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Abstract

The vibrational properties of materials are essential to understanding material stability and thermo-

dynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that

provide evidence on phonon behavior. The introductory section discusses the history of metallurgy

and thermodynamic theory, with an emphasis on the role of iron and cementite, two important com-

ponents of steels. The thermodynamic framework for understanding vibrational material behavior is

provided alongside the growing body of experimental and computational tools that provide physical

insight on vibrational properties. The high temperature vibrational behavior of iron and cementite

are explored within this context in the final chapters.

Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The

observed energy change is not uniform across phonon modes in iron, and specific phonon modes show

significant decreases in energy that are not explained by simple vibrational models. This anomalous

energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through

examination of fitted interatomic force constants. The large changes in phonon energy result in a

significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which

emulates the temperature behavior of the magnetic entropy across the Curie temperature. The

nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of

magnetic disorder in the material, which persists above the magnetic transition and extends the

stability region of the bcc phase.

Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromag-

netic phase including regions of very low thermal expansion. The phonon modes of cementite

show anomalous temperature dependence, with low energy phonon modes increasing their energy at

elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic tran-

sition temperature and these same phonon modes lower their energies with temperature, consistent

with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of

cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic

phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First prin-

ciples calculations link the observed phonon energy increases to specific vibrational modes that are

polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic
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behavior of the vibrational modes are discussed in the context of other observations of anomalous

anisotropic magneto-volume behavior in Fe3C.
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Chapter 1

Introduction

1.1 Iron and Steel - Ancient History

Great advances in human civilizations have come from the development of metalworking technol-

ogy. However, early man lacked a sophisticated understanding of thermodynamics, so metalworking

advances were based on carefully refined recipes rather than physical principles. Despite their lack

of physical understanding, early man learned to isolate metals with heat and alloy substances to

improve mechanical strength. These methodologies were largely dependent on the quality of raw

materials and this knowledge was occasionally lost to time, only to be rediscovered generations later

by different routes.

The discovery of iron and steels transformed civilizations, but this technology was hard won by

early blacksmiths. While a steel composition can be as simple as iron with a few atomic percent

carbon, the development of steel took centuries. We now understand that the mechanical benefits of

steels that early man sought are enabled by the temperature-driven polymorphism in iron. The iron

carbon phase diagram shown in Fig. 1.1 contains three thermodynamically stable regions of pure iron

that form stable solid solutions with carbon. With increasing temperature pure iron transforms from

a ferromagnetic bcc structure to a paramagnetic bcc structure (1043K) to a fcc structure (1185K)

and then back to a bcc structure (1667K) before melting. This re-entrant temperature dependent

polymorphism is not common among the elemental metals, and gives iron alloys a number of unique

properties. The variability in mechanical properties of steels can be controlled to some extent by

composition, but is more dramatically altered by metastable microstructure induced by controlled

temperature cycling through the polymorphic transitions of iron.

Humans discovered how to smelt elemental iron around 2000 BCE, near present-day Turkey [2].

However early iron smelting furnaces could only reach temperatures around 1400K, notably below

the 1811K melting point of iron. Instead the carbon monoxide created by burning charcoal would

reduce iron oxide based ores to a mixture of metallic iron, charcoal, and silicate inclusions. The

impurity phases were removed by high temperature mechanical working, which occupied much time
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Liquid 

BCC* 
1811K 

FCC 

1667K 

BCC 

ferromagnetic 

paramagnetic 

⇐ increasing C content (at. %)  Pure Fe 

1185K 

TC                               1043K 

Figure 1.1: The Fe-C phase diagram, maps all stable phases with blue regions. This figure was
constructed using the 1992 phase diagram developed by Okamoto, et. al. [1]. The phase regions
labeled rt refer to the body-centered-cubic (bcc) solid solution phase, while the phase regions labeled
ht refer to the face-centered-cubic (fcc) solid solution phase.

for early blacksmiths. Pure iron is also a relatively soft and ductile metal, which limited the early

use of iron to small domestic applications. The discovery of steel occurred nearly 1000 years later,

providing much greater strength and revolutionizing weaponry [2]. But producing quality steels

was quite difficult for early man, who could not appreciate the thermodynamic forces driving his

processes.

The methodologies that lead early blacksmiths to high strength steels were tedious, and provided

many opportunities for failure with small changes in temperature or chemical composition. When

smiths reheated their pure worked iron in a charcoal fire, they were unknowingly diffusing small

quantities of carbon into their material. Without realizing it, early smiths were heating iron through

the polymorphic transition into the face-centered-cubic structure. This phase has many interstitial

locations for carbon atoms to occupy, and will support carbon concentrations up to 8 atomic %.

Iron is strengthened by adding only 1-2 atomic % carbon, but if larger quantities are diffused at

high temperatures, the mixture will become a hard, brittle, unworkable material which was referred

to as pig iron. Longer heating times increased carbon concentration in steels at a rate which varied
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with temperature. But when the temperature of the iron carbon solid solution is lowered back to

the body-centered-cubic phase stability range, the carbons have fewer favorable interstitial sites and

attempt to diffuse out to form Fe3C shown on the left side of the phase diagram in Fig 1.1. However

if this diffusion limited process is interrupted, by rapidly lowering the temperature of the alloy,

the carbon atoms get stuck in unpreferable interstitial sites and they distort they crystal structure

locally, resulting in a significantly harder material called martensite.

This was the true birth of steels. The rapid quenching of hot Fe-C alloys in water can provide

nearly a five fold increase in strength, making a product much harder than bronze, a Cu-Sn alloy,

which was the technological standard of the time [2]. Once it was realized that the strength of steels

could be adjusted by thermocycling alone, the technological potential was quickly realized. Today

martensitic steels still provide the best strength per cost per unit volume of modern engineered

materials [3].

1.2 The Dawn of Thermodynamics

The physical phenomena early man explored in manipulating metal alloys is now encompassed in

the fields of modern thermodynamics and metallurgy. They refined ore into metals using heat in

early furnaces. These metals were alloyed, heat treated, and worked by hand, adding a variety of

properties to the components that are now understood to come from the atomic and microstructural

arrangements these processes induced.

The efficient and effective processing of metals was a great driver of thermodynamic under-

standing. Thus modern thermodynamics grew up beside the industrial revolution, when the old

methodologies of metal working were traded for modern processes of great scale. The pioneering

work of Josiah Willard Gibbs laid the groundwork for our modern understanding of phase diagrams

and material equilibria [4]. Gibbs was a mathematician by training and focused on the geometries

of early phase maps to draw connections between phase stability, energy and entropy. The Gibbs

free energy, G,

G = H − TS (1.1)

is related to the enthalpy, H, temperature, T , and entropy, S, of a substance in a given state.

The early work of Gibbs emphasized the generality of thermodynamic principles to include material

systems of all kinds [4]. His pioneering insights slowly brought scientific unity to the practices of

chemical metallurgy, by uncovering the underlying principles in the centuries of collected physical

observations and material preparation methodologies.

Around the same time, great scientific minds were beginning to quantify the nature of heat in

solids. The Einstein model of solids found a quantum mechanical description of lattice vibrations as

quantum harmonic oscillators [5]. Peter Debye improved on this model to encompass the observed
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low temperature heat capacity behavior [6]. This laid the groundwork for physical interpretations

of observed thermodynamic properties in solids.

It was quickly understood that the unique polymorphism of iron provided for the great diversity

of technological properties of iron-based alloys. Improving iron-based steels was of intense industrial

interest, and thus improved thermodynamic understandings were readily applied to iron alloys.

Improvements in calorimetry around the same time produced experimental measures of free energy

derivatives. Attempts to quantify the free energies driving the diverse microstructures of steels

quickly followed. An early assessment of the free energies of iron was provided by Austin as shown

in Fig. [7].

bcc fcc bcc

Figure 1.2: The free energy of bcc (α-Fe) and fcc (γ-Fe) extracted from calorimetry measurements
[7].

This was the beginning of physical metallurgy, where detailed methodologies could finally be

understood in terms of physical consequence. The chemical consequences of iron’s polymorphic

phase transitions were mapped on phase diagrams where thermodynamic insight was used to ex-

plore new compositions. The equilibrium positions of carbon in iron changes substantially with

crystal structure, and cementite or Fe3C will precipitate for many compositions at modest temper-

atures. The mechanical effects of stable carbides cementite, and other less stable configurations

were heavily studied to understand the mechanical responses of steels with varied thermal histo-

ries. Phase transformation kinetics were understood in terms of diffusion limited formation of stable

carbides and metastable structures. And understanding the microstructure-related mechanical prop-

erties that evolved under various thermocycling conditions became the focus of decades of modern
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steel-metallurgy.

Structural steels weren’t the only technological materials to highlight the interesting physical

behavior of Fe during the industrial revolution. The unique physical properties of Fe also participate

in materials that are famous for something other than their strength. The 1920 Nobel prize in

physics was awarded to Charles Guillaume “in recognition of the service he has rendered to precision

measurements in physics by his discovery of anomalies in nickel steel alloys” [8]. The anomaly that

so captivated the Nobel committee was a thermo-volume behavior of FeNi alloys resulting in a near

vanishing thermal expansion for a wide temperature range at a specific composition. The Fe64Ni36

Invar composition takes a disordered face centered cubic structure, and exhibits a thermal expansion

coefficient which is more than 10 times lower than the thermal expansion of Fe, Ni, and other

distant FeNi compositions. Invar materials were quickly deployed to improve the accuracy of clocks

and many other sensitive measurement techniques, even though the physical origin of Invar eluded

material physicists nearly another century. Since Guillaume’s initial discovery a number of other

iron transition metal alloys have been found to exhibit Invar behavior, including FePt and FePd.

The anomalously low thermal expansion exhibited by these alloys is caused by temperature-induced

magnetic transitions which exhibit magneto-volume behavior.
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Chapter 2

Crystals and Phonons

2.1 Crystal Lattices

Both the models of Einstein and Debye relied on the notion of crystalline solids. Which was verified

by the early work of W. H. and W. L. Bragg [9]. The x-ray pattern observed with Bragg diffraction

is the result of regularly repeating arrays of atoms in crystalline materials. The arrangement of the

atoms in a crystal can be reduced to a set of translational symmetry operations that relate every

atomic position in a perfect crystal onto all equivalent positions, thus defining the lattice symmetry

of crystalline solids, and simplifying their structure to a primitive unit cell that may be tessellated

to map out every lattice position. One may then define lattice translation vectors, r, as

r = x1a1 + x2a2 + x3a3, (2.1)

where xj are integers and a1, a2, and a3 are the primitive lattice translation vectors, where a1·a2×a3

defines the primitive unit cell volume. A reciprocal lattice can then be defined for each type of lattice,

based on the constraints of Bragg’s law, which observed the relationship between the wavevector

of the incoming radiation and the structure of the crystal lattice. The reciprocal lattice has a

complementary set of vectors, q, defined as

q = y1b1 + y2b2 + y3b3, (2.2)

where the prefactors yi are again integers and b1, b2, b3 are defined as the primitive vectors of the

reciprocal lattice. These special reciprocal space vectors (also referred to here as q-space vectors)

can be constructed from the real space lattice vectors as

b1 = 2π
a2 × a3

a1 · a2 × a3
, b2 = 2π

a3 × a1

a1 · a2 × a3
, b3 = 2π

a1 × a2

a1 · a2 × a3
. (2.3)

The primitive cell of reciprocal space is commonly referred to as the first Brillouin zone.
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The principles of lattice symmetry discussed here can easily be extended to include compounds

with multiple atomic species. In this case the primitive unit cell is still the smallest volume that

can be tessilated to map all space, defined by three primitive lattice vectors. The only distinction

is that the lattice has a basis, which is typically described by vectors that connect the positions of

unique atoms in the primitive cell. It is within this symmetry that we can now begin to define the

lattice modes, or quanta of vibrations called phonons [10].

2.2 Phonons

The equilibrium interatomic distances offer an energy efficient packing that optimizes the interactions

of the atomic electrons. The positions geometrically optimize the interatomic forces to set the

equilibrium distances. We will describe this potential energy of the interatomic interaction as φ(R),

where R is the distance between a pair of atoms. The potential energy of a crystal, U , can then be

described by summing over all the pairs of atoms in a crystal,

U =
1

2

∑
i,j

φ(ri − rj). (2.4)

If an atom indexed by i is perturbed a small distance from its equilibrium position, ri, to a new

position, ri + ui, the neighboring unperturbed atoms would exert a force on the displaced atom

to return it to its equilibrium position. A Taylor expansion of the potential energy U for small

displacements of the atoms, ui, from their equilibrium positions gives

U =
1

2

∑
i,j

φ(ri− rj) +
1

2

∑
i,j

(ui−uj) ·∇φ(ri− rj) +
1

4

∑
i,j

[(ui−uj) ·∇]2φ(ri− rj) +O(u3
i ). (2.5)

Here the first term is the constant equilibrium crystal potential, the linear second term is the restoring

forces that sum to zero over the crystal, and the remaining term is the harmonic term of the original

potential φ(R), which can be written as

Uh =
1

4

∑
i,j&µ,ν=x,y,z

(ri − rj)µ
∂2φ(ri − rj)

∂(ri − rj)µ∂(ri − rj)ν
(ri − rj)ν . (2.6)

This simplification is called the harmonic approximation because it neglects higher order terms in

the potential. The gradient term at the heart of this expression gives the force constant between

two atoms in a specific Cartesian direction. This expression can be generalized by defining a force

constant matrix, K, that encompasses all the atomic interactions represented in the derivatives of

φ:

Uh =
1

2

∑
i,j

uiK(ri − rj)uj . (2.7)
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With the proper symmetry constraints and Born-von Kármán periodic boundary conditions,

we cleverly select a general description of the displacements that is appropriate for translational

symmetry:

ui(t) = εei(k·ri−ωt), (2.8)

where ε is the polarization of the atomic displacement in Cartesian coordinates. We can solve for

the equations of motion given our harmonic potential, where

M üi = −∂U
h

∂ui
= −

∑
j

K(ri − rj)uj . (2.9)

Our system of N atoms has 3N discrete vibrational modes that can be supported by the crystal,

and our equation of motion becomes

Mω2ε =
∑
j

K(rj)e
−ik·rjε = D(k)ε. (2.10)

This expression is called the dynamical matrix expression, where D(k) is the dynamical matrix.

The dynamical matrix contains the force constants (or potential derivatives) for every pair of atomic

interactions in the crystal. For an atom in a real crystal we know that the largest contribution

to the restoring forces will come from the atoms immediately around it, so we can truncate the

dynamical matrix to include only the most pertinent nearest-neighbor restoring forces, often without

a significant loss of accuracy. The dynamical matrix expression can be solved for the normal mode

frequencies ω and mode wavevectors ε at every k in reciprocal space.

This methodology connects the symmetry of the lattice with the allowed normal modes and

the interatomic forces driving them; however, quantum mechanical considerations are required to

extend this description of lattice modes to quantized vibrational excitations called “phonons”. These

considerations ensure that vibrations are properly counted a low temperatures, where their discrete

nature becomes apparent. The energy of a crystal is described by 3N quantum harmonic oscillators

with frequencies from the dynamical matrix expression, but governed by Bose-Einstein occupation

statistics. Thus the Hamiltonian for a crystal transitions from its classical definition,

H =
1

2M

∑
i

P 2
i +

1

2

∑
i,j

uiD(ri − rj)uj (2.11)

to its quantum representation,

H =
∑
k,s

h̄ωs(k)(α†ksαks +
1

2
) =

∑
k,s

(nks +
1

2
)h̄ωs(k), (2.12)
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where the phonon creation operator α†ks and phonon annihilation operator αks are defined as

α†ks =
1√
N

∑
i

e−ik·riεs(k)

[√
Mωs(k)

2h̄
ui − i

√
1

2h̄Mωs(k)
pi

]
(2.13)

and

αks =
1√
N

∑
i

e−ik·riεs(k)

[√
Mωs(k)

2h̄
ui + i

√
1

2h̄Mωs(k)
pi

]
(2.14)

and

nks = (e
h̄ωs(k)
kBT − 1)−1. (2.15)

The important distinction between these two models is readily observed in experimental heat capac-

ities. The heat capacity, C, is the temperature derivative of the internal energy of a material, U . In

the classical harmonic oscillator formalism, U(T ) is a linear function of T , so the heat capacity

C =
∂U

∂T
=

∂

∂T
(Ueq + 3NkBT ) = 3NkB (2.16)

is constant for all temperatures. However, the heat capacity of a set of quantum harmonic oscillators

contains a temperature-specific term

C =
∂U

∂T
=

∂

∂T
(Ueq +

∑
ks

(nks +
1

2
)h̄ωs(k)) =

∑
ks

∂

∂T
(nks)h̄ωs(k) =

∑
ks

∂

∂T

h̄ωs(k)

e
h̄ωs(k)
kBT − 1

, (2.17)

which recovers the experimentally-observed temperature dependence of the heat capacity at very

low temperatures. Using quantum harmonic oscillator formalism in the calculation of lattice ther-

modynamic variables will include the zero-point vibrational energy of the solid [11].

2.3 Observations of Phonons

Direct measurements of phonons can provide valuable insight into the physical basis for thermal

behavior. The first maps of phonons in solids were completed using reciprocal-space-resolved meth-

ods like triple-axis inelastic neutron scattering from single crystals. The geometrical nature of these

measurements permit fine control of the incoming energy and momentum of the neutron, and similar

control of the energy and momentum of the outgoing neutron may be detected. Shull and Brock-

house pioneered early work on neutron scattering techniques that were capable of resolving phonons

in solids. Measurements of the phonons of bcc α-Fe followed immediately after the development

of these instruments, with two separate papers reporting the phonon dispersions of iron published

in 1967 [12, 13]. The early phonon dispersion measurements of iron are shown in Fig.2.1, where

triple-axis neutron measurements generated the set of points that are resolved in q-space and en-
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ergy. These points are then analyzed with the harmonic model developed in the previous section.

Figure 2.1: Phonon dispersions from triple-axis inelastic neutron scatter (points), overlaid with
Born-von Kármán model fits and the resulting phonon density of states shown on the right [12].

The phonon dispersion points are fit to force constants in a dynamical matrix, typically using a least

squares optimization that seeks to minimize the system of equations against all the observed phonon

measurements. This requires truncating the dynamical matrix to a subset of all the interactions in

the material, typically limiting restoring forces to the closest neighboring atoms. Minkewicz utilized

the atomic interactions for the first through fifth nearest neighbors, obtaining the fits shown in

Fig. 2.1. The force constants can be used to describe phonon behavior in other portions of q-space

where measurements were not collected. They can also be integrated over all of q-space to provide

a phonon density of states (DOS), which is also shown in Fig. 2.1. The phonon density of states can

be readily used to describe the phonon thermodynamics of materials.

Measurements of phonon dispersions using triple-axis neutron spectrometers are routinely con-

ducted today at research reactors. Additionally, methods have been developed to measure the

complete phonon DOS of polycrystalline materials using neutron time-of-flight techniques, and spe-

cialized inelastic x-ray scattering methods that are discussed in the next chapter. Phonon DOS

measurements are typically collected much more quickly than dispersion curves, and can be directly

used in thermodynamic expressions without fitting. These methods offer the advantage of measuring

every phonon state available to a material, but they do so without the q-space resolution provided by

phonon dispersion measurements. Therefore, mapping the interatomic forces to the phonon density

of states is less direct because the reciprocal space information has been lost. Sharp features in the

phonon density of states called van Hove singularities may be matched to some points on phonon

dispersion, but direct mapping is complicated. Because the phonon DOS is integrated over all of
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q-space, there is no way to distinguish between degenerate features. It was therefore believed that

in practice, the interatomic force constants cannot be directly extracted from phonon DOS, since

the relationship is not invertible. However fits may still be accomplished by iteratively exploring

various force constant configurations and comparing the density of phonon states they generate with

experimental observations. This has been demonstrated on relatively simple lattices in elemental

solids and binary alloys when sufficient information is available, [14–18] and will be discussed in

Section 5.2.
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Chapter 3

Thermodynamics

3.1 Thermodynamic Relations

Thermodynamics was useful to 20th century metallurgists insofar as it can be used to predict and

extrapolate properties beyond those directly measured. A functional thermodynamic understanding

of iron was readily applied to understanding the technologically-relevant properties of iron alloys.

