
I. ELECTRONIC PROCESSES IN a-SULFUR 

II. POLARON MOTION IN A D. C. ELECTRIC FIELD 

Thesis by 

Karvel Kuhn Thornber 

In Partial Fulfillment of the Requi rements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California · 

1966 

(Submitted May 4-, 1966) 



-ii-

ACKNOWLEDGMENTS 

May I express my sincerest gratitude to Professor Carver 

A. Mead for his never ceasing guidance and support throughout the 

two projects reported here and in many others as my advisor. To 

Professor Richard P. Feynman, in whose mind the solution to the 

Polaron problem was conceived, may I extend my sincerest thank 

you for patiently guiding me through the problem, pointing out so 

many relevant ideas and general methods in its course. May I thank 

also Mr. H. M. Simpson for technical help in the Sulfur experiment 

and Dr. Robert V. Langmuir for financing the time-consuming 

computer work in connection with the Polaron. To Mr. Thomas C. 

McGill I acknowledge help with the basic computer program. Many 

thanks also to the National Science Foundation for a Cooperative 

Graduate Fellowship, and to the Office ·Of Naval Research and ITT 

for partial support of the research. 



-iii-

ABSTRACT 

Part I: The mobilities of photo-generated electrons and holes in 

orthorhombic sulfur are determined by drift mobility techniques. 

At room temperature electron mobilities between O. 4 cm
2
/V-sec 

and 4. 8 cm
2 
/V-sec and hole mobilities of about 5. 0 cm

2 
/V-sec are 

reported. The temperature dependence of the electron mobility is 

attributed to a level of traps whose effective depth is about 0, 12 eV. 

This value is further supported by both the voltage dependence of 

the space -charge-limited, D. C. photocurrents and the photocurrent 

versus photon energy measurements. 

As the field is increased from lOkV /cm to 30 kV I cm a 

second mechanism for electron transport becomes appreciable and 

eventually dominates • . Evidence that this is due to impurity band 

conduction at an appreciably lower mobility (4. 10-
4 

cm 
2 
/V-sec) is 

presented. No low mobility hole current could be detected. When 

fields exceeding 30 kV I cm for electron transport and 35 kV I cm for 

hole transport are applied, avalanche phenomena are observed. 

The results obtained are consistent with recent energy gap studies 

in sulfur. 

The theory of the transport of photo-generated carriers is 

modified to include the c .ase of appreciable thermo-regeneration 

from the traps in one transit time. 

Part II: An explicit formula for the electric field E necessary to 

accelerate an electron to a steady-state velocity v in a polarizable 
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crystal at arbitrary temperature is determined via two methods 

utilizing Feynman Path Integrals. No approximation is made 

regarding the magnitude of the velocity or the strength of the field. 

However, the actual electron-lattice Coulombic interaction is 

approximated by a distribution of harmonic oscillator potentials. 

One may be able to find the "best possible" distribution of 

oscillators using a variational principle, but we have not been able 

to find the expected criterion. However, our result is relatively 

insensitive to the actual distribution of oscillators used, and our 

E-v relationship exhibits the physical behavior expected for the 

polaron. Threshold fields for ejecting the electron for the polaron 

state are calculated for several substances using numerical results 

for a simple oscillator distribution. 
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PART I 

ELECTRONIC PROCESSES rn a-SULFUR 

I. 1. Introduction 

The recent determination of the band gap of a-sulfur from 

photo-response measurements at this laboratory( l) indicated that 

both holes and electrons should be mobile charge carriers. As a 

result of that investigation, the energy gap of orthorhombic sulfur 

was found to be 3, SZ ± O. OZ eV from both electron and hole photo-

current. For hole current only, moreover, a distinct and ever-

present local maximum was found between 0, 44µ and O. 45µ (Fig. 1). 

This was attributed to the presence of a trapping level about z. 8 eV 

above the valence band to which electrons could be excited, freeing 

holes in the valence band for conduction. The rather gradual but 

steady decrease of the photocurrent for wave lengths beyond the band 

gap indicated that shallow defect levels might also be present. A 

typical series of measurements from this work is shown in Fig. 1. 

The results of the work reported here substantiate these 

hypothe.ses and render additional insight into previous investigations. 

Although both hole and electron current were found present in compa-

rable amounts, the emphasis is given to electron current: the 

corresponding determination and analysis of hole current in a-sulfur 

has already been ably presented by Adams and Spear. (Z) Our in-

vestigations of the hole current agreed quite well with their work; 

+This work is published with Professor C. A. Mead, California 
Institute of Technology, in J. Phys. Chem. Solids, Z6, 1489, (1965), 
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however, an equally strong case for electron current is also given. 

Several effects indicated in an earlier account( 
3> of electron charge 

transport under greatly restricted conditions are treated more 

thoroughly, the results of which yield a reasonably .consistent picture 

of currents in the insulator sulfur. 

I. 2. Specimen Preparation and Experimental Procedure 

The samples were grown and prepared as before. ( l) 

Grown from cs2 solution at 15°C, they were lapped to O. 1-1 mm, 

and chemically polished in benzene. Consistent with the previous 

work, the response was essentially independent of the metal electrodes 

-6 used. Semi-transparent gold dots were evaporated at 10 Torr to 

one side of the sample and a continuous layer applied to the opposite 

side. _ Great care was taken to prevent heat damage to the surfaces. 

In some cases, to minimize this heat damage , no gold was evaporated 

on one side of the sample, but contact was made directly to a thin 

brass mounting plate with silver paste. The response did not differ 

appreciably from those made by the former method. 

The sample is mounted in a shielded container, and contact 

to the gold dot is made with a 4 mil gold wire probe. About 10 9 

electrons and holes are excited when the sample is illuminated by a 

light pulse from a "Fischer-Nanolite". The duration of the pulse is 

about 10 n sec, a time appreciably shorter than any other time of 

interest. Due to the high absorption coefficient( l) at wavelengths 

shorter than ~ 0. 325µ, the electron-hole pairs are created in a very . 

thin layer ( ~ O. 00 l cm) near the illuminated surface of the sample. 

that most carriers are generated band to band is indicated by the 
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relative magnitude of the photocurrent at larger wavelengths. 

Depending on the polarity of the gold dot, either electrons or holes 

can be drawn across the bulk of the sample, and mobilities can be 

determined by the standard method. (4 - 7) (The charge transported 

versus time is observed with an oscilloscope; the variation of the 

transient time with applied field gives the mobility. Fig. 5,) It 

was never necessary to build up space charge in deep traps in order 

to observe carrier transport of either sign. Allowing such space 

charge to accumulate only reduced the magnitude of the transported 

charge by about 20% but did not appreciably alter the shape of the 

charge versus time characteristics. The magnitude of this space 

charge could be determined by illuminating the sample with no 

applied bias and observing the transport of carriers of the opposite 

sign. (Fig. 2). By comparing this result with that for the sample 

biased for the same carrier but with no space charge present, an 

expression for the field at the illuminated layer and hence the 

equivalent space charge field can be obtained. This space charge 

could be readily neutralized by illuminating the sample at zero bias 

several times until no charge transport could be observed. The 

neutralizing charge could recombine with the space charge or become 

trapped itself. Our results indicate that the latter mechanism might 

be the more likely one. 

I. 3. Results 

Th_e results of the drift mobility measurements are summa-

rized in Table 1. As mentioned before, hole transport is found to 

be in good agreement with the work of Adams and Spear, <2> and is 

not analyzed here. Indeed hole mobilities could have been measured · 
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for all samples, as was done for electron mobilities. With one 

notable exception the electron mobilities at room temperature range 

from O. 40 to 4. 8 cmz /V-sec comparable to hole mobility. For 

samples showing a low electron mobility, a very steep slope ap-

peared during the first 50 n sec of the charge versus time charac-

teristic. In magnitude this represented about 5 to 10% of the total 

charge transported (but remained constant with voltage for any one 

sample), and was attributed to holes being drawn into the illuminated 

electrode, as pointed out earlier by Spear. (4 ) Note that this is just 

the contribution to charge transport expected from charge traversing 

only 5 to 10% of the sample. 

Assuming a trap controlled drift mobility, ( 6 - 7) which 

implies 

( 1) 

' 
one may determine the effective trapping level Et for electrons be­

low the conduction band, and the density of trapping centers Nt. 

Assuming the variation of lattice mobility with the temperature to 

-3/2 
have the form µL = LT , µL may also be determined. The 

temperature of the sample was varied from o0 c to 90°C: Et was 

found to be 0. 12 ± O. 01 eV and Nt of the order of 2. 8 - 3. 5 X 

10 17 cm - 3• A room temperature "lattice mobility" of about 

2 cmz/V-sec is indicated. Carrier transport in sample E appeared 

to be dominated by "lattice" interactions over the temperature range 

investigated. (While the source of the variation of "lattice" mobility 

from sample to sample was not investigated, that such a variation 
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exists is certainly not unexpected.) 

The trapping level and densities reported above are stated as 

"effective" or "equivalent" values. The nature of the photo -response 

versus wavelength for wavelengths beyond the energy gap can be .ex-

plained by assuming that distributions of hole and electron traps exist 

in the band gap which decay more or less exponentially away from the 

respective band edges. According to Rose, (8 ) under these conditions 

the d. c. photocurrent versus applied voltage for a fixed excitation rate 

should vary as 

I 
where kT c is the effective trapping level, and is related to the trap 

density per unit energy by 

( 2) 

~ 

( 3) . 

/ 
where E is the energy between the band edge a nd the trapping lev~l. 

Such measurements for electron photocurrent gave an effective level of 

O. 13 eV, in good agreement with that obtained from thermal measure-

ments. (Fig . 3) . For hole current an effective level of O. 18 eV was 

calculated, in good agreement with the O. 19 eV found by Adams and 

Spear. ( 2) Finally, a careful analysis of the var iation of photocurrent 

with wa velength (Fig . 1) just beyond the band edge (0.325µ) gives an 

effective level of O. 11 eV for electron traps and O. 21 eV for hole traps. 

