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Abstract

The vibrational properties of materials are essential to understanding material stability and thermo-
dynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that
provide evidence on phonon behavior. The introductory section discusses the history of metallurgy
and thermodynamic theory, with an emphasis on the role of iron and cementite, two important com-
ponents of steels. The thermodynamic framework for understanding vibrational material behavior is
provided alongside the growing body of experimental and computational tools that provide physical
insight on vibrational properties. The high temperature vibrational behavior of iron and cementite
are explored within this context in the final chapters.

Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The
observed energy change is not uniform across phonon modes in iron, and specific phonon modes show
significant decreases in energy that are not explained by simple vibrational models. This anomalous
energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through
examination of fitted interatomic force constants. The large changes in phonon energy result in a
significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which
emulates the temperature behavior of the magnetic entropy across the Curie temperature. The
nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of
magnetic disorder in the material, which persists above the magnetic transition and extends the
stability region of the bece phase.

Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromag-
netic phase including regions of very low thermal expansion. The phonon modes of cementite
show anomalous temperature dependence, with low energy phonon modes increasing their energy at
elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic tran-
sition temperature and these same phonon modes lower their energies with temperature, consistent
with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of
cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic
phonons affects the elastic behavior of FesC, increasing the isotropy of elastic response. First prin-
ciples calculations link the observed phonon energy increases to specific vibrational modes that are

polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic
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behavior of the vibrational modes are discussed in the context of other observations of anomalous

anisotropic magneto-volume behavior in FezC.
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Chapter 1

Introduction

1.1 Iron and Steel - Ancient History

Great advances in human civilizations have come from the development of metalworking technol-
ogy. However, early man lacked a sophisticated understanding of thermodynamics, so metalworking
advances were based on carefully refined recipes rather than physical principles. Despite their lack
of physical understanding, early man learned to isolate metals with heat and alloy substances to
improve mechanical strength. These methodologies were largely dependent on the quality of raw
materials and this knowledge was occasionally lost to time, only to be rediscovered generations later
by different routes.

The discovery of iron and steels transformed civilizations, but this technology was hard won by
early blacksmiths. While a steel composition can be as simple as iron with a few atomic percent
carbon, the development of steel took centuries. We now understand that the mechanical benefits of
steels that early man sought are enabled by the temperature-driven polymorphism in iron. The iron
carbon phase diagram shown in Fig. 1.1 contains three thermodynamically stable regions of pure iron
that form stable solid solutions with carbon. With increasing temperature pure iron transforms from
a ferromagnetic bee structure to a paramagnetic bee structure (1043K) to a fee structure (1185K)
and then back to a bee structure (1667K) before melting. This re-entrant temperature dependent
polymorphism is not common among the elemental metals, and gives iron alloys a number of unique
properties. The variability in mechanical properties of steels can be controlled to some extent by
composition, but is more dramatically altered by metastable microstructure induced by controlled
temperature cycling through the polymorphic transitions of iron.

Humans discovered how to smelt elemental iron around 2000 BCE, near present-day Turkey [2].
However early iron smelting furnaces could only reach temperatures around 1400K, notably below
the 1811K melting point of iron. Instead the carbon monoxide created by burning charcoal would
reduce iron oxide based ores to a mixture of metallic iron, charcoal, and silicate inclusions. The

impurity phases were removed by high temperature mechanical working, which occupied much time
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Figure 1.1: The Fe-C phase diagram, maps all stable phases with blue regions. This figure was
constructed using the 1992 phase diagram developed by Okamoto, et. al. [1]. The phase regions
labeled rt refer to the body-centered-cubic (bee) solid solution phase, while the phase regions labeled
ht refer to the face-centered-cubic (fcc) solid solution phase.

for early blacksmiths. Pure iron is also a relatively soft and ductile metal, which limited the early
use of iron to small domestic applications. The discovery of steel occurred nearly 1000 years later,
providing much greater strength and revolutionizing weaponry [2]. But producing quality steels
was quite difficult for early man, who could not appreciate the thermodynamic forces driving his
processes.

