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Abstract

There is a sparse number of credible source models available from large-magnitude past earthquakes.
A stochastic source model generation algorithm thus becomes necessary for robust risk quantification
using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as
imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations
to generate stochastic source models for large-magnitude (M, 6.0-8.0) strike-slip earthquakes. The
algorithm is validated through a statistical comparison of synthetic ground motion histories from a
stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source
inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic
dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern
California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions)
on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0
earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the M,,7.9
earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as
well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source
models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating
from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the
spectral element method, three-component ground motion waveforms are computed in the Los Angeles
basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source
parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and rise-

time) is studied.

Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochas-



tic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and
1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simula-
tions into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic
sources and computational seismic wave propagation, three-component ground motion histories at 636
sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The
ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on
the southern section of the fault. Two unilateral rupture propagation directions are considered. The
30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault,
as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based
on proximity and moment release. The response of the two 18-story buildings hypothetically located
at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D non-
linear time-history analysis. Using these results, the probability of the structural response exceeding
Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under

San Andreas fault earthquakes over the next thirty years is evaluated.

Furthermore, the conditional and marginal probability distributions of peak ground velocity
(PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occur-
ring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model
class identification. Simulated ground motions at sites within 55-75km from the source from a suite
of 60 earthquakes (M ,,6.0 — 8.0) primarily rupturing mid-section of San Andreas fault are considered

for PGV and PGD data.
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Chapter 1

Motivation, Background and Scope

Until recently, collapse and major damage of steel buildings in earthquakes wasn’t an anticipated
notion. However, the damage sustained by tall steel buildings during recent earthquakes such as the
1985, M,,7.8, Mexico city, and the 1994, M,,6.7, Northridge, and the 1995, M,,6.9, Kobe earthquakes
brought forth the possibility of collapse in mid-rise and high-rise structures. This can be attributed to a
multitude of reasons from ground motion characteristics such as the large amplitude, long period and
duration shaking resulting from basin response to structural characteristics such as the susceptibility of
beam-column connections, drastic tapering columns in upper stories. Many of the existing buildings
in densely populated areas (e.g., Los Angeles, USA) with active seismic zones nearby are designed
according to codes when there was inadequate understanding on the nature and impact of earthquakes
capable of producing large ground motions. The newer buildings on the other hand are designed
according to codes that are modified based on lessons from past earthquakes. While most of these
buildings are designed to withstand seismic forces, the code based design process based on low-rise
building performance and extended to tall buildings doesn’t provide an insight into the performance of
the structure during actual earthquakes. Furthermore, the modifications to the code are primarily done
through the observations in past earthquakes and in consideration that there are few large magnitude
earthquakes for which tenable data is available, it might not provide the best possible way for seismic
risk assessment of buildings in future earthquakes. In order to gain true insights into the structural
performance and henceforth seismic risk assessment, a thorough analysis on dynamic response of
the structure has to be conducted under various levels of ground motion intensities from different
earthquakes and estimates of these intensities for a given site under these earthquakes. Ground motion

prediction equations (or attenuation relationships, GMPE) that describe the median ground motion



intensity such as spectral acceleration, peak velocity/displacement, along with its standard deviation,
based on source-to-site distance, magnitude, source type (e.g., normal fault, strike-slip fault) and site
conditions (e.g., basin depth) can be used for this purpose. However, empirical relationships such
as GMPE are based on global earthquake database and are inadequate in large magnitude range due
to lack of sufficient data. Additionally, they do not factor in seismic source features such as slip
distribution, rupture speed and directivity of the rupture etc., alongside geological features such as
geometry of the fault, topography of basins, mountains etc. that play a pivotal role in the nature of

regional ground shaking pattern.

Under these circumstances, rupture-to-rafters simulations that combine the advancements in the
fields of seismology and structural engineering over the past few years form the perfect vessel to con-
duct structural performance and corresponding seismic risk studies in an accurate and versatile manner
using a probabilistic framework. These simulations include seismic source modeling and determining
their occurrence probabilities on the given fault of interest, simulating associated regional ground mo-
tion maps and using the same in the non-linear dynamic analysis of buildings post design to ultimately
quantify the seismic performance of the considered structures. An analysis such as this involves an
active interaction between scientists and engineers enabling each other for a precise understanding on
the earthquake process and seismic response of structures. Furthermore, rupture-to-rafters simulations
present an ideal way to answer intriguing questions pertaining to strong ground motions and related

tall building response such as:

1. How can one quantify and understand the variation in seismic sources especially for large mag-
nitude earthquakes (for which there is limited understanding) that are capable of producing high

ground motion intensities?

2. What is the nature of ground motion from such sources at distances varying from tens to hun-
dreds of kilometers? What is the sensitivity of these ground motions to seismic source parame-

ters such as slip, rupture speed and others?

3. How are the ground motions influenced at a given site influenced by hypocenter location, rupture
directivity, location and related parameters? How do they compare against empirical relations

that are extensively used for code based design process?



4. What is the nature of tall building response to these ground motions and what are the ground

motion characteristics that impact this response?

5. What are the damage mechanisms of tall buildings and would retrofitting help in mitigating this

damage?

6. What are the regional expected losses due to earthquakes that occur frequently or otherwise?

It has to be noted that rupture-to-rafters simulations provides answers to many other questions in the
field of earthquake engineering and not limited to the ones presented earlier. This study aims to present
the rupture-to-rafters simulations framework and establish a proof-of-concept using extensive numer-
ical studies on how such simulations can be used to establish the seismic performance of structures

addressing numerous other issues in a meticulous manner.

Modeling seismic sources of various magnitudes and calculating the associated regional ground
motion intensities forms the back-bone of rupture-to-rafters simulations. Seismic source models of
past earthquakes can be used for this. However in view of the fact that credible data from very few
large earthquakes is available, this study presents a new algorithm based on understanding of historic
earthquakes and laboratory earthquake data to define stochastic seismic source models of large magni-
tude (M ,,6.0—8.0) strike-slip earthquakes in its entirety. This algorithm has been extensively validated
using source models of past earthquakes such as the 2002 M,,7.9 Denali, and 2004 M 6.0 Parkfield
earthquakes. Fortunately in the recent years, the computational tools for regional ground motion sim-
ulations using seismic sources such as the ones mentioned here have been profusely developed. One
such advancement is the use of spectral element method based programs that incorporate the regional
crustal velocity structure. These programs have been extensively validated and became an indispens-
able arsenal for researchers to simulate regional ground motion maps (Frankel and Stephenson 2000;
Pratt et al. 2003; Horikawa et al. 2003; Kagawa et al. 2004; Landes et al. 2004; Raileanu et al. 2005;
Furumura 2005; Aagaard 2006; Graves 2006; Li et al. 2007; Lee et al. 2008; Plesch et al. 2011).

Chapter-2 of this study provides an in depth look into these topics and other related information.

One such spectral element based program has been used to simulate ground motions in south-
ern California from sixty large stochastic earthquakes generated through the algorithm on San An-

dreas fault with varying magnitude, rupture-directivity and -location. The simulated ground motions



have been analyzed carefully to gauge their sensitivity to the modeling of source parameters and site
characteristics. Moreover, the simulated ground motions have been incorporated to conduct nonlin-
ear dynamic analysis of two 18-story moment frame buildings using three-dimensional finite element
based models. The corresponding building response has been investigated thoroughly to evaluate the
damage extent and sensitivity of the response to ground motion parameters such as peak ground veloc-
ity/displacement through fragility curve and other data analysis techniques. Adjacently, a probabilistic
framework and the necessary computations are presented to calculate the likelihood of these build-
ings exceeding various limit states like Immediate Occupancy, Life Safety due to large earthquakes.
Chapter-3 of this study extensively discusses the rupture-to-rafters simulations framework. To enable
the reader for a thorough understanding on how the simulations are conducted, this is presented in
context on how it is used to quantify seismic performance of tall buildings in southern California due

to large San Andreas fault earthquakes.

Finally, Chapter-4 highlights the characteristics of long-period ground motions and on how
ground motion simulations through rupture-to-rafters simulations in conjunction with a Bayesian
model class identification form an alternative to understand ground motion nature of future earth-
quakes. These results influence the representation of the national/regional seismic hazard maps that
are judiciously used by engineers and safety regulatory agencies. The author sincerely hopes that the
reader through the course of this thesis gains an invaluable perspective on the highlights of rupture-
to-rafters simulations while simultaneously learning more about the existing methodologies and their
limitations in quantifying seismic sources, associated ground motions, the seismic response and per-

formance of tall buildings under such ground motions.



Chapter 2

Stochastic Source Model Generation Algorithm for Strike-Slip Earthquakes

Rupture-to-rafters simulations offer an alternative (and perhaps more realistic) approach for risk
quantification and design of new structures (Krishnan et al. 2006a; Krishnan et al. 2011). Generating
stochastic seismic source models for these simulations is a crucial step, given the limited number of
credible source models from large historical earthquakes. The seismic source model is a mathematical
representation of the earthquake rupture process. Two types of source models are used in earthquake

physics:

1. “kinematic” models, which prescribe the spatial and temporal evolution of the rupture speed, the
slip, and the slip velocity on the fault, inferred from seismic, geodetic, and geological observa-

tions.

2. “dynamic” models, which prescribe the fault pre-stress, fracture energy, and stress drop. An
earthquake is nucleated at a point in the model by artificially increasing the pre-stress to a value
greater than the shear strength. The rupture process is then allowed to evolve dynamically as
dictated by an assumed fault friction law. The development of dynamic source models is an
active area of research in earthquake source physics (e.g., Madariaga and Olsen 2002; Schmedes

et al. 2010; Bizzarri 2011).

While dynamics source models may better characterize earthquake source physics and there are
efforts underway to validate them against empirical data (e.g., Dalguer et al. 2008; Harris et al. 2009;
Olsen et al. 2009; Andrews and Barall 2011; Shi and Day 2013; Baumann and Dalguer 2014), the

theory is more complex and less mature when compared to kinematic source modeling (e.g., the state of



stress in the earth and the fault friction law are not known; they are not as well-constrained as kinematic
source parameters such as slip). Here, we represent an earthquake source using a kinematic model.
Kinematic source description involves dividing the fault rupture plane(s) into a number of smaller
sub-events. Each sub-event (considered as a point source) is characterized by three parameters: slip,
rupture speed and slip velocity-time function. Brune (1970) proposed one of the earliest earthquake
source models, in which near- and far-field displacement spectra are calculated from a fault dislocation
model accelerated by an effective stress. Significant progress has been made in kinematic source
modeling since then with the help of data collected by modern seismic networks (Zeng et al. 1994;
Somerville et al. 1999; Hartzell et al. 1999; Mai and Beroza 2002; Nielsen and Madariaga 2003;
Guatteri et al. 2004; Tinti et al. 2005; Lavallée et al. 2006; Liu et al. 2006; Graves and Pitarka 2010;
Aagaard et al. 2010; Aagaard et al. 2010). We start with a brief description of current approaches to

prescribing the three source parameters for each sub-event.

2.0.1 Slip Distribution

Spatial variation of kinematic slip in a rupture is perhaps the best understood amongst the three
source parameters. This is partly due to the fact that surface slip can be constrained in a finite-source
inversion of an earthquake using geodetic observations. Rupture speed and slip velocity-time function,
on the other hand, are inferred completely through inversions. The power spectral density (PSD) of the
two-dimensional slip distribution from these inversions typically decays with wave number according
to a power law. On this basis, a PSD function, inferred from finite-source inversion of past earthquakes,
could be inverted back to the spatial domain to produce a stochastic slip model (e.g., Somerville et al.
1999; Mai and Beroza 2002). Because finite-source inversions are typically able to resolve longer
wavelengths only, their PSDs do not properly characterize the spectral dropoff with wave-number.
Graves and Pitarka (2010) overcome this deficiency by augmenting the long-wavelength portion of
the PSDs from finite-source inversions (or uniform/random slip distributions) with a band-limited
PSD function that accurately captures the spectral decay inferred from seismic data. It should be
noted that in developing the PSD function, slip inversions of only a limited number of large magnitude
earthquakes were used (e.g., see Fig. 2.1) and the slip models are often interpolated to facilitate a direct

comparison. In a study of seven earthquakes including the 1994 Northridge earthquake, Lavallée et al.



(2006) discussed the negative effects of this interpolation on PSD decay. Moreover, this approach
anchors the sources to a specific power-spectral decay and may not capture the degree of variability

perhaps inherent to seismic sources.
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Figure 2.1: Histograms of magnitudes of past earthquakes considered by (a) Somerville et al. (1999) and (b)
Mai and Beroza (2002) for determining the spectral properties of the slip distribution on the fault.
Source mechanisms of these earthquakes are not limited to strike-slip, but include reverse, thrust
etc. Note the sparse number of large magnitude (M,, > 7.0) earthquakes included in either study.

An alternate approach is to generate spatial distribution of slips for an earthquake of given

magnitude stochastically and accept or reject each model by one of two methods:

1. comparing spectra of the resulting synthetic ground motions (assuming a rupture-speed and slip

velocity-time function distribution) against that of recorded ones (e.g., Zeng et al. 1994).

2. comparing the spectral decay as a function of wave-number against the broad range of the cor-

responding decays found in finite-source inversions of past earthquakes.

Whereas in the former approach, the spectra of synthetic ground motions are influenced by
the choice of rupture speed, slip velocity-time function, Green’s function etc., the latter has no such
concerns. Accordingly, the latter approach is adopted here. Our algorithm divides the rupture area

recursively along length, until each daughter segment has a dimensional aspect ratio close to unity. The



mean slip on each daughter segment is characterized using lognormal probability distributions. The
mean and standard deviation of these distributions depend upon the magnitude of its parent segment.
Slip on each daughter segment is assigned a value that is a single realization of the corresponding
probability distribution, with the slip vector oriented along strike (i.e., rake = 180°). To introduce slip
variation along depth, each (approximately square) daughter segment is subdivided into four segments
using one subdivision along depth and one along length. The assignment of slip for this penultimate
generation of daughter segments is based on the same method as the previous generations of daughter
segments. Finally, these penultimate generation segments are subdivided along length and depth to
the resolution needed for wave propagation simulations. Slips are assigned to the final generation
of segments as realizations of the lognormal probability distribution corresponding to the magnitude
of the parent segment from the penultimate generation. A filter is applied to smoothen the resulting
slip distribution eliminating sharp spatial variations. Additionally, at each step, the mean slips are
scaled linearly to that of the parent segment such that the net seismic moment M, is conserved. The
resulting slip distribution is accepted if the average power spectra, along the length and the depth of
the rupture, decay with wave number according to a power law with decay coefficient between 2.0 and
4.0. This is the range of values for the decay observed in finite-source inversions of past earthquakes
(e.g., Somerville et al. 1999; Mai and Beroza 2002). The use of 1-D spectra along length and depth
rather than a 2-D spectrum over the area of rupture is based on the assumption that slip along fault is
statistically independent of slip along depth. While this assumption may not strictly hold true, the use
of a circular PSD criterion for model acceptance is not likely to be significantly different from the use

of two 1-D spectra along length and depth (Lavallée et al. 2006).

2.0.2 Rupture Speed Distribution

The initiation time of slip at any given location along the rupture depends upon the rupture speed
V... Rupture speed can have a significant influence on the character of the radiated seismic waves, the
resulting ground motions, and the impact on the built environment. Even though theoretical models
(e.g., Burridge 1973; Andrews 1976) have shown that ruptures could travel at speeds higher than the
Rayleigh wave speed, rupture speeds in ground motion simulations have traditionally been assumed to

be lower. This is due, in part, to the sparsity of such strong ground motion data. However, evidence



from recent earthquakes such as the 1999 M,,7.6 Izmit (e.g., Bouchon et al. 2002), the 2001 M,,7.8
Kunlun (e.g.,Bouchon and Vallée 2003; Bhat et al. 2007), the 2002 M,,7.9 Denali (e.g., Frankel 2004;
Dunham and Archuleta 2004), and the 1979 M,,6.4 Imperial Valley (e.g., Archuleta 1984; Das 2010)
earthquakes, point to rupture speeds exceeding the Rayleigh wave speed. Based in part on this evi-
dence, several new models have been developed with an underlying principle that the secant rupture
speed (the average rupture speed from the hypocenter to a given subfault location) or local rupture
speed is correlated with slip on the fault (e.g., Guatteri et al. 2004; Liu et al. 2006; Graves and
Pitarka 2010; Aagaard et al. 2010; Aagaard et al. 2010; Song and Somerville 2010; Song et al. 2014)
. Others correlate rupture initiation with slip (e.g., Graves and Pitarka 2010). However, Schmedes
et al. (2010) found no evidence for such correlation from dynamic rupture models of 315 earthquakes.
They further cautioned that assuming any such correlation could lead to over-prediction of simulated
ground motions. In addition to field observations and theoretical models, laboratory earthquakes have
yielded important insights into the fault rupture process. Stable pulse-like ruptures have been realized
in the laboratory under controlled conditions (Rosakis et al. 1999; Rosakis et al. 2007; Lu 2009; Lu
et al. 2010; Mello et al. 2010). Both sub-Rayleigh and super-shear ruptures have been realized. The
sub-Rayleigh ruptures have been observed to propagate at speeds in the vicinity of 0.87Vy, where Vg
is the shear wave speed in the medium. Under special normal stress and fault roughness conditions,
the ruptures have been observed to transition to super-shear speeds in the vicinity of 1.67Vs. In our
source representation, we assume that all ruptures initiate at a sub-Rayleigh speed of 0.87Vs. Using es-
timates of pre-stress on the fault from paleoseismic, focal mechanisms, borehole breakouts, and other
in-situ observations catalogued in the World Stress Map project (Heidbach et al.), we assess whether
conditions exist for rupture to transition to super-shear speeds as it progresses along the fault. If such
conditions do exist for any sub-event along the rupture, we prescribe a rupture speed of 1.67Vg for
that sub-event. We noted previously when discussing dynamic source models that the state of stress
in the earth is not known accurately. Yet, we continue to use estimates of the same in characterizing
our kinematic source models. This is justifiable because only the rupture speed in kinematic source
models is dependent upon the state of stress. On the other hand, the evolution of all three source param-

eters (slip, slip velocity and rupture speed) in dynamic source models are affected by the state of stress.



2.0.3 Slip velocity-time function

The slip velocity-time function describes the temporal evolution of slip during an earthquake and
is characterized by slip magnitude, rise-time (time taken for peak slip to be attained) and peak time
(time taken for peak slip velocity to be attained). Variation of slip velocity with time in a source model
affects the frequency and amplitude characteristics of the resulting ground motions. It is specified
either as a single function (single time window) or as a series of overlapping time-shifted functions
(multiple time windows). Commonly assumed functional forms include Gaussian, triangular, trigono-
metric, and modified Yoffe (Tinti et al. 2005). Function coefficients are typically determined from
dynamic rupture simulations (e.g., Cotton and Campillo 1995; Guatteri et al. 2004; Tinti et al. 2005;
Liu et al. 2006) or finite-source inversions of past earthquakes (e.g., Hartzell et al. 1996; Somerville
et al. 1999). Unfortunately, dynamic rupture simulations have been seen to be quite sensitive to the
choice of modeling parameters making it difficult to constrain these coefficients. Furthermore, seismic
data that could be useful in determining these coefficients is rather sparse. Thus, there is limited under-
standing of these source characteristics. Laboratory earthquakes could serve to bridge this knowledge

gap as the slip-velocity time function can be directly measured in the laboratory.

In the laboratory earthquakes generated by Lu (2009, 2010), rise-time (measured in js) has been
found to be linearly correlated with slip (measured in pm) as shown in Fig. 2.2. The rise-times shown
are the basal widths of the best-fitting isosceles triangles to the slip velocity-time functions measured
in the laboratory. This is in agreement with dynamic rupture studies (e.g., Schmedes et al. 2010)
and similar to Graves and Pitarka (2010), where they postulate rise-time being proportional to the
square root of the slip. We fit a lognormal probability density function (PDF) to the slip to rise-time
ratio measured in the laboratory earthquakes. Assuming self-similarity of the slip-to-rise-time ratio
between the laboratory scale and the earth scale, we equate the mean and variance of this ratio at the
earth scale to that observed in the laboratory. Independent realizations of this PDF are assigned as
the slip-to-rise-time ratios for all the subfaults comprising the rupture. A slip proportional rise-time is
thus prescribed to each segment. This incorporates the physics of temporal characteristics of slip as
we best know it. It should be noted that Andrews and Barall (2011) make a comparable self-similarity
assumption. They assume that the ratio of initial shear stress to the initial normal stress on the fault is

scale independent and that the mean and variance of a PDF describing this ratio are scale invariant.

10



0.5 risetime (i s)

45
40
35
30
25
20
15
10

10 20 30 40 50 60
slip (u m)

Figure 2.2: Rise-time plotted as a function of slip

observed in laboratory earthquakes
(Lu 2009, 2010). The correlation be-
tween the two is in agreement with
dynamic rupture studies conducted by
Schmedes et al. (2010).

2.1 Methodology

2.1.1 SlipD

M vs.c
w

Figure 2.3: Blue circles show the standard devia-
tion ¢ of log-normal PDF fits to the
slip distribution from finite-source in-
versions of 56 strike-slip earthquakes
as a function of earthquake magni-
tude M,,. The magenta line is the
best-fitting linear least-squares fit de-
scribed by Eq. 2.3.

For a target earthquake magnitude M,,, the rupture area A of a stochastic source model is esti-

mated using the Hanks & Bakun (2002, 2008) relationship given by:

10Mw=398 A < 537km?
103(Mw=3.07) A - 537km?

