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INVESTIGATIONS IN THE THEORY OF

ELECTROMAGNETIC SCATTERING FROM EXPANDING

DIELECTRIC OBSTACLES

Ronald J. Pogorzelski

ABSTRACT

An equafion for the reflection which results when an
expanding dielectric slab scatters normally incident plane elec-
tromagnetic waves 1s derived using the invariant imbedding
concept. The equation is solved approximately and the character
of the solution is investigated. Also, an equation for the
radiation transmitted through such a slab is similarly obtained.
An alternative formulation of the slab problem is presented which
is applicable to the analogous problem in spherical geometry. The
form of an equation for the modal reflections from a nonrelati-
‘vistically expanding sphere is obtained and some salient features
of the solution are described. In all cases the material is
assumed to be a nondispersive, nonmagnetic dielectric whose rest

frame properties are slowly varying.
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I . INTRODUCTION

The behavior of electromagnetic radiation in environments con-
taining moving media with time varying constitutive parameters is a
subject of considerabie interest, both academic and practical. A common
formulation of the problem is based on Maxwell's equations with time
varying constitutive parameters that describe the medium through which
the waves propagate. These equations must be solved subject to appro-
priate boundary conditions. Of particular interest is the problem of
scattering of electromagnetic radiation by a localized object whose
character is varying with time. The above approach, however, leads to
an unnecessarily extensive calculation. That is, one must calculate
the electromagnetic fields everywhere inside and outside the scatterer
_ subject to certain conditions of continuity at the boundary. Fortunately,
this is unnecessary because by making use of the concept of invariant
imbedding one may circumvent calculation of the fields inside the
scatterer and need only consider the external fields which are usually
the ones of greatest interest in problems of this type.

Invariant imbedding found-its genesis in the now quite well-
known paper by V. A. Ambarzumian on the scattering of light by a foggy
medium [1]. In that paper he introduced an invariance principle to
obtain the scattering. ©Similar invariance principles were later applied
to problems of theoretical astrophysics involving radiative transfer
in stellar atmospheres [2]. Subsequently, a method now known as
invariant imbedding and based on these invariance principles was
applied to a staggering variety of problems [3]. Papas has applied the

concept to the problem of reflection of plane electromagnetic waves
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from a nonuniform slab of dielectric material [L4]. More recently,
Latham [5] extended this to cylindrical and spherical scatterers and
Kritikos, Lee and Papas [6] obtained the scattering of plane waves by
nonuniform jet streams by means of invariant imbedding.

The type of scattering problem to be considered here involves a
nondispersive, nonmagnetic dielectric scatterer which is expanding or
contracting (negatively expanding) with time. The expansion need not
be uniform. It is assumed, however, that the evolution of the scatterer
is given beforehand and is unmodified by the presence of the electromag-—
netic radiation. The formulation is quasistatic and is carried out to

first order in the wvelocity of the medium.
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2. EXPANDING SLABS

Before considering the general slab problem, two preliminary
problems will be disgussed to provide some insight with regard to the
effects of moving media on the propagation of electromagnetic waves.
The magnetic permeability of the medium will always be taken to be
that of free space, n will always denote the index of refraction of
the medium in the rest frame of that medium, and the velocity of the
medium will alWéys be referred to the laboratory frame of reference.
In addition, it will be assumed that the index of refraction may be

specified independent of the density of the medium.

A. BScattering from a Shock Front

The first situation to be analyged is depicted in Figure 1. A
TEM wave is normally incident on a plane shock front in a gas. The
velocities of the gas on both sides of the shock are uniform and
normal to the shock front. Also, the indices of refraction n and
o are uniform. The densities are assumed to be such as to satisfy
a relativistic continuity equation for the gas [7]. The frame of the
shock is considered to be the laboratory frame.

To analyze this situation one assumes plane wave solutions in

the rest frames of the media on both sides of the shock front. Thus

we have



n:na n=nb
£ = ¢ E = €
a
Bo= Hy R
ik Z -lwoto

1
¥

Figure 1., Scattering from a shock front



Viewed in the rest frame of medium a :

ik, z -iw.t

5 2
El = eX El e o o e L
. -1k(r)z —iw(r)t
Br) oo gRp e L 1. 1 1 (2A-1a)
1 x, 13 =
oo £ 8] .
E(t) ) é . 1kl Zl —1ml tl
1 - e Ml
1
medium b
- ik = -iw,t
ig = eX E2 e 2" e 22
2
. (r) (r)
E(r) = ; E_R e_lkg ‘2 e—lm tz (28-1b)
2 Ey 22 a
v ] . )
S Lhg "Ep ~iEp Ty
= e E,T, e e
2 X5 272

The subscripts 1 and 2 in these expressions denote the frame in which
the quantity is viewed, 1 denoting the rest frame of medium a, and

2 denoting the rest frame of medium b . The associated H fields may
be found in the rest frames of the media in which the waves are propa-
gating by making use of the rest frame characteristic impedances of

the media; that is,
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where Ea and Eb are the rest frame dielectric permittivities of

medium a and medium b respectively. We also note that
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Transforming the fields (2A-1) and (2A-2) to the frame of the shock (the

laboratory frame) yields
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and Bj = vj/c where vj is the velocity of medium j in the labo-
ratory frame. Now, working in the frame of the boundary, Maxwell's
two curl eduations are integrated around a closed loop centered on the

boundary and the area of the loop is reduced to zero in the usual way to

obtain the boundary conditions on E and H . It is found that tangen-

tial E and H must be continuous across the boundary. Applying these

boundary conditions to (24-L) at the shock in the laboratory frame
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where RO is the ratio of the electric field of the reflected wave at
the boundary to the electric field of the incident wave at the boundary
in the laboratory frame, and To is the ratio of the electric field of
the transmitted wave at the boundary to the electric field of the inci-
dent wave at the boundary also in the laboratory frame. That is, R
and TO are the laboratory frame reflection and transmission coeffi-
cients of the shock front. Note that expressions (2A-6a) and (24-6Db)
are independent of the velocities and are, in fact, the usual results
for the scattering at the interface between the same two media at rest!
Consequently, Ro = 0 and TO =1 4f o, = o

It is remarked in passing that by dividing the k's given in
(2A-5b) by the corresponding w's given by (24-5c) the well known

formulas for the effective index of a moving medium can be obtained;

that is,
+
koc . n Ba
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The absence of reflection when n., =n may be seen to be

1 2

physically reasonable as follows. Consider the application of a
Lorentz transformation to the wave impedance of a plane wave propagat-
ing through a medium of index n . In the rest frame of the medium

>
the wave impedance is ZZ and in a frame moving with velocity v it
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where Bx, By, and BZ represent the x,y and z components of the
velocity. Note that if the velocity is in the z direction, the expres-
sion in brackets becomes unity and we find that for this situation the
wave impedance is a Lorentz invariant. Since it is the wave impedance
which is relevant in satisfying boundary conditions, and since it is

unmodified by a Lorentz transformation, the wave of Figure 1 may
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propagate through the shock without changing its wave impedance and

hence without producing a reflection. Note also that if Bx and B
y

are not zero, the reflection is not zero but is none the less second

order in B .

B. Scattering from an Expanding Slab (Special Case)

Consider an expanding slab scattering normally incident plane
waves.‘ The slab is backed by a perfect absorbef as shown in Figure 2.
Suppose that the index of refraction on the right of the fixed boundary
is somehow maintained at some fixed value nb (always measured in the
rest frame of the material) for all time. Based on experience from
the shock problem one might conjecture that the reflection from this
object will be independent of the velocity function B(z) . One would
expect that, since the effective (laboratory frame) index of refraction
of the material on the right varies with 2z , the wavelength of the
solution on the right will vary in a nearly similar manner with =z

Recalling that the effective index is

+ B
& i (2B-1)
eff 1+
an

(see (2A-T7)) we conjecture that a possible approximate solution on the

right might be something like

> ~ .
E =e ET e e (2B-2)

Substitution into Maxwell's equations using the constitutive relations

for a moving medium,
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Figure 2. Scattering from an expanding slab



- 1 =¥ o - =
D+ =v xH = n(E+v x B)
2 2
c
- 1 =+ - -> - >
B= % XE = uO(H - v x D) (2B-3)
c .

shows (2B-2) to be the exact solution. Now, the expression (2B-2) and
its derivative with respect to =z +take on the same values at z = 0 as
do the expression for an ordinary plane wave in a medium of index n at
rest and its derivative, respectively. Thils means that the simultaneous
equations for R and T obtained by making use of the boundary condi-
tions at 2z = 0 are identical to those obtained in the preceding
example (the shock front) and it is seen that here also

R = z—a;—% (28-la)
a
i (2B-kb)
e T
Thus if ng and n, are constants R and T are independent of the
velocity of the medium in the slab.

Recall that in this example n, =~ was taken to be independent of
time where, in general, it will not be time independent. When nb
depends on time (2B-2) represents a solution in a quasistatic sense.
That is, it is a good approximation to the solution if

3(n2)
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C. The Reflection Function Invariant Tmbedding Equation for an

Expanding Slab

Consider the expanding slab of dielectric fluid shown in
Figure 3. The slab is stratified in that the velocity of the fluid and
its rest frame index of refraction are functions of time t and posi-
tion 2z only. The velocity is purely z directed. The laboratory frame
of reference has been chosen such that the boundary at a 1is stationary.
A unit amplitude,.linearly polarized, monochromatic, plane wave of fre-
quency W, is normally incident on the slab from the left. Since waves
will be reflected from index gradients moving with various velocities
within the slab and since a moving reflector results in a Doppler shift,
we wish to allow for a reflected wave having a frequency spectrum of
nonzero width. We therefore define the reflection function R +to be a
spectral density function which gives the frequency spectrum of the
reflected wave. It is defined to be a function of both the reflected
frequency and the incident frequency.

Let us assume that

IN
N
IN
o'

< wy for a (2¢c-1a)

where wm is the lowest frequency for which R 1is significantly
greater than zero. Having made this assumption we may make use of the

concept of a time varying spectrum. (See Appendix A.) We also assume

that

=
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o
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Reflection from the general slab

Figure 3.
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where n, is the largest index in the slab and (b-a) is the thickness
of the slab. That is, we assume that the properties of the slab do not
vary significantly during a time on the order of the time required for‘
the incident wave to completely penetrate it (the quasistatic approxima-
tion).

