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ABSTRACT 
 
 

Tryptophan and unnatural tryptophan derivatives are important building blocks 

for the total synthesis of natural products, as well as the development of new drugs, 

biological probes, and chiral small molecule catalysts. This thesis describes various 

catalytic methods for the preparation of tryptophan derivatives as well as their 

functionalization and use in natural product total synthesis.  

Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation 

reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide 

enantioenriched trytophans is reported. This method inspired further work in the area of 

transition metal catalyzed arylation reactions.	
  We report the development of the copper-

catalyzed arylation of tryptamine and tryptophan derivatives. The utility of these 

transformations is highlighted in the five-step syntheses of the natural products (+)-

naseseazine A and B. Further work on the development of a mild and general Larock 

indolization protocol to access unnatural tryptophans is also discussed.  
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Chapter 1 

An Introduction to Tryptophan 

 

1.1 INTRODUCTION 

Tryptophan and unnatural tryptophan derivatives are important building blocks in 

the total synthesis of natural products, as well as for the development of new drugs,1 

biological probes,2 and chiral small molecule catalysts.3 The central tryptophan motif can 

be found within numerous biologically active natural products, either explicitly or 

implicitly, some of which are shown in Figure 1.1. Furthermore, the utilization of 

functionalized tryptophans for the study of complex biological systems has served as an 

important strategy for studying protein conformational dynamics as well as elucidating 

key protein interactions, such as the identification of a critical cation–π interaction of the 

nicotinic acetylcholine receptor.2c 

Biosynthetically, these key amino acids serve as the basis for another fascinating 

class of natural products, the pyrroloindoline alkaloids.4 This family comprises a large 

class of compounds characterized by their unique indoline fused pyrrolidine core (Figure 
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1.1).  These compounds have been shown to exhibit a broad array of biological activity 

across a range of cell lines that is intricately related to their broad structural diversity. 

Given their promising medicinal relevance, these products have inspired innovative work 

on new synthetic methodologies to access the central pyrroloindoline framework that 

have culminated in the total synthesis of a number of these challenging natural products.5  

Figure 1.1. Trytophan and cyclotryptophan natural products 

 

 Together, these molecules have served as topics of intense interest from synthetic 

chemists and chemical biologists alike. The following introductory chapter serves to 

briefly summarize and highlight modern synthetic strategies and tactics to access 

unnatural tryptophan derivatives as well as pyrroloindoline alkaloids with selected 

examples in total synthesis. 

 

1.2 SYNTHESIS OF TRYPTOPHAN DERIVATIVES 
 
 Due to their pervasiveness across many fields, the development of new methods 

to access enantioenriched tryptophan derivatives represents an important endeavor in 

synthetic chemistry.1,2,3 This is particularly true due the inherent challenges associated 
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with selective backbone functionalization of the indole nucleus, making simple 

derivatization of natural (L)-tryptophan largely untenable. As a result, a range of methods 

for the preparation of enantioenriched unnatural tryptophans, including auxiliary 

controlled, enantiospecific, and enantioselective methods, have been reported.6  

 Surprisingly, to date, there exist relatively few convergent and enantioselective 

syntheses of tryptophan derivatives lacking β-substitution. Perhaps the most common 

method to access unnatural amino acids is through the asymmetric hydrogenation of 

dehydroamino acids.  In 1980, Townsend and co-workers demonstrated that subjection of 

6-methyl dehydrotryptophan to [Rh(COD)Cl]2, copper-phosphine complex 10, and 45 psi 

of hydrogen gas gave 6-methyl tryptophan (9) in high enantiomeric excess (Scheme 1.1, 

a).7 Subsequent work on asymmetric hydrogenation has further streamlined this process 

to provide excellent ee’s at low Rh-catalyst loadings, making it an efficient choice in 

many instances. Still, the preparation of the dehydroamino acids, often from the 

corresponding carboxyaldehyde, can sometimes require a laborious synthetic 

undertaking. 

An alternative enantioselective method was described by Leckta and co-workers 

in 1998.  By employing 5 mol % of copper-BINAP catalyst 13, tosylindoline 11 can 

undergo an enantioselective imino-ene reaction to furnish tosyl tryptophan derivative 12 

in 90% yield and 85% ee (Scheme 1.1, b).8  While this method offers access to 

enantioenriched products, strict substrate requirements limit the generality of this 

approach and thus this method has largely not been broadly adopted for tryptophan 

synthesis. 

  



Chapter 1 – An Introduction to Tryptophan  
 

4 

Scheme 1.1. Enantioselective methods for the synthesis of unnatural tryptophans 

 

Given the dearth of catalytic, enantioselective methods reported to date, 

alternative strategies are also commonly employed, including enantiospecific and 

auxiliary-controlled methods. One such enantiospecific approach utilizes ortho-

iodoanlines (14) in conjunction with an amino-acid derived coupling partner (Scheme 

1.2, a).9 In 1999, Cook and co-workers reported the Pd(0)-catalyzed heteroannulation 

(Larock indole synthesis) of o-iodoaniline with Schöllkpf-auxiliary derived triethylsilyl 

alkyne 15. Utilizing Larock’s originally reported conditions, functionalized indoles 

containing the amino acid moiety masked as a bis-imidate are efficiently synthesized 

(16). These products can be readily advanced to the parent amino acid through sequential 

acid-mediated hydrolysis followed by saponification. A complementary approach to the 

Larock indole synthesis was reported by Jia and Zhu in 2005, utilizing an aldehyde 

coupling partner (17) in place of a disubstituted alkyne (Scheme 1.2, b).10 Operating 

through the intermediacy of the aldimine, Pd-mediated heteroannulation affords 2-

unsubstituted tryptophans in moderate to good yield. Importantly, this method requires 

the formation of reactive aliphatic aldehyde intermediates and therefore necessitates 

protection of the amine as an imide. 
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Scheme 1.2. Enantiospecific methods for the synthesis of unnatural tryptophans 
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Scheme 1.3. Enantiospecific and auxiliary based approaches for the synthesis of 

unnatural tryptophans 

 

 

1.3 TRYPTOPHAN DERIVATIVES IN TOTAL SYNTHESIS 

As highlighted above, the tryptophan motif is prevalent in many natural product 

scaffolds and it is therefore unsurprising that the methods outlined previously have been 

widely adopted in total synthesis. In most instances, the assembly of a requisite 

tryptophan moiety occurs at an early stage of the synthesis, and is subsequently 
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aryl bromide. Cook and co-workers have also utilized their methodology in their total 

synthesis of the complex polycyclic alkaloid alstophylline (Scheme 1.4, b). Employing a 

Larock indole synthesis on 300-gram scale with only 1 mol % Pd(OAc)2, aniline 27 is 

readily advanced to 6-methoxytryptophan en route to the natural product.15 Similarly, Jia 

and co-workers have utilized their Pd-catalyzed aldehyde-aniline coupling to synthesize 

4-nitrotrytophan derivative 32, which is then advanced to the natural product 

aurantioclavine (33).16 

Scheme 1.4. Tryptophan in total synthesis 
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iodoaniline 35 underwent a Larock indole synthesis with a serine-derived derived alkyne 

in a moderate 49% yield. Debenzylation and concomitant Cbz deprotection furnished 

pyrroloindoline 37, which existed in equilibrium with α-carboline 38. Addition of EDC 

and HOAt resulted in facile and selective macrocycle formation from α-carboline 38, 

providing the product in 64% yield. The synthesis of kapakahine B was completed in a 

further two-steps. This elegant synthesis, which assembles the key tryptophan moiety in 

an exceptionally complex setting, illustrates both the power of the Larock indole 

synthesis, but also its limitations – the key step requires upwards of 20 mol % catalyst for 

prolonged reaction times (24 h) in order to achieve two productive turnovers.  

Scheme 1.5. Baran’s synthesis of kapakahine B 
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Scheme 1.6. Boger’s late stage tryptophan synthesis  
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Scheme 1.7. Overman’s Heck strategy to access pyrroloindolines  

 
A mechanistically distinct approach using a Pd-catalyst was reported by Trost in 

2006, utilizing allyl alcohols in conjunction with trialkylborates to effect C3-allylation in 

high yields and good enantioselectivities (Scheme 1.8).21 The reaction is presumed to 

occur via an electrophilic, chiral Pd-π-allyl complex, thus providing high enantiofacial 

bias of the prochiral electrophile. This reaction, which provides the pyrroloindoline 

directly from a corresponding tryptamine, follows up previous work from the Trost lab on 
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Scheme 1.9. Stoltz’s asymmetric alkylation of oxindoles  

 

Perhaps one of the most widely adopted strategies to date is that of C3-oxidative 

functionalization via an electrophilic heteroatom. This versatile approach has been 

utilized extensively on tryptamine and tryptophan scaffolds, and occurs through direct 

C3-functionalization followed by cyclization of a pendant nucleophile onto the resulting 

iminium ion. The C3-substituent can often act as a leaving group, enabling subsequent 

functionalization in a highly selective manner. Two such examples are illustrated in 

Scheme 1.10. An early report by Danishefsky and co-workers illustrated the ability of 

electrophilic selenation to enable the highly diastereoselective selenocyclization of Boc-

tryptophan derivative 54 in 78% yield.24 Subsequent activation with MeOTf in the 

presence of a prenylstannane reagent provides reverse prenylated pyrroloindoline 57 in 

60% yield.  
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This strategy is applicable with a range of electrophiles. As shown in scheme 

1.10, addition of N-bromosuccinimide and pyridinium p-toluensulfonate to tryptophan 54 

results in clean formation of bromopyrroloindoline 58. Subsequent treatment with excess 

base and catalytic AgNO3 results in stereoretentive substitution by an indole nucleophile. 

Extension of this strategy to other electrophilic atom sources as well as a range of 

enantioselective variants have been reported.25  

In contrast to heteroatom based electrophiles, carbon-based electrophiles can also 

be utilized with great success. In 2004, MacMillan and coworkers illustrated the success 

of this strategy via iminium activation. Utilizing imidazolinone catalyst 61 with acrolein 

as an electrophile, a highly enantioselective preparation of C3-alkylated pyrroloindolines 

was achieved (Scheme 1.11).26  

Scheme 1.11. MacMillan’s organocatalyzed pyrroloindoline synthesis  
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Scheme 1.12. Antilla’s organocatalyzed pyrroloindoline synthesis  
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1.5 PYRROLOINDOLINES IN TOTAL SYNTHESIS 

Given the enormous body of research dedicated to the total synthesis of 

pyrroloindolines, only a small sampling of total syntheses will be presented in the section 

below. One of the first successful examples employing a diastereoselective 

pyrroloindoline synthesis comes from the Danishefsky lab (Scheme 1.14).24 Beginning 

with Boc protected tryptophan 54, they were able to effect a selenation/cyclization 

sequence to furnish exo-pyrroloindoline 55 as a 9:1 diastereomeric mixture. Activation of 

the phenyl selenide with MeOTf and exposure to prenyl stannane 56, provided the 

reverse prenyl adduct in 60% yield. Saponification of the methyl ester, peptide coupling 

with the free amine, and successive diketopiperazine formation provided amauromine in 

only four-steps from tryptophan 54. 

Scheme 1.14. Danishefsky’s synthesis of amauromine  
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alkyne 77 in excellent yield. C–N bond formation, followed by treatment with Red-Al 

provided the natural product psychotrimine (79) in excellent overall yield. 

Scheme 1.15. Baran’s synthesis of psychotrimine  
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Scheme 1.16. Movassaghi’s synthesis of (+)-naseseazines A and B 
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 An intermediate bromopyrroloindoline 94, formed via the oxidative 

bromocyclization of tryptophan, was also utilized in Li’s synthesis of drimentine G.31 

Employing a photoredox strategy similar to Stephenson’s, generation of a tertiary 

benzylic radical followed by conjugate addition into enone 95 provided complex 

pyrroloindoine 96 in excellent yield. An additional five-steps is subsequently required to 

construct the diketopiperazine moiety and effect deoxygenation to provide the natural 

product.  

Scheme 1.18. Li’s synthesis of drimentine G 
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cyclocondensation to prepare the diketopiperazine assembles the natural product in short 

order. 

Scheme 1.19. Reisman’s synthesis of nocardioazine A 

 

1.6 CONCLUSIONS 

These interesting scaffolds still serve as fascinating motivations for new synthetic 

methodologies and the basis for novel chemistry in total synthesis. Although much work 

has been done, the implementation and actualization of new synthetic strategies to meet 

unmet challenges will clearly be of interest in the coming times. 
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Chapter 2 
 

Enantioselective Synthesis of Tryptophan Derivatives by a Tandem 

Friedel–Crafts Conjugate Addition/Asymmetric Protonation Reaction† 

 

2.1 INTRODUCTION 

The biological importance of tryptophan as discussed in Chapter 1 has inspired a 

variety of racemic, enzymatic, auxiliary-controlled, and enantiospecific methodologies.1 

There are, however, very few reported catalytic asymmetric methods for the preparation 

of tryptophan derivatives containing no β-stereocenter.2,3,4  

In 2010, our laboratory reported a highly enantioselective formal (3 + 2) 

cycloaddition reaction utilizing catalytic (R)-BINOL and superstoichiometric SnCl4 

(Table 2.1).5,6,7 By exploiting the intrinsic nucleophilicity of 3-substituted indoles and the 

electrophilicity of 2-amidoacrylates, functionalized pyrroloindoline scaffolds can be 

convergently synthesized in a single step. Both the enantio- and diastereoselectivity of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
† Portions of this chapter have been reproduced from published studies (Kieffer, M. E.; Repka, L. M.; 
Reisman, S. E. J. Am. Chem. Soc. 2012, 134, 5131) and the supporting information found therein. Work 
was conducted in collaboration with Dr. Lindsay M. Repka. 
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this transformation were found to be highly dependent on the protecting groups of the 

acrylate, with benzyl 2-trifluoroacetamidoacrylate providing the best results for a variety 

of indole nucleophiles (Table 2.1).   

Table 2.1. Substrate scope of formal (3+2) cycloaddition reaction 

 

 Interestingly, a series of epimerization studies revealed that the reaction produced 

endo/exo-diastereomers of opposite enantiomeric series.  In accord with preliminary 

mechanistic data, one limiting scenario that could explain this finding is if the initial 

conjugate addition proceeds reversibly to provide an enantiomeric mixture of enolate 

intermediates 105 and ent-105. A face-selective, catalyst controlled protonation would 

serve to irreversibly resolve the enantiomers, providing diastereomers endo- and exo-

108. Subsequent cyclization of the amide onto the iminium ion provides the product in 

moderate diastereoselectivity and high enantioselectivity. Importantly, under this 

mechanistic scenario, the diastereomeric ratio is dependent upon the relative rates of 

protonation of 105 and ent-105. Following the precedence of Yamamoto and co-workers, 
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it is anticipated that (R)-BINOL•SnCl4 serves as the asymmetric proton source in this 

reaction via a Lewis acid-assisted Brønsted acid (LBA).  

Scheme 2.1. Proposed mechanism of formal (3+2) cycloaddition reaction 

 

Given this mechanistic insight, we reasoned that the related Friedel–Crafts 

alkylation of 3-unsubstituted indoles would further probe the role of such an 

enantioselective protonation, instead providing functionalized tryptophan products rather 

than pyrroloindolines. Mechanistically, this reaction would occur through initial 

conjugate addition of an indole into a Lewis-acid activated acrylate (Scheme 2.2). 

Rearomatization, followed by catalyst-controlled protonation of the resultant enolate was 

expected to provide alkylation product 116. Successful implementation of this strategy 

would not only be mechanistically useful, but would also allow direct access to 

enantioenriched tryptophan derivatives from simple indole starting materials. This 
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derivatives through a tandem Friedel–Crafts conjugate addition/asymmetric protonation 

reaction. 

Scheme 2.2. Proposed mechanism for the formation of enantioenriched tryptophan 

 

2.1.1 Precedence for Asymmetric Protonation 

 Our hypothesis that the Friedel–Crafts conjugate addition might undergo a 

selective protonation is consistent with work published by Yamamoto and co-workers, in 
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greatly acidifies the alcohols, providing a selective proton source. Although subsequent 
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Scheme 2.3. Yamamoto’s enantioselective protonation 

 

2.1.2 Previous Conjugate Addition/Asymmetric Protonation 

Reactions 

 The synthesis of enantioenriched compounds employing conjugate 

addition/asymmetric protonation reactions has gained considerable momentum within the 

last decade, and a variety of nucleophiles and electrophiles have been found to be 

competent coupling partners.9 One particularly relevant example comes from the labs of 

Genet and Darses, where they were able to construct enantioenriched phenylalanine 

derivatives using this approach (Scheme 2.4).10 

Scheme 2.4. Tandem conjugate addition/asymmetric protonation 

 

 Despite the prevalence of conjugate addition/asymmetric protonation reactions in 

the literature, the first report of a Friedel–Crafts conjugate addition/asymmetric 

protonation reaction was not disclosed until 2008. In their publication, Sibi and co-

workers reveal the use of a novel isoxazolidinone auxiliary, which provides high levels of 

rotamer control of the enolate (Scheme 2.5).11 When used in conjunction with Zn(NTf2)2 

O
Ar

Si
Me

t-Bu
Me O

Ar
SnCl4 (1 equiv)

(R)-BINOL (1.1 equiv)

–78 ºC, 1 h, PhMe

4 examples
85 - 96% ee

R

Ar OSiMe3

OSiMe3

R : Me or OMe

SnCl4 (1 equiv)
(R)-BINOL (1.1 equiv)

–78  ºC, 1 h, PhMe

O

OMe
Ar

RH

4 examples
87 - 94% ee

O

O

Sn
Cl

Cl
Cl

Cl

H
H

OH

OH
+ SnCl4

"Lewis Acid-assisted Brønsted acid"

(complex supported 
by calculations)

117

N
H

OMe

O
Me

O [Rh(cod)2][PF6] (3 mol %)
(R)-BINAP (6.6 mol %)

Guaiacol (1 equiv), 
toluene, 110 ºC

N
H

OMe

O
Me

O

7 examples
68 – 89% yield
81 – 90% ee

ArBF3K

Ar



Chapter 2 – Enantioselective Synthesis of Tryptophan Derivatives by a Tandem Friedel–
Crafts Conjugate Addition/Asymmetric Protonation Reaction 

27 

and chiral ligand 118, they observe enantioenriched pyrrole products (Scheme 2.5, a). 

Concomitant to our work in this field, the Luo lab developed a chiral diamine catalyzed 

Friedel–Crafts conjugate addition/asymmetric protonation reaction that proceeds through 

an enamine intermediate.12 They found this reaction was general for a range of α-

substituted acroleins and indoles, providing products in good yield and moderate to high 

enantioselectivity (Scheme 2.5, b). Notably, there are no examples of Friedel–Crafts 

conjugate addition/asymmetric protonation reactions using indole-based nucleophiles to 

give tryptophan derivatives. 

Scheme 2.5. Tandem Friedel–Crafts conjugate addition/asymmetric protonation 

 

2.2 SCREENING AND OPTIMIZATION 

2.2.1 Initial Screening of Acrylate and Additives 

 Our efforts to effect a tandem Friedel–Crafts conjugate addition/asymmetric 

protonation reaction began with model substrate 2-phenyl indole (119), which we 
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were disappointed to see only 12% yield of the desired product in low enantiomeric 
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conducted. Gratifyingly, the use of commercially available methyl-2-acetamido acrylate 

provided the product in 73% yield and 78% ee (entry 3). Control experiments confirmed 

that while SnCl4 alone catalyzes a background reaction, a substantial rate increase is 

observed upon addition of (R)-BINOL. No reaction was observed in the absence of SnCl4 

(entry 7). 

Table 2.2. Optimization of acrylate 

 
entry R1 R2 time (h) yield (%)b ee (%)c pdt 

1 TFA Bn 2 12 35 121a 
2 TFA Me 2 12 42 121b 
3 Ac Me 5 73 78 121c 
4 CO2Me Me 13 nd 39 121d 
5 Ts Me 13 0 – 121e 
6d Ac Me 2 13 – 121c 
7e Ac Me 2 0 – 121c 

a Reaction conducted under inert atmosphere on 0.2 mmol scale. b Isolated yield. c Determined by chiral 
stationary phase SFC. d No (R)-BINOL was employed. e No SnCl4 was employed. 
 
 As the screening process progressed, we began to observe inconsistencies in the 

selectivity of the reaction. For example, a freshly opened bottle of SnCl4 provided 

acetamido ester 121c in 80% ee (Table 2.3, entry 1). However, switching to older 

sources of SnCl4 decreased enantioenrichment to 76% (entry 2). Similarly, we noted a 

marked decrease in ee as the reaction progressed (entries 3–7) and suspected that HCl 

formed by the reaction of adventitious water with SnCl4 was serving as a non-selective 

proton source. To this end, we investigated additives known to scavenge water or 

neutralize HCl. While insoluble bases such as K2CO3 appeared to have no effect on the 

reaction (entry 9), coordinating bases such as 2,6-lutidine completely shut down 

reactivity (entry 10). Instead, the use of activated 4Å molecular sieves increased both the 

yield and selectivity of the reaction, furnishing tryptophan 121c in 86% yield and 81% ee 
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(entry 11). A small solvent screen confirmed that dichloromethane was indeed the 

optimal solvent for this transformation (entries 11–13). 

Table 2.3. Tandem Friedel–Crafts conjugate addition/asymmetric protonation 

 
 

entry 
solvent time (h) additive yield (%)b ee (%)c 

1 CH2Cl2 2 – nd 80d 
2 CH2Cl2 2 – nd 76e 

3 CH2Cl2 0.25 – nd 84 
4 CH2Cl2 0.5 – nd 84 
5 CH2Cl2 1 – nd 82 
6 CH2Cl2 2 – nd 80 
7 CH2Cl2 7 – nd 80 
8 CH2Cl2 2 – 73 78 
9 CH2Cl2 2 K2CO3 73 78 

10 CH2Cl2 2 2,6-lutidine 0 – 
11 CH2Cl2 2 4Å MS 86 81 
12 DCE 2 4Å MS 87 79 
13 CHCl3 2 4Å MS 80 72 

a Reactions conducted under inert atmosphere on 0.2 mmol scale. b Isolated yield. c Determined by chiral 
stationary phase SFC. d Reaction conducted using freshly opened SnCl4. e Reaction conducted using 
previously opened SnCl4. 
 
2.2.2 Screening of Chiral Ligands 

 With an optimal acrylate, solvent, and additive in hand, we next turned to the 

optimization of the catalyst structure (Table 2.4). Although there appeared to be no 

profound effect on selectivity when altering the electronics of the BINOL backbone 

(entries 1–3), we were pleased to find that modifications to the steric profile of the ligand 

exhibited a clearer trend. Dimethyl catalyst 122e provided tryptophan 121c in improved 

selectivities and comparable yields. Further augmentation of the steric bulk of the catalyst 

by substitution with phenyl groups lowered reactivity and selectivity (entry 6). 

Interestingly, dimethoxy catalyst 122g delivered acetamido ester 121c in low yield and as 

a racemate. This is likely due to its ability to participate in alternate binding modes, 
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resulting in a less reactive and selective catalyst. Gratifyingly, 3,3’-disubstitution with 

halides furnished the highest selectivities, with (R)-3,3’-dibromo-BINOL providing the 

best results (entries 8–10).13 Although we found that catalyst loading could be decreased 

to 5 mol % while still observing 88% ee, we chose to employ 20 mol % loading as it gave 

reliably higher enantioselectivites for more functionalized substrates. 

Table 2.4. Optimization of a chiral ligand 

 
entry catalyst loading (mol %) yield (%) ee (%) entry catalyst loading (mol %) yield (%) ee (%) 

1 122a 20 86 54 8 122h 20 85 90 
2 122b 20 88 78 9 122i 20 76 93 
3 122c 20 82 78 10 122j 20 76 84 
4 122d 20 86 81 11 122i 5 72 88 
5 122e 20 83 87 12 122i 10 75 92 
6 122f 20 17 37 13 122i 15 77 93 
7 122g 20 7 1 14 122i 40 76 93 

a Reactions conducted under inert atmosphere on 0.2 mmol scale for 2 h. b Isolated yield. c Determined by 
chiral stationary phase SFC. 
 
2.3 SUBSTRATE SCOPE 

2.3.1 Friedel–Crafts/asymmetric protonation of substituted indoles 

 With optimal conditions in hand, an exploration of substrate scope was conducted 

(Table 2.5). In contrast to the findings from the formal (3+2) cycloaddition, we observed 
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electron-deficient substrates display markedly decreased reaction rates, a finding 

consistent with a Friedel–Crafts type mechanism. 

Table 2.5. Substrate Scope 

 
a Reactions conducted under inert atmosphere on 0.1 or 0.2 mmol scale for 2 h. Isolated yields are reported. 
Enantiomeric excess was determined by chiral stationary phase SFC. b 1.6 equiv SnCl4 were employed. 
 
 We found that the reaction was amenable to substrates with both alkyl and aryl 

substitution at the 2-position of the indole. 2-Aryl indoles bearing both electron donating 

and electron withdrawing substituents at the para and meta positions were tolerated 

(121o–121s). Unfortunately, even small functionality at the ortho position, such as 

fluoro, resulted in diminished reactivity (121r); a slightly larger methyl group further 

attenuated both yield and ee (121n). For 2-alkyl indoles, the ee improved when moving 

from a methyl group to bulkier n-butyl and i-propyl; however, a drastic decrease in yield 

N
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and ee is observed with the introduction of a t-butyl substituent (121t–121w). 

Remarkably, a phthalimide-containing indole proceeds in 80% yield and 90% ee (121x). 

 
2.3.2 Scale-up and derivatization 

 Although optimization and substrate exploration were run in the glove box to 

streamline the screening protocol, this reaction has been reproduced on the bench top 

using standard Schlenk technique. Using 2-phenyl indole on 5 mmol scale, acetamido 

ester 121c was isolated in 77% yield and 93% ee. Furthermore, we have shown that the 

methyl ester of 121c can be selectively hydrolyzed upon subjection to aqueous LiOH in 

THF at 0°C (Scheme 2.6). Alternatively, orthogonal acetamide deprotection proceeds in 

methanolic HCl at 75 °C to afford free amine 124 in 76% yield with no erosion of ee. 

 Further functionalization of tryptophan 121c was explored by subjection to NBS 

and TFA, common conditions for the oxidative cyclization of tryptophan derivatives to 

pyrroloindolines. Surprisingly, uncyclized imine 125 is remarkably stable, and was 

isolated in 79% yield as a 1:1 mixture of diasteromers. Instead, successful cyclization 

was achieved through exposure to NCS and TFA to initially form the 2-phenyl-3-chloro 

pyrroloindoline (detected by HRMS). Subsequent silica gel promoted hydrolysis delivers 

2-phenyl-3-hydroxy pyrroloindoline 126 in 52% yield as a 6:1 mixture of diastereomers, 

constituting a new class of pyrroloindolines. 
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Scheme 2.6. Derivatization of tryptophan products 

 

2.4 MECHANISTIC STUDIES 

2.4.1 1H NMR Studies 

 As was seen in the pyrroloindoline methodology, the Friedel–Crafts conjugate 

addition/asymmetric protonation reaction exhibits excellent enantioselectivity, even in 

the presence of stoichiometric SnCl4. Therefore, to better understand the mechanism of 

this reaction, a variety of 1H NMR and deuterium labeling experiments were carried out. 

 We first set out to understand the relative rate of the background reaction 

compared to that of the SnCl4•(R)-BINOL catalyzed reaction. A 1H NMR experiment was 

designed in which the consumption of acrylate was monitored over time. As can be seen 

in Figure 2.1, the background reaction employing only SnCl4 proceeded quickly (blue 

line); within thirty minutes (2000 seconds), the reaction reached 50% conversion. 

However, addition of catalytic (R)-BINOL (red line) pushed the reaction to greater than 

80% conversion in the same time period. Closer examination of the first 3000 seconds of 

the reaction revealed that the rate of acrylate consumption is actually quite comparable 

for both the background and SnCl4•(R)-BINOL catalyzed reactions. This suggests that the 

(R)-BINOL promoted rate acceleration might occur in the first two minutes of the 
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reaction, before 1H NMR data is available. Attempts to slow the reaction through dilution 

and decreased catalyst loading in order to facilitate enhanced monitoring by 1H NMR 

proved unfruitful. 

Figure 2.1. 1H NMR studies 

 

 

2.4.2 Deuterium labeling studies 

 To better understand the asymmetric protonation, we sought to find the 

stoichiometric proton source, which likely serves to turn over the chiral diol. Excluding 

adventitious water, there are three exchangeable protons: (i) the N-H of the acrylate, (ii) 

the N-H of the indole, or (iii) the C3 proton of the indole (which is lost in 

rearomatization). Therefore, N-deutero acrylate 127 and perdeutero indole 128 were 

prepared. Control reactions were carried out on each to determine if exchange occurred 

under the reaction conditions. Molecular sieves were omitted to prevent undesired 

deuterium/proton exchange between the substrates and sieves. Additionally, solutions of 

each substrate in dry CD2Cl2 were prepared in the glovebox in order to minimize 

exposure to moisture. Upon addition of SnCl4 and (R)-Br2-BINOL, each substrate was 
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monitored by 1H NMR analysis. Although deutero acrylate 127 exhibited no deuterium-

proton scrambling, perdeutero indole 128 underwent rapid exchange. In only a few 

minutes the substrate exhibited less than 10% deuterium incorporation. Unfortunately, the 

facile exchange of deuterium under the reaction conditions renders these labeling studies 

inconclusive. Furthermore, despite efforts to rigorously exclude moisture from these 

experiments, adventitious water cannot be ruled out as the stoichiometric proton source. 

Scheme 2.7. Deuterium labeling studies 

 

2.4.3 Comparison studies 

 Due to the apparent mechanistic similarities of the formal (3+2) cycloaddition and 

the Friedel–Crafts, we wondered if our newly optimized conditions for the Friedel–Crafts 

could be applied to the synthesis of pyrroloindolines to enhance selectivity. Using 

methyl-2-acetamido acrylate, indole 130 was subjected to optimal Friedel–Crafts 

conditions (entry 2). While there was a discernible increase in the selectivity of the 

product mixture compared to the originally reported conditions for acrylate 131 (entry 

1), better results were still achieved using benzyl-2-trifluoroacetamido acrylate (entry 3). 

Interestingly, use of acrylate 131, with optimal Friedel–Crafts conditions delivered the 

product in good dr and excellent enantioselectivity (entry 4). Unfortunately, use of (R)-

3,3’-Br2-BINOL and 4Å molecular sieves also mitigates the reactivity of the 

transformation, returning an inadmissibly low yield of product. Thus, appropriate 
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matching of catalyst and acrylate is necessary to synthesize either tryptophan derivatives 

(121) or pyrroloindolines (132) in both high yield and ee. 

Table 2.6. Comparison studies 

 
entry conditions R1, R2 yield (%)a drb ee (%)c 

1 (R)-BINOL Me, Me 70 5:1 65/80 
2 (R)-Br2-BINOL, 4Å MS Me, Me 58 8:1 87/85 
3 (R)-BINOL CF3, Bn 86 4:1 94/91 
4 (R)-Br2-BINOL, 4Å MS CF3, Bn 39 7:1 98/95 

a Isolated yield. b Determined by 1H NMR analysis of crude reaction mixture. c Determined by chiral 
stationary phase SFC. d Reaction run with 1.0 equiv acrylate, 1.2 equiv SnCl4. e Reaction run with 1.2 equiv 
acrylate, 1.0 equiv SnCl4. 

 

2.5 CONCLUSION 

In summary, this report describes the development of a SnCl4•(R)-Br2-BINOL 

catalyzed tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction. 

Utilizing a wide range of 2-substituted indoles and methyl-2-acetamido acrylate, we are 

able to access non-canonical tryptophan derivatives in a convergent manner. We have 

demonstrated that the acetamide and methylester functionality can be orthogonally 

deprotected and that acetamido ester 121c can be advanced to more functionalized 

compounds. Moreover, experiments directed towards elucidation of the mechanism have 

been carried out. While the rapid rate of this reaction as well as deuterium scrambling 

under the reaction conditions has complicated analysis, data suggest that catalytically 

generated 122i•SnCl4 is serving as a chiral Lewis-acid assisted Brønsted acid to protonate 

an intermediate Sn-enolate. Future work is directed towards further expansion of 

substrate scope to include C2 unsubstituted indoles. 
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2.6 EXPERIMENTAL SECTION 
 
2.6.1 Materials and Methods 
 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere 

using freshly dried solvents. Methylene chloride, deuterated methylene chloride, dioxane, 

ether, tetrahydrofuran, and toluene were dried by passing through activated alumina. 

Dichloroethane and chloroform were distilled over calcium hydride. Powdered 4Å 

molecular sieves were flame-dried under vacuum immediately prior to use. Potassium 

carbonate was dried for 12 h at 130 °C under vacuum and 2,6-lutidine was distilled over 

AlCl3. All other commercially obtained reagents were used as received unless 

specifically indicated. (R)–BINOL, 2-phenylindole and 2-methylindole were purchased 

from Alfa Aesar, N-methyl-2-phenylindole was obtained from Sigma-Aldrich, and 1 M 

SnCl4 in CH2Cl2 was purchased from Acros Organics. (R)- 3,3’-diphenyl-BINOL, (R)-

3,3’-dimethyl-BINOL, (R)-3,3’-dichloro- BINOL, (R)-3,3’-dibromo-BINOL, (R)-3,3’-

dimethoxy-BINOL, (R)-6,6’-dimethyl-BINOL, (R)-6,6’-dibromo-BINOL, (R)-2'- 

methoxy-[1,1'-binaphthalen]-2-ol, (R)-2'-isopropoxy-[1,1'-binaphthalen]-2-ol, (R)-3,3’-

difluoro-BINOL, (R)-3-phenyl-BINOL, (R)- 5,5’,6,6’,7,7’,8,8’-octahydro-BINOL, (R)-2'-

benzoyl-[1,1'-binaphthalen]-2-ol, (R)-3-bromo-BINOL  and (R)-3-iodo-BINOL, 

TADDOL, Napthyl-TADDOL, and 2-(trimethylsilyl)indole, were prepared according to 

literature procedures. All reactions were monitored by thin-layer chromatography using 

EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm). Silica gel column 

chromatography was performed either as described by Still et al. (W.C. Still, M. Kahn, A. 

Mitra, J. Org. Chem. 1978, 43, 2923.) using silica gel (particle size 0.032-0.063) 
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purchased from Silicycle or using pre-packaged RediSep®Rf columns on a CombiSilica 

gel Rf system (Teledyne ISCO Inc.). 1H and 13C NMR were recorded on a Varian Inova 

500 (at 500 MHz and 125 MHz respectively) or a Varian Inova 600 (at 600 MHz and 150 

MHz respectively, and are reported relative to internal chloroform (1H, δ = 7.26, 13C, δ = 

77.0) or internal acetonitrile (1H, δ = 1.94, 13C, δ = 1.32). Data for 1H NMR spectra are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra were recorded on a 

Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption 

(cm-1). Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system with Chiralcel AD-H, OD-H, AS-H, and OB-H columns (4.6 

mm x 25 cm). Optical rotations were measured on a Jasco P-2000 polarimeter using a 

100 mm path-length cell at 589 nm. HRMS were acquired using either an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI) or mixed (MM) ionization mode. 

2.6.2 Catalyst and substrate preparation 
 
Preparation of (R)-3-chloro-BINOL (122h) 
 

 

To a flame-dried 100 mL flask containing MOM–protected (R)-BINOL S1 (748 mg, 

2.00 mmol, 1.00 equiv) was added Et2O (45 mL), followed by dropwise addition of n-

BuLi as a solution in hexanes (2.5 M, 960 µL, 2.40 mmol, 1.20 equiv) at room 

OMOM
OMOM

OMOM
OMOM

Cl

n-BuLi, Et2O, 23 ºC;
then C2Cl6, –78 ºC  23 ºC

(40% yield)
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temperature.  The mixture was then stirred at room temperature for 3 h and subsequently 

cooled to –78 ºC, followed by addition of C2Cl6 (569 mg, 2.40 mmol, 1.20 equiv) in one 

portion.  The reaction mixture was allowed to warm to room temperature over 3 h, then 

diluted with EtOAc (15 mL) and washed with saturated aqueous NH4Cl (50 mL). The 

aqueous layer was extracted with EtOAc (45 mL) and the combined organic layers were 

dried (Na2SO4), filtered and concentrated.  The crude yellow oil was purified by silica gel 

chromatography (0:100 to 12:88 EtOAc:hexanes) to yield 328 mg (40% yield) of SI-1 as 

a white solid.  1H NMR (500 MHz, CDCl3) δ 8.05 (s, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.87 

(d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 9.1 Hz, 1H), 7.42 (ddd, J = 8.1, 

6.7, 1.3 Hz, 1H), 7.37 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.28 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 

7.24 (ddd, J = 8.5, 6.7, 1.3 Hz, 1H), 7.18 (dddd, J = 8.6, 1.3, 0.7, 0.7 Hz, 1H), 7.16 (ddd, 

J = 8.5, 1.8, 0.8 Hz, 1H), 5.15 (d, J = 7.0 Hz, 1H), 5.04 (d, J = 7.0 Hz, 1H), 4.80 (d, J = 

5.6 Hz, 1H), 4.75 (d, J = 5.6 Hz, 1H), 3.19 (s, 3H), 2.71 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 152.9, 148.9, 133.8, 132.6, 131.1, 130.0, 129.5, 128.8, 128.0, 127.9, 127.8, 

127.0, 126.7, 126.4, 126.1, 125.8, 125.5, 124.2, 119.9, 116.3, 98.8, 94.9, 56.5, 55.9; IR 

(NaCl/thin film): 2955, 2902, 1594, 1508, 1354, 1241, 1159, 1149, 1034, 1014, 961, 922 

cm-1; [α]D
25 = +69.1 (c = 0.90, CHCl3). HRMS (FAB+) calc’d for M+ 408.1128, found 

408.1128. 

 

A 10 mL flask was charged with SI-1 (305 mg, 0.75 mmol, 1.00 equiv), dioxane (3.7 

mL) and aqueous HCl (12 M, 130 µL, 1.58 mmol, 2.10 equiv), then heated to 50 ºC for 2 

h.  The mixture was cooled to room temperature, then diluted with H2O (30 mL) and 

Cl

OMOM
OMOM

OH
OH

Cl

conc. HCl, dioxane, 50 ºC

(87% yield)
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extracted with EtOAc (6 x 20 mL).  The combined organic layers were dried (Na2SO4), 

filtered and concentrated.  The crude residue was purified by silica gel chromatography  

(0:100 to 20:80 EtOAc:hexanes) to yield 210 mg (87% yield) of (R)-3-chloro-BINOL 

(122j) as a white foam, which was dried over P2O5 under vacuum. 1H NMR (500 MHz, 

CDCl3) δ 8.09 (s, 1H), 7.97 (d, J = 8.9 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.2 

Hz, 1H), 7.45 – 7.35 (m, 3H), 7.34 – 7.28 (m, 2H), 7.16 (d, J = 8.5 Hz, 1H), 7.11 (d, J = 

8.4 Hz, 1H), 5.60 (s, 1H), 4.94 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 152.1, 148.3, 

133.1, 132.4, 131.3, 129.7, 129.32, 129.26, 128.4, 127.7, 127.5, 127.3, 125.1, 124.6, 

124.1, 123.9, 122.4, 117.7, 113.6, 111.7; IR (NaCl/thin film): 3503, 3057, 1620, 1596, 

1502, 1451, 1379, 1265, 1212, 1184, 1146, 828 cm-1; [α]D
25 = +55.4 (c = 1.01, CHCl3). 

HRMS (MM) calc’d for [M-H]- 319.0531, found 319.0549. 

Preparation of (R)-6,6’-dimethoxy-BINOL  

 

(R)-6,6’-dimethoxy-BINOL was prepared following a procedure adapted from a 

reported synthesis of (R)-3,3’-dimethoxy-BINOL. To a 25 mL flask containing MOM–

protected (R)-6,6’-dibromo-BINOL (1.10 g, 2.07 mmol, 1.00 equiv) was added THF (6.3 

mL).  The flask was cooled to –78 ºC, followed by dropwise addition of n-BuLi as a 

solution in hexanes (2.5 M, 2.50 mL, 6.20 mmol, 3.00 equiv).  After stirring 1 hour at –

78 ºC, B(OMe)3 (645 mg, 6.20 mmol, 3.00 equiv) was added and the reaction was 

allowed to warm to room temperature.  After 14 hours, the reaction mixture was 

concentrated to give the crude borate intermediate, which was suspended in benzene (7.2 

mL) and cooled to 0 ºC, followed by dropwise addition of aqueous hydrogen peroxide 

OMOM
OMOM

OMOM
OMOM

(i)  n-BuLi, THF, –78 ºC;
 B(OMe)3, –78  23 ºC

Br

Br

(ii) H2O2, PhH, 0 80 ºC

HO

HO(61% yield)
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(30 wt %, 0.61 mL, 5.98 mmol, 2.89 equiv).   The suspension was heated to reflux for 4 

hours, then cooled to room temperature, poured into ice-cold saturated aqueous NaSO3 

(20 mL), and extracted with EtOAc (3 x 15 mL).  The combined organics were washed 

with brine (30 mL), dried (Na2SO4), filtered, and concentrated.  The crude residue was 

purified by silica gel chromatography (0:100 to 50:50 EtOAc:hexanes) to yield 512 mg 

(61% yield) of the product as a light yellow foam.  1H NMR (500 MHz, CD3CN) δ 7.80 

(ddd, J = 9.1, 0.8, 0.4 Hz, 2H), 7.51 (d, J = 9.1 Hz, 2H), 7.20 (ddd, J = 2.5, 0.5, 0.5 Hz, 

2H), 7.09 (br s, 2H), 6.93 (ddd, J = 9.1, 0.7, 0.7 Hz, 2H), 6.87 (dd, J = 9.1, 2.5 Hz, 2H), 

5.02 (d, J = 6.7 Hz, 2H), 4.94 (d, J = 6.7 Hz, 2H), 3.11 (s, 6H) ; 13C NMR (125 MHz, 

CD3CN) δ 154.4, 151.6, 132.1, 129.6, 128.4, 127.8, 122.1, 119.6, 118.7, 110.1, 96.0, 

56.1; IR (NaCl/thin film): 3368, 2914, 1624, 1599, 1511, 1240, 1196, 1148, 1023 cm-1; 

[α]D
25 = +87.1 (c = 1.00, MeCN). HRMS (MM) calc’d for [M-H]- 405.1344, found 

405.1350. 

 

A 15 mL flask was charged with (R)-MOM-hydroxy-BINOL (200 mg, 0.493 mmol, 

1.00 equiv) and K2CO3 (177 mg, 1.28 mmol, 2.60 equiv). DMF (2 mL) was added, 

followed by MeI (123 µL, 1.97 mmol, 4.00 equiv) dropwise.  The reaction was then 

heated to 55 ºC for 22 hours, then cooled to room temperature and quenched with 

saturated aqueous NH4Cl (2 mL) and Et3N (3 drops).  The mixture was stirred at room 

temperature for 6 hours, then diluted with H2O (15 mL) and extracted with EtOAc (3 x 10 

mL).  The combined organics were washed with brine (15 mL), dried (Na2SO4), and 

concentrated. THF (28 mL) and IPA (9.5 mL) were added to the crude residue, followed 

OMOM
OMOM

OH
OH

(i)  K2CO3, MeI, DMF, 55 ºC

HO

HO

(ii) 3:1:1 THF:IPA:6N HCl,
     23 ºC

MeO

MeO(36% yield)
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by dropwise addition of aqueous HCl (6.0 M, 9.4 mL).  The reaction was stirred at room 

temperature for 3 hours, then diluted with H2O (70 mL) and extracted with EtOAc (3 x 30 

mL).  The combined organics were washed with saturated aqueous NaHCO3 (2 x 45 mL) 

and brine (45 mL), then dried (Na2SO4), filtered, and concentrated.  The crude oil was 

purified by silica gel chromatography (0:100 to 30:70 EtOAc:hexanes) to yield 62 mg 

(36% yield) of (R)-6,6’-dimethoxy-BINOL as a light brown solid, which was dried over 

P2O5 under hi-vacuum. Spectral data are in agreement with the literature. 

Preparation of 1-allyl-2-phenylindole  

 

To a 50 mL flask was added NaH (620 mg, 15.5 mmol, 3.00 equiv) and DMF (8 mL) 

and the suspension was cooled to 0 ºC in an ice bath.  A solution of 2-phenylindole (1.00 

g, 5.18 mmol, 1.00 equiv) in DMF (3 mL) was added slowly to the suspension over 15 

minutes and the reaction mixture was further stirred at 0 ºC for 20 minutes, followed by 

dropwise addition of allyl bromide (670 µL, 7.77 mmol, 1.50 equiv).  The ice bath was 

then removed and the mixture was stirred for 15 minutes, then quenched by addition of 

saturated aqueous NH4Cl (5 mL) and Et3N (5 drops). After 2 hours, the reaction was 

diluted with H2O (40 mL) and extracted with EtOAc (3 x 30 mL).  The combined 

organics were washed with brine (120 mL), dried (Na2SO4), filtered, and concentrated.  

The crude was then purified by reverse phase preparatory HPLC (55:45 to 95:5 

MeCN:H2O) using an Agilent 1200 Series HPLC with an Agilent XDB-C18 5 µM 

column (9.4 x 250 mm and 21.2 x 150 mm) to yield 687 mg (57% yield) of 1-allyl-2-

NaH, allylBr, DMF, 0 ºC

N
H

Ph
N Ph

N Ph
(80% combined yield)
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phenylindole as a yellow solid and 331 mg (23% yield) of 1,3-diallyl-2-phenylindole as a 

yellow oil. 

1-allyl-2-phenylindole : 
1H NMR (500 MHz, CDCl3) δ 7.65 (ddd, J = 7.8, 1.2, 0.8 Hz, 1H), 7.55 – 

7.51 (m, 2H), 7.48 – 7.43 (m, 2H), 7.42 – 7.38 (m, 1H), 7.33 (br d, J = 8.2 Hz, 

1H), 7.22 (ddd, J = 7.0, 7.0, 1.3 Hz, 1H), 7.15 (ddd, J = 7.0, 7.0, 1.0 Hz, 1H), 6.60 (br s, 

1H), 6.02 (ddt, J = 17.2, 10.5, 4.4 Hz, 1H), 5.22 (dtd, J = 10.5, 1.8, 1.1 Hz, 1H), 5.00 

(dtd, J = 17.1, 2.0, 1.2 Hz, 1H), 4.74 (dt, J = 4.2, 1.9 Hz, 2H); 13C NMR (125 MHz, 

CDCl3) δ 141.5, 137.8, 133.8, 132.7, 129.1, 128.5, 128.1, 128.0, 121.7, 120.5, 120.0, 

116.5, 110.3, 102.0, 46.5; IR (NaCl/thin film): 3055, 2917, 1602, 1462, 1443, 1392, 

1345, 1317, 1162 cm-1; HRMS (APCI) calc’d for [M+H]+ = 234.1277, found 234.1284. 

1,3-diallyl-2-phenylindole:  

1H NMR (500 MHz, CDCl3) δ 7.65 (ddd, J = 7.8, 1.2, 0.7 Hz, 1H), 7.50 – 

7.40 (m, 5H), 7.33 (ddd, J = 8.1, 0.9, 0.9 Hz, 1H), 7.24 (ddd, J = 7.0, 7.0, 1.2 

Hz, 1H), 7.16 (ddd, J = 7.0, 7.0, 1.1 Hz, 1H), 6.05 (ddt, J = 17.0, 10.1, 5.9 Hz, 1H), 5.91 

(ddt, J = 17.1, 10.4, 4.7 Hz, 1H), 5.14 (dtd, J = 10.4, 1.8, 1.2 Hz, 1H), 5.08 – 5.02 (m, 

2H), 4.92 (dtd, J = 17.1, 1.9, 1.3 Hz, 1H), 4.62 (dt, J = 4.6, 1.9 Hz, 2H), 3.46 (dt, J = 6.0, 

1.7 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 138.0, 137.9, 136.7, 133.9, 131.8, 130.4, 

128.3, 128.2, 128.1, 128.0, 121.7, 119.34, 119.30, 116.2, 114.6, 110.9, 110.1, 46.4, 29.2; 

IR (NaCl/thin film): 3056, 2915, 1637, 1463, 1443, 1408, 1360, 1340, 1191 cm-1; HRMS 

(MM) calc’d for [M+H]+ = 274.1590, found 274.1591. 