A:

2.1

With area of rupture known and the seismogenic depth d inferred from seismicity on the fault,

the length of rupture [ can be determined. If d exceeds [, the rupture dimensions are re-calculated

assuming a square rupture area (i.e. [ == d). Seismic Moment M, and mean slip D of the earthquake
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are estimated from magnitude M, using:
M, = GAD = 102Mw+107 (2.2)

where G is the average shear modulus of the earth (~ 30 GPa). To arrive at a realistic slip distribution
with this mean slip, we recursively divide the rupture area lengthwise in half, each parent segment
being subdivided into two daughter segments. This segmentation is continued until each fault segment
attains a dimensional aspect ratio close to unity. In order to develop a credible methodology to assign
realistic slips to these segments, we have carefully studied finite-source inversions of 56 past strike-slip
earthquakes (refer to the Data and Resources section for details) with magnitude M, = 6.0 — 8.0. We
observe that a series of log-normal PDFs can be used to reasonably describe the slip distribution in
these sources. Furthermore, the standard deviation of log-normal PDF fits to the slip distribution in
these models scales linearly with their magnitudes (Fig. 2.3). This linear scaling can be expressed by
the regression relation:

o= 1.1827M,, — 7.0754 (2.3)

Now, from the parent segment magnitude and Eq. 2.3, we determine the standard deviation of the
log-normal PDF that is to be used to characterize the slip of the daughter segments. The mean for this
PDF is taken to be the average slip of the parent segment. Two independent realizations of this PDF
are generated and assigned as the mean slips on the two daughter segments. They are subsequently
scaled uniformly such that the sum of the seismic moments of the daughter segments matches that of
the parent segment. If parent segment M, is less than 6.0 (the lower magnitude limit in Fig. 2.3), the

standard deviation corresponding to M, = 6.0 is used.

To introduce variation of slip along the depth of the fault, each segment is subdivided into four
daughter segments in the penultimate step, two along length and two along depth. Random mean slips
are assigned as before. In the final step, each fault segment is further discretized to the resolution
required for generating the desired highest frequency wave in ground motion simulations. Slip assign-
ment is based on independent realizations of a log-normal PDF with the mean slip and the standard
deviation determined from Eqs. 2.2 and 2.3, respectively, both using the magnitude of the parent seg-

ment. Finally, a unit 2-D filter that is Gaussian along length and parabolic along depth is applied to
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Figure 2.4: Plane view of moment-preserving filter used to smoothen the slip distribution. The filter function is
Gaussian along fault length (with width d) and parabolic along fault depth (with width 3/4d), where
d is the depth of rupture. The parabola has a zero ordinate at the bottom and a peak at two-thirds
height from the bottom.

smoothen the slip distribution (Fig. 2.4). Dimensions of the filter are d and 3/4d along length and
depth, respectively. In order to ensure that maximum moment release occurs within the upper-third
portion of the fault (Fialko et al. 2005), the parabola has a peak at two-thirds height from the bottom.

The ordinate at the bottom of the filter is assigned zero value to ensure zero moment release below the

seismogenic depth.
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Figure 2.5: Application of the stochastic source algorithm to a M,, = 7.9 strike-slip earthquake. Recursive
divisions of fault area followed by assignment of random realizations of magnitude-dependent log-
normal PDFs of slip lead to five hierarchical levels [(a) Level - 1 through (e) Level - 5] of the seismic
source. The final step involves subdividing the parent segments to small daughter segments capable
of producing the desired highest frequency wave in ground motion simulations. Assignment of
random realizations of magnitude-dependent log-normal PDFs of slip to these daughter segments
along with a smoothing filter leads to (f) the final filtered slip distribution.



For example, suppose a stochastic source model is to be generated for a magnitude M,, = 7.9
earthquake on the San Andreas fault. From Eq. 2.1, the rupture area is 4200 km?. The average
seismogenic depth of the San Andreas fault may be assumed to be 20 km (i.e., rupture depth d = 20)
based on observations. Therefore, the length of the rupture L is 210 km. Average slip from Eq. 2.2 is
6.30 m. Fig. 2.5(a) shows the hierarchy level 1 model. Recursive division of the level 1 model along
fault length leads to hierarchy levels 2, 3, and 4 [Figs. 2.5(b), 2.5(c), and 2.5(d), respectively]. The
average slips on the two daughter segments at hierarchy level 2 are drawn from a log-normal PDF with
mean slip of 6.30 m and standard deviation of 2.26 m (from Eq. 2.3 corresponding to M,, = 7.9).
To preserve the seismic moment, the average slips of the daughter segments are scaled to 6.65 m
(M, = 7.71) and 5.95 m (M, = 7.68), respectively. The average slips on the first two daughter
segments at hierarchy level 3 are drawn from a log-normal PDF with mean slip of 6.65 m and standard
deviation of 2.05 m (from Eq. 2.3 corresponding to M,, = 7.71). Again, these are scaled to 3.83 m
(M, = 7.35) and 9.47 m (M,, = 7.62), respectively, to preserve moment. The two daughter segments
at level 3 arising from the M, 7.68 parent segment have average slips of 5.91 m and 5.99 m (realizations
drawn from a log-normal PDF with mean 5.95 and standard deviation 2.01 and scaled to match moment
of M,, = 7.68). Similarly, hierarchy level 4 results in eight approximately 20 km square segments, with
average slips 3.40 m (M, = 7.11), 427 m (M,, = 7.18),9.46 m (M,, = 7.41),9.48 m (M,, = 7.41),
6.73 m (M,, = 7.31), 5.10 m (M,, = 7.23), 6.48 m (M,, = 7.30), and 5.51 m (M,, = 7.26). At the
next hierarchy level, the fault is subdivided along both length and depth [Fig. 2.5(e)]. Coincidentally,
the area of 10 km square segments at hierarchy level 5 corresponds approximately to a magnitude 6
rupture from Eq. 2.1, the lower magnitude limit of the finite-source inversions used in the development
of Eq. 2.3. At the final step, the hierarchy level 5 segments are subdivided into 0.5 km squares. This
is the resolution needed to generate a 2 sec wave in ground motion simulations [Fig. 2.5(f)]. The slips
for each of these segments are generated as independent realizations of log-normal PDFs with mean
slips from the scaled average slips of parent segments from hierarchy level 5, and standard deviations
determined from Eq. 2.3 using the magnitudes corresponding to these parent segments. The power-
spectral density of the slip along fault length and depth as a function of the wave number are shown
in Figs. 2.6(a) and 2.6(b), respectively. The average PSD decays with wavenumber as a power law
with decay coefficients of 2.24 and 2.13 along length and depth respectively. Because these values lie

between 2 and 4, this stochastic source model is an acceptable realization and can be reliably used for
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ground motion simulations.
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Figure 2.6: Power Spectral Density (PSD) of a stochastic slip realization along (a) strike and (b) dip directions
as shown in Fig.2.5(f) for M,, 7.9 earthquake.

Shown in Fig. 2.7 are the normalized histograms of slip (m) in a finite-source inversion model
of the magnitude 7.9 Denali earthquake of 2002 (Krishnan et al. 2006a) and one stochastic source
realization using the outlined method. The similarity in the two distributions (with the exception of the
frequency of sub-faults with zero slip) suggests that a series of log-normal PDFs can indeed be used to
define slip distribution in stochastic source models. The large concentration of zero slip sub-faults in
the finite-source inversion model is due to the greater length assumed in the inversion (about 290 km)

as compared to about 210 km for the stochastic model.

2.1.2 Rupture Speed (V)

Laboratory earthquakes (Rosakis et al. 2007; Lu 2009; Lu et al. 2010; Mello et al. 2010) show the
influence of initial fault shear stress on the rupture speed (in addition to the influence of other param-
eters). Initial shear stress, in the case of a strike-slip fault, can be determined using the orientation ()
between the maximum principal stress (o) and the fault strike. The maximum and minimum princi-
pal stresses (o1 and o3) on a strike-slip fault lie on the plane perpendicular to that of the fault. The

intermediate principal stress (o2) is hydrostatic, acts normal to the fault plane, and varies linearly with
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Figure 2.7: Normalized histograms of slip(m) of a M,,7.90 earthquake from: (a) a finite-source inversion of the
2002 Denali earthquake and (b) one stochastic source realization using the outlined method.

fault depth. Evaluating ¢ along the fault forms an important step in estimating the initial shear stress

(7), and in further determining the rupture speed distribution for a seismic source.

The World Stress Map (WSM) project (Heidbach et al. 2008) compiles the azimuth of maximum
principal stress (6,) at near-fault locations worldwide. The angles are derived from field observations
(including paleoseismic estimates of slip, borehole breakouts and hydraulic fractures) and theoretical
investigations (including focal mechanisms of past earthquakes). Based on the quality of underlying

data, an estimate of the maximum measurement error is also provided (Table 2.1).

Quality Error

A +15°
B +20°
C +25°
D +40°
E un-reliable

Table 2.1: Quality factor and the corresponding error in measurement of 6.

To account for the uncertainty in the measurement of ¢,, we add a randomly generated fraction

of the measurement error from Table 2.1 to the reported estimate of 6,. We use this estimate of 6, in
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computing the orientation of the maximum principal stress o; relative to the fault:

6 = 180° — | — 6, (2.4)

where ¢ is the strike at the closest point on the fault. These near-fault data locations typically occur in
clusters (e.g., data points on the southern San Andreas fault are clustered at five locations as shown in

Fig. 2.8).
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Figure 2.8: Locations along the southern San Andreas fault at which stress estimates are available from the
World Stress Map project. Five data clusters are shown (magenta-, yellow-, blue-, green-, and
red-colored points).

We assume 6 at each cluster location to be characterized by a lognormal distribution with mean
equal to the arithmetic mean of 6 for all the locations within the cluster and standard deviation cal-
culated from the cluster with the highest number of WSM data points. We further assume that 6 is
constant along fault depth, i.e., rupture speed varies along fault length alone. All the sub-events on the
fault that lie in the zone tributary to a data cluster are assigned randomized #s drawn from the corre-
sponding lognormal distribution. All the sub-events within distances equal to the seismogenic depth d
in a given tributary zone are assigned the same randomly generated realization of . Assuming ambient
stresses in the crust adjacent to the fault are maintained by the frictional stability of small, high-friction
fractures, and that fluid pressures in the crust are hydrostatic (Townend and Zoback 2000; Zoback and

Townend 2001; Townend and Zoback 2004; Townend 2006; Townend, personal communication, 2008)
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initial shear (7) and normal (o,,) stresses on the sub-event are calculated using:

5—01+03NJ = 0,925 P = Pug? ; AO—Q“p((}_p)
= > 09 = PrgZ ;5 D= Puwd?; = —F
2 Vit 2.5)
Ao Ao

T=—sin20; 0, =0 —p— —cos20
2 2

where p is the hydrostatic fluid pressure, ¢ and Ao are the mean and differential stress, respectively,
pr and p,, are the density of rock and water, respectively, 7 and o, are the initial shear and normal
stresses acting on the sub-fault respectively, and, g is the acceleration due to gravity. In our algorithm,
z corresponds to half the seismogenic depth and 1i,(= 0.6) is the static Coulomb friction coefficient.
Our assumption that the stress orientation is uniform with depth but variable along strike is primarily
motivated by the lack of data along depth. If, in the future, such data becomes available, the algorithm

could be modified to incorporate variations along depth as well.

Loading factor (S) at any given location along the fault is calculated as:

(7p — 1)
g —r ')
(1 =) (2.6)

Tp = MpOn 5 Tr = [pOp

where yu,(= 0.6) and y,(= 0.1) (Goldsby and Tullis 2002; Di Toro et al. 2004) are the static and
dynamic friction coefficients, respectively, and, 7, and 7, are the static and dynamic friction strength
of the fault at that location, respectively. If S > 1.77, rupture is assumed to propagate at sub-Rayleigh
speeds (Andrews 1976) and a rupture speed of 0.87VJ is assigned for all sub-events along depth at that
location based on laboratory observations. If S < 1.77, it is assumed that stress conditions exist for

rupture to be able to transition to super-shear speeds. The transition length (L;) is given by Rosakis

et al. (2007) as:

Lt - ch<S)

_ 2.7)
G(rp—71)dy f(S)=9.8(1.77—8)7?

7(1—v)(t—1.)%"’

L.=

where L. is the critical crack length, d, is the characteristic slip chosen randomly from a uniform

distribution between 0.5 m and 1 m (Ide and Takeo 1997), and v(= 0.25) is the Poisson’s ratio. If
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Ly is less than the along-length distance from hypocenter to the location under consideration, a local
rupture speed of 1.67Vy is assigned for all the sub-faults along depth at that location on the fault; else
rupture speed is set at 0.87Vs. Thus, rupture is assumed to propagate at one of two speeds, either a
sub-Rayleigh speed of 0.87V or a super-shear speed of 1.67Vs. Although shear wave speed may vary
locally along the fault, here, we assume a constant Vs of 3.29 km/s, resulting in a bimodal distribution
of two rupture speeds, 2.86 km/s and 5.49 km/s. It should be noted that the changing strike on faults
such as the San Andreas may affect rupture speeds. Here, we assume that the effect of the changing
strike on the principal stress orientations on the fault fully accounts for its effect on rupture speed. We

do not explicitly consider fault geometry in the determination of the rupture speed distribution.

2.1.3 Slip velocity-time function
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Figure 2.9: Slip velocity plotted as a function of Figure 2.10: Normalized histograms of slip-to-
time for a laboratory earthquake and rise-time ratio observed in labora-
the best fitting isosceles triangular slip tory earthquakes and the associated
velocity-time function. lognormal fit.

We use triangular slip velocity-time functions in our stochastic sources. The parameters are
determined using data from a catalog of pulse-like laboratory earthquakes. Using an L; norm, we fit
1sosceles triangles to the slip velocity-time functions measured in the laboratory (e.g., see Fig. 2.9).

It turns out that the slip-to-rise-time ratios so obtained for all available laboratory earthquakes can
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be reasonably well characterized by a log-normal distribution (see Fig. 2.10) with mean 2.605 and

standard deviation 1.167.

Inversion data
L2-norm best fit

(sec)

r

0.5 TMax

Figure 2.11: Maximum rise-times in finite-source inversions of 56 past earthquakes plotted as a function of their
magnitudes. The linear trend is best captured by Eq. 2.8, the straight line shown in red.

For a given slip model, we generate a realization of slip to rise-time ratio using this distribution.
Since fault slip is known within each sub-event, we can compute the rise-time and hence the slip
velocity within each sub-event. It is possible that the random realization of the slip-to-rise-time ratio
can result in extremely large unrealistic rise times. In order to avoid such anomalous realizations, we
once again turn to the finite-source inversions of the 56 earthquakes cataloged in the ETH database.
Shown in Fig. 2.11 is the maximum rise time (7)***) as a function of earthquake magnitude for these

events. A linear trend is observed and the best-fitting relation is given by:
0.57"** = 1.5M,, — 8.3 (2.8)

For a stochastic source of a given magnitude, if the maximum rise-time in the model exceeds 7"

from Eq. 2.8, we discard this rise-time distribution and generate a new realization for the slip-to-rise-

time ratio.
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Figure 2.12: One of five stochastic source realizations (the median model) for the north-to-south rupture of
a hypothetical M,, = 7.9 earthquake on the southern San Andreas fault. Two possible rupture
locations, identified as rupture locations (a) 1 and (b) 3, are shown. Also shown on top of slip (color
scale same as in Fig. 2.5(a)) is the rupture speed distribution. Blue indicates rupture propagating at
the sub-Rayleigh speed of 0.87V, while red indicates rupture propagating at the super-shear speed
of 1.67V;. Rupture speed is held constant along fault depth. The model has a constant slip-velocity
of 4.15 m/s.

2.2 Application to the Southern San Andreas Fault

Using the recursive division algorithm, we generate a suite of five stochastic source model realizations
each for a M,, = 7.9 and a M,, = 6.05 earthquake along the Southern San Andreas Fault. Each
source realization is placed at five uniformly spaced locations starting at Parkfield in central California
and terminating at Bombay Beach in southern California (e.g., see Figs. 2.12 and 2.13). Two rupture
directions are considered for each location — north-to-south and south-to-north. This leads to ten
rupture scenarios for each of the five source realizations and a total of fifty unilaterally propagating
earthquakes (five source realizations x five rupture locations x two rupture propagation directions) for

either magnitude level.

In reversing the rupture directions, the slip distributions are also reversed, while maintaining the
right-lateral strike slip nature of the source. The hypocenter is chosen to be at the beginning of each
rupture at a depth ¢, where d is the seismogenic depth. Rupture initiation time at each sub-fault is
computed assuming a circular rupture front. Here, we use the open source package SPECFEM3D
(V2.0 SESAME, Kellogg 2011) that is based on the spectral element method (Komatitsch and Tromp
1999; Tromp et al. 2008) to compute three-component waveforms at 636 sites [Fig. 2.14] in Southern
California for all 50 scenarios. SPECFEM3D accounts for 3-D variations of seismic wave speeds and

density, topography and bathymetry, and attenuation as dictated by the SCEC Community Velocity
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Figure 2.13: One of five stochastic source realizations (the median model) for the south-to-north rupture of
a hypothetical M,, = 7.9 earthquake on the southern San Andreas fault. Two possible rupture
locations, identified as rupture locations (a) 2 and (b) 4, are shown. Also shown on top of slip (color
scale same as in Fig. 2.5(a)) is the rupture speed distribution. Blue indicates rupture propagating at
the sub-Rayleigh speed of 0.87V, while red indicates rupture propagating at the super-shear speed
of 1.67V;. Rupture speed is held constant along fault depth. The model has a constant slip-velocity
of 4.15 m/s.

Model (CVM-H 11.9). This model is based on current research, and incorporates tens of thousands
of direct velocity measurements that describe the Los Angeles basin and other geologic structures
in southern California (Plesch et al. 2011; Suss and Shaw 2003). The model includes background
crustal tomography (Hauksson 2000; Lin et al. 2007) enhanced using 3-D adjoint waveform methods
(Tape et al. 2009), the Moho surface (Plesch et al. 2011), and a teleseismic upper mantle wave-
speed description (Prindle and Tanimoto 2006). Earlier versions of this wave-speed model have been
used to reliably model the basin response accurately down to a shortest period of approximately 2 s
( Komatitsch et al. 2004; Liu et al. 2004; Quinay et al. 2013). Casarotti et al. (2008) have created
a spectral element mesh of the Southern California region, compatible with the wave-speed model
using an advanced unstructured mesher, CUBIT, developed by the Sandia National Laboratory, USA
(Sandia National Laboratory 2011), and adapted as GeoCUBIT for large-scale geological applications.
The simulated waveforms are lowpass-filtered with a corner at 2 seconds [the underlying SCEC CVM-
H 11.9 wave-speed model (Plesch et al. 2011) is capable of resolving waves with periods longer than

2s only].

To ensure that the source models generated by the recursive division algorithm are credible, we
make qualitative and statistical comparisons of the peak ground velocities (PGV) generated by these
models against the peak velocities generated by finite-source inversions of comparable earthquakes

with similar magnitudes (also simulated using SPECFEM3D). The finite source inversions selected
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Figure 2.14: The geographical distribution of the 636 southern California sites (shown as triangles) where
ground motions are computed. The spacing between the sites is 3.5 km approximately. The el-
lipses identify the basins in southern California: Simi valley, San Fernando valley, San Gabriel
valley and Los Angeles basin.

for this exercise include that of the 2002 M,, = 7.9 Denali fault earthquake (Krishnan et al. 2006a,
Fig. 2.15) and the 2004 M,, = 6.0 Parkfield earthquake (Ji 2004). Whereas the Parkfield earthquake
occurred on the San Andreas fault, the last big earthquake (magnitude greater than 7.5) to occur there
was the magnitude 7.9 Fort Tejon earthquake in 1857. In the absence of data from a large earthquake
on the San Andreas fault, the next best alternative for validation is a big earthquake on a geometri-
cally similar fault such as the Denali fault in Alaska. Fortunately, the 2002 earthquake was reasonably
well-recorded and a joint finite-source inversion using teleseismic body and strong-motion waveforms
as well as GPS vectors is available (Krishnan et al. 2006a). It has been common practice to simu-
late ground motions using finite-source inversions and it would be important to compare and contrast
ground motions generated by such sources and the stochastic source models from our algorithm. The
results of the validation exercise for the M,, = 7.9 earthquake are presented here, whereas the results
corresponding to the M,, = 6.0 earthquake are available in the Appendix A. We select the median
source model from the stochastic model set for the validation exercise, considering that most engineer-
ing applications are concerned with median (plus/minus one standard deviation) ground motions as
opposed to extreme ground motions. However, it should be pointed out that in the absence of greater
data from large earthquakes such as the Denali, it is hard to judge whether the ground motions from the
Denali event are typical of such events or whether they are on the high or low side. This, unfortunately,

is the best we can do presently as far as validation is concerned. The method for selecting the median
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Figure 2.15: (a) Slip (m) and (b) Rise-time (s) distributions from a finite source inversion of teleseismic, strong
motion, and GPS data from the Mw = 7.9 Denali fault earthquake of 2002 (Krishnan et al. 2006a).
Rupture-time (s) contours are overlaid on the slip distribution.

source is as follows:

1. For each of the five stochastic source realizations, we compute the median PGV for the two
horizontal components of the synthetic ground motion waveforms at 636 sites from each of the

ten rupture scenarios (five rupture locations X two rupture directions).

2. For each of the five stochastic source realizations, we compute the median value of the ten me-
dian PGVs for the ten rupture scenarios from (i), separately for the two horizontal components.
The solid lines in Fig. 2.16 illustrate this median PGV for each of the five stochastic source

realizations for the hypothetical M,, = 7.9 San Andreas fault earthquake.

3. To identify the median source model, we compute the median PGV of the ground motions pro-
duced at the 636 sites by all fifty scenario earthquakes. The dashed lines in Fig. 2.16 correspond
to this median value of PGV for the NS and EW ground motion components for the hypothetical
M,, = 7.9 San Andreas fault earthquake.

4. Of the five stochastic source realizations, the source whose median PGV (SRSS of EW and
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NS PGVs) is closest to the corresponding median PGV produced by all five source realizations
[computed in (iii)] is taken to be the median model and the ground motions produced by this
model are used in the validation exercise. Note that the rupture speed within the median model
varies depending upon the location of rupture, while the distribution of slip and rise-time remain

unchanged.
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Figure 2.16: Solid lines: Median PGV computed at 636 sites in southern California from ten rupture scenarios

(five rupture locations along the southern San Andreas fault x two rupture directions) using each
of five stochastic source realizations; Dashed lines: The corresponding median PGV from all fifty
scenario earthquakes. All earthquakes are of magnitude M,, = 7.9.
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Figure 2.17: Comparison of the “median” stochastic source model (top) located at rupture location 3 and the
Denali fault earthquake finite-source model (bottom) also located at rupture location 3. Both (a)
north-to-south and (b) south-to-north propagating ruptures are shown. Note the differences in the
slip asperity locations in the two models.

