂z.

We are exploring the hypothesis that TLS noise in resonators comes from the fluctuation of the

dielectric constant due to TLS of the KID’s capacitor. We therefore want to consider the electric

susceptibility due to TLS and its fluctuation.

2.3 Model of TLS noise spectral density

In Gao’s thesis[8], the power and temperature dependences of MKID’s resonant frequency f0 and

internal quality factor Qi have been successfully explained with the standard TLS model we reviewed

in the last section. In that work, it is also speculated that the observed TLS noise should be

attributed to the contribution from each individual independently fluctuating TLS and the TLS-

TLS interaction is weak enough that it does not produce noticeable correlation between different

TLS’s responses to the external electric field. The random state switching of each TLS comes from

either the coupling with phonon bath or some other mechanisms. A specific form for the operator of

the dielectric constant due to TLS ε̂TLS was suggested. Instead of deriving the noise spectral density

from ε̂TLS , Gao proposed an empirical ansatz as the solution, which well matched the experimental

data in some aspects. In this thesis we will examine the validity of ε̂TLS and explore its theoretical

implications for the case that the fluctuation of individual TLS is entirely due to the coupling with

phonon bath.

2.3.1 Model of the dielectric constant due to TLS

We use εTLS to represent the contribution to the overall dielectric constant from the TLS, that is

εtot = εother + εTLS (2.27)
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where εother include the contribution from vaccum (1) and from the non-TLS dielectrics present. In

Gao’s thesis the dielectric constant operator ε̂TLS(ω,~r, t) due to TLS is defined by extending Eq.

2.22 as:

ε̂TLS(ω,~r, t) = −
∑
~rα∈Vh

~dα ~dαδ(~r − ~rα)

[
1

εα − ~ω + jΓα
+

1

εα + ~ω − jΓα

]
σ̂z,α(ω, t) (2.28)

ε̂TLS(ω,~r, t) is the dielectric constant operator due to TLS for an external electric field with angular

frequency ω at position ~r and time t. α is the label of the particular TLS. ~rα indicates the position

of the TLS. Vh is the TLS-host volume. εα = (∆2
α + ∆2

0,α)1/2 is the energy level separation.

~dα = d̂αd0∆0,α/εα is the transition dipole moment where d̂α is the dipole orientation unit vector

which is assumed to be random and isotropically distributed. Γα is the real dephasing rate of the

TLS: Γα = 1
2T
−1
1,α. Tα = Γ−1

α instead is used in the following derivation. We assume Tα is the same

for all the TLS.

There is, however, an obvious problem with such a definition. Note that Eq. 2.22 only applies

for an ensemble average of TLS in the steady state. Therefore, the abstraction from the steady state

solution for the ensemble average of TLS as given by Eq. 2.22 to the instantaneous operator relation

for a set of individual TLS shown in Eq. 2.28 is mathematically insuffucient and physically incorrect.

Mathematically, when we have an equality between the expectation values for two operators 〈Â〉 =

〈B̂〉, one may not conclude that the two operators are equal. To demonstrate this point from a

physics point of view, let’s consider the evolution of a single TLS starting in its ground state for a

time scale that is much longer than the period of the electric field but much shorter than the period

of Rabi oscillation. First, we know that the dielectric constant due to the single TLS is physically

well-defined and measurable. Secondly, the TLS can be simply treated as being in the ground state

all the time by the assumption (no time allowed to go through the full Rabi oscillation). Eq. 2.28

gives a finite value for 〈ε̂(ω,~r, t)〉 since 〈σ̂z(t)〉 = −1. But physically the induced transition dipole

moment is vanishing since the TLS is not in any superposition of the ground state and excited state.

Such an obvious discrepancy is just an example of why the definition in Eq. 2.28 is wrong and

should not be used to compute ε(ω,~r, t)’s time correlation (TLS noise). The right way to define the

instantaneous dielectric constant operator should be through the transition dipole moment operator

of TLS σ̂x rather than σ̂z, which, however, we won’t be able to further study in this thesis.

While there are physical deficiencies of the above choice of operator, we pursue a derivation of

TLS noise expectations for it for two reasons: 1) these deficiencies were not recognized initially and

2) it is valuable to see what this model predicts (and how it fails) so that we may obtain some
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guidance as to how a correct and complete model of TLS noise can be constructed. So we ignore

the above problem and stick with the definition in Eq. 2.28, from which we can derive the power

spectral density of TLS noise with some straightforward algebra.

Define the average dielectric constant operator due to TLS over the region Vh as

ε̂aveTLS(ω, t) =
1

Vh

∫
Vh

ε̂TLS(ω,~r, t)d~r (2.29)

= − 1

Vh

∑
~rα∈Vh

~dα ~dα

[
1

εα − ~ω + jΓα
+

1

εα + ~ω − jΓα

]
σ̂z,α(ω, t) (2.30)

= − 1

Vh

∑
~rα∈Vh

~dα ~dαχα(ωε, ω)σ̂z,α(ω, t) (2.31)

χα(ωε, ω) =
1

~(ωε − ω + jT−1
α )

+
1

~(ωε + ω − jT−1
α )

(2.32)

The power spectral density of ε̂aveTLS(ω, t) is defined as

SεaveTLS
(ν) = lim

T→∞

1

2T

∫ T

−T
dt

∫ ∞
−∞

dτe−iντ 〈ε̂ave†TLS(ω, t+ τ)ε̂aveTLS(ω, t)〉ss (2.33)

where the symbol 〈〉ss means expectation value in the steady state.

The time correlation ε̂ave†TLS(ω, t+ τ)ε̂aveTLS(ω, t) can be simplified by averaging d̂α isotropically and

replacing the sum of TLS with an integration over the density of states. Since only the component

of the induced transition dipole moment along the external electric field matters, we treat ε̂aveTLS(ω, t)

and its time correlation as a scalar in the following discussion:

ε̂ave†TLS(ω, t+ τ)ε̂aveTLS(ω, t) (2.34)

=
1

V 2
h

∑
~rα∈Vh

~dα ~dα ~dα ~dα|χα(ωε, ω)|2σ̂z,α(ω, t+ τ)σ̂z,α(ω, t) (2.35)

→ 1

Vh

∫ ∫ ∫
(~e · ~dα)(~e · ~dα)(~dα · ~e)(~dα · ~e)|χα(ωε, ω)|2σ̂z,α(ω, t+ τ)σ̂z,α(ω, t)dd̂α

P

∆0
d∆0d∆

(2.36)

=
1

Vh

∫ ∆max

0

d∆

∫ ∆0,max

∆0,min

P

∆0
d∆0

∫ π
2

0

sin θdθ cos4 θ

(
∆0

ε

)4

d4
0|χα(ωε, ω)|2σ̂z,α(ω, t+ τ)σ̂z,α(ω, t)

(2.37)

where ê is a unit vector indicating the direction of the external electric field, ∆max is the cutoff of the

asymmetric energy ∆, ∆0,max, and ∆0,min are the upper and lower limits of the tunneling energy

∆0, θ is the angle between the direction of the electric field and the transition dipole moment.
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Let u = ∆0/ε and apply the following changes of variables.

∫ ∆max

0

∫ ∆0,max

∆0,min

P

∆0
d∆0d∆ =

∫ εmax

0

∫ 1

umin

P0

u
√

1− u2
dudε (2.38)

The time correlation can be reduced to

ε̂ave†TLS(ω, t+ τ)ε̂aveTLS(ω, t) (2.39)

=
1

Vh

∫ εmax

0

dε

∫ 1

umin

P0

u
√

1− u2
u4du

∫ π
2

0

cos4 θ sin θdθd4
0|χα(ωε, ω)|2σ̂z,α(ω, t+ τ)σ̂z,α(ω, t) (2.40)

=
2

15

P0d
4
0

Vh

∫ εmax

0

dε|χ(ωε, ω)|2σ̂z(ω, t+ τ)σ̂z(ω, t) (2.41)

The subscript α in Eq. 2.40 indicates the dependence on ε, u, and θ of the evolution of the TLS. Note

that the major contribution to the integration over u and θ comes from the region u ∼ 1 and θ ∼ 0,

which corresponds to the case that |~d| ∼ |~d0| and ~d ‖ ~E0. Since the dependence of the evolution of

the TLS on u and θ is through the Rabi frequency Ω = 2~d · ~E0/~ = 2|~d0|| ~E0|u cos θ, we can safely

assume all the TLS have the same Rabi frequency Ω = 2|~d0|| ~E0| to simplify the calculation. This is

a good approximation for our problem. The subscript α is hence dropped from Eq. 2.41.

The power spectral density of ε̂aveTLS(ω, t) is therefore

SεaveTLS
(ν) =

2

15

P0d
4
0

Vh

∫ εmax

0

dε|χ(ωε, ω)|2Sσz (ν) (2.42)

The dielectric constant can be decomposed into the real part and imaginary part:

ε̂aveTLS = ε̂′TLS − jε̂′′TLS (2.43)

Their power spectral densities are

Sε′TLS (ν) =
2

15

P0d
4
0

Vh

∫ εmax

0

dε|Reχ(ωε, ω)|2Sσz (ν) (2.44)

Sε′′TLS (ν) =
2

15

P0d
4
0

Vh

∫ εmax

0

dε|Imχ(ωε, ω)|2Sσz (ν) (2.45)

2.3.2 Power spectral density of σ̂z for a single TLS

To calculate the power spectral density Sσz (ν), we need to know the evolution of the density operator

of the TLS, as it contains the information of the state populations and their time correlation. The
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evolution of the density operator of the TLS can be described by the Heisenberg equation

˙̂ρ =
1

i
[Ĥ, ρ̂] + L̂ρ̂ (2.46)

Ĥ is the Hamiltonian of a TLS driven by an external electric field. Ĥ can be written in the interaction

picture as

Ĥ = −∆dσ̂z +
Ω

2
(σ̂+ + σ̂−) (2.47)

where ∆d = ωL − ωTLS = ω − ωε is the detuning and Ω = 2~d · ~E0/~ is the Rabi frequency.