Preparation of 2-(2-fluorophenyl)indole: 

 

I

NH2

i.  Pd(PPh3)2Cl2, CuI, Et3N, 23 ºC
ii.  InBr3, PhMe, 110 ºC

(77% yield)

N
HF

F

N Ph

N Ph
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2-(2-fluorophenyl)indole was prepared by an analogous procedure to that reported by 

Sakai et. al. A flame-dried flask was charged with 2-iodoaniline (200 mg, 0.90 mmol, 

1.00 equiv), ethynyl-2-fluorobenzene (133 mg, 1.10 mmol, 1.20 equiv), Pd(PPh3)2Cl2 (13 

mg, 0.02 mmol, 0.02 equiv), copper (I) iodide (2.0 mg, 0.025 mmol, 0.01 equiv) and Et3N 

(4 mL).  The mixture was stirred overnight at room temperature, then filtered through a 

plug of silica, concentrated and redissolved in PhMe (5 mL).  InBr3 (16 mg, 0.05 mmol, 

0.05 equiv) was added in one portion and the mixture was heated to 110 ºC for 5 h, then 

cooled to room temperature, filtered through celite, and concentrated.  The crude residue 

was purified by silica gel chromatography (10:90 EtOAc:hexanes) to yield 148 mg (77% 

yield) of  2-(2-fluorophenyl)indole as a white solid. 1H NMR (500 MHz, CDCl3) δ 8.89 

(br s, 1H), 7.80 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 7.66 (dddd, J = 2.5, 1.3, 0.8, 0.8 Hz, 1H), 

7.43 (ddd, J = 8.1, 1.5, 0.8 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.26 – 7.16 (m, 3H), 7.14 (ddd, 

J = 8.0, 7.0, 1.0 Hz, 1H), 6.97 (d, J = 1.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 159.3 

(d, JC-F= 246.4 Hz), 134.6 (d, JC-F = 501.8 Hz), 128.8 (d, JC-F = 8.8 Hz), 128.1, 128.0 (d, 

JC-F = 4.1 Hz), 124.8 (d, JC-F = 3.2 Hz), 122.7, 120.6, 120.2, 119.9 (d, JC-F = 11.0 Hz), 

116.6, 116.4, 111.0, 101.6 (d, JC-F = 3.0 Hz); IR (NaCl/thin film): 3469, 3042, 2918, 

2848, 1577, 1472, 1460, 1212, 1178, 1109, 928 cm-1; HRMS (MM) calc’d for [M+H]+ 

212.0870, found 212.0869. 

Preparation of 2-(ethylphthalimide)indole: 

 

2-(ethylphthalimide)indole was prepared by an analogous procedure to that reported 

by Sakai et. al.  A flame-dried flask was charged with 2-iodoaniline (500 mg, 2.30 mmol, 

I

NH2
NPhth

i.  Pd(PPh3)2Cl2, CuI, Et3N, 23 ºC
ii.  InBr3, PhMe, 110 ºC N

H

N

O

O(45% yield)
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1.00 equiv), 2-(but-3-yn-1-yl)isoindoline-1,3-dione (550  mg, 2.75 mmol, 1.20 equiv), 

Pd(PPh3)2Cl2 (32 mg, 0.05 mmol, 0.02 equiv), copper (I) iodide (4.5 mg, 0.025 mmol, 

0.01 equiv) and Et3N (8 mL).  The mixture was stirred overnight at room temperature, 

then filtered through a plug of silica, concentrated and redissolved in PhMe (10 mL).  

InBr3 (40 mg, 0.1 mmol, 0.05 equiv) was added in one portion and the mixture was 

heated to 110 ºC for 5 h, then cooled to room temperature, filtered through celite and 

concentrated.  The crude residue was purified by silica gel chromatography (60:40 

EtOAc:hexanes) to yield 302 mg (45% yield) of  2-(ethylphthalimide)indole as a light 

yellow solid. 1H NMR (500 MHz, CDCl3) δ 8.26 (br s, 1H), 7.83 (dd, J = 5.5, 3.1 Hz, 

2H), 7.71 (dd, J = 5.5, 3.1 Hz, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 

7.13 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.06 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.33 (d, J = 1.2 

Hz, 1H), 4.06 (t, J = 7.5 Hz, 2H), 3.21 (t, J = 7.4 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 

168.3, 136.1, 134.9, 134.1, 131.9, 128.6, 123.4, 121.4, 120.0, 119.7, 110.6, 101.1, 37.1, 

27.4.; IR (NaCl/thin film): 3366, 1772, 1707, 1653, 1617, 1466, 1395, 1363, 1293 cm-1; 

HRMS (MM) calc’d for [M+H]+ 291.1128, found 291.1138. 

2.6.3 Optimization of Reaction Parameters 
 
2.6.3.1 General Procedure 1 
 

An oven-dried vial was charged with 2-phenylindole (0.20 mmol, 1.00 equiv), the 

acrylate (0.24 mmol, 1.20 equiv) and an (R)-BINOL derivative and pumped into a glove 

box. The vial was charged with solvent to an indole concentration of 0.12 M, and SnCl4 

(1.00 equiv, as a 1.0 M solution in CH2Cl2) was added. The reaction was stirred at 20 °C 

for 2 hours, after which time it was removed from the glove box and quenched by 
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dilution with 1 M HCl (5 mL) and MeCN (1 mL). The aqueous layer was extracted with 

EtOAc (2 x 5 mL) and the combined organic layers were washed with saturated aqueous 

NaHCO3 (5 mL), dried (Na2SO4), filtered, and concentrated. The crude residue was 

purified by silica gel chromatography. 

Additive screens.  Reactions were performed following General Procedure 1 using 0.20 

equiv (R)-BINOL. After the vial was pumped into the glove box, one of the following 

additives was added:  

• flame-dried powdered 4Å molecular sieves (200 wt % relative to indole)  

• K2CO3 (1.00 equiv)  

• 2,6-lutidine (1.00 equiv) 

Upon addition of the additive, DCM was added to an indole concentration of 0.12 M and 

the reaction was further conducted as described above. 

 
Catalyst screens. Reactions were performed following General Procedure 1 using flame-

dried powdered 4Å molecular sieves (200 wt % relative to indole) as an additive and 

DCM as a solvent. 

2.6.3.2 Characterization Data 
 
(S)-Nα-Trifluoroacetyl-2-phenyltryptophan benzyl ester (121a) 

Prepared from benzyl 2-trifluoroacetamidoacrylate (65.5 mg, 0.24 mmol) 

following General Procedure 1. The crude residue was purified by silica 

gel chromatography (30:70 to 70:30 DCM:hexanes) to yield 11.1 mg (12% yield) of 121a 

as a yellow solid.  The enantiomeric excess was determined to be 35% by chiral SFC 

analysis (OB-H, 2.5 mL/min, 15% IPA in CO2, λ = 254 nm): tR(major) = 11.0 min, 

N
H

Ph

CO2Bn

NHTFA
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tR(minor) = 12.9 min.  1H NMR (500 MHz, CDCl3) δ 8.14 (br s, 1H), 7.57 (ddd, J = 7.9, 

1.8, 0.7 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.50 – 7.45 (m, 2H), 7.42 – 7.36 (m, 2H), 7.34 – 

7.29 (m, 3H), 7.24 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.16 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 

7.11 – 7.07 (m, 2H), 6.67 (br d, J = 7.6 Hz, 1H), 4.95 (d, J = 12.2 Hz, 1H), 4.88 (dt, J = 

7.8, 6.0 Hz, 1H), 4.53 (d, J = 12.2 Hz, 1H), 3.65 – 3.56 (m, 2H); 13C NMR (125 MHz, 

CDCl3) δ 13C NMR (125 MHz, CDCl3) δ 170.1, 156.6 (q, JC-F = 37.8 Hz), 136.3, 135.6, 

134.6, 132.4, 129.2, 128.9, 128.5, 128.44, 128.38, 128.2, 128.1, 122.8, 120.3, 118.6, 

115.3 (q, JC-F = 287.9 Hz), 111.0, 105.6, 67.5, 53.3, 26.7; IR (NaCl/thin film): 3391, 

3061, 2924, 1714, 1542, 1457, 1210, 1173 cm-1; [α]D
25 = +3.5 (c = 0.44, CHCl3). HRMS 

(MM) calc’d for [M+H]+ 467.1577, found 467.1580. 

(S)-Nα-Trifluoroacetyl-2-phenyltryptophan methyl ester (121b) 

Prepared from methyl 2-trifluoroacetamidoacrylate (47.3 mg, 0.24 mmol) 

following General Procedure 1. The crude residue was purified by silica 

gel chromatography (0:100 to 5:95 EtOAc:toluene, then 0:100 to 20:80 EtOAc:hexanes) 

to yield 9.0 mg (12% yield) of 121b as a yellow solid.  The enantiomeric excess was 

determined to be 42% by chiral SFC analysis (AS-H, 2.5 mL/min, 10% IPA in CO2, λ = 

254 nm): tR(major) = 8.7 min, tR(minor) = 7.7 min. 1H NMR (500 MHz, CDCl3) δ  8.17 

(br s, 1H), 7.58 – 7.52 (m, 3H), 7.52 – 7.47 (m, 2H), 7.43 – 7.39 (m, 1H), 7.38 (ddd, J = 

8.1, 0.9, 0.9 Hz, 1H), 7.23 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.16 (ddd, J = 8.0, 7.0, 1.0 Hz, 

1H), 6.65 (br d, J = 7.3 Hz, 1H), 4.83 (dt, J = 7.8, 5.6 Hz, 1H), 3.66 – 3.56 (m, 2H), 3.34 

(s, 3H); 13C NMR (125 MHz, CDCl3) δ 170.5, 156.6 (q, JC-F = 37.7 Hz), 136.3, 135.6, 

132.5, 129.2, 129.0, 128.4, 128.2, 122.8, 120.3, 118.5, 115.3 (q, J C-F= 287.7 Hz), 111.0, 

105.5, 53.2, 52.5, 26.4; IR (NaCl/thin film): 3391, 3057, 2917, 2849, 1718, 1542, 1458, 

N
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CO2Me
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1449, 1211, 1170 cm-1 ; [α]D
25 = +22.3 (c = 0.39, CHCl3). HRMS (MM) calc’d for 

[M+H]+ 391.1264, found 391.1267. 

2.6.4 Optimized Conjugate Addition/Asymmetric Protonation 
 
2.6.4.1 General Procedure 2 
 

An oven-dried vial was charged with the indole (1.00 equiv), methyl 2-

acetamidoacrylate (1.20 equiv) and (R)-3,3’-dibromo-BINOL (0.20 equiv) and pumped 

into a glove box. To the vial was added flame-dried powdered 4Å molecular sieves (200 

wt % relative to indole). The vial was charged with DCM to an indole concentration of 

0.12 M, and SnCl4 (1.00 equiv unless specifically indicated, as a 1 M solution in DCM) 

was added. The reaction was stirred at 20 °C for 2 hours, after which time it was removed 

from the glove box and quenched by dilution with 1 M HCl (5 mL) and MeCN (1 mL). 

The aqueous layer was extracted with EtOAc (2 x 5 mL) and the combined organic layers 

were washed with saturated aqueous NaHCO3 (5 mL), dried (Na2SO4), filtered, and 

concentrated. The crude residue was purified by silica gel chromatography. 

2.6.4.2 Characterization Data 
 

(S)-Nα-Acetyl-2-phenyltryptophan methyl ester (121c) 

Prepared from 2-phenylindole (19.0 mg, 0.10 mmol) following General 

Procedure 2.  The crude residue was purified by silica gel chromatography 

(40:60 to 100:0 EtOAc:hexanes) to yield 25.6 mg (76% yield) of 121c as a white foam.  

The enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 

mL/min, 30% IPA in CO2, λ = 254 nm).  tR(major) = 5.7 min, tR(minor) = 6.9 min. [α]D
25 

= +37.7 (c = 0.94, CHCl3).  Spectral data matches that reported in the literature. 

N
H

Ph

CO2Me

NHAc
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(S)-Nα-Acetyl-1-methyl-2-phenyltryptophan methyl ester (121d)  

Prepared from 1-methyl-2-phenylindole (41.4 mg, 0.20 mmol) following 

General Procedure 2.  The crude residue was purified by silica gel 

chromatography (0:100 to 55:45 EtOAc:hexanes) to yield 43.4 mg (63% yield) of 121d 

as a yellow solid.  The enantiomeric excess was determined to be 85% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 20% IPA in CO2, λ = 254 nm): tR(major) = 4.6 min, 

tR(minor) = 3.9 min.  1H NMR (500 MHz, CDCl3) δ 7.60 (ddd, J = 7.9, 1.2, 0.7 Hz, 1H), 

7.56 – 7.49 (m, 2H), 7.48 – 7.44 (m, 1H), 7.42 – 7.38 (m, 2H), 7.34 (ddd, J = 8.2, 0.9, 0.9 

Hz, 1H), 7.26 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.17 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 5.72 

(br d, J = 7.8 Hz, 1H), 4.74 (dt, J = 8.0, 5.6 Hz, 1H), 3.57 (s, 3H), 3.39 (s, 3H), 3.41 (dd, 

J = 14.7, 5.7 Hz, 1H), 3.34 (dd, J=14.8, 5.6 Hz, 1H), 1.73 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 172.2, 169.5, 139.2, 136.9, 131.6, 130.7, 128.7, 128.4, 127.9, 122.0, 119.7, 

118.7, 109.5, 106.7, 52.8, 52.0, 30.8, 26.6, 23.0.;  IR (NaCl/thin film): 3288, 3055, 2950, 

1743, 1657, 1539, 1469, 1441, 1368, 1238, 1212 cm-1; [α]D
25 = +21.3 (c = 0.91, CHCl3). 

HRMS (MM) calc’d for [M+H]+ 351.1703, found 351.1708. 

(S)-Nα-Acetyl-1-allyl-2-phenyltryptophan methyl ester (121e) 

Prepared from 1-allyl-2-phenylindole (46.6 mg, 0.20 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (0:100 to 55:45 EtOAc:hexanes) to yield 51.3 mg (68% 

yield) of 121e as a yellow foam. The enantiomeric excess was determined to be 85% by 

chiral SFC analysis (AS-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): tR(major) = 2.9 

min, tR(minor) = 2.4 min. 1H NMR (500 MHz, CDCl3) δ 7.62 (ddd, J = 7.8, 1.0, 1.0 Hz, 

1H), 7.53 – 7.47 (m, 2H), 7.47 – 7.42 (m, 1H), 7.42 – 7.37 (m, 2H), 7.30 (ddd, J = 8.1, 

N
Me
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NHAc
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0.9, 0.9 Hz, 1H), 7.23 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.17 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 

5.85 (ddt, J = 17.1, 10.3, 4.7 Hz, 1H), 5.76 (br d, J = 7.9 Hz, 1H), 5.11 (dtd, J = 10.4, 1.7, 

1.2 Hz, 1H), 4.82 (dtd, J = 17.1, 1.9, 1.3 Hz, 1H), 4.76 (dt, J = 8.0, 5.8 Hz, 1H), 4.56 (dt, 

J = 4.7, 1.8 Hz, 2H), 3.39 (s, 3H), 3.36 (dd, J = 14.7, 5.7 Hz, 1H), 3.29 (dd, J = 14.7, 5.9 

Hz, 1H), 1.75 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.2, 169.5, 139.0, 136.3, 133.5, 

131.5, 130.5, 128.7, 128.5, 128.1, 122.0, 119.8, 118.8, 116.3, 110.2, 107.2, 52.8, 52.0, 

46.3, 26.8, 23.0; IR (NaCl/thin film): 3435, 3287, 3056, 2950, 2926, 2851, 1744, 1658, 

1538, 1500, 1408, 1367, 1219, 1196, 1134; [α]D
25 = +13.8 (c = 2.96, CHCl3). HRMS 

(MM) calc’d for [M+H]+ 377.1860, found 377.1865. 

(S)-Nα-Acetyl-4-methyl-2-phenyltryptophan methyl ester (121f) 
 

Prepared from 4-methyl-2-phenylindole (21.0 mg, 0.10 mmol) 

following General Procedure 2. The crude residue was purified by 

silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 30.8 mg (88% yield) 

of 121f as a white foam. The enantiomeric excess was determined to be 96% by chiral 

SFC analysis (AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 9.9 min, 

tR(minor) = 8.9 min. 1H NMR (500 MHz, CDCl3) δ 8.32 (br s, 1H), 7.55 – 7.45 (m, 4H), 

7.44 – 7.37 (m, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.08 (m, 1H), 6.91 (m, 1H), 5.44 (br d, J = 

7.6 Hz, 1H), 4.63 (td, J = 8.2, 5.0 Hz, 1H), 3.69 – 3.45 (m, 2H), 3.44 (s, 3H), 2.78 (s, 

3H), 1.64 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.3, 169.7, 136.3, 136.1, 133.1, 

130.5, 129.2, 128.9, 128.3, 126.9, 122.5, 122.3, 109.0, 107.6, 54.2, 52.1, 27.6, 22.8, 20.5; 

IR (NaCl/thin film): 3295, 3052, 2952, 1741, 1659, 1602, 1547, 1514, 1492, 1449, 1372, 

1218; [α]D
25 = -29.0 (c = 0.63, CHCl3). HRMS (MM) calc’d for [M+H]+ 351.1703, found 

351.1698. 
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(S)-Nα-Acetyl-6-methyl-2-phenyltryptophan methyl ester (121g) 

Prepared from 6-methyl-2-phenylindole (21.0 mg, 0.10 mmol) 

following General Procedure 2. The crude residue was purified by 

silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield  27.9 mg (80% yield) 

of 121g as a colorless oil. The enantiomeric excesses was determined to be 89% by chiral 

SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): tR(major) = 9.1 min, 

tR(minor) = 10.1 min. 1H NMR (500 MHz, CDCl3) δ 8.01 (br s, 1H), 7.55 (ddd, J = 5.8, 

4.0, 2.1 Hz, 2H), 7.48 – 7.44 (m, 3H), 7.39 – 7.33 (m, 1H), 7.14 (s, 1H), 6.97 (dd, J = 8.3, 

1.5 Hz, 1H), 5.78 (br d, J = 7.8 Hz, 1H), 4.83 (dt, J = 8.0, 5.4 Hz, 1H), 3.55 – 3.49 (m, 

2H), 3.30 (s, 3H), 2.47 (s, 3H), 1.67 (s, 3H); 13C NMR (125 MHz, CDCl3) 172.1, 169.6, 

136.1, 135.2, 133.3, 132.4, 129.1, 128.2, 127.9, 127.3, 121.8, 118.5, 110.9, 106.5, 52.7, 

52.0, 26.6, 22.9, 21.7; IR (NaCl/thin film): 3292, 3052, 2958, 2908, 1741, 1658, 1545, 

1530, 1511, 1446, 1375, 1216; [α]D
25 = +39.3 (c = 0.38, CHCl3). HRMS (MM) calc’d for 

[M+H]+ 351.1703, found 351.1698. 

(S)-Nα-Acetyl-7-methyl-2-phenyltryptophan methyl ester (121h) 

Prepared from 7-methyl-2-phenylindole (21.0 mg, 0.10 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 33.0 mg (94% yield) of 121h 

as a white foam. The enantiomeric excess was determined to be 94% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 5.6 min, 

tR(minor) = 5.0 min. 1H NMR (500 MHz, CDCl3) δ 8.23 (br s, 1H), 7.61 – 7.54 (m, 2H), 

7.51 – 7.45 (m, 2H), 7.42 (d, J = 8.1 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.11 – 7.04 (m, 1H), 

7.03 – 6.97 (m, 1H), 5.79 (br d, J = 8.1 Hz, 1H),  4.82 (dt, J  = 8.1, 5.7 Hz, 1H), 2.55 (dd, 
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J = 12.5, 3.1 Hz, 1H), 3.51 (dd, J = 12.5, 3.1 Hz, 1H), 3.30 (s, 3H), 2.50 (s, 3H), 1.65 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 172.1, 169.6, 135.8, 135.3, 133.3, 129.1, 128.9, 

128.4, 128.0, 123.1, 120.20, 120.18, 116.5, 107.1, 52.7, 51.9, 26.6, 22.8, 16.6; IR 

(NaCl/thin film): 3283, 3053, 2950, 1736, 1659, 1518, 1438, 1372, 1306, 1266, 1219, 

1137, 1043; [α]D
25 = +26.5 (c = 0.20, CHCl3). HRMS (MM) calc’d for [M+H]+ 

351.1703, found 351.1708. 

 

 (S)-Nα-Acetyl-5-methoxy-2-phenyltryptophan methyl ester (121i) 

Prepared from 5-methoxy-2-phenylindole (45.0 mg, 0.20 mmol) 

following General Procedure 2. The crude residue was purified by 

silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 62.0 mg (85% yield) 

of 121i as a colorless oil. The enantiomeric excess was determined to be 91% by chiral 

SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): tR(major) = 4.7 min, 

tR(minor) = 6.5 min. 1H NMR (500 MHz, CDCl3) δ 8.24 (br s, 1H), 7.58 – 7.49 (m, 2H), 

7.50 – 7.41 (m, 2H), 7.36 (dd, J = 7.4, 7.4 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.05 (d, J = 

2.3 Hz, 1H), 6.90 – 6.80 (m, 1H), 5.82 (br d, J = 7.9 Hz, 1H), 4.82 (td, J = 7.9, 5.4 Hz, 

1H), 3.87 (s, 3H), 3.49 (m, 2H), 3.29 (s, 3H), 1.67 (s, 3H); 13C NMR (125 MHz, CDCl3) 

δ 172.2, 169.6, 154.4, 136.7, 133.2, 130.8, 129.8, 129.1, 128.2, 128.0, 112.7, 111.7, 

106.5, 100.5, 55.9, 52.7, 52.0, 26.6, 22.9; IR (NaCl/thin film): 3291, 3057, 2926, 1739, 

1652, 1558, 1539, 1520, 1483, 1455, 1374, 1218, 1178; [α]D
25 = +32.6 (c = 0.93, CHCl3). 

HRMS (MM) calc’d for [M+H]+ 367.1652, found 367.1658. 

(S)-Nα-Acetyl-5-bromo-2-phenyltryptophan methyl ester (121j) 

Prepared from 5-bromo-2-phenylindole (54.0 mg, 0.20 mmol) with 1.6 
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equiv SnCl4 following General Procedure 2. The crude residue was purified by silica gel 

chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 49.5 mg (60% yield) of 121j as 

a white foam. The enantiomeric excess was determined to be 93% by chiral SFC analysis 

(AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): tR(major) = 5.3 min, tR(minor) = 7.9 

min. 1H NMR (500 MHz, CDCl3) δ 8.42 (br s, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.56 – 7.50 

(m, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.34 (m, 1H), 7.28 – 7.24 (m, 1H), 7.22 – 7.18 (m, 

1H), 5.75 (br d, J = 8.1 Hz, 1H), 4.82 (dt, J = 8.1, 5.7 Hz, 1H), 3.53 (dd, J = 14.9, 5.5 Hz, 

1H), 3.46 (dd, J = 14.9, 4.8 Hz, 1H), 3.36 (s, 3H), 1.63 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 171.9, 169.6, 137.2, 134.2, 132.6, 131.1, 129.2, 128.3, 128.2, 125.2, 121.6, 

113.1, 112.4, 106.4, 52.6, 52.1, 26.5, 22.8; IR (NaCl/thin film): 3417, 3369, 3282, 1734, 

1654, 1521, 1466, 1437, 1374, 1215; [α]D
25 = +47.2 (c = 1.04, CHCl3). HRMS (MM) 

calc’d for [M+H]+ 415.0652, found 415.0653. 

 
(S)-Nα-Acetyl-5-fluoro-2-phenyltryptophan methyl ester (121k) 

Prepared from 5-fluoro-2-phenylindole (42.0 mg, 0.20 mmol) with 1.6 

equiv SnCl4 following General Procedure 2. The crude residue was 

purified by silica gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 44.7 mg 

(63% yield) of 121k as a colorless oil. The enantiomeric excess was determined to be 

92% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): 

tR(major) = 3.8 min, tR(minor) = 5.2 min. 1H NMR (500 MHz, CDCl3) δ 8.30 (br s, 1H), 

7.60 – 7.52 (m, 2H), 7.50 – 7.43 (m, 2H), 7.42 – 7.34 (m, 1H), 7.27 – 7.24 (m, 1H), 7.21 

(dd, J = 9.8, 2.6 Hz, 1H), 6.94 (ddd, J = 9.0, 9.0, 2.6 Hz, 1H), 5.77 (br d, J = 7.8 Hz, 1H), 

4.82 (dt, J = 8.1, 5.4 Hz, 1H), 3.53 (dd, J = 14.9, 5.6 Hz, 1H), 3.47 (dd, J = 14.9, 5.0 Hz, 

1H), 3.35 (s, 3H), 1.64 (s, 2H); 13C NMR (125 MHz, CDCl3) δ 172.7, 169.8, 168.3, 
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135.6, 134.2, 132.5, 131.9, 128.6, 123.5, 121.8, 119.7, 118.2, 110.8, 107.4, 52.9, 52.4, 

37.0, 27.0, 25.3, 23.1; IR (NaCl/thin film): 3275, 3062, 2952, 1733, 1652, 1584, 1558, 

1539, 1520, 1486, 1456, 1436, 1374, 1266, 1217, 1180; [α]D
25 = +49.9 (c = 1.25, CHCl3). 

HRMS (MM) calc’d for [M+H]+ 355.1452, found 355.1455. 

(S)-Nα-Acetyl-2-(4-methylphenyl)tryptophan methyl ester (121l) 

Prepared from 2-(4-methylphenyl)indole (41.0 mg, 0.20 mmol) 

following General Procedure 2. The crude residue was purified by silica 

gel chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 60.1 mg (86% yield) of 

121l as a white foam. The enantiomeric excess was determined to be 94% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm).  tR(major) = 6.6 min, 

tR(minor) = 8.8 min. 1H NMR (500 MHz, CDCl3) δ 8.20 (br s, 1H), 7.56 (d, J = 8.1 Hz, 

1H), 7.45 (d, J = 8.1, 2H), 7.34 (d, J = 8.1, 1H), 7.28 (d, J = 8.1, 2H), 7.19 (ddd, J = 7.8, 

7.1, 1.2 Hz, 1H), 7.15 – 7.09 (m, 1H), 5.77 (br d, J = 8.1, 1H), 4.82 (dt, J = 7.8, 5.5 Hz, 

1H), 3.54 (dd, J = 13.1, 4.0 Hz, 1H), 3.50 (dd, J = 13.1, 3.7 Hz, 1H), 3.33 (s, 3H), 2.40 (s, 

3H), 1.66 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.2, 169.6, 138.0, 136.1, 135.6, 

130.2, 129.8, 129.4, 128.1, 122.3, 119.9, 118.7, 110.9, 106.4, 52.8, 52.0, 26.6, 22.8, 21.2; 

IR (NaCl/thin film): 3365, 3271, 3052, 2951, 1737, 1657, 1519, 1460, 1439, 1375, 1305, 

1217 cm-1; [α]D
25 =  43.2 (c = 0.74, CHCl3). HRMS (MM) calc’d for [M+H]+ 351.1703, 

found 351.1700. 

 

(S)-Nα-Acetyl-2-(2-methylphenyl)tryptophan methyl ester (121m) 
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Prepared from 2-(2-methylphenyl)indole (21.0 mg, 0.1 mmol) following 

General Procedure 2.  The crude residue was purified by flash 

chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 9.2 mg (26% 

yield) of 121m. The enantiomeric excess was determined to be 87% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 4.3 min, 

tR(minor) = 4.9 min. 1H NMR (500 MHz, CDCl3) δ 8.03 (br s, 1H), 7.62 – 7.55 (dd, J = 

7.6, 0.9 Hz, 1H), 7.38 – 7.32 (m, 4H), 7.31 – 7.27 (m, 1H), 7.22 (ddd, J = 8.1, 5.6, 2.1 

Hz, 1H), 7.16 (ddd, J = 7.1, 5.6, 1.1 Hz, 1H), 5.71 (br d, J = 7.9 Hz, 1H), 4.82 – 4.68 (dt, 

J = 7.9, 5.4 Hz, 1H), 3.38 – 3.29 (m, 4H), 3.28 – 3.16 (m, 1H), 2.28 (s, 3H), 1.73 (s, 3H); 

13C NMR (125 MHz, CDCl3) δ 172.1, 169.6, 137.3, 135.8, 135.5, 132.1, 130.9, 130.8, 

128.9, 128.7, 126.0, 122.3, 119.9, 118.8, 110.8, 107.6, 52.8, 52.0, 26.6, 23.0, 20.0; IR 

(NaCl/thin film): 3385, 3271, 3062, 2924, 2853, 1734, 1653, 1559, 1539, 1521, 1457, 

1437, 1374; [α]D
25 = +21.5 (c = 0.29, CHCl3). HRMS (MM) calc’d for [M+H]+ 

351.1703, found 351.1709. 

(S)-Nα-Acetyl-2-(4-chlorophenyl)tryptophan methyl ester (121n) 

Prepared from 2-(4-chlorophenyl)indole (45.0 mg, 0.20 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 55.2 mg (75% yield) of 121n 

as a colorless oil. The enantiomeric excess was determined to be 93% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): tR(major) = 6.1 min, 

tR(minor) = 7.0 min. 1H NMR (500 MHz, CDCl3) δ 8.45 (br s, 1H), 7.56 (d, J = 8.1 Hz, 

1H), 7.49 – 7.43 (m, 2H), 7.43 – 7.37 (m, 2H), 7.33 (ddd, J  = 8.1, 8.1, 1.0 Hz, 1H), 7.23 

– 7.18 (m, 1H), 7.14 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 5.85 (br d, J = 8.1 Hz, 1H), 4.83 (dt, 

N
H

CO2Me

NHAc

Me

N
H

CO2Me

NHAc

Cl



Chapter 2 – Enantioselective Synthesis of Tryptophan Derivatives by a Tandem Friedel–
Crafts Conjugate Addition/Asymmetric Protonation Reaction 

56 

J = 8.1, 5.5 Hz, 1H), 3.55 – 3.38 (m, 2H), 3.34 (s, 3H), 1.69 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 172.1, 169.6, 135.8, 134.6, 133.9, 131.5, 129.4, 129.3, 122.7, 120.1, 118.9, 

111.1, 107.1, 52.8, 52.1, 29.6, 26.7, 22.9; IR (NaCl/thin film): 3280, 3058, 2948, 1737, 

1657, 1519, 1487, 1458, 1439, 1373, 1310, 1216, 1093 cm-1; [α]D
25 = +40.8 (c = 0.96, 

CHCl3). HRMS (MM) calc’d for [M+H]+ 371.1157, found 371.1158. 

(S)-Nα-Acetyl-2-(3-methoxyphenyl)tryptophan methyl ester (121o) 

Prepared from 2-(3-methoxyphenyl)indole (45.0 mg, 0.20 mmol) 

following General Procedure 2. The crude residue was purified by silica 

gel chromatography (30:70 to 100:0 EtOAc:hexanes) to yield 65.0 mg 

(88% yield) of 121o as a colorless oil. The enantiomeric excess was determined to be 

92% by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): 

tR(major) = 5.9 min, tR(minor) = 7.6 min. 1H NMR (500 MHz, CDCl3) δ 8.40 (br s, 1H), 

7.55 (d, J = 8.1 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.19 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.16 – 

7.10 (m, 2H), 7.08 (dd, J = 2.6, 1.6 Hz, 1H), 6.91 (ddd, J = 8.3, 2.6, 0.8 Hz, 1H), 5.82 (br  

d, J = 7.8 Hz, 1H), 4.83 (dt, J = 7.8, 5.5 Hz, 1H), 3.85 (s, 3H), 3.57 – 3.49 (m, 2H), 3.35 

(s, 3H), 1.65 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.2, 169.6, 160.0, 135.8, 135.6, 

134.4, 130.2, 129.3, 122.5, 120.6, 119.9, 118.8, 113.8, 113.5, 111.0, 106.7, 55.4, 52.8, 

52.0, 26.6, 22.8; IR (NaCl/thin film): 3282, 3058, 2951, 1738, 1658, 1603, 1520, 1462, 

1439, 1373, 1218, 1040; [α]D
25 = +40.3 (c = 1.16, CHCl3). HRMS (MM) calc’d for 

[M+H]+ 367.1652, found 367.1656. 

(S)-Nα-Acetyl-2-(4-fluorophenyl)tryptophan methyl ester (121p) 

Prepared from 2-(4-fluorophenyl)indole (42.0 mg, 0.20 mmol) 

following General Procedure 2. The crude residue was purified by silica 
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gel chromatography (40:60 to 100:0 EtOAc/hexanes) to yield 55.6 mg (78% yield) of 

121p as a colorless oil. The enantiomeric excess was determined to be 92% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 6.1 min, 

tR(minor) = 6.9 min. 1H NMR (500 MHz, CDCl3) δ  8.19 (d, J = 47.9 Hz, 1H), 7.57 (dd, J 

= 7.9, 1.1 Hz, 1 H), 7.54 – 7.51 (m, 2H), 7.36 (ddd, J = 8.1, 8.1, 0.9 Hz, 1H), 7.23 – 7.10 

(m, 4H), 5.82 (d, J = 8.1 Hz, 1H), 4.83 (dt, J = 8.1, 5.5 Hz, 1H), 3.55 – 3.40 (m, 2H), 3.34 

(s, 3H), 1.71 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.2, 169.5, 135.6, 135.0, 130.1, 

130.1, 129.4, 122.7, 120.2, 118.9, 116.2, 116.1, 110.9, 106.9, 52.8, 52.0, 26.7, 22.9.; IR 

(NaCl/thin film): 3364, 3271, 3061, 2925, 2853, 1738, 1661, 1553, 1505, 1460, 1440, 

1373, 1221, 1158; [α]D
25 = +38.2 (c = 0.65, CHCl3). HRMS (MM) calc’d for [M+H]+ 

355.1452, found 355.1460. 

 
(S)-Nα-Acetyl-2-(3-fluorophenyl)tryptophan methyl ester (121q) 

Prepared from 2-(3-fluorophenyl)indole (42.0 mg, 0.20 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (40:60 to 100:0 ethyl acetate/hexanes) to yield 50.6 mg 

(76% yield) of 121q as a white foam. The enantiomeric excess was determined to be 92% 

by chiral SFC analysis (AD-H, 2.5 mL/min, 30% IPA in CO2, λ = 254 nm): tR(major) = 

3.8 min, tR(minor) = 4.6 min. 1H NMR (500 MHz, CDCl3) δ 8.65 (br s, 1H), 7.57 (d, J = 

8.1 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.33-7.31 (m, 2H), 7.27-7.24 (m, 1H), 7.19 (ddd, J = 

8.2, 7.0, 1.0 Hz, 1H), 7.13 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H), 7.07 – 7.03 (m, 1H), 5.89 (br d, 

J = 8.1 Hz, 1H), 4.84 (dt, J = 8.1, 5.5 Hz, 1H), 3.53 (dd, J = 13.6, 4.7 Hz, 1H), 3.49 (dd, J 

= 13.6, 4.2 Hz, 1H), 3.34 (s, 3H), 1.69 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.1, 

169.7, 162.9 (d, JC-F = 246.3 Hz), 135.8, 135.2 (d, JC-F = 7.5 Hz), 134.5 (d, JC-F = 2.5 Hz), 
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130.6 (d, JC-F = 8.8 Hz), 129.2, 123.9 (d, JC-F = 3.8 Hz), 122.8, 120.0, 118.9, 115.1 (d, JC-

F = 21.2 Hz), 114.7 (d, JC-F = 21.2 Hz), 111.1, 107.3, 52.8, 52.0, 26.7, 22.8; IR (NaCl/thin 

film): 3370, 3275, 3060, 2952, 1735, 1655, 1614, 1585, 1522, 1438, 1374, 1266, 1200, 

1155 cm-1; [α]D
25 = +37.6 (c = 1.21, CHCl3). HRMS (MM) calc’d for [M+H]+ 355.1452, 

found 355.1450. 

(S)-Nα-Acetyl-2-(2-fluorophenyl)tryptophan methyl ester (121r) 

Prepared from 2-(2-fluorophenyl)indole (21.0 mg, 0.10 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 12.4 mg (35% 

yield) of 121r. The enantiomeric excesses was determined to be 92% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 9.5 min, 

tR(minor) = 8.4 min. 1H NMR (500 MHz, CDCl3) δ 8.28 (s, 1H), 7.61 (d, J = 7.9 Hz, 1H), 

7.55 (ddd, J = 7.5, 7.5, 1.8 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.29 (ddd, J = 7.5, 7.5, 1.2 Hz, 

1H), 7.25 – 7.20 (m, 1H), 7.19 – 7.10 (m, 1H), 5.83 (br d, J = 7.6 Hz, 1H), 4.85 (dt, J = 

7.9, 5.5 Hz, 1H), 3.55 – 3.39 (m, 2H), 3.36 (s, 2H), 1.73 (s, 3H).; 13C NMR (125 MHz, 

CDCl3) δ 172.2, 169.5, 159.8 (d, JC-F = 246.3 Hz), 135.9, 131.4 (d, JC-F = 3.8 Hz) 130.2 

(d, JC-F = 8.8 Hz), 129.73, 128.65, 124.8 (d, JC-F = 3.8 Hz), 122.84, 120.6 (d, JC-F = 15.0 

Hz), 120.0, 119.0, 116.4 (d, JC-F = 21.3 Hz), 111.0, 108.8, 52.5, 52.0, 26.8, 26.8, 22.9; IR 

(NaCl/thin film): 3275, 3058, 2925, 2853, 1734, 1653, 1523, 1490, 1457, 1437, 1374, 

1245, 1216, 1130, 1104; [α]D
25 = +39.8 (c = 0.41, CHCl3). HRMS (MM) calc’d for 

[M+H]+ 355.1452, found 355.1463. 

 
 
(S)-Nα-Acetyl-2-methyltryptophan methyl ester (121s) 
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Prepared from 2-methylindole (26.0 mg, 0.20 mmol) following General 

Procedure 2.  The crude residue was purified by silica gel 

chromatography (50:50 to 100:0 EtOAc:hexanes) to yield 31.0 mg (61% yield) of 121s as 

a white foam.  The enantiomeric excess was determined to be 85% by chiral SFC analysis 

(AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 3.9 min, tR(minor) = 2.7 

min. [α]D
25 = +25.9 (c = 0.99, CHCl3).  Spectral data matches that reported in the 

literature.  

 

(S)-Nα-Acetyl-2-butyltryptophan methyl ester (121t) 

Prepared from 2-butylindole (35.0 mg, 0.20 mmol) following General 

Procedure 2. The crude residue was purified by silica gel chromatography 

(40:60 to 100:0 EtOAc:hexanes) to yield 45.8 mg (72% yield) of 121t as a colorless oil. 

The enantiomeric excess was determined to be 91% by chiral SFC analysis (AD-H, 2.5 

mL/min, 20% IPA in CO2, λ = 254 nm): tR(major) = 5.1 min, tR(minor) = 4.2 min. 1H 

NMR (500 MHz, CDCl3) δ 8.03 (br s, 1H), 7.46 – 7.40 (m, 1H), 7.31 – 7.24 (m, 1H), 

7.15 – 6.99 (m, 2H), 6.00 (br d, J = 7.8 Hz, 1H), 4.88 (dt, J = 8.1, 5.7 Hz, 1H), 3.65 (s, 

3H), 3.26 (dd, J = 5.7, 0.9 Hz, 2H), 2.69 (td, J = 7.8 2.2 Hz, 2H), 1.93 (s, 3H), 1.66 – 1.57 

(m, 2H), 1.45 – 1.31 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 

172.6, 169.6, 137.4, 135.2, 128.8, 121.3, 119.5, 117.9, 110.4, 105.26, 105.29, 53.0, 52.3, 

31.8, 26.8, 25.7, 23.2, 22.6, 13.9; IR (NaCl/thin film): 3296, 3058, 2955, 2871, 1737, 

1658, 1562, 1530, 1463, 1439, 1376, 1217, 1129; [α]D
25 = +16.3 (c = 0.83, CHCl3). 

HRMS (MM) calc’d for [M+H]+ 317.1860, found 317.1855. 
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(S)-Nα-Acetyl-2-isopropyltryptophan methyl ester (121u) 

Prepared from 2-isopropylindole (32.0 mg, 0.20 mmol) following General 

Procedure 2. The crude residue was purified by silica gel chromatography 

(40:60 to 100:0 EtOAc:hexanes) to yield 39.6 mg (66% yield) of 121u as a colorless oil. 

The enantiomeric excess was determined to be 92% by chiral SFC analysis (AD-H, 2.5 

mL/min, 15% IPA in CO2, λ = 254 nm). tR(major) = 6.4 min, tR(minor) = 5.6 min. 1H 

NMR (500 MHz, CDCl3) δ 8.16 (br s, 1H), 7.48 – 7.41 (m, 1H), 7.30 – 7.27 (m, 1H), 

7.15 – 7.02 (m, 2H), 6.04 (br d, J = 8.0 Hz, 1H), 4.89 (dt, J = 8.1, 5.7 Hz, 1H), 3.66 (s, 

3H), 3.29 (dd, J = 12.7, 4.0 Hz, 1H), 3.26 (dd, J = 12.7, 3.4 Hz, 1H), 3.18 (m, 1H), 1.93 

(s, 3H1.31 (d, J = 3.3 Hz, 3H), 1.30 (d, J = 3.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 

172.6, 169.7, 142.7, 135.2, 128.7, 121.3, 119.5, 117.9, 110.6, 103.6, 53.0, 52.3, 26.7, 

25.3, 23.2, 23.0; IR (NaCl/thin film): 3305, 2962, 1734, 1700, 1653, 1559, 1539, 1506, 

1457, 1436, 1374, 1299, 1217 cm-1; [α]D
25 = +22.2 (c = 0.35, CHCl3). HRMS (MM) 

calc’d for [M+H]+ 303.1703, found 303.1709. 

 
 
 
(S)-Nα-Acetyl-2-(tert-butyl)tryptophan methyl ester (121v) 

Prepared from 2-(tert-butyl)indole (35.0 mg, 0.20 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (40:60 to 100:0 EtOAc:hexanes) to yield 18.1 mg (29% yield) of 121v 

as a yellow oil. The enantiomeric excess was determined to be 84% by chiral SFC 

analysis (OD-H, 2.5 mL/min, 10% IPA in CO2, λ = 254 nm): tR(major) = 12.8 min, 

tR(minor) = 14.2 min. 1H NMR (500 MHz, CDCl3) δ 8.07 (br s, 1H), 7.47 (dd, J = 14.0, 

7.1 Hz, 1H), 7.27 (dd, J = 5.8, 4.8 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.06 (br d, J = 7.4 Hz, 
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1H), 4.84 (m, 1H), 3.54 (s, 3H), 3.38 – 3.29 (m, 2H), 1.86 (s, 3H), 1.49 (s, 9H); 13C NMR 

(125 MHz, CDCl3) δ 173.2, 169.6, 143.4, 133.9, 129.8, 121.3, 119.4, 117.7, 110.4, 104.3, 

53.7, 52.2, 33.2, 30.7, 28.6, 23.0; IR (NaCl/thin film): 3326, 3047, 2961, 2918, 2868, 

1734, 1653, 1539, 1457, 1436, 1374, 1303, 1254, 1211, 1128; [α]D
25 = +12.4 (c = 0.36, 

CHCl3). HRMS (MM) calc’d for [M+H]+ 317.1860, found 317.1856. 

(S)-Nα-Acetyl-2-(ethylphthalimide)tryptophan methyl ester (121w) 

Prepared from 2-(ethylphthalimide)indole (29.0 mg, 0.10 mmol) following 

General Procedure 2. The crude residue was purified by silica gel 

chromatography (70:30 to 100:0 EtOAc:hexanes) to yield 34.6 mg (80% yield) of 121w 

as a yellow foam. The enantiomeric excess was determined to be 90% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 7.3 min, 

tR(minor) = 6.3 min. 1H NMR (500 MHz, CDCl3) δ 8.47 (br s, 1H), 7.83 (dd, J = 5.4, 2.9 

Hz, 2H), 7.72 (dd, J = 5.5, 3.1 Hz, 2H), 7.46 (d, J = 8.1 Hz, 1H), 7.31 (ddd, J = 8.1, 8.1, 

1.0 Hz, 1H), 7.13 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.07 (ddd, J = 10.5, 5.8, 2.2 Hz, 1H), 

6.13 (br d, J = 8.1 Hz, 1H), 4.92 (dt, J = 8.2, 6.0 Hz, 1H), 4.05 – 3.89 (m, 2H), 3.66 (s, 

3H), 3.33 – 2.98 (m, 4H), 1.93 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 172.7, 169.8, 

168.3, 135.6, 134.2, 132.5, 131.9, 128.6, 123.5, 121.8, 119.7, 118.2, 110.8, 107.4, 52.9, 

52.4, 37.0, 27.0, 25.3, 23.1; IR (NaCl/thin film): 3369, 3280, 3052, 2948, 1770, 1738, 

1711, 1659, 1530, 1438, 1397, 1371; [α]D
25 = +14.8 (c = 0.96, CHCl3). HRMS (MM) 

calc’d for [M+H]+ 355.1452, found 355.1455. 

 

2.6.5 Scale-up Procedure 
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To a flame-dried flask under nitrogen containing freshly activated powdered 4Å 

molecular sieves (200 wt %) was added 2-phenylindole (1.00 g, 5.20 mmol, 1.00 equiv), 

methyl 2-acetamidoacrylate (890 mg, 6.20 mmol, 1.20 equiv), and (R)-3,3’-dibromo-

BINOL (457 mg, 1.00 mmol, 0.20 equiv).  The flask was charged with DCM (40 mL) 

and SnCl4 (1 M in DCM, 5.20 mL, 5.20 mmol, 1.00 equiv) was added. The reaction was 

stirred at room temperature for 2 hours, then quenched by addition of 1 M HCl (50 mL).  

The aqueous layer was extracted with EtOAc (2 x 50 mL) and the combined organic 

layers were washed with saturated  aqueous NaHCO3 (50 mL), dried (Na2SO4), filtered 

and concentrated.  The crude residue was purified by silica gel chromatography (40:60 to 

100:0 EtOAc:hexanes) to yield 1.33 g (77% yield) of 121c  as a pale yellow foam. The 

enantiomeric excess was determined to be 93% by chiral SFC analysis (AD-H, 2.5 

mL/min, 30% IPA in CO2, λ = 254 nm):  tR(major) = 5.7 min, tR(minor) = 6.9 min. 

 

!
!
2.6.6 Functionalization of Tryptophan 121c 
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!
2.6.6.1 Acetamide Hydrolysis of 121c 
!

!
A vial was charged with (S)-Nα-acetyl-2-phenyltryptophan methyl ester (121c, 30.0 

mg, 0.09 mmol), MeOH (1 mL), H2O (1 mL) and aqueous HCl (12 M, 1 mL).  The 

reaction was heated to 75 °C for 12 hours, then concentrated, redissolved in DCM (10 

mL) and washed with saturated aqueous NaHCO3 (3 X 5 mL).  The aqueous layers were 

combined and extracted with DCM (4 X 5 mL).  The combined organic layers were 

washed with brine, dried (Na2SO4), filtered and concentrated.  The crude residue was 

purified by silica gel chromatography (99:1 CH2Cl2:MeOH) to yield 20.0 mg (76% yield) 

of 124 as a light yellow oil. The enantiomeric excess was determined by chiral SFC 

analysis of the corresponding methylcarbamate (see below). 1H NMR (500 MHz, CDCl3) 

δ 8.18 (br s, 1H), 7.67 (dd, J = 7.6, 0.7 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.50 – 7.43 (m, 2H), 

7.41 – 7.34 (m, 2H), 7.22 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.15 (ddd, J = 7.9, 7.0, 1.0 Hz, 

1H), 3.89 (dd, J = 8.4, 5.0 Hz, 1H), 3.56 (s, 3H), 3.47 – 3.38 (m, 1H), 3.27 – 3.14 (m, 

1H), 1.69 (br s, 2H); 13C NMR (125 MHz, CDCl3) δ 175.5, 136.1, 135.8, 132.9, 129.1, 

129.0, 128.3, 128.0, 122.5, 119.9, 119.2, 110.9, 108.2, 55.2, 51.9, 30.2; IR (NaCl/thin 

film): 3367, 3062, 2948, 1732, 1603, 1489, 1457, 1207; [α]D
25 = -12.4 (c = 0.85, CHCl3). 

HRMS (MM) calc’d for [M+H]+ 295.1441, found 295.1446. 
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A flame-dried flask was charged with free amine 124 (19.5 mg, 0.70 mmol, 1.00 

equiv), Et3N (19 µL, 0.13 mmol, 2.0 equiv) and DCM (5 mL). Methylchloroformate (6.0 

µL, 0.73 mmol, 1.10 equiv) was added and the solution was stirred at room temperature 

for 3 hours, then quenched with saturated aqueous NH4Cl (5 mL) and extracted with 

EtOAc (2 X 5 mL).  The combined organic layers were dried (Na2SO4), filtered and 

concentrated.  The crude residue was purified by silica gel chromatography (25:75 

EtOAc:hexanes) to yield 18.5 mg (80% yield) of methylcarbamate as a colorless oil.  The 

enantiomeric excess was determined to be 93% by chiral SFC analysis (OD-H, 2.5 

mL/min, 15% IPA in CO2, λ = 254 nm): tR(major) = 16.7 min, tR(minor) = 15.6 min.  1H 

NMR (500 MHz, CDCl3) δ 8.11 (br s, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.57 – 7.52 (m, 1H), 

7.48 – 7.45 (m, 2H), 7.40 – 7.35 (m, 2H), 7.25 – 7.19 (m, 1H), 7.16 (m, 1H), 5.06 (br d, J 

= 7.7 Hz, 1H), 4.63 – 4.59 (m, 1H), 3.54 (s, 3H), 3.50 (m, 2H), 3.38 (s, 3H); 13C NMR 

(125 MHz, CDCl3) δ 172.3, 156.1, 136.2, 135.7, 132.9, 129.2, 129.0, 128.3, 128.0, 122.5, 

120.0, 118.9, 110.9, 106.7, 54.5, 52.12, 52.07, 27.1; IR (NaCl/thin film) 3338, 2953, 

2923, 2852, 1718, 1701, 1507, 1457, 1363, 1213, 1072 cm-1; [α]D
25 = +22.6 (c = 0.10, 

CHCl3). HRMS (MM) calc’d for [M+H]+ 353.1496, found 353.1497. 

Methylcarbamate: racemic 
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!
!

Methylcarbamate: enantioenriched, 93% ee!

!

