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ABSTRACT

Part I: The mobilities of photo-generated electrons and holes in
orthorhombic sulfur are determined by drift mobility techniques.
At room temperature electron mobilities between 0.4 cmZ/V—sec
and 4.8 cmZ/V-sec and hole mobilities of about 5.0 cmZ/V-sec are
reported. The temperature dependence of the electron mobility is
attributed to a level of traps whose effective depth is about 0.12 eV.
This value is further supported by both the voltage dependence of
the space-charge-limited, D.C. photocurrents and the photocurrent
versus photon energy measurements. ‘

As the field is increased from 10kV/cm to 30 kV/cm a
second mechanism for electron transport becomes appreciable and
eventually dominates. Evidence that this is due to impurity band
conduction at an appreciably lower mobility (4. 10_4 cmzlv—sec) is
presented., No low mobility hole current could be detected. When
fields exceeding 30 kV/cm for electron transport and 35 kV/cm for
hole transport ére applied, avalanche phenomena are observed.
The results obtained are consistent with recent energy gap studies
in sulfur,

The theory of the transport of photo-generated carriers is
modified to include the case of appreciable thermo-regeneration

from the traps in one transit time.

Part II: An explicit formula for the electric field E necessary to

accelerate an electron to a steady-state velocity v in a polarizable
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crystal at arbitrary temperéture is determined via two methods
utilizing Feynman Path Integrals. No approximation is made
regarding the magnitude of the velocity or the strength of the field.
However, the actual electron-lattice Coulombic interaction is
approximated by a distribution of harmonic oscillator potentials.
One may be able to find the '"best possible'" distribution of
oscillators using a variational principle, but we have not been able
to find the expected criterion. However, our result is relatively
insensitive to the actual distribution of oscillators used, and our
E-v relationship exhibits the physical behavior expected for the
polaron. Threshold fields for ejecting the electron for the polaron
state are calculated for several substances using numerical results

for a simple oscillator distribution.
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PART 1

ELECTRONIC PROCESSES IN a-SULFUR

I. 1. Introduction

The recent determination of the band gap of a-sulfur from
photo-response measurements at this 1abora.tory( 1) indicated that
both holes and electrons should be mobile charge carriers, Asa
result of that investigation, the energy gap of orthorhombic sulfur
was found to be 3.82 x 0,02 eV from both electron and hole photo-
current. For hole current only, moreover, a distinct and ever-
present local maximum was found between 0, 44p and 0.45u (Fig. 1).
This was attributed to the presence of a trapping level about 2.8 eV
above the valence band to which electrons could be excited, freeing
holes in the valence band for conduction. The rather gradual but
steady decrease of the photocurrent for wave lengths beyond the’» band
gap indicated that shallow defect levels might also be present. A
typical series of measurements from this work is shown in Fig. 1.

The results of the work reported here substantiate these
hypotheses and render additional insight into previous investigations.
Although both hole and electron current were found present in compa -
rable amounts, the emphasis is given to electron current: the
corresponding determination and analysis of hole current in a-sulfur
has already been ably presented by Adams and Spear. (2} Our in-

vestigations of the hole current agreed quite well with their work;

+’I‘his work is published with Professor C.A, Mead, California
Institute of Technology, in J. Phys. Chem. Solids, _?:é, 1489, (1965).



II 2'

.
however, an equally strong case for electron current is also given.
Several effects indicated in an earlier account( “ of electron charge
transport under greatly restricted conditions are treated more
thoroughly, the results of which yield a reasonably consistent picture
of currents in the insulator sulfur.

Specimen Preparation and Experimental Procedure

The samples were grown and prepared as before. (1)
Grown from CS, solution at 157G, they were lapped to 0.1-1 mm,
and chemically polished in benzene. Consistent with the previous
work, the response was essentially independent of the metal electrodes
used. Semi-transparent gold dots were evaporated at 10_6 Torr to
one side of the sample and a continuous layer applied to the opposite
side. Great care was taken to prevent heat damage to the surfaces.
In some cases, to minimize this heat damage, no gold was evaporated
on one side of the sample, but contact was made directly to a thin
brass mounting plate with silver paste. The response did not differ
appreciably from those made by the former method.

The sample is mounted in a shielded container, and contact
to the gold dot is made with a 4 mil gold wire probe. About 107
electrons and holes are excited when the sample is illuminated by a
light pulse from a "Fischer-Nanolite''. The duration of the pulse is
about 10 n sec, a time appreciably shorter than any other time of
interest. Due to the high absorption coefficient( 4 at wavelengths
shorter than ~.0. 325, the electron-hole pairs are created in a very .
thin layer (=~ 0.001 cm) near the illuminated surface of the sample.

that most carriers are generated band to band is indicated by the
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relative magnitude of the photocurrent at larger wavelengths.

Depending on the polarity of the gold dot, either electrons or holes
can be drawn across the bulk of the sample, and mobilities can be
determined by the standard method. (7] ( The charge transported
versus time is observed with an oscilloscope; the vériation of the
transient time with applied field gives the mobility. Fig. 5.) It
was never necessary to build up space charge in deep traps in order
to observe carrier transport of either sign. Allowing such space
charge to accumulate only reduced the magnitude of the transported
charge by about 20% but did not appreciably alter the shape of the
charge versus time characteristics. The magnitude of this space
charge could be determined by illuminating the sample with no
applied bias and observing the transport of carriers of the opposite
sign. (Fig. 2). By comparing this result with that for the sample
biased for the same carrier but with no space charge present, an
expression for the field at the illuminated layer and hence the
equivalent space charge field can be obtained. This space charge
could be readily neutralized by illuminating the sample at zero bias
several times until no charge transport could be observed. The
neutralizing charge could recombine with the space charge or become
trapped itself. Our results indicate that the latter mechanism might
be the more likely one.
Results

The results of the drift mobility measurements are summa- -
rized in Table 1. As mentioned before, hole transport is found to
be in good agreement with the work of Adams and Spear, (2) and is

not analyzed here. Indeed hole mobilities could have been measured-
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for all samples, as was done for electron mobilities. With one

notable exception the electron mobilities at room temperature range
from 0.40 to 4.8 cm?/V-sec comparable to hole mobility. For
samples showing a low electron mobility, a very steep slope ap-
peared during the first 50 n sec of the charge versu's time charaé-
teristic. In magnitude this represented about 5 to 10% of the total
charge transported (but remained constant with voltage for any one
sample), and was attributed to holes being drawn into the illuminated
electrode, as pointed out earlier by Spear. (4) Note that this is just
the contribution to charge transport expected from charge traversing
only 5 to 10% of the sample.

6-17)

Assuming a trap controlled drift mobility,( which

implies

piesp (| + MW, - expCESWTI)™

one may determine the effective trapping level Et for electrons be-
low the conduction band, and the density of trapping centers N,.