The invariant imbedding formulation of this problem consists of
assuming that the reflection from that portion of the slab which lies
to the right of a given plane is known and of calculating the change in
the reflection due to the addition of a thin layer of material at this
plane. This procedure yields a difference equation which, in the limit
of vanishing added layer thickness, becomes a differential equation for
the reflection function R(t,wout, W z). This equation is to be
integrated from the right boundary of the slab where the reflection is
known to the left boundary where it is to be found.

Before formulating this problem, let us define a Lorentz frame
comoving with the fluid at position 2z and time t . We define this
frame in such a way that its position coordinate Z i1is equal to =
when its time cocordinate T is equal to t . Thus there will be an
infinite number of such frames at any time +t each corresponding to a
particular choice of position 2z .

Figure 4 shows the configuration to be used in deriving the
invariant imbedding equation for the reflection function. It is assumed
that the reflection function at ¢ + AZ is known in a Lorentz frame
moving with the fluid at ¢ + AZ, when in this frame the space to the
left of T + Az is filled with a homogeneous stationary fluid of index

n(T, T+AzZ) . A thin slab of fluid of index n(T, Z+AZ) having a
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Figure L.
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constant velocity gradient throughout its thickness is added at
z + A and extends back to T . We must calculate the reflection
function at ¢ in a frame moving with the fluid at 7 , under the
assumption that in this frame the region to the left of 7 is homo-
geneously filled with a stationary fluid of index n(Tt,Z) . That is,
for this calculation a Lorentz frame moving with the fluid at position
z and time t in the laboratory frame (or correspondingly, position
z and time < in the comoving frame) will be used. Figure U shows
the situation as seen in this comoving frame. Since it is our intention
ultimately to take the limit as Ar approaches zero, and since when
this is done only terms first order in ArZ will contribute, all subse-
quent calculations will be done only to first order in ACZ.

A unit amplitude linearly polariéed monochromatic plane wave of
frequency ws o is assumed to be normally incident on the composite
slab of Figure 4. R is the spectral density function of the wave

1
reflected from the outside of the fixed boundary. R is the spectral

2
density function of the wave transmitted across the fixed boundary and
through the added layer, reflected from the slab to the right of T + AZ
and transmitted back through the added layer and across the fixed bound-
ary. R3 is the spectral density function of the wave transmitted
across the fixed boundary and through the added layer, reflected from
the slab to the right of ¢ + AZ, transmitted back through the added
layer, reflected from the inside of the fixed boundary, transmitted
through the added layer, reflected from the slab to the right of r + AL

and transmitted back through the added layer and across the fixed

boundary. Higher order R's are defined similarly. The frequency
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variable in the spectra given by the R's is mout .

Equation (2B-la) leads immediately to the result for Rl :

that is,
R = n(TsC) = n(T,E"{"AE) 21’]‘6(&) - W ) = .:!’2_.31.1_ QTFCS(UU = 0 )AC
k n(t,z) + n(T,z+Az) out in en ag out in
(2c-2)
Similarly,
2n(t,2) s B g
R2 = 5 C
n(t,z) + n(t, z+Ag)
QA_S_ 1"
[(1 T nhg BT, ,w'>C+Az)}
n
i E%- Az[ on(1, z+AL)
© (2C-3a)
n(T,z) + n(t, T+A7)
where
w' = w, (1 -nAR)
W' = wout(lﬁ.nAB)
I
AR = 5C Az
The factors (1 -nAB) and (1+nAB) arise because R(T,w S, S TFAT)
ocut’ in

is defined in a Lorentz frame comoving with the fluid at T +A7 ,while
we are working in a frame comoving with the fluid at ¢ . Thus, to

first order in Az,
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Rj for J > 3 1is of second or higher order in AZ and is therefore

negligible in this calculation. Thus we have

R = Rl + R2 + R3 (20—5)

Substitution of (20-2), (20-3b), and (2C-L4) into (2C-5) gives

oR 98 9R 98 OR
— + W n — - W, N =
oL out oL awout in oL awin

©

_1 _ - _. o5

T 2n ag {ewa(wout— wil’l) J. R(T’w’min’g) R(T’wout’w’C)E’}T }
o

Ly L +w )R+ on 3—2— R - (20-6)

We now transform from the local comoving frame coordinates (T,Z) to the
laboratory frame coordinates (t,z). Under our quasistatic assumption
and to first order in B this merely amounts to direct replacement of

T with t and g with 2z . The final equation is then
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¢ out 2

This is the quasistatic invariant imbedding equation for the reflection
function to first order in B . DNotice that we have transformed only
the coordinates in terms of which the functions are expressed and have
left R’wout’ and min in the reference frame comoving with the fluid

at z . The quantities R,wo and win have been left as they were

ut
because we have in mind that B(a) = 0 so that at z = a (see Figure 3)
the laboratory frame and the comoving frame coincide, thus automati-
cally putting R’wout’ and win in the laboratory frame at the final
point of the integration.

The properties of (2C-7) are most easily discussed by applying
the method of characteristics to it. This will be done in the next sub-
section. .For the moment it is remarked in passing that under certain
circumstances R may be written as a function of the difference
between its frequency arguments and (2C-T) may then be simplified some-
what by Fourier transformation (See Appendix B.) It is also remarked

that a corresponding equation may be derived for the transmission func-

tion of the slab (See Appendix C.)
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D. Approximate Solution of the Invariant Tmbedding Equation

We propose to solve (2C-T) by the method of characteristics[9].
Choosing s to be the parameter designating position along the charac-
teristic curves, we obtaln the following set of four ordinary differen-

tial equations

dz _
= = 1 (2D-1a)
dw

out _ 9B

as . Yout ® 3z (2D-1b)
dw

in _ 3R
as Yip P 3z (2D-1c)

o0
— === lons(w_,- w., )- R{t,w,w. ,z) R(t,w E)_z)-d—g}
ds 2n 9z out in 7R >Tout? 72w
(oo}

9B
+ win) R+ 2n = R {(2D-14)

Equation (2D-1a) indicates that s may be taken equal to =z . It is

known that both Wy and ws will be equal when =z is equal to D

ut
(see Figures 3 and L). Also, eguations (2D-1b) and (2D-lc) indicate
that they will differ from this initial value by an amount which is
first order in B . Therefore, consistent with calculation to first
order in B, Wout and w, ~on the right sides of equations (2D-1b)
and (2D-lc) may be replaced by W, (the value of w; at z =a) . We

now have the following set of three ordinary differential equations

dw
out _ o8
s ™ B hge ‘ (2D-2a)



—2D—

in _ el )
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dz 2n 9z out in PR >out? *orm
-00
in 3B
== (w_, +w )R+2n7"R (2D-2c)
Equations (2D-2a) and (2D-2b) are integrated to yield
Z
w =W (b) + w n-aé— dz!' (2D-3)
out ut o) oz
b
Z
w = w, (b) -w 5 Bl s (2D-4)
in in o oz '
b
where (b) is the value of w at z =b on the characteristic
out out

and win(b) is the value of w, at z = b on the characteristic.

Substituting (2D-3) and (2D-4) into (2D-2¢), we obtain

z
dR _ 1 on a8
dz 2n 3z 2ﬂ6[wout(b) - win(b) A, J . gg A
b
S iny () +w, (B)] R+ 2n 28R (2D-5)
c - out in 3z

where it has been assumed that the slab under consideration is suffi-
cilently tenuous that the nonlinear term may be neglected. Equation

(2D-5) is a first order linear ordinary‘differential equation and may
be easily solved. The solution evaluated at the left boundary of the

slab (z = a) is
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a z
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e e dz
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3 P ¢ out in e . 1
+ R[t,wout(b),min(b),b] e e

(2D-6)

Solving (2D-3) and (2D-4) at z = a for wout(b) and win(b) as

functions of wo ’win and a , we obtain

ut
a
w o (B)=w  -w In BB aa (2D-Ta)
out out o dz'
b
a
w, (b) =w, +w I n a8 dz' (2D-Tb)
in in o dz'
b

But, since we are at 2z = a we know that win is wo and we will

call wout just ® . Substitution in equation (2D-6) results in
a Z
1l on 3B
= —_— - + —_t 1
R J 5 By emélw Wt 2w J n w5 dz ]
b a
2 a Z
8B 4,0 L '
~[ 2n 5, 42 c(w+w0) [ naz
a a
X e e dz
? 2n 9B _ dz' i—(w+m ) ? n dz' (2Dp-8)
'*a dz' c o 7
+ Rlt,u_, (0),0, (b),b] e =

The integration from P +to a in the first term of this equation may

now be carried out and we have
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a
x Wlwsu(b),w(a)] + Rl6,0_ ()0, (b),b] e
: b
%{w+wo) [ naz' (2D-9)
X e 8
z
9B
where w(z) = w, [1 - B J n 5;-&2 ] (2D-10)

and it has been assumed that (2D-10) is one to one over the entire slab.
The W function is defined in Figure 5 and it indicates that the first
term of the solution (2D-9) is band limited. If (2D-10) is not one to
one, the slab must be divided into subslabs over which it is one to one
and the integration performed in segments, the result of each integra-
tion being the initial condition for the next. In ocur case, i.e., a
slab over which the transformation (2D-10) is one to one,

R(t,w ,b) will be either zero (if there is no index discontinuity

w,
out’ in

at z = b) or proportional to O (w__ - win) (if there is an index dis-

out
continuity at =z = b) assuming that n 1is a constant for z > Db .
Equations (2D-9) and (2D—10) indicate that this delta function becomes
S(w-w(b)) when it appears in the solution at =z = a. Its amplitude and
phase are also modified by the presence of the exponential factors in
the second term of (2D-9). The contribution of the interior of the slab

to the spectrum of the reflected wave is given by the first term in

(2D-9). Because of the pfesence of the W function, this contribution
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is band-limited and extends from w{b) to w_ where w(b) is given
by (2D-10). The reflection from an index gradient at a given position
within the slab has an amplitude proportional to the gradient of the
index and has a frequency given by (2D-10) with the position of the
index gradient substituted for =z . It should be emphasized that w

is the output frequency at 2z = a , i.e., w__ (a) = w ; therefore,

out
w(b) is an output frequency at z = a and b is merely the value of
z which must be substituted into the variable transformation (2D-10)
to obtain this output frequency.

