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Chapter 5 

Toward New Coupling Partners for Asymmetric Ni-Catalyzed Reductive 

Cross-Coupling 

 

5.1 INTRODUCTION 

The last several years have witnessed a renaissance in Ni-catalyzed reductive 

cross-coupling methodologies because of its wide functional group tolerance, operational 

simplicity, use of readily available air- and moisture-stable starting materials, and 

utilization of earth-abundant first-row transition metals (see Chapter 3).1
 Ni catalysts have 

also shown a proficiency in the coupling of C(sp3)-hybridized reaction partners, allowing 

for a natural expansion of Ni-catalyzed reductive cross-couplings toward the regime of 

alkyl coupling. 2  The ability to generate C(sp3)–C(spx) bonds raises additional 

considerations with respect to control of the newly-formed stereogenic center. 

Prior to our own studies, no enantioconvergent Ni-catalyzed reductive cross-

couplings of organohalide electrophiles had been reported in the literature. In 2013, we 
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disclosed the highly enantioselective coupling of benzyl chlorides and acid chlorides to 

furnish α,α-disubstituted ketone products (Scheme 5.1, a).3 The next year, we extended 

our protocol to the coupling of benzyl chlorides and vinyl bromides, achieving up to 97% 

ee (Scheme 5.1, b).4 Concurrent investigations by other laboratories have also resulted in 

promising levels of enantioinduction. Gong and coworkers demonstrated that allylic 

acetates could be arylated in 10% ee by a Ni/PyBox system (Scheme 5.1, c).5 Weix and 

coworkers have recently shown that a benzyl chloride and an aryl bromide can be 

coupled to yield a diarylalkane in 43% ee (Scheme 5.1, d).6,7 

Scheme 5.1. Enantioconvergent Ni-catalyzed reductive cross-coupling. 
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While these results illustrate the general potential of asymmetric Ni-catalyzed 

reductive cross-coupling, a number of challenges still remain for the development of 

novel transformations. For example, all highly enantioselective reductive couplings in the 

literature have required the use of a benzyl halide starting material. Furthermore, while 

certain racemic reductive couplings are tolerant of heteroaromatic groups, such a 

substrate scope has not yet been achieved under asymmetric conditions employing 

bis(oxazoline) ligands. Lastly, while achiral ligand tuning is often performed to minimize 

homocoupling in reductive methodologies, it is still difficult to engineer a ligand that 

simultaneously delivers high enantioinduction as well as high cross-selectivity. 

Greater mechanistic understanding of these transformations will increase our 

ability to rationally optimize reaction conditions and will also provide a basis for initial 

identification of reaction partners. While further mechanistic investigations are necessary, 

we currently look to a sequential reduction mechanism as a model for thinking about our 

desired reactivity (Figure 5.1, also see Chapter 3). Importantly, this model can help 

explain the origin of cross-selectivity in our systems. We hypothesize that this selectivity 

arises from two distinct modes of oxidative addition within the sequential reduction 

mechanism: 1) oxidative addition by a Ni0 complex, which often proceeds via a polar 

two-electron mechanism that allows polar-type electrophiles, including aryl, vinyl, and 

acyl halides to react readily and 2) oxidative addition by a NiI complex that is more likely 

to occur through single-electron elementary steps. These steps include halide abstraction 

to form a NiII complex and a carbon-centered radical, followed by rapid recombination to 

give NiIII complex 127. Electrophiles that can stabilize the formation of a transient 

radical, such as benzyl or propargyl halides, would react faster under these conditions 
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than polar-type electrophiles. Homocoupling can arise if Ni0 reacts with benzyl chloride 

26 in an SN2-type oxidative addition, followed by a second radical-type oxidative 

addition of NiI to 26 and subsequent reductive elimination. 

Figure 5.1. Model for cross-selectivity. 
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Figure 5.2. Outline of a general platform for asymmetric reductive cross-coupling.  
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5.2 DEVELOPMENT OF NEW NI-CATALYZED REDUCTIVE CROSS-

COUPLINGS (RACEMIC OR ACHIRAL) 

Acid chlorides are widely available starting materials that readily react with Ni 

catalysts under reductive conditions. In 2012, Weix and Gong independently disclosed 

the reductive cross-coupling of alkyl halides with alkyl or aryl acid chlorides, 

respectively.8 Building on these results, we reported an asymmetric coupling of alkyl acid 

chlorides and benzyl chlorides.3 In an attempt to increase the substrate scope toward other 

carbonyl derivatives, we investigated substrates of general formula 175 in the presence of 

NiCl2(dme)/dtbpy (Figure 5.3). Under these conditions, we failed to observe product 

formation when using a chloroformate or a carbamoyl chloride. Thioester 176c is 

generated in a trace amount, but competitive levels of homocoupling are also observed. 