The Gibbs free energy of a solid, G, can be divided into enthalpy and entropy terms. Under

constant volume conditions, the enthalpy of a solid, H, is largely determined by the internal energy,

U , which can be characterized as the energy involved in assembling a set of atoms into their solid

configuration. The entropy of a solid, S, enumerates the way heat is stored in a material. Both en-

thalpy and entropy can be extracted by integrating the measured heat capacity at constant pressure,

CP using the expressions

H(T ) =

∫ T

0

CP (T ′)dT ′ (3.1)

and

S(T ) =

∫ T

0

CP (T ′)

T ′
dT ′. (3.2)

In solids at finite temperatures (above ambient conditions) the free energy contribution from en-

tropy, TS, changes more rapidly than the enthalpy, H, dominating the thermal effects on the free

energy. For ordered crystalline solids, lattice vibrations make the largest entropic contribution, Svib.

Electronic excitations also create entropy, Selec, though noticeably smaller than vibrational entropy.

Solids that exhibit magnetic ordering will also have magnetic excitations that perturb spins from

their ground state orientation, providing magnetic entropy, Smag. These three contributions, vibra-

tional, electronic, and magnetic excitations, enumerate the ways that heat can be stored in iron and

comprise its entropy. These contributions are hoped to be adiabatically separable, providing the

expression

S = Svib + Selec + Smag. (3.3)
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Understanding the entropy of a solid will greatly inform the temperature-dependent behavior

of its free energy, which is essential to developing the theoretical basis for high temperature phase

diagrams. Early thermodynamic research sought to reconcile these physical excitations with the

aggregate thermodynamics that drives phase transitions. Experimental heat capacities provided a

basis for comparing observed thermodynamic properties with theoretical models. But direct mea-

surement of the phonon density of states of a material can also provide complementary information

that may be used to assess the phonon-specific contributions to thermodynamics.

The phonon contribution to the entropy, Svib, may be calculated directly from the phonon DOS,

g(E), at the temperature that the phonon DOS was acquired

Svib(T ) = 3kB

∫
gT (E){(n+ 1) ln(n+ 1)− n ln(n)}dE. (3.4)

Where the integral goes over all phonon energies, and the Planck function n is a function of energy

and temperature only, simplified from Eqn 2.15 to n = (e
E

kBT − 1)−1. Additionally the phonon

contribution to the heat capacity, Cvibp , may be calculated from the phonon density of states,

Cvib
p =

3

kB

∫
∂n

∂T
gT (E)EdE. (3.5)

These expressions provide another route to the thermodynamic behavior of materials that focuses

on the phonon contributions alone, by using the phonon density of states. Since the phonon con-

tribution to thermodynamics is almost always the largest thermodynamic contribution at finite

temperatures, early thermodynamic models focused on quantifying the phonon behavior through

various formalisms.

3.2 Debye Model

The Debye model for the vibrational response of the solid makes use of the quantum mechanical

nature of phonons, but largely ignores the details of how phonons relate to the symmetry of the

structure. Debye simplified the normal mode relationships of a crystal considerably by assuming

that the phonon frequencies ω obeyed a linear relationship with respect to the reciprocal lattice

vector, k, ω = c|k|, where c is the sound velocity of the phonon. The assumption of linear phonon

branches only applies rigorously in the long wavelength limit (at very low |k|). The complicated

mathematical formulations of the previous section are simplified to three isotropic acoustic phonon

branches. By selecting an isotropic cutoff for the outer limit of reciprocal space, kD = 3
√

6π2ρ,

where ρ is the atomic density of the material, the number of normal modes available to the material

is properly set at 3N. The Debye model for vibrations has only one free parameter, the Debye

temperature ΘD = h̄ckD, which can be obtained with the slope of the linear acoustic branches, c.
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The identical linear isotropic acoustic branches can be integrated over the spherical Brillioun zone

to provide a phonon density of states, which enumerates the available phonon modes in the crystal

by their energy level. The Debye heat capacity and phonon density of states are plotted in Fig. 3.1

for ΘD = 420, which is the Debye temperature commonly used for α-Fe.
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Figure 3.1: Debye model phonon density of state for ΘD = 420, a typical value used for α-Fe [19].
The corresponding vibrational heat capacity compared with α-Fe experimental heat capacity [20].
The Debye vibrational entropy compared with the total entropy of α-Fe from the SGTE database
[21]

The heat capacity derived from the Debye model is capable of reproducing both the empirical

Dulong-Petit high temperature limit, and also the low temperature T 3 behavior observed in measured

heat capacities. The Debye temperature is commonly determined by fitting to low temperature

heat capacity data. Once a Debye temperature is obtained, the full vibrational thermodynamics

of a crystalline solid are mathematically accessible. This model is, however, a strictly harmonic

approach, which is often too simple for the behavior of the phonon modes in real crystals. The

harmonic formalism fails to explain natural phenomena like thermal expansion of solids and thermal

resistivity of materials. These effect arise from other interactions that are truncated in our expression

for the interatomic potential. The inability of the Debye model to deal with the physical effects of

thermal expansion led to several modifications that are called “quasi-harmonic” models.
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also strongly temperature dependent, at least for the

temperature interval covered in this experiment. Similar

behaviour is observed, for example, in �-iron (Kohlhaas et al.,

1967), associated with the ferromagnetic phase transition at

about 1045 K. This competition between the thermal expan-

sion arising from vibrations of the atoms and the increase in

volume with decreasing temperature arising from spontaneous

magnetostriction provides the basis for the family of `Invar'

alloys (such as Fe with 36 wt% Ni), which have very low

thermal expansion around room temperature.

Current studies of Fe3C are mainly concerned with its

possible occurrence in the Earth's core; it is, therefore, its

physical properties in a high-pressure `non-magnetic' state

(with Pauli paramagnetism but in which there are no local

magnetic moments on the atoms) that are of most interest to

Earth scientists. Such a phase only exists above �60 GPa

(VocÏadlo, Brodholt et al., 2002) and is therefore not readily

accessible experimentally. The accessible high-temperature

paramagnetic phase (in which there are local magnetic

moments but they are randomly disordered) will, however, be

more representative of the core-forming phase than the

ferromagnetically ordered material (for further discussion see

below). To determine the thermal expansion coef®cient of this

phase in the form tabulated by Fei (1995), the eight data points

shown in Fig. 2 for which T � 460 K were ®tted to

V�T� � VTr
exp

RT
Tr

��T� dT

" #
; �1�

where VTr
is the volume at a chosen reference temperature, Tr,

and �(T) is the thermal expansion coef®cient, having the form

��T� � ao � a1T: �2�
This ®t gave values of VTr

= 154.8 (1) AÊ 3, ao = ÿ4 (2) �
10ÿ5 Kÿ1 and a1 = 1.6 (3)� 10ÿ7 Kÿ2, for a chosen Tr of 300 K.

The large standard uncertainties in ao and a1 arise from the

limited temperature range and the small number of data

points available. The form of these parameters, with ao

negative and a1 strongly positive, re¯ects the strong

temperature dependence of � seen in the data, but probably

also implies that it would be unwise to use them to extrapolate

� to much higher temperatures. Expressed in this way, � takes

values of 3 (2) � 10ÿ5 Kÿ1 at 460 K and 6 (3) � 10ÿ5 Kÿ1 at

600 K, in good agreement with the results of Reed & Root

(1998) from which a temperature-independent value of 5.2 (2)

� 10ÿ5 Kÿ1 can be derived [de®ned as � = (1/V)(dV/dT)].

J. Appl. Cryst. (2004). 37, 82±90 I. G. Wood et al. � Cementite 85

research papers

Figure 3
(a) Unit-cell volume of Fe3C as a function of temperature. The symbols
show the measured data points (the estimated standard uncertainties lie
within the symbols). The line shows the results of the ®t to equation (4).
(b) Volumetric thermal expansion coef®cient of Fe3C as a function of
temperature. The symbols were obtained by numerical differentiation of
the data shown in (a). The line was obtained via equation (4).

Figure 2
Lattice parameters of Fe3C as a function of temperature; the error bars
shown are at �1 the estimated standard uncertainty.

Figure 3.2: The experimental volume expansion of pure iron from low temperatures until melting
[22]. The observed thermal volume expansion of Fe3C through the 460K magnetic transition [23].
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3.3 Quasi-Harmonic Models

Quasi-harmonic models attempt to rectify the shortcomings of the harmonic models by taking into

account the effects of thermal expansion. In a strictly harmonic model, the vibrational degrees of

freedom have no dependence on the volume of a solid or its temperature. In 1926, Eduard Grüneisen

proposed a thermodynamic equation of state for matter that incorporates the vibrational effects from

changes in volume at finite temperatures. He defined the phonon mode Grüneisen parameter, γj ,

γj = −∂lnωj
∂lnV

|T ' −
V

ωj

∆ωj
∆V

, (3.6)

a unitless scaling parameter defined in terms of the phonon frequency, ωj , and the volume, V ,

of the solid [24]. Grüneisen used this description to develop a thermodynamic equation of state

which incorporates quantum mechanical lattice contributions. However experimental data on γj for

individual phonons is extremely rare.

More often an average bulk Grüneisen parameter γT is constructed to model the bulk material

behavior

γT = V
∂P

∂U
|V =

αKT

CV ρ
(3.7)

where V is the volume, P is pressure, α is the thermal volume expansion, KT is the isothermal

bulk modulus, CV is the heat capacity at constant volume, and ρ is the atomic density [24]. While

the microscopic Grüneisen parameter, γj , is an exact thermodynamic definition, models that use

the thermal Grüneisen parameter, γT , often include approximations such as an isotropic crystalline

response. However, γT can be readily obtained from ambient measured bulk properties of a material,

yielding values typically lie between 1 and 2 for most well-behaved materials [24]. The thermal

Grüneisen parameter for α-Fe is 1.81 [24], and the thermal Grüneisen parameter for Fe3C is between

2.0 and 2.4 depending on which values for the bulk modulus you trust. This γT can then be used in

the microscopic definition to scale observed phonon frequencies with temperature

ω(T ) = ω0(1− γT
V − V0

V0
). (3.8)

If the Debye model provides the phonon DOS, then the Debye DOS can be scaled with thermal

expansion to provide the QH vibrational entropy of a material. However, the Debye DOS can

readily be replaced with an experimentally determined phonon density of states without altering the

nature of the model. A quasi-harmonic model that utilizes an average thermal γT has no frequency

dependence; all phonons shift in energy the same way. The effect of the quasi-harmonic model is

completely independent of the vibrational spectra being scaled.

The thermodynamics effects of thermal expansion based phonon softening (phonons shift to lower
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energy) can be ascertained by calculating the heat capacity and the vibrational entropy from the en-

ergy shifted phonon DOS. The quasi-harmonic vibrational entropy can be calculated using Eqn. 3.4,

and the heat capacity can be calculated using Eqn. 3.5. Under the quasiharmonic approximation

the heat capacity can also be re-written to directly include thermal expansion using a Grüneisen

parameter without using the phonon DOS. This expression is called the Nerst-Grüneisen expression,

CP = CV (1 + 3γTα(T )T ), (3.9)

where α(T ) is the linear thermal expansion. The thermodynamic contributions from the quasi-

harmonic model are compared with the harmonic Debye model curves of the previous section in Fig.

3.3.
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Figure 3.3: Debye model phonon density of state for ΘD = 420, a typical value used for α-Fe [19].
The corresponding vibrational heat capacity compared with α-Fe experimental heat capacity [20].
The Debye vibrational entropy compared with the total entropy of α-Fe from the SGTE database
[21].

High temperature calculations with the QHA often employ a constant Grüneisen parameter,

though the bulk thermal properties encompassed in the thermal Grüneisen parameter have been

observed to vary with temperature in a number of materials. In an attempt to rectify this problem,

a temperature-dependent Grüneisen parameter can be used. For the case of pure iron, a wealth of

information on temperature-dependent properties is available. Multiple assessments of temperature

dependent thermal expansion [22, 25–27] and bulk modulus [28–30] can be used. The heat capacity

at constant volume, CV , can also be calculated in a number of ways with different approximations.

We examined the temperature dependence of the Grüneisen parameter by constructing two

separate functions for γT (T ) that sampled the full range of observed values in the literature. The

results of these assessments are shown in Fig. 3.4, and show variations in γT (T ) between 1.5 and

2.1 over the temperature range of interest. Phonon frequencies can be scaled according to the

temperature-dependent Grüneisen parameter using the following expression:

ω(T ) = ω0

Ti=T∏
Ti=1

[1− γT (Ti)(
V (Ti)

V (Ti−1)
− 1)], (3.10)
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ΓTHTL: KT-Rayne�Dever
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Figure 3.4: The temperature-dependent Grüneisen parameter γT(T ) assembled from various litera-
ture values. Black γT(T ) from KT [28, 30], α [22], CV from a Debye model (ΘD=420K), and ρ [22].
Red γT(T ) from KT [28, 29], α [25], CV from 14K NRIXS measurements, and ρ [26].

which reduces to Eqn 3.8 when γT is a constant. The result of this more careful calculation was nearly

the same as calculated quasi-harmonic change in frequency for a constant γT = γT (300K), as shown

in the left panel of Fig. 3.3. The resulting changes in the vibrational entropy from including γT (T )

were always below 0.5% at 1180K. Therefore, in the case of bcc iron, the addition of a temperature-

dependent Grüneisen parameter has only a small effect on the calculated phonon energies. The

temperature dependence is influenced much more by the selected thermal expansion values.

Experimental heat capacities provided some of the earliest data for comparing observed thermo-

dynamic properties with theoretical models. Experimental heat capacities and the thermodynamic

connections to the free energy provided a theoretical framework for the exploration of many metal

alloys, including iron. Efforts to exploit the predictive powers of thermodynamics of elemental met-

als to understand alloys drove many early (and modern) thermodynamic studies. Early studies of

thermodynamic contributions from various physical excitations like those conducted by Weiss em-

ployed simple Debye-like model [19]. Weiss sought to categorize the thermodynamics contributions

for pure iron by applying theoretical frameworks to the experimentally determined heat capacity. He

used a quasi-harmonic Debye model to account for the vibrational contribution and linear electronic

Grüneisen parameter model to account for the electronic contribution. Assuming the remainder

to be magnetic, he quantified the thermodynamic contributions to the free energy of pure iron in

Fig 3.5. This assessment suggested that in the absence of magnetism, FCC iron should be the

entropically-stable configuration. However, even this early assessment by Weiss pointed out that

a large quantity of the heat capacity, and an even greater share of the entropy, evolved from the

lattice vibrations as shown in Fig. 3.5. The model he used, however, is a quite simplified version,
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Figure 3.5: The enthalpic and entropic contributions to free energy [19].

and captures only aggregate vibrational behavior. His assumption that magnetic entropy must be

the remaining unassigned entropy points out a shortcoming that has long thwarted thermodynamic

assessments of magnetic materials. Few models exist that can accurately describe finite temperature

magnetic disorder, and there are even fewer experimental studies for comparison. The state of spin

disorder in magnetic materials at finite temperatures remains an active field of study today [31].

3.4 Anharmonic Effects

The harmonic approximation of the interatomic potential simplifies many aspects of the physics of

vibrations, and this approximation is normally valid for low temperatures. However there are several

important physical phenomena that cannot be resolved by harmonic descriptions. The harmonic

model assumes that phonons are quantum harmonic oscillators, which are non-interacting. However,

we know that phonons do interact in real systems; phonons may interact with each other and

also with other excitations that occur in real materials. Thermal expansion is the most obvious

anharmonic thermal effect, and while the quasi-harmonic approximation may improve the accuracy

of thermodynamic models to deal with observed thermal expansion – it is by no means a physically

rigorous approach. Nonharmonic interactions also result in routinely-observed phenomena like finite

thermal conductivities, which result from phonon scattering events that indicate real phonons have

finite lifetimes. Phonons are also known to play a role in electrical resistivity, where electronic

carriers scatter, creating phonons that can increase the temperature of a material.

Models that go beyond the harmonic approximation typically do so using perturbation theory.

Additional terms from the Taylor series in Eqn. 2.5 are retained for a more physical description of

the interionic potential. Additional terms in the periodic potential are often thought of in terms of

the quantum interactions they might produce. The cubic term encompasses three phonon processes,

such as two phonons combining to produce a new one, or a phonon decaying into two others. The

quartic term, by extension, enumerates the four phonon processes, including a phonon decaying into
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three new phonons, or two phonons interacting to create two new phonon states. These processes are

governed by the laws of energy and momentum conservation. Thus not all combinations are possible;

new states must have the proper energy and momenta, which are governed by the allowed crystal

modes and described by the phonon dispersions. While the probability of multiphonon processes are

low at low temperatures, they do have appreciable effects at finite temperatures when large phonon

populations are present in the material.

In perturbation theory, it is often possible to keep only the next highest order term to improve

on the physical description. While this could be done with the interionic potential, there are many

physical arguments for keeping both the cubic and quartic term. The cubic term is asymmetric in

nature, creating physical situations where the potential may become unstable if only this term is

applied. There are also many crystalline symmetry constraints on the phonon processes produced

by the cubic interaction term that limits the number of anharmonic interactions that are described

by this formalism. Incorporation of the quartic term improves the limiting behavior of the net

potential (since a Hamiltonian retaining only the cubic term may be unstable) [11]. Further, ob-

servations of high temperature phonon behavior suggest that in many instances quartic interactions

may contribute comparable thermodynamic effects to those from cubic term interactions.

Experimental characterizations of phonons in materials at high temperatures can begin to quan-

tify the importance of these effects. Anharmonic phonon-phonon interactions affect the observed

phonon spectra by both shifting their absolute energies, and also broadening their energy and q-

space signatures. This is apparent in measurements of phonon dispersions and DOS measurements

when the thermal broadening of specific features overcomes the instrument resolution, resulting in

a broadening that scales with temperature. In high temperature phonon measurements of bcc Ti,

Zr, and Hf, very broad phonon signatures have been resolved in specific q-space directions. This

anomalously large broadening extends over a significant energy range and has been implicated as

a dynamic precursor of the first-order martensitic transformation between the bcc and hexagonal

crystal structures [32–34].

The anharmonic phonon broadening caused by more typical cubic and quartic interactions are

expected to be Lorentzian in nature [35]. In phonon DOS measurements the anharmonic broadening

of DOS features can be modeled using a modified Lorentzian function [14, 36]. This construction

provides a route for estimating mean phonon lifetimes from spectra broadenings. Results from

investigations of relatively isotropic elemental metals have shown that anharmonic effects are often

linear with temperature.

A detailed mathematical derivation of the effects of the cubic perturbation theory terms in the

calculation of thermodynamic variables is performed by Wallace [35]. He states that to leading or-

der in perturbation theory, anharmonic effects on the entropy are likely to be linear in temperature.