In order to study qualitative differences between the ground motion generated by the stochas-
tic median model and the Denali finite-source inversion model, we map these models onto the San An-

dreas fault at rupture location 3, approximately mid-way between Parkfield and Bombay Beach (Fig.
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2.17), and directly due north of the Los Angeles basin. Both north-to-south and south-to north rupture
propagation directions are simulated. The location of the largest asperity in the stochastic mean model
is offset from that of the Denali model by about 100 km. This has a significant influence on the nature
of the resulting ground motion. It should be the noted that even though the length of the Denali source
is longer (about 290 km.) than the stochastic source (about 210 km), there is a large concentration of
sub-faults with zero slip toward the end of the rupture (see Figs. 2.5(f) and 2.15). Slip is predominantly
concentrated within a length of about 200 km (between 50-250 km).
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Figure 2.18: EW and NS components of PGV (m/s) from a north-to-south propagating M,, = 7.9 rupture at
location 3 on the southern San Andreas fault: (a) and (b) Stochastic median source model; (¢) and

(d) Denali earthquake finite-source inversion model (Krishnan et al. 2006a). The inset shows the
fault trace and the hypocenter location.

Shown in Figs. 2.18(a) and 2.18(b) are the PGV of the EW and NS components of ground motion
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Figure 2.19: EW and NS components of PGD (m) from a north-to-south propagating M,, = 7.9 rupture at
location 3 on the southern San Andreas fault: (a) and (b) Stochastic median source model; (¢) and

(d) Denali earthquake finite-source inversion model (Krishnan et al. 2006a). The inset shows the
fault trace and hypocenter location.

simulated using the stochastic median model. Figs. 2.18(c) and 2.18(d) show similar maps generated
using the Denali source model. The corresponding peak ground displacement (PGD) maps are given
in Figure 2.19. The peak motions produced by the stochastic median model are far more intense in
the Los Angeles (LA) basin than in the San Gabriel valley which is located east of the LA basin. The
reverse is true for the motions generated by the Denali source model. This is directly attributable to
the location of the largest asperity in the two models. In the north-to-south rupture, the largest slip
asperity in the stochastic median model occurs to the west of the midpoint of the source, whereas the

same occurs to the east of the midpoint in the Denali source. Thus, ground motions from the Denali
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model are stronger in the east, whereas ground motions from the stochastic model are stronger in the
mid-section of the greater Los Angeles region. The PGD maps are strongly correlated with the PGV

maps in both cases.
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Figure 2.20: EW component of PGV (m/s) from a south-to-north propagating M,, = 7.9 rupture at location
3 on the southern San Andreas fault: (a) Stochastic median source model; (b) Denali earthquake
finite-source inversion model (Krishnan et al. 2006a).

In the case of a rupture propagating south-to-north, the large asperity in the Denali model is
further northwest compared to the asperity in the stochastic median model. As a result, ground motions
from the Denali model are more intense in the LA basin and less intense in the San Gabriel valley, while

the reverse is true for the ground motions from the stochastic median model (Fig. 2.20).

In general, peak ground motion distribution from the stochastic median and Denali source
models located at various sections along the southern San Andreas fault seems to be dictated strongly
by the relative location of the slip asperities. The location of these asperities along the fault are further
dictated by rupture directivity for the given source model. For north-to-south propagating ruptures,
the location of intense ground motions moves gradually from Simi valley to San Fernando valley, on
to Los Angeles basin, and finally to San Gabriel valley as the hypocenter location is progressively
changed from Parkfield towards Bombay Beach. Intense ground motions from the Denali model occur
further southeast compared to that from the stochastic median model, consistent with the fact that
the largest slip asperity in the former model is further southeast. These observations are reversed for

south-to-north propagating ruptures, i.e., the location of intense ground motion moves gradually from
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the San Gabriel valley to the LA basin, on to the San Fernando valley, and finally to the Simi valley;
and strong ground motion from the Denali model occurs further northwest when compared to that

generated by the stochastic median model.

In addition to asperity location, another factor leading to differences in the ground motions
from the Denali source model and the stochastic median source model is the assumed correlation be-
tween rise-time and slip in the stochastic model and the lack of the same in the Denali model, even
though the maximum rise-time for both models is approximately 6 s. The effect of this correlation can
be estimated by comparing the ground motions from the Denali model against that from a “modified
Denali” model. In this modified model, the rise-times from the original Denali model are made pro-
portional to the slip using the stochastic source generation algorithm. All other parameters remain the
same as the original model. Figs. 2.21(a) and 2.21(b) show the difference in the PGV (EW component)
generated by these two source models [PGV (modified Denali) - PGV (Denali)] for north-to-south rup-
tures at rupture locations 1 and 3, respectively. While, the differences are not significant in most of the

region, clearly, there are a few locations where significant differences are seen.
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Figure 2.21: (a) and (b) Difference in the PGV (EW component) generated by the Denali source model and
the modified Denali model [PGV (modified Denali) - PGV (Denali)] for north-to-south ruptures at
rupture locations 1 and 3,respectively. The modified Denali model is obtained by making the rise-
times from the original Denali model proportional to the slip using the stochastic source generation
algorithm.

Despite the differences in the modeling of source parameters, the overall intensities of
ground motion from the stochastic median model are not vastly different from that produced by the
Denali finite-source inversion model. This can be seen in the statistical comparisons shown in Figs.

2.22 and 2.23. Fig. 2.22 includes the histograms (and PDFs) of PGV for each of the five north-to-south
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rupture scenarios (at locations 1 through 5). The histograms and the best-fitting log-normal PDFs for
the PGVs from the stochastic median model are quite similar to those for the PGVs from the Denali
finite-source inversion model. Fig. 2.23 includes the same, but for the five south-to-north rupture
scenarios. Once again, there is reasonably good agreement between the two lending credibility to
the source generation algorithm. It is interesting to note that the south-to-north ruptures produce less
intense ground motions for all rupture scenarios using the Denali source and the stochastic median
model alike when compared to the north-to-south ruptures. The comparison of attenuation of ground
motion (median peak average horizontal velocity) with distance from source is shown in Fig. 2.24.
Furthermore, the attenuation of ground motion for both the basin and non-basin sites are illustrated
in Fig. 2.25. Once again the agreement between the attenuation of ground motion produced by the
stochastic source and the Denali finite-source inversion models is quite good. The median values are
computed by collating data in 2 km wide bins. Source-to-site distance is taken to be the shortest dis-
tance from the site to any point on the rupture extent. The lack of data beyond 100 km in the case of
the Denali source is because of the fact that the Denali source is about 80 km longer than the stochastic

sources.
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Figure 2.22: Five M,, = 7.9 north-to-south rupture scenarios (at locations 1-5) on the San Andreas fault using [(a)—(e)] the stochastic median model
and [(£)—(j)] the Denali finite-source inversion model: Histograms and best-fit log-normal PDFs (insets) of PGV at 636 sites in southern
California. The product of the listed scaling factor and the normalized histogram ordinate at a specific peak velocity gives the total
number of sites for that velocity.
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Figure 2.23: Five M,, = 7.9 south-to-north rupture scenarios (at locations 1-5) on the San Andreas fault using [(a)—(e)] the stochastic median model
and [(f)—(j)] the Denali finite-source inversion model: Histograms and best-fit log-normal PDFs (insets) of PGV at 636 sites in southern
California. The product of the listed scaling factor and the normalized histogram ordinate at a specific peak velocity gives the total

number of sites for that velocity.



Ground motion prediction equations (GMPEs), developed on the basis of data collected from
global earthquakes, have been used extensively in engineering applications including the design of
buildings. It would be useful to understand how the ground motions generated by the median stochastic
source model compare against the median motions predicted by GMPEs. Olsen and Mayhew (2010)
have outlined a wide array of goodness of fit metrics for use in broadband ground motion simulation
validation (Baker et al. 2014). Of these, peak ground velocity (PGV), peak ground displacement

(PGD), and spectral acceleration (.5,) at
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Figure 2.24: Median peak average horizontal velocity (m/s) [(red) Stochastic and (blue) Denali model] as a
function of source-to-site distance, in southern California due to M,,7.90 earthquake occurring
along southern San Andreas fault. The shaded region corresponds to median plus/minus one stan-
dard deviation. A total of 10 rupture scenarios (5 rupture locations x 2 propagation directivity) are
considered

3s are the most relevant metrics for the comparison of long-period motions, the primary focus
of this study. Shown in Fig. 2.26 are the median peak horizontal velocity and displacement (and me-
dian plus/minus one standard deviation) as a function of distance from source simulated at sites in the
greater Los Angeles region that are within 100 km of the median stochastic source model (M,,7.9) for
the ten rupture scenarios described previously (rupture locations 1 through 5, and rupture directions
north-to-south and south-to-north). The median values are computed by collating data in 2 km wide
bins. Also shown for comparison is the corresponding ground motion prediction by the Campbell-
Bozorgnia Next Generation Attenuation (NGA) relation (Campbell and Bozorgnia 2008). V3° (the av-

erage shear-wave velocity between 0 and 30 m depth) and basin depth for these stations (Fig. 2.27) are
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Figure 2.25: Median peak average horizontal velocity (m/s) [(red, green) Stochastic and (violet, blue) Denali
model] as a function of source-to-site distance for basin and non-basin sites, in southern California
due to M,,7.90 earthquake occurring along southern San Andreas fault. The shaded region cor-
responds to median plus/minus one standard deviation. A total of 10 rupture scenarios (5 rupture
locations x 2 propagation directivity) are considered
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Figure 2.26: (a) Median peak horizontal velocity (m/s) and (b) median peak horizontal displacement (m) as
a function of source-to-site distance for ten M,,7.90 earthquake scenarios on the southern San
Andreas fault (five rupture locations and two rupture directions) using the median stochastic source
model. Shown in red are the predictions by the Campbell-Bozorgnia NGA relation. The shaded
region corresponds to median plus/minus one standard deviation.

taken from Wald and Allen (2007) and the SCEC Community Velocity Model - Harvard (Plesch et al.

2011), respectively. In addition to the source and path effects, the other important factors that dictate
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Figure 2.27: (a) VS?’0 (m/s) and (b) basin depth (km) maps for southern California. Black circles correspond to
48 stations at which PGV and PGD values are computed using Campbell-Bozorgnia attenuation
relation for comparison against simulation predictions. Red triangles indicate the geographical
distribution of the 636 southern California sites where stochastic ground motions are computed.
The ellipses identify the basins in southern California: Simi valley, San Fernando valley, San
Gabriel valley and Los Angeles basin.

ground motion intensities are the basin depth and shear-wave velocities in the top-soil or geotechnical
layer (VZ%). In general, greater basin depths and/or lower V2" values lead to stronger ground mo-
tion. For the five rupture locations considered here, basin sites are located at distances no smaller than
40 km. This leads to significant amplification in the simulations at distances greater than 40 km. The
NGA relations also show the amplification due to the presence of basins. The peak displacements in
the basins predicted by the simulations match quite well with the GMPE predictions. However, the
same cannot be said of the peak ground velocities or spectral accelerations at 3s (Fig. 2.28). Median
PGVs in the basins from the simulations are three to six times of that predicted by the Campbell-
Bozorgnia NGA relation. The same holds true for S3% as well. It is possible that the bimodal rupture
speed in our source model combined with the coherence in the source parameters (constant slip rate)
may be causing stronger directivity effects. However, the good agreement in the NGA and simulation

predictions for PGD seems to indicate otherwise.

There has been a concerted effort at the Southern California Earthquake Center toward the sim-
ulation of broadband ground motion. Recent large scenario earthquake simulations on the southern
San Andreas fault include Terashake (e.g., Olsen et al. 2008; Ely et al. 2010), ShakeOut (e.g., Bielak
et al. 2010; Graves et al. 2011) and M8 (e.g., Cui et al. 2010 ). All these simulations were carried
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Figure 2.28: Spectral acceleration (g) at T’ = 3 s as a function of source-to-site distance for ten M,,7.90
earthquake scenarios on the southern San Andreas fault (five rupture locations and two rupture di-
rections). Shown in green and blue are the simulated east-west and the north-south S3% components
at greater Los Angeles sites using the median stochastic source model, respectively. Shown in red
are the predictions by the Campbell-Bozorgnia NGA relation. The shaded region corresponds to
median plus/minus one standard deviation.

out using the SCEC-CVM (Kohler et al. 2003) seismic wave-speed model whereas the simulations in
this study have been carried out using the SCEC-CVMH model. So it may not be possible to make a
secular comparison. It is nonetheless useful to understand the variability in the ground motions result-
ing from the combined effect of different source models and wave-speed models. Here, we compare
the M,,7.8 ShakeOut scenario earthquake ground motions against the ground motions produced by the
median stochastic source model, described earlier in the section, with epicenter at Bombay Beach and
propagating north. The ShakeOut earthquake slip model is shown in Fig. 2.29. The peak slip (~15 m)
and the peak slip rate (~4.8 m/s) are similar to that of the median source model (11.9 m and 4.15 m/s,
respectively). The two horizontal components of the peak ground velocity from the two source models
are shown in Fig. 2.30 . The ranges of PGVs observed in the greater Los Angeles region from the two
sources is quite similar. The differences in the extent and location of “hot-spots” can be attributed to
the differences in the underlying wave-speed models used for the two simulations, the location, size,
and intensity of the primary slip asperity, and the differences in the rupture speed distribution. The
stochastic source has a bimodal rupture speed distribution (0.87Vs or 1.67Vs) whereas the ShakeOut
source has a peak rupture speed of 1.4V at the location of maximum slip, a rupture speed of 0.85V

at locations of average slip, and a rupture speed of 0.2V at locations with zero slip.
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Figure 2.29: Slip (m) distribution and rupture time contours (1s intervals) for a M, 7.8 earthquake of the Shake-
Out earthquake source (Graves et al. 2011). The peak slip-rate for this source is 4.38 m/s.
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Figure 2.30: (a) East-West and (b) North-South component of peak ground velocity (m/s) simulated using the

median stochastic source model with epicenter at Bombay Beach. (c) and (d) The corresponding
PGV maps for the ShakeOut scenario.
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2.3  Sensitivity of Ground Motions in the Los Angeles Basin to Source Param-

eters of Large Ruptures on the San Andreas Fault

To understand the sensitivity of ground motions in the LA basin to the source parameters of large
ruptures on the San Andreas fault, the recursive division algorithm is applied to generate 50 stochastic
seismic source models of an M,, = 7.9 earthquake. All ruptures are assumed to initiate at Parkfield
and propagate south toward Wrightwood, similar to the Fort Tejon earthquake of 1857, the last big
earthquake on the southern San Andreas fault. Source parameters of interest include the percentage
of asperity area relative to the fault area (an asperity in our model is defined as a minimum of two
continuous subfaults where the magnitude of slip in each subfault is greater than or equal to the mean
slip), maximum rise-time in the source model, and the percentage of the rupture propagating at sub-
Rayleigh speeds (alternately percentage of the rupture propagating at super-shear speeds). For each
scenario earthquake, the peak horizontal ground velocity is calculated at each of the 211 sites in the
Los Angeles basin [Fig. 2.14] as the maximum of the square root of the sum of the squares of the N-S
and E-W ground velocity histories. The median of this set of peak ground velocities is used for the

sensitivity analysis.

Fig. 2.31 shows scatter-plots of the median PGV as a function of the percentage of as-
perity area, the maximum rise-time, and the percentage of the rupture propagating at sub-Rayleigh
speeds. Also shown are the histograms for each of these quantities. The following observations can be
made: (i) there is a relatively low correlation (correlation coefficient = —0.30) between median PGV
and percentage of asperity area. Reader should note here that a seismic source model with a single
large asperity might have the same percentage of asperity area as one with several smaller asperities;
however, the resulting ground motions from the two models may be significantly different. (ii) A
moderate correlation (correlation coefficient = —0.57) can be observed between the median PGV and
the maximum rise-time in the source model, with median PGV gradually declining with increasing
values of maximum rise time. (iii) An unexpected finding, however, is that the median PGV in the LA
basin is generally larger when a greater proportion of the rupture propagates at sub-Rayleigh speeds
and smaller when a greater proportion of the rupture propagates at super-shear speeds. Incidentally,

Aagaard and Heaton (2004 ) too reported a similar observation in their near-source ground motion sim-
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Figure 2.31: Results from simulating fifty M,, = 7.9 north-to-south rupture scenarios on the San Andreas fault
(similar to the 1857 Fort Tejon earthquake) using stochastic seismic source models. [(a)—(c)] show
the scatter-plots of the median PGV in Los Angeles basin as a function of the percentage of asperity
area relative to the fault area, the maximum rise-time, and the percentage rupture propagating at
sub-Rayleigh speeds. [(d)—(f)] show the corresponding histograms for the fifty scenarios. The
product of the listed scaling factor and the normalized histogram ordinate gives the parameter
frequency.

ulation. A high correlation coefficient of 0.74 is observed between median PGV and percentage of
rupture propagating at sub-Rayleigh speed. Additional ground motion maps for ruptures traveling in
either pure super-shear or sub-Rayleigh regime for stochastic and finite-source inversion models are
shown in Appendix B. (iv) The mean of the median PGV at the 211 Los Angeles basin sites from all
fifty 1857 Fort Tejon-like stochastic sources of M,, = 7.91s 0.77 m/s and the standard deviation is
0.26 m/s. In comparison, the corresponding mean and standard deviation of the PGV predicted by the
Campbell-Bozorgnia (2008) NGA relation are 0.16 m/s and 0.03 m/s, respectively. (v) The mean of
the median PGD at the 211 southern California sites in the Los Angeles basin from all 50 stochastic

sources of M,, = 7.91s 1.09 m and the standard deviation is 0.40 m. The corresponding mean and
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standard deviation of the PGD predicted by the Campbell-Bozorgnia NGA relation are 0.94 m and

0.29 m, respectively.

It is clear that while the mean and standard deviation of the PGD predicted by the attenuation
relationship is in close agreement with that predicted by the simulations, the same cannot be said about
PGV. It is important that this disagreement between NGA relations and the simulations is reconciled
as building codes utilize the NGA relations to characterize seismic hazard for the design of buildings.
This is especially critical for tall buildings as their response is quite sensitive to PGV (Krishnan and

Muto 2013).

To ensure that findings (i1) and (ii1) are not limited to ground motions from earthquakes occurring
at Location 1 alone and hold more broadly, we plot the median PGV in the east-west and north-
south directions at all sites in the greater Los Angeles area (not just LA basin sites) from the fifty
earthquakes described in the last section as a function of rise-time (Fig. 2.32), and percentage of the
rupture propagating at the sub-Rayleigh speed of 0.87V (Fig. 2.33). It is quite clear that the greater the
percentage of rupture propagating at sub-rayleigh speeds, the stronger are the ground motions. PGV
drops marginally with increasing rise-time, although this anti-correlation is weaker than the correlation
with respect to rupture speed. Findings (ii) and (ii1) thus appear to hold true for all rupture locations
and all southern California sites (when considered collectively). However, we are not sure whether the
number of source models used in the sensitivity study are enough to capture the variability of sources
on a fault such as the San Andreas. Further studies are needed to quantify the sample size necessary

to ensure statistical significance.

2.4 Discussion

The recursive division algorithm outlined here can be implemented for any strike-slip fault in the
world given good estimates of principal stress orientations. Principal stress orientation data is currently
available for most major fault systems in the world (http://dc-app3-14.gfz-potsdam.de), although the
quality of the data may not be uniformly good. In the absence of such data an assumption would
have to be made on the rupture speed in order for this algorithm to be used (e.g., a constant rupture

speed of, say, 0.8Vj, across the fault). In making this assumption, the finding that the greater the
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Figure 2.32: Median horizontal peak ground velocity (m/s) in southern California from a total of fifty M,,7.90
earthquakes on the southern San Andreas fault (5 source realizations x 5 rupture locations x 2
propagation directions) as a function of the rise-time (s) for (a) north-to-south and (b) south-to-
north propagating rupture.
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Figure 2.33: Median horizontal peak ground velocity (m/s) in southern California from a total of fifty M,,7.90
earthquakes on the southern San Andreas fault (5 source realizations x 5 rupture locations x 2
propagation directions) as a function of the percentage of rupture propagating at the sub-Rayleigh
speed of 0.87V; for (a) north-to-south and (b) south-to-north propagating rupture.

percentage of the rupture propagating at sub-Rayleigh speeds the stronger is the resulting ground
motion must be considered. The presented algorithm augments known aspects of seismic sources from
finite-source inversions with observations from laboratory earthquakes to model kinematic parameters

of strike-slip sources, thus incorporating physics of the rupture process as we best know it. There are
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three distinguishing features of the recursive division algorithm that sets it apart from other existing

methodologies:

1. Deviating from the common approach of defining a 2-D power spectral density (PSD) function
that usually decays with increasing wave number and inverting it back into the spatial domain to
generate the slip distribution, the recursive division algorithm generates stochastic slip distribu-
tions in the spatial domain. A subsequent check is made to ensure that the slip power spectrum
decays as a function of the wave number in accordance with a power law whose exponent is
between 2 and 4, the range of values observed in finite-source inversions of past earthquakes.
Allowing such a range for this exponent rather than imposing a fixed value (as is done in exist-
ing methods) would likely produce a more diverse set of seismic source models, more closely
emulating the broad spectrum of seismic sources inferred from earthquake data. In addition,
this approach would produce distinct power spectra of slip along the length and the depth of
the fault. One questionable feature of our algorithm is that it prescribes smoothly varying slip
across kinks and bends of non-planar faults. The effects of this feature of the resulting stochastic

source models need to be studied in the future.

2. Based on the observation in laboratory earthquakes that rupture speed is dependent upon initial
stress conditions on the fault, the recursive division algorithm uses initial stress to judge whether
rupture proceeds at sub-Rayleigh speeds or at super-shear speeds. Rather than assigning a con-
stant average rupture propagation speed, the algorithm assigns sub-Rayleigh and super-shear
propagation speeds of 0.87Vg and 1.67V, respectively, as observed in the laboratory. Thus, the
resulting kinematic source models are physics-based and more realistic. Some existing models
do specify a varying slip-proportional rupture speed. However, dynamic rupture simulations

have not conclusively shown this to be true.