Lastly, we found that cyanoformates do not provide 176e as the desired product. 

Figure 5.3. Coupling of other carbonyl chlorides with benzyl chlorides.  
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bromocarbonyl compounds (Figure 5.4). α-Bromoester 177a delivered β-ketoester 178a 

in 77% yield; a screen of chiral ligands provided no enantioinduction, likely because the 

low pKa of 178a would allow racemization under very mild conditions. Under identical 

coupling conditions, a lower yield was realized for α-bromoketone 177b and no product 

was observed for aryl ester 177c. The high selectivity for the coupling of α-bromoester 

177a should be studied further to better understand the reactivity that may permit the 

development of an enantioselective transformation. 

Figure 5.4. Coupling of α-halocarbonyl compounds with acid chlorides.  
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reaction with terpy in THF were we able to form ketone 181, resulting in a 13% yield; the 

isomerized α,β-unsaturated ketone was not detected in the crude reaction mixture. 

Scheme 5.2. Initial result for an acyl-allyl reductive cross-coupling.  
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Table 5.1. Exploration of an acyl-allyl reductive cross-coupling.  
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5.3 DEVELOPMENT OF NEW NI-CATALYZED REDUCTIVE CROSS-

COUPLINGS (ASYMMETRIC) 

In our studies on asymmetric reductive cross-couplings, we have identified (1-

chloroethyl)benzene (26) as capable of inducing high enantioselectivity in couplings with 

C(sp2)-hybridized electrophiles, such as acid chlorides and vinyl bromides. We 

hypothesized that the coupling of chloride 26 and aryl halides should also be amenable to 

enantioinduction. The union of these two fragments would generate enantioenriched 

diarylalkanes, prevalent motifs in medicinal chemistry.13 Elegant studies by Fu and 

coworkers have shown that bi(oxazoline) ligands promote asymmetric Ni-catalyzed 

Negishi cross-couplings for the preparation of diarylalkanes.14 Investigations by Weix 

and Molander under reductive conditions have also identified bi(oxazoline) ligands, but 

their asymmetric induction for diarylalkanes remains modest.6,7 

In our preliminary studies on diarylalkanes, we realized that both coupling 

partners readily undergo homocoupling in addition to heterocoupling. Nonetheless, we 

performed a ligand screen for the coupling of 4-bromobenzonitrile (183) and benzyl 

chloride 26 (Figure 5.5). In general, bis(oxazoline) ligands delivered very low levels of 

enantioinduction (entries 1–11); encouragingly, phenyl-substituted L36 provided 

diarylalkane 184 in 49% ee (entry 4). We next tested several bi(oxazoline) ligands and 

observed the highest ee of 33% with benzyl-substituted L34 (entries 12–17). We tried to 

enhance our enantioinduction by incorporating diphenyl or naphthyl moieties into our 

ligand, but greater ee was not observed (entries 18–20). Other ligand families gave poor 

enantioselective results. 
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Figure 5.5. Ligand screen for aryl-benzyl reductive cross-coupling.  
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complete erosion of enantioinduction (entry 3). The loss of ee may result from in situ-

generation of an organozinc reagent in the presence of Zn0 as a reductant, altering the 

mechanism from a reductive coupling to a conventional Negishi cross-coupling. 

Table 5.2. Bis(oxazoline) ligand in aryl-benzyl reductive cross-coupling.  
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Scheme 5.4. Bi(oxazoline) ligand in aryl-benzyl reductive cross-coupling.  
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yields but no enantioinduction and that Box ligands provided low reactivity. An analysis 

of bi(oxazolines) was more fruitful: L34 (R = Bn) delivered diarylalkane 186 in 43% 

yield and 53% ee (Table 5.3, entry 3). The highest enantioselectivity was attained with 

L119 (R = sBu), furnishing 186 in 65% ee (entry 6). Additional optimization studies were 

performed with L123 (R = iBu), another promising ligand (entry 8). 

Table 5.3. Bi(oxazoline) ligands in heteroaryl-benzyl reductive cross-coupling.  
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Table 5.4. Exploration of heteroaryl-benzyl reductive cross-coupling.  

 

We next turned our attention to the coupling of vinyl bromide 156 and 

(chloro(phenyl)methyl)trimethylsilane (187) to form allylsilane 188 (Scheme 5.5).15 

Under our previously optimized conditions for vinyl couplings, no desired product was 

formed.4 Undeterred, a ligand screen revealed that bis(oxazoline) ligands containing an 

isopropylidene linker were inefficient at imparting asymmetric induction (Figure 5.6, see 

Chapter 4 for comparison to chloride 26). To our delight, cyclopropyl-linked ligand L104 

still furnished allylsilane 188 in 25% yield and 94% ee (entry 10). Bi(oxazoline) ligands 

delivered lower enantioinduction but sometimes provided higher yields of 188 (entries 

11–14). Other ligand families did not perform better than bis(oxazoline) L104. 