Anharmonic free energy contributions have quadratic temperature dependence accordingly, both in
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contributions from the entropy and the internal energy. When considering only lattice contributions,

anharmonic effects should cause the heat capacity to increase linearly in temperature, rather than

approaching the Dulong-Petit limit. Wallace also cautions that since phonon measurements inher-

ently capture the anharmonic phonon frequencies, the expression for calculating thermodynamic

contributions given in Section 3.1 should be used with some caution. Using measured frequencies

in calculating the vibrational entropy as given in Eqn 3.4 is accurate to first order in perturbation

theory. But the anharmonic calculation of the heat capacity using Eqn 3.5 or internal energy from

measured anharmonic vibrational frequencies can lead to errors in accounting for large anharmonic

contributions.
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Chapter 4

Experimental Methods

4.1 The Mössbauer Effect

Rudolf Mössbauer won the 1961 Nobel Prize in Physics for “his researches concerning the resonance

absorption of gamma radiation and his discovery in this connection of the effect which bears his

name” [8]. The effect which bears his name is the recoilless nuclear resonance absorption of gamma

rays by nuclei. The concept of resonant nuclear absorption and flourescence preceded Mössbauer’s

initial work; however, the phenomena had not been observed efficiently because it was argued that

the nuclear recoil should alter the energy of the photon emitted from the decay of the nuclear excited

state. When Mössbauer observed this phenomena in 1958 he realized that recoilless nuclear resonant

absorption was possible because the recoil was not confined to a single nucleus, but rather the entire

crystal in which that atom was embedded. The recoil momentum is taken up by the entire crystal,

whose mass is much much greater than a single nucleus, and accordingly the energy shift associated

with the recoil upon gamma ray emission is negligibly small [37]. The efficient nuclear resonance

comes from a finite probability that the energy transferred to the crystal lattice during a nuclear

decay occurs without the excitation of a vibration in the lattice. These processes produce gamma

rays capable of re-exciting other resonant nuclei in the lattice. There are many nuclei that exhibit

recoil-free resonance, but the ease of which a nuclear excitation can be induced and observed have

limited Mossbauer spectroscopy to a few more practical isotopes.

Mössbauer observed his effect by selecting the appropriate source and absorber pair. This pair

must contain the same nuclear isotope, but the source contains the Mössbauer isotope in an excited

state, while the absorber contains the same isotope in its ground state [38]. The recoilless nuclear

resonant gamma transition can then be observed by varying the energy of the gamma rays from the

source by the small energy of a Doppler shift. If a sufficiently thin absorber is employed, the trans-

mitted gamma ray intensity exhibits a Lorentzian lineshape with a width of twice the Lorentzian

energy width of the nuclear excited state [37]. This measurement can provide inherent information

about the nuclear excited state, but the crystal environment often alters the energy of the resonant
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absorption of resonant nuclei. The small energy alterations from hyperfine interactions produce

unique signals in Mössbauer spectroscopy about the local electronic environment of the resonant

nucleus. To date the Mössbauer effect has been demonstrated on more than 100 different isotopes,

but only a few are practical with conventional Mössbauer spectroscopy [38]. Rudolf Mössbauer’s

original work used the 191 isotope of iridium, but today 57Fe is the most commonly used isotope for

Mössbauer spectroscopy. The ubiquity of iron in many geological, technological, and biological ma-

terials makes 57Fe Mössbauer spectroscopy the most commonly employed nuclear resonant isotope.

Natural iron contains about 2% of the 57Fe isotope, which is sufficient for many studies of natural

materials. This thesis work is on iron alloys, so the following discussion of Mössbauer spectra will

focus on the 57Fe nuclear excitations.

Mössbauer spectroscopy utilizes a Doppler shift to sweep through energies around the nuclear

resonant energy. Depending on the local environment of the nuclei, a number of hyperfine interac-

tions can be identified in the spectra. These features appear as the splitting of the nuclear resonant

energy levels as a result of the local electronic environment at the nucleus. In addition to the recoil

free fraction, the number of nuclear excitations that produce a resonant recoil-free gamma ray, there

are three other quantities that are commonly measured with Mössbauer spectroscopy. These three

quantities are from the hyperfine interactions, and their schematic effects on the resonant nucleus

are illustrated in Fig. 4.1 and Fig. 4.2.

The isomer shift is a hyperfine interaction that is present in every Mössbauer spectrum. The

isomer shift is a measure of the electron density in the nucleus. It arises from size differences between

of the nuclear excited state and the ground state, which interact with the electron wave function at

the nucleus. The isomer shift results in a small change of the nuclear resonant excitation energy as

shown in Fig. 4.1. In the absence of other hyperfine effects, the isomer shift can be used to track

changes in occupation of the s-electronic states that have finite density at the nucleus.

The electric quadrupole splitting is another hyperfine interaction observed in the Mössbauer

spectra of many materials. This effect splits the excited state of the nucleus as part of an interaction

with the electric field gradient at the nuclear position. The electric quadrupole splitting arises from

the electric quadrupole moment of the nucleus, which has a different orientation in the nuclear

ground and excited states. In the presence of an electric field gradient, which occur at crystal sites

with less than cubic symmetry, the nuclear resonant feature in the spectra is split symmetrically

about the centroid dictated by the isomer shift.

The final hyperfine parameter is the magnetic hyperfine splitting, which further divides the

nuclear excited state in response to magnetic fields present in the material. A hyperfine magnetic

field at the nucleus lifts all degeneracies of the nuclear excited states, as the spin of the nucleus

interacts with the local magnetic field as shown in Fig 4.2. This creates a Mössbauer pattern with

6 features in ferromagnetic bcc iron, whose spacing can be directly related to the strength of the
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Figure 4.1: Changes in the nuclear excitation that correspond with an isomer shift and an electric
field gradient.
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Figure 4.2: Changes in the nuclear excitation that correspond with an isomer shift and a hyperfine
magnetic field.

magnetic field at the nucleus.

The hyperfine interactions of many resonant isotopes in different materials have been thoroughly

studied throughout the years, providing a near fingerprint recognition quality to this method. The

method is routinely used to characterize the different atomic environments present in both natural

and engineered materials. There is a 57Fe Mössbauer spectrometer on the Mars rover [39]. Addi-

tionally, the technique has been used to study dynamic phenomena such as valence fluctuations and

melting [40, 41].
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4.1.1 Nuclear Forward Scattering

New high-brilliance synchrotron sources enable a different approach to Mössbauer spectrometry.

The synchrotron offers a new way to excite resonant nuclei without radioactive sources. Ruby first

proposed this experimental arrangement in 1974 [42], though it was several years before synchrotron

Mössbauer spectroscopy (SMS), also known as nuclear forward scattering (NFS), was realized exper-

imentally. In addition to the high flux of third-generation synchrotron sources in the energy range

of several resonant nuclei, single crystal silicon monochromators played an important role in the

technique by refining the incoming x-ray spectrum [43].

The incoming synchrotron pulse interacts with the resonant nuclei, producing a coherent beam

in the forward direction that is modulated by the hyperfine splittings of the nuclear resonant states

[44](Smirnov for more detail). Unlike conventional Mössbauer spectrometry, which relies on a con-

tinuous photon signal modulated in energy, SMS uses a temporally-resolved photon pulse to excite

the nuclei. The synchrotron pulse arriving at the sample excites both the nuclear resonance and

many other atomic excitations. However the relatively long lifetime of the nuclear excited state

makes it possible to make high fidelity measurements of the temporal dependence of nuclear decays

long after electronic processes have abated. This effect is shown schematically in Fig. 4.3. This
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Figure 4.3: Synchrotron pulses arrive separated by 153ns. The signal from electronic excitations
(blue) occurs within a new nanosecond, while the signal from nuclear resonant excitations (orange)
can be monitored between pulses, when the background signal from other processes is extremely
low.

measurement technique is enabled by the synchrotron timing structure, which produces short pulses

of radiation followed by relatively long periods where no radiation arrives. When NFS spectra are

collected, the detector is gated electronically to reject photons emitted during the initial pulse arrival

and shortly thereafter. The NFS signal from nuclear resonant decay is then collected before the next

pulse arrives. Fast, low background avalanche photodiode detectors are essential for this work.

The results presented in this thesis were collected at the Advanced Photon Source at Argonne

National Laboratory. The Advanced Photon Source is the only facility in the country that routinely

runs NFS experiments. The phonon pulses at the Advanced Photon Source are approximately 34ps

in duration, and arrive at 153ns intervals under standard operating mode. This aligns well with
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the nuclear resonant lifetime of 57Fe, which is 141ns, permitting characterization of the interfering

temporal signal from the nuclear resonant excited states over approximately one nuclear lifetime.

NFS can be described as the Fourier transform of the more traditional Mössbauer spectroscopy

energy domain signal. The incoming pulse simultaneously excites all available resonant nuclei, and

the temporal decay of these excitations includes their interference, also known as quantum beats

[43]. Quantum beats develop in a transmitted NFS spectrum, providing information on the energy

splitting of the nuclear resonant levels. If only two nuclear resonant levels are present in a material,

the energy splitting can be inferred directly from the temporal width of the beat pattern T ≈ 1
∆E

[44]. However if more levels are present, or the spectra are significantly modulated by thickness

effects, the spectra are more complicated. Magnetic transitions that occur as a result of temperature

adjustments are particularly vivid in NFS spectra. NFS has been used as an in-situ monitor of

the state of magnetic order in a material. The abrupt loss of features as a magnetic material is

heated a valuable indication of the magnetic transition. These spectra are typically interpreted with

information from previous conventional Mössbauer studies and the use of specialized fitting tools

like CONUSS [45], which refines the hyperfine material parameters through iterative comparison

with the measured hyperfine spectra.

4.2 Nuclear Resonant Inelastic X-ray Scattering

The nuclear resonant inelastic x-ray scattering (NRIXS) technique makes use of nuclear excitations

to enable the study of vibrations in samples containing Mössbauer nuclei. The premise of acquiring

vibrational information of a material sample from Mössbauer spectroscopy was suggested by Rudolf

Mössbauer in his early work [37]. However an effective methodology for obtaining the vibrational

spectrum of a material was not demonstrated until decades later [46]. The interactions between

vibrations and nuclear resonant excitations was well understood as the method was developed, but

it took the high photon flux and timing structure of the synchrotron pulse to make these interactions

measurable [42]. The technique differs from many other measures of vibrational properties in that

NRIXS is incoherent scattering and inherently samples the full q-dependence of vibrations. The

NRIXS technique makes use of the relatively long lifetime of the nuclear excited state and the

timing of the synchrotron source to create a very low background technique that samples the full

phonon density of states of the nuclear resonant species. However, the technique is only sensitive

to the motions of resonant nuclei, which can be viewed as both a limitation and an advantage. The

limitation of this selectivity is that the resulting phonon DOS is only a partial density of states, i.e.,

the phonon spectrum of atomic motions of the resonant nuclei. The phonon DOS acquired from

NRIXS is therefore defined as a partial density of states (pDOS) for every alloy or compound, but is

a true phonon DOS for elemental materials. An obvious advantage of this selectivity is an absence
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of background signal. Since nuclear resonant isotopes are the only source of the time gated signal,

NRIXS does not suffer from background signals acquired from auxiliary equipment or materials in the

beam path. This is a clear advantage over neutron techniques where scattering signals from auxiliary

equipment, such as a furnace or cyrostat, or impurities (especially hydrogen-containing impurities

like water) can significantly obscure the signal from the sample. The selectivity of NRIXS vibrational

methods also permits focusing on specific portions of a material by restricting Mössbauer isotopes

to localized areas. Recently, several layered systems have been probed selectively by isotopically

enriching specific regions (layers or nanoclusters), which can be probed with high accuracy [47–50].

The atomic selectivity of NRIXS also makes it a complementary tool to total DOS spectra measured

by other means. The vibrational dynamics of binary alloys can be probed systematically, by collect

NRIXS on two separate resonant species, in the case where both elements have a resonant isotope

[51]. Binary alloys can also more closely analyzed by comparing a NRIXS pDOS with the total DOS

obtained by neutron techniques, as has been demonstrated in several binary alloys [52–61].

The NRIXS technique probes the phonon spectrum of a material by scanning the energy of the

incoming phonon. However, unlike traditional Mössbauer spectroscopy which uses the Doppler shift

to adjust the incident energies by tens of neV, the high resolution monochromators alter the incoming

energy by tens of meV. Detuning the incoming x-ray beam away from the nuclear resonance results

in a strong suppression of scattered photons. The incoming x-ray can only excite the narrow nuclear

resonance if it obtains additional energy through interactions with the sample. This is done by

creating or annihilating a phonon in the sample to obtain the nuclear resonant energy, as shown

schematically in Fig. 4.4. As the energy of the incoming photons is varied, only phonons (or
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Figure 4.4: An illustration of the NRIXS excitations processes as the incoming x-ray energy is tuned
through the resonant energy. A photon with an energy below the resonant energy (red) must absorb
a phonon of the appropriate energy to excite the nuclear resonance. A photon with an energy above
the resonant energy must give up energy by exciting a phonon before it can excite the nuclear
resonance.

combinations of phonons) that precisely match the difference between the incident energy and the

nuclear resonant excitation energy will create scattered photons. The signal is integrated across the

full time window, without regard to the hyperfine structure modulations. Therefore the observed
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scattering as a function of energy can be directly mapped as shown in Fig 4.5. At low temperatures
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Figure 4.5: Raw NRIXS scattering spectra that shown vibrational excitations as a function of scatter-
ing energy. Spectra are collected on a polycrystalline sample of α-57Fe over a range of temperatures.

the number of phonons available for annihillation is quite low, so scattering is suppressed when the

incoming photon energy is detuned below the nuclear resonance. However, phonons can still be

readily excited at low temperatures by the incoming beam so scattering above the nuclear resonant

peak still occurs. At higher temperatures the creation and annihilation components of NRIXS

scattering spectra start to be comparable in size.

The partial phonon DOS can be extracted directly from NRIXS scans using the software package

Phoenix [45]. This analysis of the NRIXS scattering spectra, S(E), requires removing the resonant

peak, accounting for the Debye-Waller scattering factor, and generating a phonon DOS consistent

with the remaining scattering signal. The phonon DOS is generated self consistently by utilizing

both the thermally-weighted phonon creation and annihilation signals to generate a DOS function.

This involves more than single-phonon processes, and includes a contribution from two-phonon
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processes, and n-phonon processes which scale by the approximate probability of those processes at

the temperature of observation. Several phonon DOS spectra from NRIXS measurements of α-57Fe

are shown in Fig 4.6.
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Figure 4.6: Phonon DOS of α-57Fe at a range of temperatures.

Analysis of the phonon spectra show that, as expected, the vibrational modes of α-Fe do change

with temperature. All the phonon frequencies shift to lower energies at elevated temperatures, which

can also be called“phonon softening”. The observed thermal expansion of Fe from Fig 3.2 accounts

for part of the phonon softening, as the volume of the unit cell increases the energy required to

excite lattice vibrations is slightly reduced. This is evidence that a strictly harmonic model will

not account for the vibrational contributions to thermodynamics for this system, which obviously

exhibits nonharmonic effects.
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Chapter 5

Computational Methods

5.1 Computational Quantum Mechanics

The development of quantum mechanics was arguably the most significant advance in understanding

the physical behavior of materials in the 20th century. Quantum mechanics provides a methodology

for predicting how atoms and electrons behave in different spatial configurations. But while quantum

mechanics is an extremely accurate formalism for describing the behavior of matter in simple systems

like the quantum harmonic oscillator, applying quantum mechanics robustly to less idealized many-

body systems requires much mathematical rigor and is often intractable [62]. For systems with

several atoms, one must consider the full three dimensional wavefunction character of every nucleus,

every electron, and the interactions between them. The time-independent Schrödinger equation

provides a physical description of matter in the ground state through the expression,

ĤΨ = EΨ, (5.1)

where E is the scalar ground state energy, Ĥ, the Hamiltonian operator, and, Ψ, the system wave-

function that is an eigenvector of the Hamiltonian. When one considers the interactions of Ni

ionic cores with Ne electrons, the Hamiltonian operator is recast to enumerate the relevant physical

interactions as

ĤΨ = {− h̄2

2me

Ne∑
j=1

∇2 − h̄2

2

Ni∑
u=1

∇2

Mu
+

Ne∑
j,k=1
k<j

e2

|rj − rk|
+

Ni∑
u,v=1
v<u

ZuZv
|ru − rv|

−
Ne∑
j=1

Ni∑
u=1

eZu
|rj − ru|

}Ψ = EΨ

(5.2)

where the terms account for the kinetic energy of the electrons, kinetic energy of the ions, potential

energy of electron interactions, potential energy of ion interactions, and the potential energy of

electron-ion interactions, in that order [63]. This many body problem is a formidable mathematical

challenge for small systems and so the predictive power of quantum mechanics for real material
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systems went unexploited for many decades.

Walter Kohn was awarded the 1998 Nobel prize in chemistry “for his development of the density-

functional theory” [8]. Density-functional theory solves the Schrödinger equation in 5.2 by making a

few key assumptions and several clever observations to provide computationally-tractable predictions

of real material systems [62, 63]. These points are briefly summarized here. The first inherent

assumption is the Born-Oppenheimer approximation, which states that the ions can be assumed

stationary on the time scale of electronic interactions, which is justified by the large mass mismatch

between the two [62]. This eliminates the second term of Eq. 5.2, and provides constant values for the

fourth term. The Kohn-Hohenberg theorems state that the ground state energy of the Schrödinger

equation is a unique functional of the electron density, and the energy density that minimizes the

functional is the true ground state electron density of the Schrödinger equation [63, 64]. The energy

of the configuration can be then computed by finding the proper electron density (a 3-dimensional

function), rather than the electron wavefunction (a 3Ne dimensional function). Kohn and Sham

approached the problem by assuming a separable set of electron wave functions that satisfy individual

electron Hamiltonians, called the Kohn-Sham equations (which are dependent on knowledge of the

total electron density), and wrapping the unknown bits of physics into an exchange-correlation

potential Vxc which is necessarily approximated [65]. The single electron Hamiltonian can then

be solved self-consistently until the electron density calculated from the solution wave functions is

sufficiently similar to the electron density used to compute those wavefunctions.

This is a very brief summary of the merits of DFT, but the creation of this methodology has

spawned a number of first principles methods that provided useful predictions of real materials

behavior. DFT simply requires information on the ions in a material and their locations, then the

ground state energy of this configuration can be calculated. From these electron energy calculations,

electronic band structures provide information on electronic transitions. Additionally, the structural

arrangements of atoms input into DFT can be refined to find the lowest energy configuration for

the symmetry of the system. Multiple structural symmetry arrangements may be calculated to find

the relative energy cost of different crystal structures, and thus the energy competition of different

material phases can be analyzed at 0K (the ground state).

Modern density functional codes like the Vienna Ab Initio Package (VASP), have built on this

core DFT capability to provide a range of computed material properties [66]. For instance, the

calculation of phonons is now becoming somewhat routine, even though DFT requires fixed ion

positions to calculate electron densities [67, 68]. This is accomplished by cleverly choosing atomic

displacements in the relaxed atomic structure. Displaced atoms provide electron configurations that

are considerably higher than the ground state configuration, which can be related to interatomic

forces which can be used in the dynamical matrix formalism to calculate phonon spectra [69]. Simi-

larly elastic material response can be extracted by examining the electron response to spatial strains



31

of the equilibrium unit cell atomic structure. These adaptations are more computationally costly

because they require large supercells and many additional steps, but they are routinely performed

as part of computational DFT studies today.

Density functional theory is an extremely powerful tool and has fueled a revolution in materials

physics, however it is an inherently ground state methodology, providing properties at 0K. Real ma-

terials, however, are very rarely prepared or used under such conditions. More recent developments

have focused on adapting this methodology to explain properties of materials at the ground state,

and non-equilibrium behavior. For instance if we are interested in phase diagrams of materials (which

I am) we need to consider the energy and entropy of materials at finite temperatures. This returns

us to dealing with non-harmonic effects like thermal expansion, which plays an important role in

material phase stability and entropy at finite temperatures. There is a DFT approach to thermal

expansion with a quasi-harmonic model, although typically different from the formalism developed

in Chapter 3. Typical DFT quasi-harmonic thermal expansion is calculated by minimizing the free

energy of the material (including electronic and vibrational entropic contributions) with respect to

the volume of the structure. This is computationally expensive because it requires iteratively cal-

culating vibrational frequencies with the methods described above. Nevertheless, it does provide a

completely first principles approach to thermal expansion that does not require experimental input

on thermal behavior.