It should be mentioned that calculating the initial stress on the fault is a non-trivial problem,
especially in the face of limited data. The key assumption that goes into the determination
of the normal and shear stresses using the principal stress orientations along the fault is that
the fault is in a critical state and that the pore pressure in the crust surrounding the fault is
hydrostatic. This assumption is based on in-situ measurements, core samples, and inferences

from seismicity. Given that the measurements are made at shallow depths of the earth’s crust,
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it is an open question whether this assumption holds true over the entire seismogenic depth of
the fault. Nevertheless, in the absence of evidence to the contrary, it is assumed that the stress
across the depth of the fault is uniform. This results in rupture speeds that are variable along

fault length, but constant along fault depth.

. Both laboratory earthquakes and dynamic rupture simulations indicate that there exists a corre-
lation between slip and rise-time. Empirical relations characterizing this correlation determined
from dynamic rupture simulations can be quite sensitive to the choice of parameters used in the
simulations. Accordingly, slip-to-rise-time ratios from the laboratory earthquakes are directly
used to characterize the rise-times (and hence slip velocity) in the recursive division algorithm.
The slip-to-rise-time ratio (i.e., slip velocity) is assumed to be constant for a given stochastic
source realization. The maximum rise-time observed in finite-source inversions of past earth-

quakes is used to constrain rise-times in the algorithm as well.

The extension and applicability of laboratory observations to the real earth is still an open ques-
tion. The issue of scaling is far from resolved. We must reiterate, however, that the self-similarity
assumption for the slip-to-rise-time ratio between the laboratory scale and the earth scale is as
plausible (or not) as the self-similarity assumptions on initial stresses on faults made in dynamic
rupture propagation simulations. In this work, we have studied long-period ground motions
at distances greater than 15 km or so. Long-period ground motion at these distances may not
be sensitive to the detailed shape of the source-time function. So the use of triangular slip
velocity-time functions in our stochastic sources may be acceptable. However, more realistic
(dynamically compatible) Kostrov type or modified Yoffe type source time functions (Tinti et al.

2005) may be needed for broadband and/or near-source ground motion simulations.

The characterization of the underlying probability distributions of earthquake source parameters

(and/or their correlations) in the proposed approach may possibly be improved by incorporating statis-

tics from dynamic rupture simulations (rather than from finite source inversions in the case of slip, for

instance). Such an approach is used by “pseudo-dynamic” stochastic rupture model generators (e.g.,

Song and Somerville 2010; Mena et al. 2012; Trugman and Dunham 2014a; Song et al. 2014). They

typically represent final slip, rupture speed, and slip rate as spatial random fields that are statistically

characterized (and/or correlated) by synthetic data from dynamic rupture simulations. Because dy-
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namic models are physically self-consistent, they may be able to better characterize the relationship
between earthquake source parameters. However, they too suffer from a lack of knowledge of the
spatial heterogeneity of the background stress field and the frictional failure law for the fault. As more
data to better constrain these aspects becomes available, our algorithm may be adapted to incorporate

earthquake source parameter statistics from dynamic rupture simulations.

2.5 Data and Resources

The database of global finite-source rupture models of past earthquakes was searched using http:

//www.seismo.ethz.ch/static/srcmod/Events.html (lastupdated July 23, 2007. Last
accessed September 16, 2014). Usinghttp://dc-app3—-14.gfz-potsdam.de/index.html
(last updated August, 20 -09. Last accessed October 21, 2014), the world stress map project database
was accessed. The ground motion plots were made using the Generic Mapping Tools version 4.5.7

foundathttp://gmt.soest.hawaii.edu/projects/gmt (lastaccessed October 20,2014).

in this chapter, the stochastic algorithm presented has been applied to several M,,7.9 and M,,6.05
earthquakes occurring along southern San Andreas fault and the associated ground motion character-
istics are discussed. However, it is crucial that the algorithm is used to model earthquakes in between
Mw6.0 — 7.9 and the nature of corresponding ground motions are analyzed thoroughly for use in
rupture-to-rafters simulations. The following chapter addresses this issue along with rupture-to-rafters
simulations methodology and its application to evaluate seismic performance of two 18-story moment

frame buildings.
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Chapter 3

Limit State Exceedance Probabilities of Building Performance Under
Earthquake Excitation Using Rupture-to-Rafters Simulations

The right-lateral strike-slip San Andreas fault is the active boundary that accommodates much of the
motion between the North American and Pacific plates with an average slip rate of 2.5 - 3.5 cm/yr (
Fialko 2006; Lindsey and Fialko 2013). The southern section of the fault, starting at Parkfield and
ending at Bombay Beach near the Salton Sea, has the potential to produce earthquakes up to about
magnitude 8.3. Ground motions generated from earthquakes on this section of the fault may be strong
enough to cause damage to tall buildings in greater Los Angeles. In addition to the San Andreas
fault, these buildings may be at risk from earthquakes on blind-thrust faults such as the Northridge and
Puente Hills faults, and other smaller strike-slip fault systems such as the Newport-Inglewood, the San
Jacinto, the Elsinore, and the Santa Monica-Hollywood-Raymond fault systems, that have the potential
to produce magnitude ~7 earthquakes. Here we attempt to characterize building performance under
earthquakes on the San Andreas fault alone over the next thirty years using physics-based simulations
of earthquakes and structural response. The approach can be easily extended to incorporate risk from

all the other known fault systems.

The last big earthquake on the southern section of the San Andreas fault was the M, 7.9 Fort
Tejon earthquake of 1857. Paleoseismic investigations by Sieh and others (e.g., Sieh 1978; Wel-
don et al. 2005) points to the rupture having initiated at Parkfield in central California, propagating
roughly 360 km in a southeasterly direction down to Wrightwood in southern California. A prototype
rupture-to-rafters simulation by the third author (with others) of an earthquake similar to the Fort Tejon
earthquake on San Andreas fault, pointed to significant damage to the two moment frame buildings

considered in this study (kri ; Krishnan et al. 2006b) as well as extensive repair/replacement costs to
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the structures (hypothetically located) at several sites in the greater Los Angeles region (Muto et al.
2008). That study demonstrated that it may be possible to conduct risk assessment more quantitatively
using rupture-to-rafters simulations of scenario earthquakes. Here, we introduce our physics-based
rupture-to-rafters simulations into the performance based earthquake engineering (PBEE) framework
(Porter 2003) developed by the Pacific Earthquake Engineering Research (PEER) center to assess the
risk to the same buildings under southern San Andreas fault earthquakes that may occur in the next
30 years. Such a study, when conducted for all known faults, may better inform decision-making in
urban planning and design, disaster mitigation and management, insurance and reinsurance, and risk

management.

While the PEER PBEE framework has four stages (hazard analysis, structural analysis, dam-
age analysis, and loss analysis), we focus in this study only on the first two stages to estimate limit
states of structural performance [Immediate Occupancy (10), Life Safety (LS), and Collapse Preven-
tion (CP)]. PBEE has been successfully used in assessing the seismic collapse safety/risk of buildings
(e.g., Haselton et al. 2010; Miyamoto et al. 2010; Eads et al. 2013; Raghunandan et al. 2014;
Mathiasson and Medina 2014) as well as in estimating losses (e.g., Mitrani-Reiser et al. 2006; Goulet
et al. 2007; Ramirez et al. ; Ramirez et al. 2012). However, hazard analysis, for the development
of ground motion time-histories, has typically involved the adoption of a spectrum (or spectra) for
design basis earthquake (DBE) and/or maximum considered earthquake (MCE), selection of suitable
recorded ground motion records based on the nature of hazard, and scaling of the records in some
manner to make them compatible with the DBE/MCE spectrum. Selection and scaling ground mo-
tions for use in PBEE is an active area of research (see special issue on the topic in the Journal of
Structural Engineering Huang et al. 2011). Several challenges exist, the most important being the
lack of records from large events at reasonable source-to-site distances (Applied Technology Council
2009), especially in sedimentary basins such as Los Angeles. 3-component synthetic ground motion
histories, generated by computationally propagating seismic waves under scenario earthquakes ( e.g.,
Olsen et al. 1995; Heaton et al. 1995; Graves 1998; Aagaard and Heaton 2004; Graves 2006; Aagaard
2006; kri ; Krishnan et al. 2006b; Olsen et al. 2008; Cui et al. 2010; Bielak et al. 2010; Graves
and Pitarka 2010; Aagaard et al. 2010; Aagaard et al. 2010; Graves et al. 2011; Olsen et al. 2014),
may be used to circumvent the difficulties associated with ground motion selection and scaling. Re-

gional seismic wave-speed models, incorporating 3-D variations of seismic wave speeds and density,
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topography and bathymetry, and attenuation, capable of resolving long period waves (> 2 s) are being
developed for many parts of the world (e.g., Frankel and Stephenson 2000; Pratt et al. 2003; Suss and
Shaw 2003; Magistrale et al. 2000; Magistrale et al. 1996; Kohler et al. 2003; Prindle and Tanimoto
2006; Tape et al. 2009; Tape et al. 2010; Ely et al. 2010; Plesch et al. 2011; Horikawa et al. 2003;
Kagawa et al. 2004; Furumura 2005; Lee et al. 2008; Aagaard 2006; Graves 2006; Landes et al. 2004;
Raileanu et al. 2005; Li et al. 2007). Concurrently, wave propagation codes (e.g., Olsen et al. 1995;
Bao et al. 1998; Graves 1998; Komatitsch and Tromp 1999; Liu et al. 2004; Komatitsch et al. 2010;
Komatitsch 2011) have sufficiently matured for use in tackling real-world problems, at least for the
study of long-period structures such as tall buildings and long-span bridges. In the next section, we
outline the methodology for incorporating rupture-to-rafters simulations into the modular PEER PBEE

approach for probabilistically quantifying performance.

3.1 Methodology

The methodology consists of 5 steps:

[e—

. Generating stochastic source models for scenario earthquakes on the target fault.

2. Computing probabilities of occurrence over the targeted time horizon of all plausible ruptures

on the target fault and distributing these probabilities to the scenario earthquakes.

3. Simulating 3-component ground motion histories at chosen sites from the scenario ruptures us-
ing seismic wave propagation through a regional finte-element, finite-difference, or spectral-

element model of the earth.

4. Performing 3-D nonlinear analysis of the target buildings at each site under ground motions from

each scenario rupture.

5. Applying the PEER PBEE framework to estimate exceedance probabilities of structural perfor-

mance levels over the targeted time horizon from earthquakes on the target fault.
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3.1.1 Stochastic source models for scenario earthquakes

An earthquake rupture (source) is characterized by the distribution of slip, slip velocity (or rise time)
and rupture propagation speed across the rupture area. Two options, kinematic and dynamic approach,
exist for the modeling of an earthquake source as described at the beginning of Chapter 2. Pseudo-
earthquakes created in the laboratory have further augmented our understanding with insights into the
rupture process. This has led to the development of kinematic [e.g., Graves and Pitarka 2010 (http:
//scec.usc.edu/scecpedia/Broadband_Platform), Schmedes et al. 2013, RupGen-
eQuake-RC (http://equake-rc.info/CERS-software/rupgen/), Siriki et al. 2014] as

well as pseudodynamic (e.g., Trugman and Dunham 2014b) rupture generators.

A computationally tractable set of earthquake rupture scenarios (characterized by magnitude,
rupture location, hypocenter location and rupture direction) that span the range of earthquakes that
may lead to some damage in the target structure at any of the target sites is devised. Using a rupture
generator, kinematic source model realizations are generated for this set of rupture scenarios. Several
realizations may be generated for a given scenario. Here we adopt the Siriki et al. (2014) stochastic

source algorithm (as described in Chapter 2) for earthquake rupture generation.

3.1.2 Probability of occurrence of scenario earthquakes using earthquake rup-

ture forecasts [contribution by Ramses Mourhatch (Mourhatch 2015)]

The Working Group on California Earthquake Probabilities (WGCEP), a group comprised of scien-
tists and engineers from the U.S. Geological Survey (USGS), the California Geological Survey (CGS),
and the Southern California Earthquake Center (SCEC), has been developing the Uniform California
Earthquake Rupture Forecast (UCERF, Field et al. 2009; Field et al. 2013). Using fault models
that specify fault geometry, deformation models that specify slip-rate and creep for each fault sec-
tion, earthquake rate models that specify the long-term rate of all earthquakes in the region (at some
spatial resolution), and earthquake probability models that specify the likelihood of a given event oc-
curring during a specified time horizon, perhaps conditioned on additional information such as date of
last event, yearly rupture rates for all possible rupture scenarios in California are forecast. All major

faults are divided into segments of 2 km to 13 km length. The rupture extent of each forecast earth-
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quake spans two or more of these segments. Whereas version 3 (UCERF3) gives time-independent
rates alone (where the assumed Poisson probability model depends only on long-term rates), the pre-
vious version (UCERF2) provides both time-dependent and time-independent rates. The models in
the framework are constrained by geologic, geodetic (e.g., GPS), seismic (earthquake catalogues), and
paleoseismic data. The framework itself has a logic tree structure wherein model (epistemic) uncer-
tainty is accounted for by the allocation of likelihood-dependent weights to all branches. The weighted
average of the earthquake rates from all pathways of UCERF’s logic tree is used to assign probabilities
to all rupture scenarios that may occur within the spatial extent of the simulated earthquake scenar-
ios. These probabilities of all plausible ruptures (which may be many more in number than the set of
simulated earthquakes) are distributed amongst the smaller set of simulated earthquake scenarios on
the basis of location and seismic moment (energy) release by Mourhatch (2015). This is illustrated
by way of an example in a later section on the application of the method to the southern San Andreas
fault. Henceforth, plausible ruptures from UCERF will be referred to as “forecast earthquakes” to

distinguish them from the simulated earthquakes which will be referred to as “scenario earthquakes”.

3.1.3 Ground motion simulation for scenario earthquakes

For each rupture scenario, the seismic source is modeled as a patchwork of smaller sources, each
small source being represented by a double-couple and mathematically quantified by a centroidal mo-
ment tensor. The energy from each little source is released sequentially at rupture times as dictated
by the rupture speed distribution of the overall source model. The disturbance at the source prop-
agates to the site through the earth model in the form of P and S waves whose interactions lead to
Rayleigh and Love waves as well. As mentioned previously, several methods exist for the generation
and propagation of seismic waves. Here, we simulate ground motions using an open source package
SPECFEM3D as discussed in Section 2.2. Although hybrid methods to synthesize broadband ground
motion, that combine low-frequency synthetic ground motion from wave propagation simulations with
high-frequency stochastically (e.g., Graves and Pitarka 2010) or deterministically (e.g., Mourhatch and
Krishnan 2014) generated ground motion, exist, we limit ourselves to using long-period ground mo-
tion alone in this study. Our target buildings are long-period structures structures as well and are not

affected substantially by high-frequency ground motion (Krishnan et al. 2006b).

50



3.1.4 3-D nonlinear dynamic analysis of target buildings under scenario earth-

quake ground motion

3-D structural models of the target buildings are subjected to the 3-component ground motion from
the scenario earthquakes at each of the target sites of interest. Structural performance is measured
by the peak interstory drift (IDR) over the height of the building. FEMA 356 (FEMA 2000) relates
peak IDR to the building performance limits states of Immediate Occupancy (IO), Life Safety (LS),
and Collapse Prevention (CP) for various types of structures. For example, the peak IDR limits for
exceedance of 10, LS, and CP levels are 0.007, 0.025 and 0.05, respectively, for steel moment frame
buildings and 0.005, 0.015, and 0.02, respectively, for steel braced-frame buildings (American Society
of Civil Engineers 2007). Several programs for nonlinear analysis of buildings exist [e.g., OpenSEES
(McKenna et al. 2000), PERFORM3D (Computers and Structures ), Drain3DX (Powell and Campbell
), Ruaumoko (Carr 2001), etc.]. Here, we use FRAME3D (Krishnan 2003; Krishnan 2009) to conduct
nonlinear dynamic analysis of the target buildings. It is a special-purpose program for the analysis of
steel structures that handles accurately many phenomena specific to these structures and critical for
capturing their failure mechanisms, such as the nonlinear shear behavior of joints comprising panel
zones in two orthogonal directions, buckling and fracture of braces, fracture of moment-connections
etc. It has been extensively validated against experimental data and has been used for analysis of many
tall steel buildings (Krishnan and Hall 2006a; Krishnan and Hall 2006b; Krishnan 2007; Krishnan and
Hall 2006b; Krishnan 2010).

3.1.5 Applying the PEER PBEE framework to estimate probability of exceedance
of FEMA356 performance limit states for target buildings

At this stage, ground motion histories at several target sites under several realizations of a suite of
earthquake scenarios, the structural response to these motions, and the probability of occurrence of
these scenarios are known. To compute performance limit states for the target buildings, it is neces-
sary to condense the continuous-time ground motion histories into discrete scalar or vector intensity
measures. Here, we choose to use the intensity measure of peak ground velocity (PGV) which has been

shown to be related to the input energy imparted to the structure by ground shaking (Uang and Bertero
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1988; Krishnan and Muto 2012; Krishnan and Muto 2013) and may best correlate with region wide
damage. Collating PGVs at all the target sites due to a scenario earthquake of a given magnitude and
location into suitable bins and fitting a log-normal distribution to the data, the conditional probabil-
ity density function of PGV, conditioned upon earthquake magnitude and location, p(PGV'|M,,, loc),
may be computed. Collating the peak IDR response of the target buildings under all earthquake sce-
narios into suitable bins, the cumulative probability of exceedance of a given performance limit state
conditioned upon PGV, P(IDR > Limit State| PGV'), i.e., the building fragility, may be determined
as well (by fitting a log-normal distribution to the data). If the conditional probability of occurrence
of a given magnitude scenario earthquake within a specified time horizon, conditioned on location,
P(M,|loc), is known, the probability of exceedance of a building performance limit state in that time

horizon, P(IDR > Limit State), may be written as:

P(IDR > Limit State) =) _ Z/ P(IDR > Limit State|PGV') p(PGV|M,, loc) dPGV P(M,,/loc)
M, loc PGV

(3.1)

3.2 Application to performance quantification of tall steel moment frame build-

ings in southern California under San Andreas earthquakes

In this section, we illustrate the workings of the methodology by applying it to a real-world older
existing structure in southern California and a hypothetical modern redesign of the same using a newer

building code.

3.2.1 Target buildings, target fault, and time horizon

The existing building is an 18-story office building, located within five miles of the epicenter of the
1994 Northridge earthquake. An isometric view of its FRAME3D model is shown in Figure 3.1(a). It
was designed according to the 1982 Uniform Building Code (UBC) and completed in 1986-87. The
height of the building above ground is 75.7 m (248’ 4”) with a typical story height of 3.96 m (13’ 0”)
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and taller first, seventeenth, and penthouse stories. The lateral force-resisting system consists of two-
bay welded steel moment-frames, two apiece in either principal direction of the structure as shown
in Figure 3.1(b). The location of the north frame one bay inside of the perimeter gives rise to some
torsional eccentricity. Many moment-frame beam-column connections in the building fractured during
the 1994 M,, 6.7 Northridge earthquake, and the building has been extensively investigated since
then by engineering research groups (Krishnan and Muto ; Chi et al. 1998; Carlson ). Fundamental
periods, computed assuming 100% dead load and 30% live load contribution to the mass, are 4.52s
(X-translation), 4.26s (Y-translation) and 2.69s (torsion). We model the connection susceptibility to

fracture probabilistically [modeling details can be found in Krishnan and Muto (2012)].

The redesigned building, a FRAME3D model of which is shown in Figure 3.1(c), is similar to
the existing building, but the lateral force-resisting system has been redesigned according to the 1997
UBC. It has been designed for larger earthquake forces and greater redundancy in the lateral force-
resisting system, with 8 bays of moment-frames in either direction [although lateral resistance will
likely be dominated by the three-bay moment frames shown in Figure 3.1(d) as opposed to the single-
bay moment frames]. The frame located in the interior of the existing building has been relocated to
the exterior, eliminating the torsional eccentricity. Fundamental periods, computed assuming 100%
dead load and 30% live load contribution to the mass, are 4.06s ([X+Y-] translation), 3.85s ([X+Y+]
translation) and 2.60s (torsion). The positive (+) directions of the X and Y axes are shown on the
plans (Figure 3.1). Note that the fundamental translational modes are oriented approximately along
the floor plate diagonals. This is because the L-shaped layout of the moment frames at opposite
corners of the building, the use of box columns at the corners along one diagonal and I-sections for
columns at the corners along the other diagonal, and the absence of X-direction beams in two bays
located at diagonally opposite corners create two axes of symmetry (one strong and one weak) that are
oriented roughly along the floor plate diagonals. Detailed floor plans, beam and column sizes, and the
gravity, wind and seismic loading criteria for the two buildings can be found in (Krishnan et al. 2005).
The redesigned building is modeled assuming perfect connections, i.e., connections not susceptible to

fracture.

The target fault is the southern section of the San Andreas fault that runs from Parkfield in central

California to Bombay Beach in southern California, distance of roughly 586 km. The time horizon of
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Figure 3.1: Structural models of the two 18-story steel moment frame buildings: (a) Isometric view of the
existing building (designed using the 1982 UBC). (b) Plan view of a typical floor of the existing
building showing the location of columns and moment-frame (MF) beams. (c) Isometric view of
the new building (redesigned using the 1997 UBC). (d) Plan view of a typical floor of the redesigned

Hp—aHp>———q [t

MF

®

MF

©

©

9.25 (m) 9.55(m)  9.55(m):  9.55(m)_ 9.25(m North

[l H H [F g

n

N

o

0 6] LS ULy = I Ty
£

f E
: M g
©

i I % I I3
£

w K >< @ ul =
= s 0
[s0]

i I O O3
E

n

N

o

®

TYPICAL PLAN - FLOORS 5 THROUGH 17

©)

@

©

(©

®

X
(MF denotes a moment-frame beam)
(b)
—— O & ® O 6 @
;‘:ﬁ 9.25(m)  955(m)  9.55(m)|  9.55(m)  9.25(m) North
WRAEE U =
T T U P P £
T | 1 ! w w S
LIl | LI | I = = @
T’ ] LT H H == I Tz
T I 1 1 Z
L 3]
L | T 1 = @ LEL £
T[T 1
T T T I I I
TT[TT1]! W X @ w §
SEEERE = = e
T L] 1 i T [} >—<MF O =3
1 1 £
| E
T U s s §
iy’ Y MF MF MF
I | | I | I 1 | | [1b 4HP——<Hp——4[1
| 1 20 X TYPICAL PLAN - FLOORS 5 THROUGH 17
0 o 10 20 80 (MF denotes a moment-frame beam)

(©)

building.

interest is the next 30 years.