Assuming the variation of lattice mobility with the temperature to
-3/2

have the form by, = LT ) Wy, May also be determined. The
temperature of the sample was varied from 0°C to 90°C: Et was
found to be 0.12 £ 0,01 eV and Nt of the order of 2.8 - 3.5 X

1017 cm-s. A room temperature ''lattice mobility'" of about

2 cm?/V-sec is indicated. Carrier transport in sample E appeared
to be dominated by "lattice' interactions over the temperature range
investigated. (While the source of the variation of "lattice' mobility

from sample to sample was not investigated, that such a variation
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exists is certainly not unexpected.)

The trapping level and densities reported above are stated as
"effective" or ""equivalent' values. The nature of the photo-response
versus wavelength for wavelengths beyond the energy gap can be ex-
plained by assuming that distributions of hole and electron traps exist
in the band gap which decay more or less exponentially away from the

(8)

respective band edges. According to Rose, under these conditions
the d.c. photocurrent versus applied voltage for a fixed excitation rate

should vary as

T« v, @

i
where kT _ is the effective trapping level, and is related to the trap

density per unit energy by

M (E) = A& 5" -

.l/
where E is the energy between the band edge and the trapping level.

Such measurements for electron photocurrent gave an effective level of
0.13 eV, in good agreement with that obtained from thermal measure-
ments. (Fig. 3). For hole current an effective level of 0. 18 eV was
calculated, in good agreement with the 0. 19 eV found by Adams and
Spear. (2) Finally, a careful analysis of the variation of photocurrent
with wavelength (Fig. 1) just beyond the band edge (0.325) gives an
effective level of 0. 11 eV for electron traps and 0. 21 eV for hole traps.
This third determination of the tn‘rapping levels is most reassuring,
Analyzing this photo-responée for longer .wa.velengths suggests the
existence of other hole and electron traps whose density is also

exponential in energy, and whose characteristic kT, values are 0.4



1.4

i _
to 0.7 eV. The cross section of these traps seems to be sufficiently

low that they do not affect the currents measured here.

The l?st column of Table 1 records the room temperature
mobilities for electrons transported across the sample at about one-~
ten-thousandth the rate of the electron transport described above.
These negative charge carriers appear as a small additional contri-
bution to the first electrons at 10 kV/em, but by 40 kV/cm this current
is so large as to completiely dominate the characteristic, except for
times less than about 10 p sec. (Figs. 3-5). Above 30 kV/cm, another
effect enters which contributes to this secondary charge transport
(described below). Between 10 kV/cm and 30 kV/cm, the authors

—
attribute the source of this low mobility electron current to be conduction

via the previously rep'()rted( 1) impurity band of electron traps located
at about 2.8 eV about the valence band (1.0 eV below the conduction
band). (10) Further association of currents with this band is discus&d
below as well as a third determination of this energy level. No co"i’:,re,-
sponding low mobility hole transport could be detected.

The Avalanche Phenomena

To further analyze the low mobility electron current above,
the circuitry was modified so that current versus time was observed
instead of the usual charge-time characteristic. The results obtained
for fields below 30 kV/cm are consistent with the abdve model: a short
duration (50 psec) of high mobility current is followed by a 400 psec
decay, and then a 500 to 3000 usec of nearly constant mobility current
about half the magnitude of that for the high mobility electrons. For
hole current the decay from the quickly reached initial maximum to the

zero level is much sharper, the time constant varying inversely with
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| applied field (8 psec at 20 kV/ecm), and no low mobility current plateau

is detected.

The observationsfor both hole current above 35 kV/cm and
electron current above 30 kV/cm were indeed unexpected (Fig. 6).
Iluminating the surface of the neutralized sample with the nanolite for
either voltage polarity, cufrent versus time characteristics of identical
form to those described above would be obtained for times less than
about 1 m sec for electrons and 0.1 m sec for holes. This expected
behavior is then followed by a series of current spikes lasting for
about 4 msec for electrons to 20 msec for holes. The decay times of

these pulses were within 10% of the RC time constant (8 usec) of the

o

input circuit. The spikes were also about equally spaced in time (0.1 ’
to 0.5 msec) over most of their duration, and after an initial rise,
their amplitude decayed exponentially in time.

To investigate the source of this avalanching, light from a

>

,/A

monochrometer was focused on the sample and the above measurements
repeated, as the wavelength of monochrometer light was reduced from
3.0 p. The spikes in the hole current could be suppressed only for ‘
frequencies near the energy gap (0. 325, 3.82 eV), The electron
current spikes, however, were repeatedly suppressed for photon
energies of 0.96 eV. Neutralizing the sample and repeating the measure-
ments, a somewhat higher phpton energy was necessary to suppress the
avalanche. The maximum equilibrium energy necessary after many
runs was 1. 10 eV. 7 —

These results are seen to be consistent with the energy gap
data already obtained if viewed in the following manner. With no d.c.

light source, the neutralized sample is illuminated as before, and hole
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current is drawn through the material, some of it being trapped in the

broad trapping levels noted earlier. This space charge enhances the
field at the electrode opposite the illuminated one sufficient to cause

the avalanche. With a d.c. illumination near the band gap, these traps
may be emptied sufficiently rapidly that the space charge field required
for avalanche cannot be established. That the avalanching carrier in
fact ejects a hole from a trap as opposed to a band to band ava.lanc.he is
evidenced by the fact that the spikes die off in time much faster than the
thermal release time of the holes, Trap ejection reduces the space
charge and hence the field causing avalanche. A similar argument can
be given for electrons. However, owing to the predominate band of
electron traps at 2.8 eV above the valence band, the‘ effect is much
better defined. Again, when the neutra,lized sample is illuminated with
no d.c, light source, the low mobility electron current enhances the
negative charge in this band which in turn increases the field at the
unilluminated electrode. In sﬁch a field, carriers in the conduction
band can avalanche with the trapped carriers and reduce the space
charge below the critical level. When the same experiment is performed
with d. c. illumination at 1.0 eV, these traps are emptied sufficiently
rapidly while the high and low mobility currents are flowing that no
avalanching can occur. ‘Repeafed neutralization of the crystal then
increases the amount of positive charge in thé hole traps needed to
neutralize the slight increase in negative charge in the electron traps.
With more holes in traps there would be a tendency for recombination
in addition to trapping, both effects contributing to a larger space charge
field which would have to be reduced to suppress the avalanche. And

to remove more electrons from the traps a slightly higher photon
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energy must be used. The limiting value for this is about 1.1 eV. The

mechanism of the avalanche may well be similar to that discussed by
Haitz. (11

Dean et al. (3)

reported seeing electron current pulses, which
were attributed to field emission effects at the electrodes. That this
was not the case here is easily seen by the fact that holes emitted from
the collecting electrode would traverse the sample and relatively few
would be trapped in the transit at such short transit times. Hence the
avalanche would occur for a much longer duration than with the opposite
bias. For this opposite bias (the illuminated electrode positive so that
holes initially traverse the sample), under the field emission hypothesis,

—
electrons would be forced into the sample by the emission, and the hole

space chafge would be neutralized more quickly. In fact the opposite
was the case., Avalanche attributed here to holes near the collecting
electrode was two to ten times longer lived than the corresponding
electron avalanche. Hence field emission, if present, plays only a
minor role compared to the avalanche of carriers from traps.