 
2.6.6.2 Methyl Ester Hydrolysis of 121c 

 

A 10 mL flask was charged with (S)-Nα-acetyl-2-phenyltryptophan methyl ester 121c 

(67.2 mg, 0.20 mmol, 1.00 equiv) and THF (0.9 mL) then cooled to 0 ºC, followed by 

dropwise addition of aqueous LiOH (1.75 M, 230 µL, 0.40 mmol, 2.00 equiv).  The 

reaction was vigorously stirred at 0 ºC for 2 hours, then diluted with H2O (15 mL) and 

extracted with EtOAc (2 x 10 mL).  The aqueous layer was acidified to pH = 1.5 and 

extracted with EtOAc (5 x 15 mL).  The combined organic layers from the acidic aqueous 

extraction were dried (Na2SO4), filtered, and concentrated.  The crude residue was 

purified by silica gel chromatography (0:99:1 to 15:84:1 MeOH:DCM:AcOH) to yield 

59.2 mg (92% yield) of carboxylic acid 123 as a pale yellow foam. The enantiomeric 

excess was determined to be 92% by chiral SFC analysis (AS-H, 2.5 mL/min, 28% IPA 
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in CO2, λ = 254 nm): tR(major) = 4.5 min, tR(minor) = 8.0 min.  1H NMR (500 MHz, 

CDCl3) δ 8.21 (br s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.47 (dd, J = 7.6, 

7.6 Hz, 2H), 7.40 (m, 1H), 7.37 (ddd, J = 8.0, 0.8, 0.8 Hz, 1H), 7.21 (ddd, J = 8.1, 7.1, 

1.1 Hz, 1H), 7.14 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 5.72 (br d, J = 7.4 Hz, 1H), 4.73 (td, J = 

7.1, 5.4 Hz, 1H), 3.56 (dd, J = 14.9, 5.2 Hz, 1H), 3.49 (dd, J=15.0, 6.9 Hz, 1H), 1.62 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 174.7, 170.9, 136.2, 135.7, 132.9, 129.13, 129.05, 

128.3, 128.2, 122.6, 120.1, 118.8, 111.0, 106.8, 53.1, 26.2, 22.6; IR (NaCl/thin film): 

3391, 3306, 3055, 3011, 2921, 2850, 1717, 1615, 1527, 1457, 1448, 1215 cm-1; [α]D
25 = 

+9.2 (c = 1.05, MeCN). HRMS (MM) calc’d for [M+H]+ 323.1390, found 323.1390. 

 Racemic 
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2.6.6.3 Preparation of bromo-dehydroindoline 125 
 

 

A solution of (S)-Nα-acetyl-2-phenyltryptophan methyl ester 121c (101 mg, 0.30 mmol, 

1.00 equiv) in DCM (8.4 mL) was cooled to –50 °C in an acetonitrile/dry ice bath. NBS 

(53.4 mg, 0.30 mmol, 1.00 equiv) was then added, followed by TFA (900 µL). The 

reaction was stirred in the dark at –50 °C for 3 hours, then poured onto ice, quenched 

with aqueous ammonia (1.5 mL) and extracted with DCM (3 x 25 mL). The combined 

organics were washed (40 mL H2O, then 40 mL brine), dried (Na2SO4), filtered, and 

concentrated. The product 125 was formed in a 1:1 ratio of diastereomers (determined by 

1H NMR analysis of the crude reaction mixture) and was purified by silica gel 

chromatography (30:70 to 70:30 EtOAc:hexanes) to yield 98 mg (79% yield) of the 

combined diastereomers as a bright yellow foam. The enantiomeric excesses of the two 

diastereomers were determined to be 92% and 90% by chiral SFC analysis (AS-H, 2.5 
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mL/min, 20% IPA in CO2, λ = 254 nm): tR(major) = 3.8 min, tR(minor) = 4.1 min; 

tR(major) = 4.6 min, tR(minor) = 6.0 min. Spectral data and optical rotation are reported 

for the mixture of diastereomers. 1H NMR (500 MHz, CDCl3) δ 8.42 – 8.32 (m, 4H), 

7.70 – 7.64 (m, 2H), 7.57 – 7.49 (m, 8H), 7.47 – 7.40 (m, 2H), 7.39 – 7.30 (m, 2H), 5.37 

(br d, J = 7.4 Hz, 1H), 5.05 (br d, J = 8.5 Hz, 1H), 4.33 (dt, J = 7.5, 5.5 Hz, 1H), 3.95 (td, 

J = 8.9, 4.0 Hz, 1H), 3.56 (dd, J = 14.8, 5.2 Hz, 1H), 3.47 – 3.41 (m, 4H), 3.38 – 3.32 (m, 

4H), 3.23 (dd, J = 14.6, 9.3 Hz, 1H), 1.45 (s, 3H), 1.27 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 175.6, 174.8, 170.7, 170.0, 169.4, 169.2, 151.82, 151.76, 139.8, 139.6, 131.6, 

131.4, 131.3, 130.5, 130.4, 128.81, 128.80, 128.71, 128.70, 127.2, 126.6, 123.2, 122.5, 

121.9, 121.7, 59.16, 59.14, 52.5, 52.3, 50.3, 49.8, 41.6, 41.4, 22.3, 22.0; IR (NaCl/thin 

film): 3271, 3062, 2952, 2924, 2853, 1747, 1661, 1525, 1444, 1372, 1264, 1216 cm-1; 

[α]D25 = +17.1 (c = 0.50, CHCl3). HRMS (MM) calc’d for M+ 
415.0652, found 

415.0652. 

2.6.6.4 Preparation of 3-hydroxypyrroloindoline 126 

 

A 15 mL flask containing (S)-Nα-acetyl-1-methyl-2-phenyltryptophan methyl ester 121d 

(52.5 mg, 0.150 mmol, 1.00 equiv) was flushed with argon and then charged with MeCN 

(3.3 mL). TFA was added as a solution in MeCN (1.3 M, 125 µL, 0.150 mmol, 1.00 

equiv), followed by NCS as a solution in MeCN (0.2 M, 0.75 mL, 0.150 mmol, 1.00 

equiv). The flask was then sealed under argon and the solution was stirred in the dark at 

room temperature. After 3 hours, the reaction was quenched with aqueous ammonia (1.5 
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mL), poured onto ice, and extracted with DCM (3 x 15 mL). The combined organics were 

washed (20 mL H2O, then 20 mL brine), dried (Na2SO4), filtered, and concentrated to 

give the crude mixture of 3-chloropyrroloindoline diastereomers (detected by HRMS 

direct injection (MM) calc’d for [M+H]+ 
385.1313, found 385.1320). The crude residue 

was redissolved in MeCN (2 mL), then H2O (1.2 mL) and SiO2 (2.5 mL) were added. 

The mixture was vigorously stirred open to air at room temperature for 30 minutes, then 

filtered through a 1.5 mL silica plug with EtOAc (50 mL), dried (Na2SO4), filtered and 

concentrated. The 3-hydroxypyrroloindoline 126 existed in a 6:1 ratio of diastereomers, 

favoring the endo diastereomer (determined by 1H NMR analysis of the crude reaction 

mixture) and was purified by silica gel chromatography (0:100 to 10:90 EtOAc:hexanes) 

to yield 30.8 mg (contains 18 wt % CHCl3, 46% corrected yield) of the endo 

diastereomer as a yellow oil. The exo diastereomer, obtained post chromatography in a 

mixture with (S)-Nα-acetyl-1-methyl-2- phenyltryptophan methyl ester XX, was 

subjected to reverse phase preparatory HPLC (30:70 to 90:10 MeCN:H2O) using an 

Agilent 1200 Series HPLC with an Agilent XDB-C18 5 µM column (9.4 x 250 mm) to 

yield 3.5 mg (6% yield) of the exo diastereomer as a yellow oil. 

Endo diastereomer: 

The enantiomeric excess was determined to be 84% by chiral SFC analysis (AD-H, 2.5 

mL/min, 25% IPA in CO2, λ = 254 nm): tR(major) = 7.4 min, tR(minor) = 4.7 min. The 

relative stereochemistry was assigned by 2D NMR analysis. 1H NMR (500 MHz, 

CD3CN; compound exists as a 15:1 mixture of rotamers, the major rotamer is reported) δ 

7.40 – 7.35 (m, 2H), 7.34 – 7.26 (m, 3H), 7.20 (ddd, J = 7.9, 7.5, 1.3 Hz, 1H), 7.12 (ddd, 

J = 7.2, 1.3, 0.5 Hz, 1H), 6.66 (ddd, J = 7.3, 7.3, 1.0 Hz, 1H), 6.51 (d, J = 7.9 Hz, 1H), 
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4.79 (d, J = 8.8 Hz, 1H), 3.19 (s, 3H), 2.97 (s, 3H), 2.90 (br s, 1H), 2.82 (d, J = 12.7 Hz, 

1H), 2.59 (ddd, J = 12.7, 8.8, 1.1 Hz, 1H), 1.95 (s, 3H); 13C NMR (125 MHz, CD3CN; 

compound exists as a 15:1 mixture of rotamers, the major rotamer is reported) δ 172.0, 

171.3, 153.1, 138.0, 131.6, 128.9, 128.6, 128.3, 125.2, 118.0, 107.1, 95.3, 88.3, 61.3, 

52.7, 39.0, 32.7, 23.6; IR (NaCl/thin film): 3292, 3010, 2948, 1735, 1653, 1648, 1610, 

1491, 1448, 1388, 1313, 1220 cm-1; [α]D25 = +264.0 (c = 1.35, CHCl3). HRMS (MM) 

calc’d for [M+H]
+ 

367.1652, found 367.1650.  

 

Exo diastereomer: 

The enantiomeric excess was determined to be 85% by chiral SFC analysis (OD-H, 2.5 

mL/min, 20% IPA in CO2, λ = 254 nm): tR(major) = 6.2 min, tR(minor) = 4.0 min. The 

relative stereochemistry was assigned by 2D NMR analysis. 1H NMR (500 MHz, 

CD3CN; compound exists as a 1.5:1 mixture of rotamers, the major rotamer isdenoted by 

*, the minor rotamer by§) δ 7.60 – 7.22 (m, 6H*, 7H§), 7.17 (ddd, J = 7.3, 0.6, 0.6 Hz, 

1H*), 6.79 (dd, J = 7.5, 7.5 Hz, 1H§), 6.70 (dd, J = 7.5, 7.5 Hz, 1H*), 6.65 (d, J = 7.9 Hz, 

1H§), 6.54 (d, J = 7.9 Hz, 1H*), 4.49 (dd, J = 8.0, 6.7 Hz, 1H*), 4.07 (dd, J = 10.0, 6.9 

Hz, 1H§), 3.81 (s, 3H*), 3.71 (s, 3H§), 3.34 (s, 1H§), 3.01 (s, 1H*), 2.963 (s, 3H*), 2.958 

(s, 3H§), 2.71 (dd, J = 13.0, 8.1 Hz, 1H*), 2.68 (dd, J = 12.6, 7.0 Hz, 1H§), 2.34 (dd, J = 

12.9, 6.7 Hz, 1H*), 2.07 (dd, J = 12.7, 10.0 Hz, 1H§), 1.89 (s, 3H*), 1.80 (s, 3H§); 13C 

NMR (125 MHz, CD3CN) δ 174.1, 173.6, 172.3, 171.8, 151.2, 151.1, 136.3, 136.2, 

131.6, 131.3, 130.3, 129.60, 129.57, 129.4, 128.7, 128.6, 124.4, 123.9, 119.3, 118.2, 

108.0, 106.4, 98.8, 96.1, 90.1, 88.5, 61.2, 60.3, 53.3, 52.6, 40.9, 37.2, 33.4, 32.4, 24.6, 

23.8; IR (NaCl/thin film): 3305, 2924, 1747, 1646, 1610, 1491, 1448, 1381, 1311, 1207 
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cm-1; [α]D25 = -138.2 (c = 0.33, CHCl3). HRMS (MM) calc’d for [M+H]+ 
367.1652, 

found 367.1655. 

2.6.7 Deuterium Labeling Studies 
 

Preparation of N-deuteroacrylate (XX) 
 

 

Acrylate 120c was dissolved in MeOD (1 mL) under nitrogen.  After stirring for 1 

minute, the solution was concentrated under high vacuum.  This procedure was repeated 

three times to give >99% deuterium incorporation. 

Preparation of per-deutero-2-phenylindole  

 

To MeOD (1 mL) in a microwave vial was added acetyl chloride (100 µL), followed by 

2-phenylindole (6a, 50 mg) and D2O (1 mL).  The vial was sealed and heated in a 

microwave to 140 °C for 1 hour.  Upon cooling, the heterogenous solution was diluted 

with DCM.  The phases were separated and the aqueous was extracted with DCM (2 x 5 

mL).  The combined organic layers were dried (Na2SO4), filtered and concentrated to 

give per-deutero-2-phenylindole with 90% deuterium incorporation. 
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2.6.7 1H NMR Kinetics Studies 
 

 

An oven-dried vial was charged with 2-phenylindole (19.0 mg, 0.10 mmol, 1.00 equiv), 

methyl 2-acetamidoacrylate (14.0 mg, 0.10 mmol, 1.00 equiv), (R)-BINOL if necessary 

(6.0 mg, 0.02 mmol, 0.20 equiv) and 1,4-diethylbenzene (4.7 µL, 0.03 mmol, 0.30 equiv) 

as the internal standard.  The vial was pumped into a glove box and charged with CD2Cl2 

(0.75 mL, to an indole concentration of 0.12 M), then transferred to a screw-cap NMR 

tube. A 1H NMR spectrum (1 scan) was taken to determine the inital ratio of acrylate and 

1,4-diethylbenzene. SnCl4 (1 M in CD2Cl2, 120 µL, 0.12 mmol, 1.20 equiv) was then 

added through the septum of the screw-cap and the NMR tube was inverted once and 

quickly inserted into the spectrometer.  The concentration of acrylate was monitored by 

1H NMR over 9 hours and was determined by integration of its resonance at 3.83 ppm 

relative to 1,4-diethylbenzene’s resonance at 2.74 ppm. 
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97 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-067-3-Cl-2,2’-MOM-R-BINOL

 Sample Name:
   LMRVI-067-3-Cl-2_2-MOM-R-BINOL
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-067-3-Cl-2_2-MOM-R-BINOL
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 11 2011

Sample #33, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7290210 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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LMRVI-067-3-Cl-2,2’-MOM-R-BINOL

 Sample Name:
   LMRVI-067-3-Cl-2_2-MOM-R-BINOL
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-067-3-Cl-2_2-MOM-R-BINOL
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 11 2011

Sample #33, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1590 repetitions
OBSERVE  C13, 125.6569667 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 54 min
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LMRVI-093-3-Cl-R-BINOL

 Sample Name:
   LMRVI-093-3-Cl-R-BINOL
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-093-3-Cl-R-BINOL
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 11 2011

Sample #34, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7290215 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec

  0.99
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LMRVI-093-3-Cl-R-BINOL

 Sample Name:
   LMRVI-093-3-Cl-R-BINOL
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-093-3-Cl-R-BINOL
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 11 2011

Sample #34, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 2000 repetitions
OBSERVE  C13, 125.6569690 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 1 hr, 8 min
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LMRVI-279-6,6,-hydroxy-MOM BINOL

 Sample Name:
   LMRVI-279
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-279
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cd3cn
Data collected on: Dec 20 2011

Sample #42, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7251676 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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LMRVI-279-6,6,-hydroxy-MOM BINOL

 Sample Name:
   LMRVI-279
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-279
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cd3cn
Data collected on: Dec 20 2011

Sample #42, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1500 repetitions
OBSERVE  C13, 125.6558710 MHz
DECOUPLE  H1, 499.7276454 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 51 min
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LMRVI-273-2-1-allyl-2-phenylindole

 Sample Name:
   LMRVI-273-2-1-allyl-2-phenylindole
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-273-2-1-allyl-2-phenylindole
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Dec  4 2011

Sample #33, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7225134 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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LMRVI-273-1-allyl-2-phenylindole

 Sample Name:
   LMRVI-273-1-allyl-2-phenylindole
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-273-1-allyl-2-phenylindole
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Dec  4 2011

Sample #33, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1500 repetitions
OBSERVE  C13, 125.6553343 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 51 min
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LMRVI-273-1,3-diallyl-2-phenylindole

 Sample Name:
   LMRVI-273-1_3-diallyl-2-phenylindole
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-273-1_3-diallyl-2-phenylindole
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Dec 11 2011

Sample #27, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7225126 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec

  1.00
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LMRVI-273-1,3-diallyl-2-phenylindole

 Sample Name:
   LMRVI-273-1_3-diallyl-2-phenylindole
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-273-1_3-diallyl-2-phenylindole
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Dec 11 2011

Sample #27, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1500 repetitions
OBSERVE  C13, 125.6553307 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 51 min
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LMRVI-219

 Sample Name:
   LMRVI-219
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-219
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Sep  2 2011

Sample #33, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 6 repetitions
OBSERVE   H1, 499.7225136 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 45 sec
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LMRVI-219

 Sample Name:
   LMRVI-219
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-219
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Sep  2 2011

Sample #33, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1600 repetitions
OBSERVE  C13, 125.6553281 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 54 min
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MEK-phthalimide-indole-final

 Sample Name:
   MEK-phthalimide-indole-final
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-phthalimide-indole-final
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Sep  2 2011

Sample #10, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 16 repetitions
OBSERVE   H1, 499.7225128 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 1 min 12 sec
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110 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-phthalimide-indole-final

 Sample Name:
   MEK-phthalimide-indole-final
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-phthalimide-indole-final
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Sep  2 2011

Sample #10, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553271 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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111 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-161

 Sample Name:
   LMRVI-161
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-161
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 27 2011

Sample #33, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7225133 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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112 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-161

 Sample Name:
   LMRVI-161
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-161
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 27 2011

Sample #33, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 10000 repetitions
OBSERVE  C13, 125.6553284 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 5 hr, 41 min

ppm
20

40
60

80
100

120
140

160
180

200

Plotname: --Not assigned--

NH
Ph C

O
2 B
n

N
H
TFA



 

 

113 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-205-1

 Sample Name:
   LMRVI-205-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-205-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Aug 23 2011

Sample #33, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7225131 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec

  0.96
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114 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-205-1

 Sample Name:
   LMRVI-205-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-205-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug 23 2011

Sample #33, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 10000 repetitions
OBSERVE  C13, 125.6553292 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 5 hr, 41 min
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115 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-171

 Sample Name:
   LMRVI-171
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-171
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 25 2011

Sample #33, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7225125 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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116 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-171

 Sample Name:
   LMRVI-171
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-171
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 25 2011

Sample #33, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1500 repetitions
OBSERVE  C13, 125.6553354 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 51 min
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117 Appendix 1 * Spectra Relevant to Chapter 2 

 Sample Name:
   LMR-allyl
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   LMR-allyl
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jan 14 2012

Sample #20, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7225125 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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118 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3186-1

 Sample Name:
   MEK3186-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3186-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 15 2011

Sample #15, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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119 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3186-1

 Sample Name:
   MEK3186-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3186-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 15 2011

Sample #15, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553310 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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120 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3084-1

 Sample Name:
   MEK3084-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3084-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May  9 2011

 Temp. 25.0 C / 298.1 K
Sample #39, Operator: mkieffer

 Relax. delay 5.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 4 min 0 sec
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121 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3084-1

 Sample Name:
   MEK3084-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3084-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May  9 2011

 Temp. 25.0 C / 298.1 K
Sample #39, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 512 repetitions
OBSERVE  C13, 125.6569642 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 17 min
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122 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3193-1

 Sample Name:
   MEK3193-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3193-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 21 2011

Sample #33, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7225125 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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123 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3193-1

 Sample Name:
   MEK3193-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3193-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 21 2011

Sample #33, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553291 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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124 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3148-1

 Sample Name:
   MEK3148-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3148-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 20 2011

 Temp. 25.0 C / 298.1 K
Sample #14, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290200 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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125 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3130-1

 Sample Name:
   MEK3130-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3130-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun  7 2011

 Temp. 25.0 C / 298.1 K
Sample #15, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 512 repetitions
OBSERVE  C13, 125.6569681 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 26 min
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126 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3185-1

 Sample Name:
   MEK3185-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3185-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jul 15 2011

Sample #14, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290205 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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127 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3185-1

 Sample Name:
   MEK3185-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3185-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jul 15 2011

Sample #14, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553300 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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128 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-5-Br

 Sample Name:
   MEK-5-Br
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-5-Br
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 25 2011

Sample #15, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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129 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-5-Br

 Sample Name:
   MEK-5-Br
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-5-Br
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun 25 2011

Sample #15, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6666408 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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130 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3150-1

 Sample Name:
   MEK3150-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3150-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 20 2011

 Temp. 25.0 C / 298.1 K
Sample #15, Operator: mkieffer

 Relax. delay 5.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 4 min 0 sec
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131 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3150-1

 Sample Name:
   MEK3150-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3150-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun 20 2011

 Temp. 25.0 C / 298.1 K
Sample #15, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6569633 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 50 min
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132 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3080-1

 Sample Name:
   MEK3080-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3080-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May  8 2011

 Temp. 25.0 C / 298.1 K
Sample #42, Operator: mkieffer

 Relax. delay 5.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
FT size 65536
Total time 4 min 0 sec
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133 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3080-1

 Sample Name:
   MEK3080-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3080-1
 FidFile: current

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May  8 2011

 Temp. 25.0 C / 298.1 K
Sample #42, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 384 repetitions
OBSERVE  C13, 125.6569642 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 17 min
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134 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3238-1

 Sample Name:
   MEK3238-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3238-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Aug 31 2011

Sample #20, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7225128 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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135 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3238-1

 Sample Name:
   MEK3238-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3238-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug 31 2011

Sample #20, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553271 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 50 min
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136 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3113-1

 Sample Name:
   MEK3113-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3113-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May 24 2011

 Temp. 25.0 C / 298.1 K
Sample #35, Operator: mkieffer

 Relax. delay 5.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290200 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 4 min 0 sec
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137 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3113-1

 Sample Name:
   MEK3113-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3113-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May 24 2011

 Temp. 25.0 C / 298.1 K
Sample #35, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 2000 repetitions
OBSERVE  C13, 125.6569662 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 1 hr, 8 min
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138 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-para-F

 Sample Name:
   MEK-para-F
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-para-F
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 25 2011

Sample #14, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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139 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3086-1

 Sample Name:
   MEK3086-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3086-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May 10 2011

 Temp. 25.0 C / 298.1 K
Sample #39, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 512 repetitions
OBSERVE  C13, 125.6569623 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 17 min
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140 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3079-1

 Sample Name:
   MEK3079-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3079-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May  8 2011

 Temp. 25.0 C / 298.1 K
Sample #41, Operator: mkieffer

 Relax. delay 5.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290200 MHz
DATA PROCESSING
FT size 65536
Total time 4 min 0 sec
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141 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3079-1

 Sample Name:
   MEK3079-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3079-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May  8 2011

 Temp. 25.0 C / 298.1 K
Sample #41, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 256 repetitions
OBSERVE  C13, 125.6569690 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
FT size 65536
Total time 8 min 45 sec
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142 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-ortho-fluoro-1

 Sample Name:
   MEK-ortho-fluoro-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-ortho-fluoro-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Aug 26 2011

Sample #33, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7225128 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec

  0.91
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  1.01

  0.94

  0.97

  2.18
  3.00

  3.32

ppm
1

2
3

4
5

6
7

8
9

10

Plotname: --Not assigned--

 

NH

C
O
2 M
e

N
H
A
c

F



 

 

143 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3219-2

 Sample Name:
   MEK3219-2
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3219-2
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug 17 2011

Sample #7, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553271 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 50 min
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144 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-m-OMe

 Sample Name:
   MEK-m-OMe
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-m-OMe
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun 25 2011

Sample #16, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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145 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-m-OMe

 Sample Name:
   MEK-m-OMe
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-m-OMe
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun 25 2011

Sample #16, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6569681 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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146 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3083-1

 Sample Name:
   MEK3083-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3083-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: May  9 2011

 Temp. 25.0 C / 298.1 K
Sample #38, Operator: mkieffer

 Relax. delay 5.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290200 MHz
DATA PROCESSING
FT size 65536
Total time 4 min 0 sec
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147 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3080-1

 Sample Name:
   MEK3080-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3080-1
 FidFile: current

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: May  8 2011

 Temp. 25.0 C / 298.1 K
Sample #42, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 384 repetitions
OBSERVE  C13, 125.6569642 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 17 min
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148 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3129-1

 Sample Name:
   MEK3129-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3129-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun  7 2011

 Temp. 25.0 C / 298.1 K
Sample #14, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290200 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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149 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3129-1

 Sample Name:
   MEK3129-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3129-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun  7 2011

 Temp. 25.0 C / 298.1 K
Sample #14, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 512 repetitions
OBSERVE  C13, 125.6569671 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 26 min
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150 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-t-butyl-rac

 Sample Name:
   MEK-t-butyl-rac
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-t-butyl-rac
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun  5 2011

 Temp. 25.0 C / 298.1 K
Sample #27, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290200 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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151 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-t-butyl-rac

 Sample Name:
   MEK-t-butyl-rac
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-t-butyl-rac
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun  5 2011

 Temp. 25.0 C / 298.1 K
Sample #27, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6569662 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 50 min
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152 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-phthalimide

 Sample Name:
   MEK-phthalimide
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-phthalimide
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jun  6 2011

 Temp. 25.0 C / 298.1 K
Sample #20, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7290203 MHz
DATA PROCESSING
FT size 65536
Total time 2 min 24 sec
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153 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-phthalimide

 Sample Name:
   MEK-phthalimide
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-phthalimide
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Jun  6 2011

 Temp. 25.0 C / 298.1 K
Sample #20, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6569633 MHz
DECOUPLE  H1, 499.7315163 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 50 min
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154 Appendix 1 * Spectra Relevant to Chapter 2 

MEK2306-1

 Sample Name:
   MEK2306-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK2306-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Aug  4 2011

Sample #14, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 32 repetitions
OBSERVE   H1, 499.7225125 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 2 min 24 sec
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155 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3206-1

 Sample Name:
   MEK3206-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3206-1
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug  4 2011

Sample #14, Operator: mkieffer

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553281 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 34 min
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156 Appendix 1 * Spectra Relevant to Chapter 2 

MEK-methylcarbamate-1

 Sample Name:
   MEK-methylcarbamate-1
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK-methylcarbamate-1
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Aug 30 2011

Sample #22, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 16 repetitions
OBSERVE   H1, 499.7225128 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 1 min 12 sec
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157 Appendix 1 * Spectra Relevant to Chapter 2 

MEK3233-X

 Sample Name:
   MEK3233-X
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/mkieffer/vnmrsys/data
 Sample directory:
   MEK3233-X
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug 28 2011

Sample #20, Operator: mkieffer

 Relax. delay 2.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1000 repetitions
OBSERVE  C13, 125.6553271 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 50 min
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158 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-181

 Sample Name:
   LMRVI-181
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-181
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Aug  7 2011

Sample #40, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 16 repetitions
OBSERVE   H1, 499.7225129 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 7 min 20 sec
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159 Appendix 1 * Spectra Relevant to Chapter 2 

LMRVI-179

 Sample Name:
   LMRVI-179
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-179
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug  2 2011

Sample #20, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1500 repetitions
OBSERVE  C13, 125.6553305 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 51 min
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LMRVI-191

 Sample Name:
   LMRVI-191
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-191
 FidFile: PROTON02

Pulse Sequence: PROTON (s2pul)
Solvent: cdcl3
Data collected on: Jan 24 2012

Sample #27, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7225134 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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LMRVI-191

 Sample Name:
   LMRVI-191
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVI-191
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cdcl3
Data collected on: Aug 11 2011

Sample #23, Operator: lrepka

 Relax. delay 1.000 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1500 repetitions
OBSERVE  C13, 125.6553310 MHz
DECOUPLE  H1, 499.7250019 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 51 min
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LMRVII-117-endodiastereomer

 Sample Name:
   LMRVII-117-endodiastereomer
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVII-117-endodiastereomer
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cd3cn
Data collected on: Jan 25 2012

Sample #28, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7251682 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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LMRVII-117-endodiastereomer

 Sample Name:
   LMRVII-117-endodiastereomer
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVII-117-endodiastereomer
 FidFile: CARBON02

Pulse Sequence: CARBON (s2pul)
Solvent: cd3cn
Data collected on: Jan 25 2012

Sample #20, Operator: lrepka

 Relax. delay 0.100 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 1900 repetitions
OBSERVE  C13, 125.6558704 MHz
DECOUPLE  H1, 499.7276454 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 36 min
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LMRVII-117-exodiastereomer

 Sample Name:
   LMRVII-117-exodiastereomer
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVII-117-exodiastereomer
 FidFile: PROTON01

Pulse Sequence: PROTON (s2pul)
Solvent: cd3cn
Data collected on: Jan 25 2012

Sample #29, Operator: lrepka

 Relax. delay 25.000 sec
 Pulse 45.0 degrees
 Acq. time 2.500 sec
 Width 8000.0 Hz
 8 repetitions
OBSERVE   H1, 499.7251679 MHz
DATA PROCESSING
 Line broadening 0.2 Hz
FT size 65536
Total time 3 min 40 sec
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LMRVII-117-exodiastereomer

ErrorLog:
   auto_20120127_01 loc:20 (night)
PROTON_003 Acquisition error: 
CARBON_001 Acquisition error: 

 Sample Name:
   LMRVII-117-exodiastereomer
 Data Collected on:
   indy.caltech.edu-inova500
 Archive directory:
   /home/lrepka/vnmrsys/data
 Sample directory:
   LMRVII-117-exodiastereomer
 FidFile: CARBON01

Pulse Sequence: CARBON (s2pul)
Solvent: cd3cn
Data collected on: Jan 27 2012

 Temp. 25.0 C / 298.1 K
Sample #20, Operator: lrepka

 Relax. delay 0.100 sec
 Pulse 45.0 degrees
 Acq. time 1.042 sec
 Width 31446.5 Hz
 24300 repetitions
OBSERVE  C13, 125.6559881 MHz
DECOUPLE  H1, 499.7276454 MHz
 Power 39 dB
 continuously on
 WALTZ-16 modulated
DATA PROCESSING
 Line broadening 0.5 Hz
FT size 65536
Total time 7 hr, 46 min
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Chapter 3 
 

Direct and Selective Copper-Catalyzed Arylation of Tryptamines and 
Tryptophans: Total Synthesis of (+)-Naseseazines A and B† 

 
 

3.1 INTRODUCTION 

3.1.1 Limitation of the Formal (3+2) Methodology 

The pyrroloindoline is a common structural motif that unites several 

biosynthetically distinct families of alkaloids.1 As discussed in Chapters 1 and 2, our lab 

has developed an enantioselective method to access this scaffold through the formal 

(3+2) cycloaddition of 3-substituted indoles and 2-amido acrylates. This strategy has 

been subsequently applied in the synthesis of several distinct natural products.2 For 

example, 3-allyl pyrroloindoline 135, prepared in 52% yield and 90% ee from 3-

allylindole, can be advanced in only seven-steps to the macrocyclic natural product, (+)-

nocardioazine A (136), a p-glycoprotein inhibitor.3 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
† Portions of this chapter have been reproduced from published studies (Kieffer, M. E.; Chuang, K. V.; 
Reisman, S. E. Chem. Sci. 2012, 3, 3170 – and – Kieffer, M. E.★; Chuang, K. V. ★; Reisman, S. E. J. Am. 
Chem. Soc. 2013, 135, 5557) and the supporting information found therein. Work was conducted in 
collaboration with Kangway V. Chuang. 
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Scheme 3.1. Total synthesis of (+)-nocardioazine A 

 
 

 One major limitation of this convergent methodology is the inability to utilize 

indoles bearing bulky C3 substituents. For instance, N-allyl-3-phenylindole (137) fails to 

react under the optimized conditions, even after prolonged reaction times and more 

forcing conditions. This finding proved to be particularly unfortunate due to the 

prevalence of an important subclass of pyrroloindoline natural products characterized by 

a C3-quaternary center bearing an aryl substituent (Figure 3.1). These compounds, 

including quadrigemine C (142) and gliocladine B (140), exhibit potent biological 

activity, yet methods for their efficient preparation have remained a challenge in modern 

synthetic chemistry.4,5 This chapter describes our efforts towards the development of a 

complementary and direct arylation reaction in order to gain convergent access to this 

subclass of natural products.  
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Figure 3.1. C3-Aryl pyrroloindoline natural products 

 
 

3.1.2 Previous Syntheses of C3-arylated Pyrroloindolines 

 In a seminal 2001 report, Overman and Govek reported the successful 

implementation of an intramolecular Heck strategy in the synthesis of (+)-asperazine, a 

bisindole alkaloid containing a unique C3-C7 aryl linkage.6 In 10-steps (L)-tryptophan 

methylester hyrdrochloride was advanced to iodoanilide 143 that, in a key step, was 

subjected to Pd2(dba)3, (2-furyl)3P, and PMP to effect a highly diastereoselective, 

intramolecular Heck reaction to form the C3-arylated quaternary center found in the 

natural product.  Oxindole 144 was further advanced to (+)-asperazine in another 10-

steps. The following year, Overman reported the total synthesis of the 

polypyrroloindoline alkaloid (–)-quadrigemine C, now utilizing a key, enantioselective 

Heck desymmetrization of a meso compound (Scheme 3.2, b).7 Treatment of meso-146 

with Pd(OAc)2 and (R)-tol-BINAP with pentamethylpiperidine affords bisoxindole 147, 

which is efficiently cyclized under reductive conditions to the natural product. 
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Scheme 3.2. Overman’s approach to C3-aryl pyrroloindolines 

 
 

 A decade later, Movassaghi and co-workers reported a general strategy towards 

this class of compounds using a bromocyclization/Friedel–Crafts approach (Scheme 

1.16, Chapter 1).5c A subsequent publication details the extension of this strategy 

towards the completion of indole-bearing natural products 155–157 (Scheme 3.3). Again, 

starting with tryptophan-derived bromo tetracycle 152, subjection to superstoichiometric 

AgBF4 to generate the benzylic tertiary carbocation followed by the addition of four 

equivalents of an indole nucleophile, provides C3-aryl pyrroloindoline 154. This common 

intermediate can be further functionalized to access (+)-gliocladins B and C and (+)- 

dideoxybionectin, demonstrating the power and versatility of this approach.5d 
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Scheme 3.3. Movassaghi’s approach to C3-aryl pyrroloindolines 

 
 
 At the outset of our studies, the strategies presented by Overman and Movassaghi 

represented the state-of-the-art in the preparation of C3-aryl pyrroloindolines. Despite the 

ability of these elegant approaches to provide access to the desired scaffold, we believed 

there might be room for improvement (Scheme 3.4). For example, while the Heck 

reaction is a powerful tool for the generation of quaternary centers, the preparation of the 

cyclization precursor is lengthy, and additional steps are required for advancement to 

pyrroloindolines. In contrast, Movassaghi’s approach is potentially more general and 

allows for late-stage aryl group installation, yet the reported conditions only provide 

moderate yields and require superstoichiometric amounts of silver salts and precious 

nucleophiles. Furthermore, only electron-rich and sterically unencumbered nucleophiles 

are tolerated with this approach. In considering various strategies, we recognized that 

there existed no direct method for the preparation of C3-arylpyrroloindolines, and 

therefore anticipated that the development of a direct arylation/cyclization cascade of 

tryptamines and tryptophans would significantly streamline the assembly and preparation 
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of a diverse array of C3-arylpyrroloindolines and enable the concise preparation of 

related natural products.  

Scheme 3.4. Strategies to access C3-aryl pyrroloindolines 

 
 
3.2 REACTION DESIGN 

 One possible strategy to effect this transformation is through transition metal 

catalysis. Although C3-functionalization/cyclization has been a widely employed 

approach for pyrroloindoline synthesis, and furthermore has been utilized successfully in 

the context of Pd-mediated C3-allylation and benzylation reactions, at the outset of our 

studies no equivalent arylation reaction had been reported.8,9,10 Mechanistically, we 

hypothesized such a transformation could proceed through initial nucleophilic attack of a 

tryptamine or tryptophan onto an electrophilic metal center to form C3-metallated 

intermediate 159 (Scheme 3.5). Iminium cyclization to form the pyrrolidine ring, 

followed by reductive elimination to furnish the all carbon quaternary center, would 

provide the desired product (161). Alternatively, we imagined that the pendant amine 

might stabilize C3-metallated 159. Reductive elimination from a spirocyclic intermediate 

(162) and subsequent iminium cyclization could also provide the pyrroloindoline product. 
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Scheme 3.5. Proposed transition metal mechanism 

 
 

Although a transformation proceeding via indole C3-metallation seemed 

attractive, we recognized from the outset that this design was not without inherent 

challenges in chemoselectivity. Specifically, key to the success of this transformation is 

the generation of C3-metallated species 159, which must undergo reductive elimination 

and cyclization to provide the desired product (Scheme 3.6). One major concern was the 

relative stability of such an intermediate, which is known to undergo facile migration to 

the C2 position of the indole.11 Reductive elimination and rearomatization could then 

furnish 2-aryl indoles.  Additionally, one could imagine coordination of the transition 

metal catalyst to either the indole nitrogen or the pendant amine to yield Buchwald-

Hartwig type products. 
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Scheme 3.6. Possible indole reactivity 

 
3.2.1 Initial Investigation into Palladium Catalysis 

 Our initial strategy was inspired by 2009 work from Buchwald and co-workers in 

which they utilized a Pd(0-II) cycle in the asymmetric dearomatization of naphthalenes 

(Scheme 3.7).12 Using chiral Davephos 166, a variety of substituted arenes served as 

competent substrates in the generation of sterically demanding, arylated quaternary 

centers.  

Scheme 3.7. Buchwald’s Pd-catalyzed intramolecular arylation 

 

 Drawing an analogous mechanism, we wondered if Pd(0)/(II) catalysis could be 

applied to the direct arylation of tryptamine derivatives. A systematic screen of 

substrates, palladium sources, and ligands revealed the ability to selectivity access each 
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Employing slightly smaller ligands, C2-arylation was observed while the use of bulky 

ligands, perhaps unsurprisingly, resulted in the formation of C–N bonds. With these 

negative results, a change in strategy was deemed necessary. 

Scheme 3.8. Pd-catalyzed arylation 

 
 

3.2.2 Investigation into Copper Catalysis 

 In our previous palladium approach, a variety of strong bases were used 

deprotonate the indole in order to increase its reactivity and nucleophilicity. Given the 

undesired reactivity observed, we decided to employ an alternative tactic to modify the 

reactivity. We reasoned that, rather than increasing substrate nucleophilicity, increasing 

metal electrophilicity might facilitate the rate of reductive elimination over 1,2-migration, 

thereby enabling the preparation of C3-arylated products.  

 To this end, we were encouraged by several reports from the Gaunt group, in 

which mild arylation of nucleophiles with diaryliodonium salts could be effected through 

Cu-catalysis (Scheme 3.9).13 Specifically, Gaunt invokes a highly electrophilic Cu(III)-

aryl intermediate, which is generated under mild conditions due to the ease of oxidative 

addition to diaryliodonium salts. We hypothesized that it may be possible to harness the 
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reactivity of this Cu/iodonium system to effect the direct arylation of tryptamines to form 

pyrroloindolines, but recognized from the outset that the generation of a sterically-

demanding, aryl quaternary center may test the limits of this technology. Specifically, at 

the outset of our exploratory efforts, no examples of quaternary-center formation using 

Cu/ArI2X had been reported in the literature. 

Scheme 3.9. Gaunt’s Cu-catalyzed arylation 
 

 
 

3.3 SCREENING AND OPTIMIZATION 

 Excited about the application of this new catalyst system, tosyl tryptamine 167a 

was easily prepared and treated with Ph2IBF4, di-tert-butylpyridine, and 10 mol % 

Cu(OTf)2, identical conditions to those reported by Gaunt and co-workers. 

Disappointingly, these efforts were met with extremely low conversion of starting 

material; however, trace masses corresponding to arylated products were detected by 

UHPLCMS.  In considering the reaction conditions, we wondered whether di-tert-

butylpyridine was potentially acting as a ligand and coordinating the copper catalyst, 

thereby mitigating its reactivity. Closer inspection of Gaunt’s reported conditions 
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revealed that stoichiometric base was employed to suppress acid-catalyzed dimerization 

of the 2,3-unsubstituted indoles.  As 3-substituted indoles have a significantly lower 

propensity to dimerize, the reaction was repeated in the absence of base.  To our delight, 

3-aryl pyrroloindoline 168a was isolated in 60% yield along with 27% yield of migratory 

side product 169a (Table 3.1). 

 Our optimization efforts began with a screen of Cu(I) and Cu(II) sources (Table 

3.1).  Whereas copper catalysts with highly coordinating ligands such as halides and 

acetonitrile (entries 6–7) showed no reactivity, Cu(OAc)2 exhibited an incredibly clean 

reaction profile (entry 8) and moderate yields. Surprisingly, a low yield of side product 

169a did not necessarily correspond to a higher yield of product.  In fact, it appears that 

2-aryl indole 169a converts to an unknown oxidative dimer as the reaction proceeds. In 

terms of the iodonium salts, the best results were obtained using the non-coordinating 

tetrafluoroborate counterion. Interestingly, use of a TFA counterion results in 

chemoselective N-arylation of the indole nitrogen (170a). The non-symmetric iodonium 

salt [Ph-I-Mes]BF4, for which the mesityl group serves as a non-transferable ligand, is 

also a competent coupling partner, although longer reaction times are required. 
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Table 3.1. Optimization of Cu-source and protecting group 
 

 
entry R1 Cu source X additive C3 : C2 : N pdt yielda (%)  

1 Ts Cu(OTf)2 BF4 – 2.3 : 1 : 0 168a 62b 
2 Ts – BF4 – – 168a 0 
3 Boc Cu(OTf)2 BF4 – – 168b <5 
4 Ac Cu(OTf)2 BF4 – – 168c <5 
5 Ts (CuOTf)2•PhMe BF4 – 3.4 : 1 : 0 168a 64 
6 Ts CuI BF4 – – 168a 0 
7 Ts Cu(MeCN)4PF6 BF4 – – 168a 0 
8 Ts Cu(OAc)2 BF4 – 2.9 : 1 168a 64 
9 Ts Cu(OTf)2 PF6 – 2.5 : 1 168a 28 

10 Ts Cu(OTf)2 OTf – 2.9 : 1 168a 32 
11 Ts Cu(OTf)2 Cl – – 168a 0 
12 Ts Cu(OTf)2 TFA – 0 : 0 : 1 170a nd 
13 Ts Cu(OTf)2 BF4 dtbpy – 168a <5 
14 Ts Cu(OTf)2 BF4 – 2.6 : 1 168a 65b 

a Determined by HPLC versus an internal standard. b Isolated yield. c [Ph-I-Mes]BF4 was employed as the 
electrophile. 
 

Although both Cu(OTf)2 and Cu(OAc)2 furnished comparable yields of 

pyrroloindoline 168a when using [Ph2I]BF4 as the electrophile, the Cu(OAc)2-catalyzed 

reaction profile was cleaner overall, thereby simplifying purification. As a result, 

Cu(OAc)2 was the catalyst of choice for arylation reactions employing [Ph2I]BF4 or other 

symmetric iodonium salts. On the other hand, Cu(OTf)2 proved superior for arylation 

reactions that employed less reactive, mesityl-substituted iodonium salts. 

3.4 SUBSTRATE SCOPE OF RACEMIC ARYLATION 

3.4.1 Tryptamine and Iodonium Scope 

Using this method, a variety of arylated pyrroloindolines can be prepared in a 

single step from the corresponding N-tosyl tryptamines at ambient temperatures (Table 

3.2). We were pleased to find that tryptamine substrates bearing alkyl substitution at C4, 

C5, C6, and C7 are accommodated, providing the corresponding pyrroloindolines in good 
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yields (168b–168e). Additionally, a variety of electron-donating and electron-

withdrawing substituents are tolerated at C5. Although comparable yields are obtained, 

slower rates are observed in the reactions of indoles substituted with electron-

withdrawing groups. N-tosyltryptamines bearing alkyl substitution on the indole nitrogen 

are also competent reaction partners (168l–168m). 

We next investigated the scope of the aryl coupling partner. We were pleased to 

find that a range of electron-donating and withdrawing substituents were well tolerated at 

the para- and meta- positions, utilizing both symmetric and non-symmetric iodoniums. 

Unfortunately, ortho-substitution was poorly tolerated, providing the product in low yield 

(168p, 15% yield). Fortunately, reactivity could be restored by switching to the 

symmetric iodonium salt (168p, 50% yield).  

Table 3.2. Substrate Scope 
 

 
a Reactions were conducted on 0.30 mmol scale. Isolated yields are reported. b The symmetric 
iodonium was utilized. 
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3.4.2 Scale-up Procedure 

Our screening protocol was conducted using 10–20 mol% catalyst loading to 

ensure uniformly good yields over a range of substrates. However, to demonstrate the 

scalability and efficiency of this transformation, the reaction has been carried out on a 3 g 

scale using N-tosyltryptamine and [Ph2I]BF4 with only 2.5 mol % catalyst loading. 

Purification by filtration followed by trituration provides analytically pure 

pyrroloindoline in 63% yield, without the need for column chromatography. Notably, the 

reaction proceeds at ambient temperature with nearly equimolar ratios of indole and 

[Ph2I]BF4. 

Scheme 3.10. Scale-up reaction 

 

3.5 DIASTEREOSELECTIVE ARYLATION REACTION DESIGN 

3.5.1 Macmillan’s Enantioselective Method 

 As the manuscript for this methodology was being prepared, a similar 

enantioselective transformation was reported by MacMillan and co-workers.14 Utilizing 

chiral copper box complexes, they were able to effect both a chemoselective and 

enantioselective arylation of indole carboxamides. Their method proved general for a 

variety of substituted indoles and diaryliodonium salts (Scheme 3.11). 
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Scheme 3.11. MacMillan’s Cu-catalyzed arylation 

 
 

 This report was particularly disappointing as we had already gathered preliminary 

data on an enantioselective variant of our arylation reaction. Employing catalytic copper 

and chiral copper phosphates, C3-aryl pyrroloindoline 168a was recovered in moderate 

but promising enantioselectivities (Scheme 3.12).  

Scheme 3.12. Enantioselective result. 

 
 

Regardless, we resolved to investigate the differences and similarities between 

our conditions and MacMillan’s conditions to gain a better understanding of the reactivity 

of these types of systems. Based on MacMillan’s work, it has been established that indole 

carboxamides in conjunction with copper catalysis and diaryliodonium salts provide 

pyrroloindoline products in a chemoselective and enantioselective fashion. Interestingly, 

subjection of our substrate (167a) to MacMillan’s conditions, provides low yields of 

arylated product and in racemic form. Similarly, subjection of MacMillan’s substrate 

(172) to our ligandless copper conditions, provided almost exclusive C2-arylation (173). 
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Scheme 3.13. Comparison Studies 

 
 

3.5.2 New Reaction Design 

 We rationalized that a careful matching of the directing group (Lewis-basicity) 

and catalyst stereoelectronics likely determined product ratios. Specifically, it appeared 

that MacMillan’s more Lewis-basic directing group may compensate for the diminished 

electrophilicity of the ligated copper complex, allowing for the complex to still 

coordinate strongly to the substrate. Similarly, the diminished electrophilicity of the 

ligated copperbox complex may prevent meaningful coordination of N-tosyltryptamine, 

resulting in poor reactivity, yield, and no enantioinduction.  

Acknowledging that our ultimate goal was to develop methodology useful in the 

application of natural product total synthesis, we recognized that neither our arylation 

method, nor that of MacMillan and co-workers, provides products with the functionality 

necessary for advancement to natural products. Instead, perhaps the most straightforward 

and useful approach was the direct and diastereoselective arylation of tryptophan 

derivatives. Starting with tryptophan-derived diketopiperazines 175, we hoped to use the 

inherent Lewis basicity of the amide to selectively direct a copper catalyst to a single face 

of the indole to provide pyrroloindoline products in a diastereoselective fashion (177). 
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Successful execution would represent the most convergent route to this class of 

compounds reported to date. 

Scheme 3.14. Proposed diastereoselective arylation 

 
 

3.6 OPTIMIZATION OF DIASTEREOSELECTIVE ARYLATION 

Our efforts to effect this diastereoselective transformation began with subjection 

of tryptophan-derived diketopiperazine 175a, to our previously optimized conditions of 

ligandless copper (Table 3.3, entry 1). We were encouraged to recover the desired 

isomer in 22% yield. However, pyrroloindoline 176 was also formed in a 1:1 C3:C2 

mixture (178), as well as a 3:1 diastereomeric ratio (177). In an effort to test our 

hypothesis on the necessary matching of directing group ability and the catalyst 

electronics, we conducted a screen of bidentate ligands. While more conventional bipy 

and phenanthroline based ligands provided minimal increases in yield, we were pleased 

to find that they were able to modulate the selectivities. We were delighted to find that 

use of the sterically congested bis(mesityl)-α-diimine ligand (L7) furnished the product in 

70% yield. Further investigation into the sterics of the diimine ligand revealed that the 

precise substitution around the adjacent arene exerts a significant effect on the reactivity 

and selectivity of the reaction. The yield of pyrroloindoline was further improved through 

the use of a triflate counterion, providing the product in 85% isolated yield as a single 

diastereomer (entry 14). 
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Table 3.3. Diastereoselective optimization 
 

 
entry ligand [Ph2I]X C3:C2a dra yield (%)a 

1 –b [Ph2I]PF6 – – 0 
2 – [Ph2I]PF6 1:1 3:1 22 
3 L1 [Ph2I]PF6 1:1 3:1 15 
4 L2 [Ph2I]PF6 1:2 2:1 <5 
5 L3 [Ph2I]PF6 6:1 10:1 20 
6 L4 [Ph2I]PF6 12:1 12:1 38 
7 L5 [Ph2I]PF6 2:1 5:1 26 
8 L6 [Ph2I]PF6 1:1 4:1 24 
9 L7 [Ph2I]PF6 >20:1 >20:1 70 

10 L8 [Ph2I]PF6 1:1 4:1 15 
11 L9 [Ph2I]PF6 2:1 20:1 35 
12 L7 [Ph2I]BF4 >20:1 >20:1 76 
13 L7 [Ph2I]AsF6 >20:1 >20:1 81 
14 L7 [Ph2I]OTf >20:1 >20:1 83 (85)c 

aYield of major diastereomer as determined by 1H NMR analysis of the crude reaction mixture. b No 
(CuOTf)2•PhMe was used. c Isolated yield. 