L̂ is the Lindblad operator that describes the effect on the TLS of its coupling with the phonon

bath[23, 24, 25]. L̂ = L̂(ĉem) + L̂(ĉabs) + L̂(ĉd) can be decomposed into three components:

L̂(ĉem)ρ̂ = ĉemρ̂ĉ
†
em −

1

2
(ĉ†emĉemρ̂+ ρ̂ĉ†emĉem) (2.48)

L̂(ĉabs)ρ̂ = ĉabsρ̂ĉ
†
abs −

1

2
(ĉ†absĉabsρ̂+ ρ̂ĉ†absĉabs) (2.49)

L̂(ĉd)ρ̂ = ĉdρ̂ĉ
†
d −

1

2
(ĉ†dĉdρ̂+ ρ̂ĉ†dĉd) (2.50)

where ĉem, ĉabs, and ĉd correspond, respectively, to the phonon emission induced projection, phonon

absorption induced projection, and ensemble dephasing induced projection. We have

ĉem = [(1 + n)Γ]
1
2 σ̂− (2.51)

ĉabs = (nΓ)
1
2 σ̂+ (2.52)

ĉd = (2Γd)
1
2 σ̂z (2.53)

where ωL is the angular frequency of the electric field or the probe signal (the subscript L indicates

“laser” for general purpose), n = (e~ωL/kBT − 1)−1 is the number of phonon quanta at angular

frequency ωL in the thermal bath at temperature T , Γ = 1
2n+1T

−1
1 is the spontaneous decay rate

of the TLS due to its coupling with the phonon bath, and Γd = (T ens2 )−1 = T−1
2 − 1

2T
−1
1 is the

ensemble dephasing rate due to TLS-TLS interaction. As we discussed before, such a dephasing

process is only meaningful for the ensemble average of many TLS. Here we consider the evolution of

a single TLS, so Γd should not be included. The following discussion keeps the ensemble dephasing

term as an extra degree of freedom in order to best fit the experimental data.

The terms in Lindblad operator have very clear physical interpretations. Take L̂(ĉem) as the
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example. ĉemρ̂ĉ
†
em represents the increase rate of the ground state probability due to phonon emission

induced decay from the excited state. − 1
2 (ĉ†emĉemρ̂ + ρ̂ĉ†emĉem) represents the decrease rate of the

excited state and superposition probability in the same process.

Having the equations of motion for the evolution of the density operator of the TLS, we can

compute Sσz (ν) very efficiently with the aid of quantum optics toolbox[26].

2.4 Theoretical results about TLS noise

In this section we examine the theoretical dependences of the normalized TLS frequency noise

spectral density Snε′ = Sε′TLS (ν)
(

2
15
P0d

4
0

Vh

)−1

on noise frequency ν[27], amplitude of the electric field

| ~E|[28], and temperature T [29]. We adjust the two independent free parameters Γ and Γd in the

above model to match the experimental data.

2.4.1 Power law dependence on noise frequency

Figure 2.7 shows the theoretical normalized TLS frequency noise spectral density for fL = 1 GHz,

Γ = 100 Hz, Γd = 100 Hz, Ω = 0 Hz (zero electric field) as a function of noise frequency ν at several

temperatures from T = 1~ωL/kB (50mK) to T = 10~ωL/kB (500mK). For the curve corresponding

to the lowest temperature, we observe power law dependence Snε′(ν) ∼ ν−1/2 for ν = 10 ∼ 1000Hz,

which is qualitatively consistent with the experimental data as shown in Figure 2.3.
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Figure 2.7: Theoretical frequency noise spectral density for fL = 1 GHz, Γ = 100 Hz, Γd = 100 Hz,
Ω = 0 Hz at several temperatures.

2.4.2 Power law dependence on amplitude of the electric field

Figure 2.8 shows the theoretical normalized TLS frequency noise spectral density for fL = 1 GHz,

Γ = 100 Hz, Γd = 100 Hz, T = 1~ωL/kB at noise frequency ν = 50 Hz as a function of Rabi

frequency Ω ∼ | ~E|. We observe power law dependence Snε′(ν) ∼ Ω−1 for Ω = Γ ∼ 10Γ = 100 ∼ 1000

Hz, which is qualitatively consistent with the experimental data as shown in Figure 2.4.

The underlying physics of the monotonic dependence of TLS frequency noise on amplitude of

the electric field is illustrated by Figure 2.9: the electric field shifts the peak of the spectrum of

σz by roughly the Rabi frequency Ω. Therefore the frequency range of interest for astronomical

observation (below 1000 Hz) moves further toward the tails of the spectrum, resulting in the ∼ Ω−1

dependence.
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Figure 2.8: Theoretical frequency noise versus Rabi frequency for fL = 1 GHz, Γ = 100 Hz, Γd = 100
Hz, T = 1ωL=50 mK, ν = 50 Hz.

Figure 2.9: Theoretical spectral density of σz for fL = 1 GHz, Γ = 100 Hz, Γd = 100 Hz, T = 1ωL=50
mK at several Rabi frequencies.
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2.4.3 Power law dependence on temperature

Figure 2.10 shows the theoretical normalized TLS frequency noise spectral density for fL = 1 GHz,

Γ = 100 Hz, Γd = 100 Hz, Ω = 0 Hz (zero electric field) at noise frequency ν = 50 Hz as a function of

temperature. We observe power law dependence Snε′(ν) ∼ T−2.5 from T = 1~ωL/kB to 10~ωL/kB ,

which is qualitatively consistent with the experimental data as show in Figure 2.5.

The underlying physics of the non-monotonic dependence on temperature is illustrated by Figure

2.11. From the definition of power spectral density, we know that
∫∞
−∞ Sσz (ν)dν = 2π〈σ̂2

z〉ss. In

the low temperature regime T ≤ ~ωL/kB when the TLS stays close to the ground state most of

the time, the variance 〈σ̂2
z〉ss increases as temperature goes higher and so does Sσz (ν). In the high

temperature regime T ≥ ~ωL/kB when the TLS stays in the ground state and excited state with

equal probability, the variance 〈σ̂2
z〉ss ≈ 1, but the bandwidth of the spectrum grows proportionally

to the temperature. So Sσz (ν) for a fixed ν would decrease as temperature goes higher.

Figure 2.10: Theoretical frequency noise versus temperature for fL = 1 GHz, Γ = 100 Hz, Γd = 100
Hz, Ω = 0 Hz, ν = 50 Hz.
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Figure 2.11: Theoretical spectral density of σz for fL = 1 GHz, Γ = 100 Hz, Γd = 100 Hz, Ω = 0
Hz, ν = 50 Hz at several temperatures.

2.4.4 Discussion

We have successfully chosen the values for Γ1 and Γd to match the theoretical predictions of TLS

frequency noise with experimental data. However these “optimal” values ∼100 Hz are orders of

magnitude off from the actual values ∼10 to 100 kHz for Γ estimated with Fermi’s golden rule[30]

and 10 MHz for Γd, implying that the demonstrated consistency might just be pure coincidence.

We can also derive the relative magnitude between the TLS frequency noise and amplitude noise

by comparing the integrals in Eq. 2.44 and Eq. 2.45.

Sε′TLS (ν) ∼
∫ εmax

0

dε|Reχ(ωε, ω)|2Sσz (ν) ∼ Tα ∼
∫ εmax

0

dε|Imχ(ωε, ω)|2Sσz (ν) ∼ Sε′′TLS (ν) (2.54)

Therefore, the model predicts that the frequency noise is comparable with amplitude noise. However,

the experimental data shows that they are generally off by several orders of magnitude as illustrated

by Figure 2.3, revealing another discrepancy.

Such inefficacy of the model can be attributed to the bad “abstraction” discussed in section

2.3.1. To understand the intrinsic noise of a single TLS free of interaction with other TLS, we

might have to numerically simulate a long time series of the TLS’s response to the external electric

field. Recent studies suggest that to fully explain TLS noise the TLS-TLS interaction must also
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be incorporated[11, 12]. Further work is still needed to justify this theory, such as whether it can

reasonably relate material property to the absolute strength of the TLS noise.
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Chapter 3

Architecture of the millimeter wave
coupler and KID design of LWCam

In this chapter we describe 1) the architecture of the millimeter wave coupling from the microstrip

transmission line exiting the antenna to the KID inductor and 2) the design of the KID resonator

(inductor and capacitor) and its coupling with the microwave readout line.

3.1 Architecture of the millimeter wave coupler

In Chapter 1 we briefly explained the way that the millimeter light is received by the phased array

slot antenna. A signal is created upon the absorption of a photon in the microstrip transmission

line that exits the antenna. The primary prior implementation of coupling of millimeter wave

from microstrip transmission line to a KID was in MUSIC[14]. MUSIC uses single-scale, single-

polarization phased-array antennas, covering four spectral bands (150, 220, 290, and 350 GHz).

It uses KIDs that combine a coplanar waveguide (CPW) inductor with an interdigitated capacitor

(IDC). The majority of the KID is niobium, but there is a 350 µm length of aluminum at the shorted

end of the CPW. To couple from microstrip transmission line to the Al KID, the Nb microstrip runs

over this Al section. Since Al with Tc ∼ 1 K is absorptive for photons with hν > 2∆, the millimeter

wave power can be dissipated in Al to break Cooper pairs, modifying its kinetic inductance as

described in earlier sections.

