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Abstract

We study the behavior of granular materials at three length scales. At the small-

est length scale, the grain-scale, we study inter-particle forces and “force chains”.

Inter-particle forces are the natural building blocks of constitutive laws for granular

materials. Force chains are a key signature of the heterogeneity of granular systems.

Despite their fundamental importance for calibrating grain-scale numerical models

and elucidating constitutive laws, inter-particle forces have not been fully quantified

in natural granular materials. We present a numerical force inference technique for

determining inter-particle forces from experimental data and apply the technique to

two-dimensional and three-dimensional systems under quasi-static and dynamic load.

These experiments validate the technique and provide insight into the quasi-static

and dynamic behavior of granular materials.

At a larger length scale, the mesoscale, we study the emergent frictional behavior

of a collection of grains. Properties of granular materials at this intermediate scale

are crucial inputs for macro-scale continuum models. We derive friction laws for

granular materials at the mesoscale by applying averaging techniques to grain-scale

quantities. These laws portray the nature of steady-state frictional strength as a

competition between steady-state dilation and grain-scale dissipation rates. The laws

also directly link the rate of dilation to the non-steady-state frictional strength.

At the macro-scale, we investigate continuum modeling techniques capable of sim-

ulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular

materials in a single computational domain. We propose a Smoothed Particle Hydro-

dynamics (SPH) approach for granular materials with a viscoplastic constitutive law.

The constitutive law uses a rate-dependent and dilation-dependent friction law. We



v

provide a theoretical basis for a dilation-dependent friction law using similar analysis

to that performed at the mesoscale. We provide several qualitative and quantitative

validations of the technique and discuss ongoing work aiming to couple the granular

flow with gas and fluid flows.



vi

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Granular materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Background on inter-particle forces . . . . . . . . . . . . . . . . . . . 5

2 Extracting inter-particle forces in opaque granular materials: Be-

yond photoelasticity1 9

2.1 Experimental validation and application of GEM . . . . . . . . . . . 11

2.1.1 Experimental setup and procedure . . . . . . . . . . . . . . . 11

2.1.2 Strain fields and force results . . . . . . . . . . . . . . . . . . 13

2.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Average particle stress . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Cohesionless and tangential forces . . . . . . . . . . . . . . . . 20

2.2.4 Structure of equations and connection to experiments . . . . . 22

2.3 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Inverse problem formulation . . . . . . . . . . . . . . . . . . . 23

2.3.2 Measurement noise and alternative formulation . . . . . . . . 25

1Adapted from R. Hurley, E. Marteau, G. Ravichandran, and J.E. Andrade. Extracting inter-
particle forces in opaque granular materials: Beyond photoelasticity. Journal of the Mechanics and
Physics of Solids, 63:154-166, 2014. DOI: 10.1016/j.jmps.2013.09.013



vii

2.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Global force inference . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Local force inference . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Dynamic inter-particle force inference in granular materials: Method

and application2 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Experimental measurements . . . . . . . . . . . . . . . . . . . 33

3.2.2 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Example 1: Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Experiment analysis . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Experiment results and FEM comparison . . . . . . . . . . . . 46

3.4 Example 2: Application . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Experiment analysis . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Friction in inertial granular flows: Competition between dilation and

grain-scale dissipation rates3 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2Adapted from R.C. Hurley, K.W. Lim, G. Ravichandran, J.E. Andrade. Dynamic inter-particle
force inference in granular materials: Method and application. Experimental Mechanics, 2015. DOI:
10.1007/s11340-015-0063-8

3Adapted from R.C. Hurley and J.E. Andrade. Friction in inertial granular flows: Competition
between dilation and grain-scale dissipation rates. Granular Matter, 17(3)287-295, 2015. DOI:
10.1007/s10035-015-0564-2



viii

4.2 The friction law for simple shear . . . . . . . . . . . . . . . . . . . . . 61

4.3 Numerical simulations of simple shear . . . . . . . . . . . . . . . . . . 63

4.3.1 Description of code . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Results: Validity of friction law . . . . . . . . . . . . . . . . . 67

4.3.3 Results: Grain-scale dissipation mechanisms . . . . . . . . . . 68

4.3.4 Influence of material properties . . . . . . . . . . . . . . . . . 69

4.3.5 Results: Dilation and dissipation rates . . . . . . . . . . . . . 71

4.3.6 Results: Rate-dependent friction . . . . . . . . . . . . . . . . 73

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Modeling dilative viscoplastic granular flows using SPH4 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Balance and constitutive Laws . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Balance law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Constitutive law . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.3 Theoretical link between friction and dilation rate . . . . . . . 82

5.3 SPH formulation and algorithm . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Kernel function and basic equations . . . . . . . . . . . . . . . 84

5.3.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.4 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.6 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Example 1: Angle of repose . . . . . . . . . . . . . . . . . . . 92

5.4.2 Example 2: Infinite inclined plane flow . . . . . . . . . . . . . 96

5.4.3 Example 3: Granular column collapse . . . . . . . . . . . . . . 102

5.4.3.1 Scaling laws . . . . . . . . . . . . . . . . . . . . . . . 102

4Adapted from R.C. Hurley and J.E. Andrade. Modeling dilative viscoplastic granular flows
using SPH. Under review.



ix

5.4.3.2 Reduced bulk modulus, friction angle, and resolution

studies . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.4 Example 4: Column collapse down inclined planes . . . . . . . 108

5.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Discussion and conclusion 117

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Ongoing and future work . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Inter-particle force inference . . . . . . . . . . . . . . . . . . . 118

6.2.2 SPH modeling of coupled granular media and fluid flows . . . 119

Bibliography 124



x

List of Figures

1.1 The three length scales studied in this thesis: the microscale, the mesoscale,

and the macroscale. The respective quantities of interest at each scale

include force chains, friction, and flow. . . . . . . . . . . . . . . . . . . 2

2.1 The GEM methodology for inter-particle force-inference presented in

this paper. Experimental imaging techniques provide rich data sets for

extracting intra-particle strain fields and material fabric. These ingredi-

ents are input into a mathematical framework which yields inter-particle

forces by solving an appropriate inverse problem. Variables and equa-

tions in panel 3 are described in section 2.2. . . . . . . . . . . . . . . . 10

2.2 Experimental setup: 1. CMOS camera ; 2. Canon lens ; 3. Digimeter ;

4. Loading device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 (a) Sample under macroscopic loading. Top face (red) was prescribed a

vertical load of 215 N using a smooth, rigid wall. Bottom and lateral

faces (blue) were smooth, stationary walls. (b) Results of segmentation

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Sample dimensions in millimeters and information on the fabric: particle

numbers, position of contact points and centroids. . . . . . . . . . . . . 15

2.5 Strain components εxx, εyy and εxy obtained from DIC. . . . . . . . . . 16

2.6 Resulting inter-particle forces (in N) from application of GEM. . . . . 17

2.7 Illustration of particle-particle and particle-boundary contacts. . . . . . 18

2.8 Unit vectors for contact i. . . . . . . . . . . . . . . . . . . . . . . . . . 21



xi

2.9 (a) Numerical odometric test setup. (b) Inter-particle forces computed

with DEM and (2.13). Length scale in meters, forces in Newtons. Line

thickness proportional to force magnitude. . . . . . . . . . . . . . . . . 28

2.10 (a) Solution to (2.13) with artificial noise, ‖δf‖ = 0.154. (b) Solution

to (2.14) with same noise, ‖δf‖ = 0.053 (right). . . . . . . . . . . . . . 29

2.11 Solution to (2.13) performed locally within granular material. . . . . . 30

3.1 Illustration of various terms used in the governing equations. . . . . . 35

3.2 Pareto front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Experimental materials and setup. (a) Table setup with air duct con-

nected to fan, rigid blocks fastened to table, camera and light source ver-

tically over the area of interest. (b) Close-up view of table top and the

top surface of a polyurethane disk with speckle pattern. (c) The under-

side of a polyurethane disk, showing plenum chamber for compressed air.

(d) Experimental setup with 6 polyurethane disks and rigid impactor

propelled at initial conditions vx = −1.141m/s and vy = −0.66m/s.

Particle labels will be used later and are in no meaningful order. . . . 44

3.4 The εxy component of strain from (a) DIC and (b) FEM at four times

during the impact event. All figures share a common scale. Strain values

above and below the extreme values of the scale occur in small areas. 46

3.5 (a) Forces found using Eq. (3.18). Length and width of lines are propor-

tional to force magnitude. (b) Forces found from the FEM model. (c)

Eight contact point locations, chosen to include the major force chain

and otherwise at random. (d) A comparison of force evolutions using

Eq. (3.18) and the FEM model. . . . . . . . . . . . . . . . . . . . . . 48

3.6 Experimental setup. (a) A window featuring a piece of Plexiglas and

a sheet of PVC plastic holding the 2D granular bed in place. A high

speed camera is used to view the granular bed as it is impacted by a

steel intruder. (b) A close-up of the steel intruder about to impact the

granular bed at -2.4m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xii

3.7 Inter-particle forces in the granular bed at six times during an impact

event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Inter-particle forces in the granular bed at six times during an impact

event with an initial packing of the bed different from the experiment

shown in Fig. 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 The vertical force felt by the intruder for the experiments shown in Figs.

3.7 and 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Maximum inter-particle force as a function of distance from the surface

of the intruder for three experiments with distinct initial packings. Exp.

1 refers to Fig. 3.7. Exp. 2 refers to Fig. 3.8. An inter-particle force

is considered to be a distance ndmin from the surface of the intruder if

the contact point that it belongs to falls within a range of ndmin and

(n + 1)dmin away from the surface of the intruder, where dmin is the

minimum particle diameter in the granular bed, 2.54cm. . . . . . . . . 55

4.1 Friction encodes contact-scale and grain-scale information in a single

parameter for continuum analysis. . . . . . . . . . . . . . . . . . . . . 59

4.2 The two timescales associated with the inertial number, I = Tc/Tγ̇. . . 59

4.3 (a) A rendering of the simple shear flows featured in this paper. The top-

most and bottom-most particles are used as rough boundaries. Colors

indicate the magnitude of velocity, where vx is the imposed wall velocity.

(b) Coefficient of restitution e in a two-particle collision with normal

velocity vc
√
ρg/kn for data set 1 (- -) and data set 2 (-). . . . . . . . . 65

4.4 A comparison of (a) effective friction and (b) solid fraction from our sim-

ulations and available data sets taken from the literature. Blue squares

are from contact dynamics simulations [1]. Black triangles are from 3D

annular shear cell experiments [2, 3]. Error bars indicate standard de-

viations in time of measured quantities. The dashed line shows the fit

µ = µ0 + (µ1 − µ0)/(1 + I0/I) from [4]. . . . . . . . . . . . . . . . . . 67



xiii

4.5 A comparison of the effective friction coefficient calculated from pro-

posed friction relationship in Eq. (4.6) and the stress formula in Eq.

(4.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 (a) The two terms µn = Zφ〈Γn〉/(IΓ̃) and µs = Zφ〈Γs〉/(IΓ̃) in the

additive decomposition of effective friction given in Eq. (4.9) for the

primary data set (- -) labeled DS1 and the secondary data set (-) labeled

DS2. (b) The total effective friction for the two data sets as a function

of I. Error bars are omitted from inset plots for clarity. . . . . . . . . . 70

4.7 (a) The coordination number Z as a function of inertial number. The

dashed line is the fit from Eq. (4.10). (b) The solid fraction φ as a

function of inertial number. The dashed line is the fit from Eq. (4.11).

(c) The average grain-scale dissipation rates 〈Γn〉/Γ̃ and 〈Γs〉/Γ̃ as a

function of inertial number. The dashed lines are power-law fits, with

〈Γn〉/Γ̃ ∝ I2.4 and 〈Γs〉/Γ̃ ∝ I1.87 (d) The quantity Zφ/I as a function of

inertial number. The dashed lines represent the two regimes of behavior

in which Zφ/I ∝ I−1 and Zφ/I ∝ I−2. Error bars in (d) are negligibly

small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 The inset of Fig. 4.7c, showing the average grain-scale dissipation rates

as a function of inertial number on a log-log scale. The dashed lines

illustrate the scaling of each dissipation rate discussed in the text, as

well as the scaling proportional to I at the transition to quasi-static flow. 74

5.1 (a) Illustration of the smoothing kernel W with compact support of ra-

dius 2h about particle a. (b) Interior particles interacting with boundary

particles, which are given artificial velocity. . . . . . . . . . . . . . . . 86



xiv

5.2 (a) Initial conditions of the slump test through an orifice. In color, blue

represents internal SPH particles and red represents boundary particles.

Length l = 60 cm, h = 50 cm, and the size of the simulated material in

the z dimension is 6 cm. (b) Final collapsed side profile of the slump

test through an orifice for φ = 30◦. The repose angle θ is measured in

the middle 75% of the domain between the left wall and the orifice. (c)

Results of the simulations with and without including β in the calcula-

tion of friction. The dashed line and circles represents the curve θ = φ.

Results without β are blue squares which provide a lower bound to the

θ = φ curve. Results with β are red inverted triangles which nearly

match the θ = φ curve. (d) Pressure in the collapsed granular pile for

φ = 30◦ showing a slight pressure drop in the layer of SPH particles

directly above the bottom surface of the container. . . . . . . . . . . . 94

5.3 (a) Initial conditions of a typical inclined plane flow experiment showing

internal SPH particles above y = 0 and boundary particles at or below

y = 0. (b) A typical velocity profile of an inclined plane flow. (c) Veloc-

itiy profiles in the x direction as a function of height y in the granular

material for simulations that do not include β in the calculation of fric-

tion. Symbols represent simulation results and dashed lines represent

the best fit of the Bagnold profile (Eq. (5.30)) to the simulation data.

(d) Same as (c) but for simulations that include β in the calculation of

friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xv

5.4 (a) Bulk acceleration ˙̄a of the granular material in the inclined plane

simulations, without the use of β in the calculation of friction, as a

function of time. The highest curve represents θ = 33◦ and each lower

curve represents a reduction in θ by 3◦. All accelerations appear to

asymptote to zero except for θ = 33◦. The inset shows raw data overlaid

with the same fits. (b) Same as (a) except for simulations that include

β in the calculation of friction. (c) Slip velocity in simulations not

including β in the calculation of friction, found by averaging the vx

velocity of the bottom-most layer of interior SPH particles. All slip

velocities appear to asymptote to finite values except for θ = 33◦. (d)

Same as (c) but for simulations that include β in the calculation of friction.101

5.5 Typical initial conditions of the column collapse simulations for (a) grit

and (b) fine glass. The right-most vertical wall in each figure is the

containing wall that is deleted at t = 0. In the color figure, blue particles

represent internal particles and red particles represent boundary particles.104

5.6 (a) Scaling laws for collapsed height in simulations not using β in the

calculation of friction. Symbols are SPH simulations and dashed lines

are linear best-fit lines in logarithmic space for all data with x coordinate

above 1.7. (b) Scaling laws for collapsed runout distance in simulations

not using β in the calculation of friction. (c) Same as (a) but for sim-

ulations using β in the calculation of friction. (d) Same as (b) but for

simulations using β in the calculation of friction. . . . . . . . . . . . . 106



xvi

5.7 Results of parametric studies of various model parameters on numer-

ical results. (a) Result of varying the bulk modulus over two orders

of magnitude does not indicate any significant change in results. This

also justifies our use of κ = 105 in most simulations in this chapter to

eliminate the shorter time step that may otherwise be needed to ensure

stability. (b) Result of varying bulk and basal friction coefficients within

the experimental error bars of [5] illustrates the expected changes, but

only minor changes. (d) Results of mesh-refinement study illustrate

the coarse mesh used throughout the chapter produces results that are

nearly the same as the finest mesh. . . . . . . . . . . . . . . . . . . . . 109

5.8 (a) Initial and (b) final configurations for simulations of column collapse

down inclined planes. The right-most near-vertical wall in (a) represents

the containing wall that is lifted in the y direction with vx = 2 m/s at

t = 0. In the color figure, blue particles represent interior particles and

red particles represent boundary particles. . . . . . . . . . . . . . . . . 110

5.9 Time-dependent collapse profiles down inclined planes for four inclina-

tion angles: θ = 0◦, 10◦, 16◦, and 22◦. Symbols represent SPH profiles

and lines represent experimental profiles from [6]. (a) and (b) illus-

trate results with periodic boundary conditions in the z direction and

no sidewalls. (c) and (d) illustrate results with sidewalls. (a) and (c)

show results for simulations not including β in the calculation of friction.

(b) and (d) show results for simulations including β in the calculation

of friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



xvii

5.10 Snapshots of simulations shown in Fig. 5.9d for (a) θ = 0◦, (b) θ =

10◦, (c) θ = 16◦ and (d) θ = 22◦. These simulations employ β in the

calculation of friction. In the color figure, the color of each particle

corresponds to the magnitude of the strain rate tensor D. We clearly

see the influence of sidewalls (not rendered) at the first nonzero time

for each inclination angle. At these times, particles appear to undergo a

higher strain rate in the foreground and background than in the center

of the flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 (a) Macroscopic load curve for oedeometric compression of single-crystal

quartz grains. (b) Sample volumetric image of the assembly obtained

with XRCT during the load cycle. (c) Preliminary results of force in-

ference using Eq. (3.19) applied to a single load step. Lines connect

contacting grain centroids and are darkened and thickened linearly with

force magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Qualitative example of gas-driven soil erosion modeled using the SPH

framework. The left column of figures illustrates the sand response only

in the first 75 ms of the gas impingement event. The right column of

images illustrates the gas response only. . . . . . . . . . . . . . . . . . 123



1

Chapter 1

Introduction

1.1 Granular materials

Granular materials are materials composed of discrete macroscopic particles with size

greater than 1 micron [7]. Snow flakes, sand, soil, rice, pharmaceutical pills, and even

asteroids can be considered granular. These materials are ubiquitous in our universe

and their behavior plays a crucial role in natural and engineered processes such as ero-

sion, mining, pharmaceutical processing, material transport, and food production [8].

Unlike gases and liquids, the mechanical behavior of granular materials is governed

by nonlinear inter-particle interactions rather than thermal fluctuations [7]. Further-

more, the lack of scale separation in these materials for many problems of interest

prohibits development of a single governing mathematical framework (e.g., Naiver-

Stokes) [7,8,9]. Thus, despite their ubiquity, granular materials possess a complexity

that necessitates a unique multi-scale approach.

This thesis examines the behavior of granular materials at three length scales: the

grain-scale, the mesoscale, and the macro-scale. These three scales and the behav-

iors of interest that will be studied are illustrated graphically in Fig. 1.1. At the

grain-scale, we study inter-particle forces and “force chains”. These unique features

are natural building blocks of constitutive laws for granular materials and frequently

manifest themselves in macroscopically observable phenomena. At the mesoscale, we

study emergent frictional behavior of a collection of flowing grains. The effective

frictional strength of granular materials plays a governing role in mechanical and
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Figure 1.1: The three length scales studied in this thesis: the microscale, the
mesoscale, and the macroscale. The respective quantities of interest at each scale
include force chains, friction, and flow.

dynamical behavior, both in quasi-static and dynamic events. At the macro-scale,

we investigate continuum modeling techniques for capturing the distinct solid-like,

fluid-like, and gas-like behaviors exhibited by granular materials. Full-field numer-

ical methods capable of capturing these phases are essential for predicting and un-

derstanding the processes underlying the behavior of granular media in nature and

industry.

The three scales and topics discussed in this thesis are connected in a manner that

highlights the multi-scale nature of granular materials. For instance, the mesoscale

effective friction coefficient and the macro-scale stress tensor can be derived from inter-

particle forces and grain kinematics (e.g., see [1,10,11,12]). Force chains arising from

grain-scale interactions may also induce nonlocal behavior that is widely observed at

meso- and macro-scales in number of flow configuration (e.g., see [90]). An improved

understanding of force chain dynamics and nonlocal constitutive theories like those

discussed in [90] may therefore provide new insight into the multi-scale physics of

granular media. Furthermore, mesoscale properties such as effective friction play

an important role in solid-like, fluid-like, and gas-like behavior and transitions at

the macro-scale. An improved understanding of these properties and new full-field
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modeling tools may help elucidate macro-scale behavior in insightful ways.

Despite the stated connections between the scales studied in this thesis, we do

not focus heavily on investigating these connections. Rather, we primarily develop

technologies for studying each scale and leave extensive investigation of connections

for future work. The lack of rigorous theories connecting scales is an ongoing challenge

in the field of granular materials. We hope that the technologies advanced in the

present work aid researchers in overcoming this challenge in the future.

Throughout this thesis, we do not focus on a particular type of granular material.

Instead, many of the results are generally applicable to any conglomeration of par-

ticulates. This practice of seeking results generalizable to many particulate systems

when studying granular media has a history of elucidating the behavior of many sim-

ilar systems: foams, colloids, emulsions, and suspensions [9]. However, we often make

reference to sands and cohesionless soils in an attempt to understand these most basic

yet fundamental examples of granular media.

1.2 Overview of thesis

The layout of this thesis is as follows. Chapters 2, 3, and 4 are adapted from published

journal articles. Chapter 5 is adapted from a journal article currently undergoing

peer-review. Most of the content of these four chapters is reproduced directly (with

permission of the publishers) in order to preserve their stand-alone quality. The

titles for these chapters are also the same as the journal articles they represent.

However, the introduction sections of chapters 2 and 3 are modified heavily. Rather

than presenting the original article introductions in those chapters, we consolidate

background information in section 1.3 to eliminate redundancies. We then dedicate

the introduction sections of these chapters to briefly outlining the research they will

describe. The introduction sections of chapters 4 and 5 are mostly unmodified to

provide a more seamless reading experience. However, we provide a brief overview of

these chapters, as well as chapters 2 and 3, in the remainder of section 1.2.

Chapter 2, adapted from a paper appearing in the Journal of the Mechanics and
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Physics of Solids [13], describes a technique for inferring inter-particle forces in quasi-

static experiments on granular materials. The force inference technique involves nu-

merically solving an optimization problem using experimental measurements of grain

positions, grain contact points, and volume-averaged grain stresses as input. The

technique is applicable to opaque, arbitrarily shaped grains, and makes no assump-

tion of contact or constitutive law for the grain material. However, the technique

requires that grains are deformable and that deformations can be measured experi-

mentally. We present the numerical framework, discuss its solution space, and provide

two examples of application to real and synthetic experimental data.

Chapter 3, adapted from a paper appearing in Experimental Mechanics [14], ex-

tends the force inference technique introduced in chapter 2 to dynamic experiments.

The extended technique involves augmented governing equations to accommodate

dynamic effects and a modified multi-objective optimization problem. We validate

this dynamic technique by comparing results of force inference applied to an impact

experiment with an Abaqus/Explicit simulation of the same boundary value problem.

We also present a study of force chains in impacted granular beds that illustrates the

link between force chains and intruder dynamics. The study also highlights an appar-

ent limit to force chain length that occurs at identical impact velocities for different

initial bed packings.