While the strength of DFT is ground state phenomena, molecular dynamics (MD) is an inher-

ently high-temperature computational approach to materials behavior. Molecular dynamics (MD)

provides a classical computational approach for calculating atomic motions in materials [70]. The

atoms in the system (with their electrons included) are described by an interaction potential which is

dependent on the distances between the atoms involved. Newton’s equations of motion can then be

solved for the forces on each atom, determined from the interaction potential,to bring the atoms into

their next spatial configuration. The methodology can be very accurate when very small time steps

are used between calculating the forces and propagating their motion, and, more importantly, that

the interatomic potential correctly reproduces the relevant atomic interactions at every length scale.

The first requirement can be handled readily by rapidly expanding computational power, which per-

mits many time steps on relatively large systems compared with DFT. The second requirement is

somewhat more challenging, since some inherently quantum phenomena in atomic interactions may

not be readily reproduced by simple interatomic potentials. These methods have been advanced by

working in conjunction with first principles simulations, which can provide sophisticated parame-

terizations of interatomic potentials. However, MD may succeed when DFT fails in capturing high

temperature and non-equilibrium behavior of materials. This is achieved by constraining the energy

in the system using thermostats that accurately reproduce finite temperature effects (that are within

the scope of the interatomic potential).
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Ab Initio Molecular Dynamics (AIMD) is a combination approach that uses DFT within each MD

time step to realize quantum mechanical behavior at finite temperatures and time scales [66]. This

hybrid approach is more computationally expensive than either method in isolation, but it provides

benefits that could not be realized by either individually. AIMD has been increasingly utilized

to examine the finite temperature behavior of materials, including thermal expansion and high

temperature phonon behavior. Methods for extracting vibrational information from AIMD are still

an active field of study, with very promising early results [71, 72]. They present a unique opportunity

to examine computed vibrational material behavior beyond the limitations of the harmonic and

quasi-harmonic models without many-body perturbation theory.

5.2 Born von-Kármán Fitting of Phonon Spectra

The harmonic model for lattice vibrations constructed in Section 2.2 can be readily applied to ex-

perimental measurements given the proper set of assumptions, as noted in Section 2.3. Often called

the Born von-Kármán (BvK) model, this formalism relates interatomic force constants of crystalline

solids to phonon frequencies [11]. To solve for phonon frequencies, the number of interatomic inter-

actions in the dynamical matrix is typically limited to the first few nearest-neighbor interactions.

This truncation of interaction forces limits the size of the dynamical matrix (which might otherwise

be as large as the square of the number of atoms involved). Short-range forces are quite physically

reasonable for well behaved materials. The dynamical matrix can then be solved for specific phonon

frequencies along the direction of interest in k-space, assuming one has the interatomic force con-

stants in the dynamical matrix D(k). The interatomic force constant elements of the dynamical

matrix are defined as derivatives of the crystal potential, but this potential, even if harmonic, cannot

be derived analytically for the response of real solid material.

When experimental phonon dispersion are available, the elements of the dynamical matrix can

be fit to observed phonon energies and momenta by a least squares approach, by constructing a

linear set of equations for each observed frequency,

M


ω2

1

ω2
2

...

ω2
N




ε1(k1)

ε2(k2)
...

εN (kN )

 =


D(k1)

D(k2)
...

D(kN )




ε1(k1)

ε2(k2)
...

εN (kN )

 .

The force constant tensors for the first five nearest neighbors of the bcc structure from phonon
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dispersion fits [12] are

K1NN =


1XX 1XY 1XY

1XY 1XX 1XY

1XY 1XY 1XX

 K2NN =


2XX 0 0

0 2YY 0

0 0 2YY

 K3NN =


3XX 3XY 0

3XY 3XX 0

0 0 3ZZ


(5.3)

K4NN =


4XX 4XY 4XY

4XY 4YY 4XZ

4XY 4XZ 4YY

 K5NN =


5XX 5XY 5XY

5XY 5XX 5XY

5XY 5XY 5XX

 . (5.4)

The bcc Fe phonon dispersion data collected by neutron triple-axis measurements shown in Fig 2.1

were fit to a Born von-Kármán model. The interatomic force constants that resulted from the

least squares fit are shown in Table 5.1. The force constant matrices can be projected onto their

Table 5.1: Interatomic force constants for bcc Fe at 300K from neutron triple-axis measurements
[12].

1NN 2NN 3NN 4NN 5NN
r a

2 (111) a
2 (200) a

2 (220) a
2 (311) a

2 (222)

Kij 1XX = 16.88 2XX = 14.63 3XX = 0.92 4XX = -0.12 5XX = -0.29
(N/m) 1XY = 15.01 2YY = 0.55 3XY = 0.69 4YY = 0.03 5XY = 0.32

3ZZ = -0.57 4XZ = 0.0007
4YZ = 0.52

Longitudinal 46.9 N/m 14.63 N/m 1.61 N/m 0.0026 N/m 0.035 N/m
Ave. Transverse 1.87 N/m 0.55 N/m -0.17 N/m -0.313 N/m -0.61 N/m

bonding directions to provide longitudinal and transverse force constants, which describe the phonon

vibrations parallel and perpendicular to the bonding axis, respectively. The two transverse force

constants perpendicular to the bonding direction have been averaged here. These longitudinal and

average transverse force constants provide a more intuitive comparison of effects across nearest-

neighbor interactions. The values of the longitudinal force constants are much higher than the

average transverse phonon modes. Additionally we see that the magnitude of the force constants

drop off rapidly for greater interatomic distances.

In the bcc structure, the different bond force constants have notably different effects on the

phonon spectra as demonstrated by Fig. 5.1 and Fig. 5.2. When a single longitudinal force constant

is varied, the vibrational effects vary throughout the phonon dispersions and the DOS. Scaling of

the first nearest-neighbor longitudinal force constant adjusts the energies of every phonon in the

dispersions except those in the lowest energy transverse phonon branch between the Γ and N points.

Scaling the second nearest-neighbor longitudinal force constant leaves some phonon branches fixed,

like the lowest energy modes between Γ and H, but strongly influences others, like the low energy Γ
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Figure 5.1: The vibrational effects of varying the first nearest-neighbor longitudinal force constant
from the 300K observed values [12].
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Figure 5.2: The vibrational effects of varying the second nearest-neighbor longitudinal force constant
from the 300K observed values [12].

to N branch, which was unaffected by the first nearest-neighbor longitudinal force constant.

While the dynamical equation used here is the result of a harmonic approximation of the inter-

atomic potential, the force constants fits can be used to identify nonharmonic behavior from how

the force constants vary as a result of temperature or applied pressure. If the dynamical matrix

equation is fit to elevated temperature or pressure spectra, the deviation of the resulting fits from

their low-temperature values describes the non-harmonic nature of the interatomic potential. In-

formation on the interatomic force constants can be quite valuable for interpreting how each set of

nearest-neighbor interactions contributes to the dynamical stability of the structure and the energies

of various phonon modes, and interpreting the nature of the bonding between each nearest-neighbor

shell of atoms.

In direct phonon DOS measurements like NRIXS, extracting interatomic force constants is less

traditional and less straightforward than for phonon dispersions. Phonon DOS measurements lack

k-space resolution, and many distinct k-space features are degenerate in energy. Furthermore,

an expression for the interatomic force constants cannot be directly compared with phonon DOS

spectra, because the DOS requires evaluation of the dynamical matrix over the whole Brillouin zone.
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This step cannot be inverted, so solving the dynamical matrix for the phonon DOS is inherently

a forward model. However, modern computational optimization methodologies do offer routes for

tackling “univertable problems”. These methods simply explore large regions of parameters space

looking for the “best” answer by running many many iterations of the forward model.

To extract interatomic force constants from observed phonon DOS the method developed in our

group uses a genetic algorithm (named for its similarity to the principle of natural selection [73]).

The genetic algorithm optimization of interatomic force constants to fit a phonon density of states

is implemented through the open-source package mystic [74]. To fit a phonon DOS, a candidate

set of force constants is randomly generated within a set of reasonable force constant bounds. The

candidate dynamical matrix is used to generate a phonon DOS that can be compared with the

experimentally obtained DOS. The genetic algorithm optimization simultaneously generates many

candidate solutions called a “population”. The candidate solutions that best reproduce the exper-

imentally observed phonon DOS (minimizing the mean squared error with respect to the observed

DOS) are selected as the parents of the next generation. The parent solutions seed the subsequent

population of candidate force constants by selecting random combinations of parent parameters and

also introducing random “mutations”. The next generation is then evaluated and the optimization

continues until the population converges on a set of force constants that provide the “best fit” to

the experimental density of states. These optimized force constants can then be used to generate

phonon dispersions with q-space resolved information.

Force constant optimizations will reproduce the phonon DOS by design, but the existence of

a single physically meaningful solution is not guaranteed. While the phonons generated by force

constant optimization are necessarily confined to the crystal symmetry embedded in the construction

of the dynamical matrix, nonphysical results are still possible. The most obvious instance of these are

force constants that generate negative phonon frequencies, which result from imaginary eigenvalues

of the dynamical matrix problem. Negative phonon frequencies suggest dynamical instability of

the model in specific directions in reciprocal space, suggesting that phonons initiated along these

wavevectors would proceed without restoring forces and destabilize the system. Therefore candidate

solutions that generate negative frequencies are discarded by our algorithm.

Force constant optimizations also cannot guarantee the uniqueness of a solution for a given

phonon DOS. The optimization will eventually conclude with a set of interatomic force constants

that reproduce the experimental DOS, but there is no guarantee that another optimized fit could

not be found with a notably different set of force constants. The issue of uniqueness is inherent in

phonon DOS optimizations, since distinct features in the dispersions are often degenerate in energy.

This problem is significantly exacerbated by the experimental resolution of the measurements, which

blur features together, adding ambiguity.
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5.2.1 Fitting Phonon DOS - Practical Matters

There are several practical matters to consider when attempting to fit a phonon DOS using the

BvK formalism described above. Probably the most important is well defined phonon DOS features.

Density of states measurements with well-defined van Hove singularities have features that increase

the likelihood of finding unique and reliable solutions for the interatomic force constants. This

requires phonon energy dispersion features at distinct energies. Phonon dispersions with many

features in a small energy range are unlikely to yield high-fidelity BvK fits, especially with imperfect

experimental resolution. These feature-heavy energy regions are more common in low-symmetry

crystals with large unit cells, so simple elementary and binary systems are obvious candidates for

BvK fitting. The instrumental resolution of the experimentally-observed phonon DOS is another

critical input for the BvK fitting. While the highest resolution measurements are always preferred,

an accurate resolution function is necessary for comparing resolution-convolved calculated phonon

DOS with experimental spectrum.

One must also consider the number of variables that can accurately be fit to a phonon DOS

spectra. Born-von Kármán fits to phonon dispersions commonly employ five nearest neighbors, or

13 variables for bcc Fe. However, this many variables may not be well constrained in phonon DOS

fitting. To test the limits of the method with a known case, the phonon DOS derived from the

Minkiewicz force constants in Table 5.1 was calculated and convolved with a typical NRIXS instru-

ment resolution function (a near-Gaussian function with a 2.3meV FWHM). This “experimental”

phonon DOS (with known force constants) was then fit using our BvK optimization. We varied the

number of parameters used in the optimization by including increasingly distant nearest-neighbor

interactions. This resulted in five different optimizations, from fitting with only the first nearest

neighbor (1NN) interactions and two force constants, to fitting with five nearest neighbors (5NN)

and 13 force constants. The χ2 values in Fig 5.3 show the quality of fit for each different fitting

model. The quality of fit improves with additional nearest-neighbor interactions, although notably

less beyond the 3NN configuration. The 5NN configuration provides the lowest χ2 value, indicat-

ing the most exact reproduction of the DOS. However, the quality of DOS fit does not necessarily

correspond to accurately reproducing the interatomic force constants.

For each fitting model, the errors in the force constants were assessed to see how well this

information is reproduced by the fitting in the presence of experimental resolution. The sum of

the absolute difference between the fitted force constants (fcs) and the known values are divided

by the number of fcs variables used to provide the quality-of-fit metric displayed in Fig 5.3. The

force constant fit metric suggests that including the 5NN force constants as variables decreases the

accuracy compared to the 4NN model. It is also important to note that the quality-of-fit from the

2NN and 3NN models are not significantly worse than the 4NN fits, suggesting that using only two

nearest neighbors may be sufficient for reproducing the phonon DOS.
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Figure 5.3: Qualities of fit from various configurations of the BvK 300K Fe DOS optimization. The
left figure shows the χ2 values for the fit DOS. The right panel shows the errors between fitted force
constants and the known force constants used to generate the DOS.

The phonon DOS and dispersions from the fitted force constants are compared with the known

phonon dispersions, and the experimentally convolved DOS in Fig 5.4. It is important to note that

the phonon dispersion data were not used in the force constant optimization; only the experimental

resolution convolved phonon DOS (shown in black) was used. Therefore, agreement between the

calculated dispersions and experimental dispersions speaks to the merits of our fitting approach.

All models which incorporate more than one nearest-neighbor interaction reproduce the phonon

DOS and the density of states well. The 2NN-4NN neighbor fits are very similar in the quality of

dispersions and force constants, which suggests any of these might be a reasonable choice. While the

5NN model obviously contains the best phonon DOS fit, it does not reproduce the force constants

notably better than lower neighbor models, suggesting that 13 variables may be over fitting our

phonon DOS.

The inclusion of more neighbors for fitting larger data sets in Chapter 6 have also led to more

nonphysical behavior and the appearance of multiple basins of solutions. The most persistent

non-physical behavior observed is the appearance of non-linearity in the low-k phonon dispersion

branches. The fitted force constants dispersions showed a slight positive curvature of the low-k

branches that correspond to physically unreasonable group velocities for these modes.

The inclusion of more variables also tended to produce multiple basins of solutions within a

temperature series. These basins of solutions were distinct groups of fitted force constants which

produced comparable phonon DOS, but different dispersions. The most common solution basins

observed for bcc Fe were characterized by a difference in the high energy phonon dispersion modes at

the N and H points. One basin of solutions would over-estimate the H point modes and underestimate

the N point modes (like the 1NN fits from Fig. 5.4), while the other would show the opposite

behavior. Including fewer force constant variables decreased the likelihood of finding multiple basins

of solutions.
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Figure 5.4: Fitting Details for 5NN Fits. Fitted phonon DOS and dispersions are shown in red.
Errors in the longitudinal and transverse fitted force constants are shown in the charts on the right.
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Chapter 6

Anharmoncity in BCC Fe At
Elevated Temperatures

Phonon densities of states (DOS) of bcc α-57Fe were measured from room temperature through the

1044K Curie transition and the 1185K fcc γ-Fe phase transition using nuclear resonant inelastic

x-ray scattering. At higher temperatures all phonons shift to lower energies (soften) with thermal

expansion, but the low transverse modes soften especially rapidly above 700K, showing strongly

nonharmonic behavior that persists through the magnetic transition. Interatomic force constants

for the bcc phase were obtained by iteratively fitting a Born-von Kármán model to the experimental

phonon spectra using a genetic algorithm optimization. The second-nearest-neighbor fitted axial

force constants weakened significantly at elevated temperatures. An unusually large nonharmonic

behavior is reported, which increases the vibrational entropy and accounts for a contribution of 35

meV/atom in the free energy at high temperatures. The nonharmonic contribution to the vibra-

tional entropy follows the thermal trend of the magnetic entropy, and may be coupled to magnetic

excitations. A small change in vibrational entropy across the α-γ structural phase transformation

is also reported.

6.1 Introduction

In its metallic form, iron exhibits fascinating physics, plays a central role in geophysics, and is

of paramount importance to metallurgy. Iron is polymorphic under temperature, pressure, and

alloying, and both its magnetic properties and its mechanical properties undergo major changes

with crystal structure. The thermodynamics of the temperature-induced polymorphism of iron have

been of interest for many years. A proper thermodynamic treatment of metallic iron must consider

the energetics as well as the degrees of freedom of electrons, phonons, and spins, and the couplings

between them. Although this is a complex problem, it has received longstanding interest both for

its own sake, and for predicting the phases of iron alloys with an eye to controlling them [75, 76].
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There have been a large number of heat capacity [20, 22] and elastic constant [28, 30] measure-

ments of iron at various temperatures, and the thermodynamic entropy of iron is sufficiently reliable

to be used in Calphad-type calculations of free energy [21, 77]. There have been a number of ef-

forts to create predictive thermodynamics models by resolving the entropy into contributions from

phonons, spins, and electrons [19, 31, 77]. Phonons make the largest contribution to the entropy

at elevated temperatures, and therefore the accuracy of the phonon entropy is critical. A harmonic

model can account for most of the vibrational entropy of elemental solids. The vibrational entropy

of iron is quite large, however, exceeding 6 kB/atom at 1000K, so even errors of a few percent are

thermodynamically important. The quasiharmonic model of vibrational entropy incorporates the

phonon frequency shifts that result from finite temperature thermal expansion, but it neglects many

other nonharmonic physical interactions. Phonons interact through the cubic and quartic parts of

the interatomic potential [35]. These anharmonic phonon-phonon effects further change the phonon

frequencies and shorten their lifetimes, resulting in thermal broadening of phonon spectra [14–16].

Thermal excitations of electrons and magnons also affect the phonon frequencies through adiabatic

electron-phonon and magnon-phonon interactions. The impact of these physical interactions on the

vibrational entropy and free energy has been shown to be important in many materials [78, 79], and

their role in the vibrational thermodynamics of iron warrants further investigation.

Inelastic neutron scattering studies of phonon dispersions in iron provide essential information

on the phonon contribution to entropy, and how it changes with temperature [12, 80–83]. High tem-

perature phonon dispersions show significantly decreased phonon frequencies with thermodynamic

implications [83]. These measurements also provide insight into the mechanism of the polymorphic

transitions, and correlate with the inherent weaknesses of the bcc structure [33, 34, 84, 85]. However,

the existing experimental results are somewhat sparse in temperature.

Ab initio investigations have attempted to identify individual contributions to the free energy of

Fe and its alloys, but earlier studies relying on quasiharmonic approximations at high temperatures

had limited success. Electronic structure calculations on iron have advanced considerably in the

past few years, and recent work has carefully considered the different contributions of magnetism

and vibrations to the thermodynamics of the bcc phase. Only recently have computational devel-

opments permitted DFT calculations to reproduce the observed high temperature phonon behavior

by including the finite temperature magnetic configurations and electron-phonon coupling [86–89].

These developments suggest we may soon sort out the complex interactions in polymorphic iron,

but experimental validation is still needed. Measurements of phonon dynamics through the Curie

point at 1043K up to the γ-Fe phase transformation can provide further insight into the physical

interactions and thermodynamics governing the complex behavior of iron.

Here we report results of an experimental study of the vibrational properties of bcc α-Fe at

elevated temperatures, and an analysis of its interatomic interactions and thermodynamic functions.
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Nuclear resonant inelastic x-ray scattering (NRIXS) was used to measure vibrational spectra of

bcc Fe and obtain reliable phonon densities of states (DOS) which, unlike most phonon dispersion

measurements, can be used directly in thermodynamic functions. A methodology was developed for

reliably extracting the temperature-dependent interatomic force constants, and consequently phonon

dispersions, from the phonon DOS spectra. Much of the high temperature nonharmonic phonon

dynamics depends on the rapid softening of the 2NN interatomic forces, and the resulting softening

of transverse phonons in Γ-N direction. The vibrational entropy is assessed with different models for

predicting high temperature thermodynamics. We report a large nonharmonic contribution to the

phonon entropy, and suggest that it originates with effects of magnetic excitations on the phonon

spectra.