Supplemental Support of Findings

Shortly after the preceding four sections appeared in print,
we were challenged to demonstrate that the fast electron current we
had discovered was in fact not due to holes drifting the other way and
to clarify other aspects of the problem. In our reply which follows,
we discuss (A) the EpT dependence of the stéady-state photocurrent
(Fig. 1), as pointed out by Dr. Spear, (B) the higher mobility electron

current, (C) the concept of "impurity" band conduction, and (D) the

* The contents of this section is contained in a correspondence by me to
Professor W. E. Spear, University of Leicester, Leicester, England.
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experimental method used.

(A) With reference to your pET dependence, where 7 is a life-
time, a clarification of the photogeneraﬁon process is necessary. For
light whose energy hv is near the band gap (3.82 ev, .325yu), all but a
negligible number of photogenerated carriers are prodﬁced in a narrow
region about . 001 cm thick adjoining the illuminated surface. This
penetration depth corresponds to 1% to 5% of the thickness of the speci-
meni;.s used here. This conclusion is based directly on the absorption
coefficient, @ in cmtl, which is known to lie between 103 and 104 for
radiation at the band gap. Thus for a sample .02 cm thick and o = 3. 10+ 2

at the band gap frequency, the intensity of the light penetrating but 10% -
of the sample would be reduced to 1/400th of its initial value in this
-layer, Now, most assuredly, the rates of generating holes and electrons
are equal, as they are generated across the band gap one electron for
each hole, and their rates of recombination E% l_aﬁx_' are equal as
they recombine one for one. Consequently, the numbers of electrons
and holes drawn into the bulk of the sample per unit time for the same
applied field in the layer are the same, as you point out, independent

of mobility. This rate is just equal to the difference of generation rate

and recombination rate, and under steady-state conditions this net rate

of flow out of the generation layer is just the observed current. This

is true because in the bulk where there is only one carrier present, there
can be no loss due to recombination, and in the steady state the rates of
trapping losses are just equal to the rates thermal regeneration. Now

to find the determinants of this current we observe thét the ratio of the
probability per unit'time that an electron leaves the generation layer

before recombining (Ep,e / Ax) to the probability per unit time it recombines
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(llTer) is Epe'rer/Ax where Ax is about half the thickness of the gener-

ation region and depends only on the wave length of the light. This is

just your relationship with T pinpointed. E is the electric field in the
layer; . is the recombination time of an electron, which depends pro-
portionally on the number of holes in the layer, and Ty is that for a

_‘ hole. Lifetimes for trapping are, c;f course, included in the mobilities
and do not enter explicitly. The significant feature is that if the electrons
were hopelessly trapped the resulting space charge would reduce E, the
electric field in the layer, to such a low value that recombination would
eliminate any observable photocurrent. (Note that with lower E, -
is also lowered owing to the presence of more holes and Ep.e'rer would
then be small indeed.) Unfortunately, as you also pointed out, little

else can be obtained from the relation Epe're ~ Eph Thi? (where the

r
fields in the layer are naively equated even for a constant applied
voltage -- one expects different magnitudes of space charge in the bulk
to alter this equality), because the 'rr's are strongly dependent on the
steady-state hole and electron concentrations, which depend on the
mobilities, etc., We have belabored this point to clarify our interpre-
tation of the carrier generation, and again we thank you for calling it

to our attention.

(B) But of greatest interest and concern between us is, of
course, the high mobility electrons which we have studied. In the next
few paragraphs we explain three reasons why the high mobility electron
current we observe cannot be attributed to the backwards drift of holes
generated at the opposite surface or in the bulk: (a) while comparable

mobilities were observed for holes and fast electrons, these mobilities

were never equal: they were in most cases significantly different beyond
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the 5% experimental error -- had holes been in transit, the mobilities

observed would have been equal; (b) the oscillographs of hole and fast
electron charge transport versus time are different -- a small, initial
transit of holes is observed in the case of fast electron transit; (c) the
quantity of charge transported in the first few p seconds is two or more
orders of magnitude larger than that which would result from a back
drift of holes from the surface opposite the illuminated one. We trust
you will examine these arguments carefully: we feel our arguments for
the fast electron current we observe are sound and strongly supported.
Owing to the orthorhombic crystal structure of a-sulfur (Fddd),
in particular the inversion symmetry, the hole mobility in one direction
must be equal to that in the opposite direction. (In fact, of course, |
time reversal symmetry implies that for any crystalline structure,
mobilities in opposite directions must be the same.) So whether holes |
flow away from the illuminated surface, or are pulled toward it, the
charge transport versus time oscillograms must yield the same mobility.
But as is clearly evident from our results, especially samples M and
X, the mobilities differ by factors of 1.5 and 3.0! While, to be sure,
the mobilities for both holes and fast electrons varied widely from
sample to sample, for any one sample, these two mobilities were
easily and reproducibly measurable to 5% or better. ~For samples A
through F, while no quantitative measurements were recorded, the
hole current was always noted, and l/r (7 =transit time) consistently
differed (10% to 100% higher) from that of electron transport for the
same field strength. We now by hindsight see the utility of making such
measurements, but we felt and still feel your work with holes was

sufficient.
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For our second point, we emphasize graphically the significant

differences between the charge transport versus time (Q vs. t) oscil-
lographs for fast electrons and holes. For the same magnitude of the
field, the fast electron transport nearly always rises less sharply in
time than the hole transport, indicating the larger rolé which the traps
play in electron transport. Furthermore, regarding the fast electron
curves, the contribution of the holes to the transported charge is nearly
always seen as an initial, steep slope on the Q vs, t oscillogram,
representing 1% - 10% of the total charge transported. This was pointed
out in Figure 4 and in article 3 of (14) and referred to in reference (4).
Referring now to Figure 7, here we have collected together
the Q vs. t charac.teristic‘s of a sample .022 cm thick (sample X) with
an applied voltage of 200 volts from hole current and fast electron
current oscillograms with time scales of .2, 1.0, 5.0, 20, 50, 200
psec/cm, and slow electron current oscillograms at 500 ps/cm and
2000 ps/cm. For the positive field the hole transport (A) has a clearly
defined transit time of 1.7 psec. For the opposite polarity, the negati\}e
field, we have a 4% contribution at By (B), followed by a well-defined
electron transport which clearly exhibits two transit mechanisms
(C and D). For times in the psec range, the slope of the charge trans-
port just subsequent to the hole contribution (E) is extrapolated to the
charge asymptote (F) determined by the charge level in the 200ps-~-1000ps
range to obtain a transit time for fast electrons of 6.1 psec. Between
10ps and 400ps (not shown) the transported charge rises smoothly. In
the msec range a se‘cond mobility is evident with a rise time of 6.8 -
0.6 = 6.2 msec. For each sample, such sequences of oscillograms

were taken for voltages between 20V and 1300V, and each oscillograph
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was repeated at least three times. Plots of 1/7 versus V were made