Recall that (2D-9) was derived on the assumption that the slab
was "sufficiently tenuous" that the nonlinear term in (2D-2¢) could be
neglected in obtaining (2D-5). We may now state, somewhat more pre-

cisely, that we have found the solution to first order in l—-QEJ and

2n 9z
n(z.-e) - n(z.+e)
Bl X

to first order in ( ) at any index discontinuity.

n(zi—a) + n(zi+€)

By this we mean that we have neglected terms containing factors of
. o _ 5 _ _
(l_.2202 n(zl g) n(zi £) n(zj e) n(zj+€)

on 0z o

n(zi_g) % n(Zi+€)) n(zjne) = n(zj+€)) which is justi-

fied if the slab is "sufficiently tenuous".

It is interesting to note what happens to our solution if %E'
becomes zero over a finite range of =z or at a single value of gz
Considering the first term of formula (2D-8) we see that if 28 is

oz

zero over a finite range, say from zq to Z,5 s where a f'zl< Z, £ D,

the delta function becomes independent of 2z and may be taken out of
the integral from zq to Z5 (the integrals from a to zq and from

Z, to b remaining as they were). This results in a delta function

in the spectrum whose amplitude is given by the integral of the
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remaining integrand from z4 to zZ, and whose frequency is given by

z
W o= 4 [l =2 : o dz'] (2D-11)
= g, 1= D 3 42 .
’ a
. 0B . . . :
Tt Z, = 2, (4 s8:5 5, 1S zero at a single point) the delta function

component in the spectrum is seen to have zero amplitude.
At this point the possibility of an index discontinuity at
7z = a has not been accounted for. (Discontinuity at z = Db 1is

accounted for by the initial function R(t,w ,b) in equation

out’win
(2D-9)). Figure 6 shows the situation at the boundary =z = a . Here
our incident wave falls on the discontinuity at =z = a and multiple
reflections occur as they did in Figure L, but in this case the
reflection coefficients at the discontinuity for waves incident from
the right and from the left are not infinitesimal as they were in
Figure k.

In treating the boundary at z = a it is convenient to have a
means of transforming a time varying spectrum into a static spectrum.
A formula is now stated and verified which provides a means of perform-

ing this transformation. Let r(t) and s(t) be real valued func-

tions of time and let flr(t),s(t)] be such that

Flw,s(t)] = [ flr(s'),s(8)] 2% at'  exists.

=00

Then,
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n(t,a+e)

ni{t,a -c)

8-

=/

215 (w-w |

0

gL~

Rlw,w ,a-e) =

at

Discontinuity in n

6.

Figure
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S(w) = J elrle)ate)] & at = é—ﬂ J IF[m—w',s(t)] S

(2D-12)
This may be demonstrated as follows:

co OO

E(w) = J J fle(t?),s(t)] 6(t'=t) eiwt' dt'dt
= J I J £lr(t'),s(t)] %F omiwt(B1=t) 1wb' o ateat
= %; I J Fla-a? al8)] T awias, | geed.

The solution (2D-9) is a function of tﬁe form Flw,s(t)] . Applying
(2D-12) we can obtain g(w) which we claim to be the solution expressed
as a pure (time independent) spectrum function. This claim is only
appfoximately true. The degree of validity of the claim depends upon
just how closely f[r(t),s(t)] approximates the true solution of the

o
problem, g(t) = %; f G(w) e_iwt dw . This, in turn depends on the

—

validity of the following statement.

8] felL

or, assuming that l%gw and lgfw are of the same order of magnitude,

af
ds

ds

dt

of

of| |dr
ar

dt

(2D-13)

(and small)

ds
dat

dr
P

max max

That is, r(t) must be a "rapidly varying" function of time and s(t)
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must be a "slowly varying" function of time. Condition (2D-13) is

essentially a restatement of equation (2C~1) (See Appendix A).
Returning to Figure 6 and assuming that R has been transformed

to a time independent function of frequency, it is easily seen that the

limit of the expression for R immediately to the left of the boundary

as € =+ 0 1is

: >
lim R(w,mo,a—e) = 1im [ro(wuwo)
e >0 . e >0
(22} [ee]
i + dw" dw!'
+ 1_ " 1 + iy GD G
J j to(w wo) R(w",w' ,a+e) to(w w') el
~=C0 00
[e0] fe e} oo (o]
£ 1 " ] = e n mre "
+ to(w -wo) Rlw",w',a+e) ro(w - w") R(w"",w" ,at+te)
=00 00 w00 =00

1 n ty (1311
gy SO AW 900 g ] (2D-14)

-
& to(m 2m 2m 2T 2m

<+ > <+ -+ . “ Y
where ro(w), ro(w), to(w), tb(w) are Fourier transforms of ro(x),ro(x),

~ ~

%O(x), go(x) and

- _ n(x,ate) - n(x,a-g) _ 5
I.O(X) " n(x,a+e) + n(x,a-g) —ro(x)
- ___ 2n(x,a+e)

to(x) " n(x,at+e) + n(x,a-c)

5 2n(x,a-€)
to(x) n(x?afe? + n(x,a-g)

, and x = ct

The arrows indicate the direction of the incident wave for each reflec-—

tion or transmission. Notice now that to first order in B the solution
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(2D-9) may be written as a function of w-wo , the wo's not asso-
ciated with w in this way being constants. This allows us to write

(2D-14) in the form

- -
~ ~ t (y) to(y) © A 4 P
R(y,a—e) = ro(y) + % z [ro(y) R(y,a+e)]
r (y) J=1
(e}
s & & R(y,a+te)
- - -
= r ly) + t,(y) £,(7) — " (2D-15)
+
1 -r (y) R(y,ate)
where
W-w
(o]
~ l _l( c )y
Fly) = B J F(w-—wo) e dw
-—00
amnid +~ o o+ >
F = B, . .t . :
o o O 0]
Thus
o0 ~ ~ ~
o . > & R(y,a+e)
Rlumi eme) = Fow-u,) + | T Ty —Dlnete
—00 1 - ro(y) R(y,ate)
W=
i( )y
X e dy (2D-16)

This will not ordinarily be bandlimited. Consistent with dropping
the nonlinear term in obtaining (2D-5) (assuming that the slab is suf-
ficiently tenuous to justify doing so) we need only have accounted for

the first two reflections in Figure 6; i.e., RO and R the others

ls
being higher than first order in R(m,mo,a+e) . Equation (2D-16),

however, would hold even if the slab were not tenuous but, in that
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case, the function R to be used in (2D-16) would be much more dif-
ficult to obtain, as we would no longer be Justified in dropping the
nonlinear term in (2D-2c¢). In such cases and in cases Whére more
accuracy is required,.one would have to solve equations (2D-1) (or
some more appropriate approximation thereto) for the specific cases of
interest and this solution would probably be best done numerically
using a computer. One might consider improving the accuracy analyti-
cally by using a perturbation approach to including the nonlinear term
and in this regard we remark that, since each iteration would double
the spectral width of the solution, the solution to be substituted
into equation (2D-16) would not ordinarily be bandlimited.

Note, also, that consistent with our guasistatic approach to the
problem, we could have left R in its time-varying form and left the
ro's and to's untransformed. However, the method presented is more
generally applicable. That is, given that R has somehow been

obtained to better than full quasistatic accuracy, (2D-16) would main-

tain this accuracy provided a condition like (2D-13) were satisfied.

E. Comments on Brillouin Scattering

Consider an idealized situation where a slab of fluid has in it
a plane standing acoustic wave with variation in the *z direction, and
where the surrounding space is filled with the same fluid having the
equilibrium density of the fluid in the slab [10]. A plane electromag-
netic wave is normally incident on the slab and we wish to study the
properties of the reflected electromagnetic wave. This situation is

depicted in Figure T. We assume that the acoustic wave is switched on
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at t = 0 so that the initial reflection is zero. The data necessary

for solution of the equation for the reflection function are

n=1+a0op =1+ upo[l-a sin k_z sin mst]
B = a(l - cos ksz) cos wst (2E-1)
where g, = the speed of sound = ws/ks
ws = frequency of the sound
k = magnitude of the acoustic wave vector

Py = equilibrium density of the fluid

a = amplitude of the sound wave

Substituting these expressions into the variable transformation (2D-10),
we find that it is badly multivalued. The slab must thereforebe divided

into subslabs over which the transformation is one to one; i.e., subslabs

having thickness equal to half the wavelength of the acoustic wave.
The expressions (2E-1) are substituted into (2D-9) within each subslab
éaking use of the variable transformation (2D-10) to express the
result in terms of w . The result would be a sum of N terms, each
being a function of time and frequency where N 1is the number of sub-
slabs.

The bandwidth of the reflection is easily obtained from (2D-9)

and (2D-10). For a subslab we find that to first order in a

w(z) = w + 2moa(l + apo)(cos k z - cos kszl)cos w b (2E-2)
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Thus the maximum overall bandwidth is

Aw = b a(l +ap ) (2E~3)
o o

and the spectrum will be centered at Wy
Another easily noted property of the solution R 1is that it
is periodic in time with period equal to that of the acoustic wave.

It may, therefore, be expanded in a Fourier series in time. That is,

© -inwst
R(t,w,w ,a) = ) R (w,w ) e - (2E-L4)
o n o :
n: -C0
Applying (2D-12) yields
o
R(w,mo,a) = n_zm Rn(w - nws,mo) (2E-5)

The usual Brillouin scattering result is obtained from this by neglect-
ing all but the terms corresponding to n=1 and n=-1 and letting

Rn(w,mo) Ny 6(w—wo).