6.2 Experimental

Nuclear resonant inelastic x-ray scattering (NRIXS) measurements were performed on bcc α-Fe at

high temperatures. NRIXS is a low background technique that provides direct access to the full

phonon density of states (DOS) [42, 46]. NRIXS spectra were collected from a 25 µm thick Fe foil of

99.9% purity and 95% 57Fe isotopic enrichment. Measurements were performed at beamline 16ID-D

of the Advanced Photon Source at Argonne National Laboratory using a radiative heating furnace.

This NRIXS vacuum furnace used a narrow kapton window to permit the x-rays to access the sample.

The Fe foil was either held by two Ta heat shields adjacent to a thermocouple, or mounted directly

on the thermocouple. The NRIXS measurements performed below room temperature employed a

He flow Be-dome cryostat. The temperatures were accurate to within ±20K, where ambiguity comes

from comparing the furnace thermocouple measurements to in-situ nuclear forward scattering and

the NRIXS-derived detailed balance temperature calculations following the procedures described in

the literature [45, 90].

An avalanche photodiode was positioned at approximately 90◦ from the incident beam to collect

re-radiated photons beginning approximately 20 ns after the synchrotron pulse. The incident photon

energy was tuned to 14.413 keV using a high-resolution silicon crystal monochromator to provide a

narrow distribution of energies with a FWHM of 2.3 meV. The incident photon energy was scanned

through a range of ±120 meV, centered on the nuclear resonant energy. The Phoenix reduction

package was used to extract phonon DOS spectra from the collected spectra [45]. Lamb-Mössbauer

factors from this reduction are compared with literature values in Fig. 6.13 of the Supplemental

Material.
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6.3 Force Constant Analysis

Many thermal properties of crystalline solids can be explained by a simple model of the crystal

as a set of massive nuclei whose interactions act like springs, providing a restoring force against

displacements. This model was developed by Born and von Kármán (BvK), and transforms the

real space interatomic forces into a dynamical matrix [35]. While this model is commonly employed

for fitting phonon dispersions, its utility for fitting phonon DOS spectra is less straightforward.

Phonon DOS spectra are an aggregate of all phonon modes in reciprocal space; therefore, fitting

force constants to a phonon DOS spectrum is more challenging than modeling phonon dispersions.

To model our phonon DOS spectra, trial force constants were used to construct a dynamical matrix,

D(q), which was diagonalized at a randomly-distributed set of 3.375 million q-points in the first

Brillouin zone to collect the spectrum of phonon frequencies, ω2,

Mω2ε = D(q)ε, (6.1)

where M is the mass of the atom and ε is the polarization of the phonon mode corresponding to

reciprocal space vector q. This BvK model was embedded in a genetic algorithm global optimization

framework, where trial sets of force constants were generated randomly according to the differential

evolution algorithm and the resulting DOS are compared with experimental data [73, 74]. Each

NRIXS DOS was fit independently to obtain a force constant tensor that minimized the sum of

squared differences between the model and the experimental phonon DOS. The optimizations used

populations of 50 members which “evolve” until they converge, typically after a few hundred gen-

erations, on a set of force constants that gave the best fit to the experimental NRIXS DOS. These

optimizations were repeated several times to ensure convergence. For the optimization process, the

highest energy feature of each phonon DOS spectrum was fit to a Gaussian distribution, the distri-

bution was then used to replace the high energy tails of each DOS used for fitting. This was done to

standardize the phonon cutoff energy across the data set and suppress fitting to higher energy noise

(which results from the data reduction and would not contribute meaningfully to the optimizations).

The BvK optimization was tried in several different configurations, each permitting a different

number of nearest-neighbor (NN) force constants to vary. The largest optimizations included atomic

interactions through 5NN (13 independent force constants), which is consistent with the number of

variables commonly used to fit neutron triple-axis dispersion data in this system [12, 80, 91]. The

fitting process was also performed with fewer variable nearest-neighbors forces (leaving more distant

force constants fixed to 300K tensorial force constants from literature [12]). The most restrictive

case limited the dynamics to interactions through 2NN (4 tensorial force constants).

To test our methodology, we calculated the phonon DOS using force constants from Minkiewicz,

et al.,[12] and convolved it with our NRIXS experimental resolution function. This DOS was opti-
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mized using the genetic algorithm DOS fitting method, with the number of variable nearest-neighbor

force constants ranging from 2NN to 5NN. The optimizations that included interactions through the

4NN shell reproduced the known force constants accurately across several test cases, although only

slightly better than optimizations that included interactions through only the 2NN shells. It was

found that allowing variations through the 5NN shell noticeably increased the error in the tensorial

force constants found by the algorithm. Accordingly, the results presented here are from the opti-

mizations where only the first 2NN force constants were allowed to vary, except in Fig. 6.7, where

values for fits through 4NN are included for comparison.

6.4 Results

6.4.1 Phonons

The 57Fe phonon DOS spectra for α-Fe from 30K to just below the γ-Fe transition at 1185K are

shown in Fig. 6.1. All phonon modes shift to lower energies (soften) with increasing temperature,

although some soften noticeably more than others. The phonon DOS of bcc Fe has three features

corresponding to the Van Hove singularities of the longitudinal and two transverse acoustic phonon

branches. The mean energies of the three features were obtained by simultaneously fitting three

Lorentzian curves to the measured DOS spectra. The temperature dependence of these DOS features,

displayed in Fig. 6.2, show that the low transverse phonons soften more than other modes. While

phonon softening with increasing temperature is ubiquitous in most materials, the large preferential

softening of certain modes suggests strongly nonharmonic behavior of the lattice vibrations in α-Fe

at temperatures above 700K.

6.4.2 Quasiharmonic Model

The quasiharmonic model for predicting phonon frequencies employs the measured thermal expan-

sion and a Grüneisen parameter to account for how phonon frequencies deviate from the harmonic

model at elevated temperatures. The quasiharmonic phonon frequencies, ωqh
i (T ), are

ωqh
i (T ) = ω300K

i (1− γth

VT − V300K

V300K
), (6.2)

where ω300K
i is the measured value of the ith phonon frequency at 300K, γth is the thermal Grüneisen

parameter and VT is the observed volume of the system at temperature T . This expression comes

from the definition of the microscopic mode Grüneisen parameter, γi = (−∂ lnωi

∂ lnV )T ' − V
ωi

∆ωi

∆V , where

a thermal Grüneisen parameter [24], γth, is commonly used in the absence of detailed experimental

observations of the mode Grüneisen parameters, γi [36]. The thermal Grüneisen parameter can

be calculated from observed bulk material properties; in the following analysis Anderson’s value
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Figure 6.1: The 57Fe phonon DOS extracted from NRIXS measurements at various temperatures.
The spectra are normalized and offset for comparison.
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Figure 6.2: The measured NRIXS DOS were fit with three Lorentzian curves to find a characteristic
mode energy for each phonon branch. The softening of these mode features is compared with a
quasiharmonic model prediction from low temperature measurements (dashed lines). The Curie
temperature at 1044K is marked by a vertical line.

of 1.81 for α-Fe is used [24]. The quasiharmonic prediction from ambient temperature is shown by

dashed lines in Fig. 6.2 for each acoustic mode feature in the phonon DOS spectra. At temperatures

beyond 800K the mean phonon energies for each acoustic branch soften more rapidly than predicted

by the quasiharmonic model. At 1180K, just before the γ-Fe structural transition, the average

phonon energy has decreased by 19% of its low temperature value, more than twice the 8% softening

predicted by the quasiharmonic model.

A temperature-dependent thermal Grüneisen parameter was also calculated from the observed

bulk properties of α-Fe using the expression

γth(T ) =
α(T )BT(T )ν(T )

CV(T )
, (6.3)

where BT(T ) is the bulk modulus [28–30], α(T ) is the linear thermal expansion [22, 25], ν(T ) is
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the crystalline volume per atom [22], and CV(T ) is calculated by integrating the low temperature

phonon spectra [12, 80] or a Debye model [19]. The temperature-dependent Grüneisen parameters

that can be created by various combinations of physical constants from the literature range from

1.7 to 2.2 over the temperatures of interest. However, including temperature-dependent parameters

in our analysis did not significantly alter the quantitative results provided by the quasiharmonic

model. Our further analysis therefore used the simpler approach with a constant thermal Grüneisen

parameter of 1.81 [24].

6.4.3 Vibrational Entropy
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Figure 6.3: Our measured vibrational entropy (points) compared with the Scientific Group Ther-
modata Europe total entropy (thick line), the quasiharmonic vibrational entropy estimate (dashed
line), and the harmonic vibrational entropy (thin line).

The total entropy of iron is often split into component entropies attributed to different physical

phenomena,

S(T ) = Svib(T ) + Sel(T ) + Smag(T ), (6.4)

where Svib(T ) is the vibrational entropy, Sel(T ) is the electronic entropy, and Smag(T ) is the mag-

netic entropy. While this division neglects the complex interplay of excitations in real materials at
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elevated temperatures, it can still be useful for deconstructing thermodynamic models, especially

when experimental observations focus on a subset of the physical interactions. Accurate values of

the vibrational entropy, Svib(T ), can be obtained directly from the experimentally measured phonon

DOS as

Svib(T ) = 3kB

∫
gT (E){(n+ 1) ln(n+ 1)− n ln(n)}dE, (6.5)

where kB is the Boltzmann constant, gT (E) is the measured DOS at temperature, T , and n is a

Planck distribution evaluated at T , for a given energy, E. When experimental DOS spectra are

available for a given temperature, this expression provides accurate entropy values that include

both quasiharmonic effects and also nonharmonic effects (to first order) [35]. The total vibrational

entropies from NRIXS DOS spectra, Svib, are compared with the total entropy from the SGTE

database, S, in Fig. 6.3, together with the entropies of the harmonic and quasiharmonic models.

The total calculated entropies are also shown in Table 6.1. The total vibrational entropy, Svib(T ),

can be divided into component entropies as

Svib(T ) = Sh(T ) + ∆Sqh(T ) + ∆Snh(T ), (6.6)

where Sh(T ) is harmonic vibrational entropy, ∆Sqh(T ) ≡ Sqh(T )−Sh(T ) is the purely quasiharmonic

contribution, and ∆Snh(T ) ≡ Svib(T )− Sqh(T ), is the nonharmonic contribution. Figure 6.3 shows

that both the harmonic model and the quasiharmonic model significantly underestimate the vibra-

tional entropy obtained from NRIXS measurements. Above 1000K, the nonharmonic vibrational

entropy, ∆Snh, is larger than the quasiharmonic contribution, ∆Sqh. At the highest temperatures

the nonharmonic vibrational entropy, ∆Snh, results in a 0.35kB/atom (5%) increase over the vibra-

tional entropy provided by the quasiharmonic model.

6.4.4 Born-von Kármán Fits

Tensorial force constants were optimized to fit each NRIXS DOS spectrum using the genetic evolution

fitting algorithm, permitting the calculation of phonon dispersions at each temperature. Typical fits

and dispersions are shown in Fig. 6.4. The fitting procedure reproduces the DOS spectra quite well,

and also generates phonon dispersions consistent with previous triple-axis neutron measurements

[12, 83]. The calculated phonon dispersions corresponding to each NRIXS DOS measurement are

displayed along the high symmetry directions and the [ξξ2ξ] direction in Fig. 6.5. The phonon

dispersions change monotonically with temperature, exhibiting significant softening at the highest

temperatures, consistent with the phonon DOS spectra. These calculated dispersions show the trends

identified by prior neutron scattering measurements [83], and elastic moduli extracted by fitting the

low-q portions of the dispersion branches are in good agreement with measured elastic moduli [28, 30].
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Table 6.1: The total vibrational entropy, Svib, calculated from the phonon density of states at each
temperature.

T (K) Svib (kB/atom)

30 0.020
50 0.114
130 1.122
298 3.115
299 3.145
300 3.160
300 3.135
510 4.747
523 4.781
595 5.206
647 5.489
687 5.702
740 5.916
773 6.080
805 6.240
842 6.400
870 6.492
900 6.627
923 6.713
934 6.777
962 6.888
963 6.877
981 6.962
1000 7.007
1003 7.034
1010 7.066
1023 7.104
1024 7.108
1033 7.146
1034 7.232
1039 7.208
1081 7.383
1090 7.432
1123 7.585
1135 7.557
1150 7.612
1158 7.666
1180 7.751
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Figure 6.4: NRIXS DOS fits and corresponding BvK dispersions are compared with literature.
Panels A and C compare the BvK fits (dashed lines) to the phonon DOS spectra at 300K and
1158K, respectively. Panel B compares our calculated 300K dispersions with the 295K neutron
triple-axis measurements of Minkiewicz, et al., (dots) [12]. Panel D compares our calculated 1158K
dispersions with the 1173K neutron triple-axis measurements of Neuhaus, et al. (dots) [83].

At elevated temperatures the optimized BvK fits began to segregate into two distinct solution basins.
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Figure 6.5: Phonon dispersions resulting from force constant optimizations which permitted only
2NN force constants to vary (4 variables). Colors correspond to temperatures as labeled in Fig 6.1.

The basins had similar energy spectra, but quite different phonon dispersions and force constants.

The second basin of fits was characterized by H-point phonon energies that were significantly higher

than the N-point longitudinal phonons. They usually had lower qualities of fit than the primary

basin, especially when the optimizations included higher nearest-neighbor interactions. Fits from

this second basin were easily identified as erroneous from their discontinuous changes in tensorial

force constants with temperature, and their departure from measured dispersions [83]. Thus, BvK

fits from the second solution basin were excluded from further analysis.

The calculated dispersions demonstrate that some phonons soften significantly more than others.

Figure 6.6 shows the changes in the different dispersion branches with temperature relative to the 30K

frequencies. The measured phonon DOS spectra exhibited a 19% decrease in phonon frequencies at

the highest temperatures. Figure 6.6 makes clear that this average decrease is not evenly distributed

across all the phonon modes. Most of the nonharmonic softening of the phonon DOS appears

to originate in a few regions of the Brillouin zone. Most notably, anomalously large softening is

observed in the low transverse modes along the Γ-N direction, where all phonons soften by more than

twice the average decrease observed in the phonon DOS. The low transverse phonon branch T2[ξξ0]

corresponds to the [110] phonon polarization direction and softens significantly with temperature,

consistent with the limited number of phonon dispersion studies on Fe at elevated temperature [83].

Large softening also occurs for the [ξξ2ξ] branch and between the H and P high symmetry points

at the 2/3 L [ξ,ξ,ξ] mode. Thermal softening seems to increase near the Γ point on several high

symmetry branches, but this increased softening at low-q may be an artifact of the fitting method.

Extracting a phonon DOS from the NRIXS spectra includes a removal of the elastic peak centered

at zero energy transfer, requiring that an extrapolation be used at energies below 4 meV (marked
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Figure 6.6: Percentage change in frequency with temperature of dispersions of Fig. 6.5. The
black lines denote the low energy dispersion regions below the dashed line in Fig. 6.5. The colors
correspond to temperatures as labeled in Fig. 6.1.

by the horizontal dotted line in Fig 6.5). Accordingly, Fig. 6.6 has black lines that delimit the low-q

region corresponding to the elastic peak extrapolation, below which our fits are less reliable.

By projecting each nearest-neighbor tensorial component along the NN bond direction, axial

and transverse force constants for bcc Fe were obtained for each nearest-neighbor pair as a function

of temperature, as shown in Fig. 6.7. With increasing temperature there is a large reduction in

the first-nearest-neighbor (1NN) and second-nearest-neighbor (2NN) longitudinal force constants.

The 2NN longitudinal force constant undergoes an especially strong softening. Above the Curie

temperature the magnitude of the 2NN longitudinal force constant is reduced to 60% (2NN fits) or

40% (4NN fits) of its low temperature value. The 1NN longitudinal force constant decreases by only

20% in the same temperature range.
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Figure 6.7: Extracted force constants from BvK fits. The force constant results using up through
4NN (11 variables) are shown in gray squares and those resulting from using up through 2NN (4
variables) are shown in black points.

The transverse force constants are calculated as an average of the tensorial force constants pro-

jected onto two vectors orthogonal to the bond direction. The values of these force constants are

small and their trends are less reliable than for the larger longitudinal forces. The magnitude of

the 1NN average transverse force constant decreases rapidly at elevated temperatures and becomes

negative beyond 800K, indicating a weakness of the bcc structure to shear stress [33, 34, 85]. The

2NN transverse force constant appears to increase modestly with temperature, but this could be a

compensation for changes in longer-range interatomic forces that were not varied in the fitting pro-

cedure. The inclusion of additional variables produced the same general trends as those displayed

in Fig. 6.7, however, but with considerably more scatter. The large decrease in the 1NN and 2NN

longitudinal force constants with temperature occurred for every optimization configuration that

was tried.
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Figure 6.8: Energies of specific phonon dispersion modes at the temperatures measured. The modes
are compared with their quasiharmonic estimates (grey dashed lines). The colors correspond to
temperatures as labeled in Fig. 6.1.

6.5 Discussion

6.5.1 Phonons and Born-von Kármán Model Dispersions

There is significant phonon softening in bcc Fe at elevated temperatures. A quasiharmonic model

accounts for some of the measured phonon softening, but underestimates the thermal trends. Direct

analysis of the phonon spectra shows that all the phonon DOS features exhibit softening beyond

the prediction of the quasiharmonic model, and this excess softening is most notable in the low

transverse modes. Both the departure from the quasiharmonic model at moderate temperatures

and the differential mode softening are indicative of strongly nonharmonic behavior. However, the
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thermal broadening of the DOS features associated with phonon anharmonicity is small.

Phonon dispersions calculated from fitted force constants show that most of the nonharmonic

softening occurs in low energy phonon branches, while most of the higher energy longitudinal phonons

soften by an amount closer to that predicted by the quasiharmonic model. The temperature de-

pendence of several phonon dispersion modes are shown in Fig. 6.8. The largest thermal softening

is found for the low transverse T2[ξξ0] branch. Anomalous softening of these phonons has been

associated with dynamical precursors toward the fcc transition [33, 34, 84, 85]. A combination of a

displacement along the T2[ξξ0] phonon mode, coupled with low-q shearing consistent with T2[ξξ0]

and low-q shearing along the T2[ξξ2ξ] branch is a possible path for the structural transformation

[33]. All these modes soften anomalously with temperature. Softening of the modes on the Brillioun

zone face between the H and P high symmetry points, most noticeably at 2/3 L[ξξξ], have been

associated with the structural instability of the bcc lattice under pressure towards the hexagonal ω-

phase. The dynamical precursors to the α-γ transition in Fe seem to originate with the softening of

the [ξ,ξ,0] branch, which is much larger than the softening of the [ξ,ξ,ξ] branch that is characteristic

of the structural ω-phase transition in the Group 4 bcc metals (Ti, Zr, Hf) [33, 34] and Cr [92] at

elevated pressures. A large decrease in 2NN longitudinal forces was reported in bcc chromium at

high temperatures, but Cr melts before the 2NN longitudinal force constant reaches the low values

seen here for Fe [92]. The soft phonons shown in Fig. 6.8 begin to deviate from quasiharmonic

behavior several hundred degrees below the magnetic transition, and continue to soften above the

Curie temperature. This anomalous phonon softening occurs in the same temperature range as

the rapid decrease in the magnetization of α-Fe [93]. Magnetic short range order has long been

suspected of being important for the phonon thermodynamics of the paramagnetic phase [94], and

recent DFT calculations that account for paramagnetic interactions have successfully predicted the

phonon dynamics at these temperatures [86].

Simulations were performed to vary the longitudinal and traverse force constants individually for

each nearest-neighbor pair. Adjusting the 1NN longitudinal force constant with the others fixed had

no effect on the T2[ξξ0] branch. Decreasing the 2NN longitudinal force constant relative to the others

resulted in a rapidly softening T2[ξξ0] branch that made the system dynamically unstable (imaginary

phonon frequencies) when this force constant dropped below zero. When the 1NN transverse force

constant decreased below -5 N/m, the phonons of the Γ-N branch also became dynamically unstable.