For LWCam, we seek to use TiN KIDs because of their higher responsivity and thus greater

prospects for fundamental-noise-limited sensitivity. However, the above mentioned coupling scheme

does not work for the highly resistive material TiN as opposed to Al. Normally the impedance of

Nb microstrip transmission line with dimensions of a few microns is on the order of 50 Ω. Switching

to TiN ground plane dramatically increases this value by a factor of ten[31] as given in Table 3.1.
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The resultant impedance mismatch would cause reflection of a major fraction of the millimeter wave

power from the antenna. The topic of this section is therefore about how to efficiently couple the

power from the Nb microstrip transmission line to the TiN inductor/absorber[34].

We will first illustrate the general structure of the coupling circuit, including the constituent

materials and geometries. The coupling process is subsequently modeled both analytically and with

finite element simulation. Also in order to maximize the KID responsivity, the millimeter wave

power must be guaranteed to deposit uniformly over the entire absorber. Special features involving

a power splitter and half-wavelength phase shifter are proposed to address this issue. At last we

present a study about the coupling efficiency over wide (several tens of GHz) bands to validate the

overall performance of the design. Throughout this section, the “coupling capacitor” refers to the

millimeter wave coupling capacitor unless specifically emphasized by “readout coupling capacitor”.

3.1.1 Structure of the coupler

We will first describe the structure following the cross-sectional view as given by Figure 3.1. The

device/coupler is composed of three dielectric layers and three patterned metal layers. Several func-

tional components are formed within this structure: KID inductor/absorber, KID (parallel-plate)

capacitor, microstrip transmission line from the antenna, and (parallel-plate) coupling capacitor (its

role will be elaborated on in the latter part of this section). The thicknesses and materials of these

layers (from top to bottom) are listed together with descriptions of their roles in the corresponding

functional components.

• 150nm Nb: microstrip from the antenna, top plates of coupling capacitor

• 270nm amorphous Si1: dielectric material between the plates of coupling capacitor, dielectric

material between the microstrip from the antenna and its ground plane

• 150nm Nb/20nm TiN: top plate of KID capacitor/KID inductor, bottom plates of coupling ca-

pacitor

• 800nm amorphous Si: dielectric material between the top plates and floating virtual ground of

KID capacitor, dielectric material between microstrip from the antenna and its ground plane

• 200nm Nb: ground plane of the microstrip transmission from the antenna, ground plane of TiN

microstrip transmission line, floating virtual ground of KID capacitor

1We use hydrogenated amorphous silicon α:Si-H since hydrogen can significantly reduce the dangling bonds and
thus two level systems in the amorphous silicon, improving KID’s sensitivity.
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• crystalline Si: substrate

Figure 3.1: Cross-sectional view of the KID device.

Next we will describe the structure layer by layer following the plan view. In the top metal

layer the 4 µm wide microstrip that carries the millimeter wave signal generated from the antenna

splits into two branches with equal width. The upper (in the plan view) branch is attached to a

row of 3 µm × 6 µm rectangles separated by 1 µm wide gap. Those are the top plates of the

coupling capacitors. The lower branch (in the plan view), instead of being directly connected to the

rectangles, first goes through a meandered region with length of half of a wavelength, which works

as a phase shifter. Figure 3.2 is the plan view of the left end in the top metal layer. Both of the two

branches are left unterminated at the right ends, as shown in Figure 3.3.

Figure 3.2: Plan view of the KID device’s left end in the top metal (Nb) layer. Solid red is Nb in
the top layer and dashed green is the projection of TiN from the middle layer.
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Figure 3.3: Plan view of the KID device’s right end in the top metal (Nb) layer. Solid red is Nb in
the top layer and dashed green is the projection of TiN from the middle layer.

In the middle metal layer, the 1 µm wide meandered TiN microstrip forms the KID induc-

tor/absorber and a lossy transmission line with the Nb ground for the millimeter wave. A row of

polygons with varying sizes are attached to the microstrip, which are the bottom plates of the

coupling capacitors. The plan views of the middle TiN layer are shown in Figure 3.4 and 3.5.

Figure 3.4: Plan view of the KID device’s left end in the middle metal (TiN) layer. Dashed red is
the projection of Nb from the top layer and solid green is TiN in the middle layer.

Figure 3.5: Plan view of the KID device’s right end in the middle metal (TiN) layer. Dashed red is
the projection of Nb from the top layer and solid green is TiN in the middle layer.

3.1.2 Model of the coupling process

The basic idea of the coupling scheme is to establish a quasi-continuous capacitive coupling Cc

between the Nb microstrip transmission line from the antenna and the TiN microstrip transmission

line. We make Cc by creating a series of parallel-plate coupling capacitors, with the top plates (3

µm×6 µm rectangles as mentioned above) attached to Nb microstrip in the top metal layer and

bottom plates (polygons as mentioned above) attached to TiN microstrip in the middle metal layer.

A distributed element model is shown in Figure 3.6.
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Figure 3.6: Distributed element model of the coupling scheme. ZNb denotes the impedance of Nb
transmission line and ZTiN denotes the impedance of TiN transmission line.

We will analyze the coupling mechanism qualitatively next based on the lumped element model

as shown in Figure 3.7 and sort out which physical factor dominates the coupling process and

determines the efficiency. The several relevant parameters are listed below.

• At=18 µm2: area of coupling capacitor’s top plate; the subscript t means “in the top metal layer”

• Am: area of coupling capacitor’s bottom plate; the subscript m means “in the middle metal layer”

• tt: thickness of the top dielectric layer

• tm: thickness of the middle dielectric layer

• CgNb: capacitance between Nb microstrip and ground plane induced by the rectangle

• CgT iN : capacitance between TiN microstrip and ground plane induced by the polygon
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CgNb
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B
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D

ZTiN

Cc
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Figure 3.7: Lumped element model of the coupling scheme. ZNb denotes the impedance of Nb
transmission line and ZTiN denotes the impedance of TiN transmission line.

The capacitances can be expressed in terms of the geometric parameters:

Cc = εSi
Am
tt

=
εSiAt
tt

Am
At

(3.1)

CgNb = εSi
At

tt + tm
=
εSiAt
tt

1

1 + tm/tt
(3.2)

CgT iN = εSi
Am
tm

=
εSiAt
tt

Am
At

1

tm/tt
(3.3)

Table 3.1 shows the impedances of relevant components in Figure 3.7.

Component ZNb CgNb Cc CgT iN ZTiN
Impedance (Ω) 50 0.1× 104 0.4× 104 1.3× 104 800

Table 3.1: Impedances of relevant components evaluated at ν=90 GHz, tt = 270 nm, tm = 800 nm
and Am=1 µm2.

Let’s consider the millimeter-wave signal generated at the antenna traveling along Nb transmis-

sion line with amplitude V0. At the junction (point A) where Nb microstrip is capacitively coupled

to TiN microstrip via Cc, a fraction of the power is transferred into TiN transmission line. Since
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the impedance between A and B, mainly contributed by Z(Cc), is much larger than ZNb, such a

fraction is very small, ensuring that no impedance mismatch is created and the millimeter wave can

continue to propagate down the Nb microstrip transmission line.

Given that the coupling is weak, we know VAC ≈ V0. The power dissipation in the TiN trans-

mission line is therefore

P = I2ZTiN = (V0/Z(Cc))
2ZTiN ∝ t−2

t tm (3.4)

We neglect the Z(CgT iN ) term since Z(CgT iN ) � ZTiN . So the ratio of dielectric thicknesses tt/tm

also affects the coupling strength. We simulated the attenuation length of current in Nb transmission

line for tt/tm = 3 and tt/tm = 1/3 with several sizes of coupling capacitor. tt + tm = 1080 nm is

fixed. The results are shown in Figure 3.8. For size of 1 µm2, the ratio between power attenuation

lengths is (22 mm/6.3 mm)2 ∼ 12, qualitatively consistent with the above analysis as in Eq. 3.4:

((3−2 × 1)/(1−2 × 3))−1 = 27. The actual design takes tt/tm=270 nm/800 nm=1/3, as it provides

the right coupling strength.

Figure 3.8: Attenuation length of current in Nb transmission line for tt/tm = 3 (left) and tt/tm = 1/3
(right).

3.1.3 Uniform power deposition

KID’s responsivity (fractional shift in resonant frequency per unit optical power) is maximized only

with the quasi-particles generated uniformly within the entire inductor, because in the recombination-

limited regime uniform distribution of quasiparticles yields the longest effective lifetime for a given

input optical power, inductor volume, and choice of material. We must therefore make sure that

the power dissipation in the TiN meandered microstrip is uniform both vertically and horizontally
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(from the plan view).
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Figure 3.9: Symmetric sources of the TiN transmission line.

In the vertical direction the 50/50 power splitter and half-wavelength shifter introduced earlier in

this chapter are necessary to reach this goal. As illustrated in Figure 3.4 and Figure 3.9, the two ends

of each vertical section of TiN meandered microstrip are capacitively coupled to the upper and lower

Nb microstrips, respectively. The splitter and shifter make the voltages at the two Nb microstrips

equal in magnitude but opposite in sign. Therefore the power dissipation in TiN is guaranteed to be

symmetric around the central line. Moreover, in order for the power to be absorbed uniformly in the

vertical direction, the length of each vertical TiN section must also be shorter than or comparable to

the power attenuation length. According to transmission line theory, we have that the propagation

constant and field attenuation length are

γ = α+ jβ =
√

(R+ jωL)(G+ jωC) ≈
√
jRωC (3.5)

λatt = 1/α (3.6)

where R, L, G, and C are the resistance, inductance, conductance, and capacitance per unit length

of the transmission line, and λatt is the attenuation length. We refer to this attenuation length as

transverse attenuation length in the following discussion. The transverse attenuation lengths of a 1

µm-wide 20 nm-thick TiN microstrip on top of 800 nm amorphous Si are listed for six millimeter

wave bands in Table 3.2.