Chapter 4, adapted from a paper appearing in Granular Matter [10], provides

a derivation of a new friction law for steady-state granular flows. This friction law

analytically relates friction to shear rate, coordination number, porosity, and average

grain-scale dissipation rates. The friction law illustrates that rate-dependent friction

in steady-state flows arises from a delicate competition between material dilation and

grain-scale dissipation rates. We perform numerical simulations to investigate this

competition and illustrate how different grain-scale dissipation mechanisms are re-

sponsible for the macroscopic friction coefficient in granular shear flows. The reader

is directed to an additional paper appearing in Procedia Engineering [15] that ex-

tends this friction law to the non-steady-state regime and briefly discusses numerical

simulations.
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Chapter 5, adapted from a journal manuscript currently undergoing peer-review,

discusses a continuum modeling technique for granular flows. The technique combines

a mesh-free Smoothed Particle Hydrodynamics (SPH) framework with a viscoplastic

constitutive law that contains a rate- and dilation-dependent friction law. The friction

law is derived in a similar manner to those found in chapter 4, but from the governing

equations of continuum mechanics. Several examples illustrate the ability of this

method to reproduce realistic angles of repose in slump tests, to match the Bagnold

velocity profile in infinite inclined plane flows, to produce accurate scaling laws for

runout and final height of granular column collapses on flat surfaces, and to generate

time-dependent profiles of granular columns collapsing down inclined planes that

agree with experimental results.

Chapter 6 offers concluding remarks and briefly highlights ongoing and future

work related to the topics covered in each chapter. In particular, we briefly discuss

ongoing force inference experiments on single-crystal quartz grains imaged using x-ray

computed tomography and x-ray diffraction. These experiments are a continuation of

the work in chapters 2 and 3 and represent an important step toward understanding

force transmission in real materials and calibrating more complex grain-scale models.

We also discuss an ongoing effort to extend the SPH framework discussed in chapter

5 to modeling granular materials coupled with gas and fluid flows.

1.3 Background on inter-particle forces

Many studies have investigated analytical or empirical links between grain-scale and

macro-scale properties of granular media. For instance, researchers have experimen-

tally linked the so-called “fabric” of granular materials (i.e. the directional distribu-

tion of grain contact points) to the mobilized stress ratio and secant modulus [16].

Other researchers have developed methods of coarse-graining inter-particle forces and

contact point locations for the macro-scale stress tensor [17]. Several researchers have

derived analytical relationships between the mobilized angle of friction of a granular

material and the radial distribution of inter-particle contacts and forces [1, 12, 18].
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The length and dynamics of force chains has been shown to play an important role in

macro-scale behaviors such as intruder penetration [43]. Force chains may also play an

important role in inducing long-range communication in granular media, a behavior

captured by recent nonlocal constitutive laws (e.g., see [90]). Several studies have ex-

amined the collective statistical properties and heterogeneity of inter-particle forces in

quasi-static and dynamic settings [11,19,20,21,22,23,24,24,25,26,27,28,29,30,31,32]).

These studies have proven useful in unlocking the tools of statistical physics for gran-

ular media, although significant progress remains to be made before a unifying frame-

work exists for granular materials as it does for gases. One important milestone in

developing this framework and understanding granular media has been the advent of

grain-scale numerical techniques.

Grain-scale numerical models provide a platform for simulating the behavior of

individual particles in a granular material. The Discrete Element Method (DEM) rep-

resents the seminal work on grain-scale numerical modeling [33]. DEM uses Newton’s

second law and linear or Hertzian contact laws to explicitly integrate the equations

of motion of individual particles. Contact dynamics has also been introduced as an

alternative implicit approach [34,35]. In the past two decades, numerous studies have

employed these modeling techniques to further investigate links between grain-scale

features such as forces and macro-scale behavior (e.g., see [27,36,37]). As these tech-

niques evolve to handle complex grain shapes (e.g., see [38, 39]) and are increasingly

exploited to study inter-particle forces and other grain-scale behavior, it is important

to validate their results using experimental data.

Experimental measurements of inter-particle forces in model granular materials

has historically been accomplished using photoelasticity [21, 40, 41]). While photoe-

lasticity has proven immensely useful, it has several restrictions. First, photoelasticity

is limited to quasi-two-dimensional experiments on birefringent grains. Second, in-

version techniques used to determine inter-particle forces from photoelasticity data

require grains to remain elastic. Finally, photoelasticity poorly resolves the dynamic

evolution of inter-particle forces at the grain-scale, instead providing forces averaged

over tens or hundreds of grains (e.g., see [42,43]).
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To overcome the elasticity restriction of photoelasticity, some researchers have

laboriously reconstructed individual contact forces by matching experimentally ob-

served fringe patterns to those generated from explicit simulations (see [44]). How-

ever, this technique is cumbersome and unrealistic for packings of more than a few

grains. To overcome the two-dimensional restriction of photoelasticity, several re-

searchers have studied force transmission in liquid droplets and gel packings (e.g.,

see [45, 46, 47]). However, these studies assume a Hertz contact law a priori and

therefore cannot validate inter-particle forces found in grain-scale numerical models

that also employ a Hertz contact formulation.

In chapters 2 and 3 of this thesis, we discuss a new force inference technique that

overcomes the limitations of methods employed in the past. In particular, the new

force inference technique is applicable to two- and three-dimensional particle packings,

is not restricted to material linearity or elasticity, makes no assumption of contact

law, and provides individual inter-particle forces during both quasi-static and dynamic

events. The basic equations for this force inference technique were originally derived

for quasi-static particle packings in [48]. However, [48] employed an incorrect nu-

merical technique for obtaining inter-particle forces and did not provide experimental

examples. Chapter 2 (adapted from [13]) provides a new presentation of the governing

equations and a new numerical inverse problem relying on a constrained optimiza-

tion approach for obtaining inter-particle forces. This chapter also includes the first

experimental example of applying the force inference technique to an indeterminate

packing of rubber cylinders. Chapter 3 (adapted from [14]) provides a new derivation

of the governing equations for dynamic events and a modified multi-objective opti-

mization approach for obtaining inter-particle forces. The dynamic form is validated

experimentally and used to study inter-particle forces beneath an intruder impacting

a granular bed. Chapters 4 and 5 address different topics, as discussed above and in

their respective introduction sections.

In chapter 6, we provide a brief discussion of ongoing and future work on the force

inference technique. The ongoing work includes inferring forces in opaque three-

dimensional single-crystal quartz grains imaged using combined x-ray computed to-
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mography and x-ray diffraction. This work represents the first time inter-particle

forces have been inferred within the bulk of an opaque indeterminately-packed sand-

like granular material.
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Chapter 2

Extracting inter-particle forces in
opaque granular materials: Beyond
photoelasticity1

This chapter presents the first example of inter-particle force inference in real gran-

ular materials using an improved version of the methodology known as the Granu-

lar Element Method (GEM). GEM combines experimental imaging techniques with

equations governing particle behavior to allow force inference in cohesionless materials

with grains of arbitrary shape, texture, and opacity. This novel capability serves as a

useful tool for experimentally characterizing granular materials, and provides a new

means for investigating force networks. In addition to an experimental example, this

chapter presents a precise mathematical formulation of the inverse problem involving

the governing equations and illustrates solution strategies.

The Granular Element Method (GEM) presented in this chapter is an extended

form of the method originally proposed in [48]. The contribution of this chapter is

to present an experimental validation of GEM and a precise mathematical formula-

tion of the proposed inverse problem involving the governing equations for particle

mechanics. This paper also provides an additional inverse problem formulation that

may help practitioners reduce solution error when experimental noise is present.

The GEM methodology can be visualized in Figure 2.1. Experimental imaging

1Adapted from R. Hurley, E. Marteau, G. Ravichandran, and J.E. Andrade. Extracting inter-
particle forces in opaque granular materials: Beyond photoelasticity. Journal of the Mechanics and
Physics of Solids, 63:154-166, 2014. DOI: 10.1016/j.jmps.2013.09.013
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techniques such as high-resolution photography, 3D X-ray diffraction [49,50,51], and

X-ray computed tomography (XRCT) [52, 53, 54] provide rich data sets from which

Digital Image Correction (DIC) [55], level-set methods [56], and other techniques can

extract intra-particle strain fields and material fabric (contact locations and normals).

Intra-particle strains fields and material fabric are used as input into a mathematical

framework which yields intra-particle stress fields using an appropriate constitutive

relation and numerically solves an inverse problem using the governing equations of

particle statics. The result of the inverse problem is inter-particle forces, a key com-

ponent in the development of theories regarding granular material behavior. Because

GEM can be coupled with any experimental techniques capable of extracting strain

fields and fabric, recent advances in imaging (e.g., [49, 50]) will soon allow inference

of inter-particle forces in natural materials with small grains, such as sands.

Figure 2.1: The GEM methodology for inter-particle force-inference presented in
this paper. Experimental imaging techniques provide rich data sets for extracting
intra-particle strain fields and material fabric. These ingredients are input into a
mathematical framework which yields inter-particle forces by solving an appropriate
inverse problem. Variables and equations in panel 3 are described in section 2.2.

The layout of this chapter is as follows. Section 2.1 presents an example of the
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methodology applied to a real experiment involving rubber particles, showcasing the

applicability of the method to real materials of any texture and its adaptability to a

number of experimental imaging and algorithmic data analysis techniques. Sections

2.2 and 2.3 detail the ingredients of the mathematical framework of GEM. Section

2.4 illustrates additional features of GEM with a numerical example. Finally, section

2.5 offers concluding remarks.

The notation and terminology used in this chapter are defined as follows: Rm×n

denotes the set of real matrices with m rows and n columns, “·” denotes an inner

product (e.g., a ·b = aibi; c ·d = cijdjk), “⊗” denotes a dyadic product (e.g., a⊗b =

aibj), ‖ · ‖2 denotes the Euclidian norm of a vector (e.g., ‖a‖2 =
√
a2

1 + ...+ a2
n), and

“sym” is the symmetric operator defined as sym(·) = 1/2((·) + (·)T ). R(A) refers to

the range of A, the set of all possible linear combinations of the columns of A. N (A)

refers to the nullspace of A, the set of all vectors z such that Az = 0.

2.1 Experimental validation and application of GEM

This section presents an example of GEM applied to a real experiment. The current

experiment uses Digital Image Correlation (DIC) to measure full-field particle strains

from which stresses are deduced. Information about the location of contact points and

particle shapes is obtained from digital images using segmentation algorithms. This

data is then passed to the GEM algorithm, which reconstructs the force distribution.

The results of this experiment showcase the applicability of GEM to real materials

and its potential to be combined with advanced experimental techniques.

2.1.1 Experimental setup and procedure

The experimental setup is shown in Figure 2.2. A CMOS camera with a 3.0 megapixel

sensor (PL-B623, PixeLINK, Ottawa, Canada) and a Canon lens was used at a work-

ing distance of 20 cm to image the assembly. A specifically designed loading device

is used to apply axial compression on the specimen, as shown in Figure 2.2. The

specimen is placed between four faces: the bottom and lateral faces are stationary
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and the top face can move vertically. The applied force was carefully measured with

a 500 g load cell (LCFA-50G, Omega, Stamford, CT) and monitored with a digimeter

(MD-40, Newport, Irvine, CA).

1

2

3

4

Figure 2.2: Experimental setup: 1. CMOS camera ; 2. Canon lens ; 3. Digimeter ;
4. Loading device.

The specimen used in the experiment was composed of rubber cylindrical grains.

Grain diameters were 7 mm, 10 mm, or 14 mm, and the grains’ out-of-plane length

was 20 mm. The grains’ Young’s modulus was 5.5 MPa and Poisson’s ratio was

approximately 0.5. The specimen shown in Figure 2.3 was compressed with a 215 N

vertical load on the top wall, while the side walls were held rigid.

The software VIC-2D was used to perform Digital Image Correlation (DIC) on

the images in order to determine in plane full-field strain [57, 58]. Digital Image

Correlation (DIC) is an optical tool based on digital image processing and numerical

computing which provides full-field displacements and strains by comparing the gray

intensity changes of the object surface before and after deformation [55,59]. The DIC
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procedure consists of tracking the same pixels between reference and deformed images.

To perform this tracking, a correlation window, or subset, is chosen and deformed

until the pattern in the deformed image matches the pattern in the reference image

as closely as possible. To determine an adequate subset size, a compromise between

resolution and measurement error needs to be found. The measurement error is

evaluated by correlating two subsequent images of the specimen without applying

any deformation. The values of the resulting strain components (εxx, εyy and εxy) for

different subset sizes are then compared in order to identify suitable configurations.

The degree of similarity between the reference and deformed subsets is computed using

a correlation coefficient and the best fit is achieved when the correlation coefficient

reaches its maximum. The position of the deformed subset is determined and the

in-plane displacement is obtained by calculating the difference between the position

of each point in the reference subset and the position of the corresponding point in

the deformed subset. The strain field is then computed by numerical differentiation

of the displacement field.

Segmentation algorithms were used to extract the material’s fabric: particle con-

tact points, centroids and areas. In particular, a circular Hough transform [60,61] was

first performed to determine the number of particles Np and approximate positions

of centroids and maximum radii, followed by a snake, or active contour model algo-

rithm [62,63] to determine the true contours of the grain. The different parameters of

the Hough transform and active contour model algorithm are manually adjusted by

visual inspection of the resulting segmentation of the grains. Segmentation is finally

achieved by partitioning the digital images into sets of pixels, each set constituting

different particles. The result of this segmentation procedure is shown in Figure 2.3.

2.1.2 Strain fields and force results

The contact locations, particle areas, and average particle strain were used as input

into GEM’s mathematical framework to be described in Sections 2.2 and 2.2.

A simple algorithm was used to determine the position of the contact points.
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Figure 2.3: (a) Sample under macroscopic loading. Top face (red) was prescribed a
vertical load of 215 N using a smooth, rigid wall. Bottom and lateral faces (blue)
were smooth, stationary walls. (b) Results of segmentation process.

First, grain boundaries were delineated as shown in Figure 2.3. Next, the euclidean

distance between pixels on two adjacent boundaries was calculated and the two pixels

were considered to belong to a contact surface if this distance was less than or equal

to a certain pixel threshold Lpix. Finally, the average value of positions of all pixels

belonging to a contact surface was used to determine a single coordinate (x, y) of the

true contact point. The results of this algorithm are shown in Figure 2.4, where it

can be seen that the 34 particles share a total of 78 contact points.

Figure 2.5 shows the full-field strain distribution obtained from DIC. The DIC

procedure was applied grain by grain. For each grain, the subset size was manually

chosen in order to achieve a reliable correlation analysis. The full-field strain distri-

bution was obtained by calculating values of εxx, εyy and εxy inside of each particle
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Figure 2.4: Sample dimensions in millimeters and information on the fabric: particle
numbers, position of contact points and centroids.

using numerical differentiation of the displacement field. The average strain tensor,

ε̄p, was obtained by taking the arithmetic average of each tensor computed within a

given particle. The average stress σ̄p of a particle was deduced from the average strain

ε̄p using generalized Hooke’s law, σ̄p = c : ε̄p, where σ̄p is the average elastic stress

tensor at a particle and c is the elastic stiffness tensor of the particle. The Young’s

modulus and Poisson’s ratio used in the elastic stiffness tensor were determined using

a separate experiment on a single grain.

Using average particle strain and and fabric information, the regularized inverse

problem in equation (2.14) was solved with a regularization parameter of λ = 0.0024.

The resulting inter-particle forces are shown in Figure 2.6. It should be emphasized

that the presented forces are forces distributed over the length of the cylinder. Fig-

ure 2.6 offers the first look at inter-particle forces inferred in a real, opaque material

using GEM. The forces form expected patterns of force chains throughout the mate-

rial. The particle-boundary forces along the top platen were measured by the load
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Figure 2.5: Strain components εxx, εyy and εxy obtained from DIC.

cell to be 215 N and the calculated resultant forces sum to 215 N.

The average macroscopic stress in the array was also computed using the expres-

sion [17]:

〈σ〉 =
1

Ω

Nc∑

α=1

sym(fα ⊗ dα) (2.1)

where Ω is the volume of the assembly, Nc is the number of inter-particle contacts in

the assembly, 〈σ〉 is the macroscopic average stress, fα is the inter-particle contact

force, and dα is the branch vector between particles. The resulting macroscopic stress

was computed to be:

〈σ〉 =


−2.56 0.26

0.26 −4.42


 (kPa) (2.2)

where compressional stresses are negative. The 〈σ〉22 component of this result cor-

responds well with the applied stress of −215N/0.05m = −4.3 kPa, a motivational

result considering that equation (2.1) is approximate since branch vectors between

particles and walls were not included.

The result of this experiment underscores the power of GEM for inferring inter-

particle forces in real opaque materials. The experiment also illustrates the versatility

of GEM: it is adaptable to any experimental technique able to furnish the required
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Figure 2.6: Resulting inter-particle forces (in N) from application of GEM.

input. The following sections describe GEM’s mathematical framework in more detail

and describe precisely how the required ingredients are used to produce inter-particle

force estimates.

2.2 Governing equations

This section describes the equations governing particle behavior in cohesionless gran-

ular materials in static equilibrium. Underlying the formulation of all governing

equations is the assumption of point contact. This assumption is valid for many stiff

particles of interest in granular physics, including, for instance, sands, powders, and

many pharmaceuticals. In the case of more compliant particles, this approximation

may remain accurate for moderate load levels.
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2.2.1 Equilibrium

Consider the pth particle in a static granular material, interacting with other particles

through Np
c contact points labeled with index α (see Figure 2.7). Balance of forces

and moments yields the two equilibrium equations:

Np
c∑

α=1

fα = 0 (2.3)

Np
c∑

α=1

xα × fα = 0 (2.4)

where xα is a vector from a conveniently chosen origin to the contact point α, and

fα is a force vector acting at α.

⌦p

⌦q

boundary

f j

f i

Figure 2.7: Illustration of particle-particle and particle-boundary contacts.

Equations (2.3) and (2.4) can be combined into a single matrix expression for an

entire assembly of particles: Keqf = 0. In two dimensions, the system takes the
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form:




i j

. . . 0 · · · 0 · · ·
p 0 Ki

eq 0 Kj
eq 0

... 0
. . . 0

...

q 0 −Ki
eq 0 0 0

... 0
... 0

. . .




︸ ︷︷ ︸
Keq




...

f i

...

f j

...




︸ ︷︷ ︸
f

=




...

0
...

0
...




︸ ︷︷ ︸
beq

(2.5)

where

Ki
eq =




1 0

0 1

−xi2 xi1


 ; f i =


f

i
1

f i2




and where p and q represent particles, i and j represent particle-particle and particle-

boundary contacts as shown in Figure 2.7.

The extension to three dimensions is straightforward and omitted for brevity. In

general, Keq will have dNp(d+ 1)/2 rows and dNc columns where d is the dimension

(e.g., d = 2 for 2D), Np is the total number of particles in the assembly, and Nc is

the total number of contact points in the assembly.

2.2.2 Average particle stress

The average Cauchy stress for a particle in equilibrium under the action of discrete

boundary forces can be derived by considering the volume averaged stress equation

for a particle p:

σ̄p =
1

Ωp

∫

Ωp

σp dv (2.6)

where Ωp indicates integration over the deformed volume (in 3D) or area (in 2D) of

the particle p. By considering balance of linear momentum, the divergence theorem,

and the symmetry of the Cauchy stress tensor, this expression takes the form (see [48]
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for more details):

σ̄p =
1

Ωp

Np
c∑

α=1

sym(fα ⊗ xα) (2.7)

Equation (2.7) can be written in matrix form for an entire assembly of particles

as Kstf = bst. In two dimensions, the system takes the form:




i j

. . . 0 · · · 0 · · ·
p 0 Ki

st 0 Kj
st 0

... 0
. . . 0

...

q 0 −Ki
st 0 0 0

... 0
... 0

. . .




︸ ︷︷ ︸
Kst




...

f i

...

f j

...




︸ ︷︷ ︸
f

=




...

bpst
...

bqst
...




︸ ︷︷ ︸
bst

(2.8)

where

Ki
st =




xi1 0

0 xi2

xi2 xi1


 ; bpst =




Ωpσ̄
p
11

Ωpσ̄
p
22

2Ωpσ̄
p
12




Extension to 3D is again straightforward and is omitted for brevity. Similar to

Keq, the matrixKst has dNp(d+1)/2 rows and dNc columns, where d is the dimension

(e.g., d = 2 for 2D), Np is the total number of particles in the assembly and Nc is the

total number of contact points in the assembly.

2.2.3 Cohesionless and tangential forces

Cohesion-less granular materials in equilibrium obey two additional laws: normal

forces are repulsive and tangential forces are governed by a Coulomb type friction

law. The latter constraint requires that |ft| ≤ µ|fn|, where ft is a tangential force

magnitude, fn is a corresponding normal force magnitude, and µ is the inter-particle

coefficient of friction. These two constraints can be written for any contact point
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acting on the pth particle as:

−ei · f i ≥ 0 (2.9)

−(ei +
1

µ
ti) · f i ≥ 0 (2.10)

−(ei − 1

µ
ti) · f i ≥ 0 (2.11)

where ei and ti represent normal and tangential unit vectors at the contact point i

for a particular particle Ωp, as shown in Figure 2.8.

⌦p

⌦q

ti

ei

f i

Figure 2.8: Unit vectors for contact i.

Equations (2.9), (2.10), and (2.11) can be combined into a single matrix expression

for an entire assembly of particles: Bf ≥ 0. In 2D, the system takes the form:




i i j j

i −ei1 −ei2 0 0 0
... 0 0

. . . 0 0

j 0 0 0 −ej1 −ej2
i −ei1 − 1

µ
ti1 −ei2 − 1

µ
ti2 0 0 0

... 0 0
. . . 0 0

j 0 0 0 −ej1 − 1
µ
tj1 −ej2 − 1

µ
tj2

i −ei1 + 1
µ
ti1 −ei2 + 1

µ
ti2 0 0 0

... 0 0
. . . 0 0

j 0 0 0 −ej1 + 1
µ
tj1 −ej2 + 1

µ
tj2







f i1

f i2
...

f j1

f j2




≥




0
...
...
...

0




(2.12)

where subscripts refer to vector components and superscripts refer to particular con-



22

tact points. Extension to 3D is straightforward and is omitted for brevity. In general,

B ∈ R3Nc×dNc .

2.2.4 Structure of equations and connection to experiments

The three matrix equations detailed in this section encapsulate equilibrium relations,

constitutive relations, and contact laws for each particle in a granular material in

terms of the unknown force components. When the sum of the number of linearly

independent rows in bothKst and Keq exceeds the number of columns in one of these

matrices, there are more equations than unknown force components. Furthermore,

whenKeq has more linearly independent columns than rows,Keqf = 0 has an infinite

number of solutions and forces can be inferred using the inverse problem formulation

detailed in Section 2.3. In many practical examples of interest, these conditions

will be met as indicated by observed coordination numbers in stable static granular

packings [64].

Experimentally measured quantities are required input to the three matrix equa-

tions (2.5), (2.8), (2.12). These quantities can be measured with any suitable pro-

cedure and the structure of the equations will remain unchanged. In particular, the

matrices Kst, Keq, and B contain contact locations and normal and tangent vectors

to each contact plane, which can be extracted from experiments using high-resolution

photography or X-ray techniques in connection with DIC or level-set methods. Fric-

tion coefficients in B can be estimated using existing literature or experiments. Fi-

nally, the vector bst contains particle areas (or volumes) and average particle stresses.

Particle areas (or volumes) can be extracted using image (or data) processing tech-

niques. Particle stresses can be determined by first extracting strain fields using DIC

or other algorithms, and then by applying a suitable constitutive relation. Because

the mathematical framework incorporates only a single dataset corresponding to one

instant in time, it does not currently allow for history dependent constitutive relations

and therefore requires a linear or nonlinear elastic relation.
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2.3 Mathematical framework

This section presents the inverse problem formulation for inferring inter-particle forces

using the equations Keqf = 0, Bf ≥ 0, and Kstf = bst.