F. An Alternative Formulation

The invariant imbedding formulation presented previously depends
for its relative simplicity upon the translational form invariance of
the basic wave functions used, i.e., a plane wave translated in space
still loocks like a plane wave. Spherical waves do not have this invari-
ahce. This indicates that it would be of some advantage to develop a
formulation of the plane problem which does not depend on this invariance
in anticipation of extension of the theory to spherical scatterers. It

is this alternative formulation which will be developed below.
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Figure 8 depicts a plane interface between two homogeneous
dielectrics of indices n, and n, - A monochromatic, linearly
polarized, plane elecﬁromagnetic wave of frequency wo is assumed to
be normally incident on the interface as shown. We wish to determine
the reflected and transmitted waves. To calculate the reflection and

transmission properties of this interface one would ordinarily assume

solutions of the following form:

1.9,
2 A I— (z—zo) —1wot
EI = exEo e e
Incident z £ g (2F-1a)
nw o
Wave y 80 "
N = £ i (z—z ) -iw t
a c o o
HI = e EO = e
Y ﬂo
a%o
& A -1i (z=-z ) -iw t
o o
ER = exEoR e e
F4 =
Reflected nawo = Zo (2F-1b)
Wave A e -1 (z-z ) -iw t
> a c o o)
HR = -e EOR — e e
y Uo .
w
" X ! . 2z-z ) -iw t
c o o
ET = exEoT = e
Transmitted z 2'g (2F-1c)
w o]
Wave 2 nb ¢} .
- & g, 1—3 (z—zo) —1mot
HT =e ET/ —e e
y o H

Requiring continuity of tangential E and H at 2z = zO yields the

familiar result

n -
R = n—a_'_—nb (2F-21a)
a M
2n
a,

E;_I_Eg (2F-2b)
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Figure 8. Scattering from a plane dielectric interface
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Suppose now that we assume, rather than (2F-1), solutions of the form

n
N ~ sl CO z —imot
EI = exEo e e
Incident _— z & z, (2F-3a)
Wave ; .8 0 i
> A Ea i . 2 —1wot
HI = eyEo E—-e e
o
naw
3 ~ -1 —— 3z -iw t
ER = exEoR e & e Q0
Ref%zzzed n z €z (2F-3b)
5 ~ J[E; i =2 et
H, = -e ER/—e¢e e
R y o u
o
nbwo 7
- A i e 2 -1wot
ET = exEoT e e
Transmitted z 2z (2F-3c)

+

a2}
"

Wave . .
A E;b 1 i “lwot
eET/—e e
T y o u

that is, solutions whose phase is zero at the origin of coordinates.
Requiring continuity of tangential E and H at z = z now yields

the, perhaps not so familiar, result

i &4 Z
n = {6 o
R "oy e i (2F-ka)
n-b _iaoz
[« (o]
e
n_w
. 8°°0
Ena el e Zo
T = ( ) (2F-Lb)
n + w .
T T
& (o]

This, of course, contains the same information as (2F-2), but here we
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have taken the origin of coordinates as a reference for phasé rather
than z = z, as is usually done.

Figure 9 shows a plane interface normal to the =z direction.
The matérial to the léft of the interface is homogeneous dielectric,
having index n_ and moving to the right with velocity B(zo). The
medium to the right of the interface is homogeneocus and has index o
but it moves to the right with velocity PB(z) , a function of =z . The
interface itself moves to the right with velocity B(zo) . Again, a
monochromatic, linearly polarized, plane electromagnetic wave is
assumed to be normally incident from the left and we wish to determine
the transmitted and reflected waves. Let us calculate the reflection
and transmission properties of this interface in the laboratory frame,

taking the origin of laboratory coordinates as a reference for phase

and using the effective index (2B-1); that is

n_ + B(z )
n+ TR NERAN. - bS for the incident wave

1+ naB(ZO)

5 . nb+8(z)

n = for the transmitted wave
eff

b 1+ an(Z)

0= B(zo)
n S et for the reflected wave
eff
a 1 - naB(zo)

Assuming solutions of the form (2B-2) on both sides of the boundary and

matching at the moving boundary¥* the reflected and transmitted waves

*

As far as the magnitudes are concerned, this is most easiiy done in
the frame of the boundary. The phases may be handled directly in
the laboratory frame.
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Figure 9. Scattering at a moving plane interface
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expressed in the time domain are seen to be

Berr R
i e g —iWt
) c wR
Re e _ =
+
neffa o
o (z + B t) 3
(l - na80)<na— nb) E c o o e—l
N_oce W
1+ na o na-knb A effa R
3 (z + B t)
c o o)
e
+
2 neffme
i J % dz
-jiw t
Te 9 e t =
W w
- neffa e}
i (z +B t)
1+n8B ) 2n & N
( a o ( ) e
(z +8 t) +
L+ o lin, +ny o o mope U
i (B Y
- c
o]
e N
where

B, = 8(z )

[
O “——N

Derr. Yp

dz

(2F-5a)

-iw t
e (o]

(2P-5b)

The factors of (1 i.nBO) arise because the fields must be made continu-

ous across the index discontinuity in the frame of the discontinuity

while we have calculated R and T in the laboratory frame [8] .

transforming to the frequency domain gives

Now



s
eff wo
1 2 Z
R (w-w) = (l—nas"»)(na_ B Bl il — ) (2F-6a)
“’R 1+n B nb & R
a o a. neff (lJR
G a
-1 & ZO
e
o (§1]
Berr Yo
X 2 z
() = (mioy *Pa e ©  ©
TensS(w-w.,) = 218 (w-w_) (2F-6Db)
S l+n_bBO na-i-n_b TO T
i +
c neffb wsz
e (o]
- naBo
where Wy = ( T ) W,
a o
= ’ n-bBo) w
Wrp + n B o
a o

The scheme for application of the invariant imbedding concept to
the slab of Figure 3, using the above technique, is shown in Figure 10.
It is assumed that the reflection function for that portion of the slab

to the right of =z+Az 1is known. A thin layer of fluid having index

n(t,z+ z) and having a constant velocity gradient throughout its thick-
ness is annexed at z+ z. The material to the left of the added layer
is homogeneous and has zero velocity gradient throughout. A monochroma-
tic, linearly polarized, plane electromagnetic wave of frequency wy is
normally incident on the composite slab from the left and we must cal-
culate the spectrum function of the reflected wave. The freqguency
variable in the spectra given by the R's in Figure 10 is Wy s these

R's being the results of multiple reflections--similar to those



=43~

i
s i Wl o i el ek e cep e s e R e e e ey e i
e N g e e e e e T e
S8 « ;.HHHHHPIIlIlJIIlIllHHHHHHHHHHHHH
- e s e i e s e e e o e O P
= Ml Il ~ ||I|.||||.|.1l|.|.|..l.l.||..I1l|1l.!||...11|||||||.lI.|I||.|.|.|.l|||l
- O e e e e i e
S BB T e e e e e e e e s il e e
P
[4)]
o
O
(8]
I
N
<
¥4
N
o
S -
] N ]
1l e [Vl
4 « »
-

L2 P N
n m
g o —
o O 3
o Q O
b3 - a n
I Il
a = = .
—~ o~ o
N N (0]
" " —~
—~
i 3
g @ |
1] ] Qq
3
g o ~
«©0
=
q

Scheme for laboratory frame derivation of the

Figure 10.

invariant imbedding equation for the reflection

function



-

described in connection with Figure 4. Evaluating the three significant
reflections using (2F-6) and summing them as before, we obtain the
invariant imbedding equation for the reflection function expressed in
the laboratory frame with a fixed phase reference, i.e., z =0 . The

result to first order in B 1is

3R 9n 3R 3n 3R
e WaB 5 90 9P 5 T
: 2 1
w
: s A 2
- _]____ag (l - nB) (S( m2 _ wl ) e21 C (l—nB) z
2n 9z 1+ nf 1-nP 1+nB
g _ .@i}_’:( w )z —
1+ np == ¢ "1-mnB = gg_}
- (1 — nB) JR(t,w,wlz) e R(t,we,w,z) o
Sn_ ,idn a0
-28 3z B % ¢ 9z (1-+nB =5 —nB) % 3 (2r-7)
= ==] & nf
where w = w(i—:"gg)

This equation may be compared with (2C-7) by means of the variable

transformation
i{w + w,_ ) nz
RF(t,w2,ml,z) = (%fi—ﬁgﬁ g s Rc(t,wout,min,z)
(2F-8)
where R, 1s the solution to (2C~7), R, 1is the solution to (2F-T)
and w,

out = 1 - nR

in = 1 + np
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It is this formulation which will be used in studying properties of the
scattering resulting when a plane wave is incident on a spherically

symmetric scatterer.
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3. EXPANDING SPHERES

The techniques developed and the experience gained in dealing
with the slab case are now applied in an approximate quasistatic
analysis of the character of the scattering which results when a plane
electromagnetic wave is incident on an expanding dielectric sphere.

The plane wave may be written as an infinite sum of spherical waves so
the following analysis will concentrate on the scattering of spherical
waves. The results are then superposed appropriately to obtain the
plane wave scattering. First, a preliminary problem will be considered.
Then using the time varying spectrum concept introduced in Section 2,
Part C, and assuming a radially stratified sphere, we proceed with the
derivation of the form of the invariant imbedding equations. This form
is then used to ascertain information regarding the character of the
scattered wave. In particular, we study the differences and similari-
ties in the solutions to this problem and that treated by Lam [11],

i.e., scattering from an expanding conducting sphere.