 
 

3.7 SCOPE OF DIASTEREOSELECTIVE ARYLATION 

With optimized conditions in hand, the substrate scope of this diastereoselective 

reaction was examined (Table 3.4).  A variety of arylated pyrroloindolines (176) can be 

prepared in one step from the corresponding diketopiperazines (175).  Interestingly, the 

diketopiperazines derived from either L- or D-alanine react to deliver diastereomeric 

pyrroloindolines 176b and 176c, respectively, which possess the same configuration at 

the newly formed quaternary center.  This observation indicates that the configuration at 

the tryptophan-derived stereogenic center is the dominant stereocontrolling factor.  The 

scope of the aryl coupling partner was also investigated and was found to be tolerant of 

both electron-rich and electron-poor arenes (176j–176l). 
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In contrast, diketopiperazine 175f, derived from L-Pro, proved to be a challenging 

substrate and provided 176f in low yield as a result of poor C3:C2 selectivity under our 

standard conditions. We hypothesized that the increased substitution at nitrogen may 

result in a destabilizing interaction with the bulky CuI(L7) catalyst. A screen of more 

sterically-accessible ligands revealed that the use 40 mol % L6 in conjunction with [Ph-

2I]PF6 restores the C3:C2 selectivity and delivers pyrroloindoline 176f in 71% yield. At 

this time, we believe that the need for increased ligand loading with L6 is likely due to 

the formation of bridging Cu-catalyst dimers. This hypothesis is further supported by the 

fact that reaction rates utilizing L6 are considerably accelerated at higher dilutions. 

Table 3.4. Substrate scope of diastereoselective arylation 
 

 
a Reactions conducted on 0.3 mmol scale using symmetric diaryliodonium triflate unless otherwise noted. 
Isoltaed yields are reported. b 40 mol % ligand L6 was used with diphenyliodonium hexfluorophosphate. c 

Non-symmetric aryl[p-xylyl]iodonium triflate was used. 
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tryptophan-derived carboxamide would behave similarly under our reaction conditions. 

Remarkably, subjection of acyclic 179 to our optimized conditions provided 

pyrroloindoline products in which arylation occurred with opposite facial selectivity at 

the quaternary center to that seen with diketopiperazine substrates (180).  From a 

synthetic standpoint, this presents the exciting opportunity to access either enantiomeric 

series of pyrroloindoline products from naturally occurring (L)-tryptophan. 

Figure 3.2. Reversal in diastereoselectivity 
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studies have been complicated by the presence of paramagnetic species in 1H NMR 

experiments as well as the heterogeneous nature of this reaction. Currently, we can only 

speculate on the possible mechanisms based on circumstantial evidence. However, in 

analogy to that proposed by Gaunt for the Cu-catalyzed C3-arylation of unsubstituted 

N
H

NHMe
O

N
TFA

N
H H

H(20 mol %)
N

Cu
N

Me Me

OTf

MesMes

NHTFA

O

H
N Me

[Ph2I]OTf (1.1 equiv) 
CH2Cl2, 23 °C
(81% yield)179 180

N
H

N
TFA

N
H

H

O

Me

H

N
H

N NH

O

O
H

H

Ph

75a

H
Ph
N

N

O N H

O

HPh

H N
H

H
Ph

H

HN

O

Me

N
TFA

77

H

nOe
observed

nOe
observed

Major Minor Major Minor

N
H

N NH

O

O
H

H

Ph
N
H

N
TFA

N
H

H

O

Me

H

N
H

H
Ar

O
NH

H
H

N
O Ph

H

Ar
N

N
H

O NH

CF3

O

Me

H

Tryptophan-Diketopiperazine Arylation Acyclic Tryptophan Carboxamide Arylation

vs. vs.



Chapter 3 – Direct and Selective Copper-Catalyzed Arylation of Tryptamines and 
Tryptophans: Total Synthesis of (+)-Naseseazines A and B 

194 

indoles, we currently favor a Cu(I–III) catalytic cycle (Scheme 3.15). Although Gaunt 

proposes oxidative addition prior to indole coordination, our studies suggest indole 

coordination is likely necessary for oxidation to a Cu(III) species. 

Scheme 3.15. Possible arylation mechanism 
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functionalized iodoniun. Alkynyl diketopiperazine 82 was expected to be available via a 

peptide coupling followed by cyclocondensation of the corresponding propargylglycine 

derivative. 

Scheme 3.16. Retrosynthetic Analysis 

 
3.9.2 Forward Synthesis 

In the forward sense, we began by investigating the arylation reaction of cyclo-L-

Trp-L-Pro (175f) with diaryliodonium salt 182, readily prepared in 80% yield over two-
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performed on large scale and provides the desired pyrroloindoline with excellent levels of 

diastereocontrol. Moreover, the same conditions could be applied to alanine-derived 175b 

to give pyrroloindoline 181b in 59% yield. 

Scheme 3.17. Arylation using a functionalized iodonium 
 

 
 To prepare the other coupling fragment for a Larock indolization, alkynyl 

diketopiperazine 185 was synthesized on gram scale via initial peptide coupling of amino 

acid 184 with (L)-proline methyl ester hydrochloride. One-pot Boc deprotection and 

base-mediated cyclocondensation provide the desired coupling partner.  

Scheme 3.18. Preparation of a propargyl diketopiperazine 
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of the complestatin natural products.16 Despite the use of superstoichiometric Pd(OAc)2 

and ditertbutylferrocenylphosphine as a ligand, this precedent demonstrated the viability 

of such a reaction in the context of advanced stage total synthesis and in the presence of 

numerous peptide bonds. 

We were therefore encouraged to find that the use of stoichiometric palladium 

with 1,1’-bis(di-tert-butylphosphino)ferrocene (dtbpf) gave traces of the natural product 

(Table 3.5, entry 2). Unfortunately, a closer analysis of the reaction mixture showed that 

the major products of this reaction consisted of hydrodebrominated starting material, epi-

naseseazine B, and iso-naseseazine B. Furthermore, subsequent attempts to optimize this 

reaction based on the conditions identified by Boger and co-workers proved completely 

unfruitful, and we therefore embarked on an extensive screen of less conventional 

ligands. Interestingly, treatment of stoichiometric amounts of the N-heterocyclic carbene-

based catalyst PEPPSI-IPr greatly reduced debromination, although 187 was recovered in 

low yield.  Subjecting the free aniline to identical conditions improved the recovery, 

providing a 39% isolated yield (entry 7).  Additional screening revealed that the bulky 

preformed catalyst Pd[P(o-tol)3]2 was highly active, reaching full conversion in only 15 

minutes and providing 27% yield of the product. Intrigued by the reactivity, we wondered 

whether catalysis might be achieved under these conditions. Gratifyingly, treatment with 

only 25 mol % Pd[P(o-tol)3]2 afforded 187 in 51% yield,  constituting the first catalytic 

Larock indolization on a bromoaniline in total synthesis. 
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Table 3.5. Optimization of the Larock indole synthesis 
 

 
entry R catalyst time product:debromo yield (%) 

1 TFA Pd(OAc)2 (1.1 equiv), LiCl 8 h – – 
2 TFA Pd(OAc)2 (1.1 equiv), dtbpf (1.2 equiv) 2 h 1 : 1 <10 
3 TFA Pd2(dba)3 (0.5 equiv), dtbpf (1.2 equiv) 2 h 1 : 1 <10 
4 TFA Pd(OAc)2 (1.1 equiv), DavePhos (1.2 equiv) 2 h 1 : 1 <10 
5 TFA Pd(OAc)2 (1.1 equiv), PCy3 (1.2 equiv) 8 h 0 : 1 – 
6 TFA PEPPSI-IPr (1.1 equiv) 8 h >20 :1 <20 
7 H PEPPSI-IPr (1.1 equiv) 8 h >20 :1 39 
8 H Pd[P(o-tol)3]2 (1.1 equiv) 15 min 10 :1 27 
9 H Pd[P(o-tol)3]2 (25 mol %) 90 min >20 : 1 51 

 
 

An analogous sequence was applied to furnish the related natural product (+)-

naseseazine A by utilizing alanine-derived diketopiperazine 181b.  Through this Cu-

catalyzed arylation chemistry, these complex polycyclic alkaloids are available in only 

five steps (longest linear sequence) from commercially available starting materials in 

19% and 25% overall yield respectively, highlighting the ability to generate structurally 

diverse pyrroloindolines in an extremely convergent manner. 

 

3.10 CONCLUSION 

In conclusion, this report describes the discovery and development of new, Cu-

catalyzed arylation reactions of tryptamine and tryptophan-derivatives to form 3-

arylpyrroloindolines. Direct and selective C3-arylation is achieved through the use of 

copper catalysts in conjunction with hypervalent iodine(III) salts as the aryl source. N-
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diaryliodonium tetrafluoroborates to afford racemic C3-aryl pyrroloindolines in good 

yields. Furthermore, the addition of α-diimine ligands to the system has enabled the 

development of an efficient and highly diastereoselective tryptophan arylation reaction. 

Using this transformation to assemble the pyrroloindoline core enables the concise, 

stereoselective syntheses of the bisindole alkaloids (+)-naseseazines A and B in overall 

yields of 25 and 19%, respectively.  

 

3.11 EXPERIMENTAL SECTION 

3.11.1 Materials and Methods 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using 

freshly dried solvents. Tetrahydrofuran (THF), methylene chloride (CH2Cl2), acetonitrile 

(MeCN), dimethylformamide (DMF), and toluene (PhMe) were dried by passing through 

activated alumina columns. Triethylamine (Et3N) was distilled over calcium hydride prior 

to use. Unless otherwise stated, chemicals and reagents were used as received. All 

reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 

F254 pre-coated plates (0.25 mm) and were visualized by UV, p-anisaldehyde, or 

KMnO4 staining. Reaction samples were analyzed on an Agilent 1290 Series LC/MS 

using an Eclipse Plus C18 column (RRHD 1.8 µm, 2.1 x 50 mm, 11,072 plates). Flash 

column chromatography was performed either as described by Still et al. using silica gel 

(particle size 0.032-0.063) purchased from Silicycle or using pre-packaged RediSep®Rf 

columns on a CombiFlash Rf system (Teledyne ISCO Inc.).  Alumina was purchased 

from Sigma-Aldrich (Aluminum oxide, ~150 mesh, 58Å pore size, activated, basic, 

Brockmann I) and deactivated with 3% v/w H2O (30.0 mL / 970 g).  1H and 13C NMR 
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spectra were recorded on a Varian 400 MR (at 400 MHz and 101 MHz, respectively), a 

Varian Inova 500 (at 500 MHz and 126 MHz, respectively), or a Varian Inova 600 (at 

600 MHz and 150 MHz, respectively), and are reported relative to internal CHCl3 (1H, δ 

= 7.26) or DMSO (1H, δ = 2.50), and CDCl3 (13C, δ = 77.0), or DMSO (13C, δ = 40.0). 

Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, 

coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as 

follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR 

spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in 

frequency of absorption (cm–1). HRMS were acquired using an Agilent 6200 Series TOF 

with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI), or mixed (MM) ionization mode. 

3.11.2 Optimization of Racemic Arylation 

A. Palladium-Catalyzed Reaction Screens 
 

 
 To a flame-dried vial in the glove box was charged PCyPh2 (11 mg, 0.04 mmol), 

Pd2(dba)3 (11 mg, 0.02 mmol), N-tosyltryptamine (31 mg, 0.1 mmol), bromobenzene (51 

µL, 0.5 mmol), LiOtBu (16 mg, 0.2 mmol) and THF (1 mL).  The vial was sealed and 

heated to 80 oC for 12 hours.  The reaction mixture was filtered through a plug of silica 

and concentrated in vacuo.  The crude residue was purified by silica gel flash 

chromatography (20% EtoAc in hexanes) to afford 2-phenyl tryptamine 17 (16.9 mg, 

0.04 mmol, 44%). 1H NMR (CDCl3, 500 MHz) δ 8.11 (s, 1H), 7.58 (d, J = 8.2 Hz, 2H), 

7.52 – 7.42 (m, 5H), 7.40 (ddd, J = 4.1, 1.5, 1.5 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.20 
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THF, 80 °C, 12 h
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(44% yield)
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(dd, J = 16.1, 7.8 Hz, 3H), 7.09 (dd, J = 7.8, 7.2 Hz, 1H), 4.35 (t, J = 5.8 Hz, 1H), 3.28 

(dd, J = 13.3, 6.8 Hz, 2H), 3.08 (dd, J = 7.1, 7.1 Hz, 2H), 2.40 (s, 3H); 13C NMR (CDCl3, 

126 MHz) δ 143.2, 136.7, 135.8, 132.5, 129.6, 129.0, 128.5, 128.10, 128.09, 127.0, 

122.6, 120.0, 118.8, 110.9, 108.3, 43.2, 25.0, 21.5;HRMS (MM) calc’d for [M+H]+ 

391.1475, found 391.1491. 

 
 

 
 To a flame-dried vial in the glove box was charged XPhos (19 mg, 0.04 mmol), 

Pd2(dba)3 (11 mg, 0.02 mmol), N-tosyltryptamine (31 mg, 0.1 mmol), bromobenzene (51 

µL, 0.5 mmol), LiOtBu (16 mg, 0.2 mmol) and THF (1 mL).  The vial was sealed and 

heated to 80 oC for 6 hours.  The reaction mixture was filtered through a plug of silica 

and concentrated in vacuo.  The crude residue was purified by silica gel flash 

chromatography (20% EtoAc in hexanes) to afford N-phenyl tryptamine (35.2 mg, 0.09 

mmol, 90%). 1H NMR (CDCl3, 500 MHz) δ  7.70 – 7.65 (m, 2H), 7.57 – 7.43 (m, 6H), 

7.39 – 7.32 (m, 1H), 7.23 (dd, J = 11.6, 4.5 Hz, 3H), 7.16 – 7.10 (m, 1H), 7.09 (s, 1H), 

4.54 (t, J = 6.1 Hz, 1H), 3.34 (q, J = 6.6 Hz, 2H), 2.99 (t, J = 6.7 Hz, 2H), 2.38 (s, 3H); 

13C NMR (CDCl3, 126 MHz) δ 143.3, 139.4, 136.8, 136.1, 129.6, 128.3, 127.0, 126.4, 

126.2, 124.1, 122.7, 120.1, 118.8, 112.7, 110.7, 43.1, 25.4, 21.5. HRMS (MM) calc’d for 

[M+H]+ 391.1475, found 391.1470. 
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 To a flame-dried vial in the glove box was charged BrettPhos (6.4 mg, 0.012 

mmol), Pd2(dba)3 (3.5 mg, 0.006 mmol), N-Boc-N’-methyltryptamine (8 mg, 0.1 mmol), 

bromobenzene (16 µL, 0.15 mmol), LiOtBu (4.8 mg, 0.06 mmol) and THF (1 mL).  The 

vial was sealed and heated to 80 oC for 6 hours.  The reaction mixture was filtered 

through a plug of silica and concentrated in vacuo.  The crude residue was purified by 

silica gel flash chromatography (20% EtoAc in hexanes) to afford N-phenyl tryptamine 

(28.0 mg, 0.02 mmol, 72%). 1H NMR (CDCl3, 500 MHz) δ  7.54 (d, J = 7.9 Hz, 1H), 

7.34 (dd, J = 10.7, 4.9 Hz, 2H), 7.28 (d, J = 8.2 Hz, 1H), 7.24 – 7.18 (m, 4H), 7.07 (ddd, 

J = 7.9, 7.0, 1.0 Hz, 1H), 6.85 (s, 1H), 3.97 – 3.87 (m, 2H), 3.72 (s, 3H), 3.06 – 2.95 (m, 

2H), 1.42 (s, 10H).  13C NMR (CDCl3, 126 MHz) 148.4, 143.5, 139.4, 136.4, 135.6, 

132.6, 131.9, 129.6, 128.5, 127.2, 127.1, 127.0, 125.7, 124.3, 119.2, 109.4, 84.4, 62.1, 

47.4, 37.9, 21.4, 20.8.  FTIR (NaCl, thin film): 3056, 3027, 2949, 2891, 2827, 1762, 

1605, 1491, 1347, 1160, 1092, 1022.  HRMS (MM) calc’d for [M+H]+ 409.1381, found 

409.1363. 

 
B. Copper-Catalyzed Reaction Screen 
 
General Procedure – To a flame-dried, 1-dram vial was charged the appropriate 

tryptamine (0.10 mmol), 4,4’-di-tert-butylbiphenyl, diaryl iodonium salt (0.11 mmol), 

copper catalyst (0.010 mmol), and additive (0.10 mmol, if applicable). Anhydrous 

CH2Cl2 (1.0 mL) was then added and the reaction stirred under inert atmosphere and 

monitored by UHPLC-MS for optimal yield. 
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The following response factors relative to an internal standard of 4,4’-di-tert-

butylbiphenyl were measured and calculated based on three runs of varied concentration 

at λ  = 254 nm:  

N-Tosyltryptamine 167a (Starting Material): Response Factor =  0.117 
N-Tosylpyrroloindoline 168a (Product): Response Factor =  0.253 
UHPLC samples were analyzed at λ = 254 nm and yields calculated based on the above 
factors. 
 
 
 

 
 

entry R Cu source X additive pdt yield (%)a 

1 Ts Cu(OTf)2 BF4 – 19a 62b 
2 Ts – BF4 – 19a 0 
3 Boc Cu(OTf)2 BF4 – 19b <5 
4 Ac Cu(OTf)2 BF4 – 19c <5 
5 Ts (CuOTf)2•PhMe BF4 – 19a 64 
6 Ts CuI BF4 – 19a 0 
7 Ts Cu(MeCN)PF6 BF4 – 19a 0 
8 Ts Cu(OAc)2 BF4 – 19a 64 
9 Ts Cu(OTf)2 PF6 – 19a 28 

10 Ts Cu(OTf)2 OTf – 19a 32 
11 Ts Cu(OTf)2 Cl – 19a 0 
12 Ts Cu(OTf)2 BF4 dtbpy 19a <5 
13 Ts Cu(OTf)2 BF4 NaHCO3 19a 55 
14 Ts Cu(OTf)2 BF4 AcOH 19a 62 
15 Ts Cu(OTf)2 BF4 –c 19a 65 

[a] Determined by HPLC versus an internal standard. [b] Isolated yield. [c] [Ph-I-Mes]BF4 was employed 
as the electrophile 
 
3.11.3 Preparation of N-tosyl tryptamine derivatives 

General Procedure A – To a solution of tryptamine (1.00 equiv) in CH2Cl2 (0.1 M) was 

added Et3N (1.50 equiv). The solution was cooled to 0 °C in an ice bath and p-

toluenesulfonyl chloride (1.01 equiv) added in one portion as solid against a positive 

steam of nitrogen. The solution was stirred for 15 minutes, then the ice bath removed and 

allowed to warm up to ambient temperature (20 to 25 °C) and stirred for an additional 4 

N
H

NHR1 copper catalyst
Ph2IX, CH2Cl2, 23 °C NN

H
R1

Ph

H
167a-c 168a-c
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hours. The reaction was then quenched with 1 N aq. HCl (equal volume to CH2Cl2 used) 

and the organic layer separated and washed with another portion of 1N aq. HCl. The 

combined aqueous layers were then combined and back extracted with CH2Cl2 (20 mL), 

then the organic layers combined, dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo. The resulting crude residue was purified by flash chromatography 

(SiO2) to afford N-tosyltryptamine as a white or off-white solid. 

 

 N-Tosyltryptamine 167b: Prepared according to General 

Procedure A.  Reaction run on 6.40 mmol (1.30 g) scale. The crude 

material was purified by silica gel chromatography (gradient elution, 10-60% EtOAc in 

Hexane) to afford 167b as a white, amorphous solid (1.58 g, 4.81 mmol, 75 % yield). 1H 

NMR (CDCl3, 500 MHz) δ  7.98 (s, 1H), 7.67 – 7.60 (m, 2H), 7.25 – 7.19 (m, 3H), 7.17 

(dd, J = 1.5, 0.7 Hz, 1H), 7.01 (dd, J = 8.3, 1.6 Hz, 1H), 6.92 (d, J = 2.3 Hz, 1H), 4.46 (t, 

J = 6.0 Hz, 1H), 3.26 (q, J = 6.5 Hz, 2H), 2.89 (dd, J = 6.9, 6.3 Hz, 2H), 2.41 (s, 3H), 

2.40 (s, 3H); 13C NMR (CDCl3, 126 MHz) 143.2, 136.7, 134.7, 129.6, 128.7, 127.0, 

127.0, 123.8, 122.7, 118.1, 110.9, 110.9, 42.9, 25.4, 21.5, 21.4; FTIR (NaCl, thin film): 

3401, 3290, 3042, 2919, 2864, 1597, 1423, 1320, 1303, 1157, 1093.  HRMS (MM) calc’d 

for [M+H]+ 329.1318, found 329.1316. 

 

 N-Tosyltryptamine 167c: Prepared according to General 

Procedure A.  Reaction run on 3.68 mmol (641 mg) scale. The 
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H
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crude material was purified by silica gel chromatography (gradient elution, 10-60% 

EtOAc in Hexane) to afford 167c as a white, amorphous solid (940 mg, 2.87 mmol, 78 % 

yield). 

1H NMR (CDCl3, 500 MHz) δ  7.94 (s, 1H), 7.67 – 7.59 (m, 2H), 7.29 (d, J = 8.1 Hz, 

1H), 7.21 (d, J = 8.0 Hz, 2H), 7.14 (s, 1H), 6.92 – 6.86 (m, 2H), 4.46 (t, J = 6.1 Hz, 1H), 

3.25 (q, J = 6.5 Hz, 2H), 2.90 (t, J = 6.6 Hz, 2H), 2.45 (s, 3H), 2.40 (s, 3H).  13C NMR 

(CDCl3, 126 MHz) δ 143.2, 136.8, 136.7, 132.1, 129.6, 127.0, 124.7, 121.9, 121.3, 118.1, 

111.3, 111.2,  43.0, 25.5, 21.6, 21.5.  FTIR (NaCl, thin film): 3401, 3280, 2913, 2859, 

1456, 1404, 1320, 1301, 1157, 1093.  HRMS (MM) calc’d for [M+H]+ 329.1318, found 

329.1307. 

 

 N-Tosyltryptamine 167d: Prepared according to General Procedure 

A.  Reaction run on 3.84 mmol (669 mg) scale. The crude material 

was purified by silica gel chromatography (gradient elution, 10-60% EtOAc in Hexane) 

to afford 167d as a white, amorphous solid (1.02g, 3.11 mmol, 81 % yield). 1H NMR 

(CDCl3, 500 MHz) δ  8.27 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.57 – 7.50 (m, 1H), 7.48 (d, 

J = 8.5 Hz, 2H), 7.24 (dd, J = 9.7, 2.0 Hz, 3H), 4.75 (t, J = 6.1 Hz, 1H), 3.53 (q, J = 6.5 

Hz, 2H), 3.18 (t, J = 6.6 Hz, 2H), 2.73 (s, 3H), 2.66 (s, 3H);  13C NMR (126 MHz, cdcl3) 

δ 143.3, 136.7, 136.0, 129.6, 127.0, 126.3, 122.7, 122.3, 120.5, 119.7, 116.2, 112.0, 43.0, 

25.6, 21.5, 16.6l  FTIR (NaCl, thin film): 3400, 3275, 3047, 2908, 2849, 1436, 1320, 

1303, 1157, 1093, 1063.  HRMS (MM) calc’d for [M+H]+ 329.1318, found 329.1307. 
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 N-Tosyltryptamine 167e:  Prepared according to General Procedure 

A.   Reaction run on 3.43 mmol (610 mg) scale. The crude material 

was purified by silica gel chromatography (gradient elution, 10-60% EtOAc in Hexane) 

to afford 167e as an off-white, amorphous solid (940 mg, 2.83 mmol, 82 % yield). 1H 

NMR (CDCl3, 500 MHz) δ  8.12 (s, 1H), 7.64 – 7.60 (m, 2H), 7.28 – 7.24 (m, 1H), 7.22 

(dd, J = 8.5, 0.6 Hz, 2H), 7.02 (d, J = 2.4 Hz, 1H), 6.99 – 6.89 (m, 2H), 4.45 (t, J = 6.0 

Hz, 1H), 3.24 (q, J = 6.6 Hz, 2H), 2.87 (dd, J = 6.8, 6.4 Hz, 2H), 2.40 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 157.6 (d, JC-F = 233.8 Hz), 143.5, 136.4, 132.8, 129.6, 127.1 (d, JC-F 

= 10.0 Hz), 127.0, 124.4, 111.9 (d, JC-F = 8.8 Hz), 111.6 (d, JC-F = 5.0 Hz), 110.6 (d, JC-F 

= 26.3 Hz), 103.4 (d, JC-F = 22.5 Hz), 42.71, 25.32, 21.47;  FTIR (NaCl, thin film): 3392, 

3275, 2933, 2864, 1486, 1457, 1319, 1301, 1157, 1093 cm-1.  HRMS (MM) calc’d for 

[M+H]+ 333.1068, found 333.1058. 

 

 N-Tosyltryptamine 167f:  Prepared according to General 

Procedure A.  Reaction run on 3.34 mmol (650 mg) scale. The crude 

material was purified by silica gel chromatography (gradient elution, 10-60% EtOAc in 

Hexane) to afford 167f as an off-white, amorphous solid (1.08 g, 3.10 mmol, 92 % yield). 

1H NMR (CDCl3, 500 MHz) δ  8.18 (s, 1H), 7.65 – 7.57 (m, 2H), 7.28 (d, J = 2.0 Hz, 

1H), 7.24 (d, J = 0.5 Hz, 1H), 7.21 (dd, J = 8.5, 0.6 Hz, 2H), 7.11 (dd, J = 8.7, 1.9 Hz, 

1H), 7.00 (d, J = 2.3 Hz, 1H), 4.49 (t, J = 6.0 Hz, 1H), 3.23 (q, J = 6.6 Hz, 2H), 2.86 (td, 

J = 6.7, 0.6 Hz, 2H), 2.40 (s, 3H);  13C NMR (CDCl3, 126 MHz) δ 143.5, 136.4, 134.7, 

129.7, 127.9, 126.9, 125.2, 124.1, 122.5, 117.9, 112.3, 111.2, 42.7, 25.2, 21.5;  FTIR 
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(NaCl, thin film): 3385, 3275, 2913, 2859, 1464, 1422, 1319, 1156, 1093 cm-1;  HRMS 

(MM) calc’d for [M+H]+ 349.0772, found 349.0766. 

 

5-Bromo-N-Tosyltryptamine 167g: Reaction run on 7.99 mmol 

(1.91 g) scale. The crude material was purified by silica gel 

chromatography (gradient elution, 10-60% EtOAc in Hexane) to afford 167g as a white 

amorphous solid (2.63g, 6.69 mmol, 84% yield). 1H NMR (CDCl3, 500 MHz) δ 8.17 (s, 

1H), 7.68 – 7.65 (m, 1H), 7.63 – 7.59 (m, 2H), 7.41 (dd, J = 8.5, 1.6 Hz, 1H), 7.23 (dd, J 

= 8.5, 0.6 Hz, 2H), 7.12 (dd, J = 8.5, 0.4 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 4.48 (t, J = 

6.0 Hz, 1H), 3.23 (q, J = 6.5 Hz, 2H), 2.85 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H);  13C NMR 

(CDCl3, 126 MHz) δ 143.5, 136.4, 135.4, 130.5, 129.7, 129.4, 127.3, 126.9, 123.5, 113.3, 

110.9, 82.9, 42.8, 25.2, 21.6;  FTIR (NaCl, thin film): 3376, 3290, 2922, 2864, 1598, 

1460, 1420, 1320, 1157, 1093 cm-1; HRMS (MM) calc’d for [M+H]+ 393.0267, found 

393.0260. 

5-Iodo-N-tosyltryptamine 167h: To a 50-mL Schlenk tube was 

charged 5-bromo-N-tosyltryptamine 167g (858 mg, 2.18 mmol, 1.00 

equiv), CuI (42.0 mg, 0.220 mmol, 0.10 equiv), and NaI (654 mg, 4.36 

mmol, 2.00 equiv). The vessel was then evacuated and backfilled with N2 three times, 

and N,N’-dimethylethylene diamine (47 µL, 0.44 mmol, 0.20 equiv) and 1,4-dioxane (2.2 

mL) added. The vessel was then sealed and heated to 100 °C for 23 hours, then cooled to 

room temperature, and quenched with concentrated aqueous NH4OH (10 mL), then 

diluted with H2O (30 mL). The mixture was then extracted with CH2Cl2 (3 x 30 mL), the 

organic layers combined, dried over anhydrous Na2SO4, filtered, and concentrated in 
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vacuo. Flash chromatography (gradient elution, 10-60% EtOAc in Hexanes) afforded 5-

iodo-N-tosyltryptamine as a white solid (900 mg, 2.04 mmol, 94% yield). 1H NMR 

(CDCl3, 500 MHz) δ 8.27 (s, 1H), 7.63 – 7.57 (m, 2H), 7.44 (d, J = 1.8 Hz, 1H), 7.24 – 

7.17 (m, 4H), 6.96 (d, J = 2.4 Hz, 1H), 4.62 (t, J = 6.0 Hz, 1H), 3.22 (q, J = 6.6 Hz, 2H), 

2.83 (t, J = 6.6 Hz, 2H), 2.40 (s, 3H).  13C NMR (CDCl3, 126 MHz) δ 143.5, 136.3, 

134.9, 129.7, 128.5, 126.9, 124.9, 124.0, 120.9, 112.8, 112.6, 111.0, 42.7, 25.1, 21.5;  

FTIR (NaCl, thin film): 3391, 3290, 2928, 2854, 1598, 1456, 1417, 1319, 1288, 1157, 

1093 cm-1;  HRMS (MM) calc’d for [M+H]+ 441.0128, found 441.0130. 

 

5-Methoxy-N-Tosyltryptamine 167i: Prepared according to 

General Procedure A.   Reaction run on 5.94 mmol (1.13 g) scale. 

The crude material was purified by silica gel chromatography (gradient elution, 10-60% 

EtOAc in Hexane) to afford 167i as a white amorphous solid (1.68g, 4.88 mmol, 82 % 

yield). 1H NMR (CDCl3, 500 MHz) δ 7.98 (s, 1H), 7.64 – 7.58 (m, 2H), 7.24 (dd, J = 8.7, 

0.5 Hz, 1H), 7.20 (d, J = 7.9 Hz, 2H), 6.95 (d, J = 2.3 Hz, 1H), 6.87 – 6.81 (m, 2H), 4.45 

(t, J = 6.0 Hz, 1H), 3.80 (s, 3H), 3.25 (q, J = 6.5 Hz, 2H), 2.91 (t, J = 6.6 Hz, 2H), 2.40 (s, 

3H); 13C NMR (CDCl3, 126 MHz) δ 154.0, 143.3, 136.6, 131.6, 129.6, 127.2, 127.0, 

123.3, 112.5, 112.0, 111.2, 100.2, 55.8, 42.8, 25.4, 21.5; FTIR (NaCl, thin film): 3390, 

3285, 2928, 2824, 1486, 1459, 1437, 1319, 1215, 1156, 1092 cm-1; HRMS (MM) calc’d 

for [M+H]+ 345.1267, found 345.1266. 

 

 N-Tosyltryptamine 167j: Prepared according to General 
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Procedure A.   Reaction run on 10.90 mmol (2.61 g) scale. The crude material was 

purified by silica gel chromatography (gradient elution, 10-60% EtOAc in Hexane) to 

afford 167j as a white, amorphous solid (3.42g, 8.70 mmol, 80 % yield). 1H NMR 

(CDCl3, 500 MHz) δ 8.11 (s, 1H), 7.63 – 7.56 (m, 2H), 7.49 (dd, J = 1.7, 0.5 Hz, 1H), 

7.23 (d, J = 8.4 Hz, 1H), 7.21 – 7.18 (m, 2H), 7.13 (dd, J = 8.4, 1.7 Hz, 1H), 6.95 (d, J = 

2.4 Hz, 1H), 4.44 (t, J = 6.1 Hz, 1H), 3.24 (q, J = 6.5 Hz, 2H), 2.89 (t, J = 6.4 Hz, 2H), 

2.40 (s, 3H).  13C NMR (CDCl3, 126 MHz) δ 143.4, 137.1, 36.5, 129.6, 126.9, 125.8, 

123.2, 122.8, 119.7, 115.8, 114.2, 111.8, 42.9, 25.3, 21.5;  FTIR (NaCl, thin film): 3368, 

3270, 2933, 2864, 1457, 1399, 1319, 1156, 1092.  HRMS (MM) calc’d for [M+H]+ 

393.0267, found 393.0252. 

 

General procedure B – To a solution of N-tosyltryptamine (1.57 g, 5.00 mmol, 1.00 

equiv) in DMF (17 mL) at 20 °C was added NaH (60% dispersion in mineral oil, 0.700 g, 

17.5 mmol, 3.5 equiv) slowly, with vigorous stirring, and stirring continued at 20 °C. 

After 30 minutes, the solution was cooled to 0 °C in an ice bath, and the appropriate alkyl 

halide (5.00 mmol, 1.00 equiv) was added dropwise by syringe over three minutes. 

Stirring was continued at 0 °C for two hours, and the reaction allowed to warm to 20 °C 

and stirring continued for 13 hours. The reaction was then carefully quenched by the 

dropwise addition of saturated, aqueous ammonium chloride (10 mL), and the mixture 

diluted with EtOAc (100 mL), and washed with brine (2 x 50 mL). The organic layer was 

then dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. Flash 

chromatography (SiO2) afforded N’-alkylated tryptamines as a white solid. 
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 N-tosyl-N’-methyltryptamines 167k: Prepared according to General 

Procedure B.  Reaction run on 5.00 mmol (1.57 g) scale. The crude 

material was purified by silica gel chromatography (gradient elution, 20-40% EtOAc in 

Hexane) to afford 20k as a white, amorphous solid (1.18 g, 3.59 mmol, 72 % yield). 1H 

NMR (CDCl3, 500 MHz) δ  7.64 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 7.9 Hz, 1H), 7.29 (d, J 

= 8.2 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.05 (dd, J = 7.4, 7.4 Hz, 1H), 6.82 (s, 1H), 4.41 (t, J 

= 6.0 Hz, 1H), 3.73 (s, 3H), 3.26 (q, J = 6.5 Hz, 2H), 2.92 (t, J = 6.6 Hz, 2H), 2.41 (s, 

3H).  13C NMR (CDCl3, 126 MHz) δ  143.1, 143.1, 137.0, 136.8, 129.6, 129.5, 129.5, 

129.5, 129.5, 129.5, 127.3, 127.2, 126.9, 121.7, 118.9, 118.9, 118.5, 109.9, 109.9, 109.3, 

109.3, 43.2, 43.2, 32.6, 32.5, 25.3, 25.3, 21.5, 21.4, 14.1;  FTIR (NaCl, thin film):3292, 

3051, 2929, 1616, 1473, 1325, 1158, 1093 cm-1;  HRMS (MM) calc’d for [M+H]+ 

329.1318, found 329.1314. 

 

 N-tosyl-N’-benzyltryptamines: Prepared according to General 

Procedure B.   Reaction run on 5.00 mmol (1.57 g) scale. The crude 

material was purified by silica gel chromatography (gradient elution, 

20-30% EtOAc in Hexane) to afford 167l as a white, amorphous solid (1.52 g, 3.76 

mmol, 75 % yield). 1H NMR (CDCl3, 500 MHz) δ  7.62 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 

7.9 Hz, 1H), 7.33 – 7.22 (m, 4H), 7.21 – 7.13 (m, 3H), 7.12 – 7.07 (m, 2H), 7.06 – 7.01 

(m, 1H), 6.85 (s, 1H), 5.23 (s, 2H), 4.44 (t, J = 6.1 Hz, 1H), 3.27 (q, J = 6.6 Hz, 2H), 2.91 

(t, J = 6.7 Hz, 2H), 2.38 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ  143.2, 137.3, 136.8, 

136.8, 129.6, 128.8, 127.7, 127.5, 127.0, 126.8, 126.5, 122.0, 119.3, 118.7, 110.7, 109.8, 
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49.9, 43.1, 25.5, 21.5; FTIR (NaCl, thin film): 3284, 3057, 3029, 2922, 1597, 1466, 1326, 

1159, 1094, 1076 cm-1; HRMS (MM) calc’d for [M+H]+ 405.1557, found 405.1630. 

 

3.11.4 Preparation of Diaryliodonium Tetrafluoroborates 

General Procedure C – To a solution of aryl iodide (1.00 equiv) in Ac2O (0.5 M) was 

added mCPBA (1.50 equiv).  After stirring 1 hour at 23 °C, the mixture was cooled to 0 

°C and mesitylene (1.10 equiv) was added followed by dropwise addition of HBF4 (50% 

aq solution, 2.00 equiv).  The reaction continued stirring at 0 °C for 30 minutes, followed 

by 6 hours at 23 °C.  The mixture was diluted with water, extracted with CH2Cl2, dried 

over MgSO4, filtered and concentrated in vacuo.  Crude reaction mixtures were dissolved 

in minimal CH2Cl2 and precipated with Et2O to yield fine, white powders.  The 

precipitate was filtered and dried overnight under high vacuum at 100 °C.   

 

 (2-Methylphenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol (2.18 

g) scale. Trituration afforded the product as a white powder (3.0 g, 

7.1 mmol, 71 % yield). 1H NMR (500 MHz, DMSO) δ 7.96 (d, J = 7.8 Hz, 1H), 7.56 – 

7.54 (m, 2H), 7.29 – 7.23 (m, 1H), 7.21 (s, 2H), 2.56 (s, 6H), 2.56 (s, 3H), 2.29 (s, 3H).  

13C NMR (DMSO, 125 MHz) δ 143.5, 142.1, 141.2, 137.2, 132.9, 132.4, 130.4, 129.8, 

122.3, 119.1, 26.6, 24.9, 21.0.  FTIR (NaCl, thin film): 1587, 1558, 1457, 1382, 1301, 

1064, 1024.  HRMS (MM) calc’d for [M]+ 337.0448, found 337.0443. 
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(3-Methylphenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol 

(2.18 g) scale. Trituration afforded the product as a white powder 

(3.9 g, 9.2 mmol, 92 % yield). 

1H NMR (500 MHz, DMSO) δ 7.85 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 7.6 Hz, 

1H), 7.38 (t, J = 7.8 Hz, 1H), 7.22 (s, 2H), 2.60 (s, 6H), 2.32 (s, 3H), 2.29 (s, 3H);  13C 

NMR (DMSO, 126 MHz) δ 143.5, 142.45, 142.1, 135.1, 133.0, 132.2, 132.0, 130.3, 

122.9, 114.8, 26.8, 21.2, 21.0.  FTIR (NaCl, thin film): 2913, 1595, 1558, 1452, 1301, 

1063, 1024 cm-1;  HRMS (MM) calc’d for [M]+ 337.0448, found 337.0443. 

 

(4-Methylphenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol 

(2.18 g) scale. Trituration afforded the product as a white powder 

(3.4 g, 8.2 mmol, 80 % yield). 

1H NMR (500 MHz, DMSO) δ 7.90 – 7.84 (m, 2H), 7.31 (dd, J = 8.5, 0.6 Hz, 2H), 7.20 

(s, 2H), 2.60 (s, 6H), 2.33 (s, 3H), 2.29 (s, 3H).  13C NMR (DMSO, 125 MHz) δ 143.5, 

142.7, 141.9, 135.0, 133.0, 130.2, 123.2, 111.4, 26.8, 21.7, 21.0.  FTIR (NaCl, thin film): 

1586, 1451, 1381, 1064, 1024.  HRMS (MM) calc’d for [M]+ 337.0448, found 447.0446. 

 

(4-Fluorophenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol 

(2.22 g) scale. Trituration afforded the product as a white powder 

(1.7 g, 4.1 mmol, 40 % yield). 1H NMR (500 MHz, DMSO) δ 8.08 – 8.01 (m, 2H), 7.40 – 
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7.34 (m, 2H), 7.22 (s, 2H), 2.60 (s, 6H), 2.30 (s, 3H).  13C NMR (DMSO, 125 MHz) 

δ 164.2 (d, JC-F = 250.0 Hz), 143.7, 142.00, 137.8 (d, JC-F = 8.75 Hz), 130.3, 123.4, 119.7 

(d, JC-F = 22.5 Hz), 109.1, 26.8, 21.0; FTIR (NaCl, thin film): 1576, 1482, 1301, 1237, 

1165, 1064, 1024 cm-1; HRMS (MM) calc’d for [M–BF4]+ 341.0197, found 341.0188. 

 

(4-Chlorophenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol 

(2.39 g) scale. Trituration afforded the product as a white powder 

(1.92 g, 4.3 mmol, 44 % yield). 1H NMR (500 MHz, DMSO) δ 7.99 – 7.93 (m, 2H), 7.60 

– 7.55 (m, 2H), 7.23 (d, J = 0.5 Hz, 2H), 2.59 (s, 6H), 2.30 (s, 3H);  13C NMR (DMSO, 

125 MHz) δ 143.7, 142.1, 137.5, 136.7, 132.3, 130.3, 123.3, 112.8, 26.77, 21.02;  FTIR 

(NaCl, thin film): 1469, 1380, 1301, 1064, 1027 cm-1;  HRMS (MM) calc’d for [M–BF4]+ 

356.9901, found 356.9895. 

 

(4-Bromophenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol 

(2.83 g) scale. Trituration afforded the producct as a white powder 

(2.67 g, 5.5 mmol, 55 % yield). 1H NMR (500 MHz, DMSO) δ 7.91 – 7.86 (m, 2H), 7.73 

– 7.68 (m, 2H), 7.23 (d, J = 0.5 Hz, 2H), 2.59 (s, 6H), 2.30 (s, 3H).  13C NMR (DMSO, 

126 MHz) δ 143.8, 142.1, 136.8, 135.2, 130.3, 126.3, 123.2, 113.5, 26.8, 21.0;  FTIR 

(NaCl, thin film): 1085, 1469, 1388, 1303, 1064 1024 cm-1;  HRMS (MM) calc’d for [M–

BF4]+ 400.9396, found 400.9392. 
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(4-iodophenyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 5.0 mmol (1.24 

g) scale. Trituration afforded the product as a white powder (1.59 g, 

3.0 mmol, 30 % yield). 1H NMR (500 MHz, DMSO) δ 7.88 – 7.82 (m, 2H), 7.73 – 7.69 

(m, 2H), 7.22 (s, 2H), 2.58 (s, 6H), 2.30 (s, 3H); 13C NMR (DMSO, 125 MHz) δ  143.71, 

142.06, 140.93, 136.50, 130.31, 123.13, 114.38, 100.25, 26.77, 21.02;  FTIR (NaCl, thin 

film): 1464, 1380, 1303, 1064, 1024, 984 cm-1;  HRMS (MM) calc’d for [M–BF4]+ 

448.9258, found 448.9248. 

 

(4-ethoxycarbonyl)(2,4,6-trimethylphenyl)iodonium tetrafluoroborate: Prepared 

according to General Procedure C.  Reaction run on 10.0 mmol 

(2.76 g) scale. Trituration afforded the product as a white 

powder (2.20 g, 4.6 mmol, 46 % yield). 

1H NMR (500 MHz, DMSO) δ 8.11 – 8.05 (m, 2H), 8.02 – 7.96 (m, 2H), 7.24 (d, J = 0.5 

Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 2.59 (s, 6H), 2.30 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H);  13C 

NMR (DMSO, 125 MHz) δ 165.03, 143.8, 142.2, 135.2, 133.1, 132.4, 130.4, 123.2, 

119.8, 62.0, 26.8, 21.0, 14.5;  FTIR (NaCl, thin film): 2984, 1719, 1583, 1449, 1395, 

1365, 1277, 1064, 1024 cm-1;  HRMS (MM) calc’d for [M–BF4]+ 395.0502, found 

395.0493. 

3.11.5 Preparation of N-Tosylpyrroloindolines 

General Procedure D – To a flame-dried flask was charged the appropriate N-

tosyltryptamine derivative (0.300 mmol, 1.0 equiv), the appropriate iodonium (0.330 

mmol, 1.1 equiv), Cu(OAc)2 or Cu(OTf)2 (0.030 mmol or 0.060 mmol, 0.10 equiv or 0.20 
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mmol) and CH2Cl2 (3.0 mL). The reaction was stirred for the time indicated, at which 

point the reaction was diluted with CH2Cl2 (10 mL), and quenched with saturated aq. 

NaHCO3 (15 mL). The organic layer was separated and washed with additional NaHCO3 

(2 x 15 mL) and the resulting aqueous layers were then combined and back extracted 

with CH2Cl2 (15 mL). The organic layers were combined, dried over anhydrous Na2SO4, 

filtered, and concentrated in vacuo. The crude residue was purified by flash 

chromatography (SiO2 or basic alumina) to afford the N-tosylpyrroloindoline as a white 

or off-white solid. 

 

Pyrroloindoline 168a: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 4 hours. Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 40% 

THF in hexanes) to afford 168a as a white, amorphous solid (72.6 mg, 

0.19 mmol, 62 % yield). 

1H NMR (CDCl3, 500 MHz) δ 7.76 – 7.71 (m, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.25 – 

7.15 (m, 3H), 7.14 – 7.09 (m, 3H), 7.00 (ddd, J = 7.4, 1.1, 0.5 Hz, 1H), 6.80 – 6.74 (m, 

1H), 6.70 (dd, J = 7.8, 0.6 Hz, 1H), 5.43 (s, 1H), 4.91 (s, 1H), 3.65 (ddd, J = 10.6, 7.8, 

1.4 Hz, 1H), 3.25 (td, J = 11.0, 5.6 Hz, 1H), 2.48 (ddd, J = 12.4, 5.6, 1.0 Hz, 1H), 2.44 (s, 

3H), 2.34 (ddd, J = 12.4, 11.3, 7.9 Hz, 1H).  13C NMR (CDCl3, 126 MHz) δ 148.8, 143.6, 

143.0, 136.3, 131.4, 129.8, 128.8, 128.6, 127.0, 127.0, 125.7, 123.9, 119.6, 110.1, 85.6, 

61.8, 48.1, 37.3, 21.5.  FTIR (NaCl, thin film):  3366, 2978, 2878, 1610, 1595, 1491, 

1466, 1332, 1318, 1303, 1159, 1094.  HRMS (MM) calc’d for [M+H]+ 391.1475, found 

391.1473. 
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Pyrroloindoline 168a: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 6 hours. Reaction run on 0.30 mmol (98.5 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 40% THF 

in Hexane) to afford 168a as a white foam (99.4 mg, 0.25 mmol, 82 % 

yield). 

1H NMR (CDCl3, 500 MHz) δ  7.78 – 7.70 (m, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.24 – 

7.15 (m, 3H), 7.12 – 7.08 (m, 2H), 6.95 (dd, J = 6.5, 0.8 Hz, 1H), 6.89 – 6.82 (m, 1H), 

6.72 (dd, J = 7.4, 7.4 Hz, 1H), 5.47 (s, 1H), 4.70 (s, 1H), 3.67 (ddd, J = 10.5, 7.8, 1.5 Hz, 

1H), 3.24 (ddd, J = 10.9, 10.9, 5.6 Hz, 1H), 2.47 (ddd, J = 12.4, 5.6, 1.1 Hz, 1H), 2.44 (s, 

3H), 2.35 (ddd, J = 12.4, 11.2, 7.8 Hz, 1H), 2.16 (s, 3H).  13C NMR (CDCl3, 126 MHz) 

δ147.4, 143.6, 143.1, 136.5, 130.8, 129.8, 129.7, 128.6, 126.98, 126.94, 125.7, 121.4, 

119.7, 119.5, 85.5, 62.2, 48.2, 37.6, 21.5, 16.7.  FTIR (NaCl, thin film): 3351, 3059, 

2892, 1595, 1447, 1332, 1153, 1089.  HRMS (MM) calc’d for [M+H]+ 405.1631, found 

405.1629. 

 

Pyrroloindoline 168b: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 6 hours.  Reaction run on 0.30 mmol (98.5 mg) scale. 

The crude material was purified on basic alumina (gradient elution, 

40% THF in Hexane) to afford 168b as a white, amorphous solid (76.6 

mg, 0.19 mmol, 63 % yield). 