2.3.1 Inverse problem formulation

When the conditions discussed in section 2.2 are satisfied, the unknown force compo-

nents can be inferred by satisfying equilibrium precisely, and minimizing an L2-norm

cost function involving forces and average particle stresses:

f = arg min
f
‖Kstf − bst‖2 (2.13a)

subject to: Keqf = 0 (2.13b)

Bf ≥ 0 (2.13c)

The L2-norm cost function (2.13a) is typical in inverse problems and represents

only one possible cost function for force-inference. In theory, the mathematical frame-

work may be extended to incorporate other cost functions when the structure of noise

in bst (or in other variables) is well known. In general, however, this noise cannot be

easily characterized for all possible experimental techniques adaptable to GEM, and

in fact is very difficult to characterize even for a single procedure such as DIC (e.g.,

see [65]). Therefore, use of the L2-norm cost function is retained in the present chap-

ter as an example of a method with simple interpretation and implementation, and

simple conditions for existence and uniqueness, but not as the only possible method.

The inverse problem formulation in equation (2.13) has been reliable in all practical

implementations by the authors.

It is important to note that the constraint in equation (2.13c) is not needed in

most cases to obtain an accurate solution. In fact, this constraint is unnecessary and

does not influence the solution obtained using equation (2.13) except when signifi-

cant noise is present in experimental measurements. In the case when such noise is

present, the constraint (2.13c) plays the role of ensuring that the selected solution
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is physically admissible since noise may bias the result towards a force distribution

with unrealistically high tangential to normal force ratios or attractive contact forces.

The constraint (2.13c) can also be modified to eliminate the dependence on Coulomb

friction when a Coulomb friction law is unjustified or when the friction coefficient

cannot be estimated. When Coulomb friction is abandoned, the restriction will only

require that normal forces be repulsive.

Conditions for the existence and uniqueness of a solution to equation (2.13) are

easy to understand. It must be emphasized, however, that existence and uniqueness

of a solution to equation (2.13) does not imply that the solution corresponds to the

true inter-particle forces but rather to a solution that minimizes the error between

experimental observations and calculations made with the governing equations of the

problem in an L2-norm sense.

Let S = {f |Keqf = 0,Bf ≥ 0}, the set of force vectors that satisfy the con-

straints (2.13b) and (2.13c). A solution to (2.13) exists when S is nonempty since

the cost function in (2.13a) is bounded below by 0, e.g., when Kst is positive semi-

definite. Furthermore, S is nonempty when Keq has more columns than rows, and

when Bf ≥ 0 is solvable, which can be ensured in practice by choosing µ conserva-

tively. The solution is unique if there is no w 6= 0 such that w ∈ N (Kst) ∩ N (Keq)

(see proof and other conditions in Theorem 1 of [66]); such a w could be added to

any existing solution without changing the value of the cost function in (2.13a) or

violating the equality (2.13b).

From a physical perspective, such a w is unlikely to exist: nonzero forces in

N (Kst) satisfy Kstf = 0 and must cause rigid body particle motion while forces

in N (Keq) satisfy Keqf = 0 and must result in equilibrium. When Keq and Kst

are rank deficient, such a w may exist and additional criteria must be satisfied to

ensure uniqueness; namely, the w ∈ N (Kst) ∩ N (Keq) must violate the restrictions

of constraint (2.13c) to ensure that the solution to (2.13) remains unique. It is merely

stated here that the authors have never found such a w to exist in both numerical

simulations and experiments, ensuring the uniqueness of solution to (2.13).
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2.3.2 Measurement noise and alternative formulation

Experimental imaging techniques contain error, or measurement noise. In addition,

algorithms used to extract strain fields, contact locations, contact planes, and con-

stitutive law parameters introduce noise. This noise manifests itself in the matrices

Keq, Kst, and B and in the vector bst. While high-fidelity imaging can typically

ensure negligibly small error in the point-wise quantities used to populate Keq, Kst,

and B, the vector bst requires accurate estimation of the particle constitutive model

and associated parameters, and involves a sum over all point-wise measured stresses

in a particle, potentially introducing significant error.

To account for the possibility of significant measurement error in bst a simple

alternative to the inverse problem (2.13) is proposed which incorporates knowledge

of boundary forces, quantities that are typically found by using load cells in experi-

ments. The alternative method is motivated by the experience that when the solution

to (2.13) is affected by measurement error in the constitutive law, the relative sizes

of forces remains relatively unchanged (i.e., all forces are generally over- or underes-

timated). The alternative inverse problem is given by:

f = arg min
f
‖Kstf − bst‖2 + λ2‖f‖2 (2.14a)

subject to: Keqf = 0 (2.14b)

Bf ≥ 0 (2.14c)

where λ is a regularization parameter, to be discussed.

Problem (2.14) employs Tikhonov regularization, a common technique in the so-

lution of ill-posed or rank-deficient inverse problems (e.g., [67, 68]). Tikhonov regu-

larization can be interpreted as a method for incorporating prior knowledge of the

magnitude of f and as a technique for selecting a “smoother” solution. This can be

seen intuitively: as λ is increased, the solution will decrease until each value of f

approaches 0. Furthermore, the solution will typically decrease with some uniformity

in that each value of f will approach 0 at a rate proportional to its size. It is im-
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portant to note, however, that the solution to problem (2.14) will still satisfy particle

equilibrium.

The primary challenge in using the alternative form (2.14) is selecting λ to find

a tradeoff between noise reduction and loss of information [68]. When the structure

of noise in bst is well known, many methods exist to select λ, although all methods

have known issues and limitations [69]. The technique used in this chapter to select

λ is simple and has been proven effective by experience: gradually increase λ until a

solution f to (2.14) minimizes the difference between known and calculated boundary

forces. Example of implementing this procedure are presented in the next section and

the experimental example in section 2.1. In general, the mathematical framework

presented in this section may be extended to incorporate penalty functions other

than Tikhonov regularization, but it is beyond the scope of this chapter to address all

of these possibilities. It is important to note that solution of equation (2.14), as with

the solution of equation (2.13), will produce forces that satisfy particle equilibrium.

2.3.3 Implementation

Many solvers and optimization packages exist to solve the minimization problem

(2.13) or (2.14). In particular, implementations of SeDuMi [70] such as CVX [71] and

Yalmip [72] provide efficient ways to solve the problem in Matlab. In addition, any

numerical optimization package capable of solving quadratic programming problems

can be used to solve (2.13) and (2.14) when the cost functions in these problems

are expanded to quadratic form (e.g.: min{fTKT
stKstf − 2bTKstf}). Since the

matrices Keq and Kst may not be full rank in practice, solvers capable of handling

rank deficient matrices may be preferred.

2.4 Numerical example

This section presents a numerical example of implementing GEM. This example is

used to demonstrate the salient features of the method in an environment where the

exact solution, or exact inter-particle forces, is known. A metric used throughout this
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example is relative error, ‖δf‖, defined as:

‖δf‖ =
‖fCalculated − fActual‖

‖fActual‖
(2.15)

To generate a suitable data set for demonstrating the features of GEM, an odomet-

ric compression test was performed on a rectangular sample of 58 particles using the

Discrete Element Method (DEM) [33]. The particle radii were uniformly distributed

between 2.5 mm and 4 mm. The particle-particle and particle-wall coefficients of fric-

tion were 0.5 and zero, respectively. No gravity acted on the particles. The normal

and tangential stiffnesses were 67.5 KN/mm. The applied compressive stress was

30 kPa on the top face, as shown in Figure 2.9.

2.4.1 Global force inference

After the DEM simulation neared an equilibrium state, contact forces, normal and

tangential contact vectors, and average particle stresses determined by equation (2.7)

were used to form the matrices Kst, Keq, B, and the vector bst. The inter-particle

friction coefficient for all contacts was assumed to be 0.5. The problem (2.13) was

solved and the exact inter-particle forces were recovered with relative error, ‖δf‖ ≈ 0.

Since forces from DEM exactly matched those found using (2.13), the forces are

plotted only once in Figure 2.9. Only forces with magnitude over 300 N are labeled.

2.4.2 Noise reduction

To demonstrate the application of the modified inverse problem (2.14), noise was

added to each element of bst as follows: each element was first increased by 15% to

simulate overestimating the Young’s modulus in a linearly elastic constitutive model,

and then each element was added to the product of its original value with a unique

number generated from a Gaussian distribution with mean 0 and standard deviation

0.1 to simulate noise generated from image resolution and strain field calculation
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algorithms. Each element of the new bst therefore took the form:

(bst)i = (bst)i + (0.15 +N(0, 0.1))(bst)i (2.16)

where N(0, 0.1) represents a number generated from a Gaussian distribution with

mean 0 and standard deviation 0.1.

(a) (b)

Figure 2.9: (a) Numerical odometric test setup. (b) Inter-particle forces computed
with DEM and (2.13). Length scale in meters, forces in Newtons. Line thickness
proportional to force magnitude.

Problem (2.13) was first solved, yielding results with ‖δf‖ = 0.154 as shown in

Figure 2.10. Despite the noticeable differences between the forces in Figure 2.10 and

the exact forces, the solution in Figure 2.10 does not violate Coulomb friction by

virtue of the inequality constraints used in the optimization problem (2.13).

Next, problem (2.14) was solved, yielding results with ‖δf‖ = 0.053 as shown in

Figure 2.10. The total force on the top boundary measured from the DEM simulation

was approximately 1170 N. The regularization parameter λ was chosen to minimize

the difference between this value and the sum of the particle-boundary reaction forces
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(a) (b)

Figure 2.10: (a) Solution to (2.13) with artificial noise, ‖δf‖ = 0.154. (b) Solution
to (2.14) with same noise, ‖δf‖ = 0.053 (right).

on the top boundary:

Total Difference = |1170 +

Nb
c∑

α

fα2 | (2.17)

where N b
c is the number of contact points on the top boundary and fα2 is the vertical

component of force acting at contact points along the top boundary. A value of

λ = 0.0714 was found to minimize this total difference by solving (2.14) with a

variety of values over an interval between 0.06 and 0.075.

From the reduced relative error and a qualitative comparison of Figures 2.9 and

2.10, it is clear that the formulation in equation (2.14) significantly improved the

accuracy of the solution to the inverse problem. The effect of overestimating Young’s

modulus was nearly eliminated and the relative error was reduced to levels more repre-

sentative of the Gaussian noise alone. Other numerical examples not presented here

demonstrate the same capability with other forms of artificial measurement noise.

This alternative formulation of the inverse problem represents an important exten-

sion of GEM for practitioners, providing a means for obtaining solutions with higher

accuracy. It is important to note, however, that this method is largely based on judg-
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ment: selection of λ is an interactive process, particularly when using the method of

minimizing a non-convex function like the total difference in (2.17).

2.4.3 Local force inference

The proposed formulation in equation (2.13) has the capability of extracting forces

locally within a material. To demonstrate this capability, force inference was per-

formed on six particles, as shown in Figure 2.11. The contact points, corresponding

normal and tangent vectors, and average particle stresses for these particles only were

used to form the quantities Kst, Keq, bst, and B. The contact forces were inferred

using (2.13). Comparison with Figure 2.9 shows that the inferred local contact forces

exactly match those from the DEM simulation.

Figure 2.11: Solution to (2.13) performed locally within granular material.

The capability of the proposed method to infer contact forces locally represents an

important feature of GEM. This feature allows force inference in regions of interest

(e.g., shear bands) without the necessity of solving an inverse problem for the entire

assembly. Furthermore, this feature may allow GEM to be used in connection with
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larger experiments since only a small portion of the material’s fabric needs to be

imaged and processed.

2.5 Conclusion

The improved formulation of GEM presented in this chapter provides a powerful

methodology for investigating inter-particle forces in granular materials. The first ex-

perimental example using GEM has been showcased to demonstrate that the method

can and has been applied to real materials. The presentation of the mathematical

framework illustrates its simplicity and versatility, and offers many possibilities of

extending the framework to incorporate additional experimental measurements such

as boundary forces. With progress in experimental imaging and intra-particle strain

field extraction (e.g., [49, 50]), GEM will soon be able to extract inter-particle forces

in materials with smaller grains like sands, providing the first chance to validate

many theories regarding force networks in natural granular media. GEM will also

advance the boundaries of the micro-mechanical understanding of granular materials

by offering a characterization tool for a new class of opaque complex assemblies.
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Chapter 3

Dynamic inter-particle force
inference in granular materials:
Method and application1

3.1 Introduction

In this chapter, we extend GEM to the dynamic regime, providing a new tool for quan-

titative inter-particle force measurements in granular media. The method currently

is restricted only by the limitation of experimental techniques to supply measure-

ments of particle positions, contact points, and volume-averaged grain stresses in the

material of interest. However, the mathematical foundation and inverse problem for-

mulation that the method employs is independent of particle properties or contact

law.

In section 3.2 we discuss the necessary experimental measurements, image pro-

cessing techniques, and theory behind the numerical optimization problem used in

the method. Section 3.3 illustrates an experimental example in which the method is

used to infer forces between a group of two-dimensional rubber grains impacted by

a foreign intruder. A comparison of the experimental results with a finite-element

simulation is provided to validate the results of the method. Section 3.4 will feature

results from a preliminary application of the method to force inference during impact

1Adapted from R.C. Hurley, K.W. Lim, G. Ravichandran, J.E. Andrade. Dynamic inter-particle
force inference in granular materials: Method and application. Experimental Mechanics, 2015. DOI:
10.1007/s11340-015-0063-8
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of an intruder on a model granular bed. Section 3.5 will discuss the current challenges

faced during application of the method and provide insight into the new physics the

tool can unravel. Finally, section 3.6 will offer concluding remarks.

3.2 The method

The method for inferring inter-particle forces involves two steps: (1) experimental

measurements, and (2) solving a numerical optimization problem. Item (1) is briefly

discussed to highlight the required measurements and some techniques capable of

providing them. Item (2) is discussed in more detail since the numerical optimization

problem is the cornerstone of the method.

3.2.1 Experimental measurements

The first step of the method involves performing a dynamic experiment of interest

and extracting the evolution of particle positions, inter-particle contact points, inter-

particle contact surface normals, and the evolution of volume-averaged grain stresses.

These measurements are required as input for the numerical optimization problem

and, once measured, provide enough information to accurately infer inter-particle

forces. No restrictions are inherently placed on the particle shape or dimensionality

of the experiment and no prior assumption is needed of the contact law between

grains.

Particle positions and contact points can be found in 2D experiments using high-

speed photography and particle segmentation algorithms. In 3D, XRCT provides

a suitable method for extracting particle positions and contact points. As stated

in the introduction, XRCT is still an area of active research and has not yet been

applied to large dynamic experiments [52,53,54]. The proposed force inference method

is therefore not yet suitable for application to 3D experiments. Nevertheless, we

will elaborate on the 3D formulation of the inverse problem for completeness. Once

particle positions and contact points have been obtained, normal and tangent vectors

can be found for each contact point using the local edge features.
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Volume-averaged grain stresses can be found from volume-averaging the full-field

grain stress computed point-wise. For linear elastic materials volume-averaged grain

stresses can also be computed directly from volume-averaged grain strains using σ̄p =

C : ε̄p, where C is the stiffness tensor. In either case, a constitutive law is required

to obtain volume-averaged grain stresses. Such constitutive laws - linear elastic,

hyperelastic, plastic, etc. - can be determined using experiments not discussed here.

Full-field grain strains are needed to obtain volume-averaged grain stresses when

experiments involve non-linear elastic grain materials or grains undergoing plastic

deformation. Full-field grain strains can be found using digital image correlation

(DIC) [55] in 2D or a combination of 3D X-ray diffraction (3DXRD) and XRCT in

3D [49,50,51,73]. Digital volume correlation (DVC) can also be used with XRCT or

similar methods to obtain full-field strains in 3D. The methods for obtaining full-field

grain strains (DIC, DVC, XRCT, 3DXRD) typically rely on internal grain contrast

(e.g., see [55]). Like XRCT, 3DXRD is a field of active research and has not yet been

applied to dynamic experiments.

3.2.2 Numerical optimization

The numerical optimization problem used to infer inter-particle forces from experi-

mental measurements requires three sets of governing equations: momentum balance,

stress-force relations, and constraint equations.

The momentum balance equations for a deformable body are derived as follows.

The balance of linear momentum arises from noting that the total force on a de-

formable particle equals the time derivative of its linear momentum:

d

dt

(∫

Vp

ρv dv

)
=

∫

Vp

ρb dv +

∫

∂Vp

t ds (3.1)

where ρ is the particle density, b is the body force, t are surface tractions, v is velocity,

and Vp and ∂Vp represent deformed grain volumes and edges, respectively. Taking
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Figure 3.1: Illustration of various terms used in the governing equations.

the derivative and ignoring body forces, one obtains

Np
c∑

α=1

fα =

∫

Vp

ρa dv (3.2)

where fα is a contact point as shown in Fig. 3.1 and Np
c is the total number of

contact points for particle p. We have made use of the fact that integrating tractions

on disjoint sections of a surface is equivalent to summing the total force on each of

those sections. We can further reduce Eq. (3.2) by making use of the definition of

center-of-mass acceleration to obtain

Np
c∑

α=1

fα = mpa
cm
p (3.3)

The balance of angular momentum arises from noting that the total torque on a

deformable particle is equal to the time derivative of its angular momentum:

d

dt

(∫

Vp

x× ρv dv

)
=

∫

Vp

x× ρb dv +

∫

∂Vp

x× t ds (3.4)

where x is a position vector and × represents a cross product of two vectors. Taking

the derivative and ignoring body forces, one obtains

Np
c∑

c=1

xc × f c =

∫

Vp

x× ρa dv (3.5)
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where we have made use of the same argument as above to turn the integral into

a sum while approximating the contact point xc as the center of the contact area.

Now define x = xcmp + x̃ and a = acmp + ã, where xcmp and acmp are the position and

acceleration of the center-of-mass, respectively. Plugging these into Eq. (3.5) yields

Np
c∑

c=1

xc × f c = mp(x
cm
p × acmp ) +

∫

Vp

ρ(x̃× ã) dv (3.6)

Note that the second term on the right hand side of this equation is negligibly small

when accelerations within a grain remain small relative to its center-of-mass acceler-

ation.

Linear and angular momentum balance, Eqs. (3.3) and (3.6), can be combined

into a single matrix equation for a group of contacting particles, taking the form




i j

. . . 0 · · · 0 · · ·
p 0 Ki

m 0 Kj
m 0

... 0
. . . 0

...

q 0 −Ki
m 0 0 0

... 0
... 0

. . .




︸ ︷︷ ︸
Km




...

f i

...

f j

...




︸ ︷︷ ︸
f

=




...

bpm
...

bqm
...




︸ ︷︷ ︸
bm

(3.7)

where p and q represent particles, i and j represent particle-particle and particle-

boundary contacts as shown in Fig. 3.1, and Ki
m, f i, and bpm encompass Eqs. (3.3)
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and (3.6) and in 2D take the form

Ki
m =




1 0

0 1

−xi2 xi1


 ; f i =


f

i
1

f i2


 (3.8)

bpm =




mpa
cm
1

mpa
cm
2

mp(x
cm
1 acm2 − xcm2 acm1 )


 (3.9)

where we have omitted the integral term from Eq. (3.6) for brevity. In general, 3Np

equations are contained in Eq. 5.1, where Np is the number of particles in the region

of interest. Extension of Ki
m, f i, and bpm to 3D is straightforward.

The stress force relations are derived as follows. The volume-averaged stress in a

deformable particle can be written as

σ̄p =
1

Vp

∫

Vp

σ dv (3.10)

Left-multiplying the σ within the integral by the identity matrix xi,k and switching

to index notation yields

σ̄ij =
1

Vp

∫

Vp

[(xiσkj),k − xiσkj,k] dv (3.11)

Using the divergence theorem on the first term inside the integral of this equation

and balance of linear momentum in the absence of body forces (σkj,k = ρaj) on the

second term, we obtain

Np
c∑

c=1

xc ⊗ f c = Vpσ̄Vp +

∫

Vp

x⊗ ρa dv (3.12)

where ⊗ is a dyadic product (a ⊗ b = aibj). Finally, defining x = xcmp + x̃ and
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a = acmp + ã as above, we obtain

Np
c∑

c=1

xc ⊗ f c = Vpσ̄ +mp(x
cm ⊗ acm) +

∫

Vp

x̃⊗ ρã dv (3.13)

Once again, we note that the third term on the right hand side of this equation is

negligibly small when accelerations within a grain remain small relative to its center-

of-mass acceleration.

The stress-force relation in Eq. (3.13) can also be written into a matrix equation

for a group of contacting particles, taking the form




i j

. . . 0 · · · 0 · · ·
p 0 Ki

s 0 Kj
s 0

... 0
. . . 0

...

q 0 −Ki
s 0 0 0

... 0
... 0

. . .




︸ ︷︷ ︸
Ks




...

f i

...

f j

...




︸ ︷︷ ︸
f

=




...

bps
...

bqs
...




︸ ︷︷ ︸
bs

(3.14)

where f i is the same as in Eq. (3.8), and Ki
s and bps encompass Eq. (3.13) and in

2D take the form

Ki
s =




xi1 0

0 xi2

xi2 xi1


 (3.15)

bps =




Vpσ̄11 +mp(x
cm
1 acm1 )

Vpσ̄22 +mp(x
cm
2 acm2 )

2Vpσ̄12 +mp(x
cm
1 acm2 + xcm2 acm1 )


 (3.16)

where we have omitted the integral terms from Eq. (3.13) for brevity. In general,

3Np equations are also contained in Eq. 3.14. Extension of Ki
s and bps to 3D is
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straightforward.

Constraint equations can also be written for a group of cohesionless grains obeying

a Coulomb-type friction law. These constraints in 2D require that (f i · ei) ≥ 0 and

(µei±ti) ·f i ≥ 0 where ei and ti are the normal and tangential to the contact surface

of contact point i as shown in Fig. 3.1 and µ is the inter-particle friction coefficient.

This friction coefficient can be measured from a separate experiment performed on the

particle material and may be either dynamic or static depending on the nature of the

experiment. In 3D, the tangential direction must be specified by two vectors and the

Coulomb friction constraint written above must be modified during implementation in

the numerical optimization problem. We will continue with the 2D form and discuss

the 3D extension briefly below.

The cohesionless force and Coulomb friction constraint equations can be expressed

as a matrix equation for a group of contacting particles, taking the form Bf ≥ 0

where

B =




i i j j

i ei1 ei2 0 0 0
... 0 0

. . . 0 0

j 0 0 0 ej1 ej2

i µei1 + ti1 µei2 + ti2 0 0 0
... 0 0

. . . 0 0

j 0 0 0 µej1 + tj1 µej2 + tj2

i µei1 − ti1 µei2 − ti2 0 0 0
... 0 0

. . . 0 0

j 0 0 0 µej1 − tj1 µej2 − tj2




(3.17)

and f = (f i1 f
i
2 . . . f

j
1 f

j
2 )>. In general, 3Np

c constraints are contained in Eq. (3.17),

where Np
c is the total number of contacts.

The mechanics of a group of contacting grains is fully governed by the three matrix

Eqs. (5.1), (3.14), and Bf ≥ 0. Every term in these equations except for the inter-

particle forces f must be measured during an experiment as described in section 3.2.1.
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Once measured, finding the set of forces f that best fits the measured data involves

solving a multi-objective optimization problem of the form:

f = arg min
f

(||Ksf − bs||2 + λ||Kmf − bm||2) (3.18a)

subject to: Bf ≥ 0 (3.18b)

Here, the objective functions ||Ksf − bs||2 and ||Kmf − bm||2 represent the desire

to minimize the difference between inferred forces and experimental measurements of

stress and momentum, respectively. The value λ is a weight that conveys the relative

importance of the two objectives. No previous knowledge of boundary forces is needed

as in past implementations of this inverse problem [13].