54

(d)

®



3.2.2 Scenario earthquakes on the southern San Andreas fault

We are interested in the performance of the target buildings hypothetically located at 636 sites in south-
ern California. These sites, shown in Fig. 2.14, are located in three distinct basin structures marked by
ellipses, the centrally located Los Angeles basin, the Simi and the San Fernando valleys to the north-
west, and the San Gabriel valley to the east. Earthquakes on the San Andreas fault with magnitudes
below about 6 are not likely to produce ground motions strong enough to cause damage to the target
buildings hypothetically located at any of the 636 sites. Accordingly, a suite of sixty earthquakes with
six different magnitudes exceeding 6 (M, 6.05, 6.40, 6.80, 7.20, 7.60, 7.90), rupturing five locations
on the target fault, with rupture propagating unilaterally in one of two directions (north-to-south or
south-to-north), comprises the set of scenario earthquakes upon which building performance quantifi-
cation will be based. Figs. 2.12 and 2.13 shows four of the ten scenario earthquakes with magnitude

7.9.

3.2.3 30-year probability of occurrence of scenario earthquakes [contribution

by Ramses Mourhatch (Mourhatch 2015)]

WGCEP has divided the southern section of the San Andreas fault (from Parkfield to Bombay Beach)
into approximately 100 segments ranging in length from about 4.6 km to about 8.8 km. Of all the
plausible earthquakes on the San Andreas fault forecast in UCERF3, 118,000-140,000 forecast earth-
quakes (actual number depends upon the logic tree branch considered) rupture at least one of these
segments. Rupture probabilities assigned by WGCEP to these ruptures have to be (partially or wholly)
collectively redistributed to the 60 scenario earthquakes (6 magnitudes x 5 locations x 2 rupture direc-
tions) simulated in this study in order to fully account for the associated seismic risk. Half of these
probabilities are assigned to north-to-south propagating ruptures and half to south-to-north propagat-
ing ruptures. Accordingly, Mourhatch (2015) classifies the forecast earthquakes into six bins depend-
ing upon moment magnitude: [5.90 - 6.27], (6.27 - 6.66], (6.66 - 7.06], (7.06 - 7.46], (7.46 - 7.79],
(7.79 - 8.34]. Note that the seismic moments of the M, 6.05, 6.40, 6.80, 7.20, 7.60, 7.90 scenario
earthquakes correspond to the average of the seismic moments of the upper and lower magnitude lim-

its of these six bins, respectively. Each bin will thus be associated with five scenario earthquakes
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(corresponding to the five locations) of a given magnitude. The upper limit of the last bin is assumed
higher to include all forecast earthquakes with magnitude greater than 7.9. This, of course, implies
that the building performance limit state exceedance probabilities would be underestimated. Now, the
probabilities of all forecast earthquake in a given bin are to be distributed amongst the five scenario
earthquakes associated with that bin. For this, the earthquake occurrence rate (number of earthquakes
per year) of each forecast earthquake in that bin is multiplied by its seismic moment to arrive at a
seismic moment release rate. This rate is distributed to the fault segments participating in that forecast
earthquake in proportion to their areas. The contributions of seismic moment release rates of each fault
segment from all the forecast earthquakes in that magnitude bin are summed. This cumulative moment
release rate is assigned to the most closely located scenario earthquake out of the five scenario earth-
quakes corresponding to that bin. It is possible that the rupture extents of larger magnitude scenario
earthquakes may overlap such that two or more scenario earthquakes may extend over the same fault
segment(s). The moment release rates on such segments (lying within the scenario earthquake overlap)
are evenly distributed among the overlapping scenario earthquakes. Next, the contributions of moment
release rates to each of the five scenario earthquakes from all the fault segments are summed to arrive
at their seismic moment release rates. Dividing these rates by the corresponding seismic moments
of the scenario earthquakes gives the scenario earthquake rates (number of earthquakes per year), r.
The probability of occurrence of the scenario earthquake over a period of AT years is then given by

P(M,/loc) =1 — e"AT (assuming Poisson distribution).

Shown in Table. 3.1 are the 30-year occurrence probabilities of the 30 scenario earthquakes
determined using this approach. Half of these probabilities will be assigned to the north-to-south

propagating ruptures and the other half to the south-to-north propagating ruptures.

3.2.4 Simulated ground motions for the scenario earthquakes

For each scenario earthquake magnitude, five source realizations are generated using the Siriki et
al. (2014) stochastic source algorithm. We are interested in determining the probability of structural
performance limit states being exceeded under “median” ground motion, rather than “extreme” ground
motion. Accordingly, from the five source realizations, we identify the median source model (whose

ground motions will be used in structural performance quantification) as described in Section 2.2.
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Location 1 | Location 2 | Location 3 | Location 4 Location 5 Total Probability
M,, [Bin] (Parkfield) (Bombay Beach) || (All Locations)
6.05 [5.90 - 6.27] 0.5785 0.0009 0.0000 0.0428 0.0179 0.6041
6.40 (6.27 - 6.66] 0.0096 0.0202 0.1978 0.1965 0.0133 0.3828
6.80 (6.66 - 7.06] 0.0141 0.0257 0.0088 0.1106 0.0306 0.1792
7.20 (7.06 - 7.46] 0.0266 0.0255 0.0084 0.0292 0.0476 0.1302
7.60 (7.47 - 7.79] 0.0116 0.0144 0.0072 0.0096 0.0185 0.0598
7.90 (7.79 - 8.34] 0.0317 0.0273 0.0260 0.0212 0.0178 0.1180
Total Probability
M, [5.90 - 8.34] 0.6165 0.1089 0.2375 0.3562 0.1375 0.8553

Table 3.1: UCERF3 time-independent 30-year occurrence probabilities for each scenario earthquake. Half of
these probabilities are assigned to north-to-south propagating ruptures and the other half to south-to-
north propagating ruptures.
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Figure 3.2: Stochastic median slip (m) model with rupture time (s) contours for (a) M,,7.9 (b) M,,7.6 and (c)
M,,7.2 scenario earthquakes. The sources have constant peak slip-velocities of 4.14, 3.2, 2.59 m/s
respectively.

Shown in Fig. 3.2 are the “median” stochastic sources for the magnitude 7.9, 7.6, and 7.2 sce-

nario earthquakes. Additional stochastic source models and the associated ground motions are shown

in Appendix C. The kinematic source properties of the median models for scenario earthquakes of all

six magnitudes (7.9, 7.6, 7.2, 6.8, 6.4, and 6.0) are listed in Table. 3.2. The peak slips are close to those

observed from finite-source inversions of past earthquakes of similar magnitude. For example, peak
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slips in the stochastic median models of M,,7.9, M,,7.6 and M,7.2 scenario earthquakes are 13 m,
9 m and 4.5 m, respectively. In comparison, peak slips in the finite-source inversions of the M,,7.9
Denali earthquake of 2002, the M,,7.56 Izmit earthquake of 1999, and the M,,7.28 Landers earthquake
of 1992 are 12 m (kri ), 8 m (Delouis et al. 2002), amd 7 m (Wald and Heaton 1994), respectively.
The Siriki et al. (2014) algorithm forces the peak slips to occur in the top two-thirds of rupture depth
ensuring greatest seismic moment release there (consistent with Fialko et al. 2005) with slips gradually
tapering to zero at the seismogenic depth. Additionally, on the average, asperities, where the greatest
energy release occurs, constitute roughly a quarter of the fault rupture area (Tab. 3.2). Here, an asperity
is defined as two or more continuous subfaults with slip greater than or equal to 1.25 times the average
slip. Slip-to-rise-time ratio (slip velocity) is constant in the Siriki et al. (2014) stochastic models.
Thus, rise-time is forced to be proportional to slip. Slip velocities vary between 1.7 m/s - 4.14 m/s for
the scenario earthquakes. One point of comparison is the finite-source inversion model by kri () for
the M,, 7.9, 2002 Denali earthquake where the peak slip-velocity is 2.98 m/s. An interesting feature
of the stochastic models at the higher end of the magnitude spectrum of the scenario earthquakes is
that ruptures predominantly travel at super-shear speeds. It has been observed in simulations that rup-
tures propagating at super-shear speeds tend to produce weaker ground motions than those propagating
predominantly at sub-Rayleigh speeds (Aagaard and Heaton 2004; Siriki et al. 2014). On the other
hand,rupture speeds in the stochastic source models at the lower end of the magnitude spectrum of the

scenario earthquakes take values in the sub-Rayleigh as well as the super-shear regime.

The distribution of peak ground motion from the stochastic median model located at various
sections along the southern San Andreas fault is strongly influenced by the location of the rupture,
the location of slip asperities within the rupture, as well as rupture direction. For north-to-south prop-
agating ruptures, the location of intense ground motions moves gradually from Simi valley to San
Fernando valley, on to Los Angeles basin, and finally to San Gabriel valley as the rupture location is
changed from Parkfield (Location 1) towards Bombay Beach (Location 5). In general, these observa-
tions are reversed for south-to-north propagating ruptures, i.e., the location of intense ground motion
moves gradually from the San Gabriel valley to the LA basin, on to the San Fernando valley, and
finally to the Simi valley, as the rupture location is varied from Location 5 to Location 1. In the case
of the M,,7.9 earthquake starting midway along the southern San Andreas fault (i.e., rupture location

3) and propagating north-to-south [Figs. 3.3(b) & 3.5(b)], the peak motions produced by the stochas-
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M, rupture area (km?) meanslip % total asperity slip (m) 0.5%rise time (s) V, % in SR

(Length, Depth) (m) area (min, max) (min, max) (min, max)
7.90 4200 6.30 26.64 0.74, 11.87 0.18, 2.86 0.23, 51.67
(210, 20)
7.60 2500 3.75 24.98 0.50, 8.61 0.16, 2.69 0.40, 40.40
(125, 20)
7.20 1260 1.87 36.17 0.09, 4.47 0.03,1.72 0.79, 32.53
(63, 20)
6.80 640 0.92 32.89 0.04, 1.96 0.02, 0.84 1.56, 85.93
(32, 20)
6.40 280.5 0.53 27.54 0.13,0.82 0.07,0.48 2.94, 100.00
(17, 16.5)
6.05 121 0.36 25.61 0.08, 0.56 0.04, 0.28 4.54, 100.00
(11, 11)

Table 3.2: Properties of stochastic “median” kinematic source models for the scenario earthquakes.

“SR:subRayleigh

tic median model are far more intense in the Los Angeles (LA) basin than in the San Gabriel valley
which is located east of the LA basin. The reverse is true for the motions generated by the rupture
propagating south-to-north [Figs. 3.4(b) & 3.6(b)]. In the north-to-south rupture, the largest slip as-
perity in the stochastic median model occurs to the west of the mid-point of the source, whereas its
location moves to the east of the mid-point in the south-to-north rupture. Accordingly, ground mo-
tions in the north-to-south rupture [Figs. 3.4(b) & 3.6(b)] are stronger in the central portion of the LA
basin, whereas ground motions in the south-to-north rupture are stronger in the eastern section of the
LA basin. Similar observations can be made in the case of other magnitudes as well. For M, 7.60
and M,, 7.20 north-to-south propagating ruptures at location 3, ground motions are more intense in
the San Gabriel Valley than in the LA basin [Figs. 3.3(e), 3.3(h), 3.5(e), & 3.5(h)]. The largest slip
asperity in these cases lies east of the mid-point of the source [Figs. 3.2(b) & 3.2(c)]. The reverse holds
true [Figs. 3.4(e), 3.4(h), 3.6(e), & 3.6(h)] for the south-to-north propagating ruptures. The effect of
rupture directivity can be seen in the sharply contrasting peak ground motions from the north-to-south
and south-to-north propagating M,, 7.9 ruptures at Location 1 [compare Figs. 3.3(a) and 3.5(a) against
Figs. 3.4(a) and Fig. 3.6(a), respectively]. M,, 7.60 and smaller magnitude ruptures at locations 1 &

5 are too far away to cause significant shaking in the greater LA region. Peak ground displacement is
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Figure 3.3: Peak horizontal velocity (m/s) at 636 sites in southern California under north-to-south propagating
(a)-(c) M,7.9, (d)-(f) M,,7.6, and (g)-(i) M,,7.6 scenario earthquakes at locations 1, 3 & 5.

strongly correlated with the peak ground velocity in all cases.

The median value of the peak east-west and north-south ground velocity and displacement his-
tories at the 636 sites in southern California (shaded region represents +/- one standard deviation) for
each scenario earthquake magnitude are shown as a function of rupture location in Figs. 3.7 and 3.8,

respectively. The influence of directivity is strongest for the ground motions produced by ruptures at
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Figure 3.4: Peak horizontal velocity (m/s) at 636 sites in southern California under south-to-north propagating
(a)-(c) M,7.9, (d)-(f) M,,7.6, and (g)-(i) M,,7.6 scenario earthquakes at locations 1, 3 & 5.
locations 1 and 5 on the fault, followed by those at locations 2 and 4. The influence of proximity to the
dominant slip asperity and the seismic source more broadly is strongest for the ground motions pro-
duced by the ruptures at location 3, followed by those at locations 2 and 4. The sources at locations 2
and 4 have the most favorable combinations of source proximity and source-to-site rupture directivity

configuration for north-to-south and south-to-north propagation, respectively, and result in the highest
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Figure 3.5: Peak horizontal displacement (m) at 636 sites in southern California under north-to-south propa-
gating (a)-(c) M,,7.9, (d)-(f) M,,7.6, and (g)-(i) M,,7.6 scenario earthquakes at locations 1, 3 &
5.

median values of shaking intensities (PGV and PGD). Peak median and median plus one standard de-
viation values of PGV are about 1 m/s and 1.75 m/s, respectively. The corresponding values of PGD

are 1.25 m and 2 m, respectively.

Ground motion prediction equations (GMPEs) or attenuation relations are extensively used in
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Figure 3.6: Peak horizontal displacement (m/s) at 636 sites in southern California under south-to-north prop-
agating (a)-(c) M,,7.9, (d)-(f) M, 7.6, and (g)-(i) M,,7.6 scenario earthquakes at locations 1, 3 &
5.

the development of hazard maps for the design and evaluation of structures. Attenuation relationships

provide estimates of ground shaking intensity measures such as PGV as a function of distance for var-

ious magnitude earthquakes. Here, we compare the geometric mean horizontal velocity (GMHV) and

displacement (GMHD), defined as the geometric mean of the maximum of the two horizontal compo-
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Figure 3.7: Median peak east-weéehnd north-south ground velocity (m/s) @ a function of rupture location along
the southern San Andreas fault for various magnitudes: (a),(c) north-to-south and (b),(d) south-to-
north propagating rupture. Shaded region represents median PGV +/- one standard deviation.

nents (which may not occur at the same time), predicted by the Campbell-Bozorgnia (C-B, 2008) next
generation attenuation (NGA) relation against that from the scenario earthquake simulations. Two site
parameters for the Campbell-Bozorgnia NGA relation, the average shear-wave velocity of the top 30 m
soil layer (V*°) and the basin depth, are taken from from Wald and Allen (2007) and the SCEC CVM-
H (Plesch et al. 2011), respectively. Shallow VY values and deep basins generally lead to stronger

ground motion intensities. Rupture directivity is not accounted for in the C-B NGA relation.

Shown in Figs. 3.9(a) — 3.9(d) are the peak median geometric mean horizontal velocity and
displacement at 636 sites in southern California as a function of distance for earthquakes with six

different magnitudes (6.05, 6.40, 6.80, 7.20, 7.60, 7.90) simulated using the stochastic median model
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Figure 3.8: Median peak east-we§t)and north-south ground displacement(¢in) as a function of rupture location
along the southern San Andreas fault for various magnitudes: (a),(c) north-to-south and (b),(d)
south-to-north propagating rupture. Shaded region represents median PGD +/- one standard devia-
tion.

and predicted by the C-B NGA relation. Data from five rupture locations and two rupture propagation
directions are included. Source-to-site distance is taken to be the shortest distance from a site to the
surface projection of the rupture. Median values are computed by collating data in 2 km wide bins. It
may be noted that while the median GMHYV predicted by the M, 6.0, 6.4, and 6.8 earthquake simula-
tions lie close to that predicted by the attenuation relation, the same is not true for the M, 7.2, 7.6, and
7.9 earthquake simulations. The simulated median GMHYV values are significantly higher than that
predicted by the NGA relation. For the M, 7.90 earthquake, simulations produce GMHVs as high
as 1.5 m/s, whereas, the C-B NGA relation produces a fifth of that value. However, it is interesting

to note that median GMHD predicted by the C-B NGA relation is higher than that predicted by the
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Figure 3.9: Median geometric mean horizontal velocity (m/s) and displacement (m) simulated by (a, c) the
stochastic median model and predicted by (b, d) the Campbell-Bozorgnia NGA relation at 636 sites
in southern California as a function of source-to-site distance for various magnitude ruptures on
the southern San Andreas fault. Both north-to-south and south-to-north propagating ruptures are
included. Shaded region represents median value +/- one standard deviation.

stochastic median model, especially for source-to-site distances greater than 50 km.

The primary reason for the ground motion intensities in Fig. 3.9 not monotonically decreasing

with distance is the presence of four basins (Simi valley, San Fernando valley, Los Angeles basin, and
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Figure 3.11: Peak horizontal velocity (m/s) at 636 sites in southern California plotted as a function of basin
depth (km) and distance to rupture (km) due to north-to-south propagating earthquakes on the
southern San Andreas fault of varying magnitudes and rupture locations.

San Gabriel valley; see Fig. 3.10 for basin depths in southern California) at various distances from the

fault. The combined effect of basins and site-to-source distance on the peak horizontal velocity (PHV)

67



Horizontal Displacement: North-to-South Directivity

Rupture 1 Rupture 2 Rupture 3 Rupture 4 Rupture 5
S # ® B[RO A&
0 ML : z , b , . L M, 6.05
25 o SEY| oy % @. 2.50
0 -t s : ST : : i : : S M 6.40
= " 210 —
£ 5 e .ot . 1 . . . . . e . - [3
Zog| - AR I - L T | I RIS [ IRIT-— ERUNEIN | IR . S 170:
£ : I v LI LW M_6.80 g
a 0 w £
s 5 =5 Al — — N Ta— 130 g
_%2_5 ........ o .:‘:3. -_ ..... .h':....:....:. .._'_n....:....:. %
g 0 I ) X ' B ' N S M 7.20 090 @
0 g — - 2
%“ %* i ) ; ; ; ; ) ; 0.50
25| T R T
g E _'.- — : i M, 7.60 888
;é' ......... B B AR ..\%2 ......... )
25 & 21 3] 4
b . . . . M, 7.90

0 : : 4 :
0 100 200 300 0 100 200 300 O 100 200 300 0 100 200 300 O 100 200 300
Distance to rupture (km)

Figure 3.12: Peak horizontal displacement (m) at 636 sites in southern California plotted as a function of basin
depth (km) and distance to rupture (km) due to north-to-south propagating earthquakes on the
southern San Andreas fault of varying magnitudes and rupture locations.

and displacement (PHD) can be seen in Figs. 3.11 and 3.12, respectively. PHV and PHD are the peak
values of the amplitudes of the velocity and displacement vectors over time, respectively. Here, these
are plotted as a function of basin depth and site-to-source distance for the North-to-South ruptures of
all six magnitudes. In general, PHV and PHD values are higher for deep basin sites that are close to the
rupture. However, several anomalous cases can be found: e.g., a site situated at shallower basin depth
than another site that is located at the same distance from the source experiences stronger ground
motions; a site situated farther from the source than a site with the same basin depth experiences
stronger ground motion. These are artifacts of the manner in which source-to-site distance is defined.
While the closest distance from a site to the rupture may be short, the distance to the dominant slip
asperity may happen to be quite large and vice-versa. Such oddities may result in the discrepancies

observed in Figs. 3.11 and 3.12.

To try and isolate the effect of basin depth (from site-to-source distance and rupture propagation
direction), we combine the data from all scenario earthquake simulations of a given magnitude (ten
ruptures for each magnitude: five rupture locations and two rupture directions). This “stacking” should

have an averaging effect, eliminating to a large extent the anomalies associated with distance deter-
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Figure 3.13: Median peak geometric mean horizontal velocity (m/s) map for ten ruptures (five locations and
two rupture directions) of magnitudes M,, 7.9, 7.6, 7.2, and 6.8 using (a)-(d) simulations; and
(e)-(h) Campbell-Bozorgnia NGA relation.
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Figure 3.14: Median peak geometric mean horizontal displacement (m) map for ten ruptures (five locations and
two rupture directions) of magnitudes M, 7.9, 7.6, 7.2, and 6.8 using (a)-(d) simulations; and
(e)-(h) Campbell-Bozorgnia NGA relation.
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mination and the effect of rupture propagation direction. Illustrated in Figs. 3.13 and 3.14 are maps
of median peak geometric mean horizontal velocity (m/s) and displacement (m), respectively, of all
10 ruptures of a given magnitude from the simulations and from the Campbell-Bozorgnia attenuation
relations. The following observations may be readily made: (i) the ground motion maps from both
simulations and NGA relations correlate well with the basin depth map of Fig. 3.10; (ii) median peak
GMHVs from simulation are far greater than the predictions by the C-B NGA relation; (iii) median
peak GMHDs from simulation are somewhat lower than the predictions by the C-B NGA relation; The
comparison of peak GMHVs and GMHDs from the simulations against that predicted by the C-B NGA
relation is summarized in Fig. 3.15, where median values of the peak GMHV and GMHD from the
two methods are shown plotted as a function of magnitude without consideration to the source-to-site

distance.
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Figure 3.15: Median peak geometric mean horizontal (a) velocity (m/s) and (b) displacement (m) at 636 sites in
southern California from simulations compared against that predicted by the Campbell-Bozorgnia
NGA relation as a function of magnitude of earthquakes on the southern San Andreas fault. Two
rupture propagation directions (north-to-south and south-to-north and five rupture locations are
included.
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In addition to slip distribution, source/asperity proximity, rupture directivity, and the presence
of basins, other factors that have a strong influence on ground motions are the source parameters of
rupture speed and peak rise-time. The median horizontal PGV at all sites in the greater Los Angeles
area for north-to-south and south-to-north propagating M,, 7.20, M,, 7.60 and M,, 7.90 earthquakes as
a function of the percentage of the rupture propagating at the sub-Rayleigh speed of 0.87 V; are shown

in Figs. 3.16(a) - 3.16(c) and 3.17(a) - 3.17(c), respectively. The corresponding plots of median PGV as
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Figure 3.16: Median peak horizontal ground velocity (m/s) in southern California for north-to-south propagat-
ing M,, 7.90, M,, 7.60, and M,, 7.20 ruptures as a function of (a) - (c) the percentage of rupture
propagating at the sub-Rayleigh speed of 0.87V; and (d) - (f) maximum rise-time (s) in the source.

a function of the peak rise-time are shown in Figs. 3.16(d) - 3.16(f) and 3.17(d) - 3.17(f), respectively.
In the case of M,, 7.20 and M,, 7.60 earthquakes, significant correlation cannot be seen between the
ground motion intensities and rupture speed or peak rise-time. However, for the M, 7.90 ruptures, it
is observed that the greater the percentage of rupture propagating at the sub-Rayleigh speed of 0.87 V,
the stronger are the ground motions. Exceptions to this finding are the N-to-S and S-to-N ruptures
at location 3 where this effect is possibly overridden by the stronger influence of the distribution of
slip (location and intensity of the main slip asperity, in particular). Median PGV also drops with
increasing peak rise-time. No clear difference could be found between the median PGVs generated by
the stochastic source models which assume constant slip velocity (or rise-times being proportional to
slip) and finite-source inversion models with similar peak rise-times but not proportional to slip (Siriki

et al. 2014). We should note that the sources used here may or may not capture the full range of
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Figure 3.17: Median peak horizontal ground velocity (m/s) in southern California for south-to-north propagat-
ing M,, 7.90, M,, 7.60, and M,, 7.20 ruptures as a function of (a) - (c) the percentage of rupture
propagating at the sub-Rayleigh speed of 0.87V; and (d) - (f) maximum rise-time (s) in the source.

plausible sources on faults such as the San Andreas and/or the ground motions produced by them. A
statistical study may be necessary to quantify the number of stochastic models needed to capture this

variability with the desired statistical significance.