In the horizontal direction the coupling capacitance Cc is adiabatically adjusted along the Nb

transmission line by changing the areas of the bottom plates (a series of polygons as shown in Figure

3.13). The coupling strength can be characterized by its equivalent attenuation length of power in
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Parameter band 1 band 2 band 3 band 4 band 5 band 6
ν (GHz) 90 150 230 275 350 400
R (Ω/m) 5× 107 5× 107 5× 107 5× 107 5× 107 5× 107

ωL (Ω/m) 9.0× 104 1.5× 105 2.3× 105 2.8× 105 3.5× 105 4.0× 105

G (/Ωm) 0 0 0 0 0 0
ωC (/Ωm) 74 126 195 232 289 333
λatt(µm) 23 18 15 13 12 11

Table 3.2: Transverse attenuation lengths in a 1 µm×20 nm TiN microstrip transmission line.

the Nb transmission line. We refer to this attenuation length as the longitudinal attenuation length.

We can straightforwardly derive the relation between coupling strength and position needed to

obtain uniform power absorption: the power P in Nb transmission line should decrease linearly as

the millimeter wave travels:

P (L) = P0(1− L

L0
) (3.7)

dP (L)

dL
= −P (L)

λ(L)
(3.8)

where P (L) and λ(L) are the power and longitudinal attenuation length in Nb transmission line at

position L, P0 = P (0) is the power at the starting point, and L0 is the length of Nb section that is

coupled with TiN. So we have

1

λ(L)
= − 1

P

dP

dL

=
1

L0

P0

P

=
1

L0

1

1− L/L0
(3.9)

We simulated the electric current density profiles in Nb microstrip with coupling capacitors

from 1 µm2 to 16 µm2, as shown in Figure 3.13. We then fit this profile to a lossy open-ended

transmission line to extract the longitudinal attenuation length. The results are summarized in

Figure 3.10. Different lengths of vertical section of meandered TiN microstrip are used for different

millimeter wave bands to facilitate the “coupling strength engineering”, as will be discussed next.
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Figure 3.10: Longitudinal attenuation lengths for the 6 millimeter-wave bands.

To obtain the desired linear power absorption profile, we used the results of the above simulation

to pick the coupling capacitor area that best matches the desired attenuation length (Eq. 3.9) as

a function of position along the Nb transmission line for each band individually. The results are

shown in Figure 3.11. The actual profile of coupling strength (staircase blue line) aligns well with

the ideal profile (green line).
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Figure 3.11: Adiabatic coupling scheme. The staircase blue line indicates the actual profile of
coupling strength, the green line indicates the ideal profile, and the red line indicates 1/λ(0) in Eq.
3.9.

The resultant electric current density profiles in the two (upper and lower) Nb microstrips are

illustrated in Figure 3.12 for the six bands. Such a profile is in sharp contrast to the exponential

profile that one would expect for a constant coupling strength over the entire Nb transmission line.

Here the power decays approximately uniformly, validating the above engineering idea of “quasi-

continuous coupling”. There are several other noticeable features in the profile too. First, the
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current vanishes at the right end of Nb microstrip, as required by the open termination condition.

Secondly, the oscillation on the scale of a wavelength comes from the interference between right

traveling wave and its reflection at the open end: because of the discretization of the capacitor size

in units of 1 µm2, the attenuation length profile does not perfectly match the desired one, and the

power profile is not perfectly linear, and thus some unabsorbed power remains at the end and is

reflected, creating the this long length scale interference pattern. Thirdly, the oscillation on the scale

of a few microns is due to the quasi-continuity of the coupling: the coupling consists of discrete steps,

creating small reflections at the points where such steps occur. Fourthly, there are some “smooth”

regions. It is found that these regions are coupled only with capacitors marked in red in Figure 3.13.

The actual mechanism needs further investigation but is unimportant to our goal here.
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Figure 3.12: Current density in the Nb transmission lines for the six millimeter-wave bands.

Figure 3.13: Layout of bottom plates in the 16 coupling capacitors.

The electric current density profiles in TiN microstrip for the six bands are shown in Figure 3.14-

3.19. The density in each vertical section is very uniform because the length is set to be comparable
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with the transverse attenuation length. In the horizontal direction the wavelength-scale oscillations

shown in Figure 3.12 are also clearly visible.

Figure 3.14: Current density in the TiN transmission line for 90 GHz band (unit: A/m).

Figure 3.15: Current density in the TiN transmission line for 150 GHz band (unit: A/m).

Figure 3.16: Current density in the TiN transmission line for 230 GHz band (unit: A/m).

Figure 3.17: Current density in the TiN transmission line for 275 GHz band (unit: A/m).

Figure 3.18: Current density in the TiN transmission line for 350 GHz band (unit: A/m).

Figure 3.19: Current density in the TiN transmission line for 400 GHz band (unit: A/m).

We can examine the distribution of electric current density in TiN microstrip by creating a

histogram, as given by Figure 3.20. Since the quasiparticle density goes like
√
P in the recombination

limited regime, the spread in electric current density gives the spread in quasiparticle density. The

distribution has a sharp peak and thus small standard deviation, indicating a uniform deposition of

the millimeter wave power.
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Figure 3.20: Histogram of the current density from 1 µm×1 µm squares in TiN microstrip.

3.1.4 Efficiency of the coupling

The power absorption efficiency of TiN inductor for the six bands is shown in Figure 3.21. The

efficiency is generally more than 80% over the entire wide continuous band, attesting to the efficacy

of the coupling scheme. The less than 20% reflection is due to slight impedance mismatch at the

power splitter. If the microstrip from the antenna is 6 µm instead of 4 µm wide and still splits

into two 2 µm wide branches, then the efficiency will approach 100%. It is straightforward to
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adiabatically widen the microstrip between the antenna and the power splitter to 6 µm, so this

near-100% efficiency can be easily obtained.

Figure 3.21: Millimeter wave absorption efficiency of TiN inductor.

3.2 Why parallel plate structure

One can make the KID capacitor using an interdigitated structure or a parallel-plate structure. The

interdigitated capacitor (IDC) has well controlled TLS noise[15, 16], and it is clear how to design such
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a capacitor to render TLS noise subdominant. However, an IDC acts as an antenna, directly receiving

mm-wave radiation and routing it to the inductor in a way that bypasses the antenna. Though there

have not been lots of tests on TLS noise properties of parallel-plate capacitor, we believe, based on

TLS noise data[36] of the microstrip half wavelength resonator/KID using hydrogenated amorphous

silicon, that the TLS noise of a parallel-plate capacitor with the same dielectric material can be

made acceptably low too, therefore making it a promising substitute for IDC without any risk of

stray light absorption. We thus choose parallel plate capacitor for the design of LWCam. We will

discuss in detail its potential advantages in terms of TLS noise reduction and elimination of stray

light absorption next.

3.2.1 TLS noise reduction

As we reviewed in Chapter 2, experiments have established the fact that KID’s phase/frequency

noise due to TLS is inversely proportional to the amplitude of electric field and number of TLS

fluctuators[8]:

Sδfr(ν)

f2
r

∼ 1

| ~E|NTLS
∼ 1

| ~E|Vhost
(3.10)

where ~E is the microwave electric field, NTLS is the number of independent TLS fluctuators, and

Vhost is the volume of dielectric material that hosts the many TLS. The parallel-plate structure have

significant advantages in terms of TLS noise reduction in both aspects: the electric field within the

capacitor can be made arbitrarily strong in principle with a sufficiently thin dielectric layer (though

practically there is a lower limit on the dielectric thickness due to the impedance constraint on the

Nb microstrip transmission line); the structure can easily extend to large area in fabrication.

3.2.2 Elimination of stray light absorption

Stray light absorption in KID’s inductor has three major impacts on its performance: increasing

the optical loading and therefore impairing the responsivity (as will be discussed in Chapter 4)[35],

adding extra photon noise, and circumventing the spectral and spatial filters. The first two factors

would further make it harder for KID to reach the condition of background limited detection.

KID in traditional designs[14] with an IDC suffers from stray light in two ways. First, photons

from the environment can be directly picked up by IDC due to its similar structure as the slot

antenna and arrive at the inductor. Secondly, any stray light that makes it way around to the
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backside of the wafer can bounce around and be absorbed directly by the inductor. The parallel

plate capacitor adopted in our design can nicely prevent these from happening. It is obvious that

such a structure won’t collect light as an antenna and no light can leak through either. In addition,

the ground plane only 800nm below the inductor establishes a short circuit ( ~E = 0) condition,

rendering itself a good reflector of free-space electromagnetic field and protecting the inductor.

3.3 Design of the resonator and readout circuit

3.3.1 Components of the resonator and readout circuit

The KID (normally microwave) resonator consists of an inductor L and a capacitor C. The readout

line is a standard CPW with 50Ω impedance. The resonator is capacitively coupled with the readout

line via a coupling capacitor Cc as shown in Figure 3.22. Note that “coupling capacitor” and “Cc”

will refer to the readout coupling capacitor throughout this section and is distinct from the millimeter

wave coupling capacitor discussed in section 3.1. Both C and Cc are created by forming a parallel

plate structure in the middle and bottom metal layers. The information about millimeter wave

intensity is contained in the shift of the resonant frequency, which can be accessed and acquired

by sending a (normally microwave) probe signal near the resonance through the readout line. Qi

denotes the internal quality factor of the resonator and Qc denotes the external quality factor. Qi

mainly comes from the internal dissipation due to the finite quasi-particle density in the inductor,

but could also be limited by metal quality or radiation. It is nonetheless not a problem for the

resonator geometry discussed here[31]. Qc comes from the coupling with the readout line via Cc.