In order to solve Eq. (3.18), a suitable value of λ must be selected. With no prior

knowledge of the type or magnitude of error in stress or momentum measurements,

the best strategy is to seek a solution which does not favor one set of measurements

(e.g., momentum or stress) over another. To do this, we solve Eq. (3.18) with many

values of λ and obtain a curve of ||Ksf − bs||2 versus ||Kmf − bm||2, as shown in

Fig 3.2. All points on this curve for which neither objective can be decreased without

increasing the other are referred to as Pareto optimal points, and the resulting curve

is referred to as the optimal trade-off curve or the Pareto front [74].

||Kmf � bm||2

||Ksf � bs||2

KNEE POINT

1
1

OPTIMAL TRADE-OFF
CURVE / PARETO FRONT

Figure 3.2: Pareto front.
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In principle, any point on the optimal trade-off curve is a possible solution to

the multi-objective problem. However, in order to use as much information in the

two objective functions as possible, we wish to select a point where the slope of the

trade-off curve is steep. At a steep point, a small decrease in one objective function is

accompanied by a small increase in the other. This steep “knee” of the optimal trade-

off curve therefore represents the solution where we satisfy each objective without

making an unfavorably large sacrifice in the other.

Finally, we mention that when solving Eq. (3.18) for 2D experiments, special care

must be taken because of the nonzero thickness of the disks or cylinders involved. In

particular, the mass used in Eqs. (5.1) and (3.14) must be mass per unit thickness

(i.e., actual mass divided by thickness of the particles) and the volume in Eq. (3.14)

must be the area of the face of the particle. The result of solving Eq. (3.18) will be

force per unit thickness, from which actual forces can be obtained by multiplying by

the particle thickness.

In 3D, a contact surface between two particles must be specified by a normal vector

and two orthogonal tangent vectors, ti1 and ti2, rather than one. Defining qi1 and qi2

to be the magnitude of f projected onto each tangent vector, the multi-objective

optimization problem takes the form

f = arg min (||Ksf − bs||2 + λ||Kmf − bm||2) (3.19a)

subject to: ei · f i ≥ 0 (3.19b)

qi1 = (ti1 · f) (3.19c)

qi2 = (ti2 · f) (3.19d)

µ(ei · f i)− ||qi|| ≥ 0 (3.19e)

where ||qi|| = ((qi1)2 + (qi2)2)1/2. Many of the constraints in Eq. (3.19) can be cast

in matrix form as in Eq. (3.18). However, the last constraint is a second-order cone

constraint which is not present in the 2D problem and cannot be written in matrix

form, instead requiring a norm [74]. For more details on this type of constraint,
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see [74].

3.3 Example 1: Validation

This section contains a validation of the proposed force inference technique. An

experiment is performed with a group of two-dimensional rubber grains impacted by

a foreign intruder. Force inference is performed with the proposed method and the

results are compared with those of a finite-element simulation of the experiment. The

section is presented in three steps: (1) experimental setup; (2) experiment analysis;

(3) experimental results and FEM comparison.

3.3.1 Experiment setup

The experimental setup is shown in Fig 3.3. The setup involves a small 0.4m x 0.6m

table containing an air chamber under its upper surface. The chamber is fed through

an air duct connected to a fan (Hydrofarm Active Air 6 inch in-line fan) and air is

permitted to escape the top surface of the table through 1.6mm diameter holes drilled

on a grid with 19mm spacing in perpendicular directions, as shown in Fig. 3.3a-b.

Six 44.45mm diameter by 6.35mm thick disks were cut out of 60A durometer

polyurethane (McMaster-Carr product number 8784K55) with measured Young’s

modulus E = 5.85 MPa and Poisson’s ratio ν ≈ 0.5 through compression testing

up to 13% strain. The friction coefficient between disks was measured by pulling a

block (of known weight) fastened to a sheet of polyurethane across another sheet of

the same material and measuring the horizontal force with a load cell. The mean

friction coefficient from this experiment is approximately 0.6. This coefficient is used

throughout the numerical analysis since neighboring disks appear to engage mostly

static friction throughout the test. However, future work should address the quan-

titative sensitivity of the force inference results to this parameter as well as the ap-

propriate selection between a static and dynamic friction coefficient. The underside

of each disk is endowed with a shallow 38.1mm diameter by 1.19mm thick concentric

cut to create a small plenum chamber, as shown in Fig. 3.3c. This allows the disks to
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“float” on a frictionless bed of air on the top surface of the table and interact with one

another through mechanical contact only. The top surface of each disk is endowed

with a painted speckle pattern to enhance DIC results, as shown in Fig. 3.3b.

Two stiff wooden blocks are fastened to the top surface of the table to form a corner

and the six disks are placed at rest in the corner in two rows of three, as shown in

Fig. 3.3d. A stiff wooden impactor is then manually propelled toward the disks with

a measured initial velocity of vx = −1.141m/s, vy = −0.66m/s and negligible initial

rotational velocity. Initial contact between the disks and the impactor occurs at an

angle of approximately 27o with respect to the center of the top right particle in Fig

3.3d. The entire impact event is captured with a Phantom v310 high-speed camera

at 5000 frames per second. The impact and subsequent rebound of the impactor

and all disks are monitored for 0.028 seconds to obtain the necessary input to the

multi-objective optimization problem in Eq. (3.18).

A finite-element (FEM) model with the same initial conditions discussed above

was created and analyzed in Abaqus/Explicit [75] to compare inferred inter-particle

forces with the results of the multi-objective optimization problem. FEM was chosen

to model the grains rather than DEM because FEM uses only material properties and

the governing equations of continuum mechanics, making no assumption of contact

law. Since our goal is to validate a method that makes no assumption of contact law in

an experiment where we do not necessarily know the contact law, it is logical to use a

validation method with the same features. DEM instead relies on a prescribed contact

law (e.g., Hooke’s or Hertz’s law) and would likely require extensive calibration with

experimental results to produce quantitatively accurate dynamics. The grain material

is modeled using a 2D plane stress formulation with grain properties discussed above.

The walls are modeled as rigid boundaries. The impactor is modeled as a stiff 2D

linear elastic body. The Young’s modulus of the impactor does not affect the final

results so long as it is an order of magnitude higher than the grains’ Young’s modulus.
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152
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Figure 3.3: Experimental materials and setup. (a) Table setup with air duct con-
nected to fan, rigid blocks fastened to table, camera and light source vertically over the
area of interest. (b) Close-up view of table top and the top surface of a polyurethane
disk with speckle pattern. (c) The underside of a polyurethane disk, showing plenum
chamber for compressed air. (d) Experimental setup with 6 polyurethane disks and
rigid impactor propelled at initial conditions vx = −1.141m/s and vy = −0.66m/s.
Particle labels will be used later and are in no meaningful order.

3.3.2 Experiment analysis

The DIC software VIC-2D [57] is used to calculate full-field intra-particle strains

and velocities in each of the six grains in the experiment. Particle diameters are

approximately 220 pixels in the 800x600 images captured at each time step. Subset

size is chosen to be 15 pixels and subset step size is selected as 2 pixels, giving a

ratio of particle diameter to subset size of approximately 15. Other DIC parameters

such as prediction margin, confidence interval, and matchability are selected with

default values of 0.02, 0.1, and 0.1, respectively. However, it is nearly impossible
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to determine how the selection of these parameters influences the calculated strain

values [76]. This is an area of ongoing research in the DIC community. Nevertheless,

our parameter selection appears to give smooth, visually reasonable results for the

displacement field within each grain. The influence of uncertainty in strain values on

the results of a similar optimization problem was discussed briefly in [13], where it

was shown that relative errors in strain values cause similar relative errors in force

values. Future work on further assessing how changing some parameter values, such

as subset size, influence the results presented here would be useful.

The εxy component of the strain field as measured using DIC and FEM is shown

in Fig. 3.4 at four times during an impact event. The comparison illustrates an excel-

lent agreement between DIC measurements and FEM results. Intra-particle stresses

are obtained by using the full-field strains in a linear elastic plane stress formulation

at each pixel. It is important to note that we could alternatively use grain boundary

deformations to obtain volume-averaged grain strains (applying the divergence theo-

rem to the definition of volume-averaged strain) before computing volume-averaged

grain stresses with the linear elastic constitutive law. Material properties are taken

as E = 5.85 MPa and ν = 0.5 as mentioned above. Stresses are then averaged over

each pixel within a particular grain, yielding the average stress needed in Eq. (3.14).

Particle edges and centroids are calculated at each time step (i.e., each movie

frame) using a circular Hough transform in Matlab’s image processing toolbox [77].

In particular, the Matlab function imfindcircles is used, which makes use of the

techniques developed in [78] and [79].

The resulting centroids and radii are then used to find contacting particles: if the

distance between two centroids is less than two times the radii of the corresponding

particles, the particles are taken to be contacting with appropriate normal and tangent

vectors. While the circular geometry of our grains makes this step of the analysis

simple, the method is not restricted to circular particles.

Accelerations of the center-of-mass of each particle can be calculated in two ways:

by summing and numerically differentiating intra-grain velocity fields calculated using

VIC2D, or by twice numerically differentiating centroids obtained from the circular
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t = 2ms

t = 5ms

t = 8ms

t = 11ms
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✏ij  �0.04 ✏ij � 0.04✏ij = 0

Figure 3.4: The εxy component of strain from (a) DIC and (b) FEM at four times
during the impact event. All figures share a common scale. Strain values above and
below the extreme values of the scale occur in small areas.

Hough transform. We use the latter approach to obtain the results presented in this

chapter, although both methods produce very similar center-of-mass accelerations.

While using the latter approach, we also employ a low-pass filter on the centroid and

acceleration time series. The filter is a finite-impulse response filter with a Hamming

window, provided by Matlab’s signal processing toolbox. Filter order and normalized

cutoff frequency are selected to maintain a signal to noise ratio greater than 10 for

each acceleration time series, as done in other works [42].

3.3.3 Experiment results and FEM comparison

The optimization problem, Eq. (3.18), is solved at each time step using CVX [71]

in MATLAB. The result of solving Eq. (3.18) is shown in Fig. 3.5 next to forces
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calculated using the FEM model. It is important to use caution when comparing the

forces calculated using the proposed method and the FEM model. The FEM model

does not represent the exact forces in the experiment because the material model

and initial and boundary conditions are approximate. However, the FEM model

does provide an example of the force evolution at each contact point in an idealized

experiment and should therefore capture major features of the force evolution (i.e.,

large peaks) and the appropriate order of magnitude. Integral terms in Eqs. (3.8)

and (3.15) are neglected as they were assumed to be small for the observed particle

accelerations. The results validate this decision.

The evolution of forces obtained using Eq. (3.18) shows excellent agreement with

the FEM results in Fig. 3.5. Figs. 3.5a and 3.5b illustrate that force magnitudes

and directions obtained using Eq. (3.18) qualitatively match those obtained from the

FEM model. Fig 3.5d illustrates that most major features of the force evolution at

each contact are captured using Eq. (3.18). The order of magnitude of all forces

is also in excellent agreement, often differing by less than 20% from those obtained

using FEM. Eq. (3.18) is clearly capable of extracting quantitative force information

representative of the true physical state of the system of particles.

We also compared the calculated impulse imparted to each particle using the

forces from Eq. (3.18) with those obtained from the high-speed images. The im-

pulses obtained from Eq. (3.18) are calculated by numerically integrating all forces

on a particular particle over the period of time in which they are in contact with

neighboring bodies. The results are presented in Table 3.1 in terms of ∆v obtained

from Eq. (3.18) and those measured from high-speed images. Again, the agreement

between the results of Eq. (3.18) and actual measurements is excellent in most cases.

There are some slight deviations in the calculated and measured changes in velocity,

likely due to experimental measurement error and the simplifying assumptions of the

constitutive law.
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Figure 3.5: (a) Forces found using Eq. (3.18). Length and width of lines are
proportional to force magnitude. (b) Forces found from the FEM model. (c) Eight
contact point locations, chosen to include the major force chain and otherwise at
random. (d) A comparison of force evolutions using Eq. (3.18) and the FEM model.
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Table 3.1: Comparison of expected change in velocity obtained by dividing impulse
obtained from Eq. (3.18) by particle mass and by direct measurement from high-speed
video. All results are in m/s and particle numbers are those in Fig. 3.3d.

Particle ∆vx ∆vx
Eq. (3.18) Measured

1 0.76 0.54
2 0.16 0.04
3 0.38 0.40
4 0.26 0.00
5 0.51 0.47
6 0.23 0.21

Particle ∆vy ∆vy
Eq. (3.18) Measured

1 0.28 0.25
2 0.12 0.12
3 0.07 0.04
4 -0.01 0.00
5 0.18 0.09
6 0.11 0.00

3.4 Example 2: Application

This section contains a preliminary application of the proposed force inference method

to the study of impact of an intruder on a model granular bed. This example is

intended to demonstrate how the method may be used in practice in experiments

more complex than the one illustrated in section 3.3. The section is presented in two

steps: (1) experimental setup and (2) experimental results.

3.4.1 Experimental setup

The experimental setup is shown in Fig. 3.6. A 1.22m tall by 0.81m wide granular

bed is prepared between a Plexiglas window and a sheet of PVC plastic. A small

1.11cm gap is provided between the Plexiglas and PVC to allow the 0.95cm thick

grains to move without significant interference. The granular bed is composed of

several hundred rubber grains made from polyurethane (E = 12MPa, ν ≈ 0.5, friction

coefficient 0.6) dropped randomly into the gap. Two grain diameters were used to

prevent crystallization: 2.54cm and 3.175cm.

Each dynamic experiment begins by dropping a 20cm steel intruder into the gran-

ular bed. Under the weight of gravity, the intruder accelerates to an impact velocity

of approximately 2.4m/s in each of the experiments presented here. The entire im-

pact event is captured with a high-speed Phantom v310 camera at 4500 frames per

second.
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3.4.2 Experiment analysis

As in the previous example, Vic2D is used to extract intra-particle strain fields and

MATLAB’s image processing toolbox is used to determine particle positions at each

time step. The smallest particle diameters are approximately 72 pixels in the 800x600

images captured at each time step. Subset size is chosen to be 13 pixels and the

subset step size is chosen as 2 pixels, giving a ratio of particle diameter to subset size

of approximately 5.5 in the smallest particles. This ratio is lower than in the first

example, implying that there may be larger uncertainty in the strains calculated in

this case. However, without a systematic way of determining the influence of subset

size on calculated strains, there is no way to quantify this additional uncertainty [76].

Nevertheless, parameter selection in this example also appears to give smooth, visually

reasonable results for the displacement field in each grain. Other DIC parameters are

chosen to be the same as in the previous example.

It is important to note that by using images of the prepared granular bed as

reference images in Vic2D, we are implicitly ignoring prestress in the grains. The

result of force inference therefore does not account for forces existing in the granular

bed before impact. However, in dynamic experiments like those presented here, such

pre-existing forces are likely negligible.

3.4.3 Experimental results

The inter-particle forces are once again obtained by solving Eq. (3.18) at each time

step. An example of inter-particle forces inferred as a function of time are shown

for one experiment in Fig. 3.7. A force-chain develops beneath the intruder at

approximately 5ms into the experiment before it collapses at approximately 28ms.

The emergence of a persistent force chain immediately beneath the intruder in these

experiments agrees with past experiments that use photoelastic disks [42, 43]. In

contrast to past experiments, the present work resolves individual force values at

grain-grain and grain-intruder contact points.

Figure 3.8 shows inter-particle forces in the granular bed during an experiment
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Figure 3.6: Experimental setup. (a) A window featuring a piece of Plexiglas and a
sheet of PVC plastic holding the 2D granular bed in place. A high speed camera is
used to view the granular bed as it is impacted by a steel intruder. (b) A close-up of
the steel intruder about to impact the granular bed at -2.4m/s.

with a different initial packing than that shown in Fig. 3.7. The response of the

granular bed is clearly different in the two cases. The force response shown in Fig.

3.8 demonstrates the emergence of force chains, as in Fig. 3.7, but through different

particles and branching in different directions. Such sensitivity to initial packing

conditions is characteristic of granular media. This behavior is the reason that past

research on force transmission and force chains has focused so extensively on the

statistics of forces [31,80]. Similar statistics are expected to arise regardless of distinct

local features of the response and may elucidate critical intrinsic behaviors of the

material.

Figure 3.9 shows the vertical force on the intruder as a function of time in the

experiments shown in Figs. 3.7 and 3.8. Both force responses demonstrate several

peaks during the time in which a persistent force chain exists beneath the intruder.

We attribute these peaks to repeated excitations of the existing force chain as the

intruder’s energy is sent into the granular bed along this path [42]. The excitations
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Figure 3.7: Inter-particle forces in the granular bed at six times during an impact
event.

may be caused by repeatedly collapsing and restrengthening of the primary force

chain as particles rearrange beneath the intruder. The primary force chain and its

collapse is labeled for the curve pertaining to Fig. 3.7. In both experiments, the

force response at early times is similar, while the force response at later times differs

significantly.

A guiding question in the ongoing research into granular bed impact response is:

Does the response of a granular bed to low-velocity impact admit any repeatable fea-

tures indicative of intrinsic collective behavior of the grains? For instance, past work

has indicated that the distribution of inter-particle forces evolves similarly during an

impact event regardless of initial packing conditions [32]. In Fig. 3.10 we demon-

strate another feature of the granular bed response that appears to be independent
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Figure 3.8: Inter-particle forces in the granular bed at six times during an impact
event with an initial packing of the bed different from the experiment shown in Fig.
3.7.
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Figure 3.9: The vertical force felt by the intruder for the experiments shown in Figs.
3.7 and 3.8.

of initial packing conditions. The three curves in Fig. 3.10 represent the maximum

force between two grains as a function of distance to the surface of the intruder in

three experiments with three distinct initial packing conditions. Experiment 1 refers

to the response shown in Fig. 3.7 and experiment 2 refers to the response shown in

Fig. 3.8. All experiments have an intruder impact velocity of approximately 2.4m/s.

Despite the emergence of force chains along different paths in each experiment, the

maximum force as a function of distance from the intruder surface is very similar

in each experiment. This suggests that, regardless of initial packing configuration,

force chains are only able to transmit large loads a certain distance into a granular

medium before the forces split into different paths and decay, a theory proposed in

past work [21, 42]. This phenomenon, and other phenomena involving inter-particle

forces are the subject of ongoing research and will be discussed in more depth in

future work. GEM offers a valuable tool for investigating these questions regarding

intrinsic material response.

3.5 Discussion

The force inference method proposed in this chapter has a number of advantages and

disadvantages. Compared to photoelasticity [42, 43], the proposed method does not
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Figure 3.10: Maximum inter-particle force as a function of distance from the surface
of the intruder for three experiments with distinct initial packings. Exp. 1 refers to
Fig. 3.7. Exp. 2 refers to Fig. 3.8. An inter-particle force is considered to be a
distance ndmin from the surface of the intruder if the contact point that it belongs to
falls within a range of ndmin and (n + 1)dmin away from the surface of the intruder,
where dmin is the minimum particle diameter in the granular bed, 2.54cm.

place any inherent restriction on the grain material used in experiments. The material

can be opaque and, for materials with linear constitutive laws, without any internal

contrast. The grains can undergo plastic deformation so long as a constitutive law

exists to obtain volume-averaged stresses from strain measurements. However, the

grains’ deformation must be of the appropriate order of magnitude to be captured by

a technique for calculating strain. While the governing equations in photoelasticity

can be modified for force inference in arbitrarily shaped grains, the proposed method

requires essentially no modification, making it straightforward to apply when each

grain has a different shape. A possible disadvantage of the proposed method is the

requirement of volume-averaged strain calculation. For grains with non-linear consti-

tutive laws, this requires calculating full-field grain strains, which remains a challenge

in 3D dynamic experiments. However, in static experiments, strain fields can now be

measured in realistic 3D quartz grains by using 3DXRD, offering the opportunity to

apply the proposed method to such data sets in the near future [81].

While photoelasticity has been used to infer an approximate force averaged over

tens of grain diameters in dynamic experiments [42], the proposed method has been
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used to provide individual inter-particle forces. Thus, whereas photoelasticty has the

advantage of being able to infer approximate forces across larger domains with more

grains, the proposed method provides finer force resolution in local areas of interest.

This resolution has previously only been demonstrated in numerical simulations using,

for instance, the discrete element method [33] or FEM simulations [82]. The interest

in resolving individual inter-particle forces is driven by a desire to understand the

grain scale origin of the macroscopic response in many environments. For instance,

in impact into a granular bed, researchers have long been interested in understanding

frictional drag forces between the intruder and grains [32], the importance of inter-

particle friction in energy dissipation within the granular bed [83], and the dynamics

of force chains [42]. While numerical simulations can provide some of this information

in idealized systems, experimental methods are the only way to study such physics

in real systems. To date, the proposed method is the only one that has been used to

infer quantitative inter-particle force values in such dynamic experiments.

Both photoelasticity and the proposed method have strengths and weaknesses.

We are not advocating the use of one over the other in all scenarios. Rather, the

proposed method may provide increased resolution and the ability to study different

materials in certain experiments, while photoelasticity may prove to be more practical

in other experiments.

3.6 Conclusion

In this chapter, we have proposed a new method for quantitatively inferring the

evolution of inter-particle forces during a dynamic experiment on granular materials.

The proposed method has been validated using a 2D experimental example in which

inferred forces were compared to an FEM simulation. The results illustrate that

the method can accurately infer the evolution of inter-particle forces at individual

contact points in granular assemblies undergoing dynamic deformation. Preliminary

results from experiments in which the method is applied to study impact in a granular

bed demonstrate a potential application of the method: for unraveling the physics



57

of model granular materials in a variety of environments. Future applications of the

method may include the study of granular flow, impact, and intruder dynamics with

a variety of complex shaped grains and grain materials. The ongoing development of

3D imaging techniques may soon allow dynamic force inference in real powders and

sands.
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Chapter 4

Friction in inertial granular flows:
Competition between dilation and
grain-scale dissipation rates1

4.1 Introduction

Granular flows are ubiquitous in nature and technology [84]. Geologic events such

as landslides and earthquakes occur because granular materials are able to transition

from a solid state to a flowing state. Industrial processes such as hopper flows and

powder transport involve the flow of food and pharmaceutical particles. Defense

applications of brittle ceramics rely on the flow of a pulverized bulk material for

energy dissipation. All of these applications demonstrate the need to understand

granular flows at a fundamental level. Effective friction describes the shear resistance

of a flowing granular medium and, in continuum simulations of these events, encodes

information about grain-scale and contact-scale processes in a single parameter (see

Fig. 4.1).

Granular flows can be classified as quasi-static, inertial (also referred to as dense),

or rapid based on a dimensionless shear rate known as the inertial number [3,11]. The

quasi-static behavior of granular media is typically modeled using critical state soil

mechanics [85]. Rapid granular flows are similar in some respects to gases and have

1Adapted from R.C. Hurley and J.E. Andrade. Friction in inertial granular flows: Competition
between dilation and grain-scale dissipation rates. Granular Matter, 17(3)287-295, 2015. DOI:
10.1007/s10035-015-0564-2



59

field scalerve scale

LENGTH SCALE

grain scale

μm mm m

contact scale

µ

Figure 4.1: Friction encodes contact-scale and grain-scale information in a single
parameter for continuum analysis.
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Figure 4.2: The two timescales associated with the inertial number, I = Tc/Tγ̇.

therefore been extensively modeled using kinetic theories (e.g., [86, 87]). The inter-

mediate regime of inertial granular flows has, unlike the quasi-static and rapid cases,

eluded a unified modeling approach. Nevertheless, researchers have made important

progress in understanding inertial granular flows in recent years.