This third determination of the trapping le\ rels-is most reassuring. 

Analyzing this photo-response for longer wavelengths suggests the 

existence of other hole and electron traps whose density is also 

exponential in energy, and whose characteristic kTc values are O. 4 
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to O. 7 eV. The cross section of these traps seems to be sufficiently 

low that they do not affect the currents measured here. 

The last column of Table 1 records the room temperature 

mobilities for electrons transported across the sample at about one-

ten-thousandth the rate of the electron transport described above. 

These negative charge carriers appear as a small additional contri-

bution to the fir st electrons at 10 kV I cm, but by 40 kV I cm this current 

is so large as to completely dominate the characteristic, except for 

times less than about 10 µsec. {Figs. 3-5) . Above 30 kV/cm; another 

effect enters which contributes to this secondary charge transport 

{described below). Between 10 kV/cm and 30 kV/cm, the authors 

attribute the source of this low mobility electron current to be conduction 

via the previously reported( l) impurity band of electron traps located 

at about 2. 8 eV about the valence band ( L 0 eV below the conduction 

band). { lO) Further association of currents with this band is discussed 
,/ 

below as well as a third determination of this energy level. No cofre'."' 

sponding low mobility hole transport could be detected. 

I. 4 The Avalanche Phe nome na 

To further analyze the low. mobility electron current a bove, 

the cir cuitr y was modified so that current versus time was observe d 

instead of the usual charge-time characteristic . The r e sults obta ine d 

for fields below 30 kV /cm are consistent with the above model: a short 

duration {50 µsec) of high mobility cur rent is followed by a 400 µsec 

decay, and then a 500 to 3000 µsec of nearly con_stant mobility current 

about half the magnitude of that for the high mobility electron s . For 

hole current the decay from the quickly r eached initi al maximum to the 

zero leve l is much sharper, the time constant varying inversely with 
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applied field (8 µsec at 20 kV I cm), and no 1ow mobility current plateau 

is detected. 

The obser.vationsfor both hole current above 35 kV /cm and 

electron current above 30 kV/ cm were inde ed unexpected (Fig. 6). 

Illuminating the surface of the neutralized sample with the nanolite for 

either voltage polarity, current ve.rsus time characteristics of i dentical 

form to those described above would be obtained for times less than 

about 1 m sec for . electrons and O. 1 m sec for holes. This expected 

behavior is then followed by a series of current spikes lasting for 

about 4 msec for electrons to 20 msec for holes. The decay times of 

these pulses were within lOo/o of the RC time constant (8 µsec) of the 

-~ 
input circuit . The spikes were also about equally spaced in t i me (O. 1 

to 0. 5 msec) over mo$t of their duration, and after an initial rise, 

their amplitude decayed exponentially in time. 

To investigate the source of this avalanching, light from a ,,..,­
/ 

monochrometer was focused on the sample and the above measurements 

repeated, as the wavelength of monochrometer light was reduced from 

3. 0 µ. The spikes in the hole current could be suppressed only for 

frequencies near the energy gap (0. 325µ, 3. 82 eV). The electron 

current spike s , however, were repeatedly suppressed for photon 

energies of 0. 96 eV. Neutralizing the sample and repeating the mea sure-

ments, a somewhat higher photon energy was necessary to suppress the 

avalanche. The maximum equilibrium energy necessary after many 

runs was 1. 10 eV. 

These results are seen to be consistent with the energy gap 

data already obtained if viewed in the following manner. With no d. c. 

light source, the neutralized sample is illuminated as before , and hole 
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current is drawn through the material, some of it being trapped in the 

broad trapping levels noted earlier . This space charge enhances the 

field at the electrode opposite the illuminated one sufficient to cause 

the avalanche. With a d. c. illumination near the band gap, these traps 

may be emptied sufficiently rapidly that the space charge field required 

for avalanche cannot be established. That the avalanching carrier in 

fact ejects a hole from a trap as opposed to a band to band avalanche is 

evidenced by the fact that the .spik es die off in time much faster than the 

thermal release time of the holes. Trap ejection reduces the space 

charge and hence the field causing avalanche. A similar argument can 

be given for electrons. Howe ver, owing to the predominate band of 

electron traps at 2 . 8 eV above the valence band, the effect is much 

better defined. Again, when the neutralized sample is illuminated with 

no d. c. light source , the low mobility electron current enhances the 

negative charge in this band which in turn increases the field at the 

unilluminated electrode. In such a field, carriers in the conduction 

band can avalanche with the trapped carriers and reduce the space 

charge below the critical level. When the same experiment is performed 

with d . c. illumination at 1. 0 eV, these traps are emptied sufficiently 

rapidly while the high and low mobility currents are flowing that no 

avalanching can occur. Repeated neutralization of the crystal then 

increases the amount of positive charge in the hole traps needed to 

neutralize the slight increase in negative charge in the electron traps. 

With more holes in traps there would be a tendency for recombination 

in addition to trapping, both effects contributing to a larger space charge 

field which would have to be reduced to suppress the avalanche. And 

to remove more electrons from the traps a slightly higher photon 
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energy must be used. The limiting value for this is about l. l . eV. The 

mechanism of the avalanche may well be similar to that discussed by 

H . t .(.11) a1 z. 

Dean et al. ( 
3> reported seeing electron current pulses, which 

were attributed to field emission effects at the electrodes . . That this 

was not the case he.re is easily seen by the fact that holes emitted from 

the collecting electrode would traverse the sample and relatively few 

would be trapped in the transit at such short transit times. Hence the 

avalanche would occur for a much longer duration than with the opposite 

bias. For this opposite bias (the illuminated electrode positive so that 

holes initially traverse the sample). under the field emission hypothesis, 
. ~ 

electrons would be forced into the sample by the emission, and the hole 

space charge would be neutralized more quickly. In fact the opposite 

was the case. Avalanche attributed here to holes near the collecting 

electrode was two to ten times longer lived than the corresponding · 
. / 

electron avalanche . Hence field emission, if present, plays only { 

minor role compared to the avalanche of carriers from traps. 

I. 5. Supplemental Support of Findings>:c 

Shortly after the preceding four sections appeared ·in print, 

we were challenged to· demonstrate that the fast electron current we 

had discovered was in fact not due to holes drifting the othe.r way and 

to clarify other aspects of the problem. In our reply which follows, 

we discuss (A) the EµT dependence of the steady-state photocurrent 

(Fig. 1), as pointed out by Dr. Spear, (B) the higher mobility electron 

current, (C) the concept of "impurity" band conduction, and (D) the 

* The contents of this section is contained in a correspondence by me to 
Professor W. E •. Spear, University of Leicester, Leicester, England. 
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experimental method used. 

(A) With reference to your µET dependence, where T is a life-

time, a clarification of the photogeneration process is necessary.. For 

light whose energy hv is near the band gap (3. 82 ev, • 325µ), all but a 

negligible number of photogenerated carriers are produced in a narrow 

region about . 001 cm thick adjoining the illuminated surface. This 

penetration depth corresponds to 1% to 5% of the thickness of the speci-

ments used here. This conclusion is based directly on the absorption 

coefficient, Q in cm - l, which is known to lie between 10 
3 

and 10 
4 

for 

radiation at the band gap. Thus for a sample . 02 cm thick and a: = 3. 10 + 3 

at the band gap frequency, the intensity of the light penetrating but 10% 

of the sample would be reduced to 1/400th of its initial value in this 

. layer. Now, most assuredly, the rates of generating holes and electrons 

are equal, as they are generated across the band gap one electron for 

each hole, and their rates of recombination in this layer are equal as 

they recombine one for one. Consequently, the numbers of electrons 

and holes drawn into the bulk of the sample per unit time for the same 

applied field i:p. the layer are the same, as you point out, independent 

of mobility. This rate is just equal to the difference of generation rate 

and recombination rate, and under steady-state conditions this net rate 

of flow out of the generation layer is just the observed current. This 

is true because in the bulk where there is only one carrier present, there 

can be no loss due to recombination, and in the steady state the rates of 

trapping losses are just equal to the rates thermal regeneration. Now 

to find the determinants of this current we observe that the ratio of the 

probability per unit'time that an electron leaves the generation layer 

before recombining (Eµ I Ax) to the probability per unit time it recombines e . 
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( l/T ) is Eµ T I~ where ~is about half the thickness of the gener-

er e er 

ation region and depends only on the wave length of the light. This is 

just your relationship with T pinpointed. E is the electric field in the 

layer; 'T er is the recombination time of an electron, which depends pro­

portionally on the number of holes in the layer, and 'Thr is that for a 

hole. Lifetimes for trapping are, of course, included in the mobilities 

and do not enter explicitly. The significant feature is that if the electrons 

were hopelessly trapped the resulting space charge would reduce E, the 

electric field in the layer, to such a low value that recombination would 

eliminate any observable photocurrent. (Note that with lower E, 'T 
er 

is also lowered owing to the presence of more holes and Eµ 'T would · e er 

then be small i ndeed.) Unfortunately, as you also pointed out, little 

else c a n be obtained from the r e lation Eµe 'T er ~ Eµh 'Thr' (where the 

fields in the layer are n a ively equate d e ven for a constant applie d 

voltage - - one expects different magnitudes of space charge in the bulk 

to alter this e quality), because the T 1 s are strongly dependent on the 
r 

steady-state hole and electron concentrations, which depe nd on the 

mobilities, etc. We have belabored this point to clarify our interpre-

tation of the carrier generation, and again we thank you for calling it 

to our attention. 