The methodologies that lead early blacksmiths to high strength steels were tedious, and provided
many opportunities for failure with small changes in temperature or chemical composition. When
smiths reheated their pure worked iron in a charcoal fire, they were unknowingly diffusing small
quantities of carbon into their material. Without realizing it, early smiths were heating iron through
the polymorphic transition into the face-centered-cubic structure. This phase has many interstitial
locations for carbon atoms to occupy, and will support carbon concentrations up to 8 atomic %.
Iron is strengthened by adding only 1-2 atomic % carbon, but if larger quantities are diffused at
high temperatures, the mixture will become a hard, brittle, unworkable material which was referred

to as pig iron. Longer heating times increased carbon concentration in steels at a rate which varied
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with temperature. But when the temperature of the iron carbon solid solution is lowered back to
the body-centered-cubic phase stability range, the carbons have fewer favorable interstitial sites and
attempt to diffuse out to form Fe3C shown on the left side of the phase diagram in Fig 1.1. However
if this diffusion limited process is interrupted, by rapidly lowering the temperature of the alloy,
the carbon atoms get stuck in unpreferable interstitial sites and they distort they crystal structure
locally, resulting in a significantly harder material called martensite.

This was the true birth of steels. The rapid quenching of hot Fe-C alloys in water can provide
nearly a five fold increase in strength, making a product much harder than bronze, a Cu-Sn alloy,
which was the technological standard of the time [2]. Once it was realized that the strength of steels
could be adjusted by thermocycling alone, the technological potential was quickly realized. Today
martensitic steels still provide the best strength per cost per unit volume of modern engineered

materials [3].

1.2 The Dawn of Thermodynamics

The physical phenomena early man explored in manipulating metal alloys is now encompassed in
the fields of modern thermodynamics and metallurgy. They refined ore into metals using heat in
early furnaces. These metals were alloyed, heat treated, and worked by hand, adding a variety of
properties to the components that are now understood to come from the atomic and microstructural
arrangements these processes induced.

The efficient and effective processing of metals was a great driver of thermodynamic under-
standing. Thus modern thermodynamics grew up beside the industrial revolution, when the old
methodologies of metal working were traded for modern processes of great scale. The pioneering
work of Josiah Willard Gibbs laid the groundwork for our modern understanding of phase diagrams
and material equilibria [4]. Gibbs was a mathematician by training and focused on the geometries
of early phase maps to draw connections between phase stability, energy and entropy. The Gibbs
free energy, G,

G=H-TS (1.1)

is related to the enthalpy, H, temperature, T, and entropy, S, of a substance in a given state.
The early work of Gibbs emphasized the generality of thermodynamic principles to include material
systems of all kinds [4]. His pioneering insights slowly brought scientific unity to the practices of
chemical metallurgy, by uncovering the underlying principles in the centuries of collected physical
observations and material preparation methodologies.

Around the same time, great scientific minds were beginning to quantify the nature of heat in
solids. The Einstein model of solids found a quantum mechanical description of lattice vibrations as

quantum harmonic oscillators [5]. Peter Debye improved on this model to encompass the observed
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low temperature heat capacity behavior [6]. This laid the groundwork for physical interpretations
of observed thermodynamic properties in solids.

It was quickly understood that the unique polymorphism of iron provided for the great diversity
of technological properties of iron-based alloys. Improving iron-based steels was of intense industrial
interest, and thus improved thermodynamic understandings were readily applied to iron alloys.
Improvements in calorimetry around the same time produced experimental measures of free energy
derivatives. Attempts to quantify the free energies driving the diverse microstructures of steels

quickly followed. An early assessment of the free energies of iron was provided by Austin as shown

in Fig. [7].
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Figure 1.2: The free energy of bee (a-Fe) and fce (7-Fe) extracted from calorimetry measurements
[7].

This was the beginning of physical metallurgy, where detailed methodologies could finally be
understood in terms of physical consequence. The chemical consequences of iron’s polymorphic
phase transitions were mapped on phase diagrams where thermodynamic insight was used to ex-
plore new compositions. The equilibrium positions of carbon in iron changes substantially with
crystal structure, and cementite or Fe3C will precipitate for many compositions at modest temper-
atures. The mechanical effects of stable carbides cementite, and other less stable configurations
were heavily studied to understand the mechanical responses of steels with varied thermal histo-
ries. Phase transformation kinetics were understood in terms of diffusion limited formation of stable
carbides and metastable structures. And understanding the microstructure-related mechanical prop-

erties that evolved under various thermocycling conditions became the focus of decades of modern



steel-metallurgy.