The inertial flow regime corresponds to flows with an inertial number, I = γ̇d/
√
P/ρg,

between approximately 0.001 and 1. Here, γ̇ is the shear rate (|γ̇| in 3D), d is the

grain diameter, P is the confining pressure, and ρg is the grain density. The inertial

number is the ratio of the particle relaxation time d/
√
P/ρg to the macroscopic shear

time γ̇−1, as illustrated in Fig. 4.2 [11,88]. This interpretation will be revisited when

we develop a new friction relationship in section 4.2.

Researchers studying the inertial flow regime have developed empirical relation-

ships between I and the steady state effective friction coefficient µ, the solid fraction

φ, and the coordination number Z [4,11]. For instance, da Cruz and co-workers pro-
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posed a linear relationship between µ and I given by µ = a+ bI for 2D simple shear

flows, where a and b are empirical constants [11]. Jop and co-workers have proposed

the nonlinear relationship µ = µ1 +(µ2−µ1)/(I0/I+1) for 3D flows where µ1, µ2, and

I0 are empirical constants [4]. Jop and co-workers have also developed a constitutive

law for predicting the stress distribution and flow profile for well developed granular

flows, using the empirical friction law described above [4]. Other local and non-local

continuum models have been developed for inertial flows. Each model takes advantage

of one of the empirical friction laws described above [89, 90, 91]. These models have

provided promising tools for predicting the behavior of granular media in a variety of

flow configurations. However, investigative studies of inertial granular flows continue

on a more basic level in an effort to understand the processes underlying frictional

rate-dependence and the microstructure that develops during an inertial flow [2].

Da Cruz and co-workers studied the evolution of forces and anisotropy in iner-

tial granular flows, showing that the anisotropy of the contact network can be ex-

plicitly related to friction [11]. Azema and Radjai similarly showed that a classical

stress-force-fabric relation holds for inertial flows, demonstrating another link between

friction and contact network anisotropy [1, 92]. Hatano and Kuwano [93] provided

another interpretation of friction, using an energy balance equation to derive a steady

state friction law very similar to that of rate-and-state theory. Jenkins has provided

interesting links between friction and various attributes of inclined plane flows by

extending hydrodynamic equations valid for rapid flows to the inertial regime [94].

Sun and co-workers have studied the energy characteristics of inertial granular flows

and revealed a number of correlations between the friction coefficient and energy ra-

tios [95]. All of these studies have provided valuable insight into the nature of effective

friction in inertial granular flows.

In this chapter, we intend to contribute an additional interpretation of effective

friction in granular flows by explicitly relating it to the inertial number, the coordi-

nation number, the solid fraction, and grain-scale dissipation rates. In section 4.2, we

develop the friction relationship for steady state simple shear flows by performing an

energy balance and a simple statistical analysis. We discuss the resulting picture of
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friction as a competition between dilation and grain-scale dissipation rates. In section

4.3, we discuss numerical simulations of simple shear flows and present results showing

the accuracy of the proposed friction relation. Simulation results are used to illus-

trate how the effective friction coefficient can be decomposed into contributions from

grain-scale dissipation mechanisms. An analysis of the scaling of each of each term in

the friction relationship elucidates the mechanisms controlling rate-strengthening. In

section 4.4, we briefly compare our friction law with others proposed in past research.

Finally, section 4.5 offers concluding remarks.

4.2 The friction law for simple shear

This section provides a derivation of our steady state friction relationship for simple

shear flows. Fig. 4.3a illustrates such a well-developed flow in which the velocity

profile in the direction of flow is quasi-linear.

Similar to past analyses of simple shear flows [93, 96], our starting point is the

energy balance relationship

d

dt
(T + U) = Dijσji − Γ (4.1)

where T and U are the kinetic and potential energy densities, respectively, Dij =

∂ui/∂xj is the velocity gradient tensor, and Γ is the dissipation rate per unit volume.

In steady state simple shear flows, only one component of the velocity gradient tensor

is nonzero (Dxy = γ̇ in our case), and a time average of Eq. (5.10) yields

γ̇σyx = Γ (4.2)

where the (·) indicates a time-average. Defining the effective friction coefficient as

µ = σyx/σyy and assuming dissipation occurs only at grain contact points, Eq. (4.2)

can be rewritten as

γ̇µσyy =
Nc〈Γc〉
V

(4.3)
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where Nc is the number of grain contacts in the system, V is the volume of the

system, and 〈Γc〉 is the average dissipation rate at grain contacts in the system. We

have made use of the fact that
∑Nc

c=1 Γc = Nc〈Γc〉.
Numerical simulations to be described in the next section demonstrate that there

is less than a 1% correlation in the fluctuations in the terms in Eq. (4.3). We will

therefore assume averages of products can be written as products of averages and we

will drop all time-averaging symbols. Variables in all following equations should be

assumed to be time-averaged unless otherwise noted. Equation (4.3) becomes

µ =
Nc〈Γc〉
σyyγ̇V

(4.4)

We can further simplify Eq. (4.4) by noting: (1) the number of contact points

is related to the coordination number by Nc = ZNp/2 where Np is the number of

particles in the flow; (2) the number of particles can be related to the solid volume

of grain material Vs by defining d such that Np(4/3)πd3/8 = Vs; (3) Vs/V = φ where

φ is the solid fraction. The definition of d to satisfy (2) is consistent with d being

the grain diameter in the case of monodisperse spheres, an average grain diameter in

the case of polydisperse spheres, and a characteristic grain size in flows of complex

shaped grains.

Combining the simplifications described above, Eq. (4.4) becomes

µ =
Zφ

I

(
3
√
ρg

πd2σ
3/2
yy

)
〈Γc〉 (4.5)

where the quantity πd2σ
3/2
yy /(3

√
ρg) is a pressure dependent term with units of energy

dissipation rate. We therefore call this quantity Γ̃ and rewrite Eq. (4.5) as

µ =
Zφ

I

〈Γc〉
Γ̃

(4.6)

Equation (4.6) is the most general form of our friction relationship. This expres-

sion makes no assumption of contact law or grain properties and only imposes the
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restrictions that the flow is in steady state and energy dissipation occurs at contact

points. This assumption does not prohibit the incorporation of material plasticity or

fracture so long as such processes are assumed to arise because of contact between

grains. In section 4.3, Eq. (4.6) will be applied to a specific contact law to discuss

the results of numerical simulations.

Before discussing numerical simulations, we can provide a physical interpretation

of Eq. (4.6). The coordination number Z and solid fraction φ convey the connec-

tivity and compactness of the granular material. Both of these quantities, as well

as Zφ/I taken together, can be assumed to decrease during shearing dilation, a pro-

cess by which the packing expands at higher shear rates. In contrast, the grain-scale

dissipation rates 〈Γc〉 may be expected to increase with shear rate due to higher

inter-particle forces and collision velocities. The term Γ̃ remains constant when the

confining pressure is held fixed.

The friction law in Eq. (4.6) therefore conveys a competition between dilation

and microscopic dissipation rates. At low shear rates, Zφ/I is large and 〈Γc〉/Γ̃ is

small. At high shear rates, Zφ/I is small and 〈Γc〉/Γ̃ is large. The result of this

competition dictates whether the material is rate-strengthening or rate-weakening

and highlights the role of dilation in effective friction. This interpretation of effective

friction is closely related to the interpretation of the inertial number given in Fig.

4.2. The same time scales at work in the inertial number, those of confinement and

macroscopic shear, are at work in determining the effective friction coefficient. The

confinement time scale dictates the value of Zφ/I while the macroscopic shear time

scale dictates the frequency and intensity of particle collisions.

4.3 Numerical simulations of simple shear

In this section, we discuss numerical simulations of simple shear flows. The simula-

tions explore the behavior of the variables in Eq. (4.6) and elucidate the competing

roles of dilation and microscopic dissipation rates during simple shear at a variety of

imposed shear rates. The numerical code used for the simulations is first discussed,
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followed by a discussion of results.

4.3.1 Description of code

We use a discrete element code [33] to study the various components of Eq. (4.6) in the

inertial flow regime. Our simulations use a modified version of the granular module

from the molecular dynamics code LAMMPS [97,98]. Grains are modeled as spheres

and interact with a Hertzian contact model. The normal force, F n = Fm
n +F v

n, has a

mechanical portion, Fm
n = R∗knδ

3/2nij, and a viscous portion F v
n =
√
δR∗meffγnvn,

where R∗ =
√
RiRj/(Ri +Rj), kn is a spring constant, δ is the particle overlap,

nij is a vector from the centroid of particle j to the centroid of particle i, meff =

mimj/(mi + mj), γn is a damping coefficient, and vn is the normal component of

the relative velocity vector. The tangential force, F t = min(Fm
t , µp|F n|), has a

mechanical portion, Fm
t = −

√
δR∗kt∆s, and a Coulomb slider enforcing |Fm

t | <
µp|F n| where kt is a spring constant, ∆s is the accumulated tangential displacement of

the grains, and µp is the inter-particle friction coefficient. The accumulated tangential

displacement of the grains is frozen when grains are sliding. The constants kn and kt

have units of force per area, consistent with the model presented in [99] and discussed

in [97]. Thus, kn and kt are material properties that are independent of grain size and

can be explicitly linked to grain properties if desired [100]. The constant γn prescribes

a velocity-dependent coefficient of restitution of a binary collision, consistent with

experiments [101,102].

Simple shear is achieved by compressing approximately 10,000 bidisperse spheres

between rough boundaries made of grains and moving the boundaries at a specified

velocity in opposite directions, as shown in Fig. 4.3a. Grain radii are (1±0.2)d̃ where

d̃ is specified. The height of the flow h is chosen such that h/d̃ ≥ 20. The rough

boundaries are moved in the y direction to maintain a constant confining pressure

throughout each simulation. Periodic boundary conditions are used in the x and z

directions.

Confining pressure and grain stiffness is chosen such that (kn/σyy)
2/3 ≥ 104, mak-
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Figure 4.3: (a) A rendering of the simple shear flows featured in this paper. The
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ing the grains “rigid” as described in [11]. The parameter kt is chosen to be 1/2 of kn.

Our primary data (DS1) set features 26 simulations across the inertial flow regime

in which µp = 0.3 and γn is set to prescribe the coefficient of restitution e shown as

the dashed line in Fig. 4.3b. The inter-particle friction coefficient of µp = 0.3 is cho-

sen to provide a balance between lower values found in recent experiments [103] and

slightly higher values used in recent simulations [1, 11]. We found that changing this

inter-particle friction coefficient has minimal qualitative influence on the results, and

mainly acts to shift the µ(I) curve up or down as reported in [11]. A secondary data

set (DS2) features 18 simulations throughout the inertial flow regime with µp = 0.3

and γn set to prescribe e as the solid line in Fig. 4.3b. This data set is only referred to

in order to illustrate how grain viscoelasticity influences the material response. Unless

otherwise specified, data should be assumed to belong to the primary data set. We

leave an in-depth study of the effects of varying µp, γn, particle size distribution, and

contact laws for future work.

Stress is measured using the equation

σij =
1

V

Nc∑

c=1

lcif
c
j (4.7)

where V is volume, c are contact point labels, Nc is the number of contacts in the

material, lci is a branch vector pointing from the centroid of particle j to the centroid

of particle i, and f cj is the force vector from particle j to i [104]. The effective friction

coefficient is computed using µ = σyx/σyy, where averages are carried out over several

thousand stress calculations once a steady state velocity profile has been reached.

Figure 4.4 compares µ and φ found in our simulations (using DS1) with available

data from contact dynamics simulations [1] and 3D annular shear cell experiments [2,

3]. Our simulations show an excellent collapse with the other data sets both in terms

of effective frictional response and solid fraction. The effective friction coefficient

increases from its quasi-static value throughout the inertial flow regime, approaching

a plateau at the transition to the rapid flow regime. The solid fraction decreases

approximately linearly throughout the inertial flow regime from a maximum quasi-
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Figure 4.4: A comparison of (a) effective friction and (b) solid fraction from our
simulations and available data sets taken from the literature. Blue squares are from
contact dynamics simulations [1]. Black triangles are from 3D annular shear cell
experiments [2,3]. Error bars indicate standard deviations in time of measured quan-
tities. The dashed line shows the fit µ = µ0 + (µ1 − µ0)/(1 + I0/I) from [4].

static value of 0.59.

In Fig. 4.4, as in all figures in this paper, plotted quantities are obtained as follows.

First, a quantity of interest (e.g., coordination number) is computed at periodic times

(approximately 5 × 104 times) once steady state flow has been achieved. The total

strain over which quantities are extracted is taken such that averages over larger

strains do not change the results. Next, the average of these quantities is used to

obtain the plotted data points. Finally, the sample standard deviation is used to

obtain the error bars. Error bars are typically omitted from inset plots for clarity.

4.3.2 Results: Validity of friction law

Figure 4.5 displays the effective friction coefficients for our primary data set computed

using the friction relationship in Eq. (4.6) and the stress formula in Eq. (4.7).

The figure demonstrates that the proposed friction law excellently approximates the

effective friction coefficient throughout the inertial flow regime. We have confirmed

that a similarly accurate fit exists for other grain properties.
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Figure 4.5: A comparison of the effective friction coefficient calculated from proposed
friction relationship in Eq. (4.6) and the stress formula in Eq. (4.7).

4.3.3 Results: Grain-scale dissipation mechanisms

The contact law discussed in section 4.3.1 implies that Eq. (4.6) can be written as

µ =
Zφ

I

〈Γn〉+ 〈Γs〉
Γ̃

(4.8)

where 〈Γn〉 = 〈F n · vn〉 is the average viscoelastic dissipation rate, averaged over

all contacts, and 〈Γs〉 = 〈|F t||vt|〉 is the average dissipation rate from grain sliding,

averaged only over sliding contacts. An additive decomposition of Eq. (4.8) into

µ = µn + µs yields

µn =
Zφ

I

〈Γn〉
Γ̃

and µs =
Zφ

I

〈Γs〉
Γ̃

(4.9)

The effective friction coefficient can thus be written in a form that clearly decouples

contributions from the two grain-scale dissipation mechanisms, viscoelasticity and

grain sliding.

Figure 4.6a illustrates how the two terms in Eq. (4.9) evolve throughout the

inertial flow regime. At low shear rates, dissipation from grain sliding is the primary
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contributor to effective friction. At higher shear rates, the contribution from grain

sliding remains constant or declines as the contribution from viscoelastic dissipation

becomes increasingly prominent.

4.3.4 Influence of material properties

In order to highlight how grain properties influence the relative contributions of mi-

croscopic dissipation mechanisms, results from the secondary data set are also shown

in Fig. 4.6 (the solid lines). We recall that the primary data set (DS1) features the

same grain properties as the secondary data set (DS2) except for a lower coefficient

of restitution, as shown in Fig. 4.3b.

Figure 4.6a compares how the two terms in Eq. (4.9) evolve as a function of

shear rate for each data set. Compared to DS1, DS2 features a larger effective fric-

tion contribution from grain sliding and a smaller contribution from viscoelasticity

throughout most of the inertial flow regime. This occurs because grain viscoelastic-

ity dissipates less energy for a given particle collision in DS2, leaving more kinetic

energy in the system to be dissipated by grain sliding. Despite the difference in the

grain-scale contributions to effective friction, both data sets feature similar values for

µ until I ≈ 0.4, as shown in Fig. 4.6b.

In past work [1,11], some researchers have ignored the influence of the coefficient of

restitution e in shear flows because of the similarity of the effective friction coefficient

when measured in systems using different values of e. Simulations are therefore often

carried out using e = 0 [1]. The finding in Fig. 4.6 illustrates that although effective

friction may be similar, the grain-scale dissipation mechanism responsible for friction

is different in systems with different values of e. It may be interesting to explore the

range of grain-scale behaviors that emerge from varying µp and e and the reason that

they have such a minor influence on effective friction below I ≈ 0.4. We leave such

an investigation as future work.

Increasing or decreasing the inter-particle friction coefficient has the effect of shift-

ing the effective friction curves in Fig. 4.6b up or down, respectively, but does not
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Figure 4.6: (a) The two terms µn = Zφ〈Γn〉/(IΓ̃) and µs = Zφ〈Γs〉/(IΓ̃) in the
additive decomposition of effective friction given in Eq. (4.9) for the primary data set
(- -) labeled DS1 and the secondary data set (-) labeled DS2. (b) The total effective
friction for the two data sets as a function of I. Error bars are omitted from inset
plots for clarity.
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significantly affect their shape or the magnitude of viscoelastic dissipation. Thus,

the inter-particle friction coefficient primarily sets the baseline magnitude of effective

friction while the coefficient of restitution controls the grain-scale contributions.

4.3.5 Results: Dilation and dissipation rates

The evolution of each term in Eq. (4.6) is shown in Fig. 4.7. Shearing dilation is

captured in the evolution of Z, φ, and Zφ/I in Figs. 4.7a, 4.7b, and 4.7d, respectively.

At low shear rates, Z and φ maintain maximum quasi-static values that depend upon

properties such as the inter-particle friction coefficient and particle shape. For our

primary data set, these quasi-static values are approximately 4 and 0.59 for Z and φ,

respectively. As shear rates increase throughout the inertial flow regime, both Z and

φ decrease as the material dilates. At all shear rates investigated, Z is well described

by

Z ≈ Z1 +
Z2

b+ I
(4.10)

and φ is well described by

φ ≈ φmax −mI (4.11)

where Z1, Z2, b, φmax, and m are constants. These approximations hold for both data

sets set discussed here and for simulations with different values of µp and γn, and

different particle size distributions which we do not discuss here.

When combined, Eqs. (4.10) and (4.11) suggest the two scaling regimes of Zφ/I

shown in Fig. 4.7d. The scaling Zφ/I ∝ I−1 arises because Z and φ maintain quasi-

static values at the low end of the inertial regime. The scaling Zφ/I ∝ I−2 arises

because Z and φ decrease in agreement with Eqs. (4.10) and (4.11) at higher shear

rates. This decreasing contribution of Zφ/I in Eq. (4.6) reflects a decrease in both

number of contact points and total solid fraction as shearing dilation increases. From

an energy perspective, this decay conveys the decrease in internal surface area over

which the material can dissipate energy.

While Zφ/I decreases with shear rate due to shearing dilation, average grain-scale
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Figure 4.7: (a) The coordination number Z as a function of inertial number. The
dashed line is the fit from Eq. (4.10). (b) The solid fraction φ as a function of inertial
number. The dashed line is the fit from Eq. (4.11). (c) The average grain-scale
dissipation rates 〈Γn〉/Γ̃ and 〈Γs〉/Γ̃ as a function of inertial number. The dashed
lines are power-law fits, with 〈Γn〉/Γ̃ ∝ I2.4 and 〈Γs〉/Γ̃ ∝ I1.87 (d) The quantity
Zφ/I as a function of inertial number. The dashed lines represent the two regimes
of behavior in which Zφ/I ∝ I−1 and Zφ/I ∝ I−2. Error bars in (d) are negligibly
small.
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dissipation rates increase as shown in Fig. 4.7c. Both viscoelastic and grain sliding

dissipation rates approximately follow a power-law dependence on I throughout the

inertial flow regime, with 〈Γn〉/Γ̃ ∝ I2.4 and 〈Γs〉/Γ̃ ∝ I1.87, as shown in the inset

of Fig. 4.7c. We generally expect 〈Γn〉/Γ̃ to scale at least as fast as I2 for our

chosen contact law because collision velocities scale approximately with I and viscous

normal contact forces scale with collision velocity. Surprisingly, we also find 〈Γn〉/Γ̃
to scale at least as fast as I2 when we impose sub-linear dependence of viscous normal

forces on grain collision velocities. This likely occurs because the correlation between

collision velocities and viscous normal contact forces implies that 〈Γn〉 ∝ 〈F v
n · vn〉 >

〈F v
n〉 〈vn〉 ∝ I2.

We have not found a similar argument for the scaling of 〈Γs〉/Γ̃ with shear rate,

but we have always observed this term to scale slower than 〈Γn〉/Γ̃.

4.3.6 Results: Rate-dependent friction

When combined, the competing processes of shearing dilation and grain scale dissi-

pation rates give rise to a rate-strengthening effective friction coefficient in our data

sets, as shown in Fig. 4.6b. Rate-strengthening seems to occur because Zφ/I never

decays faster than I−2 while 〈Γn〉/Γ̃ increases at least as fast as I2 in the inertial

regime.

Data sets using other values for µp and γn, as well as other simple contact laws

(linear springs or nonlinear dependence of viscous normal force on collision velocity)

have been investigated and yield similar results: Zφ/I never decays faster than I−2

and 〈Γn〉/Γ̃ always increases at least as fast as I2 in the inertial regime. Velocity-

strengthening therefore appears to be a generic system response for bidisperse spheres

interacting with many viscoelastic contact models in the inertial regime. We have

not observed a transition to rate-weakening friction at low shear rates as observed in

some recent experiments [93]. Given the variety of grain properties and particle size

distributions we have studied (but not discussed here), we suspect such a crossover,

if it exists, to be caused by processes not captured by the current viscoelastic contact
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scaling of each dissipation rate discussed in the text, as well as the scaling proportional
to I at the transition to quasi-static flow.

model, such as flash heating [93].

In Fig. 4.7c, dissipation rates approach 0 as I → 0. This seems to suggest effective

friction also approaches 0 as I → 0; however, I appears in the denominator of Eq.

(4.6). The scaling of dissipation rates with I is therefore the quantity controlling

the approach to a quasi-static value of effective friction, not the absolute value of

dissipation rates. To clarify this, we enlarge the inset of Fig. 4.7c in Fig. 4.8. At the

transition from inertial to quasi-static flow, close to I = 10−3, both dissipation rates

trend toward scaling as 〈Γi〉/Γ̃ ∝ I. In the quasi-static regime below I = 10−3, both

dissipation rates reach this scaling. When this occurs, the effective friction coefficient

reaches a quasi-static value and the strength is rate-independent. This transition

is significant for understanding the onset of rate-dependent behavior and deserves

further investigation in future work.
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4.4 Discussion

The primary finding of sections 4.2 and 4.3 are: (1) effective friction in inertial gran-

ular shear flows can be interpreted as a competition between shearing dilation and

grain-scale dissipation rates; and (2) rate-strengthening effective friction occurs in the

inertial flow regime for many viscoelastic contact models and grain properties because

grain-scale dissipation rates win the competition with shearing dilation. Although the

first finding may seem intuitive, Eq. (4.6) provides a quantitative means of studying

it. Equation (4.9) also provides a method of tracing macroscopic frictional energy

loss down to the grain-scale.

The interpretation of steady state effective friction given in this chapter comple-

ments interpretations offered by past work [1, 11]. In these past works, researchers

explicitly linked friction to the anisotropy of the contact network. An increase in

normal force anisotropy was implicated in causing rate-strengthening. This inter-

pretation offers an understanding of how the structural organization of grains may

influence macroscopic frictional response. The interpretation of friction in the current

chapter, however, makes no mention of structural organization and rather relies upon

energy dissipation to explain changes in the macroscopic frictional response. That

each interpretation can independently explain the change in effective friction as a

function of shear rate is interesting and deserves further investigation.