(B} B ut of gre atest inte rest and concern b e tween us is , of 

course , the high mobility electrons which we have s tudie d. In the next 

few paragraphs we explain three reasons why the high mobility electron 

curre nt we observe cannot be attributed to the backwards d r ift of hole s 

g enera ted at the opposite surface or in the bulk: (a) while compa rable 

mobilitie s were obse rved fo r hole s and fast electrons , the se mobilitie s 

w ere n e ver equ a l : the y wer e in most cases significantly different beyond 
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the 5% experimental error - - had holes been in transit, the mobilities 

observed would have be e n equal; (b) the oscillographs of hole and fast 

electron charge tra nsport versus time are different - - a small, initial 

transit of holes is observed in the case of fast electron transit; (c) the 

quantity of charge transported in the first few µ seconds is two or more 

o r d e rs of magnitude larger than that which would result from a back 

drift of holes from the surfa ce ·opposite the illuminated one. We trust 

you will examine these arguments care fully: we feel our arguments for 

the fast electron current we observe are sound and strongly supported. 

Owing to the orth.orhorr:ib:ic crystal structure of a-sulfur (Fddd), 

in particular the inversion symmetry, the hole mobility in one direction 

must be equal to that in the opposite direction. (In fact, of course, 

time reversal symmetry implies that for any crystalline structure, 

mobilities in opposite directions must be the same.) So whether holes 

flow away from the illuminated surface, or are pulled toward it, the 

charge transport versus time oscillograms must yield the same mobility. 

But as is clearly evident from our results, especially samples Mand 

X, the mobilities differ by factors of 1. 5 and 3. O~ While, to be sure, 

the mobilities for both holes and fast electrons varied widely from· 

sample to sample, for any one sample, these two mobilities were 

easily and reproducibly measurable to 5% or better . . For s amples A 

through F, while no qua ntitative measurements were recorded, the 

hole current was always n?te d, and 1 /T ( T =transit time) consistently 

differed ( 10% to 100% higher) from that of electron transport for the 

same field strength. We now by hindsight see the utility of making such 

measurements, but we felt and still feel your work with holes was 

sufficient. 
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For our second point, we emphasize graphically the significant 

differences between the charge transport versus time (Q vs. t) oscil-

lographs for fast electrons and holes. For the same magnitude of the 

field, the fast electron transport nearly always rises less sharply in · 

time than the hole transport, indicating the larger role which the traps 

play in electron transport. Furthermore, . regarding the fast electron 

curves, the contribution of the holes to the transported charge is nearly 

always seen as an initial, steep slope on the Q vs . t oscillogram, 

representing 1% - 10% of the total charge transported, This was pointed 

out in Figure 4 and in article 3 of ( 14) and referred to in reference ( 4). 

Referring now to Figure 7, here w e have collected together 

the Q vs. t characte ristics of a sample . 022 cm thick (sample X) with 

an applied voltage of 200 volts from hole current and fast electron 

current oscillograms with time scales of .2, 1. 0, 5. 0, 20, 50, 200 

tJ.Sec/cm, and slow electron curr ent oscillograms at 500 µs/cm and 

2000 µs I cm. For the positive field the hole transport (A) has a clearly 

defined transit time of 1. 7 µsec . For the opposite polarity, the negative 

field, we have a 4% contribution at µh ( B), followed by a well-defined 

e lectron transport which clearly exhibits ~ transit mechanisms 

( C and D). For times in the µsec range, the slope of the charge trans -

port just subsequent to the hole contribution (E) is extrapolated to the 

charge asymptote (F) determine d by the charge level in the 200p.s-1000µ.s 

range to obtain a transit time for fast electrons of 6. 1 i-Lsec. Between 

lOµs and 400µs (not shown) the transported charge rises smoothly. In 

the msec range a second mobility is evident with a rise time of 6. 8 -

0. 6 = 6 . 2 msec. For each sample, such sequences of oscillograms 

were taken for voltages between .20V and 1300V, and each oscillograph 
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was repeated at least three times. Plots of l/rr versus V were made 

-4 
to obtain the mobilities: ~ = 1. 45, I-Le = . 40, 1..1.'I. B. = 4. O· 10 , 

sample X in this case. Usually the "impurity" band (slow electron) 

current did not appear until voltages of about 10 3 or higher were applied, 

owing to the relatively low P.r. B.. Thus they were not determined as 

well as the one shown in Fig. 5 of ( 14), or the other two in Table I and 

were not listed. Our primary interest at the time was in p.e' µL' Et 

and Nt for the fast electrons. In as much as we see the contribution of 

holes in the charge transport for the negative fields so explicitly, and 

that the subsequent characteristic (. 05 µsec to 10 µse c +) for this 

negative field clearly exhibits a more trap dominated flow of charge as 

well as a different mobility (factor of . 3) than does the positive field 

transport, we cannot see how this can be explained as the reverse flow 

of holes from the other electrode. 

As to our third point, notice that the fast electron mechanism 

has transported about one-sixth as much charge as the hole current for 

the opposite polarity. But even for a sample of . 022 cm thickness, as used 
in this example, the contribution to the current due to holes excited 
i'\t the opposite surface is completely negligible. For illumination near 

the band gap, :(3. 82 ev), the intensity of the light would have fallen by at 

least a factor of e -
20 ~ 4. 10-

8 
(10 

3 
:Sa < 10 

4
) ; for illumination around 

A. = . 39p., where (based on Fig. 1 of ( 1) and ( 14) for D. C . photocurrents) 

-3 
the contributions to either current is down by 10 , the absorption of 

-4 -10 2 
light in passing through the sample is still like e to e , 2. 10 < 

2 a< 5. 10 . And even near . 43µ where the absorption of light in the 

sample only reduces the intensity by a factor of e, the generated charge 

- 4 
is still down by 2. 10 . Yet the lowest the fast electron contribution 

was below the hole current 'for the opposite polarity was 1/50; a factor 



-15-
of 1/6 to 1/10 was quite common. Thus on the basis of the comparable 

but distinctly different mobilities of holes and fast electrons, the 

explicit evidence of hole current in the initial phase of the electron 

current, its distinctly different contribution there, and the catastrophic 

attenuation of light near the band gap in the sample or similar reduction 

of carrier produCti on below the band edge, we cannot help but conclude 

we are studying fast electron current in sulfur. 

(A fourth observation, but only a qualitative one, also implies 

that we are observing fast electrons as opposed to reverse flowing 

holes. In the middle of the last paragraph of Article 2 of ( 14}, we 

mention that we observe the presence of space charge left in deep traps 

by a transit of carriers. For both sign of carrier, the Q vs. t oscillo-

graphs for _ the fast current components decrease in amount of total 

charge transported between successive carrier transits to a steady-

state level 5% to 20% below the initial level if the specimen_ is not 

neutralized in the interim (Fig. 8}. [Neutralized sample means no 

carrier transport for zero applied field. All of our reported results 

were obtained from measurements made on samples neutralized after 

each transit of carriers. Thus, in addition, one cannot claim that holes 

were pulled into the sample owing to a negative space charge in the bulk.] 

But to continue, if now indeed holes flowing from the .unilluminated 

surface were responsible for our fast electr_on current, the accumulation 

of electrons in deep traps in the bulk left by the successive transit of 

slow electrons would form a space charge that would increase the field 

for holes at the opposite surface, and thereby enhance the amount of 

transported charge for negative fields, instead of decreasing it, as is 

always the observed result. Note that reverse hole current would also 
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show a larger apparent mobility than µh because of the negative charge 

generated at the illuminated electrode. But the fast electron mobilities 

observed were in fact smaller than (.Lh' [Note also that while the reverse 

hole transit (if it existed) would, of course, also deposit charge in traps; . 

the magnitude is far outweighed by the amount left by the slow electrons. ] 

The consistency of fast electron transport in the above four arguments 

is indeed strikingly good.) 

(C) Designation of the electron trapping levels between . 96 ev 

and 1. 10 ev as an "impurity11 band is undoubtedly a misnomer as you 

pointed out. And for such low mobilities as we both have found, hopping 

is indeed a plausible conduction mechanism: we thank you for communi-

eating your. results to us qualitatively. What we were referring to is 

that the energy of the electrons in this hopping is about 1 ev below the 

conduction band: we concluded that these slow electrons are in this 

11 impurity11 band as they transit the specimen. That the electrons are 

actually in this band rather than in the conduction band (fast electrons) 

was indicated by our avalanche phenomena. Briefly, the avalanche 

phenomena for electron transport are interpreted as being due to 

electronic excitation from the "impurity11 band to the conduction band 

. triggered by electrons in the conduction initially. This is based es-

sentially on the observation that light at 1 ev ( 1. 24p.) eliminates the 

avalanching (see Article 4 of (l,4)). Thus, as the avalanche requires 

a large concentration of electrons to be developed in the ''impurity" band 

(partially to create the needed field strength), and that this concentration 

could easily be eliminated by photo-excit<:-tion at 1 ev, a likely mechanism 

for transport, in view of the fast electron current already present in the 

conduction band, would be conduction in this "impurity" band, possibly 
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by the hopping you suggest. 

(The term "impurity" band is derived from the impurity levels 

in the forbidden band of semiconductors, which arise from donor and 

acceptor impurities. Hence, a level in the band gap of any crystalline 

material is referred to as an 11impurity11 level, and, if of sufficient 

density, it spreads into an "impurity11 band. This terminology is common 

in discussing band structure in the electronic sense as we do in ( l) and 

( 14). In fact, one commonly says that holes (usually) move in the valence 

band, whereas in reality "they" move in their .own conduction band! In 

sulfur these could be due to impurities, to defects, or be as you assert 

trons are very suggestive of your conclusion. But actually, to refer to 

trapping (or any other electronic process for that matter) in molecular 

crystals in terms of band structure is unfortunately misleading, because, 
/'/ 

as you point out, conductivity arises from molecular excited states' as 

opposed to crystal excited states . However , inasmuch as the charac-

terization of electronic properties in terms of a band structure is still 
. . 

possible, its use is most convenient.) 