Structural steels weren’t the only technological materials to highlight the interesting physical
behavior of Fe during the industrial revolution. The unique physical properties of Fe also participate
in materials that are famous for something other than their strength. The 1920 Nobel prize in
physics was awarded to Charles Guillaume “in recognition of the service he has rendered to precision
measurements in physics by his discovery of anomalies in nickel steel alloys” [8]. The anomaly that
so captivated the Nobel committee was a thermo-volume behavior of FeNi alloys resulting in a near
vanishing thermal expansion for a wide temperature range at a specific composition. The FegyNizg
Invar composition takes a disordered face centered cubic structure, and exhibits a thermal expansion
coefficient which is more than 10 times lower than the thermal expansion of Fe, Ni, and other
distant FeNi compositions. Invar materials were quickly deployed to improve the accuracy of clocks
and many other sensitive measurement techniques, even though the physical origin of Invar eluded
material physicists nearly another century. Since Guillaume’s initial discovery a number of other
iron transition metal alloys have been found to exhibit Invar behavior, including FePt and FePd.
The anomalously low thermal expansion exhibited by these alloys is caused by temperature-induced

magnetic transitions which exhibit magneto-volume behavior.



Chapter 2

Crystals and Phonons

2.1 Crystal Lattices

Both the models of Einstein and Debye relied on the notion of crystalline solids. Which was verified
by the early work of W. H. and W. L. Bragg [9]. The x-ray pattern observed with Bragg diffraction
is the result of regularly repeating arrays of atoms in crystalline materials. The arrangement of the
atoms in a crystal can be reduced to a set of translational symmetry operations that relate every
atomic position in a perfect crystal onto all equivalent positions, thus defining the lattice symmetry
of crystalline solids, and simplifying their structure to a primitive unit cell that may be tessellated

to map out every lattice position. One may then define lattice translation vectors, r, as
T =2T1a1 + X202 + X303, (2.1)

where z; are integers and a1, ay, and a3 are the primitive lattice translation vectors, where a;-a2 x a3
defines the primitive unit cell volume. A reciprocal lattice can then be defined for each type of lattice,
based on the constraints of Bragg’s law, which observed the relationship between the wavevector
of the incoming radiation and the structure of the crystal lattice. The reciprocal lattice has a

complementary set of vectors, g, defined as
q = y1b1 + y2bs + y3bs, (2.2)

where the prefactors y; are again integers and by, by, bs are defined as the primitive vectors of the
reciprocal lattice. These special reciprocal space vectors (also referred to here as g-space vectors)

can be constructed from the real space lattice vectors as

X X X
92795 pymop BT _gp 91792 (2.3)

by = o229 , :
aj - as X as aj - ag X as aj - as X as

The primitive cell of reciprocal space is commonly referred to as the first Brillouin zone.
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The principles of lattice symmetry discussed here can easily be extended to include compounds
with multiple atomic species. In this case the primitive unit cell is still the smallest volume that
can be tessilated to map all space, defined by three primitive lattice vectors. The only distinction
is that the lattice has a basis, which is typically described by vectors that connect the positions of
unique atoms in the primitive cell. It is within this symmetry that we can now begin to define the

lattice modes, or quanta of vibrations called phonons [10].

2.2 Phonons

The equilibrium interatomic distances offer an energy efficient packing that optimizes the interactions
of the atomic electrons. The positions geometrically optimize the interatomic forces to set the
equilibrium distances. We will describe this potential energy of the interatomic interaction as ¢(R),
where R is the distance between a pair of atoms. The potential energy of a crystal, U, can then be

described by summing over all the pairs of atoms in a crystal,
1
U= §;¢(T‘Z —’l"j). (24)

If an atom indexed by ¢ is perturbed a small distance from its equilibrium position, 7;, to a new
position, r; + u;, the neighboring unperturbed atoms would exert a force on the displaced atom
to return it to its equilibrium position. A Taylor expansion of the potential energy U for small

displacements of the atoms, u;, from their equilibrium positions gives

1 1 1

V=3 > olri—ri)+ 5 > (wi—uy) - Vo(r; — ;) + 1 D l(wi —uy) - VIP¢(ri —r;) + O(u). (2.5)
i,J 0,J 0,J

Here the first term is the constant equilibrium crystal potential, the linear second term is the restoring

forces that sum to zero over the crystal, and the remaining term is the harmonic term of the original

potential ¢(R), which can be written as

1 2p(r; —rj)
gh==Z T, — T ! J T, —Ti)y. 2.6
A TR e e 20

This simplification is called the harmonic approximation because it neglects higher order terms in
the potential. The gradient term at the heart of this expression gives the force constant between
two atoms in a specific Cartesian direction. This expression can be generalized by defining a force
constant matrix, K, that encompasses all the atomic interactions represented in the derivatives of
¢:
Uh = %ZuiK(ri—rj)uj. (2.7)
irJ
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With the proper symmetry constraints and Born-von Karmén periodic boundary conditions,
we cleverly select a general description of the displacements that is appropriate for translational
symmetry:

w;(t) = ee’Fmimwt), (2.8)

where € is the polarization of the atomic displacement in Cartesian coordinates. We can solve for

the equations of motion given our harmonic potential, where

ouh

M’U,l = — 811,1 = —Zj:K(T’i — 'rj)uj. (29)