Scheme 5.5. Initial attempt toward an allylsilane product.  
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Figure 5.6. Ligand evaluation for the preparation of allylsilanes.  
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H

H

H

indanyl

indanyl

indanyl

Other Ligand Scaffolds

NO

N N

O

iPr iPr

27% yield
49% ee

L38

HNN

OO

Ph Ph

CN

41% yield
42% ee

L106
27% yield

6% ee

L108
N

O

iPr
12% yield

14% ee

L52
Ph2P

Ligand

L113

L114

L34

L115

ee (%)

36

20

31

20

Entry

11

12

13

14

R

iPr

tBu

Bn

Ph

Bi(oxazoline) Ligand Scaffold

O

N N

O

R R

TMS Cl

+

188187156

Br

MeO
MeO

TMS

(1 equiv)(1 equiv)

Yield (%)

14

14

32

14

9

34

23

57

14

25

Yield (%)

27

51

51

17

N

O

tBu
trace

22% ee

L54
Ph2P
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displacing halides in a two-electron fashion followed by homolytic cleavage of the 

resulting Co–C bond to generate a carbon-centered radical.16 This strategy has been 

employed by Weix and coworkers for the coupling of benzylic electrophiles, wherein 

activation with cobalt and a mesylate leaving group prevents the high level of 

homocoupling observed with a chloride leaving group.6 Follow-up studies are needed to 

elucidate the role of Co(Pc) and evaluate the generality of the allylsilane synthesis. 

Table 5.5. Optimization of reaction parameters for the preparation of allylsilanes.  

 

 

5.4 CONCLUDING REMARKS 

In conclusion, we have disclosed a model for cross-selectivity in the Ni-catalyzed 

reductive coupling of two distinct organohalide electrophiles. Improved yields can be 

achieved when a polar-type electrophile is combined with an electrophile that can 

stabilize formation of a transient radical. With respect to enantioinduction, electrophiles 

Solvent

DMA

DMPU

NMP

DMF

THF

DMA

DMA

DMA

NMP

Entry

1

2

3

4

5

6

7

8

9

Yield (%)

28

0

32

18

0

40

42

42

49

ee (%)

94

--

94

90

--

95

96

95

96

Additive

--

--

--

--

--

Co(Pc) (1 mol %)

Co(Pc) (3 mol %)

Co(Pc) (5 mol %)

Co(Pc) (2 mol %)

TMS Cl

+

188187156

Br

MeO
MeO

TMS

(1 equiv)(1 equiv)

NiCl2(dme) (10 mol %)
L104 (11 mol %)

Mn0 (3.0 equiv)
additive

solvent, 23 °C

Co(Pc) = cobalt(II) phthalocyanine
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that have a directing group or bear steric and electronic differences between both faces 

perform best. Several examples of promising cross-reactivity and enantioinduction have 

been presented, including couplings of α-halo carbonyls, benzyl chlorides, and α-silyl 

benzyl chlorides with C(sp2)-hybridized coupling partners. Investigations to expand the 

substrate scope of enantioselective Ni-catalyzed reductive cross-couplings are currently 

underway in our laboratory. 

 

5.5 EXPERIMENTAL SECTION 

5.5.1 Materials and Methods 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using 

freshly dried solvents. Tetrahydrofuran (THF), methylene chloride (CH2Cl2), and diethyl 

ether (Et2O) were dried by passing through activated alumina columns. Anhydrous 

dimethylacetamide (DMA) was purchased from Aldrich and stored under inert 

atmosphere. Manganese powder (– 325 mesh, 99.3%) was purchased from Alfa Aesar. 

NiCl2(dme) was purchased from Strem and stored in a glovebox under N2 when not in 

use. Unless otherwise stated, chemicals and reagents were used as received. 

Triethylamine (Et3N) was distilled over calcium hydride prior to use. All reactions were 

monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated 

plates (0.25 mm) and were visualized by UV, CAM, or KMnO4 staining. Flash column 

chromatography was performed as described by Still et al.17 using silica gel (particle size 

0.032-0.063) purchased from Silicycle. Optical rotations were measured on a Jasco P-

2000 polarimeter using a 100 mm path-length cell at 589 nm. 1H and 13C NMR spectra 
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were recorded on a Varian Inova 500 (at 500 MHz and 126 MHz, respectively), and are 

reported relative to internal CHCl3 (1H, δ = 7.26) and CDCl3 (13C, δ = 77.0). Data for 1H 

NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling 

constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR 

spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in 

frequency of absorption (cm–1). HRMS were acquired using an Agilent 6200 Series TOF 

with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI), or mixed (MM) ionization mode. Analytical SFC 

was performed with a Mettler SFC supercritical CO2 analytical chromatography system 

with Chiralcel AD-H, OD-H, AS-H, OB-H, and OJ-H columns (4.6 mm x 25 cm) with 

visualization at 210, 254, and 280 nm. Analytical achiral GC-MS was performed with an 

Agilent 7890A GC and an Agilent 5975C VL MSD with triple axis detector utilizing an 

Agilent HP-5MS (30.0 m x 0.25 mm) column (0.4 mL/min He carrier gas flow).  

