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Abstract

The Barton laboratory has established that octahedral rhodium complexes bearing
the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically
destabilized sites, such as base pair mismatches, in DNA with high affinity and
selectivity. These complexes approach DNA from the minor groove, ejecting the
mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In
recent years, we have shown that these metalloinsertor complexes also exhibit
cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR)
machinery.

Here, we present evidence to support the notion that mismatches in genomic DNA
are the primary biological target of rhodium metalloinsertors and the source of their cell-
selectivity. A structure-activity study on a family of ten metalloinsertor complexes
revealed a highly sensitive relationship between the lipophilicity of the non-inserting
ancillary ligands and the biological activity of the complex. Complexes with hydrophilic
ligands were found to be highly cell selective, exhibiting preferential cytotoxicity in
MMR-deficient cells at low concentrations and short incubation periods, whereas
complexes with lipophilic ligands displayed poor cell-selectivity. ICP-MS studies were
carried out to determine the cellular uptake and localization patterns of the ten
compounds. The lipophilic complexes displayed enhanced cellular uptake compared to
the more polar compounds, and their uptake patterns were indicative of a passive
diffusion mechanism. Curiously, there was no correlation between cellular uptake of
rhodium and selectivity for MMR-deficient cells. In fact, the complexes with the most

selective activity exhibited low cellular accumulation overall. It was also discovered that



all of the complexes localized to the nucleus in concentrations sufficient for mismatch
binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake,
consistent with the previous study. This relationship between subcellular localization and
cell-selective biological activity confirms that mitochondrial DNA is not the desired
target of metalloinsertor complexes; rather, these complexes recognize mismatches in
genomic DNA.

We have also explored the potential for metalloinsertors to be developed into
more complex structures with multiple functionalities that could either enhance their
overall potency or impart mismatch selectivity onto other therapeutic cargo. We have
constructed a family of bifunctional metalloinsertor conjugates incorporating cis-
platinum, each unique in its chemical structure, DNA binding interactions, and biological
activity. Attachment of a potent oxaliplatin derivative to a metalloinsertor through the
leaving group ligand afforded an intrinsically metastable complex with high cytotoxicity
in MMR-deficient cancer cells as well as enhanced cellular uptake properties.
Additionally, we developed a bimetallic complex derived from a new family of potent
and selective metalloinsertors containing an unusual Rh—O axial coordination. This
complex also incorporates a platinum center containing only one labile site for
coordination of DNA, rather than two, which leads to nonclassical platinum adduct
formation selectively at mismatched DNA. Finally, we synthesized a mixed metal
dinuclear Rh(III)/Pt(Il) complex, wherein both the rhodium and platinum centers are
coordinated to a bridging aromatic ligand capable of interaction with the DNA base stack

through either intercalation or insertion. These complexes bind DNA mismatches from
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the minor groove through metalloinsertion, situating the reactive platinum metal center
directly at the mismatched site.

In the development of metalloinsertor-cis-platinum conjugates, we have acquired
a diverse repertoire of bifunctional complexes with mismatch recognition capability as
well as the ability to form covalent adducts. Although we have yet to achieve cell-
selective toxicity in MMR-deficient cells, we almost universally observe potency
surpassing that of the FDA-approved chemotherapeutic cisplatin in a variety of human
cancer cell lines. Moreover, a significant finding in our study of these conjugates has
been the discovery that these complexes induce apoptotic cell death, rather than the
necrotic pathway typically triggered by rhodium metalloinsertors. It appears that
rerouting to the apoptotic pathway is incongruous with the uniquely selective biological
activity observed for metalloinsertors. This result suggests that there is a critical response
to mismatch recognition in a cellular environment that leads to cell-selective activity.

We further explored the underlying mechanisms surrounding the biological
response to mismatch recognition by metalloinsertors in the genome.
Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a
critical biomarker for DNA damage, phosphorylation of histone H2AX (YH2AX) rapidly
accumulates in response to metalloinsertor treatment, signifying the induction of double
strand breaks in the genome. Significantly, we have discovered that our metalloinsertor
complexes selectively inhibit transcription in MMR-deficient cells, which may be a
crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally,
preliminary in vivo studies have revealed the capability of these compounds to traverse

the complex environments of multicellular organisms and accumulate in MMR-deficient
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tumors. Our ever-increasing understanding of metalloinsertors, as well as the
development of new generations of complexes both monofunctional and bifunctional,

enables their continued progress into the clinic as promising new chemotherapeutic

agents.
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