Our system of N atoms has 3N discrete vibrational modes that can be supported by the crystal,

and our equation of motion becomes

Mw’e =Y K(rj)e *e= D(k)e. (2.10)
J

This expression is called the dynamical matrix expression, where D(k) is the dynamical matrix.
The dynamical matrix contains the force constants (or potential derivatives) for every pair of atomic
interactions in the crystal. For an atom in a real crystal we know that the largest contribution
to the restoring forces will come from the atoms immediately around it, so we can truncate the
dynamical matrix to include only the most pertinent nearest-neighbor restoring forces, often without
a significant loss of accuracy. The dynamical matrix expression can be solved for the normal mode
frequencies w and mode wavevectors € at every k in reciprocal space.

This methodology connects the symmetry of the lattice with the allowed normal modes and
the interatomic forces driving them; however, quantum mechanical considerations are required to
extend this description of lattice modes to quantized vibrational excitations called “phonons”. These
considerations ensure that vibrations are properly counted a low temperatures, where their discrete
nature becomes apparent. The energy of a crystal is described by 3N quantum harmonic oscillators
with frequencies from the dynamical matrix expression, but governed by Bose-Einstein occupation

statistics. Thus the Hamiltonian for a crystal transitions from its classical definition,
1 5 1
( 0,j
to its quantum representation,

H=""hw,(k)(af,ons + %) = (ks + %)hws(k), (2.12)
k,s

k,s
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where the phonon creation operator a,];s and phonon annihilation operator ags are defined as

1 ik Muw,(k) ) 1
po_ L kg (ko s\B) i — 2.13
ks \/Nzi:e €s (k) oh T "\ 2hMuw, (k)P (2.13)
and _ .
1 iker, Muws (k) , 1
s = —F/— ‘es(k i —DPi 2.14
o \/Nzi:e R oh T T, () (214)
and
hws (k)
s = (e 5T — 1)1, (2.15)

The important distinction between these two models is readily observed in experimental heat capac-
ities. The heat capacity, C, is the temperature derivative of the internal energy of a material, U. In

the classical harmonic oscillator formalism, U(T) is a linear function of T, so the heat capacity

oU o
= — 0 — eq =
C =55 = 55U+ 3NkpT) = 3Nkp (2.16)

is constant for all temperatures. However, the heat capacity of a set of quantum harmonic oscillators

contains a temperature-specific term

ou . hws(k
C = 9T = U q +Z Nks + hws Z o7 (ngs)hws(k Z a7 ,Ms(k) 1, (2.17)

which recovers the experimentally-observed temperature dependence of the heat capacity at very
low temperatures. Using quantum harmonic oscillator formalism in the calculation of lattice ther-

modynamic variables will include the zero-point vibrational energy of the solid [11].

2.3 Observations of Phonons

Direct measurements of phonons can provide valuable insight into the physical basis for thermal
behavior. The first maps of phonons in solids were completed using reciprocal-space-resolved meth-
ods like triple-axis inelastic neutron scattering from single crystals. The geometrical nature of these
measurements permit fine control of the incoming energy and momentum of the neutron, and similar
control of the energy and momentum of the outgoing neutron may be detected. Shull and Brock-
house pioneered early work on neutron scattering techniques that were capable of resolving phonons
in solids. Measurements of the phonons of bcc a-Fe followed immediately after the development
of these instruments, with two separate papers reporting the phonon dispersions of iron published
in 1967 [12, 13]. The early phonon dispersion measurements of iron are shown in Fig.2.1, where

triple-axis neutron measurements generated the set of points that are resolved in g-space and en-
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ergy. These points are then analyzed with the harmonic model developed in the previous section.
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Figure 2.1: Phonon dispersions from triple-axis inelastic neutron scatter (points), overlaid with
Born-von Kérmdan model fits and the resulting phonon density of states shown on the right [12].