4

to obtain the mobilities: p, = 1.45, p_ =..4o, BB, = 4,010 7,
sample X in this case. Usually the "impurity' band (slow electron)
current did not appear until voltages of about 103 or higher were applied,
owing to the relatively low P g, ’i‘hus they were notl determined as
well as the one shown in Fig. 5 of (14), or the other two in Table I and
were not listed. Owur primary interest at the time was in p.e, I'LL’ Et
and Nt for the fast electrons. In as much as we see the contribution of
holes in the charge transport for the negative fields so explicitly, and
that the subsequent characteristic (. 05 psec to 10 psec +) for this
negative field clearly exhibits a more trap dominated flow of charge as
well as a different mobility (factor of . 3) than does the positive field
transport, we cannot see how this can be explained as the reverse flow
of Holes from the other electrode.

As to our third point, notice that the fast electron mechanism
has transported about one-sixth as much charge as the hole current for
the opposite polarity. But even for a sample of .022 cm thickness, as used
in this example, the contribution to the current due to holes excited
at the opposite surface is completely negligible, For illumination near
the band gap, (3.82 ev), the intensity of the light would have fallen by at

least a factor of e—ZO

~ 4,107 (10° <& < 10%); for illumination around
A= .39, where (based on Fig. 1 of (1) and (14) for D, C. photocurrents)
the contributions to either current is down by 10_3, the absorption of
light in passing through the sample is still like e—4 to e_lo, 2, 102' <

a < 5, 102. And even near .43p where the absorption of light in the
sample only reduces the intensity by a factor of e, the generated charge

is still down by 2, 10_4. Yet the lowest the fast electron contribution

was below the hole current for the opposite polarity was 1/50; a factor
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of 1/6 to 1/10 was quite common. Thus on the basis of the comparable

but distinctly different mobilities of holes and fast electrons, the
explicit evidence of hole current in the initial phase of the electron
current, its distinctly different contribution there, and the catastrophic
attenuation of light near the band gap in the sample or.similar reduction
of carrier production below the band edge, we cannot help but conclude
we are studying fast electron current in sulfur.

(A fourth observation, but only a qualitative one, also implies
that we are observing fast electrons as opposed to reverse flowing
holes. In the middle of the last paragraph of Article 2 of (14), we
mention that we observe the presence of space charge left in deep traps
by a transit of carriers. For ‘E_gl:h sign of carrier, the Q vs. t oscillo-
graphs for the fast current components decrease in amount of total
chafge transported between successive carrier transits to a steady-
state level 5% to 20% below the initial level if the specimen is not
neutralized in the interim (Fig. 8). [Neutralized sample means no
carrier transport for zero applied field. All of our reported results
were obtained from measurements made on samples neutralized after
each transit of carriers. Thus, in addition, one cannot claim that holes
were pulled into the sample owing to a negative space charge in the bulk.]
But to continue, if now indeed holes flowing from the unilluminated
surface were responsible for our fast electron current, the accumulation
of electrons in deep traps in the bulk left by the successive transit of
slow electrons would form a space cha.fge that would increase the field
for holes at the opposite surface, aﬁd thereby enhance the amount of

transported charge for negativle fields, insteadof decreasing it, as is

alwazs the observed result. Note that reverse hole current would also



-16- -
show a larger apparent mobility than o because of the negative charge

generated at the illuminated electrode. But the fast electron mobilities
observed were in fact smaller than By [Note also that while the reverse
hole transit (if it existed) would, of course, also deposit charge in traps;
the magnitude is far outweighed by the amount left by 1-:he slow electrons. ]
The consistency of fast electron transport in the above four arguments

is indeed strikingly good.)

(C) Designation of the electron trapping levels between .96 ev.
and l. 10 ev as an "impurity' band is undoubtedly a misnomer as you
pointed out. And for such low mobilities as we both have found, hopping
is indeed a plausible conduction mechanism: we thank you for communi-
cating your results to us qualitatively., What we were referring to is
that the energy of the electrons in this hopping is about 1 ev below the
conduction band: we concluded that these slow electrons are in this
"impurity' band as they transit the specimen. That the electrons are
actually in this band rather than in the conduction band (fast electrons)
was indicated by our avalanche phenomena. DBriefly, the avalanche
phenomena for electron‘transport are interpreted as being due to
electronic excitation from the impurity' band to the conduction band
triggered by electrons in the conduction initially. This is based es-
sentially on the observation that light at 1 ev (1. 24p) eliminates the
avalanching (see Article 4 of (14)). Thus, as the avalanche requires
a large concentration of electrons to be developed in the "impurity' band
(partially to create the needed field strength), and that this concentration
could easily be eliminated by photo -exéita.tion at 1 ev, a likely mechanism
for transport, in view of the fast electron current already present in the

conduction band, would be conduction in this "impurity" band, possibly
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by the hopping you suggest.

(The term "impurity" band is derived from the impurity levels
in the forbidden band of semiconductors, which arise from donor and
acceptor impurities. Hence, a level in the band gap of any crystalline
material is referred to as an "impurity" level, and, if of sufficient
density, it spreads into an "impurity' band. This terminology is common
in discussing band structure in the electronic sense as we do in (1) and
(14). In fact, one commonly says that holes (usually) move in the valence
band, whereas in realii:y ""they'' move in their own conduction band! In ‘
sulfur these could be due to impurities, to defects, or be as you assert

an intrinsic property of the material itself. We do not know, but your

extensive and beautifully consistent results dealing with the slow elec-

trons are very suggestive of your conclusion. But actually, to refer to
trapping (or any other electronic process for that matter) in molecular
crystals in terms of band structure is unfortunately miéleading, beca}i_se,
as you point out, conductivity arises from molecular excited state s"/afs

- opposed to crystal excited states. However‘, inasmuch as the charac-
terization of electronic properties in terms of a band structure is still
possible, its use is most convenient. )

Regarding your experiments, especially with respect to the
slow electron mobility you have studied 1n such detail, et} the remark-
able consistency in the temperature dependence of this mobility which
you point out indeed seems fundamental: it was truly worthwhile that
you pursued your iﬁvestigations to this extent.. You have found a thermal
activation energy of . 17 ev for this low mobility electron current, and

your interpretation in terms of a phonon-assisted hopping mechanism

is indeed plausible, as mentioned before. What we propose, however,
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again on the basis of (a) the presence of fast electron transport in the

conduction band, (b) the features of the avalanche phenomena previously
described and (c) the prominence of levels displayed in the D. C. photo-
current versus wavelength curve for holes (Fig. 1 of (1) and (14)), is
that‘this slow conduction is confined to the narrow region of levels
between .96 ev and 1. 10 ev (you would say around .94 ev, but this is
immaterial). Mott and Twose(g) discuss such conduction: the theory is
based on the overlap between localized electron wave functions in
neighboring donor sites, and shows how the increase in the density of "
such sites lowers the activation energy from the common (EC-Ed) for
very low density to a much lower value, approaching metallic con-
ductivity in the limit. Again, we are not saying these levels originate
from impurities: we do not know the origin of these levels. They exist,
and your important findings add significantly to the hypothesis that these
levels, with a . 17 ev activation energy, give rise to the slow mobility
current.