A. Eigenfunctions in a Uniform Expanding Sphere

In ordér to determine the modal reflection functions for an
expanding sphere we must first find the eigenfunctions in a uniform
radially and spherically symmetrically expanding medium, i.e., the
eigenfunctions corrgsponding to the spherical Hankel functions of
argument kr wused in the static case. Since we have assumed complete
spherical symmetry, the eigenfunctions will be associated with the
same angular dependence as were the corresponding Hankel functions,

i.e., the spherical harmonics Ylm . Viewed in the laboratory frame
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(the frame of the center of expansion) the constitutive relations to

first order in the velocity of the medium are

(w}
1

eE + l§-(n2~ 1)(v x H) - (3A-1a)
C

B=UH=

i 2
H - 55 - D <) (34-10)

The relevant Maxwell's equations are

V xH=-iuwD (3A-2a)

VXE= iwB (34-2b)

the divergence eguations being satisfied automatically, since the
region is source free. Substitution of (3A-1) and (3A-2a) into

(3A-2b) leads to

VxUxE-KE=-2 (0% 1) [y x (VxE) + T x (vxB)]  (38-3)

c

Use of the vector identities

VxVxA=VV-+A4)- VA (3a-La)
Vx (AxB) =A(V+«B) -B(V=+A)+ (B*V)A-(aA-V)B (34-kb)
V(A = B) = (A « V)B+ (B » V)A+A x(V x B)+ Bx(V x A) (3A-ke)

and equations (3A-1) yield

2

VoE + K°F = —ik(n®- 1)[2{v = V)E - (¥ = v) E] (34-5)

1l

where v = Bc e
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We now assume that the radial dependence of each component of the

solution of this equation is of the form

) r
E, = wz[ f K_pp dr] (38-6)
(o]

where V2¢2 + kgwg = 0
(38-6) is substituted into (3A-5) resulting in a differential equation

for keff P

dkeff = Ep_&. [k_ -
ar g Letr

B SEp =9 (8" 1)

(3a-7)

We assume that the solution of this equation is of the form
k po =k[1+ g(r)] where q,(r) = 0(B) (32-8)

Substituting (3A-8) into (3A-T7) gives

dg, _ 9 ) 2 1% by
= = 2{%1 k - ikB(n"-1) ]q - 21k8(n 1)[i+-k —T~% (@—o] (34-9)

This is a first order linear differential equation and may be solved

to yield (to first order in B)

T ¥ )
EkJ — ar . -sz —= gr
¥ T > v i) Ve
— _ o r iR * YV _A (@]
keff =k{(1l -e 2ikR(n l){l+~2k VI i] e dr
% (3A-10)
j a

The desired eigenfunctions to first order in B8 are then, merely
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r
spherical Hankel functions of argument f keff drr (It may be shown
o

that H satisfies (3A-3) also.)

B. The Invariant Imbedding Formulation for an Expanding Sphere

The geometry of the sphere problem is shown in Figure 11, where
it has been assumed that a spherical E +type wave 1s incident on an
inhomogeneous dielectric sphere having index n(t,r) and radially
expanding with wvelocity B(t,r). The time dependence is again assumed
to be slow; see conditions (2C-1). The invariant imbedding formulation
of the problem consists of assuming that the reflection from that por-
tion of the sphere inside of a given radius is known, and of calculat-
ing the change in the reflection due to addition of a thin shell of
fluid at this radius. This results in a difference equation which, in
the limit of vanishing added shell thickness, becomes a differential
equation for the reflection function. The resulting equation is to be
integrated from the center of the sphere where the reflection is known
to the surface where it is to be found. This formulation is similar to
one carried out by Latham5 for a static inhomogeneous dielectric sphere
but here, of course, the effect of radial expansion is taken into
account.

Preliminary to finding the form of the differential equation,
expressions analogous to (2F-5) must be found; that is, we must deter-
mine the reflection and transmission properties of a radially moving
spherical interface between two radially moving dielectric media. We
first define the spherical multipole fields as follows. The spherical

components of an electric type multipole field of degree £ and order
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Figure 11. Geometry of the general sphere
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m are (after Papas [12])

(B, ). = ‘-L%*l) n, (kr) ¥, (3B-1a)
(Boplg = %’%E'[r By (kr)] %E'Yzm (3B-11b)
(By )y = —— L rn (e Y, (3B-1c)

(Hzm)r = 0 (3B-14)
_ mWe

(Hlm)g T sin 8 hﬁ(kr) Ylm (3B-1e)

(Hm)ﬁj = iwe h (kr) ae Yoo (3B-17)

Similarly the spherical components of a magnetic multipole field of

degree

L

and order m are (again after Papas [12])
o 2(8+1)

(Hzm)r = ———;ﬂu‘hz(kr) Tom (3B-2a)
. & a_

(Howlg = T a7 [¥ Bplkr)] 55 Yo (3B-2b)
_ im .

(Hlm)ﬁ T r sin © dr [r b (kr)] Ylm (3B-2¢)

(Egp). = O (3B-24)

mwi :
(Bgnlo = = 51n & Bo*) Ypn | {-2e)
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The corresponding multipole fieldsin a region of spherically expand-

r
ing fluid are obtained by substituting f keff dr for kr in the
o

arguments of these expressions.

as they were.

*

The spherical harmonics

remain

Now consider an E type wave of degree 2 (for example) to be

incident from without on a spherical boundary at r,
outward with velocity BO 3
n and moves rédially with velocity B(r)
boundary is homogeneous and has index oy -

velocity BO = B(ro) . (See Figure 12). If wéj)[n(j) w,r]

which is moving

The medium inside the boundary has index

eff?

to be %-%;'[x héj)(x)]\x - ? Ko o
i.e., those which correspondoto (2F-5)? are of the form
R = P(r,) w(l)[né%%b’mr’ro+ Bont]
wée)[néigﬁwo,ro+ BeAt ]
T = Q(r) éz) né?%’wt’ro+ Bedt]

where the superscript on n

a

The medium outside the
It moves radially with
is defined

then the desired expressions,

(3B-3a)

(3B-3b)

indicates whether it is to be calculated

eff

for incoming or outgoing waves ((2) for incoming; (1) for outgoing)

and D ep = ckeff/w :

We now proceed to determine the frequency of

oscillation of R and T ; that is, we determine the frequencies of

the reflected and transmitted waves.

funetions in (3B-3) vary slowly with r

The phases of the

and, therefore, the

and Q

and

¥*
These corresponding expressions must first be written in terms of k
and kr only (rather than r and kr).
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Figure 12. Scattering at a moving spherical interface
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Q functions will not substantially affect the following (see Appendix

D). Expressions (3B-3) may be rewritten as

—-iw At
WD) o 1 o
b
3 UJ’(L )[ (il)f ,LL) ar]
Re =— n RBSAL
ar (1) (1 )
¢(2)[ éi% ’wo’ro] ¢2 b ffb’w o r=r
Bl NN . . °
[ £ > W :ro]
(2);_(2)
5 I‘D,Q, [ ef-fbs ,I‘]
iIm— in B ecAt
p) (1), (1)
i [neff Ly or] r=r °
X e
(1) (1) e
" [ f sw ,I‘] e 2 (3B—’-J»a.)
-iw At
wég)[ i?% ’wo’r]
Re o™ L B cAt
(2):_(2)
W2t (igb’“ 2] R SN o
Q(r ) e
ég)[n(ig sl 57 ]
wé2)£ni§% LW L]
5 Im 2n L B cAt
053 [n <e% ol | O
X e o
y (2)[n -iw At

(3B-Lkb)
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However, we know that the form of R and T must be

—-iw At
R= (o) W) o rle T
b
-iw, At
T (ose) w(e)[ (gé swy,r] e %

(3B-52a)

(3B-5b)

Equating the imaginary part of the exponents in the corresponding

expressions in (3B-L) and (3B-5) yields the following equations for the

transmitted and reflected freguencies.

)
wr- Boc Im ggfzn w(l)[ni%% ,wr,r]}
b T,

w - Be Im %—-{an(2)[ (2) 0T #]}

effb —
W, - Boc Im %;—{ (2)[ (2% SWy 21} B =
=L
)
w, - Bc Im ——-{2 wg )[ (ig S0 v}
r=r

Solving these equations to first order in BO we obtain

3 IP(E)[II ,w ,I‘]
wr =W - BOCIm 'a? '[R'n (l)[
Py, 2% r] r=r
wée)[nb,wo,r]
w, =@, - Boc Im ™y [an 2) :
1”2_ {n awoar] p=p
o

(3B-6a)

(3B-6b)

(3B-Ta)

(3B-7b)

These are the frequencies of the waves reflected from and transmitted
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through the moving boundary of Figure 12. In the invariant imbedding

formulation of the sphere problem there arises a situation where

n = n(r-Ar) and n = n(r) . Under these circumstances
(2)
w =w - B c Im §—-{QD~—&——-} (3B-8a)
v o o or 1’b(l)
(Z)?
cu e Bl g (3B-8b)
Wy = Wy * WP, 3 M or ¥ wi2) = 3B-cb
L
where w§2) = %-%; r hé2) (E%E)

and the prime indicates differentiation of the Hankel function with
respect to its argument.

We now have sufficient information to obtain the differential
operator and the form of the invariant imbedding equation. In analogy

with (2F-7), using (3B-8), we obtain (to first order in B)

LLJ*
EE& 8 QE.I 9 wz ( ¢ )
ar ~ YoF or ™ or 4F (1) nw_r ng
Vo (= —)
n(ﬂ I'
an 2 (2) (=) | PRy
= ME s T nw_r w
(2)
{—— )
(2) nwor
3 Yo () >
= AS ‘U.)E- U)l+ Be Im e 2n W + BR,Q/ + C[O(Rg)] (3B-9)

g (=)

where
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ng) = %‘%; [r héj)(kr)] for an E wave

ng) = héj)(kr) for an H wave

This equation is to be integrated from the center of the sphere where
Rl(t,wg,wl,o) = 2ﬂ6(w2— ml) out to the surface of the sphere where R,
is to be found¥*. BSince the initial wvalue of RQ is of order unity

(2 unit delta funection) we are not justified in dropping the nonlinear
term in (3B-9) even if the sphere is very tenuous. However, the equa-
tion may be linearized as follows. First, we write the nonlinear term

in more explicit form:

clo(R%)] ~ J R, (0,0,) AT(0) Ry(u,,0) 32 (3B-10)
I ISl
where w=w- Bc Im.g;- L, e
W2

We then rewrite this term in the form

C[O(Ri)] n J {[Rg (w,w))- 2ms(w - w )]+ 2T8(w-w, )} Af(w)
x {[Ry(w,,0)- 218 (w,- w) 1+ 2ms(wy- w)} g (3B-11)

where the guantity in square brackets is small (of order A). Writing

*
Actually, the integration may be started at any radius at which R
is known.
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this term to first order in A, then, results in

IlUJI‘

(1)
e : d by ()
C[O(RQ’)] v Af(wl) 8 W= W Be Im == n ———"—o (3B-12)

Equation (3B-9) may now be written in the following linearized form

(for a tenuous scatterer).