The phonon dispersion points are fit to force constants in a dynamical matrix, typically using a least
squares optimization that seeks to minimize the system of equations against all the observed phonon
measurements. This requires truncating the dynamical matrix to a subset of all the interactions in
the material, typically limiting restoring forces to the closest neighboring atoms. Minkewicz utilized
the atomic interactions for the first through fifth nearest neighbors, obtaining the fits shown in
Fig. 2.1. The force constants can be used to describe phonon behavior in other portions of g-space
where measurements were not collected. They can also be integrated over all of g-space to provide
a phonon density of states (DOS), which is also shown in Fig. 2.1. The phonon density of states can
be readily used to describe the phonon thermodynamics of materials.

Measurements of phonon dispersions using triple-axis neutron spectrometers are routinely con-
ducted today at research reactors. Additionally, methods have been developed to measure the
complete phonon DOS of polycrystalline materials using neutron time-of-flight techniques, and spe-
cialized inelastic x-ray scattering methods that are discussed in the next chapter. Phonon DOS
measurements are typically collected much more quickly than dispersion curves, and can be directly
used in thermodynamic expressions without fitting. These methods offer the advantage of measuring
every phonon state available to a material, but they do so without the g-space resolution provided by
phonon dispersion measurements. Therefore, mapping the interatomic forces to the phonon density
of states is less direct because the reciprocal space information has been lost. Sharp features in the
phonon density of states called van Hove singularities may be matched to some points on phonon

dispersion, but direct mapping is complicated. Because the phonon DOS is integrated over all of
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g-space, there is no way to distinguish between degenerate features. It was therefore believed that
in practice, the interatomic force constants cannot be directly extracted from phonon DOS, since
the relationship is not invertible. However fits may still be accomplished by iteratively exploring
various force constant configurations and comparing the density of phonon states they generate with
experimental observations. This has been demonstrated on relatively simple lattices in elemental
solids and binary alloys when sufficient information is available, [14-18] and will be discussed in

Section 5.2.
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Chapter 3

Thermodynamics

3.1 Thermodynamic Relations

Thermodynamics was useful to 20th century metallurgists insofar as it can be used to predict and
extrapolate properties beyond those directly measured. A functional thermodynamic understanding
of iron was readily applied to understanding the technologically-relevant properties of iron alloys.
The Gibbs free energy of a solid, G, can be divided into enthalpy and entropy terms. Under
constant volume conditions, the enthalpy of a solid, H, is largely determined by the internal energy,
U, which can be characterized as the energy involved in assembling a set of atoms into their solid
configuration. The entropy of a solid, S, enumerates the way heat is stored in a material. Both en-
thalpy and entropy can be extracted by integrating the measured heat capacity at constant pressure,

Cp using the expressions

H(T) = /0 Cp(T")dT’ (3.1)
and
S(T) = /OT %dT’. (3.2)

In solids at finite temperatures (above ambient conditions) the free energy contribution from en-
tropy, T'S, changes more rapidly than the enthalpy, H, dominating the thermal effects on the free
energy. For ordered crystalline solids, lattice vibrations make the largest entropic contribution, Syip.
Electronic excitations also create entropy, Sejec, though noticeably smaller than vibrational entropy.
Solids that exhibit magnetic ordering will also have magnetic excitations that perturb spins from
their ground state orientation, providing magnetic entropy, Smae. These three contributions, vibra-
tional, electronic, and magnetic excitations, enumerate the ways that heat can be stored in iron and
comprise its entropy. These contributions are hoped to be adiabatically separable, providing the

expression

S = Syib + Selec + Smag~ (33)
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Understanding the entropy of a solid will greatly inform the temperature-dependent behavior
of its free energy, which is essential to developing the theoretical basis for high temperature phase
diagrams. Early thermodynamic research sought to reconcile these physical excitations with the
aggregate thermodynamics that drives phase transitions. Experimental heat capacities provided a
basis for comparing observed thermodynamic properties with theoretical models. But direct mea-
surement of the phonon density of states of a material can also provide complementary information
that may be used to assess the phonon-specific contributions to thermodynamics.

The phonon contribution to the entropy, S,:,, may be calculated directly from the phonon DOS,
g(E), at the temperature that the phonon DOS was acquired

Soin(T) = 3k / gr(B)Y{(n+ 1) In(n + 1) — nln(n)}dE. (3.4)

Where the integral goes over all phonon energies, and the Planck function n is a function of energy
E

and temperature only, simplified from Eqn 2.15 to n = (e*sT — 1)~!. Additionally the phonon

contribution to the heat capacity, C’;jib, may be calculated from the phonon density of states,

vib _ 3 on

These expressions provide another route to the thermodynamic behavior of materials that focuses
on the phonon contributions alone, by using the phonon density of states. Since the phonon con-
tribution to thermodynamics is almost always the largest thermodynamic contribution at finite
temperatures, early thermodynamic models focused on quantifying the phonon behavior through

various formalisms.