Regarding your experiments, especially with respect to the 

slow electron mobility you have studied i~ such detail, ( lS) the remark-

able consistency in the temperature dependence of this mobility which 

you point out indeed seems fundamental: it was truly worthwhile that 

you pursued your investigations to this extent . .. :You have found a thermal 

activation energy of . 17 ev for this low mobility electron current, and 

your interpretation in terms of a phonon-assisted hopping mechanism 

is indeed plausible, as mentioned before. What we propose, however, 
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again on the basis. of (a) the presence of fast electron transport in the 

conduction band, (b) the featu·res of the avalanche phenomena previously 

described and (c) the prominence of levels displayed in the D. C. photo-

current versus wavelength curve for holes (Fig. 1 of ( 1) and ( 14)), is 

that this slow conduction is confined to the narrow region of levels 

between . 96 ev and 1. 10 ev (you would say around . 94 ev, but this is 

immaterial). Mott and Twose (9 ) discuss such conduction: the theory is 

based on the overlap between localized electron wave functions in 

neighboring donor sites, and shows how the increase in the density of · 

such s ites lowers the activation energy from the common (Ec -Ed) for 

very low density to a much lower value, approaching metallic con.,. 

ductivity in the limit. Again, we are not saying these levels originate 

from.impurities: we do not know the origin of these levels. They exist, 

and your important findings add significantly to the hypothesis that these 

levels, with a. 17 ev activation energy, give rise to the slow mobility 

current. 

(D) With respect to your search for the high electron current, 

we fully realize the difficulties encountered in obtaining an electron 

beam of sufficiently high density and yet of sufficiently low energy to 

generate appreciable numbers of electrons for transit without these 

being totally masked by holes produced in the bulk. And since you are 

doing such an extensive amount of work with sulfur, and most likely 

with other similar materials in the years to come, may we suggest you 

try using a 11 Fischer-Nanolite", or similar ultra-fast, high-intensity 

light source, in addition to your electron beam and other flash methods, 

to photogenerate the carriers. To use this light source is simplicity 

itself; the reproducibility is fantastic; the half-width of 10 nsec in the 
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intensity, 10%-width of 36 nsec, enables one, for example, to look 

back to 50 nsec to clearly distinguish the initial hole current when 

studying electron transport. If you are interested, the main references 

are the following: Heinz Fis ch er, Journal ~the Optical Society~ 

America, g, 543, (1961); Chemie-Ingenieur Technik 34, 118, (1962); 

and p. 152 ££of the Sixth International Congress~ High-Speed Photo­

graphy, The Hague-Scheneninger, Sept. 1962. The address for further 

information is Irnpulsphysik, Dr. -Ing. Frank Frungel GmbH, Hamburg-

Rissen, Sulldorfer-Landstr. 400, Germany. We have found the instru-

ment invaluable in studying semi-conducting materials as ·well. 

After communicating the above to Dr. Spear, November 8, 1965, 

on December 16, 1965, we received word from Dr. William Gill (IBM 

Research Laboratory, San Jose, California) that, by using yet another 

method, he too had observed the higher mobility electrons in three 

samples. His method of observing transient space-charge ~limited 

current (8) excited by a burst of laser light also fixed the sign of the 

charge carriers unambiguously. He also reported .that the mobilities 

of the holes and fast electrons fluctuated from sample to sample 

( 1.0- 10. cm2. /V-sec), but the low electron mobility was reasonably 

stable around 4. - 5. · 10-
4 

cm2./V-sec. However, no further results 

have been published. 

I. 6. Conclusions 

By analyzing the transport of electrons and holes in at-sulfur 

using transient drift mobility and d. c. photoconductive techniques, a 

consistent picture of the energy gap of sulfur has been developed. 

Comparable values of room temperature electron and hole mobilities 

of the order of 1-4 cm2. /V-sec were found, along with a low electron 
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-4 i mobility cur.rent at 4 X 10 cm /V-sec. Three different methods were 

employed to measure the effective shallow trapping level of the electrons 

(0. 12 .:!: O. 01 eV), and a trapping density of about 3 x 1017 cm- 3 was 

found. The deep trapping level for electrons was also confirmed by a 

third measurement (1. 0 eV below the conduction band}. An avalanching 

phenomenon was also treated and found consistent with the model pro-

posed for energy gap of sulfur. 

I. 7. Note Regarding Theory 

Charge carriers are created near one of the surfaces of a 

flat thin piece of insulating material and depending on the applied bias, 

holes or electrons can be drawn across the sample. The transit is 

observed by measuring the total induced charge on one of the electrodes 

as a function of time. 

Assumptions suggested by experimental results are- the follow-

ing: 

I. Planar geometry. 

II. No injected carriers: the neutralized samples could .be held 

in the dark for hours at .:!: 1000• V with no perceivable change in space 

charge. 

III. A very large dielectric 

) 
er­' -

relaxation time: 
( 12.) 

-16 n S•/O ..Jc.,-m. 
} 

• 
• • 7J. = 7 · f 0

4 
St! c • 

IV . The hole and electron mobilities are independent of the electric 

field: there was no appreciable deviation from linearity of 1 h versus 

V for large V, where T is the transit time and V is the applied voltage. 

V. Large carrier lifetimes: after the photo-generated carriers 

have separated, there is little chance for recombination, as we have 
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only a on·e carrier problem. Trapping and thermo-regeneration times 

may be any value, however. 

VI. In addition to relatively shallow traps which alter the "lattice" 

mobility µL' deeper traps exist which trap carriers with probability 

l/Tt and release them with probably l/Tr. Hence below "free" means 

that the carrier is either in the conduction (or valence) band or in a 

"shallow" trap from which it is thermally. excited at a much higher rate 

than it would be for deeper trapping. 

Consider two flat parallel electrodes of infinite extent ·at x = 0 

and x = d. Then the charge q 1 induced on the electrode at x = 0 due to 

a charge q at x is given by 

I c;l-X 

Gf=-<J. a. (A-1) 

Hence the current into that electrode is given by 

• d1' Vx p.. V / 
1 = dt ::::. 1 71 = 1 d 2 = 1 r (A-Z) 

where µ is the shallow-trap controlled· mobility and r is the transit time 

if no deep traps are present. We now have the essential result that the 

contribution of each charge to the current into one electrode depends 

only on whether it is free or bound: if free it contributes q/T, if bond 0, 

independent of its position. Thus the charge QT measured at time ton 

the electrode at x = 0 is just 

(A-3) . 

where Ot<t) is the total free charge in the sample, Qt(t) the total charg~ 

in deep traps, and o
0 

the initial photogenerated charge. 
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The relations between Qf(t) and Qt(t) are approximately: 

JQ; = - .idt. + 
dt . ?; 

J. Gr. =- Qr 

7t 7r 

where U. ( x) -

Gl :f ( t - r) U ( 1; - -r) 
7 

+ gz_ 
7r 

0 x<I 

I x>I 

(A-4a) 

(A-4) 

The third term on the right represents the flow of charge out of 

the sample. It states that the efflux of charge at t is proportional to 

the free charge in the sample at t - 'l'. As may be checked by the final 

value theorem for Laplace Transformations, the time constant for this 

process T, ensures that QT(t) -. Q
0 

as t -. oo • 

The solution of these Equations via Laplace Transforms for 

t ~'Tis straightforward and gives, since OrCO) = 0 0 , Qt(O.) = 0 

(A-5) 

(A-6) 

If we let the thermo-release time T become very large, we have just 
r 

the Hecht formula. (l 3) Notice that from (A-3) we have 

d Q'T' :::: CJ7 
dt .r (A-7) 
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hence the equation for the initial slope is just 

~ I _ Go t: 
\XT - --::r 

and the intersection of the tangents now occurs at 

Several limiting cases are of interest: 

(A-8) 

Case 1: T ~ Tt ~'Tr This case corresponds to hole transport where 

using Adams and Spear(
2

) 'Tt ~ 10-
5 

sec, and for the mobilities found 

there T ~ 2. 10-7 . sec at 1000 V. T was of the order of minutes. 
r 

, , 

' 
il n d 

As would be expected and as was usually observed, the charge induced 

rises almost linearly at the initial rate to the maximum value. Curves 

of this are shown in Ref. (7). 

Case 2: 'Tt ~ 'T . ~ 'Tr This case corresponds to electron transport 

where again using Adams and Spear(
2

) 'Tt ~ 5. lo-9 sec, Tr~ 32 min, 

-7 I -t/T and again 'T ~ 2. 10 sec. Now QT ~ 0
0

(Tt T) (1-e t) fort.,::;; T, 

so that the linear part has a much · shorter duration, and appreciably 

fewer charge carriers would be observed. Using a solution for t > 'T, 

the charge time characteristic can still be used to determine 'T. 

Alternatively 'T might be made comparable to 'Tt by increasing the 

applied field. 

Case 3 and 4: Tr~ Tt ~ T, 'Tr~ T ~ 'Tt; These cases may be viewed 

as shallow trapping effects. Then 

QT z. Go I: (/-t 7r/?t) - Go t f-or t~r -T . r 

--- Qo for t:. >{ 
__, 



-24-

which is the same result as Case 1. Thus we obtain the result that if 

the release time is much less than the transit and trapping times, the 

charge-time characteristic for transit times less than or greater than 

trapping times are nearly identical. This, moreover, corresponds to 

the result for a long release time and T < < ~ , as is intuitively 
t 

evident. 

··-
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, Table I 

Sample f.l.h l'-e Et Nt p..L P-1. B. 

M 5.0 3.6 

G 5.0 4.8 

x 1. 45 0.40 4x 10-4 

y 0.65 0.005 9 x io-5 

A 1. 1 

B 1. 2 

c 0.7 0 o. 11 eV 3. 5 x 1017 1. 5 

D 1. 92 o. 12 eV 2. 8 x 1017 4.0 

E 1. 3 1. 3 1. 2 x 10- 3 

F 0.87 O. 1~ eV 3. 0 x 1017 Z.4 

Table 1. Table of values found for the room temperature hole mobility 

µh (cm?./V-sec), room temperature electron mobility p.. (cm?./V-sec), . e 

Et effective level of electron traps contr.olling the mobility, Nt the 

density of these traps (cm~ 3), f.LL room temperature electron lattice 

mobility (cm?. /V-sec), f.l.r. B. room temperature electron impurity band 

mobility (cm?./V-sec). 
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Figure Captions 

Fig. 1. . Photo-response of an Au-a sulfur - Au sample, thickness 

. 02 cm, biased to 300 V. A-hole current, 0-electron current. 