 

5.5.2 Ni-Catalyzed Reductive Cross-Coupling 

Acyl-Allyl Coupling (Table 5.1): 

On a bench-top, to a 1/2 dram vial was added the appropriate ligand (0.006 mmol, 6 mol 

%), reductant (0.3 mmol, 3 equiv), NiCl2(dme) (0.005 mmol, 5 mol %), and MgCl2 (0.1 

mmol, 1 equiv) if necessary. The vial was transferred into an N2-filled glovebox and 

charged with the appropriate solvent (0.2 mL, 0.5 M) followed by cyclohexanecarboxylic 

acid (0.1 mmol, 1.0 equiv) and benzyl ether (internal standard). Allyl electrophile (0.2 
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mmol, 2 equiv) and pivalic anhydride (0.15 mmol, 1.5 equiv) were each added in one 

portion. The vial was sealed and removed from the glovebox. The mixture was stirred 

vigorously, ensuring that the reductant was uniformly suspended, at 23 °C for 24 h. The 

dark mixture was diluted with 10% ethyl acetate/hexane and passed through a plug of 

silica, using 10% ethyl acetate/hexane eluent. The solution was concentrated, and the 

crude reaction mixture was analyzed by 1H NMR. 

 

Aryl-Benzyl Coupling (Figure 5.5): 

On a bench-top, to a 1/2 dram vial was added the appropriate ligand (0.011 mmol, 11 mol 

%), Mn0 (0.3 mmol, 3 equiv), NiCl2(dme) (0.01 mmol, 10 mol %), and 4-

bromobenzonitrile (0.1 mmol, 1 equiv). The vial was transferred into an N2-filled 

glovebox and charged with DMA (0.2 mL, 0.5 M) followed by (1-chloroethyl)benzene 

(0.1 mmol, 1.0 equiv) and benzyl ether (internal standard). The vial was sealed and 

removed from the glovebox. The mixture was stirred vigorously, ensuring that the 

reductant was uniformly suspended, at 23 °C for 24 h. The dark mixture was diluted with 

20% ethyl acetate/hexane and passed through a plug of silica, using 20% ethyl 

acetate/hexane eluent. The solution was concentrated and the crude reaction mixture was 

analyzed by 1H NMR and chiral SFC. 

 

Heteroaryl-Benzyl Coupling (Table 5.3): 

On a bench-top, to a 1/2 dram vial was added the appropriate ligand (0.0055 mmol, 11 

mol %), Mn0 (0.15 mmol, 3 equiv), NiCl2(dme) (0.005 mmol, 10 mol %), and heteroaryl 

iodide (0.05 mmol, 1 equiv). The vial was transferred into an N2-filled glovebox and 
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charged with DMA (0.1 mL, 0.5 M) followed by (1-chloroethyl)benzene (0.05 mmol, 1.0 

equiv) and benzyl ether (internal standard). The vial was sealed and removed from the 

glovebox. The mixture was stirred vigorously, ensuring that the reductant was uniformly 

suspended, at 60 °C for 18 h. The dark mixture was diluted with 20% ethyl 

acetate/hexane and passed through a plug of silica, using 20% ethyl acetate/hexane 

eluent. The solution was concentrated and the crude reaction mixture was analyzed by 1H 

NMR and chiral SFC. 

 

Vinyl-Benzyl Coupling (Figure 5.6): 

On a bench-top, to a 1/2 dram vial was added the appropriate ligand (0.0055 mmol, 11 

mol %), Mn0 (0.15 mmol, 3 equiv), NiCl2(dme) (0.005 mmol, 10 mol %), and vinyl 

bromide (0.05 mmol, 1 equiv). The vial was transferred into an N2-filled glovebox and 

charged with DMA (0.1 mL, 0.5 M) followed by (chloro(phenyl)methyl)trimethylsilane 

(0.05 mmol, 1.0 equiv) and benzyl ether (internal standard). The vial was sealed and 

removed from the glovebox. The mixture was stirred vigorously, ensuring that the 

reductant was uniformly suspended, at 23 °C for 18 h. The dark mixture was diluted with 

20% ethyl acetate/hexane and passed through a plug of silica, using 20% ethyl 

acetate/hexane eluent. The solution was concentrated and the crude reaction mixture was 

analyzed by 1H NMR and chiral SFC.  
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