Several other interesting behaviors were observed during the simulations carried

out for this work. Many of these behaviors warrant future investigation. First,

a similarity in the effective friction coefficient was observed for simulations using

different values for the coefficient of restitution e. This similarity persisted even

while differences were observed in the grain-scale contributions to friction (see Fig.

4.6). This behavior has been noted by previous authors [1, 11] and has not yet been

explained. A number of interesting changes in behavior were also observed to occur

near I ≈ 0.1. Authors in [1] noted a number of topological transitions occurring

at this shear rate. In this chapter, we observe the transition from Zφ/I ∝ I−1 to

Zφ/I ∝ I−2 close to I ≈ 0.1. We also observe a dramatic increase in the fraction
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of sliding contacts at I ≈ 0.1, regardless of the inter-particle friction coefficient µp

used in simulations. Finally, we have observed that Eq. (6) holds for other contact

laws and holds locally in layers of roughly constant inertial number in systems and

flow configurations where the inertial number varies spatially. It would be useful

to investigate such systems in more detail in future work to determine whether the

quantitative results of this chapter persist.

4.5 Conclusion

We have presented a relationship between steady state effective friction, the inertial

number, coordination number, solid fraction, and grain-scale dissipation rates in a

granular shear flow. This relationship elucidates the rate- and porosity-dependent

nature of effective friction in granular flows. Numerical simulations of simple shear

flows have been used to illustrate how effective friction is furnished by grain-scale

dissipation mechanisms. Rate-strengthening was seen to occur because terms encom-

passing shearing dilation decay more slowly with shear rate than terms encompassing

grain-scale dissipation rates increase. We discussed how our findings compare with

other interpretations of effective friction and mentioned several observations that

warrant future investigation.
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Chapter 5

Modeling dilative viscoplastic
granular flows using SPH1

5.1 Introduction

Many geologic and industrial processes involve large deformation and flow of granular

media such as soils, sands, powders, and pulverized brittle materials. Examples of

such processes include landslides, debris flows, asteroid impact and cratering, bulk

food transport, pharmaceutical processing, and ballistic impact of ceramics. Numeri-

cal models that can accurately simulate these processes are particularly important as

predictive tools. However, the lack of well-established rheological relations for flowing

granular media and the difficulty of representing arbitrarily large deformations with

traditional numerical methods makes predictive modeling of these processes difficult.

The rheological behavior of flowing granular media is complex and has been a

subject of study for many decades. Dry granular materials can exhibit solid-like,

liquid-like, and gas-like behavior depending upon their excitation [8]. The ability

of granular media to accommodate additional liquids and gases in their pore space

further complicates their flow behavior [105]. Through decades of experimental and

numerical investigation, the constitutive behavior of granular materials in several

flow configurations has been elucidated (e.g., see [3, 4, 86, 88]). Particularly relevant

to the present chapter, the rheology of dry granular flows has been examined in flows

1Adapted from R.C. Hurley and J.E. Andrade. Modeling dilative viscoplastic granular flows
using SPH. Under review.
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down inclined planes ( [4,106]), simple shear flows [11], slow flows [85,107], and rapid

flows [86]. Authors in [4] proposed a rate-dependent constitutive law for steady-

state granular flows down inclined planes that has since proven to be an accurate

framework for modeling large-scale processes such as impact cratering and granular

column collapses (e.g., see [89, 108]). The rate-dependent nature of friction in this

constitutive law has been examined analytically and shown to have grain-scale origins

(e.g., see [10]). This rheological picture provides one of the most unifying frameworks

for granular flows to-date. Below, we will adopt part of this constitutive law to model

granular media in both their solid-like and liquid-like states.

Numerous numerical methods have been used for modeling granular materials.

Depth-averaged finite difference methods have been a popular means of predicting

geological flows for many decades (e.g., see [109]). The finite element method (FEM)

has also been a popular tool for modeling both the quasi-static and dynamical flow

of granular media using classical constitutive laws for soils and newer viscoplastic

constitutive laws similar to the one developed by [4] (e.g., see [110] and [111]). More

recently, the material point method (MPM) has been used to model the dynamic

behavior of granular media using a Matsuoka-Nakai constitutive framework (e.g.,

see [112]). Smoothed Particle Hydrodynamics (SPH) has also been used to model

the dynamic behavior of granular media using a Drucker-Prager plasticity law (e.g.,

see [113,114]). While each of these methods has strengths, mesh-free methods (MPM

and SPH) are particularly attractive for very large and rapid material deformations

since they do not require mesh-refinement. Furthermore, Lagrangian mesh-free meth-

ods that do not require a background grid (SPH) eliminate the convective effects of

classical Eulerian formulations. Compared to Eulerian methods, SPH also offers pre-

cise interface definition and arbitrary resolution of flow details.

In this chapter, we present an SPH approach to modeling the flow of dry granular

media. The novelty of our approach comes from combining an SPH formulation

with a rate-dependent constitutive law similar to that proposed by [4] and used by

[107]. We augment the rate-dependent constitutive law used in [4] and [107] with the

rate of dilation and justify this approach with an analysis of the continuum energy
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balance equation. We then present four qualitative and quantitative examples of the

method. In particular, we model angle of repose tests, steady-state rate-dependent

flows down inclined planes, granular column collapses on flat surfaces, and granular

column collapses down inclined planes. These examples provide a partial validation of

the method against experimental results and illustrate that, with some future work,

it may be used as a predictive tool for many processes involving granular media.

Compared to past mesh-free simulations of granular media (e.g., [112, 113, 114]), our

method employs a new constitutive law well-suited for rate-dependent behavior, and

is implemented three dimensionally.

The layout of this chapter is as follows. In section 5.2, we describe the balance and

constitutive laws we use to model granular materials. We present our rate-dependent

constitutive law in this section. We also show in this section that analyzing the

continuum energy balance equation in the context of our constitutive law suggests

a relationship between the rate of dilation and the effective friction coefficient. Sec-

tion 5.3 is dedicated to describing the SPH framework used in this chapter and the

algorithm we employ in our simulations. Four numerical examples of our method

are described in section 5.4. We first discuss simulations of slumping granular media

that demonstrate the ability of our method to produce angles of repose consistent

with the friction angle used in our model. We then discuss simulations of inclined

plane flows that illustrate the rate-dependent feature of our numerical method and

the ability to match Bagnold velocity profiles. Next, we simulate granular column

collapses on flat surfaces to illustrate the ability of our method to produce scaling

laws of slump and runout consistent with those found experimentally. Finally, we

compare time-dependent profiles of granular column collapses down inclined planes

to demonstrate that our method accurately models the dynamic structure of granular

flows. Section 5.5 offers a discussion of future work and concluding remarks.
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5.2 Balance and constitutive Laws

5.2.1 Balance law

The governing balance law we will solve is the equation of momentum balance given

by

∇ · σ + ρb = ρa (5.1)

where σ is the Cauchy stress tensor, ρ is the mass density, b is a body force, and a

is the material acceleration.

5.2.2 Constitutive law

Defining the spatial velocity gradient as L = ∇v, we introduce the strain rate tensor

as

D = L+LT (5.2)

where the T indicates a transpose. This definition differs by a factor of two from the

classical definition in order to be consistent with [4], whose constitutive law we now

adopt. We propose a stress tensor similar to that used for yield-stress (e.g., Bingham)

fluids

σ = −pI +
(µp+ c)D

||D|| (5.3)

where p is pressure, I is the identity tensor, µ is the friction coefficient, c is cohesion,

and ||D|| = (1
2
D : D)1/2 is the second invariant of the strain rate tensor. This form

of the stress tensor is similar to that proposed by [4], the difference being the addition

of a cohesion term.

The second term in Eq. (5.3) can be identified as the shear stress tensor τ . When

D is nonzero, the material flows with shear stress magnitude ||τ || = µp + c where
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||τ || = (1
2
τ : τ )1/2. Thus, the yield criterion is given by

||τ || = µp+ c (5.4)

This form is again similar to the Drucker-Prager-type yield criterion in [4], but with

the addition of cohesion.

The pressure in the granular material p is derived from an equation of state relating

pressure to density. The general form of our equation of state is reminiscent of Tait’s

equation of state for nearly-incompressible fluids and is given by

p =




κ
((

ρ
ρ0

)γ
− 1
)

ρ ≥ ρ0

0 ρ < ρ0

(5.5)

where κ and γ are parameters and ρ0 is the critical “jamming” density of the granu-

lar material, or the loosest packing density at which the material supports a nonzero

stress state. We choose γ = 3/2 to produce a pressure-density relationship consistent

with that found at the jamming transition for granular solids in [115]. The param-

eter κ is then constrained by the desired bulk modulus of the material through the

relationship

K = ρ
dp

dρ
=





3
2
κ
(
ρ
ρ0

)3/2

ρ ≥ ρ0

0 ρ < ρ0

(5.6)

We use a rate-dependent and dilation-dependent friction coefficient given by

µ = µl +
µh − µl

D∗/||D||+ 1
+ β (5.7)

where µl is the friction coefficient at low shear rates, µh is the asymptotic friction

coefficient at high rates, D∗ is a hardening or softening strain rate scale, and β is

related to the rate of dilation by

β =
1
2
tr(D)

||D|| (5.8)
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where tr(D) is the trace of D. Note that the friction coefficient given by Eq. (5.7)

can be either rate-strengthening or rate-weakening depending upon the chosen values

of µl and µh. In granular materials, the classical choice is for a rate-independent

or rate-strengthening friction coefficient. The theoretical link between the friction

coefficient and the rate of dilation β is discussed next.

5.2.3 Theoretical link between friction and dilation rate

Several classical stress-dilatancy relationships link the frictional strength of a granular

material to expansion or contraction (e.g., see [85]). One example is that of [116] who

proposed a stress-dilatancy relationship of the form

tanφ′m = µ+ tanψ (5.9)

where φ′m is the externally mobilized friction angle, µ is a frictional constant represent-

ing local internal material strength, and ψ is the dilation angle. Similar relationships

have been used extensively in modeling quasi-static soil behavior (e.g., see [107]).

Recently, a friction law linking dynamic friction and the rate of dilation has also

been derived for simple shear of a granular material ( [15]). As with the the deriva-

tion in [116], this friction law emerges from analysis of the governing energy balance

equation. Below, we give a similar derivation but for three-dimensional flow of a

material with a stress tensor given by Eq. (5.3). This derivation is meant to establish

a theoretical justification for including the dilation rate β in Eq. 5.7.

Consider a granular material undergoing deformation at a rate D. In the absence

of heat sources, local energy balance requires that

ρė =
1

2
σ : D −∇ · q (5.10)

where e is the specific internal energy, q is the heat flux vector, and the factor of 1/2

accounts for the difference between our definition of the strain rate tensor given in

Eq. (5.2) and the classical definition. The strain-rate tensor can be decomposed into
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volumetric and deviatoric components such that

D = Dv +Ds (5.11)

where Dv = tr(D)I/3 and Ds = D −Dv. Note that tr(Ds) = 0 by definition and

thus Dv : Ds = 0. Substituting Eqs. (5.11) and (5.3) into (5.10) and rearranging,

while ignoring cohesion, therefore yields

−1

2
p tr(D) + µp||D|| = ρė+∇ · q (5.12)

Solving this equation for µ yields

µ =
ρė

p||D|| +
∇ · q
p||D|| +

1
2
tr(D)

||D|| (5.13)

At steady-state, granular materials are observed to deform at constant volume (

[4,85]) and constant average internal energy. Therefore, sufficiently long time averages

of the first and third terms in Eq. (5.13) are zero at steady-state. The second term

in Eq. (5.13) is then the rate-dependent steady-state friction coefficient represented

by the first two terms in Eq. (5.7). The first term in Eq. (5.13) is a transient term

associated with changes in internal energy of the material that accompany non-steady

deformations (e.g., see [15]). In this work, we neglect representing this term in our

friction law Eq. (5.7), making the assumption the time required for local internal

energy equilibrium is sufficiently short that it does not play a significant role in the

problems we wish to solve. Relaxing this assumption in future work will be discussed

in section 5.5. The third term in Eq. (5.13) is identified as the rate of dilation of the

material and is represented directly in Eq. (5.7).

In the examples presented in this chapter, the value of β is limited to 0 ≤ β ≤ 0.5.

This choice is meant to accomplish three things. First, these limits eliminate the

influence of contraction of SPH particles (β < 0) near boundaries that can reduce

friction and result in excessive slip. Second, we wish to capture the role of dilation in

a similar manner to past models (e.g., see [107]), which use it primarily as a means
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of enhancing the ultimate strength of a yielding granular material. Third, we wish to

eliminate the effects of free-floating particles (i.e., those with p = 0) on the material

dilation. One way of accomplishing this is with the current limits, which restrict β

to values we perceive as more physically realistic and important as highlighted by

past work ( [107]). We will highlight the consequences of limiting β in this manner in

section 5.3.4 and examples 1 and 2 in sections 5.4.1 and 5.4.2. We will discuss future

extensions of our treatment of dilation in sections 5.3.4 and 5.5.

5.3 SPH formulation and algorithm

5.3.1 Kernel function and basic equations

We use SPH to model granular materials. Lagrangian particles of fixed mass repre-

sent a fixed mass of granular material and move according to the governing balance

and constitutive laws. All field quantities are expressed at these particle locations us-

ing summation interpolants and a kernel function W with smoothing length h. The

theory and history of SPH, a description of various kernel functions and summation

interpolants, and a discussion of special considerations such as free surfaces and in-

stabilities can be found in various monographs on the topic (e.g., see [117,118,119]).

Here, we merely state that classical SPH has a number of attractive properties, in-

cluding zero intrinsic dissipation, exact conservation of mass, momentum, angular

momentum, energy, and entropy. We also note that resolution follows the chosen

SPH particle mass.

We use the classical cubic spline kernel in all summation interpolants ( [120])

W (r, h) =
1

h3π





1− 3
2
q2 + 3

4
q3 0 ≤ q < 1

1
4
(2− q)3 1 ≤ q < 2

0 q ≥ 2

(5.14)

where q = r/h and r = |xa − xb| is the distance between two particles labeled a and

b. Equation (5.14) is normalized for three dimensions since all simulations in this



85

chapter are three-dimensional. One-dimensional and two-dimensional normalizations

can be found elsewhere ( [117]). Alternative higher-order kernels may be implemented

in the future to reduce instabilities (e.g., see [121]), but were not required for the

examples presented here. The smoothing length h is kept constant in this work since

the modeled granular media is fairly incompressible. The length h is chosen to be

1.2 times the spacing of SPH particles when the granular material is in its loosest

packing state. The fairly incompressible nature of the material prevents significant

particle concentrations that might cause instabilities discussed in other works (e.g.,

see [122]).

The basic SPH interpolants used throughout this work include the summation

interpolant for a field variable f at a particle location a given by (e.g., see [117])

fa =
∑

b

fb
mb

ρb
W (r, h) (5.15)

and the interplant for the first derivative of a field variable, such as the pressure,

given by (e.g., see [123])

∇pa = −
∑

b

mbρa

(
pb
ρ2
b

+
pa
ρ2
a

)
∇W (r, h) (5.16)

where m is mass and ∇W (r, h) = (xa − xb)F , F being a scalar symmetric function

in a and b.

5.3.2 Density

We use the basic SPH equation for density with a Shepard filter applied at each time

step. For particle a, we first compute ( [117])

ρ̃a =
∑

b∈N

mbW (r, h) (5.17)

where the set N includes neighboring particles in the support domain of a as shown
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Figure 5.1: (a) Illustration of the smoothing kernel W with compact support of radius
2h about particle a. (b) Interior particles interacting with boundary particles, which
are given artificial velocity.

in Figure 5.1a. We then apply the Shepard filter to obtain

ρa =

∑
b∈N mbW (r, h)∑
b∈N

mb

ρ̃b
W (r, h)

(5.18)

This filter corrects particle deficiencies near free surfaces and boundaries and is equiv-

alent to modifying the kernel to satisfy the partition of unity

∑

b∈N

mb

ρb
W (r, h) = 1 (5.19)

We note that we have also employed the more common and efficient free surface

density formulation proposed by [124]. While we obtain similar results in many cases

using this formulation, we use Eq. (5.18) instead in order to retain high accuracy in

density near the free surfaces. Future work may find this to be unnecessary.

5.3.3 Equation of state

After the density ρa at each particle has been computed using Eq. (5.18), pressure is

calculated by direct application of Eq. (5.5).
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5.3.4 Equation of motion

To update SPH particle locations, we discretize the momentum balance relationship

Eq. (5.1) to give

aa = ρa
∑

b∈N

(
σa
ρ2
a

+
σb
ρ2
b

)
∇W (r, h) + b (5.20)

where σ is given by Eq. (5.3). In computing Eq. (5.3) before the calculation of Eq.

(5.20), the strain rate tensor D must be calculated using Eq. (5.2) and the velocity

gradient computed by

La =
∑

b∈N

mb

ρb
(vb − va)⊗∇W (r, h) (5.21)

The value of p used in σ is given by applying the equation of state to the current

density computed using Eq. (5.18). When rate-dependent friction is employed, the

value of µ used in σ is computed with Eq. (5.7) applied to the particle velocities at

the last time step.

When the rate of dilation β is included in calculating the value of µ from Eq.

(5.7), β should be calculated by computing the third term in Eq. (5.13) for each

particle. Unfortunately, doing this from SPH continuum fields in a simulation with

arbitrary resolution (particle size and time step) may introduce artifacts due to tem-

poral fluctuations in D that are time-step-dependent and spatial fluctuations in D

that are particle-size-dependent. A more appropriate approach that recognizes β as

arising from processes occurring “within” each SPH particle (i.e. inherently below the

resolution of the continuum method) would be to evolve the rate of dilation β of each

SPH particle by it’s own evolution equation. This could be done with a source-decay

differential equation that increases β due to a source (i.e. rapid change in strain rate

of the particle) and allows β to decay to zero as a function of strain when strain rate

is roughly constant. For example, such an evolution equation could take the form

dβ

dεs
= − β

ε∗s
+ S (5.22)
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where εs is total strain, ε∗s is a scale of decay, and S is a source term. This method

for evolving β may be the focus of future work and may embrace a hierarchical

multiscale approach like that proposed in [125]. However, since data to calibrate this

method are lacking in the literature and since the present chapter is more focused on

qualitative demonstration of the SPH framework and constitutive laws, we use the

former approach of computing β directly from the SPH D field. We note that this

choice introduces a few numerical artifacts into the solution. Most importantly, β

is not seen to be identically zero when averaged during steady-state flows like those

encountered in example 2 in section 5.4.2, primarily because of fluctuations in D due

to SPH particle disorder, the choice of ignoring data outside the limits 0 ≤ β ≤ 0.5,

and the finite non-local smoothing effect employed in SPH. We will discuss this topic

and needed future work more in sections 5.4.2 and 5.5.

5.3.5 Boundary conditions

In all simulations shown in this chapter, SPH particles are used to represent solid

boundaries. Figure 5.1b shows a configuration of these “boundary” particles rela-

tive to the “interior” particles comprising the material of interest. The density of

boundary particles is evolved using Eq. (5.18) with a summation over all neighboring

particles, including those on the boundary and interior. Interior particles similarly

use all neighboring particles in their density calculation. Interior particles also use all

neighboring particles in their velocity gradient and stress tensor calculation. A basal

friction coefficient µb may be used in place of the first two terms in Eq. (5.7) when

an interior particle interacts with a boundary particle.

Boundary particles are given an artificial velocity when interacting with interior

particles in order to simulate a smooth velocity gradient across the boundary. As

discussed in [121], when interacting with interior particle a, a boundary particle b

will have an artificial velocity of

vb = (1− β)va + βvw (5.23)
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where vw is the imposed velocity of the boundary and

β = min

(
βmax, 1.0 +

db
da

)
(5.24)

We choose a value of βmax = 1.5, consistent with past work ( [113,121]). The lengths

db and da are shown in Fig. 5.1b.

As discussed in [113] and [126], the artificial velocity of boundary particles is

insufficient to provide a no-slip condition; artificial stress values must also be assigned

to boundary particles. In the present work, we do not assign artificial stress values

to boundary particles and instead directly compute the stress values of boundary

particles as we do with interior particles. The effect of this is to reduce the shear stress

gradient for interior particles close to boundaries, thus allowing a certain about of slip

across the boundary. We note that this choice does not reduce the density, pressure,

or velocity gradient of interior particles near the boundary since these quantities are

computed by directly including boundary particles in the appropriate summations.

Boundary slip is a key feature of granular systems that distinguishes them from

idealized fluid systems. Future work may compare our boundary condition with that

obtained by imposing a no-slip condition in various scenarios. An alternative to both

the present approach and the no-slip approach used in [113] would be to assign an

artificial stress value to boundary particles, the value of which is between the value

computed by evolving this quantity directly and the average stress value that would

be assigned artificially from interior particles. In the present work, we simply quantify

the amount of boundary slip in an example of inclined plane flow.

There are several disadvantages of representing boundaries using real SPH parti-

cles. One disadvantage is the inability to represent curved surfaces when the simula-

tion resolution is low. Another disadvantage is the potential for interior SPH particles

to penetrate a boundary composed of SPH particles. We have found that modeling

boundaries using real SPH particles with the same parameters as interior particles

sometimes permits penetration of SPH particles into the boundary. One solution to

this problem was proposed by [127], who modified particle velocities by an average of
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velocities nearby. To avoid modifying bulk dynamics, we instead choose to alter the

parameter ρ0 used in calculating the pressure of boundary particles only. We set ρ0

to approximately 3% below the initial packing density of boundary SPH particles in

order to create a higher pressure p of stationary boundary particles and thus a higher

pressure gradient for interior particles that interact with the boundary. This modifi-

cation is not performed on interior particles, whose value of ρ0 is maintained at the

initial packing density. The modification of the boundary ρ0 value slightly decreases

the pressure of the interior particles closest to the boundary. Bulk dynamics are not

noticeably affected; the modification only serves to increase the pressure gradient of

interior particles closest to the boundary and therefore prevent penetration of interior

particles through boundary particles. We illustrate this effect in section 5.4.1.

5.3.6 Time integration

We use a Velocity Verlet time integration scheme equivalent to the time-synchronized

Leapfrog method. This symplectic integrator has been shown to conserve momenta

and energy, making it particularly attractive with SPH which possesses conservation

properties ( [117]). This approach involves the following updates for particle a’s

position and velocity

xn+1
a = xna + vna∆t+ 1

2
ana∆t2 (5.25)

vn+1
a = vna + an

a+an+1
a

2
∆t (5.26)

As an intermediate step, the half-step velocity can be written as

vn+1/2
a = vna +

ana
2

∆t (5.27)

The acceleration an+1
a is then computed using Eq. (5.27) and xn+1. The precise

update steps are described in Algorithm 1 below. We note that all field quantities

ρ, p,D, and σ are computed at each time step rather than their values being updated
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rom previous time steps. In this manner, the procedure is simpler than traditional

implementations of plasticity, which require a return mapping algorithm. The absence

of a mesh eliminates the need for a mesh-updating, re-meshing, or mesh-mapping step

characteristic of finite element or material point method implementations.

The time-step ∆t must be chosen to satisfy a Courant condition, a limit imposed

by maximal force, and a viscous diffusion condition (see [121,123]). These conditions

amount to

∆t ≤ min

(
0.25

h

ca
, 0.25

h

|fa|
, 0.125

h2ρa
µapa + ca

)
(5.28)

where ca =
√
Ka/ρa is the bulk sound speed and the last condition emerges from

analyzing the viscous condition discussed in [123] and [121]. In practice, some trial and

error may be necessary to ensure the time-step satisfies these conditions, particularly

the second condition since maximum particle accelerations may not be known a priori.