Fig. 2. Upper curve, electron transport, 700. V negative bias; lower 

· curve, hole transport, zero bias, field due to trapped electrons. 

Horizontal scale 10µ sec/cm, vertical scale O. 3~ 10-
12 

Coul/cm. 

In several samples the electron charge rose as sharply as that 

for holes. 

Fig. 3. Typical I-V characteristics for D. C. illumination at A. = • 27 5µ. 

Electron current has been increased by a factor of ten to ease 

comparison. 

Fig. 4. An example of low mobility electron transport versus time at 

10 KV/ cm. The first 1/2 msec of the trace represents high 

mobility electron current. Upon going to sweep speeds of 

5µ.s I cm a 4% initial, rapid transit of holes was recorded. 

Horizontal scale 2msec/cm, vertical scale 0.4~ 10- 12 
Coul/cm. 

Fig. 5. Graph of reciprocal transit time, l/T, versus negative applied 

potential for low mobility electron current. 

Fig. 6. A portion of an electron avalanche characteristic. Applied 

field is -1300 volts across a .025 cm sample. Horizontal 

scale • 1 m sec/cm, vertical scale 5 nAmp/cm. 

Fig. 7. Transported charge versus time for holes, fast electrons and 

slow electrons. 

µ = . 40 ~ µI B e • • 

Sample X, • 022 cm thick, µ = 1. 45, r 
-4 = 4. 0· 10 • 

Fig. 8. In which the effect of the accumulation of charge in the sample 

on the charge transport is shown. 
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P ART II 

·POLARON MOTION IN AD. C. ELECTRIC FIELD 

I; ·Introduction 

In this paper we treat the motion of an electron in a 

polarizable crystal at arbitrary temperature subjected to an 

arbitrary, D. C. electric field. The coupling of the electron to the 

lattice is also arbitrary. Many authors have already treated other 

aspects of the polaron problem. (l-S) Here we find a rather simple 

explicit relationship between the electric field strength in the lattice 

and the expectation value of the velocity of the electron. 

In carrying out the solution, we maintain the standard 

polar on model of the electron coupled only to the optical phonons. 

The crystal with electric field is assumed to be initially in thermal 

equilibrium, and the steady-state, translational motion of the / 
/ 

electron subsequent to its injection into the lattice is determined. 

Phonons emitted from (or absorbed in) the polaron are assumed to 

propagate away to infinity without interacting with the phonons 

already present in thermal equilibrium. If the electric field is so 

strong as to alter the frequency of the optical modes, it is these 

new frequencies that w .e must use in our expressions. 

Using this model we present two approaches for the 

solution of the problem. In the first we find the expectation value 

of the displacement of the electron using--Fe"ynman's Path Integral 

method. The coordinates of the lattice oscillators are easily 

eliminated. But since we cannot perform the path integrals over 
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electron coordinates exactly, we approximate the effective lattice 

potential by an arbitrary distribution of oscillators, and then carry 

out a perturbation approach similar to that of Reference 2 (FHIP). 

But we emphasize that this perturbation approach does not involve 

an expansion in the electric field: the electric field term is never 

approximated. Having obtained the expectation value of the displace -

ment, that of velocity follows immediately from differentiation. 

The second approach involves equating the expectation 

value of the rate of loss of electron momentum to the lattice to the 

electric field. The use of time rates of change from the outset is a 

more direct and useful procedure in steady state, non-equilibrium 

processes. 

Finally, we present plots of electric field versus electron 

velocity calculated for a simple distribution of oscillators for 

coupling constants of a = 3 and a = 7. The results are not only 

physically realistic, but point toward difficulties to be encountered 

if one desires to accelerate electr ans to energies above the rest­

strahl energy in polarizable crystals. 
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II. First Approach -- Electric Field-Velocity Relationship from 

the Expectation Value of the Displacement of the Electron. 

A. Outline of the Method 

To determine the displacement in time of an electron in a 

polarizable crystal in a uniform, static, electric field, we proceed 

as follows. First the expectation v a lue of the displacement of the 

electron is cast into the form of a Feynman Path Integral, from 

which all the coordinates associated with the lattice can be elim­

inated exactly, leaving only the coordinates of the electron. Then 

the action in the path integral is approximated by a .distribution of 

harmonic oscillators, which enables us to expand the displacement 

in a power series in terms of the difference between the exact and 

approximate actions. Using an expansion motivated by an exact 

summation of such a series for a similar problem, we rewrite our 

series expansion in a form which more accurately represents the 

physics of the problem. Finally, a comparison of this result with 

various special cases which can be solved by other means leads 

directly to the final expression. 

B. The Expe ctation Value of the Displacement of the Electron 

If we let p be the density matrix of our electron-lattice 

system and x the position operator, then the expectation value of 

the displacement of the electron at time t, (x(t)), given that its 

value at t=O is zero, is 

< XC t)) (/) 
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For thermal equilibrium problems, one can use p=exp(-f3H), where 

(3=1/kT and H is the Hamiltonian of the system. In our problem, 

however, only p(O)=exp(-(3H), because we have assumed thermal 

equilibrium initially. To determine the density matrix for t:i'O, 

we solve its time-evolution equation 

and therefore 

r 
_i{ f, H(s) ols f(tJ= e Yn o 

[H;f] (L) 

(3) 
Here the time-ordered operator notation is used: unprimed operators 

to the left and ordered right to left with increasing time, and primed 

operators to the right and ordered left to right with increasing time. 

The Hamiltonian appropriate for an electron interacting 

with the longitudinal optical modes of an at least partially ionically 

bound crystal in an electric field, which preserves the essential 

physics of the problem, is 

where a~, aR are the creation and annihilation operators of .Phonons 

of momentum k, frequency wk , coupled to the electron via 

p is the momentum of the electron, m is its effective mass in a 

fixed lattice, x is its position coordinate, V is the crystal volume, 

e the magnitude of the electric charge on the electron, F(t)=-eE(t), 
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and E(t) is the electric field in the crystal. In Frt>hlich's model, ( 3 ) 

' 
(5') 

where 

(C) 

We maintain the usual convention of setting ii :::l, working with a unit 

volume, and incorporating the e into the E(t} so that -eE(t}-rE(t}. 

w;c is 2ir times the frequency pf the longitudinal optical phonon 

branch. 

To evaluate (1) we note that since the energy of the electron 

and its interaction with the lattice is completely negligible compared 

with that of the heat bath, we may set 

JJ(o) = e XI' ( - ~ :::i._ w - ~'! q -) 
I . r- k.l<K 

I< 

(7) 

as in FHIP. (4 ) (If one questions the validity of this approximation, 

or in fact the entire approach, for zero temperature (infinite 13}, he 

may GOmpute the expectation value directly without resorting to 

statistical means, because in this case the initial wave function for 

the lattice as well as for the electron is known. The result of such 

a computation gives the 13= oo limit of our solution here.} 

The problem of integ rating Tr(p(t)) over the crystal 

oscillator coordinates has been solved in references (2) and (5}. If 

we replace . F{t) in e quation (3) by F(t):::E(t) + xLcS(t - t; ), then 
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(8) 
_, -

(Note that we still hold F(t) = E(t) : Tr(p(t)) has conveniently been 

performed for different F(t), F'(t).) When converted to a path 

integral, Tr(p(\)) assumes the form 

Tr(f (t
2
)) ==-ff ei le ( 9) 

where 

x r -tz(L . 2.. - ) rr2(· ' . ,2 _, 
.:t::~ = J,,. ~ tnX(t) + Frt:.J • xc-rJ dt - J,.. 4. mx Ci) +Feel ·x(rJ)df e o . o 

JJ3k ft:z It: [. . -/-l _, 1l _ + i - / c -/2 Jt d-t' R ct-t'Je'k·\x ft.)- x (t.'h. fl*(t:-r." il<·(i(tJ-'ift'J) 
(2 rrJ k <> o ""£ +tt"'u .1e 

and 

R (t-t 1)::: w-
"' 

i 1.v,. (T:- --c'J 
e + 

-i w-(t:--t') e I< 

et.t.Ji</5' -I 

(10) 

(11) 

Although equation (10) represents quite a simplification in that the 

oscillator coordinates have been eliminated from (1) and (4) exactly, 

w e know of no way to perform the last two path integrals. Thus we 

must use an approximate method, taking care to ensure that the 

electric field term in the action (or Hamiltonian) is not altered. 

C. The Method of Approximation 

The method of approximation that is physically a very 

reasonable one and that has worked particularly well on two prior 

occasions (l, 2> is to replace r d 3k Jc ;z i R ·F 
j (21T)J k ~ ' 
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which is a l/r potential for the Frt:>hlich Hamiltonian, by a harmonic 

oscillator potential r
2 

This means replacing, for example, the 

term R et-t'Jfd.!.L J ci 2 -/k · ( x rr-J- x'te >) in the exact action 
Wj; (2 TTJ1 X' e 

~ I I I ')j-1 ~· which is *1 R....,J<"(-t:-t; 1
) • X (-t-) - j{'(t for the Frtlhlich case, by 

~ R..n.. (t:-t 1) (X'(t)-Xfi:'J)z.. The relative strength of the 

oscillator, -A, and its frequency J2, can in some cases be rigor-

ously chosen by the criterion that the free energy of the system is a 

minimum. For our problem it proved expedient to approximate the 

action by a distribution G(Jl) of such harmonic oscillator potentials 

to simulate the loss of the kinetic energy of the electron to the lattice 

acquired as it falls through the impressed potential. ( 6 ) (One may 

recall that while neither a perfe ct inductor nor a perfect capacitor 

can dissipate energy, an infinite ladder of series inductors and 

shunt capacitors has a finite resistance.) We h a ve not been able to 

find the corresponding variational principle, such as minimizing the 

free energy for a given expectation velocity, which would tell us the 

best possible distribution G($1,) to use for a particular velocity. 