3.2.5 Structural response under the scenario earthquakes

The target buildings shown in Fig. 3.1 are analyzed under the 3-component ground motion histories
simulated at the 636 sites in southern California for the 60 scenario earthquakes (6 magnitudes x
5 rupture locations x 2 rupture propagation directions). As described previously, the 3-D nonlinear

dynamic analysis program FRAME3D is used for this purpose. Structural performance is quantified

72



in terms of the peak inter-story drift ratio (IDR).
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Figure 3.18: Peak inter-story drift ratio (IDR) maps for the existing building with brittle connections under
ground motion from north-to-south propagating (a) - (¢) M,, 7.9, (d) - (f) M,, 7.6, and (g) - (1)
M,, 7.2 earthquakes on the southern San Andreas fault at rupture locations 1, 3, & 5.

The peak IDR in the existing and redesigned building models for the median north-to-south
propagating M, 7.9, 7.6, and 7.2 scenario earthquake ruptures at locations 1, 3, and 5 are illustrated in

Figs. 3.18 and 3.19, respectively. The corresponding maps for south-to-north propagating ruptures are
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Figure 3.19: Peak inter-story drift ratio (IDR) maps for the redesigned building with perfect connections under
ground motion from north-to-south propagating (a) - (¢c) M,, 7.9, (d) - (f) M,, 7.6, and (g) - (i)
M,, 7.2 earthquakes on the southern San Andreas fault at rupture locations 1, 3, & 5.

given in Figs. 3.20 and 3.21, respectively. For the existing building, peak IDR values beyond 0.05 are

indicative of severe damage, whereas values below 0.01 are indicative of minimal damage not requiring

any significant repair. For the redesigned building, peak IDRs beyond 0.06 are indicative of severe

damage. As observed for ground motions, the performance of both existing and redesigned moment
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Figure 3.20: Peak inter-story drift ratio (IDR) maps for the existing building with brittle connections under
ground motion from south-to-north propagating (a) - (¢c) M,, 7.9, (d) - (f) My, 7.6, and (g) - (i)
M,, 7.2 earthquakes on the southern San Andreas fault at rupture locations 1, 3, & 5.

frame buildings depend upon the direction of propagation and location of the rupture. For instance,

amongst earthquakes rupturing location 1, the north-to-south propagating ruptures cause far greater

damage than the south-to-north propagating ruptures. The opposite holds true for ruptures occurring

at location 5. For north-to-south propagating ruptures, the hot-spots (regions of high peak IDR) tend

75



34°

Redesigned Building
(Perfect Connections
Peak IDR

M,, 7.90 S-to-N
Rupture Location 1

-118°

-119° -118.5°
0.007 0.025 0.050 0.075 0.100
(a)

34

Redesigned Building
(Perfect Connections
Peak IDR

M,, 7.60 S-to-N
Rupture Location 1

-119° -118.5° -118°

0.007 0.025 0.050

(d)

0.075 0.100

34°

Redesigned Building
(Perfect Connections)
Peak IDR

M,, 7.20 S-to-N
Rupture Location 1

-118°

-119° -118.5°
0.007 0.025 0.050 0.075 0.100
€9)

Redesigned Buildingy
(Perfect Connectio
Peak IDR

M,, 7.90 S-to-N
Rupture Location 3

-118°

119’ -118.5°
0.007 0.025 0050 0.075  0.100
(b)

Redesigned Building
(Perfect Connections
Peak IDR

M,, 7.60 S-to-N
Rupture Location 3

-118.5° -118°

0.007 0.025 0.050

(e)

0.075 0.100

Redesigned Building
(Perfect Connections
Peak IDR

M,, 7.20 S-to-N
Rupture Location 3

-118°

-119° -118.5°
0.007 0.025 0.050 0.075 0.100
(h)

Peak IDR
M,, 7.90 S-to-N
Rupture Location 5

-118°

-119° -118.5°
0.007 0.025 0.050 0.075 0.100
(©)

Redesigned Building
(Perfect Connections
Peak IDR

M,, 7.60 S-to-N
Rupture Location 5

-119° -118.5°

0.007 0.025 0.050

®

0.075 0.100

Redesigned Building
(Perfect Connections
Peak IDR

M,, 7.20 S-to-N
Rupture Location 5

-118°

-119° -118.5°
0.007 0.025 0.050 0.075 0.100
®

Figure 3.21: Peak inter-story drift ratio (IDR) maps for the redesigned building with perfect connections under
ground motion from south-to-north propagating (a) - (¢c) M,, 7.9, (d) - (f) My, 7.6, and (g) - (i)
M,, 7.2 earthquakes on the southern San Andreas fault at rupture locations 1, 3, & 5.

to migrate east-southeast as rupture is shifted from location 1 to location 5. The opposite is true for

south-to-north propagating ruptures, with the hot-spots migrating west-northwest as rupture is shifted

from location 5 to location 1. Across all magnitudes, no hotspots occur in the greater Los Angeles

region for for location 1 ruptures propagating towards Parkfield and location 5 ruptures propagating
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towards Bombay Beach. The performance of the redesigned building is generally better than that of

the existing building. Nevertheless, certain ruptures do place significant demands on it at several sites.
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Figure 3.22: Median peak interstory drift ratio in the (a) - (b) existing and (c) - (d) redesigned buildings as
a function of rupture location for north-to-south and south-to-north propagating scenario earth-

quakes of various magnitudes on the southern San Andreas fault. Shaded region represents median
+/- one standard deviation

Fig. 3.22 shows the median peak IDR (shaded region represents median +/- one standard devi-
ation) in the existing and redesigned buildings for all scenario earthquakes as a function of rupture
location. Responses under north-to-south and south-to-north ruptures are shown separately. Irrespec-
tive of location and propagation direction, M,, 6.0 — 6.8 ruptures do not impose significant drift
demands on either building. Median response for both buildings falls below the peak IDR limit for
the IO performance level. Median response under M,, 7.2 ruptures suggests building closure for re-

pairs may be necessary, but life-safety may not be compromised in either building. Magnitudes 7.6
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and 7.9 lead to a significant increase in the demands on both structures, with median IDRs exceeding
CP performance levels in both buildings. In fact, the existing building model collapses in quite a few
instances. Shown in Fig. 3.23 is the median value of the peak IDR for the existing and redesigned
buildings as a function of scenario earthquake magnitude. In a significant number of cases, collapse is
initiated in our models once peak IDR reaches 0.10. However, our models do not include local flange
buckling in beams or columns. Local buckling of column flanges will likely hasten collapse initiation.
In a study on seismic performance evaluation of 20-story steel moment frame buildings with brittle
connections, Lee and Foutch (2002) found a median drift capacity of 0.07 for pre-Northridge steel
moment frame buildings. Here, the median peak IDR in the existing building model under a M,, 7.90
earthquake is 0.055 (greater than the collapse prevention performance limit state), suggesting a state
of imminent collapse, perhaps necessitating red tagging. A median peak IDR value of 0.025 for the
redesigned building points to the significant improvements that have been made in seismic codes after
the Northridge earthquake. Of course, our redesigned building model assumes that the connections

behave in a ductile manner. Whether this will hold true remains to be seen.
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Figure 3.23: Median peak IDR in the existing and redesigned buildings plotted as a function of San Andreas
fault scenario earthquake magnitude. The bars correspond to median +/- one standard deviation.

The median acceleration spectra of the EW and NS components of the simulated long period
(> 2 s) ground motion histories from M,, 7.2, M,, 7.6, and M,, 7.6 scenario earthquakes (data from
both propagation directions included) are shown in Fig. 3.24. The shaded region represents the median

+/- one standard deviation. The data have been combined into three bins with median source-to-site

78



distances of 25 km, 65 km, and 105 km. The UBC97 design spectrum corresponding to soil type Sg
and Fault Type A at a distance of 5 km is also shown for comparison. From the figure, it is clear that
code-prescribed hazard fully accounts for the ground shaking intensities from M, 7.20 earthquakes.
However, median spectral accelerations in basin sites (at an average distance of 65 km) from M, 7.9
earthquakes and median + one standard deviation spectral accelerations from M, 7.6 earthquakes
exceed the UBC97 spectral accelerations, on the average, by a factor of 2 in the long period regime (>
2 s). In determining the median acceleration spectrum for a given source-to-site distance, the scenario

earthquake data are collated into 6 km bins.
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Figure 3.24: Median pseudo-acceleration (g) spectra of (a) - (¢) East-West and (d) - (f) North-South components
of simulated ground motion histories from M,, 7.90,7.60, and 7.20 scenario earthquakes (data
from north-to-south and south-to-north ruptures are combined) for various source-to-site distances.
Also shown in black for comparison is the UBC97 MCE spectrum (soil classification S, fault type
A at 5 km distance).

In their study using idealized sawtooth-like ground motion waveforms, Krishnan and Muto
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Figure 3.25: X (EW) and Y (NS) peak interstory drift ratios in (a)-(b) the existing, and (c)-(d) the redesigned
buildings as a function of predominant time-period (s) of EW and NS components of ground ve-
locity histories and the corresponding PGV (m/s) from all 60 scenario earthquakes on the southern
San Andreas fault (6 magnitudes, 5 rupture locations, 2 rupture directions). Peak IDR of 0.007,
0.025, and 0.05 correspond to the FEMA356 limits for 10, LS, and CP performance levels.

(2013) pointed out that the response of the existing and redesigned buildings are sensitive to peak
ground velocity, waveform period, and number of cycles. Shown in Fig. 3.25 are the peak IDR re-
sponse of the two structures under all sixty scenario earthquakes on the southern San Andreas fault as
a function of the predominant ground motion period (s) and PGV (m/s). Predominant ground motion
period is taken to be the period at which the pseudo-acceleration spectrum peaks. The following ob-
servations can be made: (1) Peak IDRs largely remain below the IO performance limit when the PGV

is below 0.2 m/s or so, indicating little or no disruption to building function. (ii) The existing building
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is under a significant risk for collapse (PIDR > 0.075) under ground motions with PGV greater than
about 0.6 m/s. (iii) The redesigned building is more robust and is at significant risk of collapse only
under ground motions with PGV greater than about 0.9 m/s. This shows that the performance of the
stiffer and stronger redesigned building with perfect connections is far better than that of the torsionally
eccentric, softer and weaker existing building with brittle connections. (iv) Both buildings are more
susceptible to long period ground motion, particularly ground motion with dominant period greater
than about the fundamental period of the building (consistent with Uang and Bertero 1988; Krishnan
and Muto 2012). But the existing building is susceptible to a broader range of ground motions (pre-
dominant period in the [2 s, 7 s] range) than the redesigned building (predominant period in the [3 s,
6 s] range). (v) Relatively fewer cases exist where the peak IDR falls between the Life-Safety (LS) and
Collapse Prevention (CP) limits in the existing building when compared to the redesigned building.
This is the effect of the lack of redundancy in the existing building (two 2-bay frames in either direc-
tion). A little damage takes the building disproportionately closer to collapse. It should be pointed out
that duration of ground motion has not been considered in making these observations. Also, it is pos-
sible that a time-history may have have two well-separated peaks in its pseudo-acceleration spectrum.

The period associated with only one peak is accounted for in the foregoing analysis.

In addition to studying the building response as a function of ground motion predominant period
and PGV, it may also be useful to map the peak IDR response of the buildings on to the PGV-PGD
plane (Fig. 3.26). This approach has been taken by Olsen et al. (2014) in identifying the ground
motions that collapse 20-story steel moment frame buildings or render them irreparable. The ground
motion histories from the scenario earthquakes have PGV and PGD that do not cover the entire PGV-
PGD plane. Large PGVs result in large PGDs as well, so no cases exist where the PGV is high, but the
PGD is low. On this plane, the collapse regime takes a distinct “V”” shape similar to Olsen et al. (2014)
and Krishnan and Muto (2013). It may be concluded from this figure that PGV-PGD combinations of
at least 0.4 m/s-0.3 m and 0.8 m/s-0.8 m, approximately, may be necessary to collapse the existing and

redesigned buildings, respectively.

The vast amounts of synthetic data generated for the response of the two buildings under a vast
suite of synthetic ground motion records may be used for the development of fragility curves [proba-

bility of the peak IDR exceeding, say, the FEMA356 limits for the performance levels of immediate
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Figure 3.26: X (EW) and Y (NS) peak interstory drift ratios in (a)-(b) the existing and (c)-(d) the redesigned
buildings as a function of PGD (m) and PGV (m/s) of EW and NS components ground motion
histories from all 60 scenario earthquakes on the southern San Andreas fault (6 magnitudes, 5
rupture locations, 2 rupture directions). Peak IDR of 0.007, 0.025, and 0.05 correspond to the
FEMAZ356 limits for 10, LS, and CP performance levels.

occupancy (I10), life-safety (LS), and collapse prevention (CP)] as a function of ground motion inten-
sities such as PGV and S, at the two horizontal building translational fundamental periods. Fig. 3.27
shows fragility curves in the X and Y directions for the two buildings for exceedance of the FEMA356
performance levels of 10, LS, and CP, as well as two empirical performance levels, red-tagged (RT,
peak IDR > 0.075) and model collapse (CO, peak IDR > 0.10), proposed by Krishnan and Muto
(Muto and Krishnan 2011), as a function of PGV. The improved performance of the redesigned build-
ing is apparent. Model collapse probability for the redesigned building in the X (EW) direction is
lower by factors of 1.75, 1.25, and 1.11 for PGVs of 1.0 m/s, 1.5 m/s, and 2.0 m/s, respectively. The
corresponding factors in the Y (NS) direction are 4.33, 1.51, and 1.13 for PGVs of 1.0 m/s, 1.5 m/s,

and 2.0 m/s, respectively. The redesigned building appears to perform better than a chevron-braced
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Figure 3.27: Fragility curves of the probability of the peak IDR for (a) the existing and (b) the redesigned build-
ing in the X (solid)- and Y (dashed)- directions exceeding FEMA limits for immediate occupancy
(I0), life-safety (LS), and collapse prevention (CP) performance levels as a function of PGV in
the corresponding direction. Two additional fragilities corresponding to peak IDR levels of 0.075
(red-tagged, RT) and 0.10 (model collapse, CO), are also shown.

retrofit solution for the existing building Bjornsson and Krishnan (2012) where a 13% reduction in
exceedance probability of the CP limit state was achieved at a PGV of 1 m/s. Reductions of 20%
and 40% along EW and NS directions, respectively, are seen in the corresponding probability for the
redesigned building. The fragility curves for the two buildings as a function of S, at the two horizontal

translational fundamental periods is shown in Fig. 3.28.

The PGV and S, (at the two horizontal translational fundamental periods) thresholds for the 2%,
5%, 10%, and 50% exceedance probabilities of the limits for various performance levels for the two
buildings are summarized in Tabs. 3.3 and 3.4. There is a 10% probability of collapse that earthquake
records with a PGV of 0.71 m/s in the EW direction or a PGV of 0.59 m/s in the NS direction would
collapse the existing building model. Similarly, there is a 10% probability of collapse that earthquake
records with a PGV of 0.85 m/s in the EW direction or a PGV of 0.94 m/s in the NS direction would
collapse the redesigned building model. Likewise, there is a 10% probability of collapse with a .S,
of 0.22 g in the X (EW) direction or a S, of 0.19 g in the Y (NS) direction for the existing building
model. For the redesigned building model, there is a 10% probability of collapse with a S, of 0.33 g in
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Figure 3.28: Fragility curves of the probability of the peak IDR for (a) the existing and (b) the redesigned
building exceeding FEMA limits for immediate occupancy (I10), life-safety (LS), and collapse
prevention (CP) performance levels as a function of SA (g) at fundamental period. Two additional
fragilities corresponding to peak IDR levels of 0.075 (red-tagged, RT) and 0.10 (model collapse,
CO), are also shown.

the X+Y- direction or a S, of 0.31 g in the X+Y+ direction . The intent of building codes is to limit the
probability of collapse to under 10%. It may thus be inferred that these are the intensities of ground

motion that the two buildings have effectively been designed for.

3.2.6 30-year exceedance probabilities of structural performance limit states

The final step in the risk quantification of the two buildings using rupture-to-rafters simulations of
scenario earthquakes is to compute the 30-year exceedance probabilities of the structural performance
limit states using Eq. 3.1. Shown in Tab. 3.5 are the conditional probabilities of exceedance given an
earthquake of magnitude 7.9 or 7.6 or 7.2 or 6.8 or 6.4 or 6.0, without consideration to the probability
of occurrence of such an earthquake (i.e., without the P(M,,/loc) term and the summation over M,
in Eq. 3.1). The probability of collapse of the existing model given a magnitude 7.9 earthquake on the
southern San Andreas fault is as high as 39% whereas that of the redesigned building is less so, but

still serious at 25%.
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Building  Exceedance Probability PGV (m/s) Threshold - EW (NS) components
10 LS CP RT CO

Existing 2% 0.07 (0.06) 0.24 (0.21) 0.41(0.33) 0.49(0.40) 0.53(0.43)

Existing 5% 0.09 (0.10) 0.30(0.26) 0.48 (0.40) 0.58(0.48) 0.62(0.51)

Existing 10% 0.12(0.12) 0.36(0.31) 0.56(0.46) 0.66(0.55) 0.71(0.59)

Existing 50% 0.38 (0.34) 0.73(0.62) 0.97 (0.81) 1.10(0.92) 1.15(0.97)
Redesigned 2% 0.08 (0.08) 0.32(0.32) 0.54(0.56) 0.64(0.70) 0.64 (0.74)
Redesigned 5% 0.12 (0.12) 0.40(0.38) 0.63(0.65) 0.74(0.79) 0.75 (0.84)
Redesigned 10% 0.16 (0.16) 0.47 (0.46) 0.73(0.75) 0.84(0.89) 0.85(0.94)
Redesigned 50% 0.45(0.41) 0.89(0.83) 1.20(1.18) 1.35(1.35) 1.38(1.42)

Table 3.3: PGV thresholds for the exceedance of 10, LS, CP, RT, & CO performance levels in the existing and

the redesigned building models with probabilities of 2%, 5%, 10%, and 50%.

Building  Exceedance Probability S, [g] (at the two horizontal fundamental translational periods)
Threshold
10 LS CP RT CcO

Existing 2% 0.02 (0.02) 0.08 (0.08) 0.12(0.11) 0.14(0.13) 0.15(0.13)

Existing 5% 0.03 (0.03) 0.10(0.09) 0.15(0.13) 0.18(0.15) 0.18 (0.16)

Existing 10% 0.04 (0.04) 0.12(0.11) 0.18 (0.16) 0.21(0.18) 0.22(0.19)

Existing 50% 0.13(0.12) 0.28 (0.24) 0.37 (0.30) 0.42(0.35) 0.44 (0.36)
Redesigned 2% 0.02 (0.02) 0.12(0.11) 0.21(0.18) 0.23(0.21) 0.24 (0.22)
Redesigned 5% 0.03 (0.03) 0.15(0.14) 0.25(0.22) 0.28 (0.25) 0.28 (0.26)
Redesigned 10% 0.05(0.04) 0.19(0.17) 0.29(0.25) 0.32(0.29) 0.33(0.31)
Redesigned 50% 0.18 (0.16) 0.38 (0.33) 0.52(0.44) 0.57(0.49) 0.58 (0.51)

Table 3.4: S, (at the two horizontal fundamental translational periods) thresholds for the exceedance of 10,
LS, CP, RT, & CO performance levels in the existing [along X (Y)] and the redesigned [along X+Y-
(X+Y+)] building models with probabilities of 2%, 5%, 10%, and 50%.

The overall probabilities of the existing and redesigned buildings exceeding any of the FEMA356
limit states (10, LS, CP) due to southern San Andreas fault earthquakes in the magnitude range of
M,, 6.0 — 8.0 over the next three decades (with due consideration to their probabilities of occurrence)
based on the scenario simulations are listed in Tab. 3.6. The probability that the existing building

model will exceed the CP performance limit state from earthquakes on the southern San Andreas fault
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M, 10 LS Cp

79 75.05(54.81) 52.33(35.01) 38.84(25.29)
7.6 49.75(48.33) 30.12(26.58) 21.12(17.22)
7.2 31.94(25.59) 15.23(10.71)  9.13(5.87)
6.8 19.35(13.32) 5.74(2.89) 2.38 (0.91)
6.4 498 (3.82) -(-) -(-)

6.0 1.36 (0.52) -(-) -(-)

Table 3.5: Exceedance probability (%) of 10, LS, and CP performance levels in existing (redesigned) building
model(s) conditioned on earthquake magnitude.

over the next 30 years is 7.59%. The corresponding probability for the redesigned building model is
5.23%. This appears quite high, when compared against the building code intent of limiting proba-
bility of collapse in code-designed structures to 2% in 50 years (or 10% in an MCE event with return
period 2475 years). This is a direct outcome of the disagreement in ground motion prediction be-
tween the simulations and the NGA relations that are used in the development of seismic hazard maps.
Furthermore, the probabilities of earthquake occurrence used in this study are time-independent. If
time-dependent probabilities are used, these building performance limit state exceedance probabilities
would likely be significantly higher. This is because earthquake recurrence periods for large earth-
quakes on the southern San Andreas fault is on the order of 150-300 years and more than 150 years

have already passed since the last big earthquake, the 1857 M, 7.9 Fort Tejon earthquake.

