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Abstract 

The Barton laboratory has established that octahedral rhodium complexes bearing 

the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically 

destabilized sites, such as base pair mismatches, in DNA with high affinity and 

selectivity. These complexes approach DNA from the minor groove, ejecting the 

mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In 

recent years, we have shown that these metalloinsertor complexes also exhibit 

cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) 

machinery. 

Here, we present evidence to support the notion that mismatches in genomic DNA 

are the primary biological target of rhodium metalloinsertors and the source of their cell-

selectivity. A structure-activity study on a family of ten metalloinsertor complexes 

revealed a highly sensitive relationship between the lipophilicity of the non-inserting 

ancillary ligands and the biological activity of the complex. Complexes with hydrophilic 

ligands were found to be highly cell selective, exhibiting preferential cytotoxicity in 

MMR-deficient cells at low concentrations and short incubation periods, whereas 

complexes with lipophilic ligands displayed poor cell-selectivity. ICP-MS studies were 

carried out to determine the cellular uptake and localization patterns of the ten 

compounds. The lipophilic complexes displayed enhanced cellular uptake compared to 

the more polar compounds, and their uptake patterns were indicative of a passive 

diffusion mechanism. Curiously, there was no correlation between cellular uptake of 

rhodium and selectivity for MMR-deficient cells. In fact, the complexes with the most 

selective activity exhibited low cellular accumulation overall. It was also discovered that 
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all of the complexes localized to the nucleus in concentrations sufficient for mismatch 

binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake, 

consistent with the previous study. This relationship between subcellular localization and 

cell-selective biological activity confirms that mitochondrial DNA is not the desired 

target of metalloinsertor complexes; rather, these complexes recognize mismatches in 

genomic DNA. 

We have also explored the potential for metalloinsertors to be developed into 

more complex structures with multiple functionalities that could either enhance their 

overall potency or impart mismatch selectivity onto other therapeutic cargo. We have 

constructed a family of bifunctional metalloinsertor conjugates incorporating cis-

platinum, each unique in its chemical structure, DNA binding interactions, and biological 

activity. Attachment of a potent oxaliplatin derivative to a metalloinsertor through the 

leaving group ligand afforded an intrinsically metastable complex with high cytotoxicity 

in MMR-deficient cancer cells as well as enhanced cellular uptake properties. 

Additionally, we developed a bimetallic complex derived from a new family of potent 

and selective metalloinsertors containing an unusual Rh—O axial coordination. This 

complex also incorporates a platinum center containing only one labile site for 

coordination of DNA, rather than two, which leads to nonclassical platinum adduct 

formation selectively at mismatched DNA. Finally, we synthesized a mixed metal 

dinuclear Rh(III)/Pt(II) complex, wherein both the rhodium and platinum centers are 

coordinated to a bridging aromatic ligand capable of interaction with the DNA base stack 

through either intercalation or insertion. These complexes bind DNA mismatches from 
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the minor groove through metalloinsertion, situating the reactive platinum metal center 

directly at the mismatched site.  

In the development of metalloinsertor-cis-platinum conjugates, we have acquired 

a diverse repertoire of bifunctional complexes with mismatch recognition capability as 

well as the ability to form covalent adducts. Although we have yet to achieve cell-

selective toxicity in MMR-deficient cells, we almost universally observe potency 

surpassing that of the FDA-approved chemotherapeutic cisplatin in a variety of human 

cancer cell lines. Moreover, a significant finding in our study of these conjugates has 

been the discovery that these complexes induce apoptotic cell death, rather than the 

necrotic pathway typically triggered by rhodium metalloinsertors. It appears that 

rerouting to the apoptotic pathway is incongruous with the uniquely selective biological 

activity observed for metalloinsertors. This result suggests that there is a critical response 

to mismatch recognition in a cellular environment that leads to cell-selective activity.  

We further explored the underlying mechanisms surrounding the biological 

response to mismatch recognition by metalloinsertors in the genome. 

Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a 

critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly 

accumulates in response to metalloinsertor treatment, signifying the induction of double 

strand breaks in the genome. Significantly, we have discovered that our metalloinsertor 

complexes selectively inhibit transcription in MMR-deficient cells, which may be a 

crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, 

preliminary in vivo studies have revealed the capability of these compounds to traverse 

the complex environments of multicellular organisms and accumulate in MMR-deficient 
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tumors. Our ever-increasing understanding of metalloinsertors, as well as the 

development of new generations of complexes both monofunctional and bifunctional, 

enables their continued progress into the clinic as promising new chemotherapeutic 

agents.  
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