A strong decrease of the 2NN longitudinal force constant with temperature can produce the

significant non-harmonic softening observed in the Γ-N phonon branch [84]. Similarly, anomalous

behavior was seen in the 2NN magnetic exchange interaction parameters in a detailed study of

magnon-phonon coupling in bcc Fe [95]. It was found that including vibrational effects (includ-

ing local volume and orientation) had a strong effect on the magnetic exchange interaction of the

nearest-neighbor pairs, most notably for the second nearest-neighbors. The abnormal 2NN magnetic
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exchange behavior may be linked to the anomalous 2NN mode softening seen here.

6.5.2 Vibrational Entropy and Free Energy

Our measurements of the phonon DOS spectra over a range of temperatures permits the direct

assessment of vibrational entropy and vibrational free energy of bcc α-Fe. The vibrational entropy

from NRIXS measurements increases faster than predicted by the quasiharmonic model, ∆Sqh +Sh.

Any linear trends extracted from our force constants do not coincide with the volume normalized

values provided by Klotz, et al., for bcc Fe under pressure [91]. The purely volume-dependent

(quasiharmonic) effect from measurements at elevated pressure are quite different from our measured

nonharmonic effects at high temperature. Furthermore, linear fits to our tensorial force constants

are not capable of accurately reproducing the temperature dependence of the measured vibrational

entropy of Fe. There is a noticeable disagreement on either side of the magnetic transition; the force

constants have a nonlinear thermal trend through the Curie temperature.

The discrepancy between the quasiharmonic vibrational entropy, ∆Sqh + Sh, and the measured

vibrational entropy, Svib, is the nonharmonic entropy contribution, ∆Snh. Figure 6.9 shows that the

vibrational entropy of α-Fe has a significant nonharmonic contribution, ∆Snh. The nonharmonic
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Figure 6.9: The nonharmonic vibrational entropy, ∆Snh from measured phonon DOS spectra,
compared to the magnetization of bcc Fe [93], and the magnetic vibrational entropy, Smag, obtained
by subtracting Svib and Sel [77] from the SGTE total entropy, S [21].

vibrational entropy, ∆Snh, is compared to the magnetic entropy, Smag, and the magnetization also

shown in Fig. 6.9. Smag was calculated by subtracting our vibrational entropy, Svib, and also the

electronic contribution, Sel, as described by Jacobs, et al., [77] from the total entropy of the SGTE
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database, S [21]. At temperatures just below the α-γ phase transition, ∆Snh changes the free energy

by about 35meV/atom.
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Figure 6.10: The heat capacity calculated from fits to our vibrational entropy measurements (solid
line), compared with the measured heat capacity from White, et al.[20] in points, heat capacity from
the harmonic model (thin line), and heat capacity from the quasiharmonic estimate (dashed line).

Measurements of heat capacity at constant pressure, CP, have provided some of the most im-

portant experimental information on the thermodynamics of α-Fe [19, 20, 31, 77, 95], and the

contributions from vibrational models are compared in Fig. 6.10. Because heat capacity is obtained

as a derivative quantity of the phonon entropy, we present heat capacity curves obtained from poly-

nomial fits to our experimental ∆Snh results. As such, the curves in Fig. 6.10 should be reliable for

gradual trends, but possible features near the Curie temperature may be missing. Nevertheless, it

is clear that the ∆Snh of Fig. 6.9 makes a significant contribution to the heat capacity, larger than

the usual quasiharmonic contribution also shown in Fig. 6.10.

The nonharmonic vibrational entropy can be written as

∆Snh(T ) = Sppi(T ) + Sepi(T ) + Smpi(T ), (6.7)

which includes the vibrational entropy from phonon-phonon interactions, Sppi(T ), vibrational en-

tropy from electron-phonon interactions, Sepi(T ), and vibrational entropy from magnon-phonon

interactions, Smpi(T ). Experimental measurements of phonon DOS spectra cannot alone be used

to identify the individual terms Sppi, Sepi, or Smpi of ∆Snh. Nevertheless, the thermal trends are

suggestive. The Sppi contribution from phonon-phonon interactions (often called the “anharmonic”
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contribution), arises from both the cubic and quartic components of the phonon potential [35].

With the cubic contribution comes a lifetime broadening from the imaginary part of the phonon

self energy. Even at the highest temperature, the lifetime broadening of the phonon DOS in α-Fe

is small compared to other systems [14–16, 96, 97]. For a damped harmonic oscillator, the shift

in phonon frequencies, ∆, associated with lifetime broadening is ∆ = −Γ2/(2ε), where Γ is the

linewidth broadening and ε is the oscillator mode energy [36]. The broadening of the DOS features

was assessed by examining the widths of the Lorentzian fits used to create Fig. 6.2. From this

measured broadening, the classical anharmonic shift, ∆, is at least an order of magnitude smaller

than the observed high temperature shifts. Finally, phonon-phonon interactions from both cubic

and quartic perturbations increase linearly with temperature, and the ∆Snh in Fig. 6.9 does not

follow a linear trend. It appears that phonon-phonon interactions are not the main contribution to

∆Snh at high temperatures.

Electron-phonon coupling has been investigated by spin-polarized DFT calculations [89], and

effects were found to be modest. These calculations did find large differences in the electron-phonon

interactions for the majority and minority spin electrons, but did not consider disordered spin config-

urations. Second-nearest-neighbor magnetic exchange interactions were reported to be anomalously

sensitive to local atomic configurations [95], and we found that 2NN force constants decrease signifi-

cantly at temperatures where the spin order was decreasing rapidly. The ∆Snh curve has a strikingly

similar shape to the magnetic entropy curve in Fig. 6.9. The magnon dispersions in iron have a

maximum energy approximately an order of magnitude higher than the phonon dispersions [98], but

perhaps 5% of the magnons are in the energy range of phonons in Fe. More processes involving two

magnons may affect the phonon self energies. A detailed analysis of phonon-magnon interactions is

required for further progress, but it seems plausible that Smpi is large.

Two phonon DOS spectra were acquired when the sample was in the fcc phase above 1185K, and

these are shown in Fig. 6.11. From these measurements, the change in vibrational entropy across the

α-γ phase transition at 1185K was found to be 0.05 kB/atom. This is notably smaller than previous

literature values of 0.091 and 0.14 kB/atom [83], which are similar to the SGTE recommended value

of 0.103 kB/atom [21], but the latter also includes magnetic and electronic contributions. The fcc γ-

Fe DOS spectra of Fig. 6.11 are compared with a 1428K γ-Fe DOS, calculated using force constants

from the literature [82] and convolved with our experimental NRIXS resolution for comparison.

The mean energies of the three DOS spectra are quite similar, but the two NRIXS DOS spectra

measured here are significantly broader than the DOS calculated from dispersion measurements.

High temperature phonon measurements of several fcc metals exhibited significant phonon lifetime

broading effects owing to phonon-phonon interactions, so these effects may make a more significant

contribution to the thermodynamics of fcc γ-Fe [14–16, 96, 97]. A more systematic study of the shape

of the phonon DOS in the fcc phase should help determine if there is a large lifetime broadening,
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Figure 6.11: The phonon DOS at two temperatures in the fcc phase, compared with a spectrum
from neutron triple-axis measurements at 1428K [82].

but if so we may have underestimated the vibrational entropy for the fcc phase [99].

6.6 Conclusions

Nuclear resonant inelastic x-ray scattering was used to measure the phonon DOS of bcc α-Fe from

low temperature up through the α-γ transition. The vibrational entropy deviated significantly

from predictions of quasiharmonic theory by as much as 0.35kB/atom (or a free energy contribution

35 meV/atom) at 1150K. The nonharmonic contribution ∆Snh was distinctly nonlinear with temper-

ature, and occurred without significant broadening of the phonon lineshape, unlike typical behavior

with phonon-phonon interactions. The temperature-dependence of ∆Snh followed the magnetic en-

tropy, however, suggesting that the change of magnon-phonon interactions with temperature makes

a significant contribution to the nonharmonic phonon softening of α-Fe. The vibrational entropy of

the bcc-fcc Fe transition at 1185 K was found to be smaller than the assessed thermodynamic value.

A Born–von Kármán model was fit to the experimental phonon DOS spectra, and used to ex-

tract interatomic force constants. Full phonon dispersions were then calculated from the Born–von

Kármán force constants. These dispersions showed that the anomalous softening originates primarly

from low transverse modes along the Γ-N high symmetry direction, in agreement with single crys-

tal triple-axis neutron studies. The anomalous softening originates with the large softening of the

2NN longitudinal force constant, which may be consistent with the atypical sensitivity of the 2NN
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exchange interaction to local atomic configurations.

6.7 Supplemental Material

A Born-von Kármán (BvK) model was used to extract tensorial force constants from phonon DOS

measurements at 39 temperatures in the bcc phase. The BvK model was embedded in a genetic evo-

lution algorithm to optimize tensorial force constants for each NRIXS measurement independently.

The optimizations were run in several configurations, where different numbers of nearest-neighbor

force constants were permitted to vary, with more distant neighbor force constants fixed to the

ambient temperature values [12]. The optimizations that varied the first four nearest neighbors (11

variables) most accurately reproduced known force constant values in our test case, but only slightly

better than the optimizations that included only two nearest neighbors (4 variables). Klotz, et al.,

also found that varying the force constants for only two nearest neighbors could reproduce phonon

trends in bcc Fe at elevated pressure [91]. Table 6.2 contains the force constants from the fits which

varied only the first and second nearest neighbors. Table 6.3 contains the force constants from fits

which permitted the first four nearest neighbors to vary.

The force constants from the BvK fits permit calculations of phonon frequencies at any k-point

in the Brillouin zone. Some phonon dispersions along crystallographic directions of high symmetry

were presented in figures in the manuscript. As shown in Fig. 6, the T2[ξξ0] branch from Γ to N

has a particularly strong temperature dependence. Figure 8 shows the temperature dependence of

the energy for a particular phonon on this branch, the 1/2 T2[110] phonon at the N-point. In Fig. 1

below we replot this curve by subtracting the quasiharmonic contribution to the softening, showing

only the nonharmonic contribution to the temperature dependence. The data in Fig. 1 are distinctly

nonlinear with temperature, unlike expectations from anharmonic phonon perturbation theory [36].

Figure 1 also shows the magnetic entropy, Smag(T ), obtained as described in the manuscript. The

similarities of the two curves in Fig. 1 suggest the importance of magnon-phonon interactions for

the thermal softening of the T2[ξξ0] phonon branch.

The Lamb-Mössbauer factor (LMF) describes the ratio of recoil free to total nuclear resonant

absorption. The LMF extracted from the large NRIXS data set collected in this study is provided

in Fig. 6.13. The temperature dependent behavior of the 57Fe LMF is in agreement with previous

experimental assessments.
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Table 6.2: The fitted tensorial force constants for each temperature when only two nearest neighbors
(4 variables) are permitted to vary. The remaining force constants are fixed to room temperature
values from Minkiewicz et. at., [12] (3XX = 0.92, 3XY = 0.69, 3ZZ = -0.57, 4XX = -0.12, 4XZ =
0.0007, 4YY = 0.03,4YZ = 0.520, 5XX = -0.29, 5XY = 0.32). Force constants are reported in units
of N/m.

T (K) 1XX 1XY 2XX 2YY

30 17.79 15.57 16.87 0.42
50 17.53 15.66 16.79 0.30
130 17.36 15.54 17.07 0.44
298 16.34 15.60 17.49 1.50
299 16.37 15.37 16.58 1.15
300 15.78 15.63 17.20 2.31
300 16.62 14.89 15.67 0.63
510 15.34 14.77 14.91 1.29
523 15.92 15.17 15.25 1.30
595 14.86 15.09 15.74 1.76
647 14.84 14.68 13.51 1.63
687 14.05 15.05 14.97 2.05
740 14.82 14.73 14.34 1.09
773 13.52 15.17 15.06 2.39
805 13.45 14.81 14.04 1.73
842 13.27 14.78 14.25 2.06
870 13.19 14.91 14.12 2.02
900 12.67 14.63 12.99 2.55
923 12.88 14.94 13.93 2.08
934 12.53 14.82 13.83 2.25
962 12.35 14.80 13.52 1.85
963 12.33 14.82 13.56 2.50
981 12.27 14.69 13.22 2.19
1000 12.34 14.69 13.32 2.31
1003 12.21 14.53 11.20 2.25
1010 12.27 14.75 12.55 1.98
1023 12.10 14.90 12.37 2.43
1024 12.15 14.71 12.70 2.24
1033 11.82 14.99 12.62 2.35
1034 11.52 14.60 11.84 2.07
1039 11.91 14.37 11.28 2.10
1081 12.07 14.44 10.88 1.10
1090 11.52 14.45 11.03 2.00
1123 10.83 13.89 11.06 2.18
1135 11.47 14.47 11.07 1.93
1150 11.23 14.53 11.42 1.75
1158 10.96 14.27 10.59 2.03
1180 10.83 14.51 11.56 1.98
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Table 6.3: The fitted tensorial force constants for each temperature when four nearest neighbors
(11 variables) are permitted to vary. The remaining force constants are fixed to room temperature
values from Minkiewicz et. at., [12] (5XX = -0.29, 5XY = 0.32). Force constants are reported in
units of N/m.

T (K) 1XX 1XY 2XX 2YY 3XX 3XY 3ZZ 4XX 4XZ 4YY 4YZ

30 17.71 15.36 16.92 -1.14 2.070 1.090 -0.50 -0.270 -0.137 -0.045 0.650
50 17.69 15.47 16.08 -0.12 1.130 0.369 -0.37 -0.451 -0.054 0.146 0.505
130 17.49 15.40 16.84 0.32 1.100 0.723 -0.55 -0.653 -0.029 0.151 0.320
298 17.50 15.04 16.18 0.26 1.160 0.355 -0.44 -0.799 -0.187 0.087 0.534
299 17.00 15.15 14.69 1.01 0.707 0.348 0.20 -0.645 -0.029 0.164 0.418
300 16.67 14.96 14.46 1.33 0.505 0.496 -0.03 -0.474 0.074 0.216 0.367
300 16.89 15.37 14.79 1.02 1.100 0.547 0.71 -0.565 -0.101 -0.030 0.569
510 16.43 14.45 12.12 1.78 -0.003 0.271 1.02 -0.752 -0.342 0.130 0.170
523 16.55 14.92 14.38 1.00 0.965 0.720 0.22 -0.393 -0.202 -0.155 0.287
595 16.15 14.72 13.23 0.89 0.752 0.029 0.46 -0.373 -0.022 -0.078 0.653
647 14.13 15.37 10.24 2.31 0.390 2.050 1.98 0.572 0.113 0.025 0.392
687 14.34 15.40 11.97 2.85 -0.207 1.150 1.73 0.459 0.003 -0.139 0.377
740 15.73 14.47 13.06 0.76 0.777 0.110 0.29 -0.144 -0.107 -0.261 0.560
773 14.72 14.97 13.12 2.22 0.041 1.690 0.97 0.081 -0.564 -0.201 -0.229
805 14.04 14.36 15.15 -0.15 1.560 2.830 0.05 0.574 -0.683 -0.607 -0.206
842 14.41 14.43 13.58 1.15 1.010 0.007 -0.05 -0.086 -0.133 -0.362 0.556
870 14.56 14.61 12.36 0.80 0.983 1.250 1.18 -0.279 -0.521 -0.347 0.130
900 14.40 14.34 8.15 4.38 -1.270 -0.239 3.13 -0.761 -0.609 -0.054 0.013
923 13.90 14.80 11.97 1.60 0.804 0.260 0.79 -0.370 -0.026 -0.223 0.537
934 13.77 14.62 12.05 2.07 0.399 0.207 1.02 -0.206 -0.263 -0.327 0.427
962 14.77 14.08 9.50 -0.25 1.050 0.069 1.57 -1.090 -0.380 -0.142 0.683
963 14.27 14.29 11.19 2.34 0.088 -0.744 1.10 -0.660 -0.445 -0.216 0.537
981 11.88 15.23 9.96 3.55 -0.519 1.370 2.27 1.350 0.180 -0.311 0.624
1000 12.33 15.00 10.41 3.93 -0.857 1.060 1.56 0.757 0.024 0.019 0.484
1003 12.94 15.17 7.88 3.52 -0.649 0.186 3.23 0.469 -0.363 -0.337 1.130
1010 13.57 14.86 8.38 3.60 -0.976 -0.529 3.02 0.116 -0.271 -0.355 0.913
1023 12.35 15.62 7.62 4.16 -1.020 0.773 3.85 0.741 -0.219 -0.208 0.778
1024 11.64 15.36 7.80 4.44 -1.060 1.320 3.36 1.060 0.123 -0.042 0.758
1033 12.18 15.42 9.59 3.46 -0.845 -0.675 2.43 0.863 0.250 -0.094 2.000
1034 13.82 14.17 6.52 4.05 -1.660 -1.910 3.39 -0.875 -0.495 -0.039 1.080
1039 13.13 14.31 6.17 4.10 -1.490 -1.250 3.39 -0.268 -0.057 0.035 1.180
1081 13.55 14.32 8.58 1.10 0.271 0.136 1.74 -0.149 -0.423 -0.446 0.495
1090 13.32 13.99 9.75 1.76 0.246 1.380 1.52 -0.401 -0.779 -0.536 -0.179
1123 10.34 14.41 8.54 3.47 -0.479 1.270 2.30 1.320 0.006 -0.397 0.754
1135 13.15 14.33 8.55 1.74 0.370 -0.554 2.12 -0.326 -0.349 -0.541 0.772
1150 14.18 13.87 6.43 2.59 -0.921 -1.850 2.78 -1.230 -0.695 -0.148 0.757
1158 11.26 14.63 7.53 3.15 -0.464 -0.543 2.49 0.352 0.114 -0.139 1.350
1180 10.02 14.93 8.50 3.90 -1.110 1.300 1.70 1.440 0.130 0.128 0.733
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Figure 6.12: The deviation of the 1/2 T2[110] from the low temperature quasiharmonic approxima-
tion shown in Fig. 8. The nonharmonic deviation of this phonon mode tracks the magnetic entropy
of bcc Fe from Fig. 9.
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Figure 6.13: Lamb-Mössbauer factors calculated from measured NRIXS spectra. The experimental
data from this study (presented in black) are compared with literature values in open circles [100],
open squares [101], open up triangles [102], and open down triangles [103].
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Chapter 7

Cementite

Phonon densities of states (pDOS) of 57Fe3C were measured from low temperatures through the

Curie transition using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that

the low energy acoustic phonons move to higher energies (stiffen) with temperature before the

magnetic transition. Such behavior is unusual because phonon frequencies typically move to lower

energies (soften) in conjunction with the quasi-harmonic approximation and finite-temperature ther-

mal expansion. The unexpected stiffening observed in cementite suggested that the quasi-harmonic

model is not sufficient to describe the experimentally observed properties of cementite and that

previous claims of extreme elastic anisotropy in cementite may not hold at moderate temperatures.

Computational results were obtained using density functional theory (DFT) to complement our ex-

perimental results. These show that the unexpected stiffening observed experimentally in cementite

is reproduced by accounting for finite temperature phonon-phonon interactions. The anomalous

temperature response of phonons in Fe3C is linked to the low energy acoustic phonon branches with

polarizations along the [010] direction. The effect was further localized to the motions of the FeII site

within the orthorhombic structure, which participates disproportionately in the anomalous phonon

stiffening.

7.1 Introduction

Cementite, Fe3C, is the most common carbide observed in steels. Accordingly it has gathered much

interest for its significant role in thermomechanical processing and how its presence in different

microstructures affects observed material properties. Cementite has also recently been considered as

a candidate light-element-containing phase for the Earth’s inner core, motivating a variety of studies

at elevated pressures.