Algorithm 1 Velocity Verlet time step procedures for SPH simulation.

1. Begin with fixed particle mass ma, particle positions xna , velocities vna , and
accelerations ana from last time step, and constants β, ρ0, γ, µl, µh, D

∗, c, µb, h.

2. Compute updated particle positions xn+1
a and partially updated particle veloc-

ities v
n+1/2
a using ana and Eqs. (5.25) and Eqs. (5.27).

3. Perform intermediate steps to obtain vn+1
a .

(a) Compute density ρn+1
a using Eq. (5.18) and xn+1

a .

(b) Compute pressure pn+1
a using Eq. (5.5) and xn+1

a .

(c) Compute strain rate tensor Dn+1
a using xn+1

a ,v
n+1/2
a and Eqs. (5.2) and

(5.21).

(d) Compute friction coefficient µn+1
a using Dn+1

a ,xn+1
a ,v

n+1/2
a and Eqs. (5.7)-

(5.8).

(e) Compute stress tensor σn+1
a using xn+1

a ,v
n+1/2
a and Eq. (5.3).

(f) Compute particle acceleration an+1
a using xn+1

a ,v
n+1/2
a and Eq. (5.20).

(g) Compute updated velocity vn+1
a using Eq. (5.26).

4. Set xn+1
a ,vn+1

a ,an+1
a to xna ,v

n
a ,a

n
a and n+ 1 to n and return to Step 2 for next

time step.
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5.4 Examples

This section provides several demonstrations of the SPH algorithm applied to mod-

eling granular media. Qualitative and partial quantitative comparisons with existing

experimental data are provided. The major findings of each example are: (1) for a

given friction coefficient µ, the method produces an angle of repose consistent with

classical theory; (2) the rate-dependent feature of the friction law produces flow pro-

files in inclined plane settings that are consistent with Bagnold’s theory; (3) the

method produces scaling laws for column collapse runout and slump that agree well

with experimental results; and (4) the method produces time-dependent column col-

lapse profiles down inclined planes that agree remarkably well with those observed

experimentally. In addition to these major findings, we also illustrate with these

examples the role of β in our friction law (Eq. 5.7), the influence of our boundary

condition on slip velocities and interior pressures, the effect of scaling the bulk modu-

lus on simulation results, and the influence of numerical resolution (i.e. SPH particle

mass).

5.4.1 Example 1: Angle of repose

This example illustrates how the friction coefficient µ that appears in Eq. (5.3)

influences the simulated angle of repose of the material. The friction coefficient µ

appearing in Eq. (5.3) is readily related to the internal friction angle φ of the material

by comparing Eq. (5.4) to the classical Mohr-Coulomb failure criterion to obtain

φ = tan−1(µ) (5.29)

[128] noted that the angle of repose of a dry granular material has a roughly

constant value close to the angle of internal friction of the material in the loosest

packing state. This definition suggests that the angle of repose should be a lower

bound for the internal friction angle of the material. To test our model’s ability to

approximate this effect, we simulate a slump test through an orifice using various
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internal friction coefficients and compare the resulting angles of repose θ with the

internal friction angle computed using Eq. (5.29). As the first example of this method,

we also use the results to illustrate the pressure-drop in the bottom-most layer of the

slumped granular piles (mentioned in section 5.3.5).

The initial simulation conditions are shown in Fig. 5.2a. The simulated bulk of

granular material measures 60 cm in the x dimension, 50 cm in the y dimension, and

6 cm in the z dimension (into the page). Periodic boundary conditions are used in the

z direction to produce the effect of an infinitely wide slope. The granular material is

permitted to leave the domain through a 5 cm wide orifice in the bottom boundary.

The final simulation conditions are shown in Fig. 5.2b. Once the granular media

has flowed through the orifice and come to rest (kinetic energy density of less than

1× 10−5 J/m3), the resulting angle of repose is measured by a linear least-squares fit

to the surface of the material in the middle 75% of the domain between the left wall

and the orifice. The simulation parameters used for this example are shown in Table

5.1. The SPH particle spacing is chosen to be ∆x = 0.01m and the SPH particle

mass is chosen to produce the loosest packing density of the granular material ρ0 at

this particle spacing. Five simulations are run, each with a constant internal friction

coefficient between 0.364 (φ = 20◦) and 0.839 (φ = 40◦). The parameter κ is set

to 105 to reduce the wave speed and permit a large time step. It will be shown in

example 3 that this choice, rather than a more realistic choice (e.g., 107 or higher),

does not significantly influence the material response in simulations where the wave

speed does not control the quantities of interest or the quasi-static deformation field

is not of interest. In simulations in which wave speed plays a significant role or the

quasi-static deformation must be captured accurately, κ should be chosen to enforce

a more realistic bulk modulus. The dilation β is limited to 0 ≤ β ≤ 0.5 as discussed

in section 5.2.3.

Simulation results are shown in Fig. 5.2c. Results are shown both for simulations

with and without β included in the calculation of friction (see Eq. (5.7)). The simu-

lations that do not use β in the calculation of friction (β = 0) yield an angle of repose

slightly lower than the internal friction angle of the material. This is consistent with
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Figure 5.2: (a) Initial conditions of the slump test through an orifice. In color,
blue represents internal SPH particles and red represents boundary particles. Length
l = 60 cm, h = 50 cm, and the size of the simulated material in the z dimension is 6
cm. (b) Final collapsed side profile of the slump test through an orifice for φ = 30◦.
The repose angle θ is measured in the middle 75% of the domain between the left
wall and the orifice. (c) Results of the simulations with and without including β in
the calculation of friction. The dashed line and circles represents the curve θ = φ.
Results without β are blue squares which provide a lower bound to the θ = φ curve.
Results with β are red inverted triangles which nearly match the θ = φ curve. (d)
Pressure in the collapsed granular pile for φ = 30◦ showing a slight pressure drop in
the layer of SPH particles directly above the bottom surface of the container.
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Table 5.1: Model parameters used in the angle of repose simulations. Note that the
friction law is taken as rate-independent, so µh is set to µl and the value of D∗ is
irrelevant. Basal friction coefficient µb is also set to µl. The initial SPH particle
spacing of ∆x = 0.01 m corresponds to the loosest packing state of the material (i.e.
in which ρ = ρ0.)

ρ0 (kg/m3) µl µh D∗ c (Pa) µb κ (Pa) γ ∆x (m)
1550 0.364-0.839 µl - 0 µl 105 1.5 0.01

the classical theory of the angle of repose discussed by [128]. Simulations including

β in the calculation of friction (0 ≤ β ≤ 0.5) yield an angle of repose that nearly

matches the internal friction angle of the material, again consistent with the classical

theory. Both simulation results deviate from the classical theory at large friction

angles. This deviation may suggest a limitation of using a viscoplastic model for high

friction angle materials but has not yet been fully investigated.

These results suggest that the constitutive law proposed in this work, both with

and without the inclusion of dilation, is able to reproduce a key feature of granular

systems: a steady-state angle of repose θ that is a lower bound for the internal

friction angle φ of the material. We can see from Fig. 5.2c that including β in

the calculation of friction in Eq. (5.7) has the effect of slightly increasing the yield

strength of the granular material. This feature is consistent with the classical theory

that β enhances the ultimate strength of a granular material leading up to steady-state

(e.g., see [85,107]). However, including β in our model also appears to enhance steady-

state strength slightly. This feature of the constitutive law and chosen parameters is

discussed in more detail in section 5.4.2.

Fig. 5.2d illustrates the pressure distribution in the collapsed granular pile (for

φ = 30◦). This distribution is qualitatively similar to our simulations with other

material parameters. Interior SPH particles in the layer directly above the bottom

surface of the container exhibit a pressure slightly below that of the second layer. This

occurs because of the reduced value of ρ0 taken for boundary particles, as mentioned

in section 5.3.5. Using an identical value of ρ0 for boundary and internal particles
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eliminates this effect and restores the linear pressure increase as a function of depth

up to and including the bottom layer of interior SPH particles. However, using

identical values of ρ0 for boundary and internal particles can lead to internal particles

penetrating the boundary in some simulations. We have verified that aside from

this artifact in the bottom-most layer, the pressure distribution in a pile under self-

weight agrees with that expected from the overburden load. Therefore, we continue to

employ this reduced value of ρ0 for boundary particles and discuss possible extensions

in section 5.5.

5.4.2 Example 2: Infinite inclined plane flow

Inclined plane flow experiments are a classical means of studying the rate-dependent

frictional strength of granular media (e.g., see [4]). Experiments in this flow configu-

ration have been used to derive rate-dependent frictional parameters, study Bagnold-

type velocity profiles, investigate boundary-slip in granular flows, and examine non-

local and finite-size effects of granular media (see [4, 88, 129, 130]). We use inclined

plane flow simulations to qualitatively demonstrate the rate-dependent behavior of

our friction law and to illustrate the slip generated by our boundary conditions. We

also compare our results with a Bagnold-type velocity profile for completeness. Fi-

nally, we discuss the effect of including β and limiting it to 0 ≤ β ≤ 0.5 on the

frictional strength.

[105] presented a scaling argument for relating shear stress to strain rate in inertial

granular flow that has since been used to derive a velocity profile for inclined plane

flows. [130] and [88] derived Bagnold velocity profiles for inclined plane flows and

found a close comparison when fitting to numerical and experimental results. The

general form of the Bagnold profile is (see [88])

vx(z) = A(θ)
√
gd

(h3/2 − (h− y)3/2)

d3/2
(5.30)

where A(θ) is a θ dependent constant, θ is the slope inclination angle, g is the mag-

nitude of gravity, d is the grain diameter, h is the height of the flow, and y is the
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Table 5.2: Model parameters used in the infinite inclined-plane flow simulations. Note
that the basal friction coefficient µb is taken as equal to the value of µ and thus is
also rate-dependent.

ρ0 (kg/m3) µl µh D∗ (s−1) c (Pa) µb κ (Pa) γ ∆x (cm)
1550 0.268 0.577 20 0 µ 105 1.5 0.01

height above the inclined boundary. Close to the inclined plane surface, results do

not fit well due to a clearly observed nonzero boundary slip velocity (see [130] and

discussion in [88]). In addition, the Bagnold profile does not fit the results at the

free-surface, where [88] notes that there is a nonzero shear rate exhibited numerically

and experimentally but not modeled by Bagnold’s theory.

Figure 5.3a illustrates the setup of our inclined-plane flow simulations. The sim-

ulated bulk of granular material measures 10 cm in the x dimension, 15 cm in the y

dimension and 5 cm in the z dimension (into the page). Periodic boundary conditions

are used in the x and z directions to simulate the effect of an infinitely wide and long

slope. Table 5.2 lists the simulation parameters. The material is modeled as rate-

dependent with a friction coefficient varying from µl = 0.268 (φ = 15◦) to µh = 0.577

(φ = 30◦) with parameter D∗ = 20 s−1. The bottom boundary is modeled using five

layers of fixed SPH particles with the same properties as those used to represent the

granular material, including frictional properties µl, µh, D
∗. Often a constant basal

friction coefficient is used in simulations of granular flows (e.g., see [109]). We find

that such a choice results in an unbounded boundary slip velocity when the inclination

angle exceeds the basal friction angle. Therefore, a constant basal friction coefficient

does not capture the classical nature of rate-dependent inclined plane flows in which

the material can find a steady state at a variety of inclination angles. The granular

material is permitted to settle under self weight before tilt is instantaneously applied

by changing the direction of gravity. The velocity profile is monitored by spatially

averaging SPH particle velocity in bins of various heights (in 0.01m increments from

the bottom boundary).

Simulation results are shown in Figs. 5.3c-d and 5.4a-d. Figs. 5.3c-d illustrate
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Figure 5.3: (a) Initial conditions of a typical inclined plane flow experiment showing
internal SPH particles above y = 0 and boundary particles at or below y = 0. (b)
A typical velocity profile of an inclined plane flow. (c) Velocitiy profiles in the x
direction as a function of height y in the granular material for simulations that do
not include β in the calculation of friction. Symbols represent simulation results and
dashed lines represent the best fit of the Bagnold profile (Eq. (5.30)) to the simulation
data. (d) Same as (c) but for simulations that include β in the calculation of friction.
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the steady-state velocity profiles (symbols) for inclination angles angles ranging from

θ = 15◦ to θ = 27◦ in increments of 3◦ for simulations both with and without β

included in the calculation of friction. We clearly see a nonzero steady-state velocity

profile for angles θ = 18◦ through θ = 27◦, as expected from the friction law. For

simulations with θ = 12◦ (not shown) and θ = 15◦, the steady-state velocity profile

is zero because the imposed shear stress on the material equals but does not exceed

the yield strength (incipient flow). For simulations using θ = 30◦ (also not shown),

the velocity profile appears to approach a nonzero steady-state for simulations both

with and without the inclusion of β in the calculation of friction. However, relaxation

is very slow and we do not simulate the response to steady-state because of the

immense computational cost. For simulations using θ = 33◦, the velocity profile does

not approach a steady-state profile for simulations either with or without β included

in the calculation of friction because the imposed shear stress on the material exceeds

maximum material strength, leading to a constant downslope acceleration.

Also shown on Figs. 5.3c-d as dashed lines are the Bagnold velocity profiles,

found using a least-squares fit of Eq. (5.30) to the data. These profiles demonstrate

an excellent match with the simulation data (symbols) within the bulk of the flow.

The mismatch at the boundary and free-surface is consistent with the discussion

in [88], highlighting the nonzero slip at the boundary and the nonzero strain rate at

the free surface.

Fig. 5.4a-b illustrates the average bulk acceleration ˙̄a of the granular material as

a function of time for all simulations. This average bulk acceleration is computed by

averaging the velocities of all interior SPH particles in each simulation and taking

the time derivative using backward finite difference with a time step of 0.01s. We

note that due to finite numerical precision, all simulations eventually contain minor

particle disorder and therefore fluctuations in the ˙̄a versus time curve. We thus fit

each the data with a curve of the form

˙̄a = a+
b− a
c/t+ 1

(5.31)
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where a, b, and c are best-fit parameters, and t is time in seconds. These curves are fit

to the data from the point of maximum acceleration, which occurs at roughly 0.02s

after gravity is rotated in each simulation. These curves are the ones shown in Figs.

5.4a-b, with the raw data and fits shown superimposed in the inset plots. It is clear

to see that for inclination angles from θ = 12◦ to θ = 27◦, a nonzero steady-state

velocity profile is reached for simulations with and without β. This is confirmed by

the best-fit parameter b in Eq. (5.31) being zero or very close to zero for each of these

data sets. For inclination angle θ = 30◦, the bulk acceleration approaches zero but

does not reach zero in the time frame of our simulation, as mentioned above. For

inclination angle θ = 33◦, the bulk acceleration asymptotes to a nonzero value for

simulations both with and without β being included in the calculation of friction.

Figs. 5.4c-d show the slip velocities for all simulations, computed by averaging

the velocity of the bottom-most layer of SPH particles parallel to the stationary

boundary. The raw data is shown for each inclination angle as well as a dashed-line

found by least-squares fit of the data to Eq. (5.30). Consistent with other numer-

ical simulations and experiments, we observe a nonzero slip velocity that increases

monotonically with inclination angle (see insets for slip velocity versus θ). The slip

velocities asymptote toward a constant value for inclination angles θ = 12◦ through

θ = 30◦ for simulations both including and excluding β. Slip velocities undergo un-

bounded increase for inclination angles above θ = 30◦ in simulations with and without

β.

The slip velocities are a general feature both of the boundary conditions imposed in

our simulations and of the constitutive law. Future work could involve implementing

no-slip or reduced-slip boundary conditions by imposing an artificial stress tensor

on boundary SPH particles, with a value falling between the stress tensor computed

directly from Eq. (5.3) and that of the neighboring interior particles. This reduced-

slip boundary condition could be calibrated to experimental data on boundary slip

in real granular materials. We have verified that applying an artificial stress tensor

to boundary SPH particles does indeed produce a no-slip condition, as discussed

by [113,121]. More details on our boundary condition are found in section 5.3.5.
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Figure 5.4: (a) Bulk acceleration ˙̄a of the granular material in the inclined plane
simulations, without the use of β in the calculation of friction, as a function of time.
The highest curve represents θ = 33◦ and each lower curve represents a reduction in
θ by 3◦. All accelerations appear to asymptote to zero except for θ = 33◦. The inset
shows raw data overlaid with the same fits. (b) Same as (a) except for simulations
that include β in the calculation of friction. (c) Slip velocity in simulations not
including β in the calculation of friction, found by averaging the vx velocity of the
bottom-most layer of interior SPH particles. All slip velocities appear to asymptote
to finite values except for θ = 33◦. (d) Same as (c) but for simulations that include
β in the calculation of friction.
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5.4.3 Example 3: Granular column collapse

Granular column collapse is an important test of the flow and yield behavior of gran-

ular materials. This test is significant for a number of processes such as landslides,

granular avalanches, hill-slope stability, and granular dam-break scenarios. Many

researchers have studied this problem numerically and experimentally in order to un-

derstand the dynamics of the yielding and flow processes, the timescales associated

with various regimes of flow, the local rheology within the flow, and the final scaling

laws that describe the slumped profile of the medium (see [5, 108, 112, 131, 132, 133,

134, 135, 136]). Scaling laws describing the slumped runout length and final height

of a collapsed granular medium are typically studied using an axisymmetric column

or quasi-two-dimensional rectangular column as an initial state. These studies are

designed to predict the basic physics of a sudden collapse event such as a landslide.

This example examines the ability of our numerical model to produce scaling laws

for quasi-two-dimensional column collapses consistent with those found in existing

experimental literature. We also use this flow configuration to illustrate the influence

of resolution (SPH particle mass and spacing), bulk modulus, and friction parame-

ters on the final results of a column collapse simulation. The results of this latter

study establish the resolution and reduced bulk modulus used in other examples as

acceptable for accurately modeling processes such as granular avalanches.

5.4.3.1 Scaling laws

In order to compare our scaling laws with experimental data, we simulate column

collapse using two materials with properties reported by [5]. In particular, we model

“grit” (a fine-grained sand) and fine glass beads. These two materials have distinct

bulk friction angles and loose-packing densities. Furthermore, both experience basal

friction angles φb that are different than their bulk friction angles φ, as reported by [5].

Table 5.3 tabulates all properties of both materials, as well as the parameters used

in modeling each for this particular analysis. Both materials are modeled as rate-

independent and cohesionless, using the nominal parameters reported by [5]. The
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basal friction coefficient is µb = tan−1(φb).

Figs. 5.5a and 5.5b illustrate the initial setup of a typical SPH simulation of grit

and fine glass, respectively. The most significant difference between the two initial

configurations is the different initial length of the columns L0. Simulations of grit

use L0 = 9 cm while simulations of fine glass use L0 = 2.5 cm. These values roughly

reflect those used for fitting scaling laws in [5] (i.e. see Figs. 10 and 11 of that

reference). A finer resolution is used for the fine glass simulations (∆x = 0.005 cm)

than for the grit simulations (∆x = 0.01 cm) in order to accommodate this difference.

Various initial heights H0 (19 for grit simulations, 13 for fine glass simulations) are

used in order to examine the final runout L and final height H as a function of initial

column aspect ratio a = H0/L0. In all simulations, the simulated bulk of grit or fine

glass measures 10 cm in the z dimension. Periodic boundaries are employed in the z

dimension to produce the effect of an infinitely wide slope. We note that this differs

from experiments presented by [5], who used sidewalls spaced 20 cm apart. We ignore

the effect of sidewalls in this analysis of scaling laws since we are primarily interested

in a scaling exponent. Sidewalls would have the effect of increasing the apparent

bulk friction φ slightly, as discussed in [137]. This would influence the runout and

final height of individual runout simulations but would not significantly influence the

derived scaling laws from a number of simulations using the same conditions. We let

the simulated grit or fine glass settle under self weight before instantaneously deleting

the right-most vertical wall and allowing the material to flow until it comes to rest.

After the material comes to rest, we measure the final height H by finding the y

coordinate of the highest interior SPH particle in the domain. We measure the final

runout length L by finding the largest x coordinate of an interior SPH particle in

the domain. Using materials with distinct bulk and basal friction coefficients and

loose-packing densities suggests that our method is likely able to accurately capture

the behavior of various materials flowing over various substrates.

Figs. 5.6a-d illustrate the our column collapse results for simulations with (Figs.

5.6c and 5.6d) and without (Figs. 5.6a and 5.6b) including the rate of dilation β in

the calculation of the friction coefficient. As reported in [5], data for each material
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Figure 5.5: Typical initial conditions of the column collapse simulations for (a) grit
and (b) fine glass. The right-most vertical wall in each figure is the containing wall
that is deleted at t = 0. In the color figure, blue particles represent internal particles
and red particles represent boundary particles.

Table 5.3: Model parameters used in the granular column collapse simulations. Both
materials are modeled as rate-independent. Bulk and basal friction angles are taken
as the nominal values reported in [5].

Material ρ0 (kg/m3) µl µh D∗ s−1 c (Pa) µb κ (Pa) γ ∆x (cm)
Grit 1404 0.74 0.74 - 0 0.335 105 1.5 0.01
Glass 1450 0.456 0.456 - 0 0.263 105 1.5 0.005
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Table 5.4: Comparison of scaling laws derived from simulation data and those re-
ported in [5]. Note that [5] does not report values for λ1 or λ2.

Source λ1 αa λ2 α2

SPH Grit (β = 0) 1.24 0.55 1.99 0.72
SPH Glass (β = 0) 2.07 0.61 3.49 0.72

SPH Grit (0 ≤ β ≤ 0.5) 0.97 0.61 0.79 1.01
SPH Glass (0 ≤ β ≤ 0.5) 1.38 0.68 1.36 0.96

[5] Grit - 0.58 - 0.88
[5] Glass - 0.6 - 0.92
[5] All - ∼0.6 - 0.9±0.1

with a > 1.7 collapse well onto a linear line in logarithmic space indicating scaling

laws of the form

H0

H
∼ λ1a

α1 and
(L− L0)

L0

∼ λ2a
α2 (5.32)

where λ1, λ2, α1 and α2 are scalars. The symbols in Fig. 5.6 represent the results of

our SPH simulations while the dashed line indicates a least-squares linear fit to the

data in logarithmic space. The reported slopes represent the scaling exponents α1

and α2. We find similar scaling exponents α1 for final heights for grit and glass using

β = 0 (Fig. 5.6a) and 0 ≤ β ≤ 0.5 (Fig. 5.6c). As shown in table 5.4, these scaling

exponents agree well with the experimental results of [5] in wide slots (most similar to

infinitely wide slope modeled here; see Fig. 10 in that reference), indicating that our

method, both with and without β, accurately captures scaling of the granular column

collapse scenario. We find different values for final runout scaling when using β = 0

(Fig. 5.6b) and 0 ≤ β ≤ 0.5 (Fig. 5.6d). The final runout scaling for 0 ≤ β ≤ 0.5

agrees more closely with results of [5] for their gate experiments (most similar to the

infinitely wide slope modeled here; see Fig. 11 in that reference), as shown in table

5.4. Individual simulations of laboratory-scale experiments using β = 0 tend to over-

predict runout length, as discussed more in section 5.4.4. These results collectively

indicate that our present simulations that include β in the calculation of friction can

accurately reproduce experimental data. Section 5.4.4 further supports this claim.
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Figure 5.6: (a) Scaling laws for collapsed height in simulations not using β in the
calculation of friction. Symbols are SPH simulations and dashed lines are linear best-
fit lines in logarithmic space for all data with x coordinate above 1.7. (b) Scaling laws
for collapsed runout distance in simulations not using β in the calculation of friction.
(c) Same as (a) but for simulations using β in the calculation of friction. (d) Same
as (b) but for simulations using β in the calculation of friction.
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5.4.3.2 Reduced bulk modulus, friction angle, and resolution studies

We briefly explore the influence of resolution (SPH particle spacing and mass), re-

duced bulk modulus, and employed friction angle on the numerical results. For this

study, we simulate the experimental setup of [5] with grit in a wide slot. The sim-

ulation is identical to those discussed in section 5.4.3.1 and listed in the first row of

table 5.3 except the initial length L0 is set to 20 cm, the initial height H0 is set to 13

cm, and the z dimension is periodic and measures 18 cm. The simulation parameters

for three parametric studies are outlined in table 5.5. Since the goal of this particular

parametric study is not to investigate the influence of β on the results, we present

some comparisons entirely with β = 0 and others entirely with 0 ≤ β ≤ 0.5.