(13!
Ry g dm . 2 vy ( ) Ry
o~ Y%° Br o 17 nw_ r 2w
(l) (
(o)1 PUE
on ] wﬂ ( ¢ ) aR2
~w B = Im = 4r
o or or (2) nw r Bwl
nw r
, w2 (—=)
= A S<{w.— w+ Be Im — n ————
1 2 1 or (2) nw _r
02—
(1)(nwo )
+ A2(S wz- U.)l+ BC Inm %I’:_ 2n W + BR,Q‘ (33—13)
b~ (=)
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C. BSalient Features of the Solution

In view of the fact that the continuous part of the spectrum of
the reflected wave will be extremely complicated due to overlap of the
various contributions from multiple reflections and due to the compli-
cated nature of the eigenfunctions, and in view of the fact that there
is no convenient way to sum the continuous spectrum contributions from
the various spherical harmonics in the incident plane wave, we submit
that the most informative features of the reflection are the delta
function components. That is, it is these discrete components which
give the most easily discernable information about the scatterer. Let
us, then, study the properties of some of these components and the
dependence of the properties on the character of the scatterer. To
make this dependence evident we handle (3B-13) by the method of
characteristics. This results in the following set of four ordinary

differential equations:

dr _
(l),(nwor
dw Y s
2 _ am .3 ) Y e
— = ~w_B ay 1M A (T RYTE: (3c-11b)
vt (=)
, AW T
dw w(e) (iil-)
o i O g e e (3C-1c)
ds Y or or nw r
(2) o
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il
, iy

-d; = A15 (.\)2— m1+ Be Im 'a—r' n ——ET—
w5 (=)
2 c
. w(l)(n(ﬂor)
9 2 e
+ A26 w,= w1+ Be Im = n —?;;—;a—;— + BR2 (3¢-14)
v, 2 (=)

Equation (3C-1a) indicates that we may take s equal to r . We thus
reduce the problem to solution of the following three ordinary differ-

ential equations:

dw
_ (2)
-—-a‘lj = - wOA (BC—Za)
dw
1 (1)

=t mOA (3c-2b)
9B A (e~ w -~ A )+ A S{w— w+ 4) + BB (3C-2¢)
dr &) 2 il il 2 2 1. 2 2

where
(2)' nw r

v (—=)
A(l) = -8 %%—Im %;- = . nz T
(2)( o -l

(1)‘ nw r
A(2) _ g dn 3 {‘I’z (co)]
"R | ¥ nw r
(1)
by ( )
(2) ROF
& -a-_ lp,Q, (C )
= Be Im n —
1 or (1) nm T
L2 (—“—)
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nw r
3 ‘l’;al) (=)
A2 = Bc Im 5;‘[%n _?;;_aﬁi;_J
L) (“z;——)
Equations (3C-2a) and (3C-2b) are now integrated to yield
r
g = w,(0) ~ wy [ 418 ar (30-3)
o
r
w = w0 (0) + w J 2 g (30-1)
o

where ml(O) and m2(0) correspond to r = 0 on the characteristic.

Substituting (3C-3) and (3C-L) into (3C-2c) gives

dR r

L. (2), alldya,
= = AlcS {we(O) - Lﬂl(O) - G)O f (A + A Yar - Al}
rO

+ 88 {:wg(o) - wy (0)- J (@ A, AQ:}+ BR,  (30-5)

o]

or simply,

dR
dr

= Aldl + A262 + BR (3C-6)

The solution of (3C~6j evaluated at the surface of the sphere (r=rs) is

r § iy
s *f Bdr f Bdr

Ry = {@molug(0) ~w (031 + [ (a8, + A,8,) ¢ °  are® (30-7)
0

- r
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Solving (3C-3) and (3C-k4) at r = r_ for wl(O) and m2(0) in terms

of w,, w,, and r, we have

i 2
T
5 (2) ‘
mQ(O) =Wt W I ANTdr (3¢-8a)
o
r
w (0) =w_ - w ° A(l)dr (3c-8b)
i o o -
o
Now the solution (3C-7) may be rewritten in the form
s
X f B ar
¥ alE), 0 o
R£ =216 w- W+ w I (A% A Jdr e
o o
o
e e
A J B ar i [ Bar (3¢-9)
A(r.) r A(r)) T
+ 1 Al - 1k P 2 A2 8_2
Jl(rl) J2(r2)

where Jl and J are the appropriate Jacobians of the variable

2

transformations defined by the corresponding delta functions in the

~ ~

integrand of (3C-7) and r, and r, are such that
o
s
Ww-w+ W J (A(2)+ A(l))dr + (-1)9 A, = o0
[} [} 3
T
J
with J = 1,2
and 0 £ r, £
J s

This immediately determines the position and width of the spectrum of

the reflected wave; that is
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r
S

[wo—(~1)J Aj(rs)](,l)j z (*l)jw = (—l)j wo[l_J (A(l)+ A(Q)dr]
0 (3c-10)

where, when Jj =1, (36—10) gives the contribution from 51 and when
J =2, it gives the contribution from 52 and B is assumed positive.
The solution (3C-9) also contains a delta function at

r

S
wg = W [1 - J (A(2)+ A(l)) dr] (30-11)
0

Expressions (3C-10) and (3C-11) give the salient features of the
modal reflection spectrum represented by (3C-9). That is, they describe
the important properties of the spherical wave reflected from a radi-
ally expanding sphere of nonconducting fluid containing no discontinui-
ties in index of refraction. The incident wave in this case is a
monochromatic spherical wave of degree 1 and order m of either E or
H type having frequency wy - The reflected wave will be of the same
type, the same degree, and the same order but will have a frequency
sPectrum.of width given by (3¢-10) and will have a discrete frequency
component at  wg given by (3C-11).

At this point the possibility of a sharp discontinuity in n at
the surface r = o has not been accounted for. This possibility may
be handled in a manner similar to that used in handling the discontinu-
ity in n at z = a in the slab of Figure 6. However, in the present
formulation the boundary is moving and consequently associated with
each transmission and reflection there will be a frequency shift given

by (3B-7). This treatment will deal only with those reflections
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corresponding to Ro and Rl and the delta function component in the

réflection corresponding to R2 in Figure 6. 1In particular, we are
interested in determining the frequepcies of the delta functions and
the spectral width ana position of the term corresponding to Rl i
The frequency of the delta function corresponding to Ro is

easily seen to be (see (3B-Ta))

(2)
Yy [n(r_+e),0 _,r]
R : Wg = W= B(r e Im %;— n %l) 2 g (3C-12a)
= = e by [n(rs+€),wo,r]

r=r
S

(2)

Using (3B-Tb) with Wz replaced by wél) and (3C-11) we find that

the delta function in the spectrum corresponding to Rl is at

r

S
Rl: Wy = W {l-—J (A(2)+ A(l))er —B(rs)c Im %;
“r @
5 ‘
. 4 ¥ by )[n(rs+€),wo,r]
02l ) 0 r]
r=rs
(1)
Y, ' [n(r_-€),0_,r]
- RB(r )e Im %;— n %1) = ! (3C-12b)
° Yo In(r re),w or] )
S

Similarly, the frequency of the delta function in the spectrum corres-

ponding to R2 is
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rS
K2 W = mo[l—e I (al2), A(l))dr]
° (2)
2
- B(r )e Im -8 ﬁnwl [n(rS+€),wo,r]
S P e —e) 0 ,r)
r=r
S
W [alr_-e),0_,r]
8 9 2 s o
- (rs)c Im B n (2)
wz [n(rs"e):wosr] I'=I'S
(1)
' Yo ' [n(r -€),0_,r]
- B(rs)c Im _g}_ in 5(?'1) g 2 (3¢c-12¢)
wQ’ [n(r3+€) swo-:r]
r=r

The various frequency shift terms in (3C-12) are easily associated
with physical phenomena and were, in fact, obtained by such associa-
tion. The shift in (3C-12a) is merely the Doppler shift due to
reflection from the moving boundary at r=r_ . The first term in
(3C-12b) accounts for the shift during propagation from the surface at
r=r_ to the center of the sphere and back out again. The second and
third terms in (3C-12b) account for the shift in crossing the boundary
at r=r_ on the way in and on the way out, respectively. Similarly,
the first term of (3C-12c) accounts for the shift during propagation
from the surface in to the center, back out to the surface, back in to
the center, and back out to the surface again. The third term accounts
for the shift on reflection from the inner side of the surface at r=r
and the second and fourth terms again account for the shifts on trans-

mission in through and out through the boundary at r=r
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These terms take on somewhat more familiar forms in the far =zone,

i.e., large roo- That 1s,

R ¢ wg = wo[l + Zﬁ(rs+€) B(rs)] (3¢-13a)
& (2) (1)
R : wg = W [l - J (A 2), A\ )dr} {l-QB(rs)[n(rs-e)— n(rs+€)]}
‘ o
(3Cc-13b)

rS

R2: Wg = W [l - p J (A(2)+ A(l))dr} {1 - EB(rS) n(rs—e)}
o

x {1- QB(rS)[n(rS—E)— n(rs+€)]} (30-13c)

The spectral width and position of the -spectrum corresponding to Rl

is also easily found using (3C-10) together with the appropriate bound-

ary effect terms; that is

o(2)
j [n(r_+e),0_,r]
(-1r’<g%— (-1)3 8, )= Blr,)e T 3= {% i -l

(2)[n(rs—€),wo,r]
r=r

5 (l)[n(r -£), w ,r] .

- B(rs)c Ll R (1 £ (-1)Y w
2] [n(rs+s),wo,r] -
S

. 03 [n(r_+e) 0]

£/l |1- J (A(l)+ A(E))dr} -B(r )c Im %—- n (2) c: 2
& s v, ' [n(r_-€),0_,r]

0 L s 0 rer_

» (1) .
[n(r -€),w_,r] .
_ i Sy (-1)Y
B(I'S)C I or { w(l)[n(rs+g),wo,r]} >

r=r (3Cc-1L)
s

S
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The spectrum of the reflection resulting from a Typical inci-
dent spherical mode is shown in Figure 13. Assuming that the surface
T is moving outward, the delta function corresponding to RO is

shifted up in frequency, the one corresponding to R is shifted down,

2

and the position of the one corresponding to Rl depends in a compli-
cated way on the detailed variation of the velocity and index with
radius. . The bandwidth and position of the continuous part of the spec-
trum is given by (3C-1L) and this continuous part is seen to lie
Ventirely between the delta functions corresponding to R and R2
The overall modal spectrum is narrow, since its width 1s linear in
B(rs) {(to first order in RB).