M, 10 LS CP
82UBCMF 2440 11.44 7.59
97 UBCMF 19.25 840 5.23

Table 3.6: 30-year exceedance probability (%) of FEMA356 limits for 10, LS, and CP performance levels of
existing and redesigned buildings in the greater Los Angeles region due to southern San Andreas
fault earthquakes in the magnitude range of M, 6.0 — 8.0 based on scenario simulations

The characteristics of ground motions from several earthquakes between M,,6.0 — 7.9 occur-
ring on southern San Andreas Fault and their impact on the seismic performance of two 18-story
moment frame buildings through rupture-to-rafters simulations have been discussed in this chapter.

Nonetheless, it is important to understand the overall nature of these ground motions in context of
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national/regional seismic hazard maps that are used extensively in the design of new buildings. The
following chapter addresses this issue by identifying the conditional and marginal probability distribu-
tions of PGV and PGD through a prototype study using Bayesian model class identification for peak
ground motions due to large southern San Andreas fault earthquakes considering PGV and PGD at

sites within moderate distances of 55-75km from source.
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Chapter 4

Characterizing Long-Period Ground Motions Using Bayesian Model Class
Selection.

National (or regional) seismic hazard maps, determined from probabilistic seismic hazard analysis,
quantify the expected intensity of shaking in a region(s) over the course of one or more desired time
interval(s). Building codes use these maps to define the lateral force levels for the design of new
structures and the retrofit of existing structures. In the past, the maps depicted the shaking intensity
measure of peak ground acceleration (PGA). In recent times, they have switched to depicting short
period (0.2 s) and long period (1.0 s) spectral accelerations as these values may be directly used to
fully define the code design response spectrum. Two hazard levels are typically of interest to the
engineering community, the shaking intensity with a 10% probability of being exceeded in 50 years
and the shaking intensity with a 2% probability of being exceeded in 50 years. These two levels of
shaking define the Design Basis Earthquake (DBE, an earthquake with a recurrence interval of 475
years) and the Maximum Considered Earthquake (MCE, an earthquake with a recurrence interval of
2475 years) spectra. Typically, the codes’ design intent is to avoid loss of life under the DBE and
collapse under the MCE.

It is obvious that the vulnerability (or safety) of the building stock hinges quite critically on
the veracity of the hazard maps. Ground motion intensities in the maps are determined using ground
motion prediction equations or attenuation relations (e.g., Campbell and Bozorgnia 2008), with un-
certainty typically being characterized using lognormal distributions. Yamada et al. (2009) argue that
while this may be a reasonable assumption for the intensities associated with short periods such as
peak ground acceleration and the spectral acceleration at 0.2 s, it is not so for long-period ground

motion markers such as peak ground displacement (PGD). It has been known for sometime that PGA
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tends to saturate for magnitudes greater than about 6 (Rogers and Perkins 1996; Somerville 2003).
Using data collected in the near-source region (< 10 £m) from past earthquakes and a 1906 San Fran-
cisco earthquake simulation, Yamada et al. (2009) show that peak ground displacements, on the other
hand, do not saturate. In fact, they show that log(PGD) increases linearly with magnitude in the near-
source region, a trend that was previously observed by Wells and Coppersmith (1994) and Campbell
and Bozorgnia (2008). They then pose the question, “what are the largest expected PGA and PGD at
a site within 10 km of a fault capable of producing at least a magnitude 6 earthquake?”’. Combining
the conditional distributions of PGA and PGD given magnitude, which they say are reasonably well-
characterized by lognormal distributions, they determine the unconditional distributions of PGA and
PGD. They find that for ground motions recorded within 10 km of a fault producing an earthquake
with magnitude greater than 6.0, the inferred distribution of PGA is lognormal, whereas the inferred
distribution of PGD is approximately uniform within a certain displacement band with unknown points

of truncation.

Here, we examine the same question for stations in the Los Angeles and surrounding basins
at distances of 60 km-70 km from the southern San Andreas fault, i.e., “what are the expected peak
ground motion intensities in the Los Angeles (LA) basin from earthquakes on the southern San An-
dreas fault with magnitudes in the 6.0-8.0 range?”. Specifically, we aim to (i) determine the condi-
tional probability distributions given magnitude for PGD and PGV in the LA and adjacent basins from
M,, 6.0 — 8.0 earthquakes on the southern San Andreas fault and (ii) determine the corresponding
unconditional probability distributions (not conditioned on magnitude). We have simulated ground
motions from 300 scenario earthquakes [six magnitudes, M,, 6.05,6.40,6.80,7.20,7.60, and 7.90;
five stochastic source realization for each magnitude; five rupture locations; and two unilateral rupture
directions] for a broader study on the characterization of risk to tall buildings in the Los Angeles re-
gion from southern San Andreas fault earthquakes. Here, we use the synthetic data from earthquakes
rupturing location 3 alone (i.e., 60 earthquakes), computed for LA basin stations that are within 55-
75 km from the source. Location 3 is due north of the LA basin (Fig. 4.1). Of the 636 analysis sites
where ground motions are computed, the number of sites in the Los Angeles region that are within
55-75 km of this particular rupture location for all six scenario earthquake magnitudes is similar (243
for M,, 6.05, 248 for M, 6.40, 246 for M, 6.80, 246 for M, 7.20, 249 for M, 7.60, and 252 for

M,, 7.90). Limiting our study to ground motions from location 3 ruptures ensures that there is no bias
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introduced in the probability distributions due to sample size variations.

34.25°

-119° -118.75° -118.5° -118.25° -118° -117.75°

Figure 4.1: The geographical distribution of the 636 southern California sites (shown as triangles) where sce-
nario earthquake ground motions are computed. The spacing between the sites is 3.5 km approxi-
mately. The inset shows the southern San Andreas fault rupture extent of a M,, 7.9 earthquake at
Location 3.

4.1 Ground Motion Simulation

For each of the six scenario earthquake magnitudes, five stochastic kinematic source models are gener-
ated using the algorithm by Siriki et al. (2014). A detailed description of the ground motion simulation
is given in Section 2.2. We limit ourselves to long-period ground motion alone in this study and the
long-period ground motion markers of the horizontal PGD and PGV as quantified by the vector am-
plitude. The vector amplitude is defined as the maximum of the square root of the sum of squares
of the two horizontal orthogonal components of velocity and displacement time histories. Shown in
Fig. 4.2 are the histograms of PGV and PGD for the six different magnitude scenario earthquakes
(three shown in each subfigure for clarity), with the PGV/PGD being plotted on a log scale. The scat-
ter in PGV and PGD as a function of magnitude, with a line connecting the median values, is shown in
Fig. 4.3. The following observations can be made: (1) The median value of log(PGD) grows linearly
with magnitude, with a higher gradient than the near-source (< 10 £m) ground motion records studied

by Yamada et al. (2009). The slope for log(PGD) as a function of magnitude for the medium-distance
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basin stations here is 0.98 whereas Yamada et al. (2009) give a slope of 0.60 for the near-source mo-
tions (from earthquakes up to magnitude 7.6 and one record from a magnitude 7.8 earthquake) and a
range of 0.5-0.75 in the near-source region based on theoretical arguments. The corresponding value
for log(PGV) here is 0.89 [Yamada et al. (2009) do not include results for PGV]. (i1) The variance
of both log(PGD) and log(PGV) remains more or less the same for all magnitudes, an observation
also made for [log(PGD) of] near-source motions by Yamada et al. (2009). (iii) It is conceivable that
each of the individual histograms in Fig. 4.2 may be reasonably well characterized by a Gaussian (nor-
mal) distribution, which would mean that PGD and PGV may be log-normally distributed individually
for each magnitude earthquake. We test this hypothesis using Bayesian model selection in the next

section.

4.2 Bayesian Model Selection

Bayesian model selection uses Bayes theorem to answer the question, “Given a set of measurements
of a phenomenon or system and some prior knowledge of it (expressed in the form of a probabil-
ity distribution) which model (or model class) out of a set of proposed probability models (or model
classes) is the most plausible?” [e.g., Beck and Yuen (2004)]. Our objectives here are two-fold: (i)
to determine the posterior probability distribution function (PDF) for the ground motion intensities
of peak ground velocity (PGV) and peak ground displacement (PGD) at basin sites conditional on
earthquake magnitude; (ii) to determine the unconditional posterior marginal PDFs for PGV and PGD
at basin sites (not conditioned on magnitude). The data consists of observed values of the ground
motion intensities I =< Iy, 5, ..., Iy > of PGV and PGD at distances in the 55-75 km range from
the M, 6.05,6.40,6.80,7.20, 7.60, and 7.90 scenario earthquakes at location 3 of the southern San
Andreas fault. For problem (i) (the conditional distributions for PGV and PGD given magnitude), N
is the product of the number sites (243 for M,, 6.05, 248 for M, 6.40, 246 for M, 6.80, 246 for
M, 7.20, 249 for M, 7.60, and 252 for M, 7.90), the number of stochastic source models for each
magnitude (5 in our case), and the number of rupture directions (2 in our case). For problem (ii)
(the unconditional distributions of PGV and PGD), NV is the sum of the data points for all magnitudes
(7420). For problem (i) we examine five candidate model classes Q =< @1, Qs, ..., Q)5 > chosen

on the basis of the shapes of the individual histograms corresponding to each magnitude in Fig. 4.2:
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Figure 4.2: Horizontal (a), (b) peak ground velocity (m/s) and (c), (d) peak ground displacement (m) histograms
for M,, 7.9,7.6,7.2,6.8,6.4, and 6.05 scenario earthquakes rupturing location 3 of southern San
Andreas fault. Synthetic data from all sites within a source-to-site distance of 55 km-75 km in the
Los Angeles and adjacent basins are included. The PGV and PGD data are collated into 1.25 m/s

and 1.25 m bins, respectively.

lognormal, gamma, exponential, levy and rayleigh distributions. For problem (ii) we examine two
candidate model classes Q =< ()1, Q)2 >, chosen on the basis of the combined histograms of PGV
and PGD using data from scenario earthquakes of all magnitudes (Fig. 4.4): lognormal and double
pareto uniform. The levy distribution is characterized by shape and location parameters, while the
double pareto uniform distribution by two shape parameters, a location parameter and a scale param-

eter. The remaining distributions are characterized by mean and standard deviation parameters. The
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Figure 4.3: Scatter plot of horizontal (a) peak ground velocity (m/s); and (b) peak ground displacement (m)
as a function of magnitude simulated for M,, 7.9,7.6,7.2,6.8,6.4, and 6.05 scenario earthquakes
rupturing location 3 of southern San Andreas fault. Note that PGV and PGD are plotted on a
log scale. Synthetic data from all sites within a source-to-site distance of 55 km-75 km in the
Los Angeles and adjacent basins are included. The median value is indicated by a ’x’ for each
magnitude. The best fitting lines to the median PGD and PGV values are log1o PG D = 0.98M,, —
7.62 and log10 PGV = 0.89M,, — 6.77, respectively.

mathematical expression for the PDFs for all of these distributions are given in Section 4.4 at the end
of this chapter. Henceforth, the set of parameters characterizing a distribution will be denoted by the

vector 6. It should be noted that, in Bayesian model class selection, the model class parameters are

themselves taken to be uncertain with a prior probability density, p(6;|Q;).

We give a brief outline of Bayesian model selection for the computation of the posterior prob-
ability P(Q;|I, Q) for each model class, given the data I, the set of proposed posterior probability
models Q, the prior probability of each model class @;, P(Q;|Q), and the prior PDFs for the model
parameters within each class p(6;|Q;) from prior knowledge or judgment. The method will allow
us to not only identify the model class with the highest posterior probability, but also determine the
corresponding parameter vector éj (the maximum a posteriori or MAP estimate) that maximizes the
posterior PDF for ();. The model predictions for the ground motion intensities corresponding to the
data at different sites are chosen as independent and identically distributed (i.i.d.) variables. From

Bayes’ theorem, noting that I is a continous variable:
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Figure 4.4: Combined histograms of the (a) PGV (m/s) and (b) PGD (m) for the 60 scenario earthquakes at
location 3 on the southern San Andreas fault with magnitudes in the M, 6.0 — 7.9 range. Data from
all sites at source-to-site distances of 55-75 km are included. The PGV and PGD data are collated
into 1.25 m/s and 1.25 m bins, respectively.

P(Q,|1, Q) = —2UMQIPQ;1Q)
> p1Q;)P(Q;1Q)

j=1

4.1)

In the above equations, the upper limit J = 5 for the summation is applicable to problem (i)
and the upper limit / = 2 is applicable to problem (ii). p(I|Q);) dI is the probability of realizing
intensities in a small neighborhood d/ of the dataset I if the probability model is (); and is termed
“model class evidence”. p(I|Q);) is the corresponding probability density. The prior probability for
each model @;, P(Q;]|Q), is taken to be the inverse of the number of models [1/5 for problem (i) and
1/2 for problem (ii)]. In the absence of any prior knowledge or judgment as is the case here, it would

be most reasonable to consider all models to be equally plausible a priori. Substituting the uniform
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priors into eq. 4.1 we get,
p(IQ;)

PQ1L.Q) =
> p(1Q))

4.2)

If we assume a prior distribution for model class (); parameters, p(6;|(;), then the model class

evidence may be determined using the total probability theorem as:

p(IQ;) = /P(I\ijQj)P(@j\Qj)de 4.3)

The last integral in Eq. 4.3 may be evaluated approximately using Laplace’s method of asymp-

totic approximation (Beck 2010):

A

p(11Q;) ~ p(110;.Q))p(6;1Q,)(2r) = det [H(6;)] = (4.4)

where

A

0;, the maximum a posteriori (MAP) estimate of model class (); parameters, is given by:

N
éj = arg maxe,{ Zlog [p(1:10,Q;)] + log [p (0]Q;)] }.

This optimization involves evaluating the 2 X 2 Hessian matrix H(60;) of -log[p(I|6;, Q;)p(0,|Q;)]

at the MAP estimate éj. N; is the number of parameters of model class ), (i.e., the dimension of 8;).
N
p(I18;,Q;) is the density at the MAP estimate given by [1»(1:16;,Q;). p(6,]Q;) is the prior at the

i=1
MAP estimate.

4.3 Conditional and Unconditional Probability Distributions for PGV and
PGD

The method above is implemented for the solution to problems (i) and (ii). As mentioned previously,
five model classes (lognormal, gamma, exponential, levy and rayleigh) are examined in problem (1)
for the PDF of PGV/PGD conditioned on magnitude, and two model classes (lognormal and double

pareto uniform) are examined in problem (ii) for the unconditional PDF of PGV/PGD (not conditioned
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on magnitude). The functional form of all distributions are given in Sec. 4.4. The prior distributions
of all parameters in all model classes are assumed uniform in the absence of prior insights/information

into/on the problem.

The MAP estimate of the mean and standard deviation of the model classes considered for the
conditional distribution (given earthquake magnitude) of PGV and PGD at basin sites at a distance of
55-75 km are given in Tab. 4.1 [problem (i)], along with the sample mean and standard deviation of
the ground motion data. The corresponding posterior probabilities of the model classes are given in
Tab. 4.2. Tabs. 4.3 and 4.4 show the MAP estimates of the parameters of the model classes considered
and the associated posterior probabilities for the unconditional distributions [problem (ii)] of PGV and
PGD, respectively. The most probable distributions are graphically illustrated in Fig. 4.5 alongside the
unconditional distribution (implicitly taking uniform distribution on magnitude) derived through the

summation of the conditional probability distributions followed by normalization.

Magnitude

Distribution Parameter M,7.9 M,7.6 M,7.2 M,6.8 M,6.4 M,,6.05
Lognormal PGV (m/s) 1.47 (1.06) 0.74 (0.64) 0.32(0.37) 0.19 (0.21) 0.05 (0.06) 0.03 (0.04)
PGD(m) 1.54 (0.66) 0.73(0.39) 0.29 (0.20) 0.14 (0.10) 0.04 (0.03) 0.02 (0.01)
Gamma PGV (m/s) 1.43(0.83) 0.72(0.49) 0.31(0.26) 0.19(0.15) 0.05 (0.04) 0.03 (0.02)
PGD(m) 1.53(0.62) 0.73(0.36) 0.29 (0.18) 0.14 (0.08) 0.04 (0.02) 0.02 (0.14)
Exponential PGV (m/s) 1.43(1.43) 0.72(0.72) 0.31(0.31) 0.19(0.19) 0.05(0.05) 0.03 (0.03)
PGD(m) 1.53(1.53) 0.73(0.73) 0.29(0.29) 0.14(0.14) 0.04 (0.04) 0.02 (0.02)
Levy PGV (m/s) 0.10(0.10) 0.05(0.05) 0.02(0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
PGD(m) 0.44(0.44) 0.16(0.16) 0.06 (0.06) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
Rayleigh PGV (m/s) 1.45(0.76) 0.77 (0.40) 0.37 (0.19) 0.23(0.12) 0.06 (0.03) 0.04 (0.02)
PGD(m) 1.47(0.77) 0.73(0.38) 0.31(0.16) 0.15(0.08) 0.04 (0.02) 0.02(0.01)
Sample PGV (m/s) 1.43(0.79) 0.72(0.50) 0.31(0.27) 0.19(0.17) 0.05(0.04) 0.03 (0.03)
values PGD(m) 1.53(0.62) 0.73(0.39) 0.29(0.19) 0.14(0.09) 0.04 (0.02) 0.02 (0.01)

Table 4.1: Maximum a Posteriori (MAP) estimates of mean (standard deviation) of the model classes consid-
ered for the conditional distributions of PGV and PGD at a distance of 55-75 km given earthquake
magnitude. In the case of levy distribution, the values correspond to location (shape) parameters.
Bold values correspond to the distribution with greatest posterior probability.

The posterior probabilities of the model classes considered for the [Problem (i)] conditional
distributions of PGV and PGD based on simulated ground motion data do indicate that the most prob-

able distributions are typically lognormal. However, there are exceptions. For instance PGV for the
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Magnitude
Distribution Parameter M,79 M, ,76 M,72 M, 68 M, 64 M, ,6.05

Lognormal PGV (m/s)  0.00 0.00 1.00 1.00 1.00 0.00
PGD(m) 0.92 1.00 1.00 1.00 0.00 0.51

Gamma PGV (m/s)  0.05 1.00 0.00 0.00 0.00 1.00
PGD(m) 0.08 0.00 0.00 0.00 1.00 0.49

Exponential PGV (m/s)  0.00 0.00 0.00 0.00 0.00 0.00
PGD(m) 0.00 0.00 0.00 0.00 0.00 0.00

Levy PGV (m/s)  0.00 0.00 0.00 0.00 0.00 0.00
PGD(m) 0.00 0.00 0.00 0.00 0.00 0.00

Rayleigh PGV (m/s)  0.95 0.00 0.00 0.00 0.00 0.00
PGD(m) 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.2: Posterior probability of the model classes considered for the conditional distributions of PGV and
PGD at a distance of 55-75 km given earthquake magnitude. The largest probabilities corresponding
to each magnitude are shown in bold.

Distribution Parameter Magnitude
] o
Normal log10 PGV (m/s) -0.78 0.69
log10PGD(m) -0.78 0.70
m n ! I6;

Double Pareto Uniform log,c PGV (m/s) 7.50 20.75 -1.67 0.30
logioPGD(m) 1072 31.60 -1.77 0.34

Table 4.3: Maximum a Posteriori (MAP) estimates of the parameters of the model classes considered for the un-
conditional distributions of PGV and PGD at a distance of 55-75 km for earthquakes in the magnitude
range of 6.05-7.90. Bold values correspond to the distribution with greatest posterior probability.

Distribution
Parameter Normal Double Pareto Uniform
log10 PGV (m/s) 0.00 1.00

Table 4.4: Posterior probability of the model classes considered for the unconditional distributions of PGV and
PGD at basin sites at a distance of 55-75 km for earthquakes in the magnitude range of 6.04-7.90.
The largest probabilities corresponding to each magnitude are shown in bold.
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Figure 4.5: Conditional (given earthquake magnitude, colored dashed lines) and unconditional (solid black line)
probability distributions of (a) PGV (m/s) and (b) PGD (m) at basin sites at a distance of 55-75 km
for earthquakes in the magnitude range of 6.04-7.90 identified through Bayesian model class se-
lection. The grey dashed lines are the unconditional distributions derived by the summation of
conditional distributions followed by normalization, equivalent to assuming an uniform distribution
on magnitude.

M,, 7.90 earthquakes is best characterized by a Rayleigh distribution. The posterior probability that
PGV or PGD is described by an exponential or a levy distribution is practically zero. The uncondi-
tional distribution obtained by the summation of conditional distributions from the Bayesian selection
for individual magnitudes to eliminate the conditioning on magnitude is flat over a significant range
of PGVs and PGDs [dashed gray lines in Figs. 4.5(a) and 4.5(b)]. This is consistent with the raw
data shown in the form of histograms previously in Fig. 4.4. These findings are similar to the conclu-
sion made by Yamada et al. (2009) for near-source (< 10 km) ground motions. Not surprisingly, the
Bayesian model selection procedure conclusively picks the double pareto uniform distribution over the
normal distribution for the characterization of the unconditional distributions of both the logarithm of
PGV and PGD . The identified double pareto uniform distributions [solid gray lines in Figs. 4.5(a) and
4.5(b)] exhibit remarkable agreement with the unconditional distributions derived by the summation
of the conditional distributions. The width of the distribution is controlled by the range of magnitudes
under consideration. If larger magnitudes are considered, the width of the distribution would increase
assuming that the linear trend of Fig. 4.3 holds. It may be concluded that (i) lognormal distributions

do not accurately explain the probability of PGV and PGD (at basin sites in the LA region at 55-75 km
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distances from magnitude 6.05-7.90 earthquakes on the southern San Andreas fault) exceeding a spec-
ified value, and (ii) seismic hazard levels for long period ground motion markers such as PGV and
PGD defined through lognormal distributions might not accurately represent seismic risk. Shown in
Tab. 4.5 is the probability of PGV exceeding 0.5 m/s, 1.0 m/s, 1.5 m/s, 2.0 m/s, and PGD exceeding
0.5 m, 1.0 m, 1.5 m, and 2.0 m from the best fitting lognormal and double pareto uniform distributions
derived using MAP estimates for earthquakes between M, 6.05 — 7.90. It may be observed that the
lognormal distribution consistently under-predicts the probability of PGV and PGD exceeding a spe-
cific value up until 2 m/s and 2 m, respectively. For these findings to hold robustly, larger amounts of
data must be generated from various source mechanisms and locations, geological settings, source-to-
site distances, stochastic source characterization techniques, and ground motion simulation methods.