1H NMR (CDCl3, 500 MHz) δ  7.73 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.25 – 

7.16 (m, 3H), 7.15 – 7.10 (m, 2H), 6.91 (dd, J = 7.9, 1.0 Hz, 1H), 6.79 (d, J = 0.4 Hz, 
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1H), 6.61 (d, J = 7.9 Hz, 1H), 5.41 (s, 1H), 3.64 (ddd, J = 10.5, 7.8, 1.3 Hz, 1H), 3.25 

(ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.50 – 2.38 (m, 1H), 2.43 (s, 3H), 2.32 (ddd, J = 12.3, 

11.3, 7.9 Hz, 1H), 2.22 (s, 3H).  13C NMR (CDCl3, 126 MHz) δ 146.4, 143.5, 143.1, 

136.3, 131.7, 129.8, 129.2, 129.0, 128.6, 126.97, 126.95, 125.7, 124.4, 110.1, 85.9, 61.8, 

48.1, 37.1, 21.5, 20.9.  FTIR (NaCl, thin film): 3385, 2922, 1617, 1597, 1496, 1448, 

1340, 1159, 1093.  HRMS (MM) calc’d for [M+H]+ 405.1631, found 405.1644. 

 

 

Pyrroloindoline 168c: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 6 hours. Reaction run on 0.30 mmol (98.5 mg) scale. 

The crude material was purified on basic alumina (gradient elution, 

40% THF in Hexane) to afford 168c as a white foam (61.0 mg, 0.15 

mmol, 50 % yield). 

1H NMR (CDCl3, 500 MHz) δ  7.77 – 7.70 (m, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.25 – 

7.14 (m, 3H), 7.13 – 7.07 (m, 2H), 6.88 (d, J = 7.6 Hz, 1H), 6.59 (ddd, J = 7.6, 1.4, 0.7 

Hz, 1H), 6.55 – 6.51 (m, 1H), 5.41 (s, 1H), 4.83 (s, 1H), 3.64 (ddd, J = 10.6, 7.8, 1.4 Hz, 

1H), 3.27 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.49 – 2.41 (m, 1H), 2.44 (s, 3H), 2.31 (ddd, 

J = 7.9, 6.9, 5.7 Hz, 1H), 2.28 (s, 3H).  13C NMR (CDCl3, 126 MHz) δ 149.0, 143.6, 

143.2, 138.8, 136.4, 129.8, 128.6, 128.6, 127.0, 126.9, 125.7, 123.6, 120.4, 111.0, 85.9, 

61.6, 48.2, 37.3, 21.5, 21.5.  FTIR (NaCl, thin film): 3353, 2889, 1595, 1490, 1448, 1331, 

1307, 1159, 1119, 1092.  HRMS (MM) calc’d for [M+H]+ 405.1631, found 405.1609. 
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Pyrroloindoline 168d: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 6 hours. Reaction run on 0.30 mmol (98.5 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 40% 

THF in Hexane) to afford 168d as a white, crystalline solid (69.2 mg, 

0.17 mmol, 57% yield). 1H NMR (CDCl3, 500 MHz) δ  7.81 – 7.70 (m, 2H), 7.30 (d, J = 

7.9 Hz, 2H), 7.25 – 7.15 (m, 3H), 7.13 – 7.07 (m, 2H), 6.95 (d, J = 7.4 Hz, 1H), 6.86 (d, J 

= 7.1 Hz, 1H), 6.72 (dd, J = 7.4, 7.4 Hz, 1H), 5.47 (s, 1H), 4.70 (s, 1H), 3.67 (ddd, J = 

10.5, 7.8, 1.4 Hz, 1H), 3.24 (ddd, J = 10.9, 10.9, 5.6 Hz, 1H), 2.47 (ddd, J = 12.4, 5.6, 1.1 

Hz, 1H), 2.44 (s, 3H), 2.35 (ddd, J = 12.4, 11.2, 7.8 Hz, 1H), 2.16 (s, 3H); 13C NMR 

(CDCl3, 126 MHz) δ 147.4, 143.6, 143.1, 136.5, 130.8, 129.8, 129.7, 128.6, 127.0, 126.9, 

125.7, 121.4, 119.7, 119.5, 85.5, 62.2, 48.2, 37.6, 21.5, 16.7; FTIR (NaCl, thin film): 

3350, 2892, 1594, 1490, 1465, 1448, 1331, 1319, 1305, 1243, 1151, 1109, 1089 cm-1;  

HRMS (MM) calc’d for [M+H]+ 405.1631, found 405.1590. 

 

Pyrroloindoline 168e: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 24 hours. Reaction run on 0.30 mmol (99.7 mg) scale. 

The crude material was purified on basic alumina (gradient elution, 40% 

THF in Hexane) to afford 168e as a white, crystalline solid (80.1 mg, 

0.20 mmol, 65 % yield). 1H NMR (CDCl3, 500 MHz) δ  7.73 (d, J = 8.3 Hz, 2H), 7.30 (d, 

J = 8.0 Hz, 2H), 7.26 – 7.17 (m, 3H), 7.15 – 7.08 (m, 2H), 6.82 (ddd, J = 8.9, 8.9, 2.6 Hz, 

1H), 6.71 (dd, J = 8.2, 2.6 Hz, 1H), 6.63 (dd, J = 8.5, 4.2 Hz, 1H), 5.43 (s, 1H), 3.65 

(ddd, J = 10.5, 7.8, 1.4 Hz, 1H), 3.27 (ddd, J = 10.9, 10.9, 5.7 Hz, 1H), 2.48 – 2.39 (m, 

1H), 2.44 (s, 3H), 2.33 (ddd, J = 12.5, 11.2, 7.9 Hz, 1H).  13C NMR (CDCl3, 126 MHz) δ 
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157.4 (d, JC-F = 235.0 Hz), 144.7, 143.7, 142.3, 136.1, 133.3 (d, JC-F = 7.5 Hz), 129.9, 

128.7, 127.3, 127.0, 125.6, 115.2 (d, JC-F = 22.5 Hz), 111.2 (d, JC-F = 23.8 Hz), 110.8 (d, 

JC-F = 7.5 Hz), 86.2, 62.0, 48.0, 37.0, 21.5.  FTIR (NaCl, thin film): 3365, 2891, 1996, 

1593, 1488, 1448, 1329, 1306, 1154, 1091.  HRMS (MM) calc’d for [M+H]+ 409.1381, 

found 409.1375. 

 

Pyrroloindoline 168f: Prepared according to General Procedure D 

using 10 mol% Cu(OAc)2 for 24 hours. Reaction run on 0.30 mmol 

(105 mg) scale. The crude material was purified on basic alumina 

(gradient elution, 40% THF in Hexane) to afford 168f as a white, crystalline solid (81.7 

mg, 0.19 mmol, 64 % yield). 

1H NMR (CDCl3, 500 MHz) δ  7.74 – 7.69 (m, 2H), 7.29 (dd, J = 8.5, 0.6 Hz, 2H), 7.27 – 

7.19 (m, 3H), 7.13 – 7.09 (m, 2H), 7.06 (dd, J = 8.3, 2.1 Hz, 1H), 6.93 (d, J = 2.1 Hz, 

1H), 6.62 (d, J = 8.3 Hz, 1H), 5.44 (s, 1H), 4.95 (s, 1H), 3.64 (ddd, J = 10.6, 7.8, 1.5 Hz, 

1H), 3.27 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.50 – 2.40 (m, 1H), 2.43 (s, 3H), 2.33 (ddd, 

J = 12.5, 11.2, 7.9 Hz, 1H).  13C NMR (CDCl3, 126 MHz) δ 147.3, 143.8, 142.3, 136.1, 

133.6, 129.9, 128.8, 128.7, 127.3, 126.9, 125.5, 124.1, 111.0, 85.8, 61.8, 48.0, 37.0, 21.5.  

FTIR (NaCl, thin film): 3386, 3059, 2971, 1598, 1481, 1447, 1336, 1258, 1158, 1090 

1037.  HRMS (MM) calc’d for [M+H]+ 425.1085, found 425.1083. 

 

Pyrroloindoline 168g: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 24 hours. Reaction run on 0.30 mmol (118.0 g) scale. 

The crude material was purified on basic alumina (gradient elution, 
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40% THF in Hexane) to afford 168g as a white, crystalline solid (82.1 mg, 0.18 mmol, 58 

% yield). 1H NMR (CDCl3, 500 MHz) δ  7.75 – 7.69 (m, 2H), 7.29 (dd, J = 8.5, 0.6 Hz, 

2H), 7.27 – 7.18 (m, 4H), 7.10 (dd, J = 8.1, 1.5 Hz, 2H), 7.06 (d, J = 2.0 Hz, 1H), 6.58 (d, 

J = 8.3 Hz, 1H), 5.43 (s, 1H), 4.96 (s, 1H), 3.64 (ddd, J = 10.7, 7.8, 1.5 Hz, 1H), 3.27 

(ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.48 – 2.44 (m, 1H), 2.43 (s, 3H), 2.33 (ddd, J = 8.2, 

6.4, 4.8 Hz, 1H).  13C NMR (CDCl3, 126 MHz) 147.8, 143.8, 142.3, 136.1, 134.1, 131.5, 

129.9, 128.7, 127.3, 126.9, 126.9, 125.5, 111.5, 111.1, 85.7, 61.8, 48.0, 37.0, 21.5.  FTIR 

(NaCl, thin film): 3386, 3059, 2971, 1598, 1477, 1336, 1258, 1093, 1037.  HRMS (MM) 

calc’d for [M+H]+ 469.0580, found 469.0578. 

 

 

Pyrroloindoline 168h: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 24 hours.  Reaction run on 0.30 mmol (132.1 mg) scale. 

The crude material was purified on basic alumina (gradient elution, 40% 

THF in Hexane) to afford 168h as a white, amorphous solid (92.6 mg, 

0.19 mmol, 62 % yield). 1H NMR (CDCl3, 500 MHz) δ  7.67 (d, J = 8.3 Hz, 2H), 7.33 

(dd, J = 8.2, 1.8 Hz, 1H), 7.25 (d, J = 7.9 Hz, 2H), 7.23 – 7.15 (m, 4H), 7.08 – 7.03 (m, 

2H), 6.45 (d, J = 8.3 Hz, 1H), 5.38 (d, J = 6.8 Hz, 1H), 4.93 (s, 1H), 3.59 (ddd, J = 10.6, 

7.8, 1.5 Hz, 1H), 3.23 (ddd, J = 10.9, 10.9, 5.6 Hz, 1H), 2.45 – 2.35 (m, 1H), 2.39 (s, 3H), 

2.28 (ddd, J = 12.5, 11.2, 7.8 Hz, 1H); 13C NMR (CDCl3, 126 MHz) δ 148.4, 143.6, 

142.4, 137.4, 136.1, 134.6, 132.6, 129.9, 128.7, 127.3, 126.9, 125.5, 112.2, 85.5, 80.3, 

61.6, 48.0, 37.0, 21.5.  FTIR (NaCl, thin film): 3385, 3057, 2968, 1597, 1476, 1446, 
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1420, 1334, 1260, 1159, 1093 cm -1; HRMS (MM) calc’d for [M+H]+ 517.0441, found 

517.0436. 

 

Pyrroloindoline 168i: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 6 hours. Reaction run on 0.30 mmol (103.3 mg) scale. 

The crude material was purified on basic alumina (gradient elution, 

40% THF in Hexane) to afford 168i as a white, amorphous solid (72.6 

mg, 0.19 mmol, 62 % yield). 1H NMR (CDCl3, 500 MHz) δ  7.76 – 7.70 (m, 2H), 7.30 (d, 

J = 7.9 Hz, 2H), 7.25 – 7.15 (m, 3H), 7.15 – 7.08 (m, 2H), 6.69 (dd, J = 8.5, 2.5 Hz, 1H), 

6.64 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 2.5 Hz, 1H), 5.40 (s, 1H), 4.71 (s, 1H), 3.71 (s, 3H), 

3.65 (ddd, J = 10.5, 7.8, 1.3 Hz, 1H), 3.25 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.49 – 2.44 

(m, 1H), 2.43 (s, 3H), 2.32 (ddd, J = 12.4, 11.3, 7.9 Hz, 1H); 13C NMR (CDCl3, 126 

MHz) 153.9, 143.6, 142.7, 142.6, 136.3, 133.0, 129.8, 128.6, 127.1, 127.0, 125.7, 113.6, 

110.8, 110.6, 86.3, 62.1, 55.8, 48.1, 37.0, 21.5; FTIR (NaCl, thin film): 3380, 3057, 3025, 

2947, 2832, 1598, 1492, 1336, 1159, 1093, 1035; HRMS (MM) calc’d for [M+H]+ 

421.1580, found 421.1577. 

 

Pyrroloindoline 168k: Prepared according to General Procedure D using 10 mol% 

Cu(OAc)2 for 24 hours. Reaction run on 0.30 mmol (98.5 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 20 – 25% 

THF in Hexane) to afford 168k as a white, solid (65.1 mg, 0.16 mmol, 

54% yield). 1H NMR (CDCl3, 500 MHz) δ  7.71 – 7.65 (m, 2H), 7.23 (d, J = 8.0 Hz, 2H), 

7.20 – 7.17 (m, 3H), 7.17 – 7.13 (m, 1H), 6.96 – 6.89 (m, 2H), 6.85 (dd, J = 7.3, 1.1 Hz, 
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1H), 6.67 (ddd, J = 7.4, 7.4, 0.8 Hz, 1H), 6.50 (d, J = 7.9 Hz, 1H), 5.53 (s, 1H), 3.76 

(ddd, J = 12.1, 7.0, 1.0 Hz, 1H), 3.13 (ddd, J = 11.9, 11.9, 5.2 Hz, 1H), 3.06 (s, 3H), 2.44 

(s, 3H), 2.21 (ddd, J = 12.2, 5.0, 1.2 Hz, 1H), 2.05 (ddd, J = 12.0, 12.0, 7.1 Hz, 1H); 13C 

NMR (CDCl3, 126 MHz) 150.5, 143.6, 143.0, 136.5, 132.2, 129.7, 128.8, 128.4, 127.2, 

126.7, 125.9, 123.62, 117.8, 106.2, 91.9, 61.1, 48.8, 38.0, 31.2, 21.5; FTIR (NaCl, thin 

film): 3056, 3027, 2949, 2891, 2827, 1762, 1605, 1491, 1347, 1160, 1092, 1022 cm-1;  

HRMS (MM) calc’d for [M+H]+ 405.1631, found 405.1600. 

 

Pyrroloindoline 168l: Prepared according to General Procedure D using 

10 mol% Cu(OAc)2 for 24 hours. Reaction run on 0.30 mmol (121 mg) 

scale. The crude material was purified on basic alumina (gradient elution, 

20 – 25% THF in Hexane) to afford 168l as a white foam (83.4 mg, 0.17 mmol, 58% 

yield). 1H NMR (CDCl3, 500 MHz) δ 7.64 – 7.52 (m, 2H), 7.41 – 7.36 (m, 2H), 7.36 – 

7.30 (m, 2H), 7.29 – 7.24 (m, 1H), 7.19 – 7.12 (m, 5H), 7.09 – 7.02 (m, 1H), 6.89 – 6.81 

(m, 3H), 6.64 (ddd, J = 7.4, 7.4, 0.9 Hz, 1H), 6.42 (d, J = 7.8 Hz, 1H), 5.69 (s, 1H), 4.89 

(d, J = 16.4 Hz, 1H), 4.63 (d, J = 16.4 Hz, 1H), 3.82 (dd, J = 12.5, 6.8 Hz, 1H), 3.25 

(ddd, J = 12.2, 12.2, 5.1 Hz, 1H), 2.41 (s, 3H), 2.24 (dd, J = 11.9, 4.7 Hz, 1H), 2.06 (ddd, 

J = 12.1, 12.1, 7.2 Hz, 1H);  13C NMR (CDCl3, 126 MHz) δ 149.7, 143.6, 143.5, 138.5, 

136.4, 132.2, 129.7, 128.7, 128.4, 128.4, 127.3, 127.2, 126.9, 126.7, 125.8, 123.9, 117.9, 

106.5, 90.7, 61.3, 48.5, 48.1, 38.2, 21.5;  FTIR (NaCl, thin film): 3062, 3027, 2898, 1604, 

1493, 1346, 1158, 1089 cm-1;  HRMS (MM) calc’d for [M+H]+ 481.1944, found 

481.1947. 
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Pyrroloindoline 168a: Prepared according to General Procedure D using 20 mol% 

Cu(OTf)2 for 12 hours.  Reaction run on 0.30 mmol (94 mg) scale with 

the symmetric di-o-tolyliodonium tetrafluoroborate. The crude material 

was purified by silica gel chromatography (gradient elution, 20% EtOAc 

in Hexane) to afford 168a as a white, amorphous solid (60.6 mg, 0.15 mmol, 50 % yield). 

1H NMR (CDCl3, 500 MHz) δ 7.69 – 7.63 (m, 2H), 7.20 (d, J = 7.9 Hz, 2H), 7.14 – 7.04 

(m, 4H), 7.03 – 6.98 (m, 1H), 6.92 (dd, J = 7.4, 0.8 Hz, 1H), 6.76 (ddd, J = 7.4, 7.4, 1.0 

Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.67 (s, 1H), 4.94 (s, 1H), 3.59 (ddd, J = 10.1, 7.7, 4.0 

Hz, 1H), 3.36 (ddd, J = 10.1, 8.6, 6.6 Hz, 1H), 2.69 (ddd, J = 12.9, 7.9, 7.9 Hz, 1H), 2.40 

(s, 3H), 2.39 – 2.34 (m, 1H), 2.03 (s, 3H);  13C NMR (CDCl3, 126 MHz) δ 148.4, 143.5, 

139.4, 136.4, 135.6, 132.6, 131.9, 129.6, 128.5, 127.2, 127.1, 127.0, 125.7, 124.3, 119.2, 

109.4, 84.4, 62.1, 47.4, 37.9, 21.4, 20.8;  FTIR (NaCl, thin film): 3390, 3057, 2975, 2883, 

1606, 1485, 1338, 1158 cm-1;  HRMS (MM) calc’d for [M+H]+ 405.1631, found 

405.1633. 

 

Pyrroloindoline 168b: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours.  Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified by silica gel chromatography (gradient 

elution, 20% EtOAc in Hexane) to afford 168b as a white, amorphous 

solid (90.0 mg, 0.22 mmol, 74 % yield). 1H NMR (CDCl3, 500 MHz) 

δ 7.76 – 7.71 (m, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.11 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H), 

7.04 (dd, J = 4.7, 4.0 Hz, 2H), 6.99 (ddd, J = 3.8, 3.8, 1.6 Hz, 3H), 6.77 (ddd, J = 7.4, 1.0 

Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.39 (s, 1H), 3.64 (ddd, J = 10.6, 7.8, 1.4 Hz, 1H), 3.25 
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(ddd, J = 10.9, 10.9, 5.6 Hz, 1H), 2.51 – 2.40 (m, 1H), 2.44 (s, 3H), 2.37 – 2.29 (m, 1H), 

2.28 (s, 3H); 13C NMR (CDCl3, 126 MHz) δ 148.7, 143.6, 140.0, 136.7, 136.31, 131.6, 

129.8, 129.2, 128.7, 127.0, 125.6, 123.8, 120.0, 110.1, 85.7, 61.5, 48.1, 37.3, 21.5, 20.9;  

FTIR (NaCl, thin film):  3395, 3052, 3022, 2913, 1607, 1465, 1336, 1159, 1094, 1035 

cm-1; HRMS (MM) calc’d for [M+H]+ 405.1631, found 405.1624. 

 

Pyrroloindoline 168c: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 4 hours. Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified by silica gel chromatography (gradient 

elution, 6:3:1 Hexanes:CH2Cl2:Acetone) to afford 168c as a white foam 

(88.1 mg, 0.21 mmol, 70 % yield). 1H NMR (CDCl3, 500 MHz) δ 7.75 – 

7.70 (m, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.11 (ddd, J = 7.9, 7.4, 1.3 Hz, 1H), 7.04 – 

6.96 (m, 3H), 6.80 – 6.72 (m, 3H), 6.71 – 6.67 (m, 1H), 5.36 (s, 1H), 4.89 (br s, 1H), 3.74 

(s, 3H), 3.63 (ddd, J = 10.6, 7.8, 1.5 Hz, 1H), 3.23 (td, J = 10.9, 5.6 Hz, 1H), 2.47 – 2.40 

(m, 1H), 3.2.44 (s, 3H) 2.32 (ddd, J = 12.4, 11.2, 7.8 Hz, 1H); 13C NMR (CDCl3, 126 

MHz) δ 158.5, 148.77, 143.6, 136.3, 135.0, 131.7, 129.8, 128.7, 127.0, 126.8, 123.8, 

119.6, 113.9, 110.1, 85.8, 61.2, 55.2, 48.2, 37.3, 21.5; FTIR (NaCl, thin film):  3390, 

3047, 2953, 2834, 1608, 1512, 1483, 1466, 1336, 1251, 1183, 1159, 1094 cm-1; HRMS 

(MM) calc’d for [M+H]+ 421.1580, found 421.1580. 

 

Pyrroloindoline 168d: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours. Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 40% THF 
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in Hexane) to afford 168d as a white, amorphous solid (86.5 mg, 0.20 mmol, 68 % yield). 

1H NMR (CDCl3, 500 MHz) δ  7.76 – 7.69 (m, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.21 – 

7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 7.06 – 7.00 (m, 2H), 6.95 (ddd, J = 7.4, 1.2, 0.5 Hz, 

1H), 6.77 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 6.70 (dd, J = 4.5, 4.0 Hz, 1H), 5.37 (s, 1H), 4.91 

(br s, 1H), 3.65 (ddd, J = 10.7, 7.8, 1.5 Hz, 1H), 3.24 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 

2.51 – 2.40 (m, 1H), 2.44 (s, 3H), 2.28 (ddd, J = 12.4, 11.2, 7.8 Hz, 1H); 13C NMR 

(CDCl3, 126 MHz) δ 148.7, 143.7, 141.5, 136.2, 132.9, 131.0, 129.9, 129.0, 128.7, 127.1, 

126.9, 123.7, 119.7, 110.2, 85.6, 61.3, 48.1, 37.1, 21.5;  FTIR (NaCl, thin film): 3386, 

3051, 2970, 2893, 1607, 1493, 1466, 1483, 1399, 1336, 1159, 1093 cm-1;  HRMS (MM) 

calc’d for [M+H]+ 425.1085, found 425.1077. 

 

Pyrroloindoline 168e: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours. Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified by silica gel chromatography (gradient 

elution, 20% EtOAc in Hexane) to afford 168e as a white, amorphous 

solid (75.2 mg, 0.19 mmol, 63% yield). 1H NMR (CDCl3, 500 MHz) δ 7.77 – 7.72 (m, 

2H), 7.31 (d, J = 7.9 Hz, 2H), 7.14 – 7.08 (m, 2H), 7.02 – 6.97 (m, 2H), 6.92 – 6.86 (m, 

2H), 6.77 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.42 (s, 1H), 3.66 

(ddd, J = 10.6, 7.8, 1.4 Hz, 1H), 3.25 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.49 – 2.45 (m, 

1H), 2.44 (s, 3H), 2.32 (ddd, J = 12.5, 11.4, 7.9 Hz, 1H), 2.25 (s, 3H); 13C NMR (CDCl3, 

126 MHz) δ 148.8, 143.6, 143.0, 138.2, 136.4, 131.4, 129.9, 128.7, 128.4, 127.8, 127.0, 

126.3, 124.0, 122.8, 119.6, 110.1, 85.7, 61.8, 48.2, 37.6, 21.5, 21.5;  FTIR (NaCl, thin 
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film): 3390, 2047, 2970, 1607, 1483, 1466, 1340, 1159, 1094 cm-1; HRMS (MM) calc’d 

for [M+H]+ 405.1631, found 405.1626. 

 

Pyrroloindoline 168f: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours. Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 40% THF 

in Hexane) to afford 168f as a white, amorphous solid (80.3 mg, 0.20 

mmol, 66 % yield). 1H NMR (CDCl3, 500 MHz) δ  7.77 – 7.70 (m, 2H), 

7.30 (dd, J = 8.5, 0.6 Hz, 2H), 7.16 – 7.09 (m, 1H), 7.09 – 7.04 (m, 2H), 6.97 (ddd, J = 

7.4, 1.2, 0.5 Hz, 1H), 6.93 – 6.86 (m, 2H), 6.78 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 6.70 (d, J 

= 7.8 Hz, 1H), 5.38 (s, 1H), 3.66 (ddd, J = 10.6, 7.8, 1.4 Hz, 1H), 3.24 (ddd, J = 11.0, 

11.0, 5.6 Hz, 1H), 2.49 – 2.42 (m, 1H), 2.44 (s, 3H), 2.30 (ddd, J = 12.4, 11.2, 7.8 Hz, 

1H); 13C NMR (CDCl3, 126 MHz) δ 161.6 (d, JC-F = 245.0 Hz), 148.7, 143.7, 138.7, 

138.7, 136.2, 131.3, 129.8, 128.9, 127.3 (d, JC-F = 7.5 Hz), 126.9, 123.7, 119.7, 115.3 (d, 

JC-F = 20.0 Hz), 110.2, 109.9, 85.7, 61.2, 48.1, 37.3, 21.5;  FTIR (NaCl, thin film): 3391, 

3051, 2970, 2892, 1607, 1510, 1483, 1466, 1400, 1336, 1233, 1160, 1095 cm-1; HRMS 

(MM) calc’d for [M+H]+ 409.1381, found 409.1363. 

 

Pyrroloindoline 168g: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours. Reaction run on 0.30 mmol (94 mg) scale. 

Reaction run on 0.30 mmol (94 mg) scale. The crude material was 

purified on basic alumina (gradient elution, 40% THF in Hexane) to 

afford 168g as a white, amorphous solid (83.4 mg, 0.19 mmol, 59 % 
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yield). 1H NMR (CDCl3, 500 MHz) δ  7.76 – 7.69 (m, 2H), 7.36 – 7.28 (m, 4H), 7.12 

(ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 7.00 – 6.92 (m, 3H), 6.77 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 

6.70 (d, J = 7.8 Hz, 1H), 5.37 (s, 1H), 4.91 (s, 1H), 3.65 (ddd, J = 10.7, 7.8, 1.4 Hz, 1H), 

3.24 (ddd, J = 10.9, 10.9, 5.6 Hz, 1H), 2.49 – 2.40 (m, 1H), 2.44 (s, 3H), 2.27 (ddd, J = 

12.4, 11.2, 7.9 Hz, 1H); 13C NMR (CDCl3, 126 MHz) δ 148.6, 143.7, 142.0, 136.1, 131.6, 

130.9, 129.9, 129.0, 127.5, 126.9, 123.71, 121.0, 119.7, 110.2, 85.5, 61.4, 48.1, 37.0, 

21.5;  FTIR (NaCl, thin film): 3391, 3051, 2970, 2892, 1608, 1597, 1484, 1466, 1396, 

1336, 1159, 1095 cm-1;  HRMS (MM) calc’d for [M+H]+ 469.0580, found 469.0553. 

 

 

 Pyrroloindoline 168h: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours. Reaction run on 0.30 mmol (94 mg) scale. The 

crude material was purified on basic alumina (gradient elution, 40% THF 

in Hexanes) to afford 168h as a white, amorphous solid (95.8 mg, 0.19 

mmol, 62 % yield). 1H NMR (CDCl3, 500 MHz) δ 7.75 – 7.69 (m, 2H), 7.55 – 7.51 (m, 

2H), 7.30 (d, J = 7.9 Hz, 2H), 7.12 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 6.96 – 6.92 (m, 1H), 

6.88 – 6.83 (m, 2H), 6.76 (ddd, J = 7.4, 7.4, 1.0 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.35 

(s, 1H), 3.64 (ddd, J = 10.7, 7.8, 1.4 Hz, 1H), 3.24 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.49 

– 2.39 (m, 1H), 2.44 (s, 3H), 2.26 (ddd, J = 12.4, 11.2, 7.9 Hz, 1H); 13C NMR (CDCl3, 

126 MHz) δ 148.7, 143.8, 142.8, 137.6, 136.2, 130.9, 129.9, 129.0, 127.7, 126.9, 123.7, 

119.8, 110.3, 92.5, 85.5, 61.5, 48.1, 36.9, 21.6;  FTIR (NaCl, thin film):  3390, 3047, 

2948, 2878, 1612, 1486, 1336, 1158, 1005 cm-1;  HRMS (MM) calc’d for [M+H]+ 

517.0441, found 517.0424. 
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Pyrroloindoline 168i: Prepared according to General Procedure D using 20 mol % 

Cu(OTf)2 for 12 hours. Reaction run on 0.30 mmol (94.0 mg) scale. The 

crude material was purified by silica gel chromatography (gradient 

elution, 6:3:1 Hexanes:DCM:Acetone) to afford 168i as a colorless oil 

(78.2 mg, 0.17 mmol, 56 % yield). 1H NMR (CDCl3, 500 MHz) δ  7.91 – 

7.85 (m, 2H), 7.75 – 7.69 (m, 2H), 7.29 (dd, J = 8.5, 0.6 Hz, 2H), 7.21 – 7.15 (m, 2H), 

7.14 – 7.08 (m, 1H), 6.96 (ddd, J = 7.4, 1.2, 0.5 Hz, 1H), 6.76 (ddd, J = 7.5, 7.5, 1.0 Hz, 

1H), 6.71 (dd, J = 7.2, 0.7 Hz, 1H), 5.43 (s, 1H), 4.92 (s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 

3.66 (ddd, J = 10.7, 7.8, 1.4 Hz, 1H), 3.26 (ddd, J = 11.0, 11.0, 5.6 Hz, 1H), 2.49 (ddd, J 

= 12.3, 5.5, 1.0 Hz, 1H), 2.43 (s, 3H), 2.31 (ddd, J = 12.4, 11.3, 7.9 Hz, 1H), 1.36 (t, J = 

7.1 Hz, 3H); 13C NMR (CDCl3, 126 MHz) δ 166.1, 148.7, 148.0, 143.8, 136.2, 130.9, 

129.9, 129.9, 129.7, 129.0, 126.9, 125.63, 123.8, 119.7, 110.2, 85.4, 61.8, 60.9, 48.1, 

37.1, 21.5, 14.3; FTIR (NaCl, thin film): 3387, 3052, 2979, 2895, 1713, 1610, 1483, 

1467, 1343, 1278, 1160, 1110 cm-1. HRMS (MM) calc’d for [M+H]+ 463.1686, found 

463.1666. 

3.11.6 Catalyst Efficiency and Scalability 

 

To a flame-dried, 100 mL flask was charged N-tosyltryptamine (3.15 g, 10.0 mmol, 1.0 

equiv), Ph2IBF4 (4.04 g, 11.0 mmol, 1.1 equiv) and Cu(OAc)2 (45.4 mg, 0.25 mmol, 

0.025 equiv).  The dissolved in 50 mL CH2Cl2  and allowed to stir at room temperature 

N
H

NHTs [Ph2I]BF4 (1.1 equiv)
Cu(OAc)2 (2.5 mol %)

DCM, 23 °C, 12 h
(63% yield)

no chromatography
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for 12 hours at which point the reaction was diluted with CH2Cl2 (100 mL), washed with 

saturated aqueous NaHCO3 (2 x 50 mL) and the resulting aqueous layers were then 

combined and back extracted with CH2Cl2 (50 mL). The organic layers were combined, 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo.  The resultant yellow 

solid was dissolved in 50 mL CH2Cl2, 100 mL Et2O and 200 mL hexanes to afford a light 

yellow powder.  The powder was filtered and dried under vacuum to give 168a (2.55g, 

6.5 mmol, 65% yield). 

3.11.7 Preparation of Diimine Ligands 

 α-Diimine ligands were prepared following literature precedent by Bercaw et al. 

MesDABMe (L7) and tBuDABMe (L6) were readily prepared on greater than 40 gram scale 

in comparable yields to those reported in the literature. Ligands were thoroughly dried 

under high-vacuum (< 1.0 mTorr) at 50 °C for 4 hours prior to use and stored in a 

glovebox under inert atmosphere. 

 

3.11.8 Preparation of Diketopiperazine Substrates 

The preparation of diketopiperazines 175a-f have been previously prepared in the 

literature. Diketopiperazine substrates 175d and 175e were prepared according to known 

literature procedures. Improved yields were obtained for substrates 175a-175c using an 

analogous procedure as reported by Movassaghi et al. 

 

General Procedure (I) for the Synthesis of Diketopiperazine Substrates: 

 To a solution of L-tryptophan methyl ester hydrochloride (1.0 equiv) in CH2Cl2 

(0.1 M) at 0 °C was added Et3N (4.5 equiv) dropwise.  HOBt•H2O (1.5 equiv) and Boc-
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amino acid (2.0 equiv) were sequentially added and stirred vigorously.  Once 

homogenous, EDC•HCl (1.5 equiv) was added in a single portion and the solution 

allowed to warm to 23 °C.  The reaction was stirred for 15 hours, at which time it was 

quenched by the addition of 1N HCl, and the aqueous layer extracted with CH2Cl2 (2 x). 

The combined organics were then washed with saturated aqueous NaHCO3, and the 

aqueous layer back extracted with CH2Cl2 (2 x). The organics were pooled, then dried 

over Na2SO4, filtered, and concentrated in vacuo. The resulting oil/foam was 

subsequently dissolved in CH2Cl2 (0.2 M), and cooled to 0 °C. TFA (1.5 mL/5 mL 

CH2Cl2) was added dropwise, then the solution was warmed to 23 °C and stirred for 2 h. 

The mixture was concentrated in vacuo and the resulting viscous residue dissolved in 

methanol (0.25 M), and cooled to 0°C. Ammonium hydroxide (28–30% in H2O, 1 mL/ 6 

mL MeOH) was then added dropwise and the reaction mixture allowed to warm to 23 °C 

and stirred for 24 h. The resulting suspension was cooled to 0 °C, and the fine white 

precipitate was filtered and rinsed with cold methanol.  The white solid is then crushed 

and dried under high vacuum (< 1 mTorr) at 50 °C for a minimum of 2 h.  

 

Cyclo-(L)-Trp-(L)-Phe (175a) 

 Prepared from L-tryptophan methyl ester hydrochloride 

following General Procedure I on 19.6 mmol scale. The crude reaction 

mixture was filtered to yield 5.8 g (89% yield) of 175a as a white solid.  Spectral data 

matches that reported in the literature. 

 

Cyclo-(L)-Trp-(L)-Ala (175b) 
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 Prepared from L-tryptophan methyl ester hydrochloride 

following General Procedure I on 9.8 mmol scale.  The crude reaction 

mixture was filtered to yield 2.3 g (92% yield) of 175b as a white solid.  Spectral data 

matches that reported in the literature. 

 

Cyclo-(L)-Trp-(D)-Ala (175c) 

 Prepared from L-tryptophan methyl ester hydrochloride 

following General Procedure I on 7.9 mmol scale.  The crude reaction 

mixture was filtered to yield 1.8 g (89% yield) of 175c as a white solid.  Spectral data 

matches that reported in the literature. 

Large Scale Preparation of Cyclo-(L)-Trp-(L)-Pro (175f): 

 

 To a solution of L-proline methyl ester hydrochloride (11.0 g, 

66.6 mmol, 1.00 equiv) in CH2Cl2 (700 mL) at 0 °C was added 

triethylamine (32.5 mL, 233 mmol, 3.50 equiv) dropwise by addition funnel. N-

hydroxybenzotriazole monohydrate (15.3, 100 mmol, 1.50 equiv) and Boc-(L)-

tryptophan (31.8 g, 100 mmol, 1.50 equiv) were then added successively. After 10 

minutes, EDC•HCl (19.2 g, 100 mmol, 1.50 equiv) was added in a single portion and the 

mixture allowed to warm to 23 °C over 2.0 hours. After 20 hours, the solution was 

quenched by the addition of 1N HCl (1.0 L), and the aqueous layer extracted with CH2Cl2 

(2 x 150 mL). The combined organics were then washed with saturated aqueous NaHCO3 

(1.0 L), and the aqueous layer back extracted with CH2Cl2 (200 mL). The combined 

organics were then dried over anhydrous sodium sulfate, filtered, and concentrated in 
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vacuo. The resulting white foam was then dissolved in CH2Cl2 (200 mL), and 

trifluoroacetic acid (60 mL) added dropwise by addition funnel. After 2 h, the solution 

was concentrated in vacuo and the viscous residue dissolved in methanol (900 mL) and 

cooled to 0 °C. Ammonium hydroxide (28 to 30% in H2O, 35.0 mL) was added dropwise 

by addition funnel. The solution was then stirred for 14 hours, concentrated in vacuo, and 

redissolved in CH2Cl2 (1.0 L). The solution was next washed with H2O (3 x 500 mL), and 

the aqueous layer back extracted with CH2Cl2 (250 mL). The organic layers were then 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was 

dissolved in MeOH (200 mL) and the solution cooled to 0 °C. After 20 minutes, the 

resulting white precipitate was collected. The filtrate was then concentrated to 100 mL 

and recooled to 0 °C, and a second crop of precipitate collected. The process was 

repeated a third time to collect a third crop of product. The resulting precipitates were 

combined, powdered, and dried under high vacuum at 50 °C for 12 hours to afford 

analytically pure cyclo-L-Pro-L-Trp as a white solid (12.4 g, 43.8 mmol, 66% yield).  

Spectral data matches that reported in the literature. 

 

Preparation of Trifluoroacetyltryptophan methyl carboxamide (7): 

To (L)-Tryptophan methyl ester hydrochloride (5.84 g, 22.9 mmol) was 

added methylamine (33% solution in EtOH, 50 mL). The mixture was 

stirred for 48 h at 20 °C, then concentrated in vacuo, and the mixture co-evaporated with 

CH2Cl2 (50 mL), then Et2O (3 x 100 mL), sequentially to afford a white solid. The solid 

was then suspended in anhydrous CH2Cl2 (250 mL), and Et3N (9.6 mL, 68.7 mmol, 3.0 

equiv) added dropwise by syringe at 20 °C. The resulting mixture was then cooled to 0 
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°C, and TFAA (3.23 mL, 22.9 mmol, 1.00 equiv) added dropwise by syringe. After 24 

hours, the reaction was quenched with 1N HCl (200 mL), extracted with CH2Cl2 (200 

mL), dried over Na2SO4, filtered and concentrated.  The residue was then dissolved in 

EtOAc (250 mL), and filtered through a short plug of silica gel, and the filter cake 

washed with additional EtOAc (250 mL). The filtrate was then concentrated, and the 

resulting yellow solid was treated with Et2O/pentane to afford 7 as a white, amorphous 

powder (2.97 g, 42% yield). 1H NMR (500 MHz, DMSO-d6) 10.82 (d, J = 0.9 Hz, 1H), 

9.61 (d, J = 8.2 Hz, 1H), 8.21 (q, J = 4.3 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 

8.1 Hz, 1H), 7.13 (d, J = 2.3 Hz, 1H), 7.10 – 7.04 (m, 1H), 6.99 (ddd, J = 7.9, 7.1, 1.0 Hz, 

1H), 4.52 (ddd, J = 9.9, 8.5, 4.8 Hz, 1H), 3.20 (dd, J = 14.6, 4.6 Hz, 1H), 3.08 (dd, J = 

14.6, 10.0 Hz, 1H), 2.62 (d, J = 4.6 Hz, 3H); 13C NMR (126 MHz, DMSO-d6) 170.3, 

156.2 (q, JC-F = 36.4 Hz), 136.1, 127.1, 123.7, 121.0, 118.4, 118.3, 115.8 (q, JC-F = 288.2 

Hz), 111.4, 109.7, 54.3, 27.2, 25.7; FTIR (NaCl, thin film): 3277, 1700, 1696, 1653, 

1636, 1560, 1347, 1185; [α]D
25 = +8.53 (c = 0.44, CHCl3); LRMS (EI+) calc’d [M+H]+ 

314.1, found 314.1. 

 

3.11.9 Preparation of Diaryliodonium Triflate Salts  

The following diaryliodonium salts were prepared following known procedures: 

diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluoroarsentate, 

diphenyliodonium triflate, bis-p-tolyliodonium triflate,   and bis-p-methoxyiodonium 

triflate. Diphenyliodonium hexafluorophosphate was purchased from Alfa-Aesar. m-

CPBA (Sigma-Aldrich, <77%) was dried under high vacuum (< 1 mTorr) at 23 °C for 4 

hours as reported by Oloffson and coworkers. 
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Preparation of 2-iodo-p-xylene diacetate (SI-1): 

 

To a solution of 2-iodo-1,4-dimethylbenzene (11.6 g, 50.0 mmol, 1.00 equiv) 

in AcOH (1.0 L) at 50 °C was added NaBO3•4H2O (84.7 mmol, 0.55 mmol, 

11.0 equiv) portion wise over 30 minutes. The solution was vigorously stirred at 50 °C 

for 5 hours, then cooled to ambient temperature and diluted with H2O (500 mL) and 

extracted with CH2Cl2 (3 x 500 mL). The combined organics were then washed with 

water (3 x 500 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in 

vacuo. The crude residue was suspended in a minimum of Et2O, then triturated with 

hexanes and the precipitate collected by vacuum filtration. 2-Iodo-p-xylene diacetate was 

obtained as a white, crystalline solid (14.0 g, 40.0 mmol, 80% yield). Spectral data 

obtained match that previously reported, 1H and 13C NMR data is reported for 

convenience. 1H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 1.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 

1H), 7.30 (dd, J = 7.8, 1.2 Hz, 1H), 2.65 (s, 3H), 2.36 (s, 3H), 1.97 (s, 6H); 13C NMR 

(126 MHz, CDCl3): δ 176.3, 138.5, 137.3, 137.3, 133.5, 130.4, 126.8, 24.9, 20.6, 20.2. 

 

General Procedure II 

To a solution of iodoarene in CH2Cl2 (0.25 M) was added mCPBA (1.1 equiv), and BF-

3•OEt2 (2.5 equiv). The solution was stirred for 45 minutes, then the solution cooled to 0 

°C in a dry ice corresponding aryl boronic acid (1.00 equiv) added a solid in a single 

portion. The solution was stirred for 15 minutes, then warmed to room temperature and 

stirring continued for 45 minutes. The solution was then recooled to 0 °C and TfOH (2.00 
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equiv) added dropwise via syringe. The solution was stirred for 5 minutes at 0 °C, then 

warmed to room temperature and concentrated under reduced pressure. The resulting 

solution was then filtered through a plug of silica gel, eluting with 5% MeOH/CH2Cl2, 

the filtrate concentrated, and the residue triturated from Et2O to afford pure 

diaryliodonium triflate, typically as a white, crystalline solid. 

 

General Procedure III 

To a solution of aryl boronic acid (1.00 equiv) in CH2Cl2 (0.25 M) at 0 °C was added 

BF3•OEt2 (1.1 equiv) dropwise by syringe. The solution was stirred for 15 minutes, then a 

solution of iodoxylene diacetate (1.00 equiv) in CH2Cl2 (0.5 M) added dropwise by 

cannula transfer over 15 minutes. The solution was slowly warmed to 23 °C over 1 h, 

then recooled to 0 °C and TfOH (2.00 equiv) added dropwise via syringe. The solution 

was stirred for 5 minutes at 0 °C, then warmed to room temperature and concentrated 

under reduced pressure. The resulting solution was then filtered through a plug of silica 

gel, eluting with 5 % MeOH/CH2Cl2, the filtrate concentrated, and the residue triturated 

from Et2O to afford pure diaryliodonium triflate salt, typically as a white, crystalline 

solid. 

 

Di-(3-tolyl)iodonium triflate (SI-2) 

 Prepared by General Procedure II from 3-methylphenyl boronic acid 

and 3-methyliodobenzene on 5.00 mmol scale. Trituration from Et2O 

afforded the product as a white, crystalline solid (1.54 g, 3.36 mmol, 67% yield). 1H 

NMR (500 MHz, DMSO-d6) δ 8.10 (td, J = 1.8, 0.9 Hz, 2H), 8.04 (ddt, J = 7.9, 1.8, 0.9 
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Hz, 2H), 7.48 (ddt, J = 7.7, 1.8, 1.0 Hz, 2H), 7.41 (t, J = 7.8 Hz, 2H), 2.34 (d, J = 0.8 Hz, 

6H); 13C NMR (126 MHz, DMSO-d6) δ 142.3, 135.78, 133.2, 132.7, 131.9, 116.6, 21.2; 

FTIR (NaCl, thin film): 3744, 3675, 1596, 1259, 1172, 1036, 1026 cm-1; LRMS (EI+) 

calc’d [M–OTf]+ 309.1, found 309.0. 

 

Di-(3,5-dimethylphenyl)iodonium triflate (SI-3) 

Prepared by General Procedure II from 3,5-dimethyliodobenzene and 

3,5-dimethylphenylboronic acid on 10.0 mmol scale. Trituration from 

Et2O afforded the product as a white, crystalline solid (3.72 g, 7.65 mmol, 77% yield). 1H 

NMR (500 MHz, DMSO-d6) δ 7.88 (dt, J = 1.5, 0.8 Hz, 4H), 7.30 (tt, J = 1.5, 0.8 Hz, 

2H), 2.30 (d, J = 0.9 Hz, 12H); 13C NMR (500 MHz, DMSO-d6): δ 141.9, 133.9, 132.9, 

116.2, 21.1; FTIR (NaCl, thin film):  1599, 1558, 1451, 1381, 1243, 1221, 1171, 1154, 

1026 cm-1; LRMS (EI+) calc’d [M–OTf]+ 337.2, found 337.2. 

 

(2-naphthyl)(p-xylyl)iodonium triflate (SI-4) 

Prepared by General Procedure III from 2-naphthyl boronic acid on 5.00 

mmol scale. Trituration from Et2O afforded the product as a white, 

crystalline solid (2.15 g, 4.23 mmol, 85% yield). 1H NMR (500 MHz, DMSO-d6) δ 8.93 

(d, J = 1.9 Hz, 1H), 8.29 (dd, J = 1.7, 0.9 Hz, 1H), 8.18 (dd, J = 8.8, 1.9 Hz, 1H), 8.10 – 

7.99 (m, 4H), 7.73 – 7.66 (m, 2H), 7.43 (d, J = 7.8 Hz, 1H), 7.38 (ddd, J = 7.7, 1.7, 0.8 

Hz, 1H), 2.61 (s, 3H), 2.31 (s, 3H); 13C NMR (500 MHz, DMSO-d6): δ 139.6, 137.9, 

137.6, 136.5, 134.4, 133.9, 133.8, 132.00, 131.5, 130.6, 129.4, 128.6, 128.6, 128.4, 121.6, 
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113.0, 25.0, 20.5; FTIR (NaCl, thin film):  3670, 3588, 1653, 1635, 1490, 1347, 1259, 

1172, 1036, 1024 cm-1; LRMS (EI+) calc’d [M–OTf]+ 359.0, found 359.0. 

 

(3-bromophenyl)(p-xylyl)iodonium triflate (SI-5) 

Prepared by General Procedure III from 3-bromophenyl boronic acid on 

5.00 mmol scale. Trituration from Et2O afforded the product as a white, 

crystalline solid (1.33 g, 2.48 mmol, 50% yield). 1H NMR (500 MHz, DMSO-d6) δ 8.53 

(dd, J = 1.8, 1.8 Hz, 1H), 8.28 (dd, J = 1.8, 0.9 Hz, 1H), 8.18 (ddd, J = 8.0, 1.8, 0.9 Hz, 

1H), 7.85 (ddd, J = 8.1, 1.9, 0.9 Hz, 1H), 7.51 - 7.42 (m, 2H), 7.44 - 7.38 (m, 1H), 2.57 

(s, 3H), 2.32 (s, 3H); 13C NMR (500 MHz, DMSO-d6): δ 139.2, 137.5, 137.1, 136.7, 

134.9, 133.9, 133.6, 133.5, 131.1, 123.3, 121.2, 116.1, 24.5, 20.0; FTIR (NaCl, thin film):  

3074, 1569, 1554, 1490, 1456, 1275, 1242, 1170, 1025 cm-1; LRMS (EI+) calc’d [M–

OTf]+ 388.1, found 388.9. 

3.11.10 Optimization of Reaction Parameters for Diastereoselective 

Arylation  

Optimization Procedure – In a glovebox, (CuOTf)2•PhMe (20.7 mg, 0.040 mmol), and 

ligand (0.088 mmol) were dissolved in anhydrous CH2Cl2 (4.0 mL). The solution was 

stirred vigorously for 1.0 hr, filtered through a plug of cotton and removed from the 

glovebox. A portion of the solution (1.00 mL, 0.020 mmol, 20 mol % in Cu) was added 

to an oven-dried, 1-dram vial containing diketopiperazine (0.100 mmol) and 

diaryliodonium salt (0.110 mmol). The solution was stirred at 23 °C (care was taken not 

to exceed 25 °C) for 24 hrs, then quenched by the addition of concentrated ammonia (28–

30% in H2O, 1.0 mL). After 5 minutes, the mixture was diluted with EtOAc (30 mL) and 
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washed with a mixture water (20 mL) and brine (20 mL). The aqueous layer was then 

back extracted with EtOAc (2 x 10 mL) and the combined organics dried over anhydrous 

MgSO4, filtered, and concentrated in vacuo to afford a solid residue. 

The residue was then dissolved in a standard solution of maleic acid in DMSO-d6, and the 

solution analyzed for yield, C3:C2 ratio, and dr. NMR yields were obtained via careful 

integration against the standard. 