This completes the study of the individual modes. We now pro-

ceed to study how these modal reflections combine to produce the

reflection due to an incident plane wave.

Consider a plane wave propagating in the positive z direction
incident on a sphere in a spherical coordinate system having the z axis
as its polar axis. Let the E field of the incident wave be in the x
direction. We wish to expand this incident wave into spherical waves

of the form given by (3B-1) and (3B-2). Let Xéi% be the E field of
a spherical E wave and let Xéi% be the E field of a spherical H

wave. J=1 implies an outgoing wave and Jj=2 implies an incoming wave.

The desired expansion is

all) (1) ) al2) (2]

L
T U I e M

EDM

Bgl) Xs(aln.gi + é Béi) Xii% (3¢c-15)

m
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Py

Figure 13.

A typical modal reflection spectrum
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where
(1) . 2041 c o ¥ o B
A = + Vi [ee2dl _y e -
g oy, = AL (£(£+1))2wo Y Ao 11
(1) S 20+1 il = AF)
B = =
2,41 (1)% Vi (g,(sz,+1)) 2u W, B Biail
A=B=0 for m # +1
The total reflection funetion will then be
(2) _ (1)
E = % Ag [REmE on S(w-wo)] Xpom
m=%1
(2) e
+ ZL Bom [RQ,m.H - 27 (S(m-—mo)] Rorsr (3Cc-16)
m=x1

We are now faced with the task of summing these series which are
very slowly convergent under ordinary circumstances. The technique to
be applied is as follows. We first make a Watson transformation
transforming the sum to a contour integral in the complex 1 plane [18].
We then evaluate the integral approximately by the method of steepest
descent [lh].. This technique will be applied to the three discrete
components in the solution of Figure 13. It will be found that the
three sums have a very satisfying physical interpretation.

Consider first thé sum of the terms having frequencies given by

(3C-12a). This sum may be written in the form
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E - z (- o0+1 )(slowly varying function)
° 9 (1) of r and & s

m=+1 : 5

w(QB R +€),w 51 +8At] -iw At
(l) o)
omp ©

(l)[n(r +e), w_ T +8At]

" z ;2 28+1 )(slowly varying functlon]
g Y. 2(£+l) r and ¢

r=r
m=+1 s

wéH)[n(rS+€),wo,rs+BAt] (1) —inAt

. w(l)[ Xoom © (3¢-17)

n(rs+€),wo,rS+BAt]

The similarity of these series with those treated by Honl, Maue, and
Westpfahl [15] and by Lam [11] is now evident and, using their results,
we may write the sum for large ro and very large r by inspection to

within a multiplicative constant. That is,

ikr -2ikr _sin 2 o (r )(sin QJAt -iw At n -
e s 2 s 2 o) p
e e e [(cos ¢)eg+(51n ¢)e¢]

" e
&

o) P
(3c-18)
and again we have an angle dependent frequency as did Lam. That is,

(3¢-18) may be written

o eikr -2ikrssin g- -iw(0)At " o
e e [(cos ¢)eg+ (sin ¢)e¢] (3¢c-19)

w(e) = wo[l + 2n(rs+€) B(rs) cos(né'g)]

which is consistent with geometrical optics.
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Now consider the sum of the terms having frequenciés given by
(3C-12b). We note that these frequencies depend on £ in a rather
complicated way due to the integral term in (3C-12b). This implies
that the sum we seek-will have an angle dependent frequency whose
angular dependence is determined in an extremely complicated way by the
detailed variation of n and B within the sphere. The theory is
quite capable of determining this angular dependence; however, in this
presentation we will make a simplifying assumption in order to demon-
strate the physical interpretation of the sums without unnecessary
complication. We assume that the sphere is homogeneous, which implies
that the integral term in (3C-12b) is zero. We also assume, as we did
in dealing with (3C-1T7), that r is large. We may now write (3C-12b)

as follows:
R, : wg = W, {1+ 2B(rs)[n(rs+€)- n(rs—e)]} (3¢-20)

This is independent of £ which implies that the sum Rl is zero.
Had we not made the above assumption, the sum would have been first
order in B(rs) . The other two sums with which we are dealing--
those corresponding to Ro and Re—-are zero order in B(rs) and
therefore dominate the spectrum.

Finally, consider the sum of those terms with frequencies given

by (3C-12¢). Using our assumptions on n, B, and r, we may write

82 tnlr -€) 7]

e 9 '3
= w-PB(rS)c Tm - 2n &)
Yo

w (3c-21)
S [n(r_-e),u_,r]
I‘=I‘S
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where

w = wov{l + EB(rS)[n(rS+E)— n(rS—E)]}

This is identical with (3C-12a) except for a change in the sign of the
second term and the replacement of n(rs+€) with n(rs—e) and W,
with ® . In analogy with (3C-19), then, the sum is

; g .8
5 elkr 21kr851n 5 —iw(0)at
2 ¥ = € [

(cos @)ég+ (sin Q)é¢] (3c-22)

where

mT=-8

w(e) = w[l - 2n(r_-e) B(r ) cos( 7]

This corresponds to reflection from the inside of the surface of the
sphere and agrees with geometrical optics.
The physical interpretation of Ro and the delta function

contributions to Rl and R2 are shown in Figure 1h.
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Figure 1h. Physical interpretation of discrete spectral

components
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4. CONCLUDING REMARKS

This thesis presented a method of calculating the scattering
which results when a plane electromagnetic wave falls on an expanding
nonconducting obstacie. In particular, it dealt with scattering from
expanding dielectric slabs and spheres. The problem was formulated by
means of the invariant imbedding concept thus circumventing calcula-
tion of the fields inside the scatterer.

In dealing with the slab it was found that motion of the medium
parallel to the direction of propagation of the wave is insufficient to
cause a reflection in that an associated index gradient is necessary.
This was found to be due to the fact that the wave impedance of a plane
wave 1s invariant under Lorentz transformation parallel to the direction
of propagation of the wave. The equations resulting from the invariant
imbedding formulation of the problem were sclved approximately to obtain
explicit formulas for the spectra of the reflected waves. As an
example, the width of the spectral lines produced in Brillouin scatter-
ing was computed. It was found that the formulation which was most
.convenient in the slab geometry was not easily extendable to the
spherical geometry, so a second formulation of the slab problem was
presented--a formulation more suitable for use in the sphere problem.

The invariant imbedding formulation was then applied to deter-
mine some of the properties of the scattered wave resulting when a
plane electromagnetic wave falls on an expanding spherical scatterer.

It was found that the salient features of the scattered spectrum and
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those features which give the most easily discernable information
about the scatterer are the discrete components (delta functions).
The frequencies of two of these components were calculated quasi-
statically and to first order in the surface velocity for é large
homogeneous expanding sphere, and it was shown that the frequencies
have a physical interpretation which agrees with results from geo-
metrical optics.

It is expected that the techniques presented here will prove
to be of value in analyzing the data obtained in radar studies of the
ionosphere and disturbances in the atmosphere. The spherical analysis
may be of particular value in studying the dynamics of explosions by
radar as there the motion is primarily radial. The presentation has
been aimed at calculating the scattering given the evolution of the
scatterer; however, the results were presented in a manner that gives

some understanding of the inverse problem.
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APPENDIX A

In this appendix the approximations involved in the time vary-
ing spectrum concept are discussed further.

In this treatment we are dealing with two essentially distinct
time scales. The scale on which the fields oscillate, a scale largely
determined by the frequency of the incident wave, and the scale on
which the parameters of the scatterer vary, a scale independent of the
frequency of the incident wave. Thus, it is reasonable to assume that
the solution will vary on two time scales and that it may be ﬁritten in

the form

Flelt Juult)] (A-1)

If we wish to describe this solution as a time varying spectrum
function, we proceed as follows. First, expand flr(t),s(t)] in a

Taylor series about a fixed point to ;3 that is,

af dr | 3f ds

flr(t),s(t)] = f[r(to),s(to)]+ {Br = g

}(t-to)+--- (A-2)

Now, assume that the function s(t) is associated with the parameter
variation time scale and that it, therefore, wvaries much more slowly
than does r(t). Derivatives of s(t) may then be neglected in

favor of derivatives of r(t). That is, f may be written approxi-

mately as
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gi.d_r (-t_t ) 4 s e
O

£lr(t),s(0)] = flr(t ),s(t )] + 2L &

= £lr(6),5(t_)] (a-3)
Fourier transformation of (A-3) results in

Flu,s(t )] = J £lr(t),s(t_ )] e at (A-h)

-

which is a "time varying spectrum". It has been stated that the condi-

tion for validity of this concept is

ds

at (A-5)

max

Technically this is not quite correct because it admits the cases
where r(t) varies slowly everywhere but in a few isolated regions
where it changes rapidly. (Since in our case r(t) is more or less
uniformly oscillatory, the above situation does not arise.) To account
for this we state that (A-5) must hold on every interval of time longer
than a few cycles Of input signal--say five cycles.

By a property of Fourier transforms we find that

; = af dr -iuwt
iwFluw,s(t )] = J oy at © at (A-6)
That is,

9f ds  -iwt
oF J = dt
a3t | 9s dt

= = (A-T)

iwF :

9f dr -iwt

J ar at o
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Since s(t) is slowly varying compared to r(t), the expression on

the right side of (A-T) is very small and we have

Fot | — ¥ (a-8)

,i'aF
(o]

In this presentation the problem was solved for each fixed
value of the parameters of the scatterer and each of the solutions
thus obtained was called the solution at the time when the parameters
of the scatterer took on the values used to obtain it (necessitating
conditions (2C-1b)). This is the fully quasistatic approach, a first
approximation. The corresponding second approximation is known as the
WKB approximation [1Lk] and these two approximations are the first two
terms of a series which could, in principle, be carried to any desired
degree of accuracy [16]. The exact solution is that which was called
g(t).

Thus we see that (2C-la), (2C-1b), and (2D-13) all have essen-

tially the same meaning.



where

function to first order in

o

APPENDIX B

In this appendix eguation (2C-T) is simplified somewhat by
Fourier transformation.