3.2 Debye Model

The Debye model for the vibrational response of the solid makes use of the quantum mechanical
nature of phonons, but largely ignores the details of how phonons relate to the symmetry of the
structure. Debye simplified the normal mode relationships of a crystal considerably by assuming
that the phonon frequencies w obeyed a linear relationship with respect to the reciprocal lattice
vector, k, w = c|k|, where c¢ is the sound velocity of the phonon. The assumption of linear phonon
branches only applies rigorously in the long wavelength limit (at very low |k|). The complicated
mathematical formulations of the previous section are simplified to three isotropic acoustic phonon
branches. By selecting an isotropic cutoff for the outer limit of reciprocal space, kp = m,
where p is the atomic density of the material, the number of normal modes available to the material
is properly set at 3N. The Debye model for vibrations has only one free parameter, the Debye

temperature © p = hckp, which can be obtained with the slope of the linear acoustic branches, c.
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The identical linear isotropic acoustic branches can be integrated over the spherical Brillioun zone
to provide a phonon density of states, which enumerates the available phonon modes in the crystal
by their energy level. The Debye heat capacity and phonon density of states are plotted in Fig. 3.1

for ©p = 420, which is the Debye temperature commonly used for a-Fe.
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Figure 3.1: Debye model phonon density of state for © p = 420, a typical value used for a-Fe [19].
The corresponding vibrational heat capacity compared with a-Fe experimental heat capacity [20].
The Debye vibrational entropy compared with the total entropy of a-Fe from the SGTE database
[21]

The heat capacity derived from the Debye model is capable of reproducing both the empirical
Dulong-Petit high temperature limit, and also the low temperature T behavior observed in measured
heat capacities. The Debye temperature is commonly determined by fitting to low temperature
heat capacity data. Once a Debye temperature is obtained, the full vibrational thermodynamics
of a crystalline solid are mathematically accessible. This model is, however, a strictly harmonic
approach, which is often too simple for the behavior of the phonon modes in real crystals. The
harmonic formalism fails to explain natural phenomena like thermal expansion of solids and thermal
resistivity of materials. These effect arise from other interactions that are truncated in our expression
for the interatomic potential. The inability of the Debye model to deal with the physical effects of

thermal expansion led to several modifications that are called “quasi-harmonic” models.
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Figure 3.2: The experimental volume expansion of pure iron from low temperatures until melting
[22]. The observed thermal volume expansion of FezC through the 460K magnetic transition [23].
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3.3 Quasi-Harmonic Models

Quasi-harmonic models attempt to rectify the shortcomings of the harmonic models by taking into
account the effects of thermal expansion. In a strictly harmonic model, the vibrational degrees of
freedom have no dependence on the volume of a solid or its temperature. In 1926, Eduard Griineisen
proposed a thermodynamic equation of state for matter that incorporates the vibrational effects from

changes in volume at finite temperatures. He defined the phonon mode Griineisen parameter, v;,

Olnw;

_ V Aw;
T T oy

U.}j AV’

(3.6)

7~ —

a unitless scaling parameter defined in terms of the phonon frequency, w;, and the volume, V/,
of the solid [24]. Griineisen used this description to develop a thermodynamic equation of state
which incorporates quantum mechanical lattice contributions. However experimental data on ; for
individual phonons is extremely rare.
More often an average bulk Griineisen parameter 7 is constructed to model the bulk material
behavior
oP aKr

v = V@h, = Cop (3.7)

where V' is the volume, P is pressure, « is the thermal volume expansion, Kr is the isothermal
bulk modulus, Cy is the heat capacity at constant volume, and p is the atomic density [24]. While
the microscopic Griineisen parameter, v;, is an exact thermodynamic definition, models that use
the thermal Griineisen parameter, v, often include approximations such as an isotropic crystalline
response. However, «yr can be readily obtained from ambient measured bulk properties of a material,
yielding values typically lie between 1 and 2 for most well-behaved materials [24]. The thermal
Griineisen parameter for o-Fe is 1.81 [24], and the thermal Griineisen parameter for FesC is between
2.0 and 2.4 depending on which values for the bulk modulus you trust. This «7 can then be used in
the microscopic definition to scale observed phonon frequencies with temperature

V-W
Vo

w(T) =wo(1 —~r ). (3.8)

If the Debye model provides the phonon DOS, then the Debye DOS can be scaled with thermal
expansion to provide the QH vibrational entropy of a material. However, the Debye DOS can
readily be replaced with an experimentally determined phonon density of states without altering the
nature of the model. A quasi-harmonic model that utilizes an average thermal vp has no frequency
dependence; all phonons shift in energy the same way. The effect of the quasi-harmonic model is
completely independent of the vibrational spectra being scaled.