However, our expression for the field dependence of the velocity is 

relatively insensitive to the distribution. Thus while the determina-

tion of the actual distribution remains a very important unsolved 

problem, much of the physics of this problem is still open to us 

without explicit knowledge of G(f2.). 

Thus let us set 
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. o<A loa ftz ft: [ +I ff 0 G{fl) vlfl 0 J.t 0 df. 1 ~ (t:-i') ( x tt)-x 1(t:') )-z. 

' 
(12) 

and expand equation (9) as follows: 

(I 3) 

.Notice that the various powers of (i'e-- ..10 } include an electric field 

dependence only indirectly through G(.52). The most sensitive 

dependence ( ~i E(t)•X(t)) is never altered. 

While each term in the power series expansion (13) can be 

evaluated knowing the one basic path integral evaluated in the 

appendix, this approach would be algebraically unwieldy. We 

therefore make use of another argument,. motivated in FHIP§4, 

which gives us a means to obtain what we believe to be a physically 

accurate estimate for the sum in (13 ). 

Suppose for a m oment we had a different problem, one in 

which the exact action ~, was of the same form as that of £0 , 

except that the G(..Q) distribution of oscillator potentials was 

replaced by another distribution H(Jl). Then we could evaluate 

ff ei'~ either exactly or by via the expansion (13): 

ff e.'·:£., = ff ei 'ffo e i(.£,-~o) 
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(14) 

It turns out that for our problem where we are interested only in the 

expectation value of the velocity in the limit t:z.~ 00 (steady-state), 

that only the zero-order and first-order terms in (14) need be 

calculated in order to sum the series. (The other terms are not 

zero, however.) 

To present this more clearly we refer to the following 

exp ans ions: 

where 

j< xc~i>>i< = / i::b :L Sfi~. ~/./; !Jrxrr>J Jj(x'c·o) 

'< X t-t 2) >x = / L 
0 

;;a'- J J e ; .P 1< JJ (. x c t:)) cf) C x (-t)) 
Also 

and 

j~=L 
ta.~_, 

VJ<= L ~t < X(i:~)~ t:,__,, ,.0 .,:;\. 2 k 

(JS-a.) 

(/Sb) 

(1 S-c) 

{I S-d) 

(!Se) 

{/s-f) 

The v's represent the several veloc ities we must calculate. Upon 

e valuating the four terms in (15b) and determining (15e) and (15f) we 

find 

~6) 

to be an exact expansion of the velocity v 1 • This is nothing more 
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than the first order expansion of the reciprocal of Yt-;:::. V0 +(,~ -0~) 

as would be found from retaining only the first order terms in (15b). 

This correspondence, supplemented by the physical reasoning for 

using such expansions in this type of problem given in FHIP (p.1009), 

means that by setting 

v2 
0 

(J 7) 

we can obtain a far more accurate expression for ve. The con-

sistency between this approach and those of sections II and III is 

also reassuring. Also it turns out, moreover, that Kt0 = - •V
0/vo-z.. 

which reduces (17) to 

( 18) 

This e xpression represents another step towards our E-V relation-

ship. 

D. The Evaluation of the Velocity 

Once Sf e i ~0 has been evaluated, various algebraic 

manipulations may be used to de t ermine the v
0

, v , and v for 
e o o o 

equation (17). The calculation of this path integral is long and is 

outlined in the appendix. Using this result, we may at once find 

< x(t z} >a and ( x(t 2 )>, , for which F(t} = ~Eu(t) + ~Lo(t - t;} and 

F'(t} = ~Eu(t) 

(19a.) 
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(I Jb) 

where the pre-subscripts G and H refer to whether Kl' was formed 

from the G(.J2.) or H(Jl) oscillator distributions. Notice that 

&m, ( ~('/));:; i°Jw rcwJ SI YI W'/' 

' 
(20) 

which is independent of the temperature. It follows that 

( X(t;1)>o = -ZE ~ Gl</i (t:~) (21a) 
and 

< X(tz)>, = -2£ ~ H/(~{"!2) (2.16) 

and pas sing to the limit t7.-r «=> , we obtain 

E 
(22 a) Vo ff '\fro< (-A)'J I 

and 

E (:z. 2. Ji) V;= rr-1/2' ~(-'4) A, ' 
where G(fl) = ~ 1 )2 +- • ' • and H(Jl) = h,.Jl +I I I (Taylor 

series expansions of G and H about}2. = 0, with G(O) = H(O) = 0). V0 

and v1 are independent of the temperature and the e l ectron mass. 

These results express the fact that in zer o order , where we 

c onsider merely the coupling of the e l ectron to a l attice via a 

distribution of harmonic oscillator pote ntials in place of the more 

correct Coulomb interaction, the only oscillator s capable of con-

tributing to the D. C. mobility are those of lowest freq uency. For 
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that problem (22a) and (22b) are exact for all values of electric field, 

and the relationship is linear as one would expect. (We remark in 

passing that a Hamiltonian H 0 which leads to the action ~o in 

equation (12) is 

where m/..z.= 8e><{-A) r°'°dJl GC.Jl,) = f i!K-.1 D-/z. k' _/_ 
. ~Jo Jl ('2.7T)J k 3 Jlk" ' 

in .which the linear coupling to the oscillators is explicitly apparent. 

But because this Hamiltonian no longer represents the non-linearities 

inherent in the original problem, we do gQ! .use H 0 here.) 

In order to calculate <x(t., )) and <x(t., )) we must 
o "- <r / "' 0 

perform f[et'~ iPo and JJ ei~0j£1 In fact, the former can be 

obtained from the latter by replacing H(Jl.) by G()l) . Also, as it is 

only the difference of actions ( !21 - i 0 ) which enters, we need 

consider only the third term in (12) . As a shorter notation, we 

designate the solution of ff ei'lo by JJ f fc-c)J F~-t)j- where we 

·~ 
specify the forces to be inserted into JS e' 0

• Using this notation 

we may write 

ff ei iP0 i ~ = - .:><~) J.. i-loz) d.ll f-:Jc>OJe L: J.7l c ~re-?[) /kt[·Cff< o) 

+ R;c•-11>tt~· (ff (2))- ft.re-11>tfo-1Jf(3))-RJre-71) ~=o f;.(JJi+B. 

where 

(2.3) 

(23a) 
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and 

J]iJJ= ff{ FCi:J=(Eu(t)+LUt-t;.))x) Pt-1:;= E u{-t)x -r "k{J(t-~>- I (t:-?-t))j 

(23h) 

fj{J)=fj{ Fr·n= ( E"(-t) +Lr c-e -t;))x + "i< d (t:-r;,J J F !tJ =,Eu {t;)~+"kJrt-11>} 

Although the algebra is quite involved, the results are quite simply 

expressible: 

\/, - - E.<J..' (24-a) 0 0 -
1"'r' VZ'-: {-II) 3/· 

,vo = - Eh, (24h) .,,-,rzr o< (-A) J/" 

Again there is no temperature or mass dependence. Note also that 

fv
0 
= - 0 V~v0' , which is needed to re'duce (17) to (18). 

The calculation of J}')ffe e ,·IF;, to obtain e v 
0 

can be per -

formed using 

(ZS) 

where the notation of (23b) applies. Again doing the algebra and 

inserting the res.ult for e v 
0 

into (18) yields 
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(26) 

where /-e -/w§ ) 

-t- e /l"" - I 
( 2 6 a) 

E. The Electric Field-Velocity Relationship 

The result obtained in (26) for the approximate velocity v4? 

as a ~unction of E, the electric field, is unsatisfactory in one 

respect: the critical dependence through v<J of the result on the 

particular oscillator distribution for small .Jl . To remedy this 

we are motivated to replace v 0 and ve in (26) by v, the expectation, 

steady-state velocity. The result is 

as our fundamental equation relating the velocity to the electric 

field. Several excellent reasons for this replacement are presented 

in the next and following sections; they are based on an examination 

of several other computations in different limits of velocity, 

coupling, and temperature. Equation (27) includes the nonlinearities 

of the problem: it is just that they are not included precisely. 
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III. Comparison with Othe r Results. 

In this section we compare our equation (27) for E versus v 

with several other relationships to d e monstrate that this equation 

includes the physical effects we would expect from the nature of the 

problem. 

A. Comparison with Equation (26} 

As may be seen by inspection, in the limit of low velocities, 

where we may expand e-il<xf vo in (26) and e-/kxiv in (27) in 

power series and identify v with Ve , the equations agree. This 

comparison is valid for arbitrary coupling and arbitrary tempera-

ture. 

B. Comparison with Weak Coupling Model 

If we consider the special case of the electron in the crystal 

lattice under the hypothesis that the interaction is so weak that we 

may consider the collisions with optical phonons to occur essentially 

independently, that is, sufficiently separated in time that quantum 

interferences among thes e collisions are negligible, then using 

first order perturbati on theory (F e rmi's Golden Rule), we can 

determine the net rate at which the electron loses momentum. In 

steady state this rate just equals the applie d force, in this case the 

electric field. 

The rate at which the electron loses momentum k in a 

lattice at thermal equilibrium is 211/CJ</z~(-~+ ;;;3 -u11<'J/(/-e-l'..,JZ), 
and the rate at which it acquires momentum k is 
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where P/ is 

the momentum of the electron before the collision. Replacing the 

c&; roo -i'x~ 1 ~ 
delta function byA1l' (x)= J_c:o e cf. s , summing over all possible 

k , and averaging P/ over a Maxwell-Boltzmann distribution of 

electrons with mean velocity v in the direction of E, we obtain for 

the equation expressing the conservation of momentum in the ~ 

direction (E !Ix ), 

£:::J/I) d!fd3k /C-/z/< (eiw!<'~ + e-/w*-i) -/kxv§ -1<-z.J?;'(f) 
_.., {21YY /( x /-e-w.k/ e fSw~ -I e e (2 8) 

where J<;{§)= ~ { ~ - i ~) . From FHIP we recall 

that for low a (a< 1) one uses forJ;, just the free-electron influence 

functional which gives ~(SJ=~{ ~-i ~) in (27). Again we 

obtain a consistent correspondence as well as a .hint as to how to go 

about solving our problem more quickly. This hint is exploited in 

section IV. Of course, in order to assume a Maxwell-Boltzmann 

distribution as we do, we must assume that for a given velocity the 

temperature is sufficiently large so that l/Zmv.,..<< kT is satisfied • . 