The values of L, C, Qi, and Qc for six millimeter wave bands are determined by an optimization

aiming at maximizing the mapping speed, as will be discussed in the next chapter. Cc can be derived

based on the following relation[17]. The numbers are listed in Table 3.3.

Qc =
8C

ω0C2
eZ0

(3.11)

Ce = (CcCg)/(Cc + Cg) (3.12)

where Cg is the capacitance between the inductor (TiN microstrip in our case) and ground plane,

ω0 is the angular frequency of the probe signal, and Z0 is the impedance of the readout CPW.

The dimensions of the resonator and readout circuit for six millimeter wave bands are shown in

Figure 3.23 to 3.29. Probe signal travels from port 1 to port 2, coupling with the resonator via Cc.
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The ratio of center strip width to the width of gap in CPW is fixed as 3:2 to obtain 50 Ω impedance

for matching with the external readout cabling.

Parameter band 1 band 2 band 3 band 4 band 5 band 6
ν (GHz) 90 150 230 275 350 400
C (pF) 27 17 18 9 9 11
Cc (pF) 1.16 1.37 1.66 2.51 4.89 15.3
Ce (pF) 0.619 0.518 0.575 0.375 0.404 0.520
Qi 3.9× 104 3.1× 104 2.2× 104 2.3× 104 1.8× 104 1.4× 104

Table 3.3: Coupling capacitance Cc. ν refers to the millimeter wave center frequency.

Z0 Z0

Cc

L C

Figure 3.22: Lumped element model of KID’s readout circuit.

Figure 3.23: Layout of the readout circuit (90 GHz band) in the middle (left) and bottom (right)
metal layers (unit: µm). Green part is TiN and red part is Nb.
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Figure 3.24: Zoomed-in view of the readout circuit (90 GHz) in the middle metal layer (unit: µm).
Green part is TiN and red part is Nb.

Figure 3.25: Layout of the readout circuit (150 GHz band) in the middle (left) and bottom (right)
metal layers (unit: µm). Green part is TiN and red part is Nb.
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Figure 3.26: Layout of the readout circuit (230 GHz band) in the middle (left) and bottom (right)
metal layers (unit: µm). Green part is TiN and red part is Nb.

Figure 3.27: Layout of the readout circuit (275 GHz band) in the middle (left) and bottom (right)
metal layers (unit: µm). Green part is TiN and red part is Nb.
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Figure 3.28: Layout of the readout circuit (350 GHz band) in the middle (left) and bottom (right)
metal layers (unit: µm). Green part is TiN and red part is Nb.

Figure 3.29: Layout of the readout circuit (400 GHz band) in the middle (left) and bottom (right)
metal layers (unit: µm). Green part is TiN and red part is Nb.

3.3.2 Transmission coefficients

The transmission coefficient S21 of a standard resonator coupled to a readout line can be expressed

as follows. We say the resonator is critically coupled when Qr = Qc/2 and at critical coupling we

have |S21| = |S11| = 1/2.

S21(f) = a(1− Qr/Qce
jφ0

1 + 2jQr((f − f0)/f0)
) (3.13)
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where a is a complex constant accounting for the gain and phase shift through the system, Qr is the

total quality factor, Qc is the external quality factor, φ0 is the rotation factor, f0 is the resonant

frequency, and f is the frequency of the probe signal.

KID’s responsivity dS21/dPopt and internal power (and thus amplitude of electric field in the

capacitor) are both maximized when the resonator is critically coupled[8] and our circuits are there-

fore designed to meet this criteria. We simulated the transmission coefficients from port 1 to port

2 and the results are shown in Figure 3.30. We see that such a requirement is satisfied. The small

deviations can be attributed to the non-ideality of the components with a finite size.



55

Figure 3.30: Transmission coefficients S11 and S21, voltage ratios of reflected and transmitted signals
to input signal.

3.4 Procedures of fabrication

We anticipate fabricating the structure on high-resistivity silicon substrates as follows:

1. A 150-nm thick layer of Nb will be deposited by DC-magnetron sputtering and patterned by

plasma etching for the ground plane. The patterning will define the KID and readout coupling
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capacitor bottom electrode islands. It will also define the edges of the ground plane of the

CPW readout feedline. This layer also serves as the ground plane for phased-array antenna,

and so slots will be cut in the ground plane for the antenna slots. A border around three

edges of the device will also be removed to allow a gold heat-sinking layer that makes direct

contact with the silicon substrate later. This heat-sinking layer is necessary to prevent the

silicon wafer from heating up due to the absorption of infrared power.

2. A 800-nm thick layer of α-Si:H will be deposited by chemical vapor deposition. No patterning

is necessary except to expose a border around three edges of the device for the gold heat-sink

layer and at the fourth edge to allow direct electrical contact to the ground plane via wire

bonds to the device holder.

3. A 20-nm thick layer of TiNx will be deposited and patterned by plasma etching for the KID

inductor.

4. The 150-nm thick layer of Nb for the KID and readout coupling capacitor top electrodes and

the CPW feedline center conductor will then be deposited and patterned. It must make direct

contact with the TiNx to form the KID. It would be simplest to use liftoff for this step, but

there are concerns that the Nb will become contaminated by photoresist: either during the ion

mill step that is necessary to remove any oxide on the TiNx so the TiNx-Nb contact is fully

conducting, or during the deposition of the Nb. Such contamination is known to be possible,

affecting the microstrip properties. An alternate process would be to deposit SiO2 and pattern

it by plasma etching to create a stencil identical to the liftoff stencil. Ion milling and Nb

deposition can then proceed as before. The Nb would be patterned using plasma etching, and

then the SiO2 removed by plasma etching.

5. A 270-nm thick layer of α-Si:H will be deposited by chemical vapor deposition to complete the

microstrip dielectric. Again, a border must be removed around the edge of the device.

6. A 450-nm thick layer of Nb will be deposited by DC-magnetron sputtering and patterned by

plasma etching to define the microstrip top layer of the microstrip-to-KID mm-wave coupler

and for the phased-array antenna. Again, a border around three edges of the device must be

removed, and also the fourth edge must be patterned to preserve the CPW feedline gap.

7. A 350-nm thick layer of Au will be deposited by DC-magnetron and patterned using liftoff

process. This film provides a 1-mm border around three edges of the device that is used to
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heat sink the device using Au wire bonds to the device holder. The Au film overlaps the Nb

ground plane so that the wire bonds act to provide RF continuity between the ground plane

and the device holder.
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Chapter 4

Mapping-speed based optimization
of the LWCam design

4.1 Optimization of mapping speed

In Chapter 3 we described the overall architecture of the millimeter wave coupling scheme, design

of KID resonator, and readout coupling scheme for LWCam. There we have used many physical

parameters such as the dimensions of TiN inductors, capacitances, and quality factors of KID res-

onator for six millimeter wave bands. In this chapter we will explain how we determined the values

of these parameters by performing an optimization to maximize the mapping speed. We start with

an introduction to the several realistic criteria that the optimization must satisfy. We then enumer-

ate the constant quantities concerned in the optimization, identify the four parameters to be swept,

and derive the several intermediate variables indispensable for the calculation of mapping speed.

We walk through the determination of the optimal parameters, present the optimization result, and

finally discuss about the fundamental trade-off in our design.

4.1.1 Criteria

As discussed in Chapter 1, the next generation of SZE studies of galaxy clusters will require six

spectral bands from 90 GHz to 420 GHz. For this application, we are in parallel developing multi-

scale phased array antennas, which use a single antenna structure to cover this wide frequency range

in a single detector pixel. The pixel size is varied in a binary fashion with frequency so that all

spectral bands use pixels that approximately match the corresponding frequency-dependent Airy

function spot size at the focal plane. It is assumed that the antenna structure is 6.66 mm on a

side and that this corresponds to a single pixel at 90 GHz and 150 GHz, 4 pixels at 220 GHz and
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290 GHz, and 16 pixels at 350 GHz and 420 GHz. Based on the field-of-view constraint and the

use of the 6.66 mm multi-scale antenna, the number of detectors that can be accommodated in the

focal plane in the absence of any dead area is 880, 880, 3500, 3500, 14000, and 14000. Our goal

is to maximize the mapping speed we obtain from this fixed available focal plane area, where the

mapping speed in a given band is NdetΩbeam/NEP2. We also impose the following requirements:

• The mm wave power received at the antenna should be fully absorbed into the TiN absorber

rather than being dissipated in the lossy dielectrics. This requires that the equivalent loss tangent

of the TiN absorber be much larger than that of the dielectrics.

• The focal plane should be mainly filled with the antenna (live area) rather than KIDs (dead area).

• The detector should reach the fundamental-noise-limited sensitivity.

• The resonator bandwidth ∆f must provide enough signal bandwidth given the desired sampling

frequency fsample: ∆f ≥ fsample.

4.1.2 Constant quantities

The important constant quantities associated with each millimeter wave band are listed in Table 4.1

and we provide the corresponding detailed explanations below.