The thermodynamics effects of thermal expansion based phonon softening (phonons shift to lower
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energy) can be ascertained by calculating the heat capacity and the vibrational entropy from the en-
ergy shifted phonon DOS. The quasi-harmonic vibrational entropy can be calculated using Eqn. 3.4,
and the heat capacity can be calculated using Eqn. 3.5. Under the quasiharmonic approximation
the heat capacity can also be re-written to directly include thermal expansion using a Griineisen

parameter without using the phonon DOS. This expression is called the Nerst-Griineisen expression,

Cp = Cv(l + 3’YT04(T)T), (39)

where a(T) is the linear thermal expansion. The thermodynamic contributions from the quasi-

harmonic model are compared with the harmonic Debye model curves of the previous section in Fig.
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Figure 3.3: Debye model phonon density of state for © p = 420, a typical value used for o-Fe [19].
The corresponding vibrational heat capacity compared with a-Fe experimental heat capacity [20].
The Debye vibrational entropy compared with the total entropy of a-Fe from the SGTE database
[21].

High temperature calculations with the QHA often employ a constant Griineisen parameter,
though the bulk thermal properties encompassed in the thermal Griineisen parameter have been
observed to vary with temperature in a number of materials. In an attempt to rectify this problem,
a temperature-dependent Griineisen parameter can be used. For the case of pure iron, a wealth of
information on temperature-dependent properties is available. Multiple assessments of temperature
dependent thermal expansion [22, 25-27] and bulk modulus [28-30] can be used. The heat capacity
at constant volume, Cy, can also be calculated in a number of ways with different approximations.

We examined the temperature dependence of the Griineisen parameter by constructing two
separate functions for 7 (T') that sampled the full range of observed values in the literature. The
results of these assessments are shown in Fig. 3.4, and show variations in yp(T) between 1.5 and
2.1 over the temperature range of interest. Phonon frequencies can be scaled according to the
temperature-dependent Griineisen parameter using the following expression:

T,=T

w(T) =w [ 11— 'VT(Ti)(m - 1), (3.10)
T,=1 i—1
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Figure 3.4: The temperature-dependent Griineisen parameter yr(7") assembled from various litera-
ture values. Black yr(T) from Kr [28, 30], a [22], Cy from a Debye model (Op=420K), and p [22].
Red v7(T) from Kt [28, 29], « [25], Cy from 14K NRIXS measurements, and p [26].

which reduces to Eqn 3.8 when ~7 is a constant. The result of this more careful calculation was nearly
the same as calculated quasi-harmonic change in frequency for a constant v = v (300K), as shown
in the left panel of Fig. 3.3. The resulting changes in the vibrational entropy from including 7 (7T')
were always below 0.5% at 1180K. Therefore, in the case of bee iron, the addition of a temperature-
dependent Griineisen parameter has only a small effect on the calculated phonon energies. The
temperature dependence is influenced much more by the selected thermal expansion values.
Experimental heat capacities provided some of the earliest data for comparing observed thermo-
dynamic properties with theoretical models. Experimental heat capacities and the thermodynamic
connections to the free energy provided a theoretical framework for the exploration of many metal
alloys, including iron. Efforts to exploit the predictive powers of thermodynamics of elemental met-
als to understand alloys drove many early (and modern) thermodynamic studies. Early studies of
thermodynamic contributions from various physical excitations like those conducted by Weiss em-
ployed simple Debye-like model [19]. Weiss sought to categorize the thermodynamics contributions
for pure iron by applying theoretical frameworks to the experimentally determined heat capacity. He
used a quasi-harmonic Debye model to account for the vibrational contribution and linear electronic
Griineisen parameter model to account for the electronic contribution. Assuming the remainder
to be magnetic, he quantified the thermodynamic contributions to the free energy of pure iron in
Fig 3.5. This assessment suggested that in the absence of magnetism, FCC iron should be the
entropically-stable configuration. However, even this early assessment by Weiss pointed out that
a large quantity of the heat capacity, and an even greater share of the entropy, evolved from the

lattice vibrations as shown in Fig. 3.5. The model he used, however, is a quite simplified version,
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Figure 3.5: The enthalpic and entropic contributions to free energy [19].

and captures only aggregate vibrational behavior. His assumption that magnetic entropy must be
the remaining unassigned entropy points out a shortcoming that has long thwarted thermodynamic
assessments of magnetic materials. Few models exist that can accurately describe finite temperature
magnetic disorder, and there are even fewer experimental studies for comparison. The state of spin

disorder in magnetic materials at finite temperatures remains an active field of study today [31].