C. Comparison with Rate of Energy Transfer 

One may calculate to lowest order the rate at which energy 

is being transferred from the electron to the lattice using the 

expression 

in a manner similar to that used to calculate Tr(xp). The result is 
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Again replacing v0 by v we obtain. a more physically accurate result. 

This is evident for weak coupling by carrying out section B for rate 

of energy loss. The result is equation (30) with v 0 replaced by v 

and ~ (.f) replaced by the free electron i<,.:{.J) Thus again 

from the weakly coupled problem we obtain the essential form of the 

velocity dependence and from the arbitrarily coupled problem, the 

form of ~(S), which corresponds to a scattering probability 

(FHIP p. 1011). 

(In principle one should be j us tifie d in writing ~=Ev, 
expressing the :fact that the rate at which the _ electron loses energy 
must equal the expected value of the forc·e timesthe velocity,-and 

r-· 

this result could be compared with the E- v relation of section B ,,.....­
(28) or (27). If both results were precise, they would, of course;/ be 
equivalent. By the result of the approach used in§ II to obtain (27), 
we regard the momentum relation to be the more accurate of the two. 
However, both r~lationships give quite similar physical behavior. 
We discuss this further in§ IV.} 
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IV. Second Approach - - The Method of Rates 

In sections B and C of the last article, the conservation 

of the energy and momentum in the steady state was utilized in 

finding relationships between electric field and velocity for weak 

coupling. In this article we formulate this procedure in a general 

manner. This will have the advantage of eliminating the necessity 

of having to take time derivatives, as well as casting the result 

directly into the form of {27). 

The time rate of loss of the electron momentum and the 

time rate of loss of electron energy are given by 

(3 I) 

and 

[32) 

respectively. The time derivatives are easily computed from 

iii 6 = ( 0, ri] and, if we define 

, (33) 

then {31) and {32) become 

(31~) 
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A 
The expression Tr( Ri< p(t)) gives the net rate of production of 

phonons of momentum k at time t. Such a quantity is useful not 

only in calculating the electric field-velocity relationship, but also, 

for instance, in determining the angular dependence of the phonon 

energy emitted from the polaron "shock wave" for velocities above 

the "critical velocity for the emission of optical phonons." (This 

l_atter comment refers to the second order perturbation theory 

result for the polaron energy. For electron momentum above..,,..rz-1 

(electron energy greater than Wk= 1) this energy becomes complex, 

and twice its imaginary part is the approximate rate at which 

phonons are emitted. ) 

We again use equation (3) to substitute fo·r p(t), eliminate 

the oscillator coordinates, and transform the result into a double 

path integral to obtain 

e; 'i<·C><r .. -x~) e'"";;Cti.-r:J 

I- e-P'tNk" 

(34) 

where fe is given in equation (10). At this point we could use 

momentum cons e rvation to 

follows immediately from 

This equation also 

0: ffe;ffe is 

independent of xt
2 

since the path integral is integrated over xt
2 

• 
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However, as we shall see, a more physical approach is to change 

the variables of integration in (34) to x = y + vt and x' = y' + vt, 

where v is the expectation velocity of the electron, to obtain 

(3S) 

where 

(3sa) 

' 
(3SL) 

and c,.</- - W- -k V I< - ~ x (3cc) 

Again to proceed farther ,· we must approximate the action 

:z:' 
.:t:'e so that the path inte grals can be performed, but without loss of 

the essential physics . Only now that we are in a system translating 

with the electron, the replacement of the actual electrostatic 

interaction by parabolic potentials centered in the mean position of 

the e lectron should permit a more accurate determination of 1)3( ! ). 
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In particular, KJ3( 5) 'will have velocity dependence in addition to 

that through G(J1), the oscillator distribution. The computation of 

this improved approximation is quite involved; the result has only a 

small additional dependence on the velocity and offers little further 

insight into the problem. This further supports the statement that 

KJ3(.1) is relatively insensitive to the velocity. 

If we formulate the result for Rk in terms of the model of 

· § II, we obtain 

't:z f ( e/(wi< -k,y)r-_ . e-1141,- -1<,.,v)r) -k:l.ft: (t) 
R- = / C;;jz_[ di /- e-,Bwii eP"'P-/ e. '/J 

I( ,.. 0 

e-/(wf<-l<x v)t.:- ei(wfl -1<.xV )t: ) -k?./( 7<'-( t:) J 
+ ( 1-e ;BwJ7 - e/JGl.l'R'-/ e ~ 

(36) 

and if we let tz~o::> for steady state, we recover our basic E - v 

relation (27) from E =~kxR'k· 
K 

Using W :z: ~wk Rk , we also ob.tain 
I< 

approximately the rate at which energy is being transferred from 

the electron to the optical vibrations of the crystal, as discussed in 

J III. C. Physically this quantity must equal the product of the field 

and the expectation velocity (Ev), which also gives an E- v relation. 

One might be tempted to argue that we should constrain our oscillator 

distribution to be such that the two E- v relations agree identically. 

But then another calculation with the Rk would not have the accuracy 

one might claim on the basis of such agreement. We prefer to 

regard (2.7) as our final expression, and use greater care in 
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applying the approximate rate, Rk . 
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V. Note Regarding a Variational Principle 

The most natural variational method to try would be to 

extend Feynman's approach in reference (1) to our distribution of 

oscillators at finite temperature. The result is 

C,37) 

where 
2 ) (I - cos w,. ~) 
z::::. (w,. 

I 
{37a) 

and (3 7 J,) 

(Note Z( V") = -Z(-i( '\! + i 6 )) : see (A-14).) This inequality tells us 

that if we choose the Z(wn)• n = 1, 2, ••• , so that Fe is as small as 

possible, then the corresponding oscillator distribution G(Jl), or 

for that matter the corresponding Z(v), which is all we need, is the 

distribution to be used in computing KJ3( f ). However, if Wf!! write 

K{3 (~) (26a) in the equivalent form 

and recall all poles and zeroes of Z(w) iie in the lower half plane, 

then we see that knowing Z(w) only at w = iwn is insufficient to 
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determine K.13( ~). To be sure one can still introduce a distribution 

of oscillators which depends on only a few parameters and minimize 

(37) with respect to each to obtain the value of these parameters. 

But the problem of determining a variational principle for processes 

similar to the polaron one considered here. is much harder and 

deeper than this. 

' 
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VI. Numerical Results 

The crucial test of our E- v relationship is, in the absence 

of · experimental data, physical reality. Taking for our distribution 

of oscillators, a single oscillator, just as was used in references 

(1) . and ( 2), choosing for the frequency and oscillator strength 

parameters those values giving the lowest free energy at zero 

temperature, (l, 
2

) using the Frtl hlich Hamiltonian, and assuming 

wk= 1 for all k, we present the electric field versus velocity for 

couplings of a = 3 and a= 7, for j3 1 s between 20 and. 001. In our 

units f3 is the ratio of the energy of the longitudinal optical mode 

to the average thermal energy of the lattice. Typical longitudinal 

reststrahl energies range between room temperature and six times 

room temperature. (The longitudinal reststrahl can be determined 

from the experimentally measured transverse reststrahl frequency 

using wL/wT = Vo/eoo r( 9 ) where c is the D:·C. dielectric constant 

and e"' is the electronic contribution to the dielectric constant.) 

For numerical work it is convenient to cast the integrand of 

(27) into a purely real form. In general, ~/~) is positive and 

otherwisev.eJ..1-behaved in the region--t!E:R~(t)(.ao>O~I,,,(t)~f. If we 

shift the contour from Im(g) = 0 to Im(J) = j3/2,we obtain 

where 
(3Ja) 
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· -ik, v(j-t/~) . 
(Only the real part of e X enters, of course, but (39) 1s 

a just-as-good place to start.) Making the substitutions indicated 

in the first paragraph, we find 

7..57:./ -x-0 '2 e 2.A($J cos ~ 
. ,AC.s) 

s·sinx~) 
Acs) 

(40) 

where 

c..osh pvo/z. - c. os s Vo/l-z. 
st'nh /ll'o/7.. 

(40 ot) 

and w
0 

and v0 are the variational parameters corresponding to a. 

The values used here are a = 3, v
0 

= 3. 4, w0 = 2. 5, and a = 7, v0 =5. 8, 

w
0 

= 1. 6. (FHIP p. 1012.) While one would expect these values to .be 

valid only for large (3 (low temperature), We use them for all 

t e mperatures. In fact for high temperatures ((3>0.1) the E-v 

relation no longer depends significantly on w0 , v0 • This is seen by 

expanding A(s) for small f3: A(s) ~ (.v~ I w~ )(s 2 +1), and setting 

z = (w0 /v0 )x in the first integral. Therefore, we expect the 

numerical results to be a bout as good as would be obtained if 

different v0 , w0 were inserted at each temperature. 

The results of the computer work are shown in figures 1 

and 2. For f3 ~5. 0, the linear region was also calculated by hand. 

The variables shown (EE, vv) are related to the dimensionless 

variables (E, v) used above by the equalities 
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vv= v · 
_j__ -
llntJ - V • 1-18. 10

1
' (4-la) 

EE:::: E 
V me' ,, 
~ ~ E·Z.7.S (1-1/,) 

where me is the mass of the electron in eV-sec 2 / R. 2 .~ To obtain 

eE, the force on the electron in eV/ R, and vr, the velocity in 

'A.! sec , one uses 

vr-= 'Jfi' · ~ ·vv (1-2 a) 

[;;£7 ( )~ eE= v~ ' -f.. WL. • EE (42b) 

>'< 
where m ' is the fixed-lattice, effective mass, and 11.wL is 

expressed in eV. 