Band 1 2 3 4 5 6
Tsky(K) 5 6 10 14 30 57
Tdewar(K) 14 14 17 20 41 61
Ttel (K) 13 13 13 13 27 27
Tload (K) 32 33 40 47 98 145
λ (µm) 3300 2000 1330 1050 850 750
ν (GHz) 90 150 230 275 350 400

∆ν (GHz) 35 47 45 40 34 30
FWHMBeam (′) 0.53 0.37 0.22 0.20 0.14 0.12
fsample (kHz) 0.68 0.97 1.6 1.8 2.6 3.0

ηopt 0.26 0.40 0.34 0.38 0.26 0.29
Popt (pW) 4.0 8.6 8.5 9.9 12 17

ηph 0.81 0.57 0.57 0.57 0.57 0.57
lantenna (mm) 6.66 6.66 3.33 3.33 1.66 1.66

Nantenna 880 880 3500 3500 14000 14000

Table 4.1: Relevant physical constants in the optimization.

• Loading temperatures Tsky, Tdewar and Ttel

Tsky, Tdewar, and Ttel are the equivalent Rayleigh-Jeans temperatures of the sky, the dewar, and



60

the telescope. Tsky is set by the measured atmospheric precipitable water vapor column at the

site (we assumed a 0.55 mm best case based on the data) and an atmospheric model that maps

this to opacities and thus optical loading in each band. Ttel is set by an estimate of how emissive

the telescope will be (5% at λ ≥1 mm, 10% at λ ≤1 mm) due to cracks, panel emissivity, and

the secondary feed leg structures (which scatter light to 300 K). Tdewar is chosen in a somewhat

ad hoc way such that (Ttel + Tsky + Tdewar) =
√

3(Ttel + Tsky). It’s hard to predict Tdewar ahead

of time, but this gives reasonable values based on experience. They together give the loading

temperature Tload at the detector.

• Millimeter wave center frequency ν and bandwidth ∆ν

ν and ∆ν are set by the atmospheric windows.

• Full width at half maximum of the Airy disk FWHMBeam

• Sampling frequency fsample

CCAT’s scanning velocity is v=1◦/s.

fsample = (FWHMBeam/v/3)−1 × 2 (4.1)

• Optical efficiency ηopt

ηopt is the overall optical efficiency in the optics from the dewar window to the KID.

• Optical power Popt

Popt is the optical power received by the KID. Since the antenna is sensitive to only a single

polarization, we use the single-polarization form:

Popt = ηopt(kBTload∆ν) (4.2)

• Photon conversion efficiency ηph

ηph is the fraction of photon energy that can be converted to excite quasiparticles in the super-

conductor.

• Side length of the antenna lantenna

• Number of antennas Nantenna

Nantenna is the number of antennas that can be placed in the focal plane for each millimeter wave

band assuming no dead area.
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Next we list the constant quantities universal for all six millimeter wave bands.

• Superconducting critical temperature of TiN Tc and energy gap ∆

Tc is tunable pending on the detailed procedure of fabrication[31]. We use Tc = 1.1K such that

the 90GHz photon is energetically sufficient to break the Cooper pairs. The energy gap is related

to critical temperature in BCS theory by the following relation.

∆ = 1.76kBTc (4.3)

• Kinetic inductance fraction α

In KID resonator there are both kinetic inductance and geometric inductance. The ratio of kinetic

inductance to total inductance is defined as the kinetic inductance fraction, represented by α. TiN

film thinner than 100nm is demonstrated in experiments to exhibit large kinetic inductance with

α generally greater than 90%. We thus assume α = 0.9 throughout the optimization.

• The γ factor

γ is defined as the ratio of fractional surface impedance change to fractional conductivity change.

In the thin film limit and local limit[8], we know

δZs
Zs

= γ
δσ

σ
(4.4)

γ = −1 (4.5)

• Quasiparticle recombination rate R

R is measured experimentally to be around 100 µm3/s[31].

• Intrinsic quasiparticle lifetime τ0

τ0 is measured experimentally to be around 0.1 ms[31].

• Operating temperature of the dewar T

We use T = 100 mK� Tc = 1.1 K so that the density of thermally generated quasi-particles are

negligible.

• Single spin electron density of states at the Fermi level N0

N0 is experimentally measured to be around 3.5×1010 eVµm−3[32].

• Thermal quasi-particle density nthqp
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According to BCS theory we know

nthqp = 2N0∆

(
2πkBT

∆

)1/2

exp (− ∆

kBT
) = 0.025 µm−3 (4.6)

We will see that this is negligible compared to the optically generated quasiparticle density.

• The readout power Pread and power dissipated in the resonator Pl

Pread is the power of the probe (normally microwave) signal in the readout line. Pl is the microwave

power dissipated in the inductor due to finite density of quasi-particles. Though high power can

reduce both TLS and amplifier noises, it does cause problems too. It is known that the kinetic

inductance of a superconductor is a nonlinear function of the current. Due to such a nonlinearity,

as the readout power is increased, the transmission curve S21 becomes distorted and asymmetric,

and eventually bifurcates. In the bifurcation regime, response exhibits discontinuous jumps[7].

Therefore, Pread and Pl should be kept low enough so that bifurcation does not occur. We choose

1 pW (-90 dBm) based on experience, but we will see later that it could be increased considerably

before the bifurcation starts for this design work.

Pread = 1 pW (4.7)

Pl = Pread/2 (4.8)

• Amplifier noise temperature Tn

Tn is measured experimentally to be around 4 K for SiGe BJT amplifiers. We use the BJT because

it has good noise temperature in the 100 MHz regime, which is the driving requirement. HEMTs’

noise temperatures rise below 1 GHz. In addition, BJTs have good 1/f noise.

• Attenuation length of millimeter wave in amorphous Si λattSi

The loss tangent δ of a material is given by

tan δ =
ωε′′ + σ

ωε′
(4.9)

where ω is the angular frequency of the wave, ε = ε′ − jε′′ is the permittivity, and σ is the
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conductivity. In the material power decays exponentially as

P (z) = P0e
−δkz (4.10)

k = 2π/λ (4.11)

where z is the distance that the wave travels in the material and k is the wave number. We can

derive the attenuation length for amorphous Si.

δSi = 7.1× 10−4 (4.12)

λattSi =
1

δSi

λfree

2π
√
εSir
∼ 75λfree (4.13)

where λfree is the wavelength in free space. δSi is measured for JPL-deposited amorphous silicon

using microstrip resonator structure (private communication, Peter Day). It turns out that in our

design the dielectric loss is much smaller than the power dissipation in TiN inductor.

4.1.3 Independent parameters swept during the optimization

In this section we define the four independent parameters swept during the optimization. The

optimization will be carried out for six millimeter wave bands separately.

• Attenuation length of millimeter wave in TiN inductor/absorber λattT iN

For convenience, we scale λattT iN by 0.5λattSi and consider a discrete set of values of the ratio

λattT iN/0.5λ
att
Si : 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256.

• Length of TiN inductor/absorber labs

We sweep labs over 0.2λatttot to 1.8λatttot , where λatttot = (λatt−1
Si +λatt−1

TiN )−1 refers to the total attenua-

tion length. Such a range corresponds to an absorption efficiency ηabs from 20% to 80% assuming

the exponential attenuation profile as indicated by Eq. 4.10. We do not go up to ηabs=100%

because that corresponds to an infinite labs, which is not doable for an optimization.

• Density of quasiparticles in TiN inductor/absorber nqp

We sweep nqp over 100 µm−3 to 5000 µm−3 in step of 100 µm−3.

• Thickness of TiN inductor/absorber tabs

We sweep tabs over 20 nm to 100 nm in step of 10 nm. 20 nm is the minimum thickness of TiN

film that can be reliably fabricated so far[31].
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While the parameters being swept are not the parameters we directly control physically, they are

the parameters over which it is most convenient to do the optimization. Then, from the optimized

values, we can extract the physical parameters of the design.

4.1.4 Intermediate variables

In this section we derive the intermediate variables for the calculation of mapping speed.

• Static quasiparticle lifetime τqp and dynamic quasiparticle lifetime τeff

τqp = (Rnqp + 1/τ0)−1 (4.14)

τeff = (2Rnqp + 1/τ0)−1 (4.15)

• Millimeter wave absorption efficiency in TiN inductor/absorber ηabs

ηabs = (1− exp

(
− labs
λtot

)
)×

λatt−1
TiN

λatt−1
tot

(4.16)

• Volume of TiN inductor V

nqpV∆

τqp
= ηphηabsPopt (4.17)

V =
ηphηabsPoptτqp

nqp∆
(4.18)

Note that these equations assume uniform distribution of quasiparticles, which is only approxi-

mately true.

• The area of TiN inductor/absorber AL

AL =
V

tabs
(4.19)

• The width of TiN inductor/absorber wabs

wabs =
V

tabslabs
(4.20)

• The resonant frequency f0 of KID resonator
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Mattis-Bardeen theory gives the relation between f0 and Qi of a KID resonator.

Qi =
1

α|γ|κ1(f0)nqp
(4.21)

κ1(f0) =
1

πN0∆
(

2∆

πkBT
)1/2 sinh (

hf0

2kBT
)K0(

hf0

2kBT
) (4.22)

There is also the requirement that relates sampling frequency fsample with resonator bandwidth

∆f , as discussed at the beginning of this chapter.

Qi = 2Qr =
2f0

∆f
≤ 2f0

fsample
(4.23)

By coupling Eq. 4.21 and Eq. 4.23 we can find out a lower bound for f0 numerically. Figure 4.1

shows the intersection between the two functions of f0.