The robustness of the findings with respect to the assumed prior distributions needs to be investigated

as well.
Distribution PGV [m/s] (PGD [m])
05m/s(0.5m) 1.0m/s(1.0m) 1.5m/s(1.5m) 2.0m/s (2.0 m)
Lognormal 23.93 (24.11) 12.50 (12.69) 7.88 (8.04) 543 (5.57)

Double Pareto Uniform  29.96 (29.93) 17.08 (17.28) 9.54 (9.88) 4.19 (4.64)

Table 4.5: Posteriori probability (%) of the model class exceeding specified peak ground velocity (displacement)
value.

4.4 Probability Distributions Used

In the following definitions, “I”” represents the intensity of ground motion, namely peak ground velocity

and/or displacement.

1. Lognormal Distribution

(log T—p)?

fLip0) = roimme 2 1 >0

where p, o are the location and shape parameters on a logarithmic scale. In other words, they
are the mean and standard deviation of the variable’s natural logarithm.

2. Normal Distribution

I-w)?

fIip,0) = Joze 2o
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where pi, o are the mean and standard deviation of the distribution.

. Exponential distribution
f(LX)=Xe™M T >0and X >0

where ) is the rate parameter.

. Gamma Distribution

F(I;k,0) = f’;k;f(f,j [>0andk,0>0

where k, 6 are the shape and scale parameters of the distribution and I'(k) is the gamma function

evaluated at k.

. Levy Distribution
I; 1, Je T > pand e >0
f ( T, C ) 27 (I— M)B H

where 1, ¢ are the location and scale parameters of the distribution.

. Rayleigh Distribution
2
f(I;0) = Lex? 1> 0and o >0

where o is the scale parameter of the distribution.

. Double Pareto Uniform Distribution
f(];m,n,a,ﬁ):K(m,n)% I <«
= K(m,n) 54, a<I<p
= K(m,n)% I>0

mn
m+mn—+n’

where K (m,n) = ;a < fB;m,n > 0. m, n denote the shape parameters with o and

(8 — ) denoting the location and scale parameters.
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Chapter 5

Conclusions

5.1 Findings

The study presents a framework on how rupture-to-rafters simulations can be conducted to holistically
quantify the seismic performance of tall buildings and can provide answers to diverse questions ranging
from seismic source modeling to non-linear building response characteristics. A summary on the
highlights of the study along with the findings made using rupture-to-rafters simulations in context of

large San Andreas fault earthquakes is presented here.

1. Arecursive division algorithm for generating stochastic source models of M, = 6.0 —8.0 strike-
slip earthquakes is presented. The algorithm uses observations from laboratory earthquakes to
augment the known physics of earthquake ruptures from finite-source inversions of past earth-
quakes. It is validated through a statistical comparison of long-period (2 s and higher) ground
motions generated by stochastic source models and finite-source models of past earthquakes
of equivalent magnitude. Its application to several M,,7.9 earthquake simulations at different
locations on the southern San Andreas fault has yielded interesting results. First (not surpris-
ingly), the location of strong ground motions is closely related to the location, size and strength
of slip asperities on the source. Second, ground motion intensities are higher when a greater
proportion of the rupture propagates at sub-Rayleigh speeds, whereas the intensities are lower
when a greater proportion of the rupture propagates at super-shear speeds. Third, ground motion

intensities in the LA basin are lower when the peak rise-time in the source is higher, although
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this anti-correlation is not as strong as the correlation with the percentage of rupture propagating
at sub-Rayleigh rupture speeds. Four, median (and variability of) peak ground displacements
from the simulations as a function of source-to-site distance agree well with predictions by the
Campbell-Bozorgnia NGA relation. Five, median (and variability of) peak ground velocities
from the simulations as a function of source-to-site distance are three to six times higher than
that predicted by the Campbell-Bozorgnia NGA relation. It is imperative that the differences in
the simulations and the NGA predictions be reconciled to ensure that seismic hazard maps based

on the NGA relations are credible.

. The algorithm was applied to generate sixty hypothetical earthquake scenarios for magnitudes
varying between 6.0 and 8.0 with varying rupture location and directivity on southern San An-
dreas fault. The comparison of associated ground motions (at 636 sites in southern California)
with ground motion prediction equations (GMPE) indicate that while median spectral accel-
eration at 3s time period and peak ground velocity of all 636 sites are consistently underesti-
mated by GMPE at times almost by a factor of 3-5, they indicate marginally higher peak ground
displacements. Furthermore, the simulated ground motions are significantly affected by fault
slip asperity size and intensity, rupture speed (with sub-Rayleigh ruptures resulting in stronger
ground motions), peak rise-time (with longer peak rise-times leading to weaker ground motions),

proximity to source, and basin configuration (including depth).

. This algorithm can be implemented for any strike-slip fault in the world for which good esti-
mates of principal stress are available. In the absence of such data, the algorithm can still be
implemented with a widely accepted rupture speed of 0.8V across the fault. However in mak-
ing this assumption, the findings that in case of large magnitude earthquakes (M,,7.9) ruptures
traveling primarily in sub-Rayleigh mode produce higher ground motion intensities relative to
ones traveling in super-shear mode should be considered. A compelling observation is that such
distinct correlation between ground motion intensities and percentage of rupture traveling in

sub-Rayleigh mode is not observed for relatively comparable M,,7.6 or lower earthquakes.

. Rupture-to-rafters simulations are incorporated into performance based earthquake engineering
for quantifying fault-specific risk to existing (or new) buildings over a target time horizon. Syn-

thetic ground motions from sixty earthquakes (in the magnitude range of 6.0-8.0 rupturing 5
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locations along the fault with rupture propagating in one of two directions) have been used for
this to quantify the seismic performance of two 18-story moment frame buildings due to south-
ern San Andreas fault earthquakes over the next thirty years. The first is designed according to
the 1982 UBC (existing building) while the second is designed according to a new code 1997
UBC (redesigned building). The resulting analysis indicate that the performance of both struc-
tures are similar up to earthquakes of M,,6.8 with significant differences observed for higher
magnitude earthquakes. The existing building had a median peak inter story drift ratio of ap-
proximately 0.06 (corresponds to collapse prevention limit state) while the redesigned building
had a median value of 0.025 (corresponds to life safety limit state) for a M,,7.9 earthquake oc-
curring at various sections with two rupture directivities along the southern San Andreas fault.
While this has shown that the buildings designed according to new codes perform significantly
better on average, a scenario specific analysis such as building response to a hypothetical 1857

Fort Tejon earthquake indicate that the redesigned buildings do not perform adequately.

. A statistical analysis of the structural response indicates that major damage occurred in both
buildings at a predominant ground motion period of 2 — 7 s, 3 — 6 s respectively with peak
ground velocity of 0.6 m/s and higher, 0.9 m/s and higher for the existing and redesigned build-
ings respectively . A distinct V-shape transition zone was observed for peak inter story drift ratio
in the PGV-PGD plane where the building response transitions between different limit states that
indicate the safety level of the building. It is concluded that PGV-PGD combinations of at least
0.4 m/s-0.3 m and 0.8 m/s-0.8 m, approximately, may be necessary to collapse the existing and

redesigned buildings, respectively.

. Fragility curves indicate that the model collapse probability for the redesigned building in the
X (EW) direction is lower by factors of 1.75, 1.25, and 1.11 for PGVs of 1.0 m/s, 1.5 m/s, and
2.0 m/s, respectively. The corresponding factors in the Y (NS) direction are 4.33, 1.51, and 1.13
for PGVs of 1.0 m/s, 1.5 m/s, and 2.0 m/s, respectively. There is a 10% probability of collapse
that earthquake motion with a PGV of 0.71 m/s in the EW direction or a PGV of 0.59 m/s in the
NS direction would collapse the existing building model. Similarly, there is a 10% probability
of collapse that earthquake motion with a PGV of 0.85 m/s in the EW direction or a PGV of

0.94 m/s in the NS direction would collapse the redesigned building model. Likewise, there is
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a 10% probability of collapse for shaking with a S, of 0.22 g in the X (EW) direction or a S,
of 0.19 g in the Y (NS) direction for the existing building model. For the redesigned building
model, there is a 10% probability of collapse for shaking with a S, of 0.33 g in the X+Y-
direction or a S, of 0.31 g in the X+Y+ direction . The intent of building codes is to limit the
probability of collapse to under 10%. It may thus be inferred that these are the intensities of

ground motion that the two buildings have effectively been designed for.

. Combining this with the likelihood of the earthquake occurring, the existing building indicate a
24.40%, 11.44% and 7.59% probability of exceeding immediate occupancy, life safety and col-
lapse prevention limit states, respectively, due to large southern San Andreas fault earthquakes
over the next 30 years. The corresponding result for the redesigned building is 19.25%, 8.40%
and 5.23% indicating a marginal improvement in the code based design. The long-period spec-
tral accelerations predicted by the simulations are at least twice as large as the UBC97 MCE
spectrum. It is no surprise then that the probabilities of the collapse prevention limit state being
exceeded over the next thirty years for the existing (7.59%) and redesigned (5.23%) buildings
are much higher than the 2% probability of collapse in 50 years (or 10% probability of collapse

in an MCE event with a recurrence period of 2475 years), implicit in building codes.

. An adjunct analysis of the simulated long-period ground motions for basin sites at moderate dis-
tances (55-75 km) from M,, 6.05 — 7.90 earthquake ruptures using Bayesian model class identi-
fication indicate that while the conditional distribution of peak ground velocity and displacement
may be typically characterized using a lognormal distribution, the unconditional distribution of
log(PGV) and log(PGD) are broader and flatter, and are best classified as double pareto uniform
distributions. The broader the range of possible earthquake magnitudes, the broader are the dis-
tributions likely to be. This is crucial in understanding the nature of ground motions in future
earthquakes and may significantly alter the design of tall buildings that are more affected by

such motions .
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5.2 Future Work

While the present study tried to address many issues pertaining to rupture-to-rafters simulations, it
opened a plethora of opportunities to continue and push the boundaries of current study in the field of
earthquake engineering. Further issues that can be addressed by expanding the study include, but are

not limited to, the following topics:

1. In order to increase the robustness of the stochastic source model generation algorithm presented,
further studies can be conducted using Southern California Earthquake Center broadband plat-
form which allows researchers to compare various stochastic source models and the associated
ground motions with historic earthquake data using a wide array of broadband metrics. A key
highlight of the proposed algorithm is the use of principal stress data measured near the fault
and the inclusion of laboratory earthquake data in modeling seismic sources. However, due
to the current limitations, a one-dimensional variation along fault length of rupture velocity is
prescribed in the current source models. As more data becomes available the algorithm can be
extended to include rupture velocity variation along fault depth producing a more physically
accurate seismic source. Furthermore, any study involving the use of laboratory data raises the
issue of scaling to address large scale variations that exist in reality. While a self-similarity as-
sumption with necessary justification is provided in the current source models, a more robust

analysis can be conducted to address the issue of scaling.

2. While the seismic performance of tall moment frame buildings are quantified in this work us-
ing peak inter-story drift ratio, further analysis of the dynamic response of the structure can be
conducted to identify the collapse mechanisms of these buildings. This also leads to a pertinent
question of whether adding localized braces or other bracing mechanisms improve the perfor-

mance of these buildings.

3. How does the performance of braced-frame or dual-system buildings designed according to
similar codes perform under similar ground motion intensities? Will these buildings behave

similarly and are the collapse mechanisms identical to the ones observed from the current study?

4. What are the expected annual economic losses for these tall buildings in southern California or
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other regions of interest due to large magnitude earthquakes that pose a relatively great threat?

. Can the existing simulations be used for disaster preparedness and simultaneously provide a
platform for engineers with a ground motion and structural model database? Can those simu-
lations be extended further in the development of a more reliable and accurate seismic hazard

maps?
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Appendix A

Source Model Generation Algorithm Validation: 1,,6.05, 2004 Parkfield-like

Earthquake on Southern San Andreas Fault

The validation exercise to ensure that the ground motions produced by the stochastic source models are
similar to those produced by finite-source inversion models is repeated for a M,, = 6.05 earthquake.
As for the M,, = 7.9 earthquake, five stochastic source realizations are generated. Each is placed
at five locations along the southern San Andreas fault, and ground motions are generated for north-
to-south and south-to-north propagating ruptures. The median source model that is determined using
the method outlined in the study, is shown in Fig. A.1(a). Also, shown there in Fig. A.1(b), is a
finite-source inversion model for the 2004 Mw = 6.0 Parkfield earthquake (Ji 2004). The median
ground motion produced by the median model is shown in Fig. A.2. The peak ground velocity and
displacement maps generated by the stochastic median and the Parkfield finite-source inversion models
rupturing location 3 of the southern San Andreas fault are shown in Figs. A.3 and A.4, respectively.
The stronger asperity in the stochastic model leads to more intense ground motions than the Parkfield
model. For a north-to-south propagation of the stochastic median model, the location of intense ground
motions move gradually southeast of the San Fernando valley as the rupture location shifts south from
Parkfield. For south-to-north propagating ruptures, the location of intense ground motions moves
gradually northwest of the San Gabriel valley as rupture location shifts north from Bombay Beach.

This is similar to the M,, = 7.9 earthquake simulations.

The statistical comparison of peak ground velocity (see Figs. A.5 and A.6) and displacement
resulting from the two source models indicates significant differences. This can be attributed primarily

to the strength of the slip asperity in the stochastic source compared to that in the finite-source inver-
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Figure A.1: (a) Stochastic median source model with slip in m for a M,, = 6.05 earthquake on the San Andreas
fault. (b) Finite-source inversion model for the M,, = 6.0 Parkfield earthquake of 2004 (Ji 2004).
Rupture time (s) contours are overlaid on the slip distribution. The maximum slip rate for the
stochastic and inversion models is 1.99 m/s and 1.09 m/s respectively.

sion. The reason for this may be the magnitude-area relation that suggests a rupture area of just 10 km
x 10 km for a M,, = 6.0 earthquake, whereas the finite-source inversion for the Parkfield earthquake

points to a significantly larger area and smaller slips as a result.
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Figure A.2: Solid lines: Median PGV computed at 636 sites in southern California from ten rupture scenarios
(five rupture locations along the southern San Andreas fault X two rupture directions) using each
of five stochastic source realizations; Dashed lines: The corresponding median PGV from all fifty
scenario earthquakes. All earthquakes are of magnitude M,, = 6.05.
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Figure A.3: EW and NS components of PGV (cm/s) from a north-to-south propagating rupture at location 3 on
the southern San Andreas fault: (a) and (b) M,, = 6.05 stochastic median source model; (c) and

(d) M, = 6.0 Parkfield earthquake finite-source inversion model (Ji 2004).
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Figure A.4: EW and NS components of PGD (cm) from a north-to-south propagating rupture at location 3 on

the southern San Andreas fault: (a) and (b) M,, = 6.05 stochastic median source model; (c) and
(d) M, = 6.0 Parkfield earthquake finite-source inversion model (Ji 2004).
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Figure A.5: Five M,, = 6.05 north-to-south rupture scenarios (at locations 1—5) on the San Andreas fault using [(a)—(e)] the stochastic median
model and [(f)—(j)] the M,, = 6.0 Parkfield earthquake finite-source inversion model: Histograms and best-fit log-normal PDFs (insets)
of PGV at 636 stations in southern California. The product of the listed scaling factor and the normalized histogram ordinate at a specific
peak velocity gives the total number of stations for that velocity.
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Figure A.6: Five M,, = 6.05 south-to-north rupture scenarios (at locations 1—5) on the San Andreas fault using [(a)—(e)] the stochastic median
model and [(f)—(j)] the M,, = 6.0 Parkfield earthquake finite-source inversion model: Histograms and best-fit log-normal PDFs (insets)
of PGV at 636 stations in southern California. The product of the listed scaling factor and the normalized histogram ordinate at a specific
peak velocity gives the total number of stations for that velocity.



Figure A.7: Median peak average horizontal velocity (m/s) [(red) Stochastic and (blue) Parkfield model] as
a function of source-to-site distance, in southern California due to M,,6.05 earthquake occurring
along southern San Andreas fault. The shaded region corresponds to median plus/minus one stan-
dard deviation. A total of 10 rupture scenarios (5 rupture locations x 2 propagation directivity) are
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Figure A.8: (a) Median peak horizontal velocity (m/s) and (b) median peak horizontal displacement (m) as
a function of source-to-site distance for ten M,,6.05 earthquake scenarios on the southern San
Andreas fault (five rupture locations and two rupture directions) using the median stochastic source
model. Shown in red are the predictions by the Campbell-Bozorgnia NGA relation. The shaded
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region corresponds to median plus/minus one standard deviation.
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Figure A.9: Spectral acceleration (g) at T = 3 s as a function of source-to-site distance for ten Mw 6.05 earth-
quake scenarios on the southern San Andreas fault (five rupture locations and two rupture direc-
tions). Shown in green and blue are the simulated east-west and the north-south Sa3s components
at greater Los Angeles sites using the median stochastic source model, respectively. Shown in red
are the predictions by the Campbell-Bozorgnia NGA relation. The shaded region corresponds to
median plus/minus one standard deviation.
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Appendix B

Ground Motion Maps for 1/, 7.9 Denali Finite-Source Inversion and Stochastic

Source Models Traveling at Sub-Rayleigh and Super-shear Regimes
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Figure B.1: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south
propagating rupture at location 1 on the southern San Andreas fault for Denali earthquake finite-
source inversion model (Krishnan et al. 2006a) with rupture speed modified to travel in pure sub-

Rayleigh mode.
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Figure B.2: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south
propagating rupture at location 1 on the southern San Andreas fault for Denali earthquake finite-
source inversion model (Krishnan et al. 2006a) with rupture speed modified to travel in pure super-

shear mode.
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Figure B.3: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south prop-
agating rupture at location 1 on the southern San Andreas fault for a Stochastic source realization
(refer to as model-1) of M,,7.9 earthquake with rupture traveling in pure sub-Rayleigh mode.
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Figure B.4: EW and NS components of (a) and (b) PGV (m/s); (¢) and (d) PGD (m) from a north-to-south prop-
agating rupture at location 1 on the southern San Andreas fault for a Stochastic source realization
(model-1) of M,,7.9 earthquake with rupture traveling in pure super-shear mode.
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Figure B.5: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south prop-
agating rupture at location 1 on the southern San Andreas fault for a Stochastic source realization
(refer to as model-2) of M,,7.9 earthquake with rupture traveling in pure sub-Rayleigh mode.
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Figure B.6: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south prop-
agating rupture at location 1 on the southern San Andreas fault for a Stochastic source realization
(model-2) of M,,7.9 earthquake with rupture traveling in pure super-shear mode.
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Figure B.7: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south prop-
agating rupture at location 1 on the southern San Andreas fault for a Stochastic source realization
(refer to as model-3) of M,,7.9 earthquake with rupture traveling in pure sub-Rayleigh mode.
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Figure B.8: EW and NS components of (a) and (b) PGV (m/s); (c) and (d) PGD (m) from a north-to-south prop-
agating rupture at location 1 on the southern San Andreas fault for a Stochastic source realization
(model-3) with rupture traveling in pure super-shear mode.
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Appendix C

Various Stochastic Source Models Generated Through the Algorithm and the

Associated Ground Motion Maps
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Figure C.1: (a)-(e) Stochastic median source models (here on referred to as models-1, 2, 3, 4, 5) with slip in
m for a M,, = 7.9 earthquake on the San Andreas fault. Rupture time (s) contours are overlaid
on the slip distribution. The rupture contours shown correspond to the stochastic stress conditions
at location 1 of the rupture staring at Parkfield. Note that the rupture time contours change for a
different location.
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Figure C.2: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-1 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.3: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-1 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.4: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-2 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.5: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-2 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.6: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-3 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.7: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-3 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.8: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-4 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.9: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-4 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.10: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-5 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.11: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.9 model-5 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.12: (a)-(e) Stochastic median source models (here on referred to as models-1, 2, 3, 4, 5) with slip in
m for a M,, = 7.6 earthquake on the San Andreas fault. Rupture time (s) contours are overlaid
on the slip distribution. The rupture contours shown correspond to the stochastic stress conditions
at location 1 of the rupture staring at Parkfield. Note that the rupture time contours change for a
different location.
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Figure C.13: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-1 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.14: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-1 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.15: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-2 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.16: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-2 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.17: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-3 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.18: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-3 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.19: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-4 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.20: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-4 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.21: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-5 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.22: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.6 model-5 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.24: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-1 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.25: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-1 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.

150



E-W Velocity (m/s) # E-W Velocity (m/s)
Stochastic source model cier) Stochastic source model

E-W Velocity (m/s) O E-W Velocity (m/s)
Stochastic source model /4 Stochastic source model

E-W Velocity (m/s)
Stochastic source model

-119° -1185°

Figure C.26: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-2 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.27: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-2 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.28: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-3 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.29: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-3 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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Figure C.30: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-4 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.31: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-4 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.32: EW component of PGV (m/s) from a north-to-south propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-5 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional
to PGV in most cases.
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Figure C.33: EW component of PGV (m/s) from a south-to-north propagating rupture at (a) - (e) locations 1 - 5
respectively on the southern San Andreas fault for stochastic M,,7.2 model-5 source model. The
NS component of PGV has similar characteristics as EW component and the PGD is proportional

to PGV in most cases.
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