The physical interp:i;etation of the curves is straightforward. 

For ,133-2. 0, about room temperature and below, the field-velocity 

'relation is linear until the translational kinetic energy of the 

electron approaches the reststrahl energy (vertical dashed line). 

Then the electric field must be increased to a threshold appr oxi­

mately independent of temperature before the velocity of the electron 

can again be increased substantially. However, once the threshold 

is reached, further increases in the electric field appear to no 

longer correspond to physical velocities. This means that beyond 

the threshold of the electric field, the electron is effectively 

"pulled out" of the polaron state, and other mechanisms, such as 
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acoustic phonon scattering, impurity scattering, etc., must be 

included in the physics of the problem to limit the electron's 

acceleration. ·For higher temperatures, f3<2. 0, the effect is less 

dramatic. However now the threshold for breaking out of the 

polar on state increases ·: with temperature, as does the velocity 

where this occurs. This is evident physically if we recall that 

r'.. for only f3 < .2. 0 do we have appreciable numbers of optical phonons 

in the crystal, and as the temperature increases further, this 

number increases rapidly. Thus the electron encounters far 

more scattering from phonons already present, and consequently 

higher and higher ~ields are required to overcome this damping. 

Let us consider; · as a specific example, the case of 

MgO: aZ-3; assume V?'s = l; 11.wL = .0730V9.65/3.o3' = .13eV~lO) 
Then the threshold field for temperatures~ 750°K (j3=2..) is about 

.1 eV IR . Thus on the basis of this theory, we would predict that 

in order to accelerate an electron in MgO to energies of over .13e V, 

an electric field strength of about .leV/R (10
7 

volts/cm) is 

necessary. This may be a relevant minimum voltage for the 

operation of cold electron emission devices using MgO as the 

insulator. (ll, 12) The threshold for exceeding the reststrahl 

energy for Al
2

0
3 

will lie higher by about a factor of 2, and that for 

BeO, lower by about the same factor. 
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VII. Conclusions. 

In this paper. we have treated the motion of an electron in 

a polarizable crystal under the influence of a D. C. electric field. 

Starting with the crystal in thermal dynamic equilibrium, the 

electron was injected with zero velocity, and its subsequent steady­

state motion was determined using two methods. In one approach 

the expectation value of displacement of the electron was found, and 

the time derivative gave the steady-state velocity. In the other 

approach, the rate of loss of electron momentum to the lattice was 

set equal to the electric field to obtain the E-v relationship. In 

both cases no approximation regarding the field strength, velocity, 

lattice coupling constant, or temperature was ever made. However, 

the part of the action in the Feynman Path Integral related to the 

electron-lattice interaction is approximated as closely as possible 

to physical reality, and expansions in the difference of the exact and 

approximate actions are combined in manners suggested by the 

exact solution of similar problems. The resulting expression rela­

ting E, the electric field, to v, the velocity of the electron, is an 

explicit formula for E as a function of v, and was evaluated 

numerically over a temperature range of 2•10
5 

for two coupling 

constants. The results give physically re as enable thresholds for 

the electric field strengths necessary to 11pop11 the electron out of the 

polaron, which may be at the root of the current problem of the low 

yield in tunnel-emission devices. They also exhibit the qualitatively 

expected features of E-v curve.s in J3 below threshold. 
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Appendix - - The Calculation of the Path Integral 

In this section we outline the calculation of 

(A-I) 

where £;,is given by equation (12). In order to avoid the usual 

problems which arise in performing path integrals over finite 

intervals with complex exponents (especially the presence of un-

damped transcients), we change the limits of the time integrals from 
't"2 DO 

r to I , while at the same time changing F(t) and F'(t) .Jo J __ 

appropriately to ensure that physically we are still working with the 

same problem. To facilitate this transition, we recall that the path 

integral may be interpreted as a kernal or propagator. ( 7 ) Thus if in 

F(t) and F'(t) we represent the E field to be turned on at t::;;O from a 

zero value for t< 0, the propagation from t::;; - ao to t=O will result in 

zero displacement of the electron. Similarly the fields may be 

turned off at t=t 2 , but in the evaluation of <x) this is not necessary. 

For example, to calculate v,, one sets F(t) = Eu(t) + 2Lo(t - f~) and 

F'(t) = Eu(t) where u(t)::;; l ,t~O, and u(t) "'. 0 , t<O. Because we will 

use a number of different F(t) and F'(t) , we consider general F 

and F' here. 

Thus we must evaluate 

(A-2) 
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whe re 

X 
/ 
= ( cv J.± ( fmf<c~-1-F (-1:) • XCt:))-[dt: {-~ m;/1'~ + F ft:)· X 'rt:)) 

.:t: 0 J_ ~ - 00 

+ i ~ [dfl GUl)f::di:L~i' { ftict-t'J (X{-tJ-xf°t'.!) 2 

+ /(:(t--t') ( XC-c)- x(t- 1))2-R.fl(t-t') (X[-t:J- x1
(t 1J)-z. 

- R;rt-t1
) ·ex reJ-x 1rrJ)z J (A-3) 

First express x , x', F, and F' by the ir Fourier Transforms: 

_r_-1-1 Cl:> /:I _ / .,....7:d-I-
. Tv - ~ f!P 1 f&J e '-

Inserting thes e i n (A - 3 ) g ives 

whe r e 

f cc .d..:Y:. < / vT: 
X{t:J = -co -z.11' Jv e 

- I Jeo ..d...x. ?° ( ;vt:: 
X 'ti-).=. z 1Y J v e --

. -1 -j_eo d_x (="I f-v-C­
F 6::; - _

41 
Z.1Y 7-v e 

(4-4) 

{A-S) 
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+ s ( Jl-V-:J )11 
. e P./l -/ 1 {A-6) 

- -""' -1 -r" 
We note that since x(t), x'(t), F(t), F'(t) are real, §"V:. L.,.) ~v== ~-v' 
- -* -( -1* -- d' 
f.,,.= S:....,., ,h.:::. .f_.,... • Thus by changing [ '1,:" to f

0 
J-v- we obtain 

where 

+:r_· + .I: -...C. j. - r.. b r !-* f-* - -I _,* -1°" -1} 
'V '\f 'V .s 'V J v ~-v J -11' s -v (A-8) 

and (A-Ja) 

These are defined only for1/v O. We are permitted to regard "fv­
. -* 

and J,,. independently for the following reason. The Fourier 

Transform of x(t) has a real part ~ ( even in v) and an imaginary 
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part bv (odd in v- ). To integrate x(t) over all possible paths is 

equivalent to integrating av and b"" independently over all possible 

values, but only for those V? O. 
"J: -* 

And as ~ .... and i..,. are simple 

linear combinations of av and by , they are to be integrated 

independently. Hence, completing the squares in (A-7) we obtain 

{A-JO) 

Letting Z(v) = z1 (v) + Z~(v), we find 

6<11((-Al - (a> 1.fZ G( JL) _-v~-a.____ ( J. !'/) 
J! (11)'=. m'V-i.-+ VT' )" "" ..J1 JI.,.,_ - ..,,,~ -i G J 'U""lO l/1-

and (A-10) becomes 

JJ- . I '°d-v:.. (:f.! c f,!,-f.,,) + s-.: r 1-.:-"*-ft) 
- ~Xf' o -zrr 2-c"'VJ :c?(-r-v) 

/ 
( 

(:F.,,.' -7 .... ) ( 'i-~ -Jf - :f;) (rt) -2c-v;) 

2- (-v) 2 ""'c "V > ( e:4 -v--1) ) (A-IZ) 

To convert this result from the frequency to the time 

domain, we must specify Z(v) for negative frequencies, and find 

an expression for Y(v) = l/Z(v}. To accomplish this we note that 

Z(iw} is real, and hence that by the Schwartz Reflection Principle, we 

must have Z(v) = z* (-v"'} for all compiex 'V ._which can be reached 

by analytic continuation of Z(iw) off the positive imaginary axis. 

This condition will be satisfied if we replace e by 611' in (A-11}, 
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(A-13) 

for all complex -V. Since we must have Im (Z(v)) = -Im (Z(-v)), v 
4~ (-//) r 

real, and since Im (Z(v)) = ~ l7C-v) = -Im (Z(-v)) for V? 0 

and Im (Z(v)) = - -1~{-AJ G(--v) = -Im (Z(-11")) for v~ o, v-re have 
VT' 

G(O) = O. Also we may define G(v) = -G(-v) consistently for 

mathematical convenience. Physically this says that if we were to 

include oscillator potentials with negative frequencies, a11d hence 

negative energies "lf(n + ~z ), in our approximate action (12) we 

would have to change the sign of the coupling to provide for absorp-

ti on energy. 

As written in (A-13 )) Z(v) has no pole s in tl~e upper half v­

plane. Writing Z('V") in an equivalent form as follows 

irepresents a function with neither zeroes nor poles in the upper 

half plane. If we let 'IT rtv)= Im (Y(v)) = Im (l/Z(11')), the f'fv) 

is also odd inv, and using the Kramers-Kronig relations we find 

2 w Pew) 
(A.I 'L - 'V '2. • {A-IS) 
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Combining real and imaginary parts of Y(v) we obtain finally 

V [oo 2w flrw) 
1 ('v) = o -w-,-_-v_"Z... __ -'-i-G-v - Yz(v) (A-It,) 

Inserting this expression into (A-12) along with (A-4) and performing 

gives 

ex'° -f {I: dtf:dl:' { hJ · fr~J J<,o (-/t-t'!) -t 

+ I' /wF{r,'J ~ {/t-t'/)-2 F(tJ ·F {t'J~{t--r')]) {A-17) 

where 

(A- 18) 

It is interesting to note that the form of the result is very similar to 

the form of the action (A-3). 
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