Figure 4.1: Intersections of the two Qi-related functions. Blue line is the maximum Qi allowed
given the desired sampling frequency and red line is the Qi implied by the quasiparticle density.
The resonant frequency must therefore be in the region where the blue line is higher than the red
line. Responsivity increases as f0 decreases, so we always choose the f0 at which the two curves
intersect except for cases specifically emphasized.
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• The internal quality factor Qi

Qi =
2f0

fsampling
(4.24)

• The ratio of the imaginary part to the real part of the complex conductivity rκ

κ =
δσ/|σ|
δnqp

= κ1 + jκ2 (4.25)

rκ =
κ2

κ1
=
π

4
(
2πkBT

∆
)1/2

1 + (
2∆

πkBT
)−1/2 exp (− hf0

2kBT
)I0(

hf0

2kBT
)

sinh (
hf0

2kBT
)K0(

hf0

2kBT
)

(4.26)

where σ is the complex conductivity of the superconductor.

• Total inductance of TiN inductor L

L = µ0λeff (tabs)
labs
wabs

1

α
(4.27)

where λeff (tabs) is the effective penetration depth of TiN.

• Capacitance of KID capacitor C

C =
1

(2πf0)2L
(4.28)

• Area of the ideal (parallel plate structure without virtual floating ground) KID capacitor AC

AC =
CtSi
εSir ε0

(4.29)

where tSi = 0.8 µm is the thickness of middle dielectric layer.

• Area of the actual (parallel plate structure with a virtual floating ground) KID capacitor ATotC

ATotC = 4AC (4.30)

This factor of 4 appears because the true area of the capacitor is split into two capacitors and

they are put in series.
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• Side length of the coupling capacitor lCc

Qc = Qi (4.31)

Z0 = 50Ω (4.32)

Cc =

(
8C

2πf0QcZ0

)1/2

(4.33)

lCc =

(
Cc
C
AC

)1/2

(4.34)

• Photon noise equivalent power NEPph

NEPph =

(
2Popthν +

2P 2
opt

∆ν

)1/2

(4.35)

The incident millimeter wave photons from the background (dewar, telescope, and sky) obey

Bose-Einstein statistics and have an intrinsic fluctuation in each mode: n̄ph(1 + n̄ph), where

n̄ph = (ehν/kBT − 1)−1. This is the photon noise.

• Recombination noise equivalent power NEPr

NEPr =

((
dPopt
dnqp

)2

τ2
effSr

)1/2

=

((
V∆

ηabsηphτeff

)2

τ2
eff

(
4

V
Rn2

qp

))1/2

(4.36)

where Sr is the power spectral density of quasiparticle recombination rate r(t). In the steady

state under optical loading the detector maintains a dynamic equilibrium of the quasiparticles.

R(t) = 1
2r(t)V is the rate at which the recombination events occur in volume V . Such a process is

a point Poisson process 〈R(t)R(t′)〉 = 〈R(t)〉δ(t−t′), which induces the fluctuation in quasiparticle

density and recombination noise.

• Generation noise equivalent power NEPg

NEPr =

((
dPopt
dnqp

)2

τ2
effSg

)1/2

=

((
V∆

ηabsηphτeff

)2

τ2
eff

(
4

V
R
(
nthqp
)2))1/2

(4.37)

The reverse process, in which thermal phonons break Cooper pairs, gives the generation noise.

The generation noise is often negligible since the operating temperature is usually much lower

than the transition temperature T � Tc and nthqp � nqp.
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• Decay noise equivalent power NEPd

NEPd =

((
dPopt
dnqp

)2

τ2
effSd

)1/2

=

((
V∆

ηabsηphτeff

)2

τ2
eff

2

V

nqp
τ0

)1/2

(4.38)

The quasiparticles can decay through an intrinsic process (as opposed to recombination process)

characterized by a lifetime τ0. Similarly such a point Poisson process induces the decay noise.

Decay noise is negligible compared with the recombination noise in the high quasiparticle density

limit.

• Amplifier noise equivalent power NEPamp

NEPamp =
√
SHEMT
δnqp/nqp

∣∣∣∣dnqp/nqpdp

∣∣∣∣−1

=

(
8kBTn
Plr2

κ

)1/2(
V∆

ηabsηphτeff
nqp

)
(4.39)

KID uses uses a cryogenic low noise amplifier, either a high-electron-mobility transistor (HEMT)

or a silicon-germanium bipolar-junction transistor (BJT), to amplify the transmitted signal. The

amplifier adds white noise with the above NEP. The amplifier can also have 1/f gain fluctuation

noise, which we do not consider since it can be subtracted using off-resonance monitor tones.

• Amplitude of the electric field in KID capacitor E

Energy =
QiPl
2πf0

(4.40)

U =

(
2Energy

C

)1/2

(4.41)

E =
U

tabs
(4.42)

where Energy is the maximum energy stored in KID capacitor, U is the voltage in KID capacitor.

• Actual current density in KID inductor J , critical current density Jc for bifurcation

I =

(
2Energy

L

)1/2

(4.43)

J =
I

wabstabs
(4.44)

ρ = µ0λeff
π∆tabs

~
(4.45)

Jc = 0.42

(
πN0∆3

~ρ

)1/2

(4.46)
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where I is the magnitude of current in KID inductor.

• TLS noise power spectral density STLSf and associated noise equivalent power NEPphaseTLS

STLSfexp = 4.1× 10−18 Hz−1 (4.47)

Eexp = 6000 V/m (4.48)

fexp = 1000 Hz (4.49)

fLWCam = 10 Hz (4.50)

STLSf = STLSfexp

(
T

100 mK

)−1.7(
ATotc

0.016 mm2/2

)−1(
fLWCam

fexp

)−1/2(
E

Eexp

)−1

(4.51)

NEPphaseTLS =
(
STLSfexp

)1/2
∣∣∣∣δfr/frδp

∣∣∣∣−1

=
(
STLSfexp

)1/2
∣∣∣∣− rκ

2Qi

1

2Popt

∣∣∣∣−1

(4.52)

where STLSfexp
, Eexp, fexp are the experimentally measured TLS noise power spectral density, inferred

amplitude of the electric field, and operating frequency[36]. In the reference, the MKID is a half

wavelength microstrip resonator made of Al with amorphous Si as the dielectric material. One

end of the microstrip resonator overlaps with the center strip of the CPW (readout line) to create

a capacitive coupling while the other end is left unterminated. The electric field Eexp we used here

is the inferred amplitude of the electric field at the open end. fLWCam is the operating frequency

or the frequency of the astronomical signal of LWCam.

• Fundamental noise equivalent power NEPfund

NEPfund = (NEP2
ph + NEP2

g + NEP2
r + NEP2

d)
1/2 (4.53)

• Area of a single pixel

APixel = AAntenna + 25× (ATotC +AL) (4.54)

The factor 25 is to account for the fact that a single antenna couples to detectors from multiple

spectral bands. It comes from the following estimation: 25 = [ATotC (ν = 90 GHz)× 1 +ATotC (ν =

150 GHz) × 1 + ATotC (ν = 230 GHz) × 4 + ATotC (ν = 275 GHz) × 4 + ATotC (ν = 350 GHz) × 16 +

ATotC (ν = 400 GHz) × 16]/[ATotC (ν = 90 GHz) + ATotC (ν = 150 GHz) + ATotC (ν = 230 GHz) +

ATotC (ν = 275 GHz) +ATotC (ν = 350 GHz) +ATotC (ν = 400 GHz)].
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• Actual number of pixels

Npixel =
AFocalP lane
APixel

(4.55)

• Mapping speed vMapping

vMapping ∼
NPixel(

NEPTotphase

)2 =
NPixel(

NEPTLSphase

)2
+ NEP2

amp + NEP2
fund

(4.56)

The mapping speed normally includes a factor of Ωbeam but we have dropped it because it is a

constant irrelevant to the optimization.

4.1.5 Determination of optimal parameters

Among the four parameters swept, we will first examine and interpret the dependence of several

intermediate variables and finally mapping speed of the six millimeter wave bands on nqp and labs

for fixed λattT iN/0.5λ
att
Si and tabs. We take λattT iN/0.5λ

att
Si = 1/32 (or λattT iN = 3.6 mm) and tabs = 20

nm of 90 GHz band as an example. Similar conclusions hold for the rest of the parameter space.

• Inductance L and side length lC of the capacitor

Figure 4.2: Inductance L and side length lC of the capacitor (90 GHz band) for the case of
λattT iN/0.5λ

att
Si = 1/32 and tabs = 20 nm.
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We can make the following qualitative analysis for L and C.

L ∝ labs
wabs

∝ labs
V

tabslabs

∝ l2abs
V
∝ l2absn2

qp (4.57)

C =
1

(2πf0)2L
∝ nqp

L
∝ l−2

absn
−1
qp (4.58)

Therefore with low quasiparticle density and short inductor the area of KID capacitor tends to

be large and reduces the filling fraction of live (antenna) area in the focal plane.

• Filling fraction of live area ALive/APixel and number of pixels NPixel

Figure 4.3: Filling fraction of live area ALive/APixel and number of pixels NPixel (90 GHz band)
for the case of λattT iN/0.5λ

att
Si = 1/32 and tabs = 20 nm.

Figure 4.3 shows that the filling fraction of live area in the focal plane ALive/APixel is approx-

imately inversely proportional to ATotC , consistent with our expectation. Therefore, with higher

quasiparticle density and longer inductor the focal plane can accomodate more pixels.

• Responsivity and TLS noise equivalent power NEPTLSphase
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Figure 4.4: Responsivity and TLS noise equivalent power NEPTLSphase (90 GHz band) for the case of
λattT iN/0.5λ

att
Si = 1/32 and tabs = 20 nm.