(D) With respect to your search for the high electron current,
we fully realize the difficulties encountered in obtaining an electron
beam of sufficiently high density and yet of sufficiently low energy to
generate appreciable numbers of electrons for transit without these
being totally masked by holes produced in the bulk. And since you are
doing such an extensive amount of work with sulfur, and most likely
with other similar materials in the years to éome, may we suggest you
try using a "Fischer-Nanolite", or similar ultra-fast, high-intensity
light source, in addition to your electron beam and other flash methods,
to photogenerate the carriers. To use this light source is simplicity

itself; the reproducibility is fantastic; the half-width of 10 nsec in the
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intensity, 10%-width of 36 nsec, enables one, for example, to look
back to 50 nsec to clearly distinguish the initial hole current when
studying electron transport. If you are interested, the main references

are the following: Heinz Fischer, Journal it_he Optical Societyo_f

America, 51, 543, (1961); Chemie-Ingenieur Technik 34, 118, (1962);

and p. 152 ff of the Sixth International Congress on High-Speed Photo-

Vgraphy, The Hague-Scheneninger, Sept. 1962. The address for further
information is Impulsphysik, Dr. -Ing. Frank Fringel GmbH, Hamburg-
Rissen, Sitlldorfer-Landstr. 400, Germany. We have found the instru-
ment invaluable in studying semi-conducting materials as well.

After communicating the above to Dr. Spear, November 8, 1965,
on December 16, 1965, we received word from Dr. William Gill (IBM
Research Laboratory, San Jose, California) that, by using yet another
method, he too had observed the higher mobility electrons in three
samples. His method of observing transient space-charge-limited
current (8) excited by a burst of laser light also fixed the sign of the
charge carriers unambiguously. He also reported that the mobilities
of the holes and fast electrons fluctuated from sample to sample
(1.0- 10. cm?/V-sec), but the low electron mobility was reasonably
stable around 4. - 5. - 10-4 cm?/V-sec. However, no further results
have been published.

Conclusions

By analyzing the transport of electrons and holes in a-sulfur
using transient drift mobility and d. c. photoconductive techniques, a
consistent picture of the energy gap of sulfur has been developed.
Comparable values of room temperature electron and hole mobilities

of the order of 1-4 cm?/V-sec were found, along with a low electron
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mobility current at 4 X 10"4 cm?/V-sec. Three different methods were

employed to measure the effective shallow trapping level of the electrons
(0.12 £0.01 eV), and a trapping density of about 3 x 1017 cm”™ was
found. The deep trapping level for electrons was also confirmed by a
third measurement (1.0 eV below the conduction band). An avalanching
phenomenon was also treated and found consistent with tlrlxe model pro-
posed for energy gap of sulfur.

Note Regarding Theory

Charge carriers are created near one of the surfaces of a
flat thin piece of insulating material and depending on the applied bias,
holes or electrons can be drawn across the sample. The transit is
observed by measuring the total induced charge on one of the electrodes
as a function of time.

Assumptions suggested by experimental results are the follow-
ing:

| I. Planar geometry.
II. No injected carriers: the neutralized samples could be held

in the dark for hours at & 1000+ V with no perceivable change in space
charge.

III. A very large dielectric relaxation time:
~/6 €]

S = 710% sec,
IV. The hole and electron mobilities are independent of the electric
field: there was no appreciable deviation from linearity of 1/r versus
V for large V, where T is the transit time and V is the applied voltage.

V. Large carrier lifetimes: after the photo-generated carriers

have separated, there is little chance for recombination, as we have
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_ only a one carrier problem. Trapping and thermo-regeneration times
may be any value, however.

VI. In addition to relatively shallow traps WhiCi‘.l alter the "lattice"
mobility P, deeper traps exist which trap carriers with probability
1/'Tt and release them with probably l/'rr. Hence below "free' means
that the carrier is either in the conduction (or valence) band or in a
"shallow' trap from which it is thermally excited at a much higher rate
than it would be for deeper trapping.

Consider two flat parallel electrodes of infinite extent 'é.t ‘x =0
and x = d. Then the charge q' induced on the electrode at x = 0 due to
a charge q at x is given by

qtz_q_a_‘i_"_ (A-1)

Hence the current into that electrode is given by
!

T
where p is the shallow-trap controlled mobility and T is the transit time
if no deep traps are present. We now have the essential result that the
contribution of each charge to the current into one electrode depends
only on whether it is free or bound: if free it contributes q/7, if bond 0,

independent of its position. Thus the charge QT measured at time t on

the electrode at x = 0 is just

z
/ . |
Qp=7 | Q&) dt § Qu0 = Qo - Qu® (A-3)

where Qf('t) is the total free charge in the sample, Qt(t) the total charge

in deep traps, and QO the initial photogenerated charge.
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The relations between Qf(t) and Qt(t) are approximately:

4Q Q Qe _ Qs (-7 o
“—ti;"?rf + 7 7 Uct-7) (A -4a)
J[Qt N _Q_T_ —+ _.@_L i
TE =T T T (A-4)
R Ucx)= 0 x</
= / X?/

The third term on the right represents the flow of charge out of
the sample. It states that the efflux of charge at t is proportional to
the free charge in the sample at t - 7. As may be checked by the final
value theorem for Laplace Transformations, the time constant for this
process T, ensures that QT(t) - QO ast - w.

The solution of these Equations via Laplace Transforms for

t € 7 is straightforward and gives, since Qf(O) = Qo, Qt(O_) =0

Q= Q, (Arge*) (-5

where A = ‘TO/Tr, B = TO/Tt’ 1/'r0 = 1/'1'r 4 l/Tt and hence,

Qnct)= 22 (At+B7, (/- "))  for ter (a-6)

If we let the thermo-release time By become very large, we have just

the Hecht formula. 15 Notice that from (A-3) we have

% i@’r — _QA‘F_ A-7
B (A-7)

£
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hence the equation for the initial slope is just

I _ Qe
Qp = 57

and the intersection of the tangents now occurs at

= Ar +tBnl/-e7) LB}
Several limiting cases are of interest:
Case 1: 7<& Ty < % This case corresponds to hole transport where
using Adams and Spear(z) T, ~ 10-5 sec, and for the mobilities found

7

there 7~ 2.10 ' sec at 1000 V. e was of the order of minutes.