The first study explores the effect of varying κ over two orders of magnitude

in the EOS presented in Eq. (5.5). The results of this study are shown in Fig.

5.7a which portrays simulation results with symbols and the experimentally observed

collapse profile with a dashed black line. This figure illustrates that the bulk modulus

has only a minor influence on the final results for this type of simulation. This is

further supported by the results of example 4, which illustrate an excellent agreement

between simulated time-dependent dynamic data using a reduced bulk modulus and

experimental results. The second parametric study explores the effect of varying the

bulk and basal friction coefficients within the error bounds provided in [5] for grit:

φ = 36.5◦±4.5◦ and φb = 18.5◦±1.5◦. As shown in Fig. 5.7b, there is a clear difference

in the response of the material, although the difference is minor. The difference in

response is also as expected: a lower friction angle increases runout and reduces the

slumped height of the material. This topic will be discussed in more detail in section

5.4.4. Finally, the third parametric study explores the effect of varying the resolution

of the simulation. In SPH, the resolution simply follows SPH particle spacing and

mass. We vary initial particle spacing over almost an order of magnitude, using

4,680 particles in the coarsest simulation with ∆x = 0.01 m, 37,440 particles in the

intermediate resolution simulation with ∆x = 0.005 m, and 299,250 particles in the

finest simulation with ∆x = 0.0025 m. Fig 5.7c illustrates “mesh-convergence” in
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Table 5.5: Model parameters used in parametric studies of granular column collapse.
All models are rate-independent.

Test ρ0 (kg/m3) µl µh D∗ s−1 µb c (Pa) κ (Pa) γ ∆x (cm)
Modulus 1404 0.74 0.74 - 0.335 0 105 1.5 0.01
Modulus 1404 0.74 0.74 - 0.335 0 106 1.5 0.01
Modulus 1404 0.74 0.74 - 0.335 0 107 1.5 0.01
Friction 1404 0.74 0.74 - 0.335 0 105 1.5 0.01
Friction 1404 0.87 0.87 - 0.364 0 105 1.5 0.01
Friction 1404 0.625 0.625 - 0.305 0 105 1.5 0.01

Resolution 1404 0.74 0.74 - 0.335 0 105 1.5 0.01
Resolution 1404 0.74 0.74 - 0.335 0 105 1.5 0.005
Resolution 1404 0.74 0.74 - 0.335 0 105 1.5 0.0025

the sense that progressive refinements in resolution appear to approach the results of

the finest resolution (∆x = 0.0025 m). Fig. 5.7c also demonstrates that the coarsest

resolution of ∆x = 0.01 m used in most of the examples in this chapter yield nearly

identical results to the finest resolution. Further studies into mesh refinement along

with the results presented in Fig. 5.7c can elucidate the appropriate mesh to select

for field scale simulations of events such as dry granular avalanches. Future studies

on resolution are discussed in section 5.5.

5.4.4 Example 4: Column collapse down inclined planes

The ability of a numerical method to reproduce time-dependent two or three-dimensional

granular collapse profiles down inclined planes is important for several reasons. First,

granular column collapses down inclined planes reach significantly higher velocities

and strain rates than those on flat surfaces ( [6, 109]), making comparison with such

experiments a more challenging test of the flow rheology. Second, reproducing profiles

of individual flows is a more challenging test of the flow rheology than reproducing

scaling laws since many numerical methods such as DEM can accurately reproduce

scaling laws despite strongly overestimating the runout of individual experiments

( [134,135]). Finally, capturing the full two or three-dimensional profile of a collapse

is crucial since many complex features that govern the flow, such as convection cells,

only occur below specific length scales ( [111]). This last point further motivates the
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Figure 5.7: Results of parametric studies of various model parameters on numerical
results. (a) Result of varying the bulk modulus over two orders of magnitude does
not indicate any significant change in results. This also justifies our use of κ = 105 in
most simulations in this chapter to eliminate the shorter time step that may otherwise
be needed to ensure stability. (b) Result of varying bulk and basal friction coefficients
within the experimental error bars of [5] illustrates the expected changes, but only
minor changes. (d) Results of mesh-refinement study illustrate the coarse mesh used
throughout the chapter produces results that are nearly the same as the finest mesh.

need for the three-dimensional full-field modeling techniques like the one presented

in this chapter. One-dimensional depth-averaged finite difference models commonly

employed in modeling geological flows are unable to resolve these complex features

( [111]).

In this example, we compare time-dependent two-dimensional profiles of simulated

column collapses down inclined planes with those reported at [6]. This comparison

illustrates the capability of our method to reproduce the complex three-dimensional

time-dependent dynamical processes occurring during the collapse event. This com-

parison also demonstrates the importance of including the rate of dilation β in the

calculation of the friction coefficient for such processes.

We study four sets of numerical simulations of quasi-two-dimensional column col-

lapses down inclined planes with parameters listed in table 5.6. Each row of table 5.6

represents the parameters used in one set of simulations that includes the rate of dila-

tion β in the calculation of friction and one set of simulations that does not include β.

The distinction between the rows is the use of sidewalls. Two simulations employ pe-

riodic boundary conditions in the z direction to produce the effect of an infinitely wide

slope, while the other two explicitly model the sidewalls present in experiments. Figs.
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Figure 5.8: (a) Initial and (b) final configurations for simulations of column collapse
down inclined planes. The right-most near-vertical wall in (a) represents the con-
taining wall that is lifted in the y direction with vx = 2 m/s at t = 0. In the color
figure, blue particles represent interior particles and red particles represent boundary
particles.

5.8a and 5.8b illustrate the typical initial and final configurations, respectively, of all

simulations. Sidewalls are not shown in these figures. When used, sidewalls sand-

wich the interior SPH particles in the foreground and background between boundaries

with the same properties as the basal boundary. In all cases, the initial length of the

simulated granular material in the x dimension is 20 cm, the initial height in the y

dimension is 14 cm, and the initial width in the z dimension (into the page) is 10 cm.

Simulations progress by allowing the simulated material to settle under self weight

before lifting the containing wall in the y direction with velocity 2 m/s starting at

t = 0s. We use rate-independent friction in all simulations, leaving full paramet-

ric fitting of the rate-dependent rheology to existing experimental data for a future

study. We note that this contradicts the work of [111] who used a rate-dependent

model when simulating these collapses and [4] who derived rate-dependent parameters

from laboratory experiments with similar flow rates. Nevertheless, we employ rate-

independent friction and use the four sets of numerical simulations to illustrate how

including β in the calculation of friction can increase the ultimate strength enough to

accurately match experimental results. We note that the simulated granular material

with parameters described in [6] and presented in table 5.6 is a collection of glass

beads of diameter d between 600 and 800 µm.
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Table 5.6: Model parameters used in column collapse simulations for deriving final
runout and height scaling laws.

Sidewalls ρ0 (kg/m3) µl µh D∗ (s−1) µb c (Pa) κ (Pa) γ ∆x (cm)
No 1550 0.435 0.435 - 0.435 0 105 1.5 0.01
Yes 1550 0.435 0.435 - 0.435 0 105 1.5 0.01

Figs. 5.9a and 5.9b illustrate the results of the simulations without sidewalls using

β = 0 and 0 ≤ β ≤ 0.5, respectively, for four inclination angles: θ = 0◦, 10◦, 16◦, and

22◦. Symbols in these figures represent the height of the highest SPH particle at

three times after the containing wall is lifted. The lines represent the experimentally

observed collapse profiles at these times reported in [6]. A comparison between Figs.

5.9a and 5.9b illustrates that simulations using β in the calculation of friction exhibit

more accurate slumping in the bulk of the simulated material near the left-most

boundary than simulations using β = 0 in Fig. 5.9a. Furthermore, simulations

using β demonstrate reduced runout compared to those without β. These results are

consistent with the simulations of [111], who found excessive slumping and runout

even when using a rate-strengthening model without β. We have found in other

simulations, not shown here, that increasing µ as suggested in [137] and [111] to

model the effect of sidewalls does not correct the excessive slumping. The role of β in

our simulations therefore plays the unique role of increasing the ultimate strength of

the material to enhance yield strength and prevent slumping. It also appears to play

a strengthening role near the flow front, where material is constantly turned over and

subjected to rapid changes in strain rate.

Figs. 5.9c and 5.9d illustrate the results of the simulations with sidewalls using

β = 0 and 0 ≤ β ≤ 0.5, respectively, for the same four inclination angles as those in

Figs. 5.9a and 5.9b. These simulations are performed in an effort to exactly repro-

duce the experimental conditions of [6]. In previous simulations where comparison to

individual collapse profiles was not performed, simulating an infinitely wide slope was

sufficient for qualitative and partial quantitative validation. The sidewall boundaries

have the same properties as the bottom boundary. Fig. 5.9c illustrates that the pres-



112

ence of sidewalls, even without including β in the calculation of friction, improves the

slumped profile and runout. However, the simulated profile near the left boundary

is still significantly below that found in experiments. Furthermore, the numerical

simulations continue to strongly overestimate the runout. Fig. 5.9d illustrates that

including both sidewalls and β in the calculation of friction produces results that

agree remarkably well at nearly all times for both the slump and runout. The ex-

ception to this remarkable fit occurs only for the highest inclination angle θ = 22◦,

where the final runout is overestimated. This overestimation likely occurs because a

rate-strengthening friction law is truly needed at the higher strain rates present at

this inclination angle. The excellent agreement at nearly all times suggests that the

presented numerical method, when modeling the same initial and boundary condi-

tions as those found experimentally, and including β in the calculation of friction,

can quantitatively reproduce collapse profiles and dynamics of granular flows down

inclined planes.

For brevity, we leave a full investigation of the three-dimensional continuum fields

and flow structures of our simulated incline plane flows for future work. Such an

investigation will elucidate the physics behind the dynamical processes observed in

simulations and experiments. In Fig. 5.10, we merely present snapshots of the 3D

inclined plane flow with sidewalls at the same times as those shown in Fig. 5.9d.

These snapshots are for the simulation employing β in the calculation of friction.

SPH particles are rendered as spheres and colored by the magnitude of their strain

rate tensor D. We clearly see at all inclination angles that the flow progresses over

a nearly stationary wedge of material. The influence of the sidewalls is evidenced

by higher shear rates in the foreground and background where the sidewalls (not

rendered) are located. It may be instructive in future work to investigate the flow/no-

flow transition, the basal stresses, and the full three-dimensional structure of other

continuum fields in these simulations.
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Figure 5.9: Time-dependent collapse profiles down inclined planes for four inclination
angles: θ = 0◦, 10◦, 16◦, and 22◦. Symbols represent SPH profiles and lines represent
experimental profiles from [6]. (a) and (b) illustrate results with periodic boundary
conditions in the z direction and no sidewalls. (c) and (d) illustrate results with
sidewalls. (a) and (c) show results for simulations not including β in the calculation
of friction. (b) and (d) show results for simulations including β in the calculation of
friction.
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Figure 5.10: Snapshots of simulations shown in Fig. 5.9d for (a) θ = 0◦, (b) θ = 10◦,
(c) θ = 16◦ and (d) θ = 22◦. These simulations employ β in the calculation of
friction. In the color figure, the color of each particle corresponds to the magnitude
of the strain rate tensor D. We clearly see the influence of sidewalls (not rendered)
at the first nonzero time for each inclination angle. At these times, particles appear
to undergo a higher strain rate in the foreground and background than in the center
of the flow.
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5.5 Discussion and conclusion

We have presented an SPH method for simulating the flow of granular materials. A

rate-dependent and dilation-dependent friction law has been employed and justified

from an analysis of the continuum energy balance equation. Numerical examples

have demonstrated that the SPH approach with the proposed constitutive law can

accurately reproduce an angle of repose consistent with the employed friction angle,

rate-dependent flows down inclined planes, scaling laws for granular column collapses

on flat surfaces, and the dynamic structure of column collapses down inclined planes.

We have seen through numerical examples that future work is required before

the numerical method can reliably be applied to a broad range of granular flows.

In particular, four major aspects of the numerical method or constitutive law need

additional study. First, the slip condition created by the imposed boundary condition

needs additional calibration to experimental data in order to be reliable for many

granular flows. Although it appears that the method is able to reproduce the runout

of granular column collapses down inclined planes (e.g., see section 5.4.4), the inclined-

plane flows in section 5.4.2 exhibit significant boundary slip that may not be realistic

in all scenarios. Second, the method for calculating the rate of dilation β used in

the friction coefficient needs to be refined and possibly given its own evolution law

as discussed in section 5.3.4. This will involve calibrating the evolution of β as a

function of numerous rheological parameters to experimental data as was done for the

frictional parameters µl, µh, and D∗s in [4]. Thirdly, we have not provided examples

of simulating granular materials with cohesion (i.e. c 6= 0). We have done this

purposefully since there exists less experimental validation data for flows of cohesive

materials. Simulating cohesive flows poses an additional challenge in SPH of the

so-called tensile instability. Methods exist for remedying the tensile instability (e.g.,

see [119, 121, 138]) and preliminary simulations of our method with cohesion do not

exhibit a tensile instability, likely due to the real viscosity we employ. Nevertheless,

future work should address any needed additions to our SPH framework that will

permit simulation of highly cohesive flows in order to expand the range of problems
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the method can address. Fourthly and finally, the friction law used in this chapter

may need additional work before it can be applied to a range of very rapid granular

flows. We have employed a friction law originally intended for steady-state flows in

the present chapter. Eq. (5.13) and [15] have shown that additional terms related to

changes in internal energy may be needed in flows exhibiting rapidly changing strain

rates. Furthermore, using the inertial number rather than D∗s in Eq. (5.7) as in [4]

may be more accurate for many flows.

In addition to the future work described above, it would be instructive to use

the method presented in this chapter to study the full three-dimensional structure

of continuum fields in column collapses down inclined planes such as those presented

in [6] and [136]. Future validation must also establish the the ability of the method

to accurately reproduce stress fields at the base of granular avalanches, debris flows,

and under sand piles. This test would elucidate the important role of basal stresses

in erosion and deposition of sediment during geophysical flows [139]. Finally, we are

currently implementing a two-phase approach for coupling granular flows with gas

and fluid flows. This extension will permit full-field simulation of geophysical debris

flows and other natural and industrial processes.
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Chapter 6

Discussion and conclusion

6.1 Summary

In chapters 2 through 5, we have provided four studies of granular materials across

length scales. We have focused on inter-particle forces at the micro-scale, illustrating

how these quantities influence macro-scale behavior such as intruder dynamics. The

inter-particle force inference technique detailed in chapters 2 and 3 provides a method

of studying force chains and validating grain-scale numerical modeling techniques.

The appeal of these methods is their applicability to arbitrarily shaped grains, non-

linear materials and non-Hertzian contacts, and dynamic events. Ongoing and future

work with these techniques is detailed in section 6.2.1.

In chapter 4, we have studied friction in granular flows at the mesoscale. We de-

rived a new friction law relating the friction coefficient to the shear rate, coordination

number, porosity, and grain-scale dissipation rates. This friction law allows us to

examine, through grain-scale simulations with arbitrary contact laws (or potentially

through experiments in the future), the grain-scale dissipation pathways responsi-

ble for causing macroscopic friction. This relationship also illustrates friction as a

delicate competition between material dilation and grain-scale dissipation. When

these two processes do not balance one another, rate-dependence is observed. Rate-

strengthening friction is common in granular materials and has been studied using

this relationship and numerical simulations. We direct the reader to another paper

in which we extend this friction law to non-steady-state flows [15].
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We have focused on continuum modeling at the macro-scale in chapter 5. Here, we

developed a new technique for capturing the solid-like, liquid-like, and gas-like states

of granular media in a single computational domain. The technique combines SPH

and a viscoplastic constitutive law containing a strain-rate and dilation-dependent

yield criterion. This yield criterion is justified theoretically using an analysis of the

continuum energy balance equation analogous to that provided in [15]. Numerous

examples demonstrate that the modeling technique accurately captures theoretically

predicted and experimentally observed behavior of granular media in quasi-static

and dynamic settings. Ongoing and future work will extend this technique to allow

coupling of the granular material with gases and fluids, as described in section 6.2.2.

6.2 Ongoing and future work

6.2.1 Inter-particle force inference

We are currently applying the inter-particle force inference technique developed in

chapters 2 and 3 to opaque three-dimensional single-crystal quartz grains imaged

using combined X-ray tomography and x-ray diffraction. This work is in collaboration

with Stephen Hall at Lund University and follows work described in [49].

The data set currently being studied comes from an oedeometric compression test

on 77 nearly-spherical single-crystal quartz grains contained in a 1.5 mm diameter by

1.5 mm tall quartz oedeometer. The grains are subjected to one-dimensional load-

unload-reload up to 70 N on the load curve and up to failure on the reload curve.

We note that failure occurs by crushing of a single grain in a strong force chain.

Fig. 6.1a illustrates the macroscopic load as measured by the load cell during this

experiment. X-ray computed tomography (XRCT) and X-ray diffraction (XRD) are

used periodically during the compression cycle to extract a volumetric image of the

assembly and volume-averaged grain strains (e.g., see [49, 81]). Fig. 6.1b shows a

sample volumetric image of the assembly obtained with XRCT during the load cycle.

Various in-house algorithms are being applied to these volumetric images to extract
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the evolution of particle position and contact point location and direction throughout

the loading cycle. Preliminary results of force inference using Eq. (3.19) at a single

load step are illustrated in Fig. 6.1c. Force chains are clearly seen to develop in the

bulk of the material, splitting and recombining at various locations. While we will

defer presenting most quantitative results until a future publication, we will mention

that the results agree remarkably well with expected statistical trends. In particular,

inferred forces exhibit an exponential probability distribution above the mean force

at each load step. Forces also divide into a strong (40% of total contacts) and weak

(60% of total contacts) network in close agreement with the predictions of [27].

The goal of the work described above is to provide the first three-dimensional

example of our force inference technique applied to opaque grains with sand-like

stiffness. In addition, the ongoing work will determine whether forces in such systems

exhibit features and statistics consistent with past theory and simulations. Force

distributions and force chains will also be studied leading up to the crushing event

that occurs during the reload cycle. This crushing event is a characteristic means of

dissipating energy during failure for granular media. A deeper understand of force

arrangement leading up to crushing could improve plasticity models and predictions of

energy dissipation for granular materials. However, the grain crushing event cannot be

accurately modeled with available grain-scale numerical techniques. Thus, the force

inference technique can provide information currently only experimentally available,

and can also serve as a calibration tool when grain-scale models for particle crushing

are developed.

6.2.2 SPH modeling of coupled granular media and fluid

flows

We are currently extending the SPH technique described in chapter 5 to handle gas

and fluid flows coupled to granular flows. This work was originally motivated by

a need to model gas impinging on a porous surface of sand or soil. This problem

has important applications for planetary exploration, where the current technique of
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Figure 6.1: (a) Macroscopic load curve for oedeometric compression of single-crystal
quartz grains. (b) Sample volumetric image of the assembly obtained with XRCT
during the load cycle. (c) Preliminary results of force inference using Eq. (3.19) ap-
plied to a single load step. Lines connect contacting grain centroids and are darkened
and thickened linearly with force magnitude.
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landing on celestial bodies involves firing rockets downward to arrest motion during

the final stages of vehicular descent. Predicting erosion during this descent would

tighten the bounds on mission risk and provide a quantitative means of comparing

landing sites. While extensive work has addressed part or all of this problem (e.g.,

see [140, 141, 142, 143]), the problem involves numerous coupled phase interactions

that are not easily examined separately. For example, viscous erosion, fluidized soil

erosion, and soil diffusion are all processes involving the coupled interaction of a gas

and granular material. Thus, a full-field modeling technique that captures the coupled

behavior of these two phases is required for a truly predictive simulation of erosion.

Furthermore, such a technique would enhance our understanding of debris flows, gas

or fluid driven terrestrial erosion, and industrial processes involving porous media.

The proposed approach in chapter 5 involved combining SPH with a viscoplastic

constitutive law. SPH is well-suited for the problem described above because it pro-

vides precise interface definition and allows one to calculate ballistic soil trajectories.

Eulerian techniques do not provide this precise interface definition or the ballistic soil

trajectories needed to predict the potentially hazardous motion of eroded soil.

Currently, we have implemented a two-phase saturated porous media formulation

in SPH. We have provided porosity-based switches for drag between phases that per-

mit one to model the Darcy-like flow regime characteristic of low porosity states and

the dusty-gas flow regime characteristic of high porosity states (see [144,145]). Com-

bining these capabilities in a single computational domain will allow us to perform

predictive simulations of gas-driven soil erosion in the future.

A qualitative example of predicting gas-driven soil erosion is provided in Fig. 6.2.

This figure depicts a jet of gas impinging on a sandy surface. The domain is 0.5 m

wide in the x dimension and 0.1 m thick in the y dimension (into the page). Periodic

boundary conditions are used in the x and y dimensions. The sand has density

ρ0 = 1600 kg/m3 (using the conventions of chapter 5), and the gas is modeled as

ideal with a viscosity of 10 µPa·s. The frictional strength of the granular material

is a constant µ = 0.8, permeability is 2×10−10 m2, and gravity is set to 3.711 m/s2.

The soil layer is approximately 0.25 m thick in the z dimension, sitting above an
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impermeable solid substrate (i.e. fixed SPH particles). The gas is driven at 100 m/s

downward and the switch between Darcy drag and dusty-gas drag is at a porosity of

0.38.

The images in the left column of Fig. 6.2 illustrate the sand response only in the

first 75 ms following the gas impingement event. The images in the right column

illustrate the gas response only. At early times, rapid diffusion of the gas into the

granular medium results in a high-pressure region beneath the impingement zone.

This high-pressure region is diminished as gas diffuses deeper into the sand. During

this diminishing process, a crater begins to form on the surface of the granular material

due to the high-pressure bulb of gas forcing the granular medium upward. At later

times, the sand crater is seen further developing, with sand mass accelerating outward

and upward as it is entrained in the background dusty-gas flow.

Future work at the continuum scale will also address modeling other porous ma-

terials using the SPH framework described above and in chapter 5. Adding the

appropriate balance and constitutive laws will allow us to address a wide range of

problems involving large deformation and flow of materials. Some examples include

post-fracture flow of brittle ceramics and comminution of brittle rocks.
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Figure 6.2: Qualitative example of gas-driven soil erosion modeled using the SPH
framework. The left column of figures illustrates the sand response only in the first
75 ms of the gas impingement event. The right column of images illustrates the gas
response only.
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