We can make the following qualitative analysis for responsivity and TLS noise equivalent power

NEPTLSphase:

δfr/fr
δp

=
δfr/fr
δnqp/nqp

δnqp/nqp
δp

= − γκ
2Qi

1

2Popt
∝ Q−1

i ∝ nqp (4.59)

NEPTLS ∝
∣∣∣∣δfr/frδp

∣∣∣∣−1

∝ n−1
qp (4.60)

Therefore, the TLS noise equivalent power is approximately inversely proportional to the quasi-

particle density. We also see that TLS noise has nothing to do with the lifetime of quasi-particles

τqp in the system according to the conversion factor
δfr/fr
δp

. The low quasiparticle density corre-

sponds to a big inductor.

• Fundamental noise equivalent power NEPfund and total noise equivalent power NEPTotphase

Figure 4.5: Fundamental noise equivalent power NEPfund and total noise equivalent power NEPTotphase

(90 GHz band) for the case of λattT iN/0.5λ
att
Si = 1/32 and tabs = 20 nm.



73

Figure 4.5 shows that the fundamental noise equivalent power is almost constant and the total

noise equivalent power rises up quickly when the quasiparticle density drops below certain value.

Such a rise is due to the dominance of TLS noise over the fundamental noise at low quasiparticle

density.

• Critical current density Jc and actual current density J

Figure 4.6: Critical current density Jc and actual current density J (90 GHz band) for the case of
λattT iN/0.5λ

att
Si = 1/32 and tabs = 20 nm.

Figure 4.6 shows that for high density of quasiparticles and long inductor the actual current

density J is significantly lower than the critical value 0.88Jc, where the bifurcation starts.

• Width of TiN inductor/absorber wabs and mapping speed

Figure 4.7: Width of TiN inductor/absorber wabs and mapping speed (90 GHz band) for the case
of λattT iN/0.5λ

att
Si = 1/32 and tabs = 20 nm.

Figure 4.7 shows that the mapping speed grows with higher density of quasiparticles and longer

inductor. We also know that inductors with width less than 1µm can not be reliably fabricated.
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Therefore we can conclude that for fixed λattT iN/0.5λ
att
Si and tabs, the largest mapping speed corre-

sponds to wabs = 1 µm and labs = 1.8λattT iN .

Next we check the dependence of mapping speed on λattT iN/0.5λ
att
Si and tabs with fixed wabs = 1

µm and labs = 1.8λattT iN . Figure 4.8 shows that the maximum mapping speed corresponds to the

thinnest inductor (20 nm) and different λattT iN/0.5λ
att
Si . Table 4.2 summarizes the resultant parameters

of the six millimeter wave bands. In all cases, the total sensitivities are within 10% to 25% of the

fundamental noise limit and the number of pixels in each band is over 75% of the expected number

of pixels assuming no dead area, as was our goal.

Since our parameter sweep only goes up to ηabs=80%, a natural question to ask is would 100%

efficiency be better in terms of mapping speed. We think the answer is positive based on the trend

revealed by our analysis (and by common sense). This can be readily checked by tweaking the

parameter space to include ηabs=100% in this optimization. Nonetheless, it is worth pointing out

that the conclusion that ηabs=80% is optimal does not dictate the actual millimeter wave absorption

efficiency in the design. This is just a “guidance”. The actual efficiency depends on how we engineer

the profile of the coupling capacitors as discussed in last chapter and it is essentially decoupled from

the result of the optimization. It has the freedom to be any value between 0% and 100%. Assuming

we adopt the physical dimensions and quality factors listed in Table 4.2 for the KID, if we make

ηabs=80% by properly engineering the coupling capacitors, we then get the great mapping speed

as yielded exactly from the optimization. We can certainly make ηabs=100% too and the resultant

mapping speed might be slightly better.
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Figure 4.8: Dependence of mapping speed on λattT iN/0.5λ
att
Si and tabs with fixed wabs = 1 µm and

labs = 1.8λattT iN for six millimeter wave bands.
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Band 1 2 3 4 5 6

labs (mm) 6.5 7.9 5.3 8.2 6.7 5.9

wabs (µm) 1.0 1.0 1.0 1.0 1.0 1.0

tabs (nm) 20 20 20 20 20 20

AC (mm2) 0.83 0.51 0.53 0.26 0.27 0.34

f0 (MHz) 46 52 63 71 78 74

L (nH) 441 553 368 573 464 404

C (pF) 27 17 18 9 9 11

Qi 3.9× 104 3.1× 104 2.2× 104 2.3× 104 1.8× 104 1.4× 104

ALive/APixel 0.75 0.75 0.75 0.75 0.75 0.75

NPixel 658 658 2632 2632 10528 10528

Jc (mA/µm2) 4.5 4.5 4.5 4.5 4.5 4.5

J (mA/µm2) 0.85 0.65 0.61 0.47 0.44 0.43

df/f
dP (W−1) 6.4× 107 3.4× 107 4.2× 107 3.1× 107 3.1× 107 2.7× 107

E (V/m) 2770 2959 2238 3050 2514 2059

Sδf/f (Hz−1) 8.6× 10−19 1.3× 10−18 1.7× 10−18 2.5× 10−18 2.9× 10−18 2.8× 10−18

nqp (µm−3) 2700 3050 3700 3200 3900 5000

τeff (µs) 1.8 1.6 1.3 1.5 1.3 1.0

NEPph (aW Hz−1/2) 37 69 76 92 118 172

NEPr (aW Hz−1/2) 25 43 43 47 51 62

NEPg (aW Hz−1/2) 2.4× 10−4 3.7× 10−4 3.0× 10−4 3.8× 10−4 3.4× 10−4 3.2× 10−4

NEPd (aW Hz−1/2) 3.4 5.5 5.0 5.8 5.8 6.2

NEPamp (aW Hz−1/2) 6.0 14 16 21 27 38

NEPTLS (aW Hz−1/2) 14 34 31 51 55 61

NEPfund (aW Hz−1/2) 45 82 87 103 129 183

NEPTot (aW Hz−1/2) 47 89 93 115 140 193

NEFD (mJy s1/2) 1.8 2.2 2.4 2.6 5.6 8.1

Table 4.2: Results of optimization.

4.2 Fundamental tradeoff

We find that the fundamental tradeoff in our design lies between the filling fraction of live area

in the focal plane and TLS noise. Individual detector sensitivity is maximized (NEP minimized)
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when fundamental noise dominates over TLS and amplifier noise. The TLS noise contribution to

the individual detector NEP goes down as the capacitor area increases, but this also increases the

dead fraction of the focal plane and thus reduces mapping speed. Figure 4.9 demonstrates such a

tradeoff.

It is worth pointing out that the readout power could be increased by a good amount (factor of

5 to 10 in J and so 25 to 100 in Pread), which would then reduce TLS noise contribution by a large

amount and push toward larger fill factor.

Figure 4.9: Tradeoff between filling fraction of live area and TLS noise.
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Chapter 5

Conclusion and outlook

Future observational astronomy in the sub-millimeter/millimeter regime will demand a large format

of array of pixels, generally with 105 ∼ 106 or more detectors. The kinetic inductance detector

(KID) being actively developed over the past decade provides a promising route to easy and cheap

multiplexing. This thesis explores 1) the physical mechanism of two level system (TLS) noise, the

dominant limiting factor of KID’s sensitivity and 2) designs the interface that efficiently couples the

sub/millimeter photons collected at the antenna to the KID made of highly resistive material TiN

for simultaneously six wide continuous bands, as required by the study of dusty star-forming galaxy

population and galaxy clusters.

Chapter 2 starts from the microscopic model[8] of dielectric constant based on the independent

TLS assumption, derives the frequency noise spectral density resulting from the TLS-phonon bath

coupling and checks its dependence on the noise frequency, amplitude of the electric field in the KID

capacitor, as well as the system temperature, all of which have already been extensively calibrated

experimentally. A certain level of consistency between the model and data is found. However,

in-depth examination uncovers the incorrectness of the model and the demonstrated consistency is

speculated to be merely coincidence. The study of noise spectral density from a single independent

TLS might require numerical simulation of long time series of its dipole moment. Furthermore,

recent literature indicates that TLS-TLS interaction via strain field might be the actual origin of

TLS noise, and quantitative characterization of the noise strength has yet to be developed[11, 12, 13].

Chapter 3 describes in detail the millimeter wave photon coupling architecture from the antenna

to KID. The output of the antenna, a Nb microstrip, is generally in a huge impedance mismatch with

TiN, the material that generates the best responsivity of KID to date in the traditional coupling

scheme as in MUSIC[14]. In order to reconcile such a discrepancy, an adiabatic, efficient, and flexibly

tunable (to accommodate six spectral bands simultaneously) coupling method must be invented.
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We performed a thorough study of the absorption process of millimeter wave power and verified

the absorption efficiency in the novel coupling scheme both analytically and numerically with finite

element software Sonnet[34]. The shortcoming of such a design lies in the complexity of the geometry

consisting of five layers of metal and dielectric material, which might present significant problems

in terms of device yield. Further systematic experiments under optical loading need definitely to be

carried out as the ultimate justification of the design viability.

Chapter 4 derives the physical dimensions of the TiN absorber/inductor, KID capacitor, and

readout coupling capacitor, which were used in chapter 3, for the six spectral bands by performing

an optimization pivoting around the goal of maximizing the mapping speed. Important indepen-

dent parameters investigated include the length, width, millimeter wave power attenuation length,

and quasi-particle density of the TiN absorber/inductor. The solution ensures an absorption effi-

ciency of millimeter wave power over 80% and a noise equivalent power close to background-limited

performance without any risk of bifurcation.

In conclusion, we have successfully achieved all the initial design expectations of the long wave-

length imager (LWCam) proposed for CCAT in 2012 by developing the KID technology. We hope

the design work can be validated by future experiments.
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