 

Preparation of minor diastereomer 177 

To an oven dried vial was added diketopiperazine 175a (33 mgs, 0.1 

mmol), diaryliodonium hexafluorophosphate (47 mgs, 0.11 mmol) and 

(CuOTf)2•PhMe (5.2 mgs, 0.01 mmol).  The solids were dissolved in 1 

mL CH2Cl2 and the reaction was allowed to stir for 24 hours, then quenched by the 

addition of 1 mL NH4OH.  The mixture was diluted with EtOAc and extracted with 

EtOAc (2 X 10 mL).  The organic layers were combined, dried over Na2SO4, filtered and 

concentrated. The minor diastereomer was purified from the crude residue by silica gel 

chromatography (50% hexanes, 47.5% ethyl acetate, 2.5% methanol) to afford 177 as a 

white solid.  1H NMR (500 MHz, CDCl3) 7.30 – 7.27 (m, 2H), 7.26 – 7.22 (m, 3H), 7.22 

– 7.16 (m, 3H), 7.15 – 7.09 (m, 2H), 7.04 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H), 6.88 – 6.83 (m, 

1H), 6.67 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 5.77 (s, 1H), 5.69 (d, J 

= 9.3 Hz, 1H), 4.40 – 4.32 (m, 1H), 4.16 (ddd, J = 10.5, 3.8, 1.3 Hz, 1H), 3.51 (dd, J = 

14.5, 3.8 Hz, 1H), 3.15 (dd, J = 13.7, 7.3 Hz, 1H), 2.69 (ddd, J = 16.6, 14.1, 10.2 Hz, 

2H); 13C NMR (126 MHz, CDCl3) 168.8, 166.8, 147.2, 142.3, 135.6, 133.3, 129.2, 128.9, 

128.8, 128.6, 127.5, 127.3, 126.5, 124.1, 119.6, 109.6, 85.5, 59.2, 58.6, 56.1, 38.6, 36.2; 
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FTIR (NaCl, thin film): 3306, 3058, 2929, 1674, 1607, 1482, 1447, 1318, 1223, 1071 cm-

1; [α]D
25 = –329 (c = 0.31, CHCl3); LRMS (EI+) calc’d for [M+H]+ 410.2, found 410.2. 

3.11.11 Substrate Scope for Diastereoselective Arylation – 

Characterization Data 

General Procedure IV:  Tryptophan Arylation 

Catalyst Preparation – In a glovebox, copper(I)trifluoromethanesulfonate toluene 

complex (0.10 equiv) and alpha-diimine-ligand (0.22 equiv) were dissolved in anhydrous 

CH2Cl2 (0.1 M in Cu). The solution was vigorously stirred for 1.0 hour, and then filtered 

through a plug of cotton.1 The solution was then removed from the glovebox for 

immediate use. 

 

Arylation Reaction – A flame-dried flask containing a magnetic stirbar was charged with 

tryptophan substrate (0.300 mmol, 1.00 equiv) and diaryliodonium salt (0.330 mmol, 1.1 

equiv), then equipped with a rubber septum. To the solids was added the freshly-prepared 

Cu-catalyst solution prepared above (3.00 mL, 0.030 mmol, 20 mol %) and the solution 

vigorously stirred at 20 °C. After the time indicated below, the solution was quenched 

with aqueous ammonia (3.00 mL of a 27-33% solution in H2O) and stirred for 5 minutes. 

The reaction was then diluted with EtOAc (30 mL) and washed with a mixture of H2O 

(30 mL) and brine (30 mL). The aqueous portion was back extracted with EtOAc (2 x 10 

mL) and the combined organics dried over anhydrous MgSO4, filtered, and concentrated 

in vacuo. The crude residue was purified by column chromatography on silica gel to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Filtering the catalyst solution was found to improve the overall selectivity, reactivity, and reproducibility of the 
reaction.  
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afford pure arylpyrroloindoline product, typically as either a white, amorphous powder or 

a white foam. 

 

Pyrroloindoline 176a 

Prepared following General Procedure IV using MesDABMe and 

diphenyliodonium triflate.  The crude residue was purified by silica gel 

chromatography (50% hexanes, 47.5% ethyl acetate, 2.5% methanol) to afford 176a as a 

white solid (104.0 mg, 0.254 mmol, 85% yield). 1H NMR (500 MHz, CDCl3) δ 7.38 – 

7.31 (m, 6H), 7.28 (ddd, J = 5.1, 2.3, 2.3 Hz, 2H), 7.20 (d, J = 7.0 Hz, 2H), 7.12 (ddd, J = 

7.7, 7.7, 1.2 Hz, 1H), 6.97 – 6.89 (m, 1H), 6.75 (dd, J = 7.5, 7.5 Hz, 1H), 6.69 (d, J = 7.9 

Hz, 1H), 5.85 (s, 1H), 5.60 (s, 1H), 4.44 (dd, J = 8.4, 8.4 Hz, 1H), 4.24 (ddd, J = 10.7, 

3.7, 1.1 Hz, 1H), 3.61 (dd, J = 14.5, 3.7 Hz, 1H), 3.23 (dd, J = 13.7, 7.4 Hz, 1H), 2.77 

(ddd, J = 13.6, 10.2, 2.2 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 168.8, 166.8, 147.1, 

142.3, 135.6, 133.3, 129.3, 128.9, 128.9, 128.7, 127.6, 127.6, 126.5, 124.2, 119.7, 109.7, 

85.5, 59.3, 58.7, 56.2, 38.6, 36.3; FTIR (NaCl, thin film): 3315, 3087, 3052, 3027, 2928, 

2849, 1676, 1605, 1498, 1407, 1348, 1306, 1261, 1221 cm-1; [α]D
25 = +113 (c = 1.8, 

CHCl3); LRMS (EI+) calc’d [M+H]+ 410.2, found 410.2.  

 

Pyrroloindoline 176b 

Prepared following General Procedure IV using MesDABMe and 

diphenyliodonium triflate for 24 h. Reaction was run with additional 

CH2Cl2 (3.00 mL) for solubility. The crude residue was purified by silica 

gel chromatography (20% hexanes : 77.5% ethyl acetate: 2.5% methanol) to afford 176b 
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as a white solid (66.2 mg, 0.199 mmol, 66% yield). 1H NMR (500 MHz, CDCl3) δ 7.40 – 

7.32 (m, 4H), 7.32 – 7.26 (m, 1H), 7.09 (dd, J = 7.7, 7.7 Hz, 1H), 6.94 (d, J = 7.5 Hz, 

1H), 6.74 (d, J = 7.5, 7.5 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.82 (d, J = 8.3 Hz, 1H), 5.79 

(s, 1H), 4.48 (dd, J = 8.3, 8.3 Hz, 1H), 4.15 – 4.05 (m, 1H), 3.21 (dd, J = 13.8, 7.6 Hz, 

1H), 2.84 (dd, J = 13.8, 9.3 Hz, 1H), 1.46 (d, J = 6.8 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 169.3, 167.9, 147.2, 142.3, 133.2, 128.9, 128.7, 127.4, 126.5, 124.2, 119.7, 

109.8, 85.5, 59.4, 59.0, 51.3, 38.3, 15.7; FTIR (NaCl, thin film): 3255, 2928, 2849, 1669, 

1653, 1486, 1419, 1219 cm-1; [α]D
25 = +158 (c = 0.85, CHCl3); LRMS (EI+) calc’d for 

[M+H]+ 334.2, found 334.1. 

 

Pyrroloindoline 176c 

Prepared following General Procedure IV using MesDABMe and 

diphenyliodonium triflate for 24 h. Reaction was run with additional 

CH2Cl2 (3.00 mL) for solubility. The crude residue was purified by silica gel 

chromatography (77.5% ethyl acetate, 20% hexanes, 2.5% methanol) to afford 5c as a 

white solid (49.5 mg, 0.149 mmol, 50% yield). 1H NMR (500 MHz, CDCl3) δ 7.40 – 7.32 

(m, 4H), 7.31 – 7.26 (m, 1H), 7.09 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H), 7.01 (d, J = 3.8 Hz, 

1H), 6.88 (dd, J = 7.4, 0.5 Hz, 1H), 6.72 (dd, J = 7.4, 7.4 Hz, 1H), 6.65 (d, J = 7.9 Hz, 

1H), 5.84 (d, J = 3.0 Hz, 1H), 5.54 (d, J = 3.0 Hz, 1H), 4.43 (dd, J = 10.6, 7.0 Hz, 1H), 

4.01 (qd, J = 7.2, 4.2 Hz, 1H), 3.29 (dd, J = 13.7, 7.0 Hz, 1H), 2.65 (dd, J = 13.7, 10.7 

Hz, 1H), 1.46 (d, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 168.8, 167.9, 147.1, 

142.2, 133.6, 128.9, 128.7, 127.3, 126.7, 124.0, 119.5, 109.6, 86.0, 58.8, 57.2, 53.6, 39.4, 
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19.8; FTIR (NaCl, thin film): 3275, 3042, 2913, 1684, 1652, 1437, 1308, 1266, 1221 cm-

1; [α]D
25 = +119 (c = 1.1, CHCl3); LRMS (EI+) calc’d for [M+H]+ 334.2, found 334.1 

 

Pyrroloindoline 176d 

Prepared following General Procedure IV using MesDABMe and 

diphenyliodonium triflate for 24 h. Reaction was run with additional 

CH2Cl2 (3.00 mL) for solubility.  The crude residue was purified by silica 

gel chromatography (77.5% ethyl acetate, 20% hexane, 2.5% methanol) to afford 176d as 

a white solid (61.5 mg, 0.193 mmol, 64% yield). 

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.30 (m, 4H), 7.29 – 7.26 (m, 1H), 7.09 (ddd, J = 

7.7, 7.7, 1.3 Hz, 1H), 6.96 – 6.90 (m, 1H), 6.86 (d, J = 4.2 Hz, 1H), 6.73 (ddd, J = 7.5, 

7.5, 1.0 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 5.81 (s, 1H), 4.43 (dd, J = 8.5, 8.5 Hz, 1H), 

4.02 (dd, J = 17.0, 1.6 Hz, 1H), 3.85 (dd, J = 17.0, 4.6 Hz, 1H), 3.23 (dd, J = 13.7, 7.4 

Hz, 1H), 2.77 (dd, J = 13.8, 9.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 169.4, 165.2, 

147.1, 142.3, 133.3, 128.9, 128.7, 127.3, 126.5, 124.2, 119.7, 109.8, 85.4, 59.2, 58.0, 

46.7, 38.7; FTIR (NaCl, thin film): 3280, 3047, 2928, 2854, 1674, 1602, 1483, 1441, 

1310, 1263, 1219, 1155 cm-1; [α]D
25 = +80.2 (c = 0.59, CHCl3); LRMS (EI+) calc’d for 

[M+H]+ 320.1, found 320.1. 

 

Pyrroloindoline 176e 

Prepared following General Procedure IV using MesDABMe and diphenyliodonium triflate 

for 24 h. The crude residue was purified by silica gel chromatography (20% hexanes, 
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77.5% ethyl acetate, 2.5% methanol) to afford 176e as a white solid (55.5 mg, 0b.154 

mmol, 51% yield). 

1H NMR (500 MHz, CDCl3) δ 7.39 – 7.31 (m, 4H), 7.30 – 7.26 (m, 

1H), 7.11 – 7.06 (m, 1H), 6.96 – 6.92 (m, 1H), 6.73 (ddd, J = 7.5, 7.5, 

1.0 Hz, 1H), 6.66 – 6.62 (m, 1H), 5.87 (s, 1H), 5.80 (d, J = 2.6 Hz, 1H), 

5.44 (d, J = 2.4 Hz, 1H), 4.47 – 4.39 (m, 1H), 3.91 – 3.87 (m, 1H), 3.23 (dd, J = 13.7, 7.4 

Hz, 1H), 2.79 (dd, J = 13.7, 9.7 Hz, 1H), 2.60 (heptd, J = 7.1, 2.6 Hz, 1H), 1.05 (d, J = 

7.2 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 169.4, 166.7, 

147.3, 142.4, 133.3, 128.9, 128.6, 127.3, 126.5, 124.3, 119.6, 109.5, 85.5, 60.4, 59.1, 

58.2, 38.8, 28.4, 19.3, 16.0; FTIR (NaCl, thin film): 3292, 2964, 1669, 1609, 1483, 1465, 

1419, 1347, 1291, 1222 cm-1; [α]D
25 = +107 (c = 0.52, CHCl3); LRMS (EI+) calc’d for 

[M+H]+ 362.2, found 362.2. 

 

Pyrroloindoline 176f 

Prepared following General Procedure IV using 40 mol % t-BuDABMe
 

and diphenyliodonium hexafluorophosphate for 4 h. The crude residue 

was purified by silica gel chromatography (77.5% ethyl acetate, 20% 

hexanes, 2.5% methanol) to afford 176f as a white solid (76.6 mg, 0.213 mmol, 71% 

yield). 

1H NMR (500 MHz, CDCl3) δ 7.38 - 7.34 (m, 4H), 7.31 - 7.27 (m, 1H), 7.08 (ddd, J = 

7.9, 7.5, 1.3 Hz, 1H), 6.91 (ddd, J = 7.5, 1.3, 0.6 Hz, 1H), 6.73 (ddd, J = 7.5, 7.5, 1.0 Hz, 

1H), 6.67 - 6.61 (m, 1H), 5.83 (s, 1H), 5.36 (s, 1H), 4.55 - 4.48 (m, 1H), 4.14 (ddd, J = 

9.1, 7.3, 1.6 Hz, 1H), 3.54 - 3.46 (m, 2H), 3.21 (dd, J = 13.9, 7.4 Hz, 1H), 2.81 (dd, J = 
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13.9, 9.8 Hz, 1H), 2.31 (dddd, J = 12.8, 7.0, 7.0, 3.4 Hz, 1H), 2.17 (dddd, J = 12.9, 10.7, 

9.2, 7.2 Hz, 1H), 2.07 - 1.96 (m, 1H), 1.90 (dddd, J = 14.9, 6.8, 4.0, 1.9 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 167.9, 165.7, 147.0, 142.3, 133.6, 128.8, 128.8, 128.6, 127.3, 

126.7, 124.1, 119.7, 109.7, 85.3, 60.5, 60.3, 59.9, 45.2, 38.1, 27.6, 23.2; FTIR (NaCl, thin 

film): 3330, 2952, 2878, 1665, 1607, 1484, 1467, 1423, 1340, 1313, 1219, 1154, 1068 

cm-1; [α]D
25 = +108 (c = 0.63, CHCl3); LRMS (EI+) calc’d for [M+H]+ 360.2, found 

360.2. 

 

Pyrroloindoline 176g 

Prepared following General Procedure IV using MesDABMe and di(p-

tolyl)iodonium triflate for 32 h. The crude residue was purified by silica 

gel chromatography (50% hexanes, 47.5% ethyl acetate, 2.5% 

methanol) to afford 176g as a white solid (98.2 mg, 0.232 mmol, 77% 

yield). 1H NMR (500 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.28 (ddd, J = 4.7, 1.9, 1.9 Hz, 

1H), 7.24 – 7.18 (m, 4H), 7.16 (d, J = 8.0 Hz, 2H), 7.11 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H), 

6.93 – 6.89 (m, 1H), 6.74 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 5.84 

(d, J = 2.9 Hz, 1H), 5.56 (s, 1H), 5.43 (d, J = 2.8 Hz, 1H), 4.48 – 4.38 (m, 1H), 4.23 (ddd, 

J = 10.8, 3.7, 1.3 Hz, 1H), 3.61 (dd, J = 14.5, 3.7 Hz, 1H), 3.21 (dd, J = 13.7, 7.3 Hz, 

1H), 2.74 (ddd, J = 18.4, 14.1, 10.4 Hz, 2H), 2.33 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

168.8, 166.8, 147.1, 139.3, 137.1, 135.6, 133.5, 129.5, 129.3, 128.9, 128.6, 127.6, 126.4, 

124.1, 119.7, 109.6, 85.6, 59.0, 58.7, 56.2, 38.7, 36.3, 20.9; FTIR (NaCl, thin film): 3315, 

3027, 2923, 2859, 1686, 1602, 1412, 1343, 1308, 1219 cm-1; [α]D
25 = +208 (c = 0.61, 

CHCl3); LRMS (EI+) calc’d for [M+H]+ 424.2, found 424.2. 
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Pyrroloindoline 176h 

Prepared following General Procedure IV using MesDABMe and di(m-

tolyl)iodonium triflate for 4 h. The crude residue was purified by silica 

gel chromatography (50% hexanes, 47.5% ethyl acetate, 2.5% 

methanol) to afford 176h as a white solid (119.0 mg, 0.280 mmol, 94% yield). 1H NMR 

(500 MHz, CDCl3) δ 7.33 (dd, J = 7.3, 7.3 Hz, 2H), 7.28 (d, J = 7.3 Hz, 1H), 7.24 (d, J = 

7.8 Hz, 1H), 7.20 (d, J = 7.1 Hz, 2H), 7.16 – 7.07 (m, 4H), 6.93 (d, J = 7.4 Hz, 1H), 6.74 

(dd, J = 13.8, 6.3 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 5.87 (d, J = 2.9 Hz, 1H), 5.60 (s, 1H), 

5.46 (d, J = 2.7 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.24 (dd, J = 10.8, 2.7 Hz, 1H), 3.61 (dd, J 

= 14.5, 3.7 Hz, 1H), 3.23 (dd, J = 13.7, 7.3 Hz, 1H), 2.81 – 2.68 (m, 2H), 2.34 (s, 3H); 

13C NMR (126 MHz, CDCl3) δ 168.8, 166.8, 147.1, 142.2, 138.6, 135.6, 133.4, 129.3, 

128.9, 128.7, 128.6, 128.1, 127.6, 127.2, 124.1, 123.6, 119.6, 109.6, 85.5, 59.2, 58.7, 

56.2, 38.7, 36.3, 21.6; FTIR (NaCl, thin film): 3385, 3270, 3032, 2918, 2839, 1676, 1602, 

1409, 1350, 1313, 1234, 1197 cm-1; [α]D
25 = +169 (c = 0.81, CHCl3); LRMS (EI+) calc’d 

for [M+H]+ 424.2, found 424.2. 

 

Pyrroloindoline 176i 

Prepared following General Procedure IV using MesDABMe and bis(3,5-

dimethylphenyl)iodonium triflate for 4 h. The crude residue was purified 

by silica gel chromatography (50% hexanes, 47.5% ethyl acetate, 2.5% 

methanol) to afford 176i as a white solid (119.4 mg, 0.273 mmol, 91% yield). 1H NMR 

(500 MHz, CDCl3) 7.37 – 7.31 (m, 2H), 7.30 – 7.26 (m, 1H), 7.23 – 7.18 (m, 2H), 7.14 – 
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7.09 (m, 1H), 6.97 – 6.94 (m, 2H), 6.94 – 6.90 (m, 2H), 6.74 (ddd, J = 7.5, 7.5, 1.0 Hz, 

1H), 6.71 – 6.65 (m, 1H), 5.88 (d, J = 2.9 Hz, 1H), 5.61 (s, 1H), 5.44 (d, J = 2.8 Hz, 1H), 

4.43 (ddd, J = 9.8, 7.1, 1.0 Hz, 1H), 4.24 (ddd, J = 10.8, 3.7, 1.4 Hz, 1H), 3.62 (dd, J = 

14.5, 3.7 Hz, 1H), 3.23 (dd, J = 13.7, 7.1 Hz, 1H), 2.77 (dd, J = 14.5, 10.8 Hz, 1H), 2.68 

(dd, J = 13.7, 10.1 Hz, 1H), 2.30 (d, J = 0.4 Hz, 6H); 13C NMR (126 MHz, CDCl3) 168.9, 

166.7, 147.1, 142.1, 138.4, 135.7, 133.5, 129.3, 129.0, 128.9, 128.5, 127.6, 124.4, 124.1, 

119.6, 109.6, 85.5, 59.1, 58.7, 56.2, 38.8, 36.3, 21.4; FTIR (NaCl, thin film): 3288, 3051, 

2919, 2854, 1684, 1604, 1484, 1455, 1418, 1346, 1312, 1255, 1204, 1156, 1109 cm-1; 

[α]D
25 = +101 (c = 2.0, CHCl3); LRMS (EI+) calc’d for [M+H]+ 438.2, found 438.2. 

 

Pyrroloindoline 176j 

Prepared following General Procedure IV using MesDABMe using di(p-

methoxyphenyl)iodonium triflate for 42 h. The crude residue was 

purified by silica gel chromatography (50% hexanes, 47.5% ethyl acetate, 

2.5% methanol) to afford 176j as a white solid (88.1 mg, 0.200 mmol, 67% yield). 1H 

NMR (500 MHz, CDCl3) 7.36 – 7.30 (m, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.27 – 7.23 (m, 

2H), 7.20 (d, J = 7.0 Hz, 2H), 7.11 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 6.91 (dd, J = 7.4, 0.7 

Hz, 1H), 6.89 – 6.86 (m, 2H), 6.74 (ddd, J = 7.5, 7.5, 0.9 Hz, 1H), 6.67 (d, J = 7.8 Hz, 

1H), 5.81 (s, 1H), 5.57 (s, 1H), 4.48 – 4.40 (m, 1H), 4.24 (ddd, J = 10.8, 3.7, 1.2 Hz, 1H), 

3.79 (s, 3H), 3.61 (dd, J = 14.5, 3.5 Hz, 1H), 3.18 (dd, J = 13.7, 7.3 Hz, 1H), 2.74 (ddd, J 

= 20.3, 14.1, 10.4 Hz, 2H); 13C NMR (126 MHz, CDCl3) 168.9, 166.8, 158.7, 147.1, 

135.6, 134.2, 133.5, 129.3, 128.9, 128.6, 127.7, 127.6, 124.1, 119.7, 114.2, 109.7, 85.7, 

58.8, 58.7, 56.2, 55.3, 38.7, 36.3; FTIR (NaCl, thin film): 3309, 3052, 2938, 2839, 1684, 
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1653, 1609, 1513, 1457, 1419, 1312, 1251, 1183, 1032 cm-1; [α]D
25 = +70 (c = 0.80, 

CHCl3); LRMS (EI+) calc’d for [M+H]+ 440.2, found 440.2. 

 

Pyrroloindoline 176k 

Prepared following General Procedure IV using MesDABMe and (2-

naphthyl)(p-xylyl)iodonium triflate for 42 h. The crude residue was 

purified by silica gel chromatography (50% hexanes, 47.5% ethyl 

acetate, 2.5% methanol) to afford 176k as a white solid (113.0 mg, 0.246 mmol, 81% 

yield). 1H NMR (500 MHz, CDCl3) 7.85 – 7.78 (m, 4H), 7.54 – 7.45 (m, 2H), 7.38 (ddd, 

J = 11.4, 3.9, 3.9 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.31 – 7.26 (m, 1H), 7.23 – 7.18 (m, 2H), 

7.14 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 6.93 (dd, J = 7.4, 0.9 Hz, 1H), 6.78 – 6.68 (m, 2H), 

5.98 (s, 1H), 5.59 (s, 1H), 5.50 (s, 1H), 4.57 – 4.49 (m, 1H), 4.25 (ddd, J = 10.8, 3.7, 1.3 

Hz, 1H), 3.62 (dd, J = 14.5, 3.7 Hz, 1H), 3.39 (ddd, J = 16.0, 8.0, 8.0 Hz, 1H), 2.80 (ddd, 

J = 14.4, 12.1, 10.5 Hz, 2H).  13C NMR (126 MHz, CDCl3) δ 168.8, 166.7, 147.2, 139.2, 

135.6, 133.3, 133.0, 132.4, 129.3, 129.0, 128.9, 128.8, 128.0, 127.6, 127.5, 126.6, 126.4, 

125.5, 124.3, 124.2, 119.7, 109.7, 85.4, 59.5, 58.8, 56.2, 38.5, 36.3; FTIR (NaCl, thin 

film): 3330, 3052, 2918, 1676, 1605, 1483, 1409, 1343, 1303 cm-1; [α]D
25 = +237 (c = 

0.57, CHCl3); LRMS (EI+) calc’d for [M+H]+ 460.2, found 460.2. 

 

Pyrroloindoline 176l 

Prepared following General Procedure IV using MesDABMe and (3-

bromophenyl)(p-xylyl)iodonium triflate for 42 h. The crude residue 

was purified by silica gel chromatography (50% hexanes, 47.5% ethyl 
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acetate, 2.5% methanol) to afford 176l as a white solid (79.3 mg, 0.163 mmol, 54% 

yield). 1H NMR (500 MHz, CDCl3) 7.48 (dd, J = 1.8, 1.8 Hz, 1H), 7.44 – 7.39 (m, 1H), 

7.33 (dd, J = 7.3, 7.3 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.18 (m, 3H), 7.13 (dd, J = 7.4, 

7.4 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 6.76 (dd, J = 7.5, 7.5 Hz, 1H), 6.69 (d, J = 7.8 Hz, 

1H), 5.79 (d, J = 1.3 Hz, 1H), 5.59 (s, 1H), 5.50 (s, 1H), 4.42 (dd, J = 8.4, 8.4 Hz, 1H), 

4.25 (dd, J = 10.8, 3.0 Hz, 1H), 3.60 (dd, J = 14.5, 3.7 Hz, 1H), 3.15 (dd, J = 13.8, 7.5 

Hz, 1H), 2.78 (ddd, J = 18.5, 14.2, 10.1 Hz, 2H); 13C NMR (126 MHz, CDCl3) 168.6, 

166.9, 147.1, 144.8, 135.5, 132.5, 130.6, 130.4, 129.6, 129.3, 129.0, 128.9, 127.6, 125.3, 

124.2, 123.1, 119.9, 109.9, 85.4, 59.1, 58.5, 56.2, 38.5, 36.2; FTIR (NaCl, thin film): 

3315, 3057, 2933, 2864, 1679, 1612, 1560, 1482, 1412, 1343, 1313, 1221 cm-1; [α]D
25 = -

+91.4 (c = 2.8, CHCl3); LRMS (EI+) calc’d for [M+H]+ 488.1, found 488.1. 

 

Pyrroloindoline 180 

Prepared following General Procedure IV using MesDABMe and 

diphenyliodonium triflate for 3 h. The crude residue was purified by 

silica gel chromatography (60% hexanes, 37.5% ethyl acetate, 2.5% methanol) to afford 

180 as a white solid (94.6 mg, 0.243 mmol, 81% yield). 1H NMR (500 MHz, CDCl3) 

7.55 (d, J = 2.9 Hz, 1H), 7.34 – 7.30 (m, 2H), 7.30 – 7.27 (m, 1H), 7.27 – 7.23 (m, 1H), 

7.23 – 7.18 (m, 3H), 6.96 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 5.17 

(d, J = 2.8 Hz, 1H), 4.63 (d, J = 2.3 Hz, 1H), 4.25 (ddd, J = 12.6, 4.2, 4.2 Hz, 1H), 3.24 

(dd, J = 12.6, 4.1 Hz, 1H), 3.07 (s, 3H), 2.48 (dd, J = 12.6, 12.6 Hz, 1H); 13C NMR (126 

MHz, CDCl3) 169.0, 156.9 (q, JC-F = 37.6 Hz), 148.0, 144.9, 130.1, 129.4, 128.9, 127.5, 

125.9, 125.3, 120.9, 115.5 (q, JC-F = 287.7 Hz), 110.3, 83.8, 53.4, 49.1, 35.9, 33.3; FTIR 
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(NaCl, thin film): 3361, 3057, 2937, 1718, 1653, 1608, 1559, 1487, 1469, 1320, 1268, 

1216, 1187, 1163, 1058, 1034 cm-1; [α]D
25 = +215 (c = 1.3, CHCl3); LRMS (EI+) calc’d 

for [M+H]+ 390.1, found 390.1. 

3.11.12 Stereochemical Assignment of Tryptophan Arylation 

 

The stereochemical assignment of the pyrroloindole products was assigned by 1H, 13C, 

COSY, HSQC, HMBC, and NOESY 2D experiments on L-Trp-L-Phe derived 

pyrroloindoline and assigned by spectroscopic analogy for pyrroloindoles 176b-f. 

Acyclic tryptophan-derived carboxamide 180 was independently analyzed by 1H, 13C, 

COSY, HSQC, HMBC, and NOESY 2D experiments and found to arylate from the 

opposite face of the prochiral indole moiety. Selected NOESY 2D data is included in the 

spectral data 

3.11.13 Total Synthesis of (+)-Naseseazines A and B 

Preparation of N-(2-bromo-5-iodophenyl)-2,2,2-trifluoroacetamide  
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To a solution of 2-bromo-5-iodoaniline (14.9 g, 50.0 mmol, 1.0 equiv) in CH2Cl2 (250 

mL) was added Et3N (10.4 mL, 75.0 mmol, 1.50 equiv). The solution was cooled to 0 °C 

and trifluoroacetic anhydride (7.8 mL, 55.0 mmol, 1.10 equiv) added dropwise by 

syringe. The solution was stirred for 30 minutes and slowly warmed to 23 °C and stirring 

continued for 4 hours. The reaction was then quenched by the addition of 0.5 N HCl (150 

mL), and the reaction washed with 0.5 N HCl (2 x 100 mL). The combined organics were 

then back extracted with Et2O (100 mL), and the organics dried over Na2SO4, filtered, 

and concentrated in vacuo to afford pure 2-bromo-5-iodotrifluoroacetanilide as a white 

fluffy solid (18.8 g, 47.7 mmol, 95% yield). 1H NMR (500 MHz, CDCl3): δ 8.63 (d, J = 

2.0 Hz, 1H), 8.37 (s, 1H), 7.42 (dd, J = 8.4, 2.1 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H); 13C 

NMR (126 MHz, CDCl3): δ 154.58 (q, J = 38.0 Hz), 136.2, 134.0, 133.7, 130.5, 115.3 (q, 

J = 288.7 Hz), 113.8, 93.0; IR (NaCl, thin film):  3267, 3081, 1709, 1574, 1529, 1459, 

1395, 1260, 1186, 1165, 1034 cm-1; LRMS (EI+) calc’d for [M+H]+ 393.9, found 393.9. 

 

 Preparation of (3-trifluoroacetamido-4-bromophenyl)(mesityl)iodonium 

hexafluorophosphate  

 

To a solution of 2-bromo-5-iodotrifluoroacetanilide (11.8 g, 30.0 mmol, 1.00 equiv) in 

CH2Cl2 (120 mL) was added mCPBA (80%, 7.15 g, 33.0 mmol, 1.10 equiv). The solution 

was stirred for 5 minutes, then BF3•OEt2 (9.26 mL, 75.0 mmol, 2.50 equiv) was added 

dropwise by syringe to afford a bright orange solution. After 45 minutes, the solution was 

cooled to 0 °C and 2,4,6-trimethylphenylboronic acid (5.41 g, 33.0 mmol, 1.10 equiv) 
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added in a single portion. The mixture was stirred for an additional 15 minutes, warmed 

to 23 °C over 15 minutes, then stirred for an additional 20 minutes at room temperature.  

Saturated aqueous NaPF6 (150 mL) was added to the solution, and the heterogeneous 

mixture stirred vigorously for 1 hr. The solution was diluted with CH2Cl2 (100 mL) and 

H2O (150 mL), the layers separated, and the aqueous layer extracted with CH2Cl2 (2 x 

100 mL). The combined organics were then dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo to afford a thick oil. The oil was co-evaporated once from Et2O 

(100 mL), and diluted with Et2O (500 mL). The clear supernatant was decanted and the 

residual oil co-evaporated from Et2O (200 mL), resulting in precipitation. The resulting 

solid was suspended in Et2O (500 mL) and cooled in an ice-bath for 20 minutes, then 

collected by vacuum filtration and dried under high vacuum (<1 mTorr) for 15 h to afford 

diaryliodonium hexafluorophosphate 183 as an off-white, powdery solid (14.6 g, 22.2 

mmol, 74 % yield). 1H NMR (500 MHz, DMSO-d6) δ 11.53 (s, 1H), 8.24 (d, J = 1.8 Hz, 

1H), 7.91 (dd, J = 8.6, 1.9 Hz, 1H), 7.88 (d, J = 8.5 Hz, 1H), 7.27 – 7.21 (m, 2H), 2.62 (s, 

6H), 2.30 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 155.9 (q, J = 37.6 Hz), 143.8, 

142.1, 136.5 (d, J = 13.8 Hz), 135.7 (d, J = 35.8 Hz), 130.4, 126.0, 123.4, 116.3 (q, J = 

288.2 Hz), 113.2 , 26.8, 21.0; FTIR (NaCl, thin film):  3365, 3092, 2926, 1735, 1582, 

1523, 1457, 1405, 1267, 1204, 1157, 1031 cm-1; LRMS (EI+) calc’d [M–PF6]+ 511.9, 

found 511.9. 

 

Preparation of Diketopiperazine 185 
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(75% yield, 2 steps)
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To a solution of freshly prepared amino acid (4.75 g, 14.5 mmol, 1.00 equiv) in THF (0.4 

M, 240 mL) at 0 °C was added EDC•HCl (3.34 g, 17.4 mmol, 1.20 equiv), anhydrous 

HOBt (2.74 g, 20.3 mmol, 1.40 equiv) and Et3N (4.5 mL, 32 mmol, 2.2 equiv). The 

mixture was then stirred for 5 minutes, and L- proline methyl ester hydrochloride (2.89 g, 

17.4 mmol, 1.20 equiv) was added. The reaction was slowly warmed to 23 °C over 2 

hours and stirring continued for 20 hours. The reaction was then quenched with 1 N HCl 

(500 mL) and extracted with EtOAc (3 x 250 mL), then the combined organics washed 

with saturated aqueous NaHCO3 (500 mL), and aqueous layer back extracted with EtOAc 

(200 mL). The combined organic layers were then dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo to afford crude dipeptide as a viscous oil. 

 The residue was then dissolved in CH2Cl2 (100 mL), and trifluoroacetic acid (30 mL) 

was added dropwise by addition funnel at room temperature over 10 minutes. Stirring 

was continued for 20 minutes, then the solution diluted with toluene (100 mL) and the 

mixture concentrated in vacuo to afford a thick oil. The residue was then redissolved in 

MeOH (75 mL) and the mixture cooled to 0 °C. Et3N (55 mL) was then added dropwise 

the stirring solution over 10 minutes by addition funnel. Upon completion of the addition, 

the cooling bath was removed and the reaction was warmed to 23 °C over 1 hr. After an 

additional 3 hrs at room temperature, the solution was concentrated, the crude residue 

dissolved in Et2O (500 mL), and the solution washed with water (2 x 500 mL). The 

organic layers were back extracted with Et2O (250 mL), and the combined organic layers 

washed with brine (200 mL), dried over anhydrous MgSO4, filtered, and concentrated in 

vacuo to afford a yellow oil. The residue was purified by silica gel flash chromatography 

(5% MeOH in EtOAc) to afford diketopiperazine 185 as a white solid (3.32 g, 10.8 
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mmol, 75% yield). 1H NMR (500 MHz, CDCl3) δ 6.15 (s, 1H), 4.17 – 4.10 (m, 2H), 3.65 

– 3.57 (m, 1H), 3.53 (ddd, J = 12.0, 8.9, 3.2 Hz, 1H), 3.10 (dd, J = 17.5, 3.6 Hz, 1H), 

2.58 (dd, J = 17.5, 10.5 Hz, 1H), 2.43 – 2.32 (m, 1H), 2.14 – 1.97 (m, 2H), 1.97 – 1.83 

(m, 1H), 0.97 (t, J = 7.9 Hz, 9H), 0.59 (q, J = 7.9 Hz, 6H); 13C NMR (126 MHz, CDCl3) 

δ 169.0, 163.9, 101.9, 86.6, 59.3, 53.9, 45.4, 28.4, 22.6, 22.5, 7.4, 4.3; FTIR (NaCl, thin 

film): 3233, 2954, 2908, 2873, 2176, 1675, 1457, 1417, 1338, 1306, 1018 cm-1; [α]D
25 = -

–108 (c = 0.93, CHCl3); HRMS (MM) calc’d for [M+H]+ 307.1836, found 307.1839. 

 

Preparation of Pyrroloindoline 181f 

 

In a glovebox, Cu(OTf)2•PhMe (310 mg, 0.600 mmol) and tBuDABMe (1.10 g, 2.40 

mmol) were added to an oven-dried, 200 mL round-bottomed flask. Anhydrous CH2Cl2 

(60.0 mL) was then added by syringe, and the resulting deep-purple solution was stirred 

for 1 hr at 25 °C in the glovebox. The solution was then filtered through a tight plug of 

cotton, and the resulting solution removed from the glovebox. 

To a flame-dried, 1-liter round-bottomed flask was charged cyclo-L-Pro-L-Trp 175f (1.50 

g, 5.30 mmol, 1.00 equiv), (4-bromo-3-trifluoroacetamidophenyl)mesityliodonium 

hexafluorophosphate (4.19 g, 6.36 mmol, 1.20 equiv) in anhydrous CH2Cl2 (480 mL). 

The solution was stirred at 23 °C for 10 minutes, then cooled to 15 °C in a cold water 

bath. To the flask was then added the freshly prepared catalyst solution of CuI(tBuDABMe) 

(53.0 mL, 1.06 mmol, 0.20 equiv) dropwise over 20 minutes. The deep-purple solution 
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was allowed to warm to 23 °C over 2 hours, then stirred for 20 hours at 23 °C by which 

time the solution had turned to a deep red. The solution was then quenched by the 

addition of aqueous ammonium hydroxide (1.8 M, 500 mL). The mixture was transferred 

to a separatory funnel, vigorously shaken, and the layers partitioned. The aqueous layer 

was then back extracted with EtOAc (2 x 100 mL), and the combined organic layers dried 

over anhydrous Na2SO4, filtered, and concentrated in vacuo. Repeated silica gel 

chromatography (5% MeOH, 25% Hexanes, 70% EtOAc) afforded aryl pyrrolodine 181f 

as an amorphous white solid (1.79 g, 3.26 mmol, 62% yield). 

 

1H NMR (500 MHz, CDCl3) δ 8.47 (s, 1H), 8.42 (d, J = 2.3 Hz, 1H), 7.54 (d, J = 8.5 Hz, 

1H), 7.10 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H), 7.04 (dd, J = 8.5, 2.3 Hz, 1H), 6.97 (ddd, J = 

7.6, 1.2, 0.5 Hz, 1H), 6.76 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.64 (ddd, J = 7.8, 0.8, 0.8 Hz, 

1H), 5.73 (s, 1H), 4.59 - 4.51 (m, 1H), 4.20 - 4.11 (m, 1H), 3.51 - 3.40 (m, 2H), 3.09 (dd, 

J = 14.0, 7.9 Hz, 1H), 2.96 (dd, J = 14.0, 8.9 Hz, 1H), 2.30 (dddd, J = 12.9, 7.0, 7.0, 3.5 

Hz, 1H), 2.15 (dddd, J = 13.0, 10.5, 9.0, 7.2 Hz, 1H), 2.02 - 1.93 (m, 1H), 1.88 (ddddd, J 

= 17.2, 10.5, 8.6, 4.3, 4.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 168.2, 165.4, 154.8 (q, 

JC-F = 38.0 Hz), 147.2, 144.1, 133.5, 132.8, 132.0, 129.0, 125.9, 124.2, 120.0, 119.9, 

115.46 (q, JC-F = 288.7 Hz), 112.8, 110.0, 85.0, 60.5, 60.1, 59.8, 45.2, 38.1, 27.5, 23.3; 

FTIR (NaCl, thin film): 3270, 1733, 1683, 1586, 1539, 1485, 1467, 1418, 1312, 1245, 

1198, 1162 cm-1; [α]D
25 = +67.8 (c = 1.8, CHCl3); LRMS (EI+) calc’d for [M+H]+ 549.1, 

found 549.1. 

 

Preparation of Aniline 186: 
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To a solution of pyrroloindoline 181f (150 mg, 0.273 mmol, 1.00 equiv) in EtOH at 23 

°C was added NaBH4 (77.0 mg, 2.02 mmol, 7.4 equiv). The solution was stirred 

vigorously for 1 h, then cooled to 0 °C and slowly quenched with saturated aqueous 

ammonium chloride (5 mL). The mixture was then diluted with H2O (50 mL) and 

extracted with EtOAc (3 x 25 mL). The combined organics were then dried over sodium 

sulfate, filtered, and concentrated under reduced pressure. Purification of the crude 

residue by flash silica gel chromatography (75% EtOAc, 20% Hexanes, 5% MeOH) 

afforded bromoaniline 186 as a white, amorphous solid (114 mg, 0.252 mmol, 92% 

yield). 1H NMR (500 MHz, CDCl3) δ 7.37 (d, J = 8.3 Hz, 1H), 7.08 (ddd, J = 7.7, 7.7, 1.3 

Hz, 1H), 6.93 - 6.89 (m, 1H), 6.72 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 6.70 (d, J = 2.3 Hz, 

1H), 6.65 - 6.58 (m, 2H), 5.76 (d, J = 2.8 Hz, 1H), 5.35 (d, J = 3.0 Hz, 1H), 4.52 - 4.44 

(m, 1H), 4.18 - 4.07 (m, 3H), 3.48 (ddd, J = 8.6, 5.2, 5.2 Hz, 2H), 3.11 (dd, J = 13.9, 7.4 

Hz, 1H), 2.76 (dd, J = 13.9, 9.7 Hz, 1H), 2.31 (dddd, J = 12.8, 7.0, 7.0, 3.3 Hz, 1H), 2.15 

(dddd, J = 12.9, 10.6, 9.2, 7.2 Hz, 1H), 2.05 - 1.96 (m, 1H), 1.95 - 1.86 (m, 1H); 13C 

NMR (126 MHz, CDCl3) δ167.9, 165.6, 147.1, 144.3, 143.0, 133.1, 132.8, 128.7, 124.1, 

119.7, 117.4, 114.0, 109.6, 108.0, 85.1, 60.5, 60.2, 59.5, 45.2, 38.0, 27.6, 23.3; FTIR 

(NaCl, thin film): 3457, 3341, 3003, 2953, 2881, 1661, 1612, 1572, 1484, 1466, 1422, 

1341, 1293, 1252, 1214, 1152 cm-1; [α]D
25 = +118 (c = 0.80, CHCl3); LRMS (EI+) calc’d 

for [M+H]+ 453.1, found 453.1. 
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Preparation of (+)-Naseseazine B (187) 

 

 In a glovebox, a 1-dram vial was charged with bromoaniline 186 (74.6 mg, 0.165 

mmol, 1.00 equiv), alkyne 10 (127 mg, 0.412 mmol, 2.50 equiv), Na2CO3 (43.7 mg, 

0.412 mmol, 2.50 equiv), and Pd[P(o-tol)3]2 (29.5 mg, 0.0412 mmol, 25 mol %). DMF 

(1.70 mL) was then added and the solution stirred vigorously for 3 minutes at 25 °C. The 

solution was then heated to 100 °C for 1.5 h, cooled, and concentrated under reduced 

pressure and dried under high vacuum to ensure complete removal of residual DMF. The 

residue was then dissolved in CH2Cl2 (3 mL) and filtered through a plug of silica gel (50 

g) to remove residual catalyst and base, then the filter cake rinsed (5% MeOH in CH2Cl2, 

200 mL). The filtrate was then concentrated, and the crude residue dissolved in 1M 

methanolic HCl (10 mL), and stirred for 2 h at 23 °C. The solution was then concentrated 

and the residue was quenched by the addition of methanolic NH3 (1 N, 5 mL) and 

reconcentrated. The residue was purified by flash chromatography on silica gel (2 to 7% 

MeOH in CH2Cl2) afforded Naseseazine B (187) as a white, powdery solid (47.3 mg, 

0.837 mmol, 51% yield). Excess TES-alkyne 185 could be recovered during 

chromatography. 

 

Spectroscopic and physical data, including 1H, 13C NMR in CD3OD, DMSO-d6, IR, MS, 

and [α]D
25, obtained for Naseseazine B matched that as reported during isolation by Raju 
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et. al and data obtained by Movassaghi and Kim. See below for 1H and 13C comparison 

table. The use of natural amino acids in this report to synthesize (+)-naseseazine B is in 

agreement with Movassaghi and Kim’s structural reassignment of the natural product.2 

During the course of this study, we determined that the exact chemical shifts (δ) of 

Naseseazine B observed in CD3OD had a slight concentration dependence. 

 

1H NMR (600 MHz, CD3OD) δ 7.56 (d, J = 8.5 Hz, 1H), 7.40 (d, J = 0.6 Hz, 1H), 7.12 

(s, 1H), 7.04 (td, J = 7.6, 1.1 Hz, 1H), 7.00 (dd, J = 8.5, 1.1 Hz, 1H), 6.82 (dd, J = 7.2, 

1.0 Hz, 1H), 6.69 – 6.64 (m, 2H), 5.82 (s, 1H), 4.71 – 4.61 (m, 1H), 4.38 (app t, J = 4.4 

Hz, 1H), 4.24 (app t, J = 8.1, 1H), 3.96 (dd, J = 9.6, 6.6 Hz, 1H), 3.51 – 3.36 (m, 3H), 

3.30 – 3.27 (m, 2H), 3.26 – 3.21 (m, 2H), 2.57 (dd, J = 13.7, 10.1 Hz, 1H), 2.24 (dddd, J 

= 10.0, 6.9, 6.9, 3.1 Hz, 1H), 2.13 – 2.03 (m, 1H), 2.00 – 1.93 (m, 2H), 1.93 – 1.84 (m, 

1H), 1.72 – 1.60 (m, 1H), 1.49 – 1.40 (m, 1H), 1.01 – 0.92 (m, 1H); 13C NMR (126 MHz, 

CD3OD) δ 170.8, 170.1, 168.4, 167.3, 149.1, 137.9, 137.0, 136.0, 129.4, 127.7, 126.4, 

124.9, 120.5, 119.6, 111.1, 110.4, 109.7, 86.9, 61.8, 61.7, 61.5, 60.0, 57.1, 46.2, 45.9, 

39.5, 29.2, 29.0, 28.5, 24.2, 22.6. 

 

 1H NMR (600 MHz, DMSO-d6) δ 10.80 (d, J = 2.4 Hz, 1H), 7.68 (s, 1H), 7.57 (d, J = 

8.4 Hz, 1H), 7.31 (d, J = 1.6 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 7.03 – 6.96 (m, 2H), 6.80 

(dd, J = 7.5, 1.2 Hz, 1H), 6.75 (s, 1H), 6.61 (d, J = 6.6, 1 H), 6.58 (dd, J = 6.6, 1H), 5.68 

(s, 1H), 4.72 (ddd, J = 9.3, 7.7, 1.3 Hz, 1H), 4.34 (ddd, J = 8.9, 7.4, 1.4 Hz, 1H), 4.29 

(app t J = 5.3 Hz, 1H), 4.06 (ddd, J = 9.9, 6.8, 1.4 Hz, 1H), 3.37 – 3.33 (m, 2H), 3.25 

(ddd, J = 12.1, 9.0, 3.9 Hz, 1H), 3.22 (dd, J = 14.9, 4.8 Hz, 1H), 3.13 (dd, J = 13.7, 7.4 
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Hz, 1H), 3.05 (dd, J = 14.9, 5.8 Hz, 1H), 2.37 (dd, J = 13.7, 10.4 Hz, 1H), 2.16 (dddd, J = 

12.4, 7.0, 7.0, 3.6 Hz, 1H), 2.03 - 1.91 (m, 2H), 1.90 - 1.78 (m, 2H), 1.69 (dddd, J = 10.7, 

8.7, 5.8, 2.5 Hz, 1H), 1.67 - 1.57 (m, 1H), 1.46 - 1.38 (m, 1H). 13C NMR (126 MHz, 

DMSO-d6) δ 169.1, 167.9, 165.9, 165.5, 148.1, 135.9, 135.6, 134.6, 127.9, 126.1, 125.1, 

123.4, 119.2, 118.0, 117.9, 109.3, 109.2, 84.9, 60.0, 59.8, 59.5, 58.4, 55.2, 44.6, 38.7, 

27.7, 27.1, 25.7, 23.0, 21.9. IR: 3270, 2943, 2859, 1653, 1559, 1419, 1340 cm-1; [α]D
25 = 

+97 (c = 0.45, MeOH) LRMS (EI+) calc’d for [M+H]+ 565.3, found 565.3. 