Cementite, Fe3C, has an orthorhombic crystal structure that is ferromagnetically ordered at

ambient pressures below 460K and at ambient temperatures below 8GPa [104, 105]. The mate-

rial properties of cementite change notably across the magnetic transition, which has complicated
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extrapolations of ambient behavior to the high temperatures or high pressures of interest. Cemen-

tite is metastable at ambient conditions, and has been synthesized in its pure form only recently

[106]. Despite the longstanding metallurgical interest in Fe3C, many of its physical properties are

still poorly constrained. This is due to the large variety of materials synthesis routes (alloyed steel

sub-components, mechanical milling, and high pressure synthesis) which produce varied cementite

products. The temperature-dependent heat capacity of cementite remains poorly constrained by a

wide range of experimental values reported on samples of varying origin and purity, and the high

temperature stability Fe3C is still being debated [23, 107–110]. Only recently have detailed studies

on large, high-purity, cementite samples begun to illustrate the atypical physical properties of this

material.

The temperature-dependent thermal expansion of Fe3C, evaluated by neutron diffraction il-

lustrated a very anomalous magneto-volume behavior, including ranges of anomalously small and

anisotropic thermal expansion in the ferromagnetic phase [23]. Similarly, high pressure diffraction

studies have shown that the ferromagnetic phase is much less compressible than paramangetic or non-

magnetic orthorhombic high pressure phases. Many first principles computational studies have made

predictions of the material behavior of cementite under a range of physical conditions, but in the

absence of concrete experimental details these calculations are difficult to validate. Quasi-harmonic

density functional theory calculations of Fe3C fail to capture the anomalous thermal expansion, but

provide a computational thermodynamic examination that falls well within the range of observed

thermodynamic behavior [110, 111].

Understanding the mechanical behavior of cementite is critical to a fundamental understanding

of its role in the hardening of steels, but comprehensive experimental studies are unavailable. First

principles studies have suggested that ferromagnetic cementite has an unusual level of elastic and

shear anisotropy [109, 112–114]. This has been extended to computational predictions of strain-

stiffening in cementite under extreme deformations in specific crystal orientations [113]. The limited

number of experimental measures of elastic behavior report that cementite does appear anisotropic,

but not to the extent predicted by density functional theory. Additionally, a low temperature study

on the ultrasonic sound velocities reported anomalous behavior at low temperatures [115]. The highly

anisotropic elastic behavior of cementite is likely linked to the complex anisotropic magneto-volume

behavior. A more concrete understanding of these relationships would have important consequences

for understanding the role of cementite in the mechanical behavior of steels.

The small thermal expansion of cementite has encouraged several groups to draw comparision

with invar materials that exhibit high-spin to low-spin magnetic transitions [116–120]. These are

largely based on the existence of magneto-volume anomalies, and the suggestion that the valence

electron per transition metal atom (e/a) ratio in Fe3C is quite similar to the invar FeNi composition

if one assumes the carbon atoms donate electrons to the valence band. Under applied pressure
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Fe3C exhibits a number of phenomena associated with magnetic transitions at different pressures.

Synchrotron Mössbauer spectra have shown a loss of magnetic beats around 7GPa [105, 121] while

X-ray Magnetic Circular Dichronism (XMCD) indicates a change at 10GPa [118]; x-ray emission

spectroscopy (XES) shows a loss of magnetic character at 25GPa [122], and high pressure x-ray

diffraction (XRD) studies show changes in the volume compression at both 10GPa and 70GPa [123].

The combination of these pressure effects has been interpreted as a ferromagnetic to paramagnetic

phase transition around 8GPa, and also a paramagnetic to non-magnetic transition around 25GPa.

However, few observations have been made of electronic and magnetic behavior across the ambient

pressure transition at 460K.

Vibrational spectra of Fe3C from low temperatures through the magnetic transition will help

elucidate the underlying physics in this material. They provide direct access to the vibrational

entropy of the material, and how it changes through the magnetic transition. Phonons are quite

sensitive to changes in bonding and magnetic configurations, so the thermal vibrational behavior may

improve the understanding of underlying magnetic phenomena. The elastic behavior of a material is

closely linked to its low-q vibrational modes, so the high temperature phonon behavior can provide

information on the thermal trends in elastic moduli.

7.2 Experimental

High pressure, high temperature synthesis was used to prepare 57Fe3C at stoichiometric composition

with 95% 57Fe isotopic enrichment. The material was prepared by placing 95% isotopically enriched

57Fe powder and graphite powder inside a MgO crucible. The crucible was placed inside a large

volume press where it was held at 2GPa and 1273K for 24 hours as in [124]. Pieces of the MgO

crucible were visually and magnetically separated from the 57Fe3C crystals which were ground into

powder under acetone.

Nuclear resonant inelastic x-ray scattering (NRIXS) measurements were performed on 57Fe3C

at high temperatures. NRIXS is a low background technique that provides direct access to the full

phonon density of states (DOS) [42, 46]. Measurements were performed at beamline 16ID-D of the

Advanced Photon Source at Argonne National Laboratory using a radiative heating furnace. The

powder sample was mounted on a thermocouple using Cotronics Cermabond 7020 aluminia-based

ceramic compound. The NRIXS measurements performed below room temperature employed a He

flow Be-dome cryostat, with the powder mounted in cryogenic vacuum grease. The temperatures

were accurate to within ±20K, where ambiguity comes from comparing the furnace thermocouple

measurements to in-situ nuclear forward scattering and the NRIXS-derived detailed balance tem-

perature calculations following the procedures described in literature [45, 90].

An avalanche photodiode was positioned at approximately 90◦ from the incident beam to collect
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re-radiated photons in a reflection geometry, beginning approximately 20 ns after the synchrotron

pulse. The incident photon energy was tuned to 14.413 keV using a high-resolution silicon crystal

monochromator to provide a narrow distribution of energies with a FWHM of 2.3 meV. The incident

photon energy was scanned through a range of ±170 meV, centered on the nuclear resonant energy.

The Phoenix reduction package was used to extract phonon DOS spectra from the collected spectra

[45].

7.3 Computational

Vibrational spectra were calculated using Density Functional Theory (DFT) across the range of

temperatures at which experimental data were taken. The vibrational spectra of Fe3C were assessed

by two separate methods; quasi-harmonic scaled-volume calculations at 0K, and constant-volume

calculations at finite temperatures. This allowed us to separate and distinguish the effects of quasi-

harmonic thermal expansion and the effects of phonon-phonon interactions through finite temper-

ature constant volume calculations. These vibrational spectra were, in turn, used to calculate the

elastic constants of cementite across a range of temperatures.

We used the Vienna Ab initio Simulation Package (VASP) [125–128] with a generalized gradient

approximation (GGA) exchange correlation functional as parameterized by Perdew, Burke, and

Ernzerhof [129] to calculate the vibrational spectra and elastic constants of cementite. For phonon

calculations, we modeled cementite as a 2×2×3 supercell of 192 atoms; elastic constant calculations

were performed on a 16-atom unit cell. With a 2 × 2 × 3 supercell, we achieved convergence with

respect to the system’s total energy and vibrational spectra using a Monkhorst-Pack [130] generated

k-point mesh of 3 × 3 × 3 and a plane wave energy cutoff of 800 eV; for unit cell calculations, we

employed a 11 × 9 × 13 k-points. All computational data reported herein relies on spin-polarized

calculations to model the system as ferromagnetic.

An Fe3C supercell was fully relaxed to find the theoretical equilibrium lattice parameters. To

calculate vibrational spectra, we introduced a random set of displacements {~ui|1 ≤ i ≤ N} charac-

teristic of temperature T to the relaxed supercell of N atoms. The displacements {~ui} were generated

as a linear combination of plane waves

~ui =
∑
k

εikck√
mi

√
−2 ln ξ1e

i2πξ2 . (7.1)

Here ε are the normal mode eigenvectors for the modes commensurate with the supercell, and mi the

mass of atom i. The amplitudes ck are derived from the same normal modes, with the displacement
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length per mode given by Errea, et al. [131]

ck =

√
h̄

2ωk
coth

(
h̄ωk

2kBT

)
(7.2)

where ωk are the normal mode frequencies. The numbers ξ1 and ξ2 are uniformly distributed

random number between 0 and 1 to produce the standard Box-Muller transform for generating

normally distributed amplitudes. This distribution approximates the inclusion of zero-point motion,

and as such has nonzero displacements at 0K, and connects seamlessly to the classical limit at high

temperature.

We thereby generated sets of displacements for a random and representative selection of points

from the system’s phase space, as described by a Bose-Einstein distribution. Static DFT calculations

on these structures and post-processing by the TDEP method [71, 132, 133] yielded the interatomic

force constants and phonon DOS of Fe3C, both at zero and finite temperatures.

First, we calculated vibrational spectra with the quasi-harmonic approximation (QHA) by ac-

counting for temperature-induced volume changes to the system while using the 0K potential en-

ergy surface. To do this, the ground state lattice parameters were scaled by the experimentally

observed thermal expansion [23] for temperatures between 0K and 600K in 50K steps. Second,

the constant-volume finite-temperature (CVFT) calculations were performed using the equilibrium

lattice parameters, but the temperature in Eqn. 7.2 was increased to 200, 400, and 800K, adjusting

the amplitudes of displacements in the vibrational calculations to provide finite temperature effects.

We calculated changes to the elastic constants using low energy phonon group velocities from

the phonon dispersion relations and the Christoffel equations. This was performed for both the

scaled-volume QHA series, and the finite temperature constant volume calculations. These phonon-

derived elastic constants were also compared to elastic constants calculated by the density functional

perturbation theory (DFPT) [134] as implemented in VASP, using unit cells scaled by the observed

experimental volume changes.

7.4 Results

7.4.1 Structure

Cementite takes the orthorhombic structure with the Pnma space group, containing 12 iron atoms

and 4 carbon atoms per unit cell as shown in Fig. 7.1. The experimental and computed equilibrium

lattice parameters from this study are compared with other literature values in Table 7.1. The DFT

calculated lattice parameters are in good agreement with the exception of the b lattice parameter,

which appears slightly lower than previously reported results. The experimental lattice parameters

were confirmed by powder x-ray diffraction (XRD) using a laboratory Cu Kα source, and Reitveld
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Figure 7.1: (Color online) The structure of cementite. Carbon atoms are black, FeI atoms are gold,
while FeII atoms are red.

Table 7.1: Unit cell parameters of cementite from various experimental and computational studies.

Source a b c Functional

this study 5.0429 6.7028 4.4816 PAW/PBE
Jiang [112] 5.04 6.72 4.48 PAW/PBE
Dick [111] 5.035 6.716 4.480 PAW/PBE

Nikolussi [114] 5.036 6.724 4.480 PAW/PBE
Haeglund [135] 5.089 6.743 4.523 LMTO

this study 5.086 6.754 4.520 Experimental (300K)
Wood [23] 5.081 6.753 4.515 Experimental (300K)
Gao [105] 5.0814 6.751 4.516 Experimental (300K)
Wood [23] 5.082 6.733 4.512 Experimental (4K)

refinement, giving interplanar spacings very similar to synchrotron XRD measurements on other

samples of Fe3C generated by the same high pressure synthesis methods [136].

In cementite, the Fe atoms occupy two distinct sites on the lattice, with 8 FeII atoms occupying

the general site (8d) shown in red, and four FeI occupying the special site (4c) shown in gold. The

carbon atoms also occupy the 4c site, with prismatically coordinated positions between the Fe atoms.

The lattice positions of each of the unique crystal sites are shown in Table 7.2. The calculated and

experimentally-determined lattice sites are also in close agreement with previous results.

Both Fe sites in the orthogonal cementite structure have carbon first nearest neighbors, although

the Fe-C bond is somewhat shorter for FeI atoms [137]. The FeII sites have 11 Fe neighbors in the

second nearest neighbor shell, while the FeI site have 12. On average the Fe neighbors of the FeII

site are closer than the FeI site, with the closest Fe-Fe distance existing between FeII sites aligned
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Table 7.2: Unit cell parameters of the unique crystallographic sites in cementite from various exper-
imental and computational studies.

Source FeI (x,y,z) FeII (x,y,z) C (x,y,z) Method

this study (0.036,0.025,0.837) (0.176,0.068,0.332) (0.877,0.250,0.438) PAW/PBE
Jiang [112] (0.036,0.025,0.837) (0.176,0.068,0.332) (0.876,0.250,0.438) PAW/PBE

this study (0.035,0.250,0.838) (0.185,0.059,0.334) (0.898,0.250,0.447) 300K Exp.
Wood [23] (0.034,0.250,0.841) (0.184,0.057,0.333) (0.894,0.250,0.450) 300K Exp.

along the b-axis.

7.4.2 Phonons

Nuclear Resonant Inelastic X-ray Scattering (NRIXS) spectra were measured at 17 temperatures

from 14K through the magnetic transition at 460K, up to the reported limit of material stability

at 600K [23]. The NRIXS spectra were reduced to provide the 57Fe partial phonon DOS curves in

Fig. 7.2. The phonon partial DOS show only small changes through the temperature range. The

most apparent change is softening and broadening of the feature near 35 meV. The lowest temper-

ature phonon partial DOS is compared with the 0K DFT calculated partial DOS in Fig. 7.3 at the

calculated equilibrium unit cell volume reported in Table 7.1. The lowest temperature measurement

is in excellent agreement with our DFT calculations when the experimental resolution is taken into

account and the energy axis is scaled by 5.5% to align the mean energies of the experimental and

calculated phonon spectra. Our phonon dispersions calculated using DFT are consistent with dis-

persions from previous computational studies of cementite [112]. The phonon partial DOS curves

from DFT show that displacements of the Fe atoms dominate the low-energy phonons, while carbon

atom motions dominate the higher-energy phonon branches. This segregation of the phonon DOS

can be related to the atomic mass mismatch of the two species. While most phonon modes include

motions of both Fe and C atoms, the carbon motions dominate the high frequency phonons, and

the iron motions dominate the lower energy phonons. All Fe pDOS curves are normalized to 67

meV, because experimental spectra were too noisy to make out the subtle DOS features beyond this

energy. While the DFT calculations find some intensity in the Fe pDOS above 70meV, this intensity

makes only a small contribution to integrated quantities.

The average phonon energies from the Fe partial DOS (pDOS) are plotted in Fig. 7.4. The ex-

perimental mean energies are compared with their QH DFT counterparts, and also a quasi-harmonic

model with a thermal Grüneisen parameter calculated from the 300K bulk properties of Fe3C using

the expression

γth =
αKTν

CV
= 2.24, (7.3)

where KT is the bulk modulus [122], α(T ) is the volume thermal expansion [23], ν(T ) is the volume
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Figure 7.2: (Color online) The 57Fe partial phonon DOS extracted from NRIXS measurements
at various temperatures. The spectra are normalized and offset for comparison. Experimentally
determined errors are shown as partially shaded regions along each DOS.
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Figure 7.3: (Color online) The 57Fe phonon DOS from NRIXS at 14K, compared with partial
density of states from DFT. The experimental DOS is shown in purple, where the shaded region is
representative of the experimental uncertainties in the phonon pDOS measurement. The DFT Fe
pDOS is shown in black, along with the C pDOS (gray dashed).

per atom [23], and CV(T ) is the heat capacity at constant volume calculated by integrating the

DFT total phonon DOS. The experimental average phonon energies are nearly constant (within

experimental scatter) to the Curie temperature at 460K. At higher temperatures, where cementite

becomes paramagnetic, the phonon energies begin to decrease (or soften) with temperature. While

the observed thermal expansion in the ferromagnetic temperature region is quite small, the QH esti-

mate from DFT predicts a 0.2 meV decrease in mean phonon energy up to the magnetic transition,

while the experimental data are constant, or perhaps undergo the opposite trend. The near constant

behavior of the mean phonon energy with temperature suggests there must be nonharmonic phonon

behavior approximately equal and opposite to the thermal expansion driven phonon softening.

7.4.3 Vibrational Entropy

The total entropy of a material is often separated into component entropies attributed to different

physical phenomena,

S(T ) = Svib(T ) + Sel(T ) + Smag(T ), (7.4)

where Svib(T ) is the vibrational entropy, Sel(T ) is the electronic entropy, and Smag(T ) is the mag-

netic entropy. Vibrational entropy makes the largest contribution at finite temperatures, so small
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Figure 7.4: (Color online) The mean energy of the 57Fe partial phonon DOS extracted from NRIXS
measurements at various temperatures. The thick dashed line is the mean energy calculated from
a Grüneisen parameter quasi-harmonic model. The thin dashed line is the Fe partial DOS mean
energy from DFT calculations.
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Figure 7.5: (Color online) The change in vibrational entropy with temperature as it departs from
the harmonic model.

changes in vibrational entropy can have a large impact on material stability. Accurate values of the

vibrational entropy, Svib(T ), can be obtained directly from the phonon DOS as

Svib(T ) = 3kB

∫
gT (E){(n+ 1) ln(n+ 1)− n ln(n)}dE, (7.5)
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where kB is the Boltzmann constant, gT (E) is the DOS at temperature T , and n is a Planck

distribution evaluated at T , for a given energy E. When experimental DOS curves are available for a

given temperature, this expression provides accurate entropy values that include both quasiharmonic

effects and also nonharmonic effects (to first order) [35].

The vibrational entropy, Svib(T ), can be further divided into component entropies as

Svib(T ) = Sh(T ) + ∆Sqh(T ) + ∆Sah(T ), (7.6)

where Sh(T ) is harmonic vibrational entropy, ∆Sqh(T ) ≡ Sqh(T )−Sh(T ) is the purely quasiharmonic

contribution, and ∆Sah(T ) ≡ Svib(T )−Sqh(T ), is the anharmonic contribution. For the 57Fe partial

DOS of cementite from NRIXS, we obtain a partial vibrational entropy for the Fe atoms. The Fe

partial entropy calculated from NRIXS pDOS is compared to quasi-harmonic models for ∆Sqh(T ) in

Fig 7.5. For clarity, the harmonic contribution to the vibrational entropy, Sh(T ), has been subtracted

so the non-harmonic behavior can be more closely assessed. The quasi-harmonic contribution,

∆Sqh(T ) adjusts the vibrational entropy to account for the thermal expansion of a material at finite

temperatures. While the thermal expansion of cementite is small in the magnetic phase, it still has

an appreciable effect on the Fe partial vibrational entropy. Several quasi-harmonic contributions

are compared in Fig. 7.5. The vibrational entropy derived from QH DFT and the Grüeneisen

parameter model are compared with a quasi-harmonic entropy calculated from the entropic volume

dependence from high pressure NRIXS measurements [105]. All the methods examined diverge

notably from the measured Fe partial vibrational entropy at temperatures just below TC, by more

the 0.03kB/atom. The measured partial vibrational entropy is noticeably lower than predicted by

quasi-harmonic models, suggesting an anharmonic contribution that is approximately equal and

opposite to the quasi-harmonic contribution. The constant volume finite temperature (CVFT)

calculations do agree with the measured Fe partial vibrational entropy. This suggests that the

elevated temperature deviations from the quasi-harmonic estimate below the magnetic transition

originate from phonon-phonon interactions that are well reproduced by the CVFT calculations.

Total entropy estimates are provided in Table 7.3, which are calculated by adding a harmonic

C partial vibrational contribution calculated from the 0K DFT C pDOS. The errors include both

the calculated quasiharmonic and anharmonic C phonon shifts, which contribute approximately

0.01 kB per atom at TC and oppose each other in sign. The deviation from the ab initio calculated

vibrational entropies are quite small, provided that the calculated phonon spectra are scaled to match

the observed NRIXS mean energies. However, they do differ from the DFT calculated vibrational

entropy of previous studies [111], by about 0.17 kB/atom.
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Table 7.3: The total vibrational entropy calculated from NRIXS Fe pDOS and DFT C pDOS.