We note that the solution (2D-9) can be written as a function
of W= and we redefine R(t,wo

ut,min,z) to be R(t,wout— min,z).
Equatio# (2C¢-T7) then becomes
%§'+ ( out+ wln) n %E-%g
out
= %;-QS {2w6(w0ut— min)— J R(t,a;m.n,z) R(t,w " ©,2) %%
- %§'(mout+ min) L %S_R (B-1)
Fourier transformation with respect to B yields
-%-nu+y§%§§=u-¥)%§§
+ [Bn%%—i:t)ﬁn(l+y%§~)] R (B-2)

=]

. Yout ¥in
A . -1 (-2ut_in,
Rleaya) = 3 | Rltaugmey.2) e

-0

B .

This is the simplified invariant imbedding equation for the reflection
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We now apply this equation to the slab of Figure 3. Handling
(B-2) by the method of characteristics and assuming that the slab under

consideration is sufficiently tenuous to permit neglecting the nonlinear

term, we obtain the following two ordinary differential equations:

” 3B .
~= = il & g el (B-3a)
R _1 tn, 5,28 Mmoo, 28y 7 (B-3b)
dz =~ 2n 3z 23 c ¥ 3z
Solving (B-3a) yields
Z Z
Z f n E%T dz' -f n %%T dz'
viz) = [_ J neb az +y(b)] e B (B-k)
b
where y(b) is the value of y corresponding to b on the charac-
teristic. Substituting (B-L) into (B-3b) gives
dj’é ol l__é_ll s {31’1 _B._B_ . 2iwirl n[l + ( ) aB]} g{ (B )
dz =~ 2n 9z oz c AT -2

Equation (B-5) is a first order linear differential equation which can
be easily solved.

The solution evaluated at the left boundary of the
slab z = a is
Z a
a —f Idz f Idz
R(t,y,a) = J 1.2 .8 g5+ R[t,y(b),b] e°
2n 9z
b

(B-6)

where



-

z
3B
23w —{ n YU dz!'
L ap 28 M 38
I =-3n . el 1+ y(b) =5 ©
Z Z
zZ f n g-@—,-dz' —f n EET-dz'
38 b Z b 9z
- — ne dz e
Z
b

Solving (B-4) at z = a for y(b) as a function of y and a yields

Z a
a f n EET-dz' [ n 2%7 dz'
y(b) = [y + J n e® dz] eb (B-7)
b
Substituting in (B-6) we obtain
Z
3B 4,0
z B i 2iw -I Y R
- -] 3n Fr L [l— &= } y
= 1l 9n ¢
Rlt.y,.a) J 4 5y © e
b
Z Z
I o éﬁT—dz' _f n éﬁT dz*
2iw 2 a z a - -
o f ne dz e . f I dz
e ¢ ° + R[t,y(b),b] &° (B-8)
We now make the following change of variable:
Z
a8
—i n '5‘2'—" dz' |
w(z) = w, - 2w, [1 -e :‘ (B-9)

This necessitates division of the slab into regions in which this
transformation 1s one to one. For simplicity in this discussion, let us
consider a slab in which the transformation is one to one over its

entire thickness. Proceeding with the change of variable and making
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use of the W function defined in Figure 5, we obtain

z{w)
© -1 3n —J' En%-zs—,- dz'
£ ! 2m 2n 3z a
RBlt.y.8) = e (m— Y e
= o =n 3z | z=2(w)
VA
9
i(wtw ) (w) f & _%T
o) f a i
T i ne dz -E(m—mo)y
X e e Wliwyw(b),w(a)ldw
b
9B i
: IR -y
+ R[t,y(b),b] e e 3
3B
dz"
_ b [ » 5%
i{m(b) + w ] f n e dz
c 0" o
x e (B-10)

Comparison with the &finition of R in (B-2) shows

z(w)
1l on -f 2n EéT dz'
e 3z
_ 21 2n 3z a
R(t,w-w _,a) = - — —/—— e
& “s 2n L1
9z |z=z(w)
zZ
9B :
i z{w) £ i 4z
rg(w+wo) £ ne . dz
% & W(w;w(b) ,wula)]l
b b
_98 _ 9B 4.0
i n oo i 2n 5z dz
+ R[t,(w-w(b))e ,bl e
z
28
— dz'
. b f Yy
Z{2w(b)-w +w_ ] [ n e? dz
c o o

x e
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which is identical (to first order in B) with (2D-9) except for
discrepancies in the phase of the two terms, discrepancies which
are first order in B . These discrepancies represent the error
in assuming that the solution depends mly on the difference between
the input and output frequencies.

Thus the condition under which this appreocach is applicable is

that accuracy to first order in f 1in the phase of the soclution be

unnecessary.
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APPENDIX C

In this appendix the invariant imbedding equation for the
transmission function of an expanding slab is derived.

Figure 15 depicts the transmission problem. The laboratory
frame here is associated with the right boundary of the slab rather
than with the left boundary as in the derivation of the equation for
the reflection function. It is assumed that the transmission through
that portion of the slab to the left of g-Az is known in a Lorentz
frame moving with the fluid at z-Az when in this frame the space to
the right of «z-Ar is filled with a homogeneous stationary fluid of
index n(t,z-Az) . A thin slab of fluid of index n(t,z-Az) having a
constant velocity gradient throughout its thickness is added at g-AC
and extends to T . We must calculate the transmission function at ¢
(i.e., the transmission through the composite slab) in a frame moving
with the fluid at ¢ wunder the assumption that in this frame the region
to the right of ¢ 1is homogeneously filled with a stationary fluid of
index n(r,;) . That is, for this calculation a Lorentz frame moving
with the fluid at position 2z at time t (or correspondingly position
tr and time 1t in the comoving frame) will be used. Figure 16 shows
the situation as seen in this comoving frame. Again, it is our inten-
tion to take the limit as At 5pproaches zero so again calculations
will be done only to first order in Ag

A unit amplitude, linearly polarized, monochromatic, plane wave

of frequency Wy in the frame of the boundary at 2z = a 1is assumed to
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be normally incident from the left on the composite slab of Figure 16.
It is transmitted through the slab to the left of [-AZ and when it
appears at Z-Az it is described in the local comoving frame by the
spectral density function T(t,wout,g-ﬁc) . It is then transmitted
through the added layer and across the boundary at ¢ to become Tl .
Part of it is reflected by the boundary at ¢ , transmitted back

through the added layer, reflected from the slab to the left of g-AT

(whose reflection function has been calculated to be ﬁ(T,m ,W. ,Z=AZ)),
out’ in

transmitted back through the added layer and across the boundary at

to become T2 . Higher order T's are defined similarly.

Equation (2B-Lb) leads to

§ B0 g
on(t,z-AC)
e 1 — ] - a5
T, = T(1,u',z-A)e om0 + a(r,co50y 12 - nt8)  (C-la)
where
©' = (1+n88)w and 48 = 2B ap
out 9T
Thus to first order in Ay we have
iw n
=m = [2L 98 9T I 9n _ out 38 .
Tl =& - [EC T Mout 3z 3t * o 9z ¢ T+ 9z T] Az (C-1v)

Again the factors (1-nAB) and (1+nAB) arise because T, and T are

defined in different Lorentz frames. TIn a similar manner we obtain

©
__1 o e oy R =) & Y
T2 = - on BE_. J T(T,wgt_—.) R(Tswout:wsc) on Az (C 2)
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In the above expression R(t,w n,C—AE) is the reflection function

W,
out’ i
for that portion of the slab to the left of the plane Z-AL for waves
incident from the right and it is defined in a Lorentz frame comoving
with the fluid at ¢-AZ . Tj for j > 2 1is of second or higher order

in AZ and is therefore negligible in this calculation. Hence

L= % Ty (c-3)

Substitution of (C-1b) and (C-2) into (C-3) yields

T _ 8ar  _ Tlout" 38 1 3,
9z out ™ 3z awout c 9z 2n 9z
1 9n — — aw
- L3 [0 5,0) Rt ) 22 (c-1)

where we have transformed as before from local comoving coordinates to
laboratory frame coordinates. This is the invariant imbedding equation
for the transmissicn funection to first order in £ . Assuming that R
is a known function, this equation is a first order linear partial 4if-
ferential equation. ‘It is to be integrated from the left boundary of

the slab where the transmission is known to the right boundary where it

is to be found.
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APPENDIX D

In this appendix the relevant properties of the functions P
and Q 1n equations (3B-3) are discussed.

First, we note that P and Q must reduce to the correspond-

ing expressions Rll and Rl2 given by van der Pol and Bremmer [17]
when B = 0 . Hence, we may write to first order in
P(r + BelAt) = Rll(r + BeAt) + BPl(r) (D-12)
Q(r + BeAt) = R, (r + BeAt) + BQ,(r) (D-1b)

The second term in each of these expressions is time independent and
so to study the time dependence of R and T in (3B-3) we need only

study the time dependence of Rll and ng with the argument r + Bet

Now the van der Pol and Bremmer expressions involve only the logarithmic
derivatives of the Hankel functions. These logarithmic derivatives
vary much more slowly than do the Hankel functions themselves, except
near the origin for small values of £ . However, near the origin the
velocity is nearly zero so this does not pose a problem. The radial
dependence of the logarithmic derivatives for V # r + Belt may be
ascertained by making use of the.asymptotic expressions for the Hankel
functions [15] which are

Hij)(x) zV/%?(Xg—vg)_l/h exp ~(-1)7 1(Vx®- v - v cos™h g& -3
v

< %
(D-2a)

& \v.,2_.2
Héj)(x) = (—l)Jv[% e xg)_l/h exp v n Ei~§455" S

- VvV -X

vV > x (D-2b)
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where Vv 1is a half integer. We find that

_a (e o ¢ L E s J V-
- Rn[HvJ ] = -[ z (xg-v2)5/“ % g (=13 1 - 5] v <x (D=3a)

d (j) 1 1 X X X
— n[H ] =-[=-= + < ]
dx Vv X 2 (v2_ X2)5/h v2_ X2 ,;5:;5 . (vz_ Xe)

vV > X (D-3b)

by
where x = k(j)-dr and v = 2 - ;-. For v < x (D-3a) wvaries
eff 2 2
Y]

slowly compgred with (D-2a). For > x both the logarithmic derivative

and the Hankel function vary slowly (i.e., are not oscillatory) and hence

neither will affect the Doppler shift in our analysis.
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