Comparison of 1H NMR data for Natural vs. Synthetic (+)-Naseseazine B 

Raju et al. Report, 
Natural 

(+)–Naseseazine B 
1H NMR, 600 MHz, CD3OD 

This Work, 
Synthetic 

(+)–Naseseazine B 
1H NMR, 600 MHz, CD3OD 

δ 7.58 (d, J = 8.4 Hz, 1H) δ 7.56 (d, J = 8.5 Hz, 1H) 
7.41 (d, J = 1.4 Hz, 1H) 7.40 (d, J = 0.6 Hz, 1H) 

7.12 (s, 1H) 7.12 (s, 1H) 
7.06 (td, J =7.6, 1.3 Hz) 7.04 (td, J = 7.6, 1.1 Hz, 1H) 

7.03 (dd, J = 8.4, 1.8 Hz, 1H) 7.00 (dd, J = 8.5, 1.1 Hz, 1H) 
6.84 (dt, J =7.2, 0.9 Hz, 1H) 6.82 (dt, J = 7.2 Hz, 1.0 Hz, 1H), 

6.69 (t, J  = 7.6 Hz, 1H) 6.69 – 6.64 (m, 2H) 
6.68 (t, J = 7.6 Hz, 1H) – 

5.85 (s, 1H) 5.82 (s, 1H) 
4.75 (dd, J = 10.2, 8.7 Hz, 1H) 4.71 – 4.61 (m, 1H) 

4.40 (br t, J =4.7 Hz, 1H) 4.38 (app t, J = 4.4, 1H) 
4.33 (dd, J = 9.5, 7.1 Hz, 1H) 4.24 (app t, J = 8.1, 1H) 

3.99 (ddd, J = 11.4, 6.6 , 1.6 Hz, 1H) 3.96 (dd, J = 9.6, 6.6 Hz, 1H) 
3.49 (m, 1H) 3.51 – 3.36 (m, 3H) 
3.44 (m, 1H) – 
3.44 (m, 1H) – 
3.32 (m, 1H) 3.30 – 3.27 (m, 2H) 
3.28 (m, 1H) – 
3.27 (m, 1H) 3.26 – 3.21 (m, 2H) 
3.24 (m, 1H) – 

2.59 (dd, J = 13.8, 10.2 Hz, 1H) 2.57 (dd, J = 13.7, 10.1 Hz, 1H) 
2.28 (m, 1H) 2.24 (dddd, J = 10.0, 6.9, 6.9, 3.1 Hz, 1H) 
2.11 (m, 1H) 2.13 – 2.03 (m, 1H) 
2.00 (m, 1H) 2.00 – 1.93 (m, 2H) 
1.97 (m, 1H) – 
1.95 (m, 1H) 1.93 – 1.84 (m, 1H) 
1.67 (m, 1H) 1.72 – 1.60 (m, 1H) 
1.44 (m, 1H) 1.49 – 1.40 (m, 1H) 
0.92 (m, 1H) 1.01 – 0.92 (m, 1H) 
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Comparison of 13C NMR data for Natural vs. Synthetic (+)-Naseseazine B 

Raju et al. Report, 
Natural 

(+)–Naseseazine B 
13C NMR, 151 MHz, CD3OD 

This Work, 
Synthetic 

(+)–Naseseazine B 
13C NMR, 126 MHz, CD3OD 

Chemical Shift Difference, Δδ 

δ 170.7 δ 170.8 0.1 
170.2 170.1 0.1 
168.4 168.4 0.0 
167.3 167.3 0.0 
149.0 149.1 0.1 
137.9 137.9 0.0 
136.9 137.0 0.1 
136.0 136.0 0.0 
129.1 129.4 0.3 
127.6 127.7 0.1 
126.1 126.4 0.3 
124.8 124.9 0.1 
120.3 120.5 0.2 
120.3 – – 
119.4 119.6 0.2 
111.0 111.1 0.1 
110.3 110.4 0.1 
109.5 109.4 0.1 
86.8 86.9 0.1 
61.8 61.8 0.0 
61.7 61.7 0.0 
61.3 61.5 0.2 
59.9 60.0 0.1 
57 57.1 0.1 

45.9 46.2 0.3 
45.8 45.9 0.1 
39.5 39.5 0.0 
29.2 29.2 0.0 
29.1 29.0 0.1 
28.3 28.5 0.2 
24.1 24.2 0.1 
22.4 22.6 0.2 

 

Preparation of Pyrroloindoline 181b 
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In a glovebox, Cu(OTf)2•PhMe  (77.6 mg 0.150 mmol) and tBuDABMe (277 mg, 0.600 

mmol, 2.40 mmol) were added to an oven-dried, 50 mL round-bottomed flask. 

Anhydrous CH2Cl2 (27.0 mL) was then added by syringe, and the resulting deep-purple 

solution was stirred for 1 hr at 25 °C in the glovebox. The solution was then filtered 

through a tight plug of cotton, and the resulting solution removed from the glovebox. 

To a flame-dried, 100-mL round-bottomed flask was charged cyclo-L-Ala-L-Trp 175b 

(334 mg, 1.30 mmol, 1.00 equiv) and (4-bromo-3-

trifluoroacetamidophenyl)mesityliodonium hexafluorophosphate (940 mg, 1.43 mmol, 

1.10 equiv)). To the flask was then added the freshly prepared catalyst solution of 

CuI(tBuDABMe) (26.0 mL, 0.260 mmol, 0.20 equiv) dropwise over 20 minutes. The deep-

purple solution was allowed to warm to 23 °C over 2 hours, then stirred for 8 hours at 23 

°C. The solution was then quenched by the addition of aqueous ammonium hydroxide 

(1.8 M, 20 mL). The mixture was then diluted with EtOAc (100 mL), transferred to a 

separatory funnel, vigorously shaken, and the layers partitioned. The aqueous layer was 

then back-extracted with EtOAc (2 x 100 mL), and the combined organic layers dried 

over anhydrous Na2SO4, filtered, and concentrated in vacuo. Repeated silica gel 

chromatography (78% EtOAc, 20% hexanes, 2 % MeOH) afford aryl pyrrolodine 181b 

as a white solid (402.0 mg, 0.767 mmol, 59% yield). 1H NMR (500 MHz, CDCl3) δ 8.51 

(s, 1H), 8.39 (d, J = 2.3 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.20 (s, 1H), 7.09 (ddd, J = 

7.7, 7.7, 1.0 Hz, 1H), 7.03 (dd, J = 8.5, 2.3 Hz, 1H), 6.95 (d, J = 7.4 Hz, 1H), 6.73 (dd, J 

= 7.5, 7.5 Hz, 1H), 6.64 (d, J = 7.9 Hz, 1H), 5.73 (s, 1H), 5.68 (br s, 1H), 4.47 (dd, J = 

8.3, 8.3 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.09 (dd, J = 13.9, 7.9 Hz, 1H), 2.89 (dd, J = 13.9, 

8.9 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 169.8, 168.4, 154.8 
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(q, JC-F = 38.0 Hz) 147.3, 144.0, 133.4, 132.8, 131.9, 129.0, 125.9, 124.0, 120.0, 119.7, 

115.4 (q, JC-F = 288.6 Hz) 113.0, 110.1, 85.1, 59.3, 58.7, 51.2, 38.2, 15.2; FTIR (NaCl, 

thin film): 3270, 1733, 1683, 1586, 1539, 1485, 1467, 1418, 1312, 1245, 1198, 1162 cm-

1; [α]D
25 = +84 (c = 0.42, CHCl3); LRMS (EI+) calc’d for [M+H]+ 523.1, found 523.1. 

 

Preparation of Aniline 186b 

 

To a solution of pyrroloindoline 181b (140 mg, 0.268 mmol, 1.00 equiv) in EtOH (5.4 

mL) at 23 °C was added NaBH4 (76.3 mg, 2.00 mmol, 7.5 equiv). The solution was 

stirred vigorously for 1 h, then cooled to 0 °C and slowly quenched with saturated 

aqueous ammonium chloride (5 mL). The mixture was then diluted with H2O (50 mL) 

and extracted with EtOAc (3 x 45 mL). The combined organics were then dried over 

sodium sulfate, filtered, and concentrated in vacuo. Purification of the crude residue by 

flash silica gel chromatography (75% EtOAc, 20% Hexanes, 5% MeOH) afforded 

bromoaniline 186b as a white, amorphous solid (94.0 mg, 0.220 mmol, 82% yield). 1H 

NMR (500 MHz, CDCl3) δ 7.31 (d, J = 8.4 Hz, 1H), 7.04 (ddd, J = 7.6, 7.6, 1.3 Hz, 1H), 

6.91 - 6.85 (m, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.67 (ddd, J = 19.2, 7.7, 1.0 Hz, 2H), 6.56 

(dd, J = 8.4, 2.4 Hz, 1H), 5.72 (s, 1H), 4.56 (ddd, J = 10.0, 7.4, 1.6 Hz, 1H), 4.14 (qd, J = 

6.8, 1.5 Hz, 1H), 3.10 (ddd, J = 14.0, 7.5, 1.7 Hz, 1H), 2.52 (dd, J = 13.6, 9.9 Hz, 1H), 

1.37 (d, J = 6.9 Hz, 2H); FTIR (NaCl, thin film): 3345, 2919, 1668, 1605, 1483, 1418, 
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1300, 1209 cm-1; [α]D
25 = +156 (c = 0.38, MeOH); LRMS (EI+) calc’d for [M+H]+ 

427.1, found 427.1. 

Preparation of (+)-Naseseazine A  

 

 In a glovebox, a 1-dram vial was charged with bromoaniline 186b (79.8 mg, 

0.187 mmol, 1.00 equiv), alkyne 185 (143 mg, 0.467 mmol, 2.50 equiv), Na2CO3 (49.5 

mg, 0.467 mmol, 2.50 equiv), and Pd[P(o-tol)3]2 (33.4 mg, 0.0467 mmol, 25 mol %). 

DMF (1.90 mL) was then added and the solution stirred vigorously for 3 minutes at 25 

°C. The solution was then heated to 100 °C for 1 h, cooled, and concentrated under 

reduced pressure and dried under high vacuum to ensure complete removal of residual 

DMF. The residue was then dissolved in CH2Cl2 (3 mL) and filtered through a plug of 

silica gel (50 g) to remove residual catalyst and base, then the filter cake rinsed (6% 

MeOH in CH2Cl2, 260 mL). The filtrate was then concentrated, and the crude residue 

dissolved in 1M methanolic HCl (12 mL), and stirred for 2 h at 23 °C. The solution was 

then concentrated and the residue was quenched by the addition of methanolic NH3 (1 N, 

12 mL) and reconcentrated. The residue was purified by flash chromatography on silica 

gel (2 to 10% MeOH in CH2Cl2) afforded Naseseazine A as a white, powdery solid (56.5 

mg, 0.105 mmol, 56% yield). Excess TES-alkyne 185 could be recovered during 

chromatography.  
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Spectroscopic and physical data, including 1H, 13C NMR in CD3OD, DMSO-d6, IR, MS, 

and [α]D
25, obtained for Naseseazine A matched that as reported during isolation by Raju 

et. al15 and data obtained by Movassaghi and Kim.2 See below for 1H and 13C comparison 

table. The use of natural amino acids in this report to synthesize (+)-naseseazine A is in 

agreement with Movassaghi and Kim’s structural reassignment of the natural product.2 

During the course of this study, we determined that the exact chemical shifts (δ) of 

Naseseazine A observed in CD3OD had a slight concentration dependence. 

 

1H NMR (600 MHz, CD3OD) δ 7.55 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.11 (s, 1H), 7.04 

(app t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 7.4 Hz, 1H), 6.70 – 6.62 (m, 

2H), 5.80 (s, 1H), 4.58 (app t, J = 8.6 Hz, 1H), 4.37 (dd, J = 4.7, 4.7 Hz, 1H), 4.10 (q, J = 

6.8 Hz, 1H), 3.95 (dd, J = 10.7, 6.5 Hz, 1H), 3.41 (dt, J = 11.8, 8.3 Hz, 1H), 3.29 – 3.25 

(m, 3H), 3.23 (dd, J = 13.2, 7.8 Hz, 2H), 2.58 (dd, J = 13.5, 10.0 Hz, 1H), 2.00 – 1.91 (m, 

1H), 1.71 – 1.60 (m, 1H), 1.48 – 1.40 (m, 1H), 1.36 (d, J = 6.8 Hz, 3H), 1.01 – 0.91 (m, 

1H); 13C NMR (126 MHz, CD3OD) δ 172.5, 170.8, 170.7, 167.3, 149.1, 137.9, 137.2, 

135.9, 129.4, 127.6, 126.4, 125.0, 120.5, 120.4, 119.6, 111.1, 110.3, 109.7, 87.1, 61.2, 

60.3, 60.0, 57.1, 52.2, 45.9, 39.7, 29.2, 29.0, 22.6, 15.3. 

 

 1H NMR (600 MHz, DMSO-d6) δ 10.80 (s, 1H), 8.18 (s, 1H), 7.68 (s, 1H), 7.57 (d, J = 

8.4 Hz, 1H), 7.29 (s, 1H), 7.19 (s, 1H), 7.01 – 6.96 (m, 2H), 6.83 (d, J = 7.3 Hz, 1H), 

6.73 (s, 1H), 6.65 – 6.54 (m, 2H), 5.66 (s, 1H), 4.61 (dd, J = 8.6, 8.6 Hz, 1H), 4.28 (dd, J 

= 4.6, 4.6 Hz, 1H), 4.14 (q, J = 6.7 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.40 – 3.35 (m, 1H), 

3.28 – 3.18 (m, 2H), 3.07 (ddd, J = 26.8, 14.2, 6.7 Hz, 2H), 2.42 (dd, J = 13.1, 10.3 Hz, 



Chapter 3 – Direct and Selective Copper-Catalyzed Arylation of Tryptamines and 
Tryptophans: Total Synthesis of (+)-Naseseazines A and B 

264 

1H), 2.02 – 1.93 (m, 1H), 1.70 (ddd, J = 27.0, 9.2, 9.2 Hz, 1H), 1.65 – 1.56 (m, 1H), 1.48 

– 1.37 (m, 1H), 1.23 (d, J = 6.8 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 170.0, 

169.1, 168.6, 165.5, 148.1, 135.9, 135.7, 134.4, 127.9, 126.1, 125.0, 123.6, 119.1, 117.9, 

117.8, 109.3, 109.2, 109.1, 85.0, 59.3, 58.4, 58.4, 55.2, 50.3, 44.6, 38.8, 27.7, 25.7, 21.9, 

14.8. FTIR: 3306, 2913, 2859, 1668, 1449, 1418, 1343, 1308 cm-1; [α]D
25 = +121 (c = 

0.30, MeOH); LRMS (EI+) calc’d for [M+H]+ 539.2, found 539.2.  

Comparison of 1H NMR data for Natural vs. Synthetic (+)-Naseseazine A 

Raju et al. Report, 
(+)–Naseseazine A 

1H NMR, 600 MHz, CD3OD 

This Work 
(+)–Naseseazine A 

1H NMR, 600 MHz, CD3OD 
δ 7.57 (d, J = 8.4 Hz, 1H) δ 7.55 (d, J = 8.4 Hz, 1H) 

7.40 (s, 1H) 7.38 (s, 1H) 
7.11 (s, 1H) 7.11 (s, 1H) 

7.05 (t, 7.2 Hz, 1H) 7.04 (app t, J = 7.6 Hz, 1H) 
7.02 (d, J = 8.4 Hz, 1H) 7.00 (d, J = 8.4 Hz, 1H) 
6.85 (d, J = 7.4 Hz, 1H) 6.83 (d, J = 7.4 Hz, 1H) 
6.69 (d, J = 7.6 Hz, 1H) 6.70 – 6.62 (m, 2H) 
6.67 (t, J = 8.5 Hz, 1H) – 

5.83 (s, 1H) 5.80 (s, 1H) 
4.64 (dd, J = 8.4, 7.4 Hz, 1H) 4.58 (app t, J = 8.6 Hz, 1H) 

4.39 (br t, J = 4.5 Hz, 1H) 4.37 (dd, J = 4.7, 4.7 Hz, 1H) 
4.15 (q, J = 6.9 Hz, 1H) 4.10 (q, J = 6.8 Hz, 1H) 

3.97 (dd, J = 10.8, 6.6 Hz, 1H) 3.95 (dd, J = 10.7, 6.5 Hz, 1H 
3.42 (dt, J = 11.8, 8.1 Hz, 1H) 3.41 (dt, J = 11.8, 8.3 Hz, 1H) 

3.30 (m, 1H) 3.29 – 3.25 (m, 3H) 
3.29 (m, 1H) – 
3.26 (m, 1H) – 
3.24 (m, 1H) 3.23 (dd, J = 13.2, 7.8 Hz, 2H) 

2.59 (dd, J  = 13.7, 10.2 Hz, 1H) 2.58 (dd, J = 13.5, 10.0 Hz, 1H) 
1.97 (m, 1H) 2.00 – 1.91 (m, 1H) 
1.66 (m, 1H) 1.71 – 1.60 (m, 1H) 
1.43 (m, 1H) 1.48 – 1.40 (m, 1H) 

1.38 (d, J = 6.9 Hz, 1H) 1.36 (d, J = 6.8 Hz, 3H) 
0.93 (m, 1H) 1.01 – 0.91 (m, 1H) 
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Comparison of 13C NMR data for Natural vs. Synthetic (+)-Naseseazine A 

Raju et al. Report, 
(+)–Naseseazine A 

13C NMR, 151 MHz, CD3OD 

This Work 
(+)–Naseseazine A 

13C NMR, 126 MHz, CD3OD 

Chemical Shift Difference, Δδ 

172.6 172.5 0.1 
170.6 170.8 0.2 
170.6 170.7 0.1 
167.3 167.3 0.0 
149.1 149.1 0.0 
137.9 137.9 0.0 
137.2 137.2 0.0 
135.8 135.9 0.1 
129.2 129.4 0.2 
127.6 127.6 0.0 
126.2 126.4 0.2 
124.9 125.0 0.1 
120.3 120.5 0.2 
120.2 120.4 0.2 
119.5 119.6 0.1 
110.9 111.1 0.2 
110.1 110.3 0.2 
109.5 109.7 0.2 
87.1 87.1 0.0 
61.2 61.2 0.0 
60.2 60.3 0.1 
60.0 60.0 0.0 
57.2 57.1 0.1 
52.1 52.2 0.1 
45.8 45.9 0.1 
39.7 39.7 0.0 
29.0 29.2 0.2 
29.0 29.0 0.0 
22.5 22.6 0.1 
15.2 15.3 0.1 
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Chapter 4 
 

A Mild and General Larock Indolization Protocol for the Synthesis of 
Unnatural Tryptophan Derivatives: Total Synthesis of (–)-Aspergilazine 

A.† 
 
 

4.1 INTRODUCTION 

The Pd(0)-catalyzed heteroannulation of disubstituted alkynes and 2-haloanilines, 

widely known as the Larock indole synthesis, is a powerful method for the preparation of 

structurally complex 2,3-disubstituted indoles that has found tremendous utility in 

accessing indole building blocks, unnatural tryptophan derivatives, and indole-containing 

natural products.1,2,3,4 Mechanistically, it is expected to proceed through an active Pd(0) 

catalyst which can then undergo oxidative addition into 2-iodoaniline 188. Coordination 

of an internal alkyne to adduct 190, followed by migratory insertion and reductive 

elimination furnishes the indole product 189 and regenerates the Pd(0) catalyst. To date, 

Larock’s original conditions – which couple an o-iodoaniline to an internal alkyne in the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
† Portions of this chapter have been reproduced from submitted studies (Chuang, K. V.; Kieffer, M. E.; 
Reisman, S. E. submitted) and the supporting information found therein. Work was conducted in 
collaboration with Kangway V. Chuang. 
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presence of a “ligandless” Pd-catalyst, an inorganic base, and a chloride additive – still 

remain the most widely employed.5  

Scheme 4.1. The Larock indole synthesis catalytic cycle 

 
 

Despite the broad utility of the Larock indole synthesis, a surprisingly small 

portion of the literature has been dedicated to improving reaction conditions and 

expanding the substrate scope. From the standpoint of transition-metal catalysis, 

significant challenges remain, as the application of this reaction in the presence of more 

complex functionality requires increased catalyst loadings and reaction times due to 

diminished catalytic activity and poor catalyst turnover. These challenges were 

highlighted in our synthesis of (+)-naseseazines A and B (Chapter 3).6 Specifically, low 

reactivity was observed with substoichiometric amounts of Pd catalyst, whereas use of 

higher Pd-loadings or more forcing conditions resulted in competitive 

hydrodehalogenation, problematic epimerization of the diketopiperazine, poor 

regioselectivity, and low mass recovery. This chapter describes our efforts to better 
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understand the intricacies of this transformation to aid in the development of a modified 

Larock indolization protocol. The mild procedure described herein enables the coupling 

of 2-bromoanilines with high functional group compatibility to provide structurally 

complex and synthetically useful indoles. 

 

4.1.1  The Larock Indole Synthesis in Natural Products 
 
 Following its initial disclosure in 1991, the Larock indole synthesis has been 

beautifully employed in a variety of total syntheses. Elegant examples from the Baran lab 

demonstrate the ability to quickly advance iodoaniline substrates 194 and 196 to highly 

functionalized intermediates en route to natural products such as psychotrimine and (+)-

kapakahine B.3 Despite the impressive and rapid generation of substrate complexity, 

these examples highlight the limitations of this catalyst system in tolerating 

functionalized substrates. For example, in their synthesis of kapakahine B, 20 mol % 

Pd(OAc)2 is necessary to effect two productive turnovers on a complex iodoaniline 

substrate (Scheme 4.2, b). Generally, increased substrate complexity, especially with 

respect to polar functionality and epimerizable centers, necessitates increased catalyst 

loadings and reaction times, and typically results in lower product yields.  
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Scheme 4.2. Iodoanilines in natural product synthesis 

 
 It was not until 2004 that modifications to Larock’s original conditions allowed 

for the successful implementation of bromo- and chloro-electrophiles. Employing 10 mol 

% of bidentate phosphine ligand 1,1’bis(di-tert-butylphosphino)ferrocene at elevated 

temperatures (110 – 130 °C), Senanayake and co-workers found that haloaniline 

substrates underwent smooth reaction to provide simple indoles in moderate to good 

yields (Scheme 4.3).7  

Scheme 4.3. Larock modfications to include bromo- and chloroelectrophiles. 
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use of superstoichiometric Pd-catalyst and ligand were high yields obtained (Scheme 4.4, 

a). In a follow-up report, a catalytic Larock macrocyclization reaction was reported using 

15 mol % Pd(OAc)2 and 30 mol % ligand at 130 °C, but only substrates without polar 

functionality and epimerizable centers are competent  in this transformation.4 

 Scheme 4.4. Bromoanilines as electrophiles for the Larock indole synthesis 
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catalyst loadings; and 3) deliver products at lower temperatures in order to mitigate 

deleterious side reactivity. To accomplish this, we sought to understand why Pd[P(o-

tol)3]2, our optimal catalyst in the preparation of the (+)-naseseazines, appeared to be 

uniquely effective in catalyzing our desired transformation. 

In assessing the existing limitations of the Larock indolization, we rationalized 

that the poor reactivity of 2-bromoanilines under Larock’s ligandless conditions was 

likely due to slow rates of oxidative addition. Although this elementary step could be 

easily remedied by the addition of an electron-donating phosphine ligand, we recognized 

that the limited success of this approach might be due to diminished rates of alkyne 

insertion due to coordinative saturation of Pd.8 We hypothesized that the use of sterically 

demanding phosphines, such as P(o-tol)3 and P(tBu)3, which have been demonstrated to 

proceed via Pd-monophosphine rather than Pd-bisphosphine intermediates as the active 

catalyst, may serve to balance these opposing factors by providing a vacant coordination 

site to facilitate alkyne insertion (Scheme 4.5).9  
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Scheme 4.5. Improving the Larock indole synthesis 
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observed. We next investigated whether this reaction was competent at decreased 

temperatures. Lowering the temperature to 60 °C enabled a clean reaction and provided 

the product in an improved 85% yield (entry 8). To the best of our knowledge, this 

reaction represents the lowest temperature Larock indolization of any 2-haloaniline 

previously reported in the literature. Additionally, a soluble organic base (Cy2NMe), and 

non-polar solvent could also be employed without loss in reaction efficiency (entries 9 

and 10). Finally, in support of a highly active, Pd-monophosphine complex, use of a 1:1 

[Pd]/L ratio generated by the addition of Pd2(dba)3 and P(tBu)3 offered improved initial 

rates of the reaction (entry 11). However, application of this catalyst system did not 

significantly reduce the overall reaction time, and furnished in the product in nearly 

identical yield. Although these final variations did not significantly affect yield, these 

data illustrate the robust nature of the active catalyst, as well as flexibility in the reaction 

conditions that may prove useful in individual substrate optimization. For simplicity of 

reaction setup, we elected to conduct our scope studies using the air-stable and crystalline 

Pd[P(tBu)3]2. 
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Table 4.1. Optimization Studies 

 
entry [Pd cat.] ligand base temp (°C) yield (%)b 

1 Pd(OAc)2 – Na2CO3 100 27 
2 Pd(OAc)2 PPh3 Na2CO3 100 17 
3 Pd(OAc)2 DavePhos Na2CO3 100 8 
4 Pd(OAc)2 PCy3 Na2CO3 100 <5 
5 Pd(OAc)2 dtbpf Na2CO3 100 <5 
6 Pd[P(o-tol)3]2 – Na2CO3 100 70 
7 Pd[P(tBu)3]2 – Na2CO3 100 78 
8 Pd[P(tBu)3]2 – Na2CO3 60 85 
9 Pd[P(tBu)3]2 – Cy2NMe 60 85 

10e Pd[P(tBu)3]2 – Cy2NMe 60 84 (87)d 
11 e Pd2(dba)3 P(tBu)3 Cy2NMe 60 83 

a Reactions conducted on 0.1 mmol scale with 2.0 equiv alkyne 204a and 2.5 equiv base in DMF (0.5 mL). 
b Yield determined by 1H NMR analysis of the crude reaction mixture relative to an internal standard. c 1:1 
[Pd]/ligand used. d Isolated yield on 0.3 mmol scale. e Reaction performed in 1,4-dioxane. 
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conditions (205n and 205o). It is noteworthy that tryptophan 205o, readily prepared here 

in two steps from commercially available materials, has recently been reported as a new 

fluorescent probe with interesting photophysical properties.11 Finally, these conditions are 

also readily extended to 2-bromophenol to provide direct access to a substituted 

benzofuran derivative (205t). Importantly, chiral SFC analysis verified that this reaction 

proceeds without deleterious racemization, providing all products in enantiopure form. 

The 2-triethylsilyl group is easily removed using aqueous acid or fluoride sources, or 

alternatively can serve as a useful functional handle for a variety of transformations.12 

Table 4.2. Bromoaniline scope 

 
a Reactions conditions: Substituted 2-bromoaniline, alkyne (2.0 equiv), Cy2NMe (2.5 equiv) in 1,4-dioxane 
(0.2 M) at 60 °C.  Isolated yields are reported. b Reaction performed at 80 °C. c To facilitate purification, 
desilylation with 1 M TBAF or 1 N HCl in MeOH was performed prior to chromatography. 
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To investigate the scope of the alkyne, several dipeptide-and diketopiperazine-

based substrates were prepared and subjected to the reaction conditions (Table 4.3). In all 

cases, the products are obtained in good yields and with no observed epimerization of the 

α-stereocenters. Excellent functional group tolerance is demonstrated by the preparation 

of 205y in 86% yield. Although the focus of this study was the coupling of peptide-based 

alkynes, simple alkynes such as TMS-phenyl acetylene can also be used (3z), reacting 

under considerably milder conditions than those previously reported.13  

Table 4.3. Alkyne scope 

 
a Reactions conditions: 203a (1.0 equiv), 204 (2.0 equiv), CyNMe (2.5 equiv), in 1,4-
dioxane (0.2 M) at 60 °C. Isolated yields are reported. b Reaction performed at 80 °C. 
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effect protodesilylation, provided 1.28 g (80% yield) of N-Boc-7-aza-tryptophan methyl 

ester 206 (Scheme 4.6). 

Scheme 4.6. Reaction scale-up 
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Trifluoroacetic acid mediated removal of the Boc-protecting group then affords the 

natural product. 
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4.5.2  Our Synthesis of (–)-Aspergilazine A 
 

Retrosynthetically, we imagined a slightly more direct disconnection that could 

highlight our newly developed methodology. We proposed a disconnection through both 

tryptophan indoles via a sequential Larock indolization between known diketopiperazine 

209 and diarylamine 210. We hoped to synthesize diarylamine 210 using a selective 

Buchwald-Hartwig reaction of 1-bromo-2-iodobenzene (211) and commercially-available 

4-bromo-1,2-diaminobenzene (212). Importantly, the success of this strategy hinges 

largely on the ability of this new protocol to enable the coupling of 2-bromoanilines; the 

preparation of the diiodinated analog of diarylamine 210 via C–N bond formation is a 

considerably more challenging synthetic undertaking.  

Scheme 4.7. Retrosynthetic analysis of (–)-aspergilazine A 
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Scheme 4.8. Total synthesis of (–)-aspergilazine A 
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Triethylamine (Et3N), diisopropylamine (i-Pr2NH), diisopropylethylamine (i-Pr2NEt), 

and dicyclohexylmethylamine (Cy2NMe) were distilled over calcium hydride prior to 

use. Unless otherwise stated, chemicals and reagents were used as received. All reactions 

were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-

coated plates (0.25 mm) and were visualized by UV, p-anisaldehyde, or KMnO4 staining. 

Flash column chromatography was performed either as described by Still et al. using 

silica gel (particle size 0.032-0.063) purchased from Silicyle. Optical rotations were 

measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. 1H 

and 13C NMR spectra were recorded on a Varian 400 MR (at 400 MHz and 101 MHz, 

respectively), a Varian Inova 500 (at 500 MHz and 126 MHz, respectively), or a Varian 

Inova 600 (at 600 MHz and 150 MHz, respectively), and are reported relative to internal 

CHCl3 (1H, δ = 7.26), MeCN (1H, δ = 1.94), or DMSO (1H, δ = 2.50), and CDCl3 (13C, δ 

= 77.0), MeCN (13C, δ = 118.26), or DMSO (13C, δ = 40.0). Data for 1H NMR spectra are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were 

recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of 

absorption (cm–1). Preparatory HPLC was performed with either an Agilent 1200 Series 

HPLC utilizing an Agilent XDB-C18 5µm column (30 x 250 mm). Analytical SFC was 

performed with a Mettler SFC supercritical CO2 analytical chromatography system with 

Chiralcel AD-H column (4.6 mm x 25 cm). HRMS were acquired using an Agilent 6200 

Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI), or mixed (MM) ionization mode. 
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4.7.2  Preparation of haloaniline substrates 
 
Bromoaniline 203o 

 

6-bromoquinoline was purchased from Combi-Blocks and nitrated using a known 

procedure.  5-nitro,6-bromo-quinloline (500 mg, 2.0 mmol, 1.0 equiv) was dissolved in 

MeOH (6 mL).  Fe powder (331 mg, 5.9 mmol, 3.0 equiv) and concentrated HCl (2 mL) 

were added and the reaction was heated to 50 °C for 1 h.  Upon cooling, the reaction was 

basified with NH4OH to pH 9, filtered through celite, and extracted with EtOAc (2X, 10 

mL).  The combined organic layers were washed with brine, dried over Na2SO4, filtered 

and concentrated in vacuo.  The crude material was purified by chromatography on silica 

gel (40% acetone, 60% hexanes) to provide a light yellow, amorphous solid (300 mg, 1.3 

mmol, 68% yield). 

1H NMR (500 MHz, CDCl3) δ 8.90 (dd, J = 4.2, 1.6 Hz, 1H), 8.16 (ddd, J = 

8.6, 1.5, 0.9 Hz, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.45 (dd, J = 9.0, 0.7 Hz, 1H), 

7.39 (dd, J = 8.6, 4.2 Hz, 1H) , 4.68 (s, 2H); 13C NMR (126 MHz, CDCl3) δ 150.31, 

148.1, 139.6, 133.3, 129.4, 120.7, 120.2, 118.7, 104.3; FTIR (NaCl, thin film): cm-1; 

3423, 3297, 3162, 1635, 1581, 1569, 1457, 1398, 1357, 1323; HRMS (MM) calc’d 

[M+H]+ 222.9865, found 222.9862. 

 

Bromoaniline 203m 

N

Br H2SO4, HNO3
NaNO2 (cat)

N

Br
NO2

Fe, conc. HCl
MeOH
50 °C N

Br
NH2

203o(83% yield) (68% yield)

N

NH2
Br
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In a glovebox, a 2 dram vial was charged with 4-iodo,2-bromoaniline 

(500 mg, 1.7 mmol, 1.0 equiv), Pd(dppf)Cl2•CH2Cl2 (69 mg, 0.08 mmol, 

0.05 equiv), bis(pinacolato)diboron (448 mg, 1.8 mmol, 1.05 equiv), KOAc (557 mg, 5.9 

mmol (3.5 equiv), and DMSO (5 mL).  The vial was sealed, removed from the glove box 

and heated to 80 °C.  After 24 h, the reaction was cooled, filtered through celite and 

flushed with ethyl acetate.  This mixture was then washed with water (3 X), dried 

Na2SO4, filtered and concentrated.  The crude reaction mixture was purified by 

chromatography on silica gel (10% ethyl acetate, 90% hexanes) to give white, amorphous 

solid 203m (315 mg, 1.1 mmol, 63% yield). 

1H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 1.3 Hz, 1H), 7.52 (dd, J = 7.9, 1.4 Hz, 1H), 

6.72 (d, J = 7.9 Hz, 1H), 1.32 (s, 12H); 13C NMR (126 MHz, CDCl3) δ146.6, 139.2, 

135.0, 114.8, 108.8, 83.58, 24.8 (carbon adjacent to Boron was not observed); FTIR 

(NaCl, thin film): cm-1; 3477, 3368, 2977, 2930, 1616, 1594, 1385, 1372, 1319, 1143, 

1098; HRMS (MM) calc’d [M+H]+ 297.0645, found 297.0637. 

4.7.3  Preparation of alkyne substrates 
 

Alkyne 204a 
Alkyne 204a was prepared on decagram scale according to the procedure 
reported by Baran and co-workers.  
 

 
Alkyne 204v 

 

NH2

BrB
O

O

Me Me

Me
Me
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O
B

O
B

O

OMe Me

Me Me Me
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(63% yield)

OMe

O

NHBocSET

1) TFA, CH2Cl2
2) EDC, HOBt•H2O, Et3N,
Boc–D–Phe
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 Methyl ester 204a (1.02 g, 3.0 mmol, 1.00 equiv) was dissolved in a 5:1 mixture 

of CH2Cl2:TFA (20 mL) .  After one hour, the reaction was concentrated and dissolved in 

34 mL CH2Cl2.  The solution was cooled to 0 °C under a positive pressure of N2 and  

EDC•HCl (0.862 g, 4.5 mmol, 1.50 equiv), HOBt•H2O (0.680 g, 4.5 mmol, 1.50 equiv) 

and Et3N (1.88 mL, 13.5 mmol, 4.5 equiv) were added sequentially. The mixture was 

then stirred for 5 minutes, and Boc–D–phenylalanine (1.59 g, 6.0 mmol, 2.0 equiv) was 

added. The reaction was slowly warmed to 23 °C over 2 hours and stirring continued for 

20 hours. The reaction was then quenched with 1 N HCl (500 mL) and extracted with 

EtOAc (3 x 250 mL), then the combined organics washed with saturated aqueous 

NaHCO3 (500 mL), and aqueous layer back extracted with EtOAc (200 mL). The 

combined organic layers were then dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo to afford crude dipeptide as a viscous oil. 

 The residue was then dissolved in CH2Cl2 (50 mL), and trifluoroacetic acid (15 

mL) was added dropwise by addition funnel at room temperature over 10 minutes. 

Stirring was continued for 20 minutes, then the solution diluted with toluene (100 mL) 

and the mixture concentrated in vacuo to afford a thick oil. The residue was then 

redissolved in MeOH (35 mL) and the mixture cooled to 0 °C. Et3N (27 mL) was then 

added dropwise the stirring solution over 10 minutes by addition funnel. Upon 

completion of the addition, the cooling bath was removed and the reaction was heated to 

50 °C over 16 h. The mixture was cooled to 0 °C to yield a milky solution, which was 

filtered and washed with cold methanol to provide alkyne 204v as a colorless solid (771 

mg, 72% yield) 
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1H NMR (500 MHz, DMSO) δ 8.35 (d, J = 1.6 Hz, 1H), 8.02 (d, J = 1.0 

Hz, 1H), 7.29 – 7.19 (m, 3H), 7.18 – 7.12 (m, 2H), 4.15 (s, 1H), 3.19 – 

3.11 (m, 2H), 2.88 (dd, J = 13.5, 4.9 Hz, 1H), 2.63 (dd, J = 16.9, 3.2 Hz, 1H), 2.40 (dd, J 

= 17.0, 4.7 Hz, 1H), 0.91 (t, J = 7.9 Hz, 9H), 0.50 (q, J = 7.9 Hz, 6H); 13C NMR (126 

MHz, DMSO) δ 166.6, 166.0, 135.8, 130.1, 128.0, 126.7, 104.0, 83.9, 55.4, 52.6, 38.4, 

24.8, 7.3, 3.9; FTIR (NaCl, thin film): cm-1; 2916, 2350, 1732, 1651, 1557, 1455; [α]D
25 

= –19.4 (c = 0.28, CHCl3);  HRMS (MM) calc’d [M+H]+ 357.1993, found 357.1992. 

 
Alkyne 204w 

 
 To a solution of methyl ester 204a (550 mg, 1.5 mmol, 1.00 equiv) in THF/H2O 

(4 mL/2 mL) at 0 °C under a positive pressure of N2 was added aqueous LiOH (1 M, 1.9 

mL, 1.2 equiv).  After 1 hour, the reaction was quenched by slow addition of 1 M HCl (3 

mL) and Et2O (6 mL).  The layers were separated and the aqueous was extracted with 

Et2O (3X, 10 mL).  The organics were combined, washed with brine, dried over MgSO4, 

filtered and concentrated in vacuo to afford a colorless oil.  The oil was dissolved in 24 

mL THF and cooled to 0 °C under a positive pressure of N2.  EDC (337 mg, 1.8 mmol, 

1.2 equiv), anhydrous HOBt (277 mg, 2.0 mmol, 1.4 equiv) and Et3N (610 µL, 4.4 mmol, 

3.0 equiv) were added sequentially.  After 5 minutes of stirring, a solution of (l)-Phe-

OMe•HCl  (347 mg, 1.6 mmol, 1.1 equiv) in THF (10 mL) was added via cannula.  The 

reaction was warmed to room temperature and stirred for 12 h.  The heterogeneous 

solution was concentrated and purified by chromatography on silica gel (20% ethyl 

acetate, 80% hexanes) to give white, amorphous solid 204w (500 mg, 1.02 mmol, 70% 

yield) 
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1H NMR (500 MHz, CDCl3, Major Rotamer) δ 7.30 – 7.19 (m, 3H), 

7.13 – 7.04 (m, 2H), 6.84 (d, J = 4.9 Hz, 1H), 5.25 (s, 1H), 4.81 

(ddd, J = 7.5, 6.0, 6.0 Hz, 1H), 4.22 (d, J = 4.9 Hz, 1H), 3.67 (s, 3H), 3.18 – 3.01 (m, 

2H), 2.74 (dd, J = 17.1, 6.1 Hz, 1H), 2.65 (dd, J = 17.1, 6.5 Hz, 1H), 1.42 (s, 9H), 0.95 (t, 

J = 7.9 Hz, 9H), 0.55 (q, J = 7.9 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 171.3, 169.9, 

155.3, 135.7, 129.1, 128.4, 127.0, 102.5, 85.5, 80.2, 53.4, 53.0, 52.2, 38.0, 28.1, 23.3, 7.7, 

4.2; FTIR (NaCl, thin film): cm-1; 3319, 2954, 2935, 2874, 2177, 1746, 1689, 1660, 

1527, 1498, 1456, 1367, 1274, 1251, 1172, 1048, 1017; [α]D
25 = +39.2 (c = 4.29, CHCl3);  

HRMS (MM) calc’d [M–C4H9]+ 433.2153, found 433.2138. 

 
Alkyne 204u 

 
  To a solution of Boc-alkyne 204a (500 mg, 1.5 mmol, 1.00 equiv) in CH2Cl2 (15 

mL) at 0 °C was added TFA (2.0 mL).  The mixture was warmed to room temperature 

and stirred for 3 hours, after which PhMe (30 mL) was added and the reaction 

concentrated.  The resultant oil was dissolved in THF (10 mL) and cooled to 0 °C under a 

positive pressure of N2.  In a separate flask, (l)-Boc-Phe-OH (466 mgs, 1.8 mmol, 1.2 

equiv) was dissolved in THF (24 mL) and cooled to 0 °C. EDC (337 mg, 1.8 mmol, 1.2 

equiv), anhydrous HOBt (277 mg, 2.0 mmol, 1.4 equiv) and Et3N (610 µL, 4.4 mmol, 3.0 

equiv) were added sequentially.  After stirring for 5 minutes, the alkyne was transferred 

via cannula.  The reaction was warmed to room temperature and stirred for 12 h.  The 

heterogeneous reaction was concentrated and purified by chromatography on silica gel 

O
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(20% ethyl acetate, 80% hexanes) to provide the product as a colorless oil (552 mg, 1.13 

mmol, 77% yield). 

1H NMR (500 MHz, CDCl3, Major Rotamer) δ 7.28 – 7.22 (m, 2H), 

7.19 (dd, J = 7.1, 7.1 Hz, 3H), 6.77 (d, J = 6.3 Hz, 1H), 5.16 (d, J = 

5.9 Hz, 1H), 4.67 (d, J = 6.5 Hz, 1H), 4.44 (d, J = 6.1 Hz, 1H), 3.70 (s, 3H), 3.11 (dd, J = 

13.9, 6.3 Hz, 1H), 2.98 (dd, J = 12.8, 6.6 Hz, 1H), 2.73 (dd, J = 17.0, 4.0 Hz, 1H), 2.57 

(dd, J = 17.1, 5.3 Hz, 1H), 1.35 (s, 9H), 0.98 – 0.87 (m, 9H), 0.57 – 0.46 (m, 6H); 13C 

NMR (126 MHz, CDCl3) δ170.8, 170.4, 155.2, 136.4, 129.2, 128.4, 126.7, 101.3, 85.5, 

79.8, 55.3, 52.4, 50.8, 38.4, 28.1, 23.5, 7.3, 4.1; FTIR (NaCl, thin film): cm-1; 3419, 

3335, 2963, 2868, 2179, 1743, 1661, 1518, 1451, 1365; [α]D
25 = +52.7 (c = 5.4, CHCl3);  

HRMS (MM) calc’d [M+H]+ 489.2779, found 489.2793. 

 
Alkyne 204y 

 
 To a solution of Boc-alkyne 204a (1.00 g, 2.9 mmol, 1.00 equiv) in CH2Cl2 (30 

mL) at 0 °C was added TFA (4 mL).  The mixture was warmed to room temperature and 

stirred for 3 hours, after which PhMe (100 mL) was added and the reaction concentrated.  

The resultant oil was dissolved in THF (10 mL) and cooled to 0 °C under a positive 

pressure of N2.  In a separate flask, (R)-2-hydroxy-3-methylbutanoic acid (346 mgs, 2.9 

mmol, 1.0 equiv) was dissolved in THF (100 mL) and cooled to 0 °C. EDC (674 mg, 3.5 

mmol, 1.2 equiv), anhydrous HOBt (554 mg, 4.1 mmol, 1.4 equiv) and hünigs base (1.5 

mL, 8.6 mmol, 3.0 equiv) were added sequentially.  After stirring for 5 minutes, the 

alkyne was transferred via cannula.  The reaction was warmed to room temperature and 

stirred for 12 h.  The heterogeneous reaction was concentrated and purified by 
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chromatography on silica gel (100% ethyl acetate) to provide the product as a colorless 

oil (995 mg, 2.9 mmol, 99% yield). 

1H NMR (500 MHz, CD3CN, Major Rotamer) δ 7.43 (d, J = 7.6 

Hz, 1H), 4.59 (dt, J = 8.2, 5.3 Hz, 1H), 3.89 (dd, J = 5.5, 3.1 Hz, 

1H), 3.71 (d, J = 5.6 Hz, 1H), 3.69 (s, 3H), 2.80 (dd, J = 17.2, 

5.5 Hz, 1H), 2.73 (dd, J = 17.2, 5.2 Hz, 1H), 2.07 (heptd, J = 6.9, 3.1 Hz, 1H), 1.01 – 

0.93 (m, 12H), 0.82 (d, J = 6.9 Hz, 3H), 0.61 – 0.52 (m, 6H); 13C NMR (126 MHz, 

CD3CN) δ 174.2, 171.7, 118.3, 103.6, 85.8, 76.4, 53.0, 51.4, 32.7, 23.9, 19.5, 15.9, 7.8, 

5.0; FTIR (NaCl, thin film): cm-1; 3385, 2952, 2863, 2176, 1744, 1653, 1507; [α]D
25 = -

+89.4 (c = 3.40, CHCl3);  HRMS (MM) calc’d [M+H]+ 342.2095, found 342.2087. 

 
4.7.4  Optimization of reaction parameters 
 

Optimization Procedure – In a glovebox, an oven-dried 1 dram vial was charged 

with 2-bromoaniline (17.2 mg, 0.1 mmol, 1.0 equiv), alkyne 204a (68.3 mg, 0.2 mmol, 

2.0 equiv), base (2.5 equiv), Pd-catalyst (0.05 equiv), and appropriate solvent (0.5 mL).   

The vial was sealed and heated to the required temperature for 2 – 36 h.  Upon cooling, 

the crude reaction mixture was filtered through a silica plug, thoroughly washed with 

ethyl acetate and concentrated in vacuo to provide a crude oil.    

The crude residue was dissolved in a standard solution of 2,3,5,6-tetrachloronitrobenzene 

in DMSO-d6, and the yield of 205 was determined by 1H NMR by integration relative to 

the internal standard. 

** In entry 9 of Table 1, Pd2(dba)3 and PtBu3 were prestired for 1 h before being added to 

a vial containing the other reagents. 
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4.7.5  Substrate scope – characterization data 
 

General Procedure I:  In a glovebox, a 2 dram vial was charged with bromoaniline (0.3 

mmol, 1.0 equiv), alkyne 204a (0.6 mmol, 2.0 equiv), Cy2NMe (0.75 mmol, 2.5 equiv), 

Pd[P(PtBu)3]2 (0.015 mmol, 0.05 mmol) and anhydrous 1,4-dioxane (1.5 mL, 0.2 M).  

The vial was sealed and heated to 60 °C until there was complete consumption of starting 

material (12 – 72 h).  In most cases the solution became cloudy as the reaction 

progressed.  Upon cooling, the crude mixture was filtered through a plug of silica, which 

was subsequently flushed with ethyl acetate.  The organics were concentrated and the 

crude residue was purified by chromatography on silica gel to provide tryptophan 

derivatives. 

 

General Procedure II:  In a glovebox, a 2 dram vial was charged with bromoaniline (0.3 

mmol, 1.0 equiv), alkyne 204a (0.6 mmol, 2.0 equiv), Cy2NMe (0.75 mmol, 2.5 equiv), 

Pd[P(PtBu)3]2 (0.015 mmol, 0.05 mmol) and anhydrous 1,4-dioxane (1.5 mL, 0.2 M).  

The vial was sealed and heated to 80 °C until there was complete consumption of starting 

material (12 – 72 h).  In most cases the solution became cloudy as the reaction 

progressed.  Upon cooling, the crude mixture was filtered through a plug of silica, which 

was subsequently flushed with ethyl acetate.  The organics were concentrated and the 

crude residue was purified by chromatography on silica gel to provide tryptophan 

derivatives. 

 

General Procedure III:  In a glovebox, a 2 dram vial was charged with bromoaniline 

(0.3 mmol, 1.0 equiv), alkyne 204a (0.6 mmol, 2.0 equiv), Cy2NMe (0.75 mmol, 2.5 
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equiv), Pd[P(PtBu)3]2 (0.015 mmol, 0.05 mmol) and anhydrous 1,4-dioxane (1.5 mL, 0.2 

M).  The vial was sealed and heated to 80 °C until there was complete consumption of 

starting material (12 – 72 h).  In most cases the solution became cloudy as the reaction 

progressed.  Upon cooling, the crude mixture was filtered through a plug of silica, which 

was subsequently flushed with ethyl acetate.  The organics were concentrated and the 

crude residue was dissolved in 1M TBAF in THF. After 20 minutes, aqueous NH4Cl was 

added and the reaction mixture was partitioned in a separatory funnel.  The aqueous layer 

was back extracted with ethyl acetate (3 X 15 mL).   The organics were then recombined, 

washed with brine, dried over Na2SO4, filtered and concentrated.  The crude residue was 

purified using silica gel chromatography. 

 

Tryptophan 205a 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (88% hexanes, 12% ethyl acetate) 

to afford 3a as a colorless oil (113.6 mg, 0.26 mmol, 88% yield).  1H NMR (500 MHz, 

CDCl3, Major Rotamer) δ 8.04 (s, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 

7.21 – 7.15 (m, 1H), 7.09 (dd, J = 7.4, 7.4 Hz, 1H), 4.93 (d, J = 7.7 Hz, 1H), 4.57 (dd, J = 

14.4, 7.1 Hz, 1H), 3.63 (s, 3H), 3.36 – 3.18 (m, 2H), 1.36 (s, 9H), 1.05 – 0.98 (m, 9H), 

0.97 – 0.89 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 173.7, 155.1, 138.5, 132.8, 128.6, 

122.4, 119.5, 119.3, 118.9, 110.8, 79.6, 54.2, 52.2, 29.3, 28.2, 7.4, 3.7; FTIR (NaCl, thin 

film): cm-1; 3383, 2954, 2911, 2875, 1739, 1700, 1501, 1456, 1367, 1284, 1164; [α]D
25 = 

+1.4 (c = 1.4, CHCl3);  HRMS (MM) calc’d [M+H]+ 433.2517, found 433.2519. 
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Tryptophan 205b 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (88% hexanes, 12% ethyl acetate) 

to afford 205b as a colorless oil (102.9 mg, 0.230 mmol, 77% yield).   1H NMR (500 

MHz, CD3CN, Major Rotamer) δ 8.68 (s, 1H), 7.37 (dd, J = 7.0, 1.3 Hz, 1H), 6.99 – 6.91 

(m, 2H), 5.41 (d, J = 7.8 Hz, 1H), 4.37 (dd, J = 14.9, 7.6 Hz, 1H), 3.57 (s, 3H), 3.29 (dd, 

J = 14.5, 6.7 Hz, 1H), 3.13 (dd, J = 14.5, 7.8 Hz, 1H), 2.51 (s, 3H), 1.32 (s, 9H), 1.01 – 

0.95 (m, 15H); 13C NMR (126 MHz, CD3CN) δ 173.9, 156.1, 139.4, 133.2, 129.3, 123.6, 

121.7, 121.5, 120.2, 117.2, 79.9, 56.1, 52.6, 29.6, 28.4, 17.4, 7.8, 4.3; FTIR (NaCl, thin 

film): cm-1; 3396, 2954, 2912, 2874, 1704, 1498, 1366, 1279, 1217, 1163, 1018; [α]D
25 = 

–5.8 (c = 0.40, CHCl3);  HRMS (MM) calc’d [M–C4H9]+ 391.2048, found 391.2038. 