3.4 Anharmonic Effects

The harmonic approximation of the interatomic potential simplifies many aspects of the physics of
vibrations, and this approximation is normally valid for low temperatures. However there are several
important physical phenomena that cannot be resolved by harmonic descriptions. The harmonic
model assumes that phonons are quantum harmonic oscillators, which are non-interacting. However,
we know that phonons do interact in real systems; phonons may interact with each other and
also with other excitations that occur in real materials. Thermal expansion is the most obvious
anharmonic thermal effect, and while the quasi-harmonic approximation may improve the accuracy
of thermodynamic models to deal with observed thermal expansion — it is by no means a physically
rigorous approach. Nonharmonic interactions also result in routinely-observed phenomena like finite
thermal conductivities, which result from phonon scattering events that indicate real phonons have
finite lifetimes. Phonons are also known to play a role in electrical resistivity, where electronic
carriers scatter, creating phonons that can increase the temperature of a material.

Models that go beyond the harmonic approximation typically do so using perturbation theory.
Additional terms from the Taylor series in Eqn. 2.5 are retained for a more physical description of
the interionic potential. Additional terms in the periodic potential are often thought of in terms of
the quantum interactions they might produce. The cubic term encompasses three phonon processes,
such as two phonons combining to produce a new one, or a phonon decaying into two others. The

quartic term, by extension, enumerates the four phonon processes, including a phonon decaying into



19

three new phonons, or two phonons interacting to create two new phonon states. These processes are
governed by the laws of energy and momentum conservation. Thus not all combinations are possible;
new states must have the proper energy and momenta, which are governed by the allowed crystal
modes and described by the phonon dispersions. While the probability of multiphonon processes are
low at low temperatures, they do have appreciable effects at finite temperatures when large phonon
populations are present in the material.

In perturbation theory, it is often possible to keep only the next highest order term to improve
on the physical description. While this could be done with the interionic potential, there are many
physical arguments for keeping both the cubic and quartic term. The cubic term is asymmetric in
nature, creating physical situations where the potential may become unstable if only this term is
applied. There are also many crystalline symmetry constraints on the phonon processes produced
by the cubic interaction term that limits the number of anharmonic interactions that are described
by this formalism. Incorporation of the quartic term improves the limiting behavior of the net
potential (since a Hamiltonian retaining only the cubic term may be unstable) [11]. Further, ob-
servations of high temperature phonon behavior suggest that in many instances quartic interactions
may contribute comparable thermodynamic effects to those from cubic term interactions.

Experimental characterizations of phonons in materials at high temperatures can begin to quan-
tify the importance of these effects. Anharmonic phonon-phonon interactions affect the observed
phonon spectra by both shifting their absolute energies, and also broadening their energy and g-
space signatures. This is apparent in measurements of phonon dispersions and DOS measurements
when the thermal broadening of specific features overcomes the instrument resolution, resulting in
a broadening that scales with temperature. In high temperature phonon measurements of bec Ti,
Zr, and Hf, very broad phonon signatures have been resolved in specific g-space directions. This
anomalously large broadening extends over a significant energy range and has been implicated as
a dynamic precursor of the first-order martensitic transformation between the bce and hexagonal
crystal structures [32-34].

The anharmonic phonon broadening caused by more typical cubic and quartic interactions are
expected to be Lorentzian in nature [35]. In phonon DOS measurements the anharmonic broadening
of DOS features can be modeled using a modified Lorentzian function [14, 36]. This construction
provides a route for estimating mean phonon lifetimes from spectra broadenings. Results from
investigations of relatively isotropic elemental metals have shown that anharmonic effects are often
linear with temperature.

A detailed mathematical derivation of the effects of the cubic perturbation theory terms in the
calculation of thermodynamic variables is performed by Wallace [35]. He states that to leading or-
der in perturbation theory, anharmonic effects on the entropy are likely to be linear in temperature.

Anharmonic free energy contributions have quadratic