G"T'z 9’}%—* 3 t<T

.

Rﬂd GT:‘:’QO 3 f77/.

As would be expected and as was usually observed, the charge induced
rises almost linearly at the initial rate to the maximum value. Curves
of this are shown in Ref. (7).

Case 2: Ty << 'r_<< L This case corresponds to electron transport
where again using Adams and Spea.r(?') Ty = 5% 10_9 sec, T =~ 32 min,
and again T ~ 2. 10°7 sec. Now Qp =~ Qo('rt/'r) (l-e -t/'rt) for t & 'r,‘

so that the linear part has a much shorter duration, and appreciably
fewer charge carriers would be observed. Using a solution for t > T,
the charge time characteristic can still be used to determine T.
Alternatively 7 might be made comparable to Te by increasing the

applied field.

Case 3 and 4: 7 <& 7, £ T, ey L7 <<'rt; These cases may be viewed

as shallow trapping effects. Then

QT:“J%f(H?F/v;)z et For t<o

e
-~
Q

~
—~—

o For E2y
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which is the same result as Case 1. Thus we obtain the result that if

the release time is much less than the transit and trapping times, the
charge-time characteristic for transit times less than or greater than
trapping times are nearly identical. This, moreover, corresponds to

the result for a long release time and ¢ < < T.» @8 is intuitively

evident.
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Table I
Sample Ph Be Ey Ny i P B,
M 5.0 3.6 . . . i
G 5.0 4.8 . . . .
X 1.45  0.40 5 . - 4% 10°%
Y 0.65  0.005 . % " 9 x 1073
A . 1.1 - i _ i
B = 1.2 é . - _
o . 0.7 0 0.11 ev  3.5x 107 1.5 .
D - 1.92 0.12ev  2.8x 107 4.0 -
E - 1.3 - - 1.3 1.2% 10”7
F 0.87 0.13eV  3,0x 1077 2,4 %

Table 1. Table of values found for the room temperature hole mobility

By (cm?/V-sec), room temperature electron mobility e (cm?/V-sec),

Et effective level of electron traps contrelling the mobility, Nt the

density of these traps (cm—.-3), g, Toom temperature electron lattice

mobility (cm?/V-sec),

mobility (cm?®/V-sec).

B, B,

room temperature electron impurity band



Fig. 4.

Fig. 7.
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Figure Captions

Photo-response of an Au-o sulfur - Au sample, thickness
.02 cm, biased to 300 V. A-hole current, 0-electron current.

Upper curve, electron transport, 700.V negative bias; lower

"curve, hole transport, zero bias, field due to trapped electrons.

Horizontal scale lOp sec/cm, vertical scale 0. 3° 10-12

Coul/cm.
In several samples the electron charge rose as sharply as that
for holes.

Typical I-V characteristics for D. C. illumination #t A =.275p,
Electron current has been increased by a factor of ten to ease
comparison.

An example of low mobility electron transport versus time at

10 KV/cm. The first 1/2 msec of the trace represents high
mobility electron current. Upon going to sweep speeds of
S5ps/cm a 4% initiall, rapid transit of holes was recorded.

"1_2' Coul/cm.

Horizontal scale Zmsec/cm, vertical scale 0. 4. 10
Graph of reciprocal transit time, l/7, versus negative applied
potential for 1ow‘ mobility electron current.

A portion of an electron avalanche characteristic. Applied
field is -1300 volts across a .025 cm sample. Horizontal
scale .1 m sec/cm, vertical scale 5 nAmp/cm.

Transported charge versus time for holes, fast electrons and
slow electrons. SampleX, .022 cm thick, B = 1,45,

Be = 40, py o = 4.0 1074,

In which the effect of the accumulation of charge in the sample

on the charge transport is shown.
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PART II

POLARON MOTION IN A D.C. ELECTRIC FIELD

I, ‘Introduction

In this paper we treat the motion of an electron in a
polarizable crystal at arbitrary temperature subjected to an
arbitrary, D.C. electric field. The coupling of the electron to the
lattice is also arbitrary. Many authors have already treated other

(1-5) Here we find a rather >simple

aspects of the polaron problem,
explicit relationship between the electric field strength in the lattice

and the expectation value of the velocity of the electron.

AT

In carrying out the solution, we maintain the standard
polaron model of the electron coupled only to the optica-l phonons.
The crystal with electric field is assumed to be initially in thefmal
equilibrium, and thé steady-state, translational motion of the /
electron subsequent to its injection into the lattice is determineé.
Phonons emitted from (or absorbed in) the polaron are assumed to
propagate away to infinity without interacting with the phonons
already present in thermal equilibrium. If the electric field is so
strong as to alter the frequency of the optical modes, it is these
new frequencies that we must use in our expressions.

Using this model we present two approaches for the
solution of the problem. In the first we find the expectation value
of the displacement of the electron using“Feynman's Path Integral

method. The coordinates of the lattice oscillators are easily

eliminated. But since we cannot perform the path integrals over
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electron coordinates exactly, we approximate the effective lattice
potential by an arbitrary distribution of oscillators, and then carry
out a perturbation approach similar to that of Reference 2 (FHIP),
But we emphasize that this perturbation approach does not involve

an expansion in the electric field: the electric field term is never
approximated. Having obtained the expectation value of the displace-
ment, that of velocity follows immediately from differentiation.

The second approach involves equating the. expectation
value of the rate of loss of electron momentum to the lattice to the
electric field. The uée of time rates of change from the outset is a
more direct and useful procedure in steady state, non-equilibrium
processes.

Finally, we present plots of electric field versus electron
velocity calculated for a simple distribution of oscillators for
coupling constants of « = 3 and @ = 7. The results are not only
physically realistic, but point toward difficulties to be encountered
if one desires to accelerate electrons to energies above the rest-

strahl energy in polarizable crystals.
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II. First Approach —- Electric Field-Velocity Relationship from

the Expectation Value of the Displacement of the Electron,

A. OQOutline of the Method

To determine thé displacement in time of an electron in a
polarizable crystal in a uniform, static, electric field, we proceed
as follows. First the expectation value of the displacement of the
electron is cast into the form of a Feynman Path Integral, from
which all the coordinates associated with the lattice can be elim-
inated exactly, leaving only the coordinates of the electron. Then
the action in the path integral is approximated by a distribution of
~ harmonic oscillators, which enables us to expand the displacement
in a power series in terms of the difference between the exact and
approximate actions. Using an expansion motivated by an exact
summation of such a series for a similar problem, we rewrite our
series expansion in a form which more accurately represents the
physics of the problem. Finally, a comparison of this result with
various special cases which can be solved by other means leads
directly to the final expression,

B. The Expectation Value of the Displacement of the Electron

If we let p be the density matrix of our electron-lattice
system and x the position operator, then the expectation value of
the displacement of the electron at time t, {x(t)), given that its

value at t=0 is zero, is

<xe)>= Tr (xetyp)=Tr (x p(t)) 7)
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For thermal equilibrium problems, one can use p=exp(-BH), where
p=1/kT and H is the Hamiltonian of the system. In our problem,
however, only p(0)=exp(-pH), because we have assumed thermal
equilibrium initially. To determine the density matrix for t>0,

we solve its time-evolution equation

s %2 = [H, ] | (2)

and therefore
S Hesy d ; J— //23f) ds!
A ( s e ’/ﬁ o (3)

Here the time-ordered operator notation is used: unprimed operators
to the left and ordered right to left with increasing time, and primed
operators to the right and ordered left to right with increasing time.
The Hamiltonian appropriate for an electron interacting
with the longitudinal optical modes of an at least partially ionically
bound crystal in an electric field, which preserves the essential

physics of the problem, is

-2 o _ -% ’:___
/7/-—— e *F(t)'X"‘kaEa}:aE'i-V ;Z(Cgapek)-‘/- "kR) (4)

where a.:- » ajg are the creation and annihilation operators of phonons

of momentum Kk, frequency w; , coupled to the electron via

K
P is the momentum of the electron, m is its effective mass in a
fixed lattice, X is its position coordinate, V is the crystal volume,

e the magnitude of the electric charge on the electron, F(t)=-eE(t),
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and E(t) is the electric field in the crystal. In Frbthlich's model, (3)

. —f* " % I/ \
Cz = —_/(_WA'(?‘MWE) s (477"")/2 5 (5')

where

" ,
- e / - .

= (Vo Ve ) Fim, (¢)
+ R

We maintain the usual convention of setting A =1, working with a unit

volume, and incorporating the e into the E(t) so that -eE(t)=rE(t).

Wz is 2w times the frequency of the longitudinal optical phonon

branch,
To evaluate (1) we note that since the energy of the electron
and its interaction with the lattice is completely negligible compared

with that of the heat bath, we may set

/O(a) = exp (—/ﬁﬂg wr '?/;al?) (7) |

as in FHIP. (4) (If one questions the validity of this approximation,
or in fact the entire approach, for zero temperature (infinite B), he
may compute the expectation value directly without resorting to
statistical means, because in this case the initial wave function for
the lattice as well as for the electron is known. The result of .such
a computation gives the p=o0 limit of our solution here.)
The problem of integrating Tr{p(t)) over the crystal

oscillator coordinates has been solved in references (2) and (5). If

we replace . -F-‘(t) in equation (3) by f‘(t):f}(t) + XL&(t - t; )s then
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<X(4)D = 7(-/

L=

0—5&5 W‘(ﬁffa)) (8)

(Note that we still hold l?"(t) = E(t) : Tr(p(t)) has conveniently been
performed for different F(t), F'(t).) When converted to a path

integral, Tr(p(t)) assumes the form

T,,(f,(,_»z))-: ffe"fe D (%) ﬂ(}?"(t)) (9)

where

T . = 3 2 =/
L= Cls mxle)+ Fey %) dt — . (72””‘(2*)+ng) Xt ) dt

3 g (Xt~ X 3
+/'[ (02[ 77/)<3 / Cel 2[, jfj; At ’[ /?wi-’f'f )€ g (ﬂ)")"ﬁag’t-“') Sk

- iy PR C Re)= RCeD) oy FKA(RCEI=X'(e))
/wa‘_* t)e' "‘Rw;(t-t)e’ . _] (/ 0)
d
ek ei'w,; (t-2") e—-iwg(t‘*’)
et § = -+

Although equation (10) represents quite a simplification in that the
oscillator coordinates have been eliminated from (1) and (4) exactly,
we know of no way to perform the last two path integrals. Thus we
must use an approximate method, taking care to ensure that the
electric field term in the action (or Hamiltonian) is not altered.

C. The Method of Approximation

The method of approximation that is physically a very
reasonable one and that has worked particularly well on two prior

(1, 2) is to replace f_d_‘g_ﬁ.’__ /C,;/?' e;E-F )

occasions

Cczn)?
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which is a 1/r potential for the FrbBhlich Hamiltonian, by a harmonic
oscillator potential rz . This means replacing, fc;r example, the
term R ('l"' ')fd————l CI:JZ —Ik (x (tJ— . [tl)) in the exact action
_{5, Wthh is 7..; Rw_(-t —t) . /x’(-t:)—)?(t')lfor the FrBhlich case, by
‘E"IV___’Z_RJL(-,ﬁ--t’) (X (.t_)-X(f’)) . The relative strength of the
oscillator, -A, and its frequency ﬂ, can in some cases be rigor-
ously chosen by the criterion that the free energy of the system is a
minimum. For our problem it proved expedient to approximate the
action by a distribution G(§l) of such harmonic oscillator potentials
to simulate the loss of the kinetic energy of the el ectron to the lattice

6)

acquired as it falls through the impressed potential.( (One may
recall that while neither a perfect inductor nor a perfect capacitor
can dissipate energy, an infinite ladder of series inductors and
shunt capacitoré has a finite resistance.) We have not been able to
find the corresponding variational principle, such as minimizing the
free energy for a given expectation velocity, which would tell us the
best possible distribution G(§l) to use for a particular velocity.
However, our expression for the field dependence of the velocity is
relatively insensitive to the distribution. Thus while the determina;
tion of the actual distribution remains a,- very important unsolved
problem, much of the physics of this problem is still open to us

without explicit knowledge of G(f1).

Thus let us set

& . _ 3 2 . N
¢.- S, (£mZe+Fre)-Ree) dt "fa (Lmie) + Fir) X)) At +
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* = .
+/[€1(1‘:-t’) (Xee) =X () - R, Ce-29) (Ree)~ )—('"(t"))z‘

, "R:(t-t') (xeen)-x0e)7] . (/2)

and expand equation (9) as follows:

J’J’eife - ‘Jffef.-%—a e’.(-ge_%o)

=5fe'® (rri(z~g)+ 1) (/3)

Notice that the various powers of (&£,~$,) include an electric field
dependence only indirectly through G(R). The most sensitive
dependence (6;E—(t) )_(-(t)) is never altered.

Whilé each term in the power series expansion (13) can be
evaluated knowing the one basic path integral evaluated in the
appendix, this approach would be algebraically unwieldy. We
therefore make use of another argument, motivated in FHIP§4,
which gives us a means to obtain what we believe to be a physically
accurate estimate for the sum in (13).

Suppose for a moment we had a different problem, one in
which the exact action é:, was of the same form as that of fo .
except that the G(§2) distribution of oscillator potentials was
replaced by another distribution H(fl). Then we could evaluate

ffe"é-/ either exactly or by via the expansion (13):

Bz [fef L o EEy
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= ¥ e/ treird-8)+ ++s) (/14)

It turns out that for our problem where we are interested only in the
expectation value of the velocity in the limit t,”>® (steady-state),
that only the zero-order and first-order terms in (14) need be
calculated in order to sum the series. (The other terms are not
zero, however.)

To present this more clearly we refer to the following

expansions:
X2, = <X, K X(2)0,~ < X (e, +* " (152)
XD, = <KX@ED + KX (D), K X (), +10 (154)
where

2 ‘
XS T// st g <% Bizey Dz 50

/ =) / ~
< Xet,3), = ',-‘LD st S et Jegen) D () (15d)
Also
V=], < x> (15e)
J k—r,_->-o dtz. J Ky K
and g
VK:,-_.I':...,’o ﬁ%; < X(*z)?K [/ :F)

The v's represent the several velocities we must calculate. Upon

evaluating the four terms in (15b) and determining (15e) and (15f) we

find
L — L — Mo~
’12 B ’<@ V2 6769

to be an exact expansion of the velocity v, . This is nothing more
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than the first order expansion of the reciprocal of v,=V,+(,\, =\V,) ,
as would be found from retaining only the first order terms in (15b).
This correspondence, supplemented by the physical reasoning for

using such expansions in this type of problem given in FHIP (p.1009), -

means that by setting

_ Vo~ oVo
I/\/e - /\/, - V2 (‘7)

we can obtain a far more accurate expression for v,. The con-
sistency between this approach and those of sections II and III is

: ; = Vo L, 2
also reassuring. Also it turns out, moreover, that Kl,"‘ = %/ o

which reduces (17) to

\/e::—-\/oz/é\/o (’8)

This expression represents another step towards our E-V relation-
ship.

D. The Evaluation of the Velocity

Once ffg"f" has been evaluated, various algebraic
manipulations may be used to determine the v, Jo » and v for
equation (17). The calculation of this path integral is long and is
outlined in the appendix. Using this result, we may at once find

< =ltz) ), and {x(t2)), , for which F(t) = XEu(t) + XL8(t - t; ) and

F'(t) = XEu(t) :

XD, =2 Eon (5 K, ) do) (152)



e

<Xty =-2E &n (L2, K, ) dr) (195)

where the pre-subscripts G and H refer to whether Kﬂ was formed

from the G(&) or H(fl) oscillator distributions. Notice that

&wn(Kﬂ(T)):‘f::{w [7¢ ) sin wr (20)

which is independent of the temperature. It follows that

CX(EI%==2E &m K,y (£2) (212)

and
KROED=-2E Qom  Kolts) (214)

and passing to the limit t,r® , we obtain

I L I—

Yo S rve < (-4)9, (223)
and
£
VIT vz <A A, ) 224
where G(ft) = g, L+« + 1 and HU) = h, L+ 1« ¢, (Taylor

series expansions of G and H about/] = 0, with G(0) = H(0) = 0}). V.

and v, are independent of the temperature and the electron mass.

/
These results express the fact that in zero order, where we
consider merely the coupling of the electron to a lattice via a
distribution of harmonic oscillator potentials in place of the more

correct Coulomb interaction, the only oscillators capable of con-

tributing to the D. C. mobility are those of lowest frequency. For
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that problem (22a) and (22b) are exact for all values of electric field,
and the relationship is linear as one would expect. (We remark in
passing that a Hamiltonian H , which leads to the action _Eo in

equation (12) is

— B o LR Fun + B ¥ 4 _
H,= o T2 AR = Fle) X+ Z N3z 2 +%00,;3,z(x-/<)‘"i0£3}:(x-k))

where = E=tA) G(Jl 2__/_
. mA = NB f di = S j— (zm)’ IDR Jl 2

in which the linear coupling to the oscillators is explicitly apparent.
But because this Hamiltonian no longer represents the non-linearities
inherent in the original problem, we do not use H, here.)

In order to calculate c{x(tz )>° and l{x(tz)z’ we must
perform ffe"ﬂ /‘_g_za and ffe;§°;§, . In fact, the former can be
obtained from the latter by replacing H(J1) by G(N). Also, as it is
only the difference of actions (f, = ﬁ,) which enters, we need
consider only the third term in (12). As a shorter notation, we
designate the solution of fje";" by ffff_::(*))‘f?l(f)}‘ where we

specify the forces to be inserted into fje’ . Using this notation

we may write

Sfei%o g =~=52 [ “hin) dn f 40 L2 dn [Rycon| T‘i(ff(/))

+Rﬂ*(9—71)/’2=‘§%?i (I_[(Z)) i R‘A(B-?ﬂlk (f[[3)) "'/? (- 7{) T‘{ffﬁ')]

R - (23)
vhere AR gt Ik T A (232)

a.
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and

f[/) jf{F[f) (Eue)+L §(t- tz))x = l4)= EUOR + K (§(t-0)- § (- ,,,)))Z
'f[(Z):j]{ﬁ(t): (Eu(-g)-/-LS(t-tf)))?\-f-/—(‘(S(t-a}-é'&—h))) /.:é = Eute)d }
(235)

ﬂ(@ﬂﬁl-’&): (Fact)+L 50t ~t)R + K §(t-0) ) Fly=Fute)f+kst-n}

Q@ Froy= (e ucyet. G- )34k §ct-2) , Flror= £ winrkeefie-e)

Although the algebra is quite involved, the results are quite simply

expressible:
- — _E g
Vo= T T A - . (2#a)
Bk
Vo V2 =<(~A) 9.} (245)

Again there is no temperature or mass dependence. Note also that
’/Va: - "V%/D'-'- , which is needed to re\duce (17) to (18).
The calculation of[fj; e’ to obtain eVo Can be per-

(-]

formed using

Jide%o=- (L e S d0 ] doy LR, L6 SI0)

*Ru (D) = Ru,(o-n) [f ) - RY,_ (- SSe#)] (25)

where the notation of (23b) applies. Again doing the algebra and

inserting the result for o s into (18) yields
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b LTSIy Rl S FD) 29

/wg _,'w§ |
where /5’[) Idw(/-"(uh))[ +_/_:__:./.—-> (26&)

E. The Electric Field-Velocity Relationship

The result obtained in (26) for the approximate velocity v,
as a function of E, the electric field, is unsatisfactory in one
respect: the critical dependence through v, of the result on the
particular oscillator distribution for small J1 . To remedy this

we are motivated to replace v, and v, in (26) by