 

Tryptophan 205c 

Prepared following General Procedure II (12 h).  The crude residue was 

purified by silica gel chromatography (80% hexanes, 20% acetone) to 

afford 205c as a white, amorphous solid (114.3 mg, 0.234 mmol, 78% 

yield).   1H NMR (500 MHz, CD3CN, Major Rotamer) δ 9.22 (s, 1H), 8.33 (s, 1H), 7.31 

(d, J = 8.1 Hz, 1H), 7.08 (t, J = 7.7 Hz, 1H), 6.94 (d, J = 7.4 Hz, 1H), 5.54 (s, 1H), 4.34 

(dd, J = 15.7, 7.6 Hz, 1H), 3.60 (s, 3H), 3.37 (dd, J = 14.7, 6.1 Hz, 1H), 3.14 – 2.95 (m, 

1H), 2.13 (s, 3H), 1.34 – 1.18 (m, 9H), 1.03 – 0.89 (m, 15H); 13C NMR (126 MHz, 

CD3CN) δ 174.3, 171.1, 156.2, 141.6, 134.4, 130.5, 124.7, 122.8, 119.8, 118.5, 110.7, 

79.9, 57.0, 52.6, 29.3, 28.4, 23.8, 7.7, 4.3; FTIR (NaCl, thin film): cm-1; 3313, 2953, 
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1700, 1672, 1506, 1367, 1168; [α]D
25 = –18.3 (c = 1.10, CHCl3);  HRMS (MM) calc’d 

[M+H]+ 490.2732, found 490.2719. 

 

Tryptophan 205d 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (85% hexanes, 15% ethyl 

acetate) to afford 205d as a colorless oil (102.2 mg, 0.220 mmol, 74% yield).  1H NMR 

(500 MHz, CD3CN, Major Rotamer) δ 8.95 (s, 1H), 7.28 (d, J = 8.8 Hz, 1H), 7.03 (d, J = 

1.5 Hz, 1H), 6.77 (dd, J = 8.8, 2.4 Hz, 1H), 5.53 (d, J = 8.2 Hz, 1H), 4.36 (dd, J = 14.6, 

8.2 Hz, 1H), 3.82 (s, 3H), 3.60 (s, 3H), 3.26 (dd, J = 14.5, 6.1 Hz, 1H), 3.08 (dd, J = 14.5, 

8.2 Hz, 1H), 1.28 (s, 9H), 1.01 – 0.95 (m, 9H), 0.95 – 0.91 (m, 6H); 13C NMR (126 MHz, 

CD3CN) δ 174.0, 156.1, 154.7, 135.2, 134.1, 130.0, 120.5, 113.3, 112.6, 101.1, 79.8, 

56.3, 56.2, 52.6, 29.8, 28.4, 7.7, 4.2; FTIR (NaCl, thin film): cm-1; 3379, 2953, 2874, 

1700, 1620, 1506, 1437, 1391, 1366, 1218, 1164; [α]D
25 = +6.3 (c = 3.75, CHCl3);  

HRMS (MM) calc’d [M–C4H9]+ 407.1997, found 407.1994. 

Tryptophan 205e 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (88% hexanes, 12% ethyl acetate) 

to afford 205e as a colorless oil (97.2 mg, 0.216 mmol, 72% yield).	
    1H NMR (500 MHz, 

CDCl3, Major Rotamer) δ 8.01 (s, 1H), 7.26 – 7.22 (m, 1H), 7.21 – 7.14 (m, 1H), 6.91 

(ddd, J = 8.9, 8.9, 2.2 Hz, 1H), 4.93 (d, J = 8.2 Hz, 1H), 4.53 (dd, J = 14.7, 7.0 Hz, 1H), 

3.65 (s, 3H), 3.30 – 3.14 (m, 2H), 1.35 (s, 9H), 1.05 – 0.97 (m, 9H), 0.96 – 0.88 (m, 6H); 

13C NMR (126 MHz, CDCl3) δ 173.17, 157.69 (d, JC-F = 234.9 Hz), 155.00, 135.12 (d, 
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JC-F = 13.4 Hz), 129.00 (d, JC-F = 9.2 Hz), 119.56 (d, JC-F = 4.7 Hz), 111.30 (d, JC-F = 9.8 

Hz), 110.83 (d, JC-F = 26.5 Hz), 103.61 (d, JC-F = 23.6 Hz), 79.75, 54.15, 52.26, 29.48, 

28.17, 7.38, 3.62; FTIR (NaCl, thin film): cm-1; 3372, 2956, 2875, 1734, 1718, 1700, 

1502, 1437, 1367, 1166, 1073, 1010; [α]D
25 = +3.6 (c = 2.0, CHCl3);  HRMS (MM) 

calc’d [M+H]+ 395.1797, found 395.1804. 

 

Trytophan 205f 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (80% hexanes, 20% acetone) to 

afford 205f as a colorless oil (114.3 mg, 0.245 mmol, 82% yield).   1H NMR (500 MHz, 

CD3CN, Major Rotamer) δ 8.87 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.17 (dd, J = 7.5, 0.8 

Hz, 1H), 7.08 – 6.97 (m, 1H), 5.50 (d, J = 8.1 Hz, 1H), 4.37 (dd, J = 15.1, 7.9 Hz, 1H), 

3.56 (s, 3H), 3.29 (dd, J = 14.5, 6.5 Hz, 1H), 3.12 (dd, J = 14.5, 8.0 Hz, 1H), 1.29 (s, 9H), 

1.02 – 0.96 (m, 15H); 13C NMR (126 MHz, CD3CN) δ 173.7, 156.1, 136.6, 135.3, 131.5, 

122.6, 122.4, 120.8, 118.6, 116.9, 79.9, 56.2, 52.6, 29.7, 28.4, 7.7, 4.2; FTIR (NaCl, thin 

film): cm-1; 3380, 2954, 2875, 1734, 1718, 1507, 1499, 1366, 1164; [α]D
25 = +6.9 (c = 

0.87, CHCl3);  HRMS (MM) calc’d [M+H]+ 411.1501, found 411.1504. 

 

Tryptophan 205g 

Prepared following General Procedure I (36 h).  The crude residue 

was purified by silica gel chromatography (88% hexanes, 12% ethyl 

acetate) to afford 205g as a colorless oil (103.9 mg, 0.222 mmol, 74% yield).  1H NMR 

(500 MHz, CDCl3, Major Rotamer) δ 7.98 (s, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.33 (s, 1H), 

N
H

NHBoc

CO2Me

Cl
TES

N
H

HN Boc

CO2Me

TES
Cl



Chapter 4 – A Mild and General Larock Indolization Protocol for the Synthesis of Unnatural 
Tryptophan Derivatives: Total Synthesis of (–)-Aspergilazine A 

438 

7.04 (d, J = 8.5 Hz, 1H), 4.92 (d, J = 8.1 Hz, 1H), 4.55 (dd, J = 14.7, 7.1 Hz, 1H), 3.61 (s, 

3H), 3.22 (d, J = 6.6 Hz, 2H), 1.35 (s, 9H), 1.04 – 0.97 (m, 9H), 0.94 – 0.88 (m, 6H); 13C 

NMR (126 MHz, CDCl3) δ 173.2, 155.0, 138.8, 133.9, 128.4, 127.3, 120.1, 119.7, 110.7, 

79.8, 54.2, 52.3, 29.5, 28.2, 7.4, 3.6; FTIR (NaCl, thin film): cm-1; 3369, 2954, 2875, 

1738, 1699, 1505, 1439, 1392, 1367, 1338, 1163, 1062; [α]D
25 = +7.1 (c = 1.63, CHCl3);  

HRMS (MM) calc’d [M+H]+ 467.2127, found 467.2129. 

 

Tryptophan 205h 

Prepared following General Procedure III (36 h).  The crude residue was 

purified by silica gel chromatography (80% hexanes, 20% acetone) to 

afford 205h as a colorless oil (61.2 mg, 0.245 mmol, 52% yield).   1H NMR (500 MHz, 

CD3CN, Major Rotamer) δ 9.33 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 7.2 Hz, 

1H), 7.17 (d, J = 1.7 Hz, 1H), 7.00 (dd, J = 7.8, 7.8 Hz, 1H), 5.51 (d, J = 7.4 Hz, 1H), 

4.43 (dd, J = 13.5, 7.6 Hz, 1H), 3.64 (s, 3H), 3.23 (dd, J = 14.7, 5.4 Hz, 1H), 3.10 (dd, J = 

14.7, 7.7 Hz, 1H), 1.35 (s, 89H); 13C NMR (126 MHz, CD3CN) δ 173.5, 156.2, 135.6, 

130.0, 125.5, 125.0, 121.3, 119.0, 112.5, 105.2, 79.9, 55.3, 52.7, 28.4, 28.3; FTIR (NaCl, 

thin film): cm-1; 3365, 2968, 1738, 1696, 1501, 1434, 1365, 1335; [α]D
25 = +44.0 (c = 

0.385, CHCl3);  HRMS (MM) calc’d [M–C5H10O2]+ 297.0233, found 297.0229. 

 

Tryptophan 205i 

Prepared following General Procedure II (12 h, 80 °C).  The crude 

residue was purified by silica gel chromatography (88% hexanes, 12% 

ethyl acetate) to afford 205i as a white, amorphous solid (113.7 mg, 0.243 mmol, 82% 
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yield).   1H NMR (500 MHz, CD3CN, Major Rotamer) δ 9.29 (s, 1H), 7.38 (dd, J = 7.8, 

0.9 Hz, 1H), 7.06 (dd, J = 7.7, 7.7 Hz, 1H), 7.02 (dd, J = 7.5, 1.2 Hz, 1H), 5.41 (d, J = 7.7 

Hz, 1H), 4.53 (dd, J = 15.2, 8.8 Hz, 1H), 3.61 (s, 3H), 3.55 (dd, J = 14.3, 5.7 Hz, 1H), 

3.28 – 3.17 (m, 1H), 1.23 (s, 9H), 1.02 – 0.89 (m, 15H); 13C NMR (126 MHz, CD3CN) δ 

173.8, 156.1, 141.7, 136.0, 125.8, 125.7, 123.5, 121.1, 120.5, 111.4, 79.8, 57.2, 52.5, 

29.8, 28.3, 7.7, 4.2; FTIR (NaCl, thin film): cm-1; 3369, 2954, 2934, 2875, 1721, 1700, 

1499, 1456, 1436, 1366, 1167; [α]D
25 = –9.0 (c = 4.1, CHCl3);  HRMS (MM) calc’d [M–

C4H9]+ 411.1501, found 411.1505. 

 

Tryptophan 205j 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (88% hexanes, 12% ethyl acetate) 

to afford 205j as a colorless oil (109.1 mg, 0.188 mmol, 72% yield).  1H NMR (500 

MHz, CD3CN, Major Rotamer) δ 9.36 (s, 1H), 7.25 (dd, J = 10.0, 7.1 Hz, 1H), 5.58 (d, J 

= 8.4 Hz, 1H), 4.32 (dd, J = 14.7, 8.5 Hz, 1H), 3.59 (s, 3H), 3.24 (dd, J = 14.7, 6.0 Hz, 

1H), 3.04 (dd, J = 14.6, 8.7 Hz, 1H), 1.27 (s, 9H), 1.03 – 0.90 (m, 15H); 13C NMR (126 

MHz, CD3CN) δ 173.5, 156.0, 147.0 (dd, JC-F = 236.4, 11.9 Hz), 139.5 – 137.1 (m), 

137.4 (d, JC-F = 3.6 Hz), 137.2 (ddd, JC-F = 239.4, 18.9, 12.5 Hz), 125.8 (dd, JC-F = 9.1, 

5.4 Hz), 124.3 (dd, JC-F = 10.4, 2.1 Hz), 122.5 – 122.1 (m), 101.08 (d, JC-F = 19.1 Hz), 

79.87, 56.24, 52.70, 29.44, 28.32, 7.62, 4.04; FTIR (NaCl, thin film): cm-1; 3351, 2956, 

2876, 1700, 1514, 1467, 1436, 1367, 1350, 1165; [α]D
25 = +4.2 (c = 0.65, CHCl3);  

LRMS (ESI) calc’d [M–C4H9]+ 431.5, found 431.2. 
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Tryptophan 205k 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (85% hexanes, 15% ethyl 

acetate) to afford 205k as a yellow oil (105.0 mg, 0.219 mmol, 73% yield).  1H NMR 

(500 MHz, CD3CN, Major Rotamer) δ 9.66 (s, 1H), 8.30 (d, J = 2.0 Hz, 1H), 7.91 (dd, J 

= 8.9, 2.1 Hz, 1H), 7.66 (d, J = 8.9 Hz, 1H), 5.59 (d, J = 8.4 Hz, 1H), 4.37 (dd, J = 15.0, 

8.3 Hz, 1H), 3.57 (s, 3H), 3.32 (dd, J = 14.6, 6.3 Hz, 1H), 3.15 (dd, J = 14.6, 8.4 Hz, 1H), 

1.26 (s, 9H), 1.05 – 0.92 (m, 15H); 13C NMR (126 MHz, CD3CN) δ 173.5, 156.1, 144.0, 

142.1, 138.1, 134.1, 121.9, 119.8, 114.9, 108.6, 79.9, 56.3, 52.7, 29.6, 28.3, 7.6, 4.0; 

FTIR (NaCl, thin film): cm-1; 3380, 2968, 2873, 1736, 1716, 1696, 1508, 1330, 1162, 

1065, 1004; [α]D
25 = +7.9 (c = 0.75, CHCl3);  LRMS (ESI) calc’d [M+H]+ 478.3, found 

478.3. 

 

Tryptophan 205l 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (80% hexanes, 20% ethyl acetate) 

to afford 205l as a white, amorphous solid (109.0 mg, 0.238 mmol, 79% yield).  1H NMR 

(500 MHz, CD3CN, Major Rotamer) δ 9.48 (s, 1H), 8.03 (s, 1H), 7.51 (d, J = 8.5 Hz, 

1H), 7.38 (dd, J = 8.5, 1.5 Hz, 1H), 5.66 (d, J = 8.8 Hz, 1H), 4.35 (ddd, J = 9.0, 9.0, 5.5 

Hz, 1H), 3.62 (s, 3H), 3.31 (dd, J = 14.6, 5.4 Hz, 1H), 3.10 (dd, J = 14.6, 9.2 Hz, 1H), 

1.23 (s, 9H), 1.00 – 0.93 (m, 15H); 13C NMR (126 MHz, CD3CN) δ 173.5, 155.9, 141.4, 

136.9, 129.6, 126.0, 125.3, 122.3, 121.8, 113.0, 102.4, 79.8, 56.5, 52.7, 29.6, 28.3, 7.6, 

4.0; FTIR (NaCl, thin film): cm-1; 3350, 2953, 2878, 2218, 1728, 1696, 1508, 1370, 
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1167; [α]D
25 = –2.3 (c = 2.2, CHCl3);  HRMS (MM) calc’d [M+H]+ 458.2470, found 

458.2454. 

 

Tryptophan 205 

Prepared following General Procedure I (36 h).  The crude residue 

was purified by silica gel chromatography (85% hexanes, 15% 

ethyl acetate – 80% hexanes, 20% ethyl acetate) to afford 205m as 

a white, amorphous solid (127.0 mg, 0.227 mmol, 76% yield).  1H NMR (500 MHz, 

CDCl3, Major Rotamer) δ 8.10 – 7.98 (m, 2H), 7.61 (d, J = 8.2 Hz, 1H), 7.33 (d, J = 8.2 

Hz, 1H), 4.90 (d, J = 8.1 Hz, 1H), 4.56 (dd, J = 14.4, 6.7 Hz, 1H), 3.75 (s, 3H), 3.39 – 

3.24 (m, 2H), 1.36 (d, J = 2.8 Hz, 12H), 1.32 (s, 9H), 1.03 – 0.97 (m, 9H), 0.96 – 0.90 

(m, 6H); 13C NMR (126 MHz, CDCl3) δ173.1, 155.2, 140.5, 133.1, 128.6, 128.4, 126.7, 

120.1, 110.2, 83.4, 79.5, 54.0, 52.3, 28.8, 28.2, 24.9, 7.4, 3.7 (carbon adjacent to Boron 

was not observed); FTIR (NaCl, thin film): cm-1; 3379, 2976, 2874, 1741, 1700, 1499, 

1351, 1146; [α]D
25 = +15.0 (c = 1.0, CHCl3);  HRMS (MM) calc’d [M+H]+ 558.3406, 

found 558.3388. 

 

Tryptophan 205n 

Prepared following General Procedure I (12 h).  The crude residue was 

purified by silica gel chromatography (98% dichloromethane, 2% 

methanol) to afford 205n as a light yellow oil (111.2 mg, 0.256 mmol, 85% yield).   1H 

NMR (500 MHz, CDCl3, Major Rotamer) δ 9.78 (d, J = 14.4 Hz, 1H), 8.28 (d, J = 3.8 

Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.03 (dd, J = 7.7, 4.8 Hz, 1H), 5.14 (d, J = 8.4 Hz, 1H), 
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4.59 (dd, J = 15.0, 7.1 Hz, 1H), 3.59 (s, 3H), 3.25 (d, J = 6.8 Hz, 2H), 1.33 (s, 9H), 1.02 – 

0.88 (m, 15H); 13C NMR (126 MHz, CDCl3) δ173.3, 155.0, 150.8, 143.3, 134.0, 127.3, 

120.9, 118.1, 115.2, 79.7, 54.2, 52.2, 29.8, 28.1, 7.3, 3.6; FTIR (NaCl, thin film): cm-1; 

3380, 3226, 2953, 1743, 1691, 1582, 1496, 1439, 1367, 1283, 1172; [α]D
25 = +8.7  (c = 

2.5, CHCl3);  HRMS (MM) calc’d [M+H]+ 434.2470, found 434.2490. 

 

Tryptopahn 205o 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (98% dichloromethane, 2% 

methanol) to afford 205o as a light yellow oil (119.5 mg, 0.249 mmol, 83% yield).   1H 

NMR (500 MHz, CD3CN, Major Rotamer) δ 9.79 (s, 1H), 8.78 (dd, J = 4.3, 1.7 Hz, 1H), 

8.76 (ddd, J = 8.3, 1.5, 0.7 Hz, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.47 

(dd, J = 8.3, 4.3 Hz, 1H), 5.60 (d, J = 8.3 Hz, 1H), 4.40 (dd, J = 15.0, 7.8 Hz, 1H), 3.57 

(s, 3H), 3.37 (dd, J = 14.5, 6.6 Hz, 1H), 3.22 (dd, J = 14.5, 8.0 Hz, 1H), 1.26 (s, 9H), 1.01 

(s, 15H); 13C NMR (126 MHz, CD3CN) δ 173.8, 156.1, 148.6, 147.4, 133.9, 133.3, 130.0, 

125.6, 123.3, 123.1, 122.0, 121.2, 117.8, 80.0, 56.6, 52.7, 29.5, 28.4, 7.8, 4.4; FTIR 

(NaCl, thin film): cm-1; 3350, 2953, 2873, 1734, 1717, 1700, 1696, 1570, 1496, 1377, 

1164; [α]D
25 = +8.7 (c = 1.2, CHCl3);  HRMS (MM) calc’d [M+H]+484.2626, found 

484.2621. 

 

Tryptophan 205p 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (88% hexanes, 12% ethyl 
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acetate) to afford 205p as a colorless foam (103.2 mg, 0.213 mmol, 71% yield). 1H NMR 

(500 MHz, CDCl3, Major Rotamer) δ 8.67 (s, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 

8.0 Hz, 1H), 7.64 (d, J = 8.7 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.49 (d, J = 8.7 Hz, 1H), 7.44 

(ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 4.97 (d, J = 7.9 Hz, 1H), 4.61 (app q, J = 7.1 Hz, 1H), 

3.62 (s, 3H), 3.34 (d, J = 6.8 Hz, 2H), 1.35 (s, 9H), 1.08 – 1.02 (m, 9H), 1.02 – 0.97 (m, 

6H); 13C NMR (126 MHz, CDCl3) δ173.3, 155.1, 133.6, 130.7, 130.6, 128.8, 125.4, 

124.6, 124.2, 121.4, 121.3, 120.4, 119.4, 118.9, 79.7, 54.4, 52.3, 28.2, 24.7, 7.5, 3.8; 

FTIR (NaCl, thin film): cm-1; 3409, 3350, 2953, 2868, 1743, 1694, 1501, 1392, 1362, 

1165; [α]D
25 = +54.8 (c = 0.97, CHCl3);  HRMS (MM) calc’d [M–C4H9]+ 427.2048, 

found 427.2066. 

 

Tryptophan 205q 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (88% hexanes, 12% ethyl acetate) 

to afford 205q as a colorless oil (70.1 mg, 0.156 mmol, 52% yield).   1H NMR (500 MHz, 

CD3CN, Major Rotamer) δ 7.51 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.20 (ddd, J 

= 8.2, 6.9, 1.1 Hz, 1H), 7.04 (ddd, J = 7.9, 7.0, 0.9 Hz, 1H), 5.41 (d, J = 7.3 Hz, 1H), 4.33 

(dd, J = 15.1, 7.5 Hz, 1H), 3.83 (s, 3H), 3.52 (s, 3H), 3.33 (dd, J = 14.6, 7.1 Hz, 1H), 3.18 

(dd, J = 14.5, 7.4 Hz, 1H), 1.37 – 1.23 (m, 9H), 1.03 – 0.95 (m, 15H); 13C NMR (126 

MHz, CD3CN) δ 173.9, 156.1, 141.0, 135.5, 129.6, 123.2, 121.8, 119.6, 119.5, 110.2, 

80.0, 56.4, 52.5, 33.8, 28.9, 28.4, 7.9, 5.2; FTIR (NaCl, thin film): cm-1; 3350, 2956, 

2876, 1700, 1516, 1465, 1367, 1165; [α]D
25 = +4.9 (c = 0.34, CHCl3);  HRMS (MM) 

calc’d [M–C4H9]+ 391.20480, found 391.2034. 
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Tryptophan 205r 

Prepared following General Procedure III (12 h).  The crude residue was 

purified by silica gel chromatography (20% acetone, 80% hexanes) to 

afford 205r as a colorless oil (80.2 mg, 0.203 mmol, 68% yield).   1H 

NMR (500 MHz, CD3CN, Major Rotamer) δ7.63 (d, J = 7.8 Hz, 1H), 7.58 – 7.50 (m, 

5H), 7.41 – 7.35 (m, 1H), 7.31 (s, 1H), 7.25 – 7.19 (m, 1H), 7.19 – 7.14 (m, 1H), 5.58 (d, 

J = 7.8 Hz, 1H), 4.51 (dd, J = 13.5, 7.7 Hz, 1H), 3.67 (s, 3H), 3.31 (dd, J = 14.7, 5.4 Hz, 

1H), 3.18 (dd, J = 14.7, 7.6 Hz, 1H), 1.35 (s, 9H); 13C NMR (126 MHz, CD3CN) δ 173.6, 

156.3, 140.4, 136.7, 130.7, 130.0, 127.9, 127.3, 124.8, 123.5, 121.1, 120.0, 118.3, 113.0, 

111.4, 79.9, 55.2, 52.7, 28.5; FTIR (NaCl, thin film): cm-1; 3380, 2966, 2930, 1741, 

1714, 1501, 1455, 1367; [α]D
25 = +32.1 (c = 1.86, CHCl3);  HRMS (MM) calc’d [M–

C4H9]+ 339.1339, found 339.1326. 

 

Tryptophan 205s 

Prepared following General Procedure I (36 h).  The crude residue was 

purified by silica gel chromatography (86% hexanes, 14% ethyl acetate) 

to afford 205s as a colorless oil (107.0 mg, 0.226 mmol, 75% yield).   1H NMR (500 

MHz, CD3CN, Major Rotamer) δ 7.75 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.35 

(ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.27 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 5.57 (d, J = 8.3 Hz, 

1H), 4.40 (dd, J = 15.2, 8.0 Hz, 1H), 3.54 (s, 3H), 3.37 (dd, J = 14.4, 6.7 Hz, 1H), 3.20 

(dd, J = 14.3, 8.2 Hz, 1H), 2.78 (s, 3H), 1.30 (s, 9H), 1.00 – 0.89 (m, 15H); 13C NMR 

(126 MHz, CD3CN) δ 173.4, 171.0, 156.1, 138.0, 137.1, 133.7, 131.2, 125.9, 123.4, 
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120.4, 115.2, 80.0, 55.9, 52.7, 28.8, 28.4, 27.0, 8.6, 6.9; FTIR (NaCl, thin film): cm-1; 

3373, 2953, 2874, 1746, 1700, 1499, 1435, 1369, 1321, 1223, 1167, 1109; [α]D
25 = +5.0 

(c = 0.69, CHCl3);  HRMS (MM) calc’d [M–C4H9]+ 419.1997, found 419.1986. 

 

Tryptophan 205t 

Prepared following General Procedure III (24 h).  The crude residue was 

purified by silica gel chromatography (25% acetone, 75% hexanes) to 

afford 205t as a colorless oil (68.9 mg, 0.216 mmol, 72% yield).   1H NMR (500 MHz, 

CD3CN, Major Rotamer) δ 7.60 (d, J = 7.2 Hz, 1H), 7.58 (s, 1H), 7.49 (d, J = 8.1 Hz, 

1H), 7.36 – 7.30 (m, 1H), 7.27 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 5.63 (d, J = 6.5 Hz, 1H), 

4.48 (dd, J = 13.5, 7.9 Hz, 1H), 3.67 (s, 3H), 3.20 (dd, J = 14.8, 5.3 Hz, 1H), 3.07 (dd, J = 

14.8, 8.0 Hz, 1H), 1.35 (s, 9H); 13C NMR (126 MHz, CD3CN) δ 173.2, 156.0, 144.1, 

128.8, 125.4, 123.6, 120.7, 118.3, 116.8, 112.2, 80.0, 54.5, 52.8, 28.4, 26.6; FTIR (NaCl, 

thin film): cm-1; 3375, 2977, 2925, 1744, 1716, 1690, 1505, 1455, 1367, 1165; [α]D
25 = 

+16.8 (c = 0.64, CHCl3);  LRMS (MM) calc’d [M–C4H9]+ 263.2, found 263.2. 

 

Tryptophan 205u 

Prepared following General Procedure I (36 h).  The crude residue 

was purified by silica gel chromatography (80% hexanes, 20% 

acetone) to afford 205u as a colorless oil (109.1 mg, 0.188 mmol, 63% yield).   1H NMR 

(500 MHz, CD3CN, Major Rotamer) δ 9.10 (s, 1H), 7.59 (dd, J = 7.9, 0.8 Hz, 1H), 7.40 

(d, J = 8.1 Hz, 1H), 7.29 – 7.19 (m, 3H), 7.16 – 7.05 (m, 3H), 7.05 – 7.01 (m, 1H), 6.69 

(d, J = 6.1 Hz, 1H), 5.24 (d, J = 6.4 Hz, 1H), 4.62 (dd, J = 13.1, 6.8 Hz, 1H), 4.23 (ddd, J 
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= 8.4, 8.4, 5.7 Hz, 1H), 3.60 (s, 3H), 3.24 (ddd, J = 14.4, 6.5, 4.7 Hz, 1H), 3.08 – 2.91 (m, 

3H), 1.25 (s, 9H), 1.03 – 0.88 (m, 15H); 13C NMR (126 MHz, CD3CN) δ173.2, 172.1, 

156.2, 139.8, 138.3, 133.3, 130.2, 129.7, 129.1, 127.4, 122.8, 120.4, 119.8, 119.4, 112.1, 

79.9, 56.2, 55.4, 52.6, 38.4, 29.7, 28.4, 7.7, 4.2; FTIR (NaCl, thin film): cm-1; 3380, 

2948, 2878, 1736, 1666, 1506, 1367, 1244, 1165; [α]D
25 = –4.2 (c = 1.6, CHCl3);  HRMS 

(MM) calc’d [M+H]+ 580.3201, found 580.3206. 

 

Tryptophan 205v 

Prepared following General Procedure I (72 h).  The crude residue was 

purified by silica gel chromatography (55% hexanes, 40% ethyl acetate, 

5% methanol) to afford 205v as a colorless oil (95.2 mg, 0.213 mmol, 71% yield).   1H 

NMR (500 MHz, CDCl3) δ 8.15 (s, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.36 – 7.32 (m, 2H), 

7.29 (ddd, J = 6.3, 5.1, 2.1 Hz, 2H), 7.22 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.18 (dd, J = 8.0, 

1.2 Hz, 2H), 7.10 (ddd, J = 7.9, 7.0, 0.9 Hz, 1H), 6.94 (d, J = 2.2 Hz, 1H), 5.64 (s, 1H), 

4.24 (ddd, J = 5.2, 5.2, 2.5 Hz, 1H), 3.59 (dd, J = 14.5, 3.8 Hz, 1H), 3.45 (dd, J = 11.5, 

3.8 Hz, 1H), 3.14 (d, J = 5.1 Hz, 2H), 2.87 (dd, J = 14.5, 11.5 Hz, 1H), 1.02 – 0.94 (m, 

9H), 0.90 – 0.82 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 168.8, 167.0, 138.7, 134.8, 

133.9, 129.9, 128.9, 127.6, 127.6, 122.8, 119.7, 118.7, 118.0, 111.1, 56.6, 53.3, 40.2, 

30.0, 7.4, 7.4, 3.7; FTIR (NaCl, thin film): cm-1; 3356, 3226, 2958, 2864, 1676, 1451, 

1437, 1316; [α]D
25 = +5.6 (c = 0.47, CHCl3);  HRMS (MM) calc’d [M+H]+ 448.2415, 

found 448.2426. 
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Prepared following General Procedure I (36 h).  The crude residue 

was purified by silica gel chromatography (80% hexanes, 20% 

acetone) to afford 205w as a colorless oil (108.0 mg, 0.186 mmol, 

62% yield).1H NMR (500 MHz, CD3CN, Major Rotamer) δ 9.10 (s, 1H), 7.59 (dd, J = 

7.9, 0.8 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.29 – 7.19 (m, 3H), 7.16 – 7.05 (m, 3H), 7.05 

– 7.01 (m, 1H), 6.69 (d, J = 6.1 Hz, 1H), 5.24 (d, J = 6.4 Hz, 1H), 4.62 (dd, J = 13.1, 6.8 

Hz, 1H), 4.23 (ddd, J = 8.4, 8.4, 5.7 Hz, 1H), 3.60 (s, 3H), 3.24 (ddd, J = 14.4, 6.5, 4.7 

Hz, 1H), 3.08 – 2.91 (m, 3H), 1.25 (s, 9H), 1.03 – 0.88 (m, 15H); 13C NMR (126 MHz, 

CD3CN) δ 172.6, 172.3, 156.0, 140.1, 137.6, 133.4, 130.3, 129.6, 129.3, 127.7, 122.9, 

121.0, 119.8, 119.7, 112.0, 80.0, 57.1, 54.3, 52.7, 38.2, 29.6, 28.3, 7.8, 4.3, 4.2; FTIR 

(NaCl, thin film): cm-1; 3370, 2953, 2878, 1745, 1666, 1508, 1449, 1370, 1241, 1170; 

[α]D
25 = +10.0 (c = 1.06, CHCl3);  HRMS (MM) calc’d [M+H]+ 580.3201, found 

580.3206. 

 

Tryptophan 205x 

Prepared following General Procedure I (72 h).  The crude residue was 

purified by silica gel chromatography (55% hexanes, 40% ethyl acetate, 

5% methanol) to afford 3x as an amorphous, white solid (98.6 mg, 0.249 mmol, 83% 

yield).   1H NMR (500 MHz, CDCl3) δ 8.12 (s, 1H), 7.56 (dd, J = 7.9, 0.7 Hz, 1H), 7.40 

(ddd, J = 8.2, 0.8, 0.8 Hz, 1H), 7.22 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.11 (ddd, J = 8.0, 

7.0, 0.9 Hz, 1H), 5.59 (s, 1H), 4.42 (dd, J = 11.8, 2.4 Hz, 1H), 4.07 (dd, J = 11.6, 4.5 Hz, 

1H), 3.84 (dd, J = 15.0, 3.9 Hz, 1H), 3.75 – 3.66 (m, 1H), 3.65 – 3.54 (m, 1H), 3.00 (dd, J 

= 15.0, 11.8 Hz, 1H), 2.39 – 2.29 (m, 1H), 2.13 – 2.00 (m, 2H), 1.99 – 1.87 (m, 1H), 1.04 
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– 0.98 (m, 9H), 0.94 – 0.85 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 169.0, 165.7, 138.9, 

133.6, 127.9, 123.0, 119.9, 118.8, 118.3, 111.3, 59.2, 54.8, 45.4, 28.4, 27.5, 22.6, 7.4, 

3.8; FTIR (NaCl, thin film): cm-1; 3365, 2953, 2873, 1671, 1456, 1412, 1303, 1239; [α]D-

25 = –34.4 (c = 0.82, CHCl3);  HRMS (MM) calc’d [M+H]+ 398.2258, found 398.2272. 

 

Tryptophan 205y 

Prepared following General Procedure II (0.87 mmol scale, 12 h).  

The crude residue was purified by silica gel chromatography (100% 

ethyl acetate) to afford 205y as a light yellow oil (370.2 mg, 0.756 

mmol, 86% yield).   1H NMR (500 MHz, CD3CN, Major Rotamer) δ 9.28 (s, 1H), 8.44 

(s, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.17 (d, J = 5.6 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.96 

(d, J = 7.4 Hz, 1H), 4.53 (dt, J = 10.3, 6.3 Hz, 1H), 3.65 (s, 3H), 3.64 – 3.62 (m, 1H), 

3.59 (d, J = 5.9 Hz, 1H), 3.45 (dd, J = 14.7, 6.2 Hz, 1H), 3.17 (dd, J = 14.7, 10.3 Hz, 1H), 

2.19 (s, 3H), 1.91 – 1.79 (m, 1H), 1.07 – 0.94 (m, 15H), 0.87 (dd, J = 15.7, 4.0 Hz, 3H), 

0.70 (d, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CD3CN) δ 174.4, 173.6, 171.5, 141.7, 

134.9, 130.2, 124.9, 122.9, 119.4, 118.9, 110.9, 76.3, 52.6, 32.6, 29.5, 29.3, 23.8, 19.4, 

15.6, 7.7, 4.3; FTIR (NaCl, thin film): cm-1; 3324, 2956, 2875, 1742, 1657, 1516, 1435, 

1369; [α]D
25 = –1.8 (c = 1.3, CHCl3);  HRMS (MM) calc’d [M+H]+ 490.2732, found 

490.2772. 

4.7.6  Stability of tryptophan center 
 

In order to confirm that the tryptophan products were not undergoing deleterious 

racemization under the reaction conditions, tryptophan 205a was desilylated with 1 N 

HCl/MeOH and compared to racemic N-Boc-tryptophan methyl ester  through chiral SFC 
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analysis (AD-H, 2.5 mL/min, 10% IPA in CO2, λ = 254 nm):  tR(minor) = 19.6 min, 

tR(major) = 21.2 min.  We observed no racemization of the tryptophan stereocenter under 

the reaction conditions.  Additionally, Larock indole syntheses using dipeptide-derived 

alkynes to provide tryptohans 205u – 205y show the formation of a single diastereomer 

of product by crude 1H NMR and LCMS, further supporting the stability of the 

tryptophan stereocenter under Larock conditions.  The low optical rotations exhibited by 

tryptophans 205a – 205z are consistent with literature values of related compounds. 

 

 

 

 

 

4.7.7  Scale-up and desilylation of tryptophan 205o 
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In a glovebox, pyridyl aniline 203o (865 mg, 5.0 mmol, 1.0 equiv), alkyne 204a 

(2.56 g, 7.5 mmol, 1.5 equiv), Pd[P(tBu)3]2 (64 mg, 0.125 mmol, 0.025 equiv), and 

Cy2NMe (2.7 mL, 12.5 mmol, 2.5 equiv) were combined in a 50 mL flask.  The solids 

were dissolved in 15 mL 1,4-dioxane and the solution was heated to 60 °C for 30 h.  

Upon cooling, the milky yellow solution was filtered through a silica plug, which was 

washed thoroughly with ethyl acetate.  The solution was concentrated and then 

redissolved in 50 mL ethyl acetate and 1 M TBAF in THF (5 mL).  After 20 minutes, 

aqueous NH4Cl was added and the reaction mixture was partitioned in a separatory 

funnel.  The aqueous layer was back extracted with ethyl acetate (3 X 150 mL).   The 

organics were then recombined, washed with brine, dried over Na2SO4, filtered and 

concentrated.  The crude residue was purified using silica gel chromatography (60% 

hexanes, 35% ethyl acetate, 5% methanol) to afford tryptophan as a light yellow solid 

(1.28 g, 80% yield). 

 

1H NMR (500 MHz, CD3CN, Major Rotamer) δ 10.06 (s, 1H), 8.30 – 8.18 (m, 1H), 7.94 

– 7.85 (m, 1H), 7.20 (s, 1H), 7.06 (dd, J = 7.9, 4.7 Hz, 1H), 5.64 (d, J = 7.7 Hz, 1H), 4.45 

(dd, J = 13.4, 7.6 Hz, 1H), 3.64 (s, 3H), 3.23 (dd, J = 14.7, 5.4 Hz, 1H), 3.11 (dd, J = 

14.7, 7.5 Hz, 1H), 1.34 (s, 9H); 13C NMR (126 MHz, CD3CN) δ 173.6, 156.2, 149.6, 

143.8, 127.8, 125.0, 120.7, 116.3, 110.0, 79.9, 55.3, 52.7, 28.4, 28.4; FTIR (NaCl, thin 

N
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NH2
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film): cm-1; 3365, 2978, 1743, 1698, 1511, 1434, 1362; [α]D
25 = 49.1 (c = 1.25, CHCl3);  

HRMS (MM) calc’d [M+H]+ 320.1605, found 320.1594. 

4.7.8  Total synthesis of (–)-aspergilazine A 
 

 

 In a glove box, a flame-dried 250 mL flask was charged with iodobromobenzene 

(771 µL, 6.0 mmol, 1.0 equiv), dianiline 212 (1.34 g, 7.2 mmol, 1.2 equiv), Pd2(dba)3 (54 

mg, 0.06 mmol, 0.01 equiv), rac-BINAP (75 mg, 0.12 mmol, 0.02 equiv), and NaOtBu 

(865 mg, 9.0 mmol, 1.5 equiv).  60 mL of PhMe was added and the reaction flask was 

sealed and heated to 70 °C for 3.5 hours.  Upon cooling, the reaction mixture was filtered 

through a plug of silica gel, which was flushed with ethyl acetate.  The organics were 

concentrated and purified by silica gel chromatography (20% acetone, 80% hexanes) to 

provide the diarylamine 7 as a light yellow oil (1.54 g, 75% yield). 

1H NMR (500 MHz, CDCl3) δ 7.59 (dd, J = 8.0, 1.4 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H), 

7.31 (dd, J = 8.2, 1.6 Hz, 1H), 7.27 – 7.20 (m, 1H), 6.83 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 

6.56 (d, J = 2.5 Hz, 1H), 6.49 (dd, J = 8.5, 2.6 Hz, 1H), 6.03 (s, 1H), 4.11 (s, 2H); 13C 

NMR (126 MHz, CDCl3) δ144.6, 141.9, 140.7, 132.9, 132.8, 128.0, 121.2, 116.6, 112.5, 

111.2, 106.3, 101.9; FTIR (NaCl, thin film): cm-1; 3464, 3380, 1612, 1582, 1511, 1459, 

1407, 1330, 1303, 1276; HRMS (MM) calc’d [M+H]+ 340.9284, found 340.9264. 

 

Synthesis of bis-triethylsilyl-(–)-aspergilazine A 

 

I NH2H2N
NaOt-Bu (2.0 equiv)

 PhMe, 70 °C

(75% yield)
NH2

N

Br

HBr Br

Br

Pd2(dba)3 (1 mol%)
rac-BINAP (2 mol%)



Chapter 4 – A Mild and General Larock Indolization Protocol for the Synthesis of Unnatural 
Tryptophan Derivatives: Total Synthesis of (–)-Aspergilazine A 

452 

 

In a glovebox, a one dram vial was charged with diarylamine (35 mg, 0.1 mmol, 

1.0 equiv), alkyne 209 (94 mg, 0.3 mmol, 3.0 equiv), Cy2NMe (55 µL, 0.25 mmol, 2.5 

equiv), Pd[P(tBu)3]2 (5.2 mg, 0.01 mmol, 0.1 equiv) and 1,4-dioxane (500 µL).  The vial 

was sealed and heated to 80 °C for 4 hours.  Upon cooling, the reaction mixture was 

filtered through celite, which was washed with ethyl acetate (15 mL).  The organics were 

concentrated and the crude reaction mixture was purified by preparative reverse phase 

HPLC (65–85% acetonitrile in H2O, 30 mL/min, 20 min) to give the product as a 

colorless solid (49.5 mg, 62% yield). 

1H NMR (500 MHz, CD2Cl2, Major Rotamer) δ 8.47 (d, J = 11.0 Hz, 1H), 7.72 (dd, J = 

8.3, 2.5 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.47 (dd, J = 7.6, 1.6 Hz, 1H), 7.21 – 7.11 (m, 3H), 

7.03 – 6.94 (m, 1H), 5.71 (s, 1H), 5.56 (s, 1H), 4.60 – 4.52 (m, 1H), 4.52 – 4.47 (m, 1H), 

4.25 – 4.08 (m, 2H), 3.98 – 3.84 (m, 2H), 3.78 – 3.68 (m, 2H), 3.67 – 3.57 (m, 2H), 3.22 

(ddd, J = 14.7, 11.7, 2.9 Hz, 1H), 3.11 (ddd, J = 14.9, 11.7, 1.4 Hz, 1H), 2.46 – 2.30 (m, 

2H), 2.18 – 2.03 (m, 4H), 2.05 – 1.89 (m, 2H), 1.19 – 1.08 (m, 9H), 1.08 – 0.98 (m, 6H), 

0.98 – 0.84 (m, 9H), 0.75 – 0.52 (m, 6H); FTIR (NaCl, thin film): cm-1; 3375, 2963, 

2859, 1671, 1446, 1414; [α]D
25 = –79.5 (c = 0.055, 1:1 DCM:MeOH);  HRMS (MM) 

calc’d [M–SiC6H15]+ 679.3423, found 679.3426. 
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The 1H NMR was found to coalesce in deuterated acetonitrile at 60 °C. The 13C NMR 

was still rotameric, even at elevated temperature. 

1H NMR (400 MHz, CD3CN) δ 9.42 (s, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.72 – 7.65 (m, 

1H), 7.51 (s, 1H), 7.22 – 7.04 (m, 3H), 6.94 (s, 1H), 5.60 (s, 1H), 5.49 (s, 1H), 4.47 (dd, J 

= 11.4, 11.4 Hz, 2H), 4.15 (t, J = 7.7 Hz, 2H), 3.85 (d, J = 14.7 Hz, 1H), 3.79 (dd, J = 

15.0, 4.2 Hz, 1H), 3.72 – 3.58 (m, 2H), 3.50 (ddd, J = 11.6, 8.1, 3.8 Hz, 2H), 3.28 – 3.16 

(m, 1H), 3.12 (dd, J = 14.9, 10.8 Hz, 1H), 2.33 – 2.15 (m, 2H), 2.06 – 1.70 (m, 6H), 1.23 

– 0.94 (m, 11H), 0.88 (t, J = 7.7 Hz, 6H), 0.74 – 0.51 (m, 5H). 

 

Synthesis of (–)-aspergilazine A 

 

The silylated compound (49.5 mg, 0.06 mmol, 1.0 equiv) was dissolved in 1 N 

HCl in MeOH (10 mL) and allowed to stir for 15 minutes.  The reaction was quenched by 

addition of aqueous NaHCO3 and diluted with ethyl acetate.  The organics were removed 

in vacuo and the aqueous extracted with ethyl acetate (3 X 20 mL).  The organics were 

combined, dried over Na2SO4, filtered, and concentrated.  The crude residue was purified 

by silica gel chromatography (5% MeOH, 95% CH2Cl2) to provide (–)-aspergilazine A as 

a colorless solid (26.0 mg, 74% yield). 
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Spectroscopic and physical data, including 1H, 13C NMR in DMSO-d6, IR, and MS 

obtained for (–)-aspergilazine A matched that as reported during isolation by Gu et. Al 

and data obtained by Sperry and co-workers. See below for 1H and 13C comparison table.  

 

 1H NMR (500 MHz, DMSO) δ 11.05 (s, 1H), 7.98 (s, 1H), 7.87 (s, 1H), 7.73 (d, J = 8.4 

Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.45 (s, 1H), 7.43 (d, J = 1.7 

Hz, 1H), 7.28 (d, J = 2.0 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.14 – 7.11 (m, 1H), 7.09 (t, J = 

7.4 Hz, 1H), 4.39 (t, J = 4.8 Hz, 1H), 4.35 (t, J = 4.7 Hz, 1H), 4.12 – 4.05 (m, 2H), 3.45 – 

3.35 (m, 3H), 3.33 – 3.20 (m, 3H), 3.19 – 3.10 (m, 2H), 2.05 – 1.89 (m, 2H), 1.79 – 1.49 

(m, 4H), 1.47 – 1.31 (m, 2H);  13C NMR (126 MHz, DMSO) δ 169.6, 169.5, 165.9, 

165.9, 136.5, 136.0, 133.5, 129.0, 128.8, 126.5, 126.2, 122.5, 120.2, 119.9, 115.7, 111.4, 

110.5, 110.2, 107.1, 58.9, 55.7, 55.6, 45.1, 28.2, 26.3, 26.2, 22.3, 22.3; FTIR (NaCl, thin 

film): cm-1; 3365, 3246, 2933, 1666, 1459, 1414; [α]D
25 = –90.6 (c = 0.625, 1:1 

CH2Cl2:MeOH);  HRMS (MM) calc’d [M+H]+ 565.2558, found 565.2555. 
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Comparison of 1H NMR data for Natural vs. Synthetic (-)-Aspergilazine A 

Isolation 

(–)-Aspergilazine A 
1H NMR, 600 MHz, DMSO 

This Work 
(–)-Aspergilazine A 
1H NMR, 500 MHz, DMSO 

δ 11.09 (s, 1H) 11.05 (s, 1H) 
8.00 (s, 1H) 7.98 (s, 1H) 
7.89 (s, 1H) 7.87 (s, 1H) 
7.75 (br d, J = 8.4 Hz, 1H) 7.73 (d, J = 8.4 Hz, 1H) 
7.68 (br d, J = 7.8 Hz, 1H) 7.67 (d, J = 7.9 Hz, 1H) 
7.48 (d, J = 8.2 Hz, 1H) 7.47 (d, J = 8.3 Hz, 1H) 
7.47 (s, 1H) 7.45 (s, 1H) 
7.45 (d, J = 1.9 Hz, 1H) 7.43 (d, J = 1.7 Hz, 1H) 
7.29 (d, J = 1.7 Hz, 1H) 7.28 (d, J = 2.0 Hz, 1H) 
7.16 (ddd, J = 7.7, 7.4, 1.0 1H) 7.18 – 7.14 (m, 1H) 
7.14 (dd, J = 8.3, 1.9, 1H) 7.14 – 7.11 (m, 1H) 
7.09 (ddd, J = 7.4, 7.4, 0.8 1H) 7.09 (t, J = 7.4 Hz, 1H) 
4.41 (dd, J = 4.9, 5.0 Hz, 1H) 4.39 (dd, J = 4.8, 4.8 Hz, 1H) 
4.37 (dd, J = 5.0, 5.0 Hz, 1H) 4.35 (t, J = 4.7 Hz, 1H) 
4.07 (dd, J = 8.3, 8.3 Hz, 2H) 4.12 – 4.05 (m, 2H) 
3.38 (m, 3H) 3.45 – 3.35 (m, 3H) 
3.26 (m, 3H) 3.33 – 3.20 (m, 3H) 
3.16 (m, 2H) 3.19 – 3.10 (m, 2H) 
1.98 (m, 2H) 2.05 – 1.89 (m, 2H) 
1.65 (m, 4H) 1.79 – 1.49 (m, 4H) 
1.37 (m, 2H) 1.47 – 1.31 (m, 2H) 

 

Comparison of 13C NMR data for Natural vs. Synthetic (–)-Aspergilazine A 

Isolation 

(–)-Aspergilazine A 
13C NMR, 150 MHz, DMSO 

This Work 
(–)-Aspergilazine A 

13C NMR, 126 MHz, DMSO 

Chemical Shift Difference, Δδ 

169.7 169.6 0.1 
169.6 169.5 0.1 
166.0 165.9 0.1 
165.9 165.9 0.0 
136.7 136.5 0.2 
136.2 136.0 0.2 
133.6 133.5 0.1 
129.1 129.0 0.1 
128.9 128.8 0.1 
126.6 126.5 0.1 
126.3 126.2 0.1 
122.6 122.5 0.1 
120.3 120.2 0.1 
119.9 119.9 0.0 
115.8 115.7 0.1 
111.5 111.4 0.1 
110.6 110.5 0.1 
110.3 110.2 0.1 
107.2 107.1 0.1 
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59.0 58.9 0.1 
59.0 58.9 0.1 
55.8 55.7 0.1 
55.7 55.6 0.1 
45.2 45.1 0.1 
45.2 45.1 0.1 
28.3 28.2 0.1 
28.3 28.2 0.1 
26.4 26.3 0.1 
26.3 26.2 0.1 
22.4 22.3 0.1 
22.4 22.3 0.1 
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