Temperature (K) Total Svib kB/atom

14 0.003 ± 0.000
105 0.744 ± 0.001
232 2.205 ± 0.002
294 2.786 ± 0.004
295 2.783 ± 0.004
297 2.794 ± 0.004
330 3.088 ± 0.005
365 3.351 ± 0.007
375 3.429 ± 0.008
410 3.658 ± 0.009
423 3.745 ± 0.010
444 3.880 ± 0.011
463 4.007 ± 0.012
480 4.113 ± 0.013
500 4.238 ± 0.014
550 4.520 ± 0.016
600 4.792 ± 0.019

7.4.4 Low Energy Phonon Modes

The Debye sound velocities were extracted from the low energy region of the phonon partial DOS

curves following the methodology of Hu, et al., [138] using energies below 11 meV. The room tem-

perature sound velocities are in reasonable agreement with the powder sample measurements of Gao,

et al., at 300K [139] and are presented in Fig. 7.6. We see a noticeable increase in the Debye sound
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Figure 7.6: The Debye sound velocities calculated from the NRIXS pDOS. A reference calculated
from the NRIXS pDOS of the measured powder sample in Gao et. al.,[136] is shown as a gray
diamond.

velocity in the ferromagnetic phase with increasing temperature. The increase in the sound velocity

extracted from our phonon pDOS measurements reverses itself once the magnetism is lost, and the

Debye velocity decreases with temperature in the paramagnetic phase.
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Figure 7.7: (Color online) The 57Fe phonon partial DOS are compared at various temperatures,
shaded areas show uncertainty in measured spectra. The calculated phonon difference spectra are
shown below the phonon DOS and the inset shows the low energy region. Panel A highlights changes
over the ferromagnetic temperature region. Panel B shows changes that occur after the magnetic
transition. Panel C compares the highest and lowest phonon spectra.

This is consistent with early ultrasonic measurements that showed a small decrease in the Debye

sound velocity with temperature below 300K [115], but our decrease in Debye velocity below 300K
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is nearly an order of magnitude larger. This may be a result of the material quality of the ultrasonic

study, or perhaps the anomalous stiffening we observe at finite energy has a smaller effect on phonons

in the long wavelength limit sampled by ultrasonic measurements. Dodd, et. al., found that the

decrease in the sound velocity on decreasing temperature was due to changes in the shear wave

velocities; the longitudinal sound velocity showed a normal increase with decreasing temperature.

Prior NRIXS data on 57Fe3C at elevated pressures show that the low-energy phonons stiffened

normally with pressure [105, 115, 139]. Nevertheless, the shear velocity increased much more rapidly

with pressure in the ferromagnetic phase, compared to the paramagnetic phase.

Closer examination of the low energy phonon spectra in Fig. 7.7 shows that phonons near 9meV

actually stiffen (or increase in energy) as the material is heated. This stiffening of the low energy

phonon modes accounts for the increase in Debye sound velocities observed with increasing temper-

ature. This stiffening of phonon energies with temperature is opposite to what might be expected

in a material with a net volume expansion over the same temperature region. This anomalous stiff-

ening of the low energy Fe phonon modes persists until the magnetic transition is reached, then

the low-energy phonons soften with temperature. This anomalous low-energy phonon stiffening was

not reproduced by QH DFT calculations performed at volumes scaled to match the observed ther-

mal expansion, explaining the discrepancy between the QH models and the NRIXS observed values

for mean energies and vibrational entropies at finite temperatures in Fig. 7.4. The volume-scaled

DFT phonon dispersions soften monotonically at all energies, indicating that the anomalous low-

energy phonon stiffening in the NRIXS pDOS cannot be solely attributed to the anisotropic thermal

expansion.

The CVFT calculations captured the anomalous low-energy stiffening behavior at finite temper-

atures, as shown in Fig 7.8. The CVFT Fe pDOS shows qualitative agreement with the change in

low energy phonon modes observed in the NRIXS pDOS at 400K. These constant volume calcu-

lations show the low energy phonons stiffening continuously with increasing temperature. The C

pDOS makes a very small contribution to the total DOS at low energies, but it also shows behavior

consistent with the low energy stiffening seen in the Fe pDOS. The low temperature phonon dis-

persions show which phonon branches comprise the 6-12meV shoulder shown in the Fe pDOS. This

energy range encompasses low-energy transverse acoustic phonon modes, and also the lowest energy

optical modes near the Γ point. At elevated temperatures, these modes move to higher energies as

shown in Fig 7.8, resulting in the loss of the low energy shoulder in the Fe partial phonon DOS.

The longitudinal acoustic phonon modes have higher energies, above the low energy shoulder, and

remain fairly constant between 0 and 400K in the CVFT phonon dispersions. In addition to recre-

ating our thermal trends in the Fe pDOS, these calculated phonon dispersions are consistent with

the ultrasonic measurements, which show different temperature behaviors of longitudinal and shear

sound waves, relating to the longitudinal and transverse acoustic branches, respectively [115].
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Figure 7.8: (Color online) The Fe partial phonon DOS from CVFT calculations are convolved with
an experimental resolution function. The calculated phonon difference spectra are shown below the
phonon DOS, and the inset highlights the changes in the low energy region over the ferromagnetic
temperature region. Panel B shows the corresponding phonon dispersions at the high symmetry
points at 0K (black) and 400K (red).

The low-energy transverse acoustic phonon branch stiffens along many of the high-symmetry

directions of the Brillouin zone except the [010] direction between Γ and Y. The transverse acoustic

phonons have their lowest energies along the Γ - Z direction, but this branch stiffens noticeably
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with temperature, even at low-q. This stiffening explains the observed change in the Debye sound

velocity with increasing temperature. This stiffening is particularly large at the X and Z points,

where the lowest energy transverse acoustic phonons stiffen by 26% and 40% respectively. The Y

point shows almost no stiffening with temperature in the CVFT calculations. Characteristic phonon

displacements for the low-energy Z and X point modes are shown in Fig. 7.9. Both sets of modes are

characterized by large displacements of Fe atoms along the b-axis. In contrast characteristic atom

displacements for the low-energy Y point modes are shown in Fig 7.10. These Y-point modes which

do no stiffen significantly with temperature, characterized by large displacements of the Fe atoms

perpendicular to the b-axis. Several other k-points in high symmetry directions were examined,

Figure 7.9: (Color online) Phonon mode illustrations from the X-point (top) and the Z-point
(bottom), which undergo anomalous thermal stiffening at moderate temperatures.

and the thermal stiffening of these modes were correlated with phonon polarization along the [010]

direction.
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Figure 7.10: (Color online) Phonon mode illustrations from the Y-point. These phonon modes do
not undergo anomalous thermal stiffening.

The two lowest-energy optical modes also show large stiffening effects near the Γ point, with a

16% phonon energy increase for the lowest point, and a 18% energy increase for the highest point.

These phonon modes are shown in Fig. 7.11. The lowest energy optical phonon mode at Γ shows

somewhat different behavior than the other stiffening modes, with significant phonon displacements

of the Fe atoms in the c-axis direction, but with components along the a and b directions. The

highest energy optical phonon is characterized by large displacements of all atoms along the b-axis,

and this mode exhibited large thermal stiffening.

Figure 7.11: (Color online) Phonon mode illustrations for the lowest energy Γ-point phonons. These
phono modes undergo significant thermal stiffening.
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The Fe partial DOS can be further divided onto the unique Fe sites in the orthorhombic cementite

lattice as shown in Fig. 7.12. The FeII pDOS contains much greater intensity in the low-energy
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Figure 7.12: (Color online) The Fe phonon partial DOS from CVFT calculations, convolved with an
experimental resolution function, projected onto the two distinct iron lattice sites. The calculated
phonon difference spectra are shown below the phonon DOS. The inset highlights the changes in
the low energy region over the ferromagnetic temperature region. Panel A shows the phonon DOS
of the FeI sites (4 atoms/unit cell). Panel B shows the phonon DOS of the FeII sites (8 atoms/unit
cell).
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phonon shoulder that exhibits anomalous stiffening with temperature. The FeI sites participate in

these phonon modes to a lesser degree, and exhibit less stiffening with temperature. This suggests

that the anomalous stiffening seen in the Fe partial DOS at finite temperatures is directly attributable

to the FeII lattice site. Additionally the FeII pDOS contains the DOS feature at 35meV, which softens

significantly with temperature in agreement with the observed NRIXS pDOS behavior. Figures 7.9

and 7.11 show that the FeII atoms have the largest displacements, often along the b-axis, or in other

patterns that strongly distort the alignment of the layers of trigonal prisms stacked along the b-axis.

7.4.5 Elastic Constants

Cementite has been identified as having a particularly high elastic anisotropy, which can be directly

linked to the low-q behavior of the acoustic phonons [112]. Computational DFT studies of the

elastic moduli of cementite have consistently reported an anomalously low C44 value near 20GPa

[112, 114]. The nine single crystal elastic constants of Fe3C were calculated with DFPT as described

in Section 7.3. Results are compared with values from the literature in Table 7.4, which includes

elastic constants extracted from the DFT low-q phonon group velocities.

Table 7.4: Single crystal elastic moduli extracted from DFPT and from calculated phonon disper-
sions.

Source C11 C22 C33 C12 C23 C13 C44 C55 C66

this study (phonons) 315 315 292 ... ... ... 26 137 137
this study (dfpt) 380 345 302 160 152 160 20 132 135

Jiang [112] (phonon) 384 325 283 ... ... ... 26 134 125
Jiang [112] (energy) 388 345 322 156 162 164 15 134 134

Nikolussi [114] (energy) 385 341 316 157 162 167 13 131 131

Our calculated elastic moduli at 0K compare well with similar approaches in the literature, with a

C44 elastic constant that is quite low. Our temperature-dependent observations of the Fe pDOS sug-

gest the low temperature acoustic modes stiffen significantly with temperature, up to the magnetic

transition. This implies that the elastic constants should change significantly with temperature.

Elastic constants that are strongly temperature dependent would explain the discrepancies between

the highly anisotropic elastic constants calculated at 0K and less anisotropic room temperature

experimental observations of elastic behavior [112, 114, 140–142]. Since our CVFT phonon calcu-

lations show such excellent agreement with our experimental results, we will interpret the changes

in those spectra, and their implications for finite temperature elastic constants in Fe3C. The values

presented here are the first calculations of finite temperature elastic constants for cementite, which

depart noticeably from the low temperature calculated values.

The single crystal elastic constants can be related to the low energy phonon group velocities

through the Christoffel equations with the appropriate symmetry considerations. For orthorhombic
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cementite the relationships between the acoustic phonon branches and the elastic constants are

V
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√
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ρ
V

[100]
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√
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where V
[hkl]
[uvw] is the phonon group velocity of the longitudinal (L) or transverse (T) phonon in the

[hkl] direction with the [uvw] polarization, and ρ is the temperature-dependent density of cementite

[23]. The C44 elastic constant is directly related to the group velocities of low-q phonons in the

lowest transverse phonon branch along the Γ-Z and Γ-Y directions. The high-temperature phonon

dispersions in Fig. 7.8 show a large thermal stiffening of the low-q branch in the Γ-Z direction.

This suggests that the anomalously low elastic constants calculated for C44 should increase with

temperature. This increase from 0K to near ambient temperatures may be the reason that elastic

moduli measurements at 300K have not reproduced the extreme shear anisotropy reported from 0K

DFT calculations [113].

The temperature dependence of the elastic constants calculated from the CVFT dispersions are

shown in Fig 7.13. The anomalously low C44 undergoes a 55% increase between 0 and 400K when

the thermal expansion of Fe3C is included as a temperature dependent density. The C55 and C66

decrease slightly as a result of modest softening with temperature.

If we calculate the Zener shear anisotropy ratios using these temperature-dependent terms we find

that all three shear ratios become more isotropic with increasing temperature. We were unable to

reliably extract temperature dependent information on the remaining off-symmetry elastic constants

(C12,C13,C23) from the phonon spectra, so these were assumed constant in the calculation of shear

anisotropy. However, these three off-axis elastic moduli would need to change by between 18-

25% with temperature (nearly double the observed changes of all elastic moduli except C44), to

maintain the low-temperature shear anisotropy ratios. The low-energy phonon results suggest that

cementite may exhibit significantly less anisotropy at 400K than 0K calculations suggest. This is in

agreement with recent experimental studies including nano indentation of single crystals of Fe3C that

suggest the elastic response is less dependent on crystallographic orientation [140]. Experiments that

calculated the Young’s modulus from bending small oriented single crystals of cementite extracted

from an Fe matrix also showed a slightly less anisotropic response than predicted by first principles

at 0K [141].



83

á

á
á

ó
ó

ó

õ
õ õ

à à
à

ç
ç çí
í í

á C11

ó C22

õ C33

à C44

ç C55

í C66

0 100 200 300 400

50

100

150

200

250

300

350

C
ii

HGP
aL

á
á á

ó ó
ó

õ õ õ
à

à

à

ç
ç çí
í í

0 100 200 300 400

0

20

40

60

Temperature HKL

D
C

ii
H%

L

Figure 7.13: The thermal trends of elastic moduli extracted from the phono dispersions at low q,
calculated by CVFT.

7.4.6 Electronic DOS

The CVFT calculated electron density of states (eDOS) for cementite is shown in Fig 7.14, with the

electronic contributions resolved into their orbital characters. The eDOS projected onto the carbon

site lacks d-electron character, as expected. The carbon site electron DOS shows a large deeply

bound concentration of p-electrons below the Fermi surface, similar to findings from Khmelevskyi,

et. al. [112, 119]. This invalidates the simple suggestion that the thermal expansion anomaly in Fe3C

might be explained by arguments regarding how carbon atoms donate their conduction electrons,

increasing the Fe valence to levels comparable with the FeNi invar composition. The FeII majority

site eDOS has a larger concentration of electrons at the Fermi level than the minority FeI site. The

FeII majority site has a large d-electron feature at energies just below the Fermi level. The high

temperature calculated density of states at 400K shows no major change in features aside from a

general thermal smoothing. At 400K, the FeII site has a larger increase in electrons at the Fermi

level than the FeI site. The calculated electronic DOS at the Fe sites both undergo 7 % increases

in their d-electron occupations at the Fermi level, but the FeII site also shows a 4% increase in

p-electron levels. While the calculated magnetic moments on both Fe sites remain nearly constant
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in high temperature CVFT calculations, their differing electronic character is suggestive of selective

bond interaction behavior.
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Figure 7.14: (Color online) The calculated electronic DOS, resolved into orbital contributions at
the three distinct lattice sites.
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7.5 Conclusions

The NRIXS Fe pDOS have been measured from low temperature through the magnetic Curie tran-

sition at 460K and into the paramagnetic phase. The phonon spectra show an unusual thermal

stiffening of low-energy phonon frequencies that is well reproduced by CVFT calculations. The

low-energy phonon stiffening counteracts the softening expected from thermal expansion, keeping

the mean energy nearly constant with temperature and lowering the vibrational entropy by 0.03

kB/atom compared to estimates based on quasi-harmonic models. The low energy stiffening is par-

ticularly notable in the Γ - Z direction in the phonon dispersions, where the whole branch shifts to

higher energies with increasing temperature in the ferromagnetic phase. The stiffening of several

low-energy acoustic branches has important implications for the single crystal elastic moduli of Fe3C,

which become more isotropic with temperature in the ferromagnetic phase. This low-energy phonon

stiffening is evident in the dispersions throughout the Brillouin zone, where the low-energy transverse

acoustic modes have polarizations along the [010] direction. Motions of Fe atoms at the FeII sites

are strongly correlated with this anomalous stiffening behavior, as shown by the site projected FeII

pDOS. The FeII sites have the closest Fe-Fe distance in the orthorhombic unit cell along the [010]

b-direction. The FeII site also has a greater concentration of electrons at the Fermi surface, specifi-

cally more d-electrons which may be related to its role in the anomalous high temperature phonon

stiffening. The anomalous low-energy phonon stiffening stops abruptly at the magnetic transition,

and experimental spectra show these modes soften with temperature in the paramagnetic phase.

The magnetic ordering of cementite has a strong effect of the vibrational behavior, and also the

elastic constants. These thermal effects influence the anisotopy of the material structure and the

interatomic interactions.
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Chapter 8

Summary

The vibrations of materials play a vital role in defining high-temperature material thermodynamics.

The formalism for understanding material vibrations is well developed; however, finite temperature

effects are often underestimated or ignored in thermodynamic assessments. Nonharmonic effects

are critical to understanding and quantifying the Gibbs free energy at temperatures of material

phase transformations, and they can also provide information on atomic bonding. Interatomic force

constants provide an especially advantageous avenue for exploring the specifics of material dynamic

stability, specifically the precursors to, and mechanisms of, diffusionless structural transformations.

Assumptions of harmonic interatomic potentials are embedded in many theoretical expressions of

material properties and they often pass without notice. Remembering or removing these assumptions

is essential for in-depth understanding of materials, especially materials under extreme conditions

of temperature and pressure. The role of nonharmonic effects in elastic response was considered

here, but many other physical effects including thermal conductivity and diffusion also rely on the

accurate descriptions interatomic interactions and phonon dynamics.

Recent computational innovations have lead to exciting new tools for understanding atom in-

teractions in hot materials, but experimental verification of computed properties are still extremely

important. Experimental measurements of phonon spectra are a robust benchmark for assessing

the validity of computational material models. Development of advanced predictive computational

methodology in material thermodynamics will necessarily include nonharmonic effects.

Understanding phonon dynamics is essential for a complete physical picture of materials at high

temperatures. However, phonons are also strongly influenced by other physical phenomena such

as magnetic ordering and magnetic excitations. The high temperature vibrational studies of bcc

α-Fe and Fe3C described here show that magnetic order strongly affects the interatomic interactions

underlying vibrational frequencies. Additionally, these studies highlight the vast range of effects

resulting from phonon interactions with magnetic order. Temperature-induced magnetic disorder in

bcc Fe reduced the energy of specific phonon modes, increasing the entropy, both before and after

the magnetic Curie transition. In orthorhombic cementite, the ferromagnetic phase showed thermal
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increases in phonon energy that lower the vibrational entropy, an effect that is promptly reversed at

the magnetic transition. Understanding magnetic phenomena in materials remains an active frontier

in materials research, and the interactions between magnetic ordering and vibrational response are

likely important in a large number of materials.
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R. Gellert, S. Kane, P. Gtlich, and E. Kankeleit. The Miniaturized Mössbauer Spectrometer



91

MIMOS II for Extraterrestrial and Outdoor Terrestrial Applications: A Status Report. In

P. Gtlich, B. W. Fitzsimmons, R. Rffer, and H. Spiering, editors, Mössbauer Spectroscopy,
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Atomic Vibrational Dynamics of Thin Films Studied by Nuclear Resonant Inelastic X-Ray

Scattering: Amorphous Tb1−x Fex Alloys. Hyperfine interactions, 144(1):65–76, 2002.



92

[50] B. Sahoo, W. Keune, W. Sturhahn, T.S. Toellner, and E.E. Alp. Atomic vibrational dynamics

of amorphous Fe-Mg alloy thin films. Journal of Physics and Chemistry of Solids, 66(12):2263–

2270, December 2005.

[51] E. A Tanis. Phonon Density of States of 57-Iron and 161-Dysprosium in DyFe3 by Nuclear

Resonant Inelastic X-Ray Scattering Under High Pressure. Master’s thesis, University of

Nevada, 2010.

[52] Hillary L. Smith, B. C. Hornbuckle, L. Mauger, B. Fu, S. J. Tracy, G. B. Thompson, M. S.

Lucas, Y. Xiao, M. Y. Hu, J. Zhao, E. Ercan Alp, and B. Fultz. Changes in vibrational entropy

during the early stages of chemical unmixing in fcc Cu6% Fe. Acta Materialia, 61(19):7466–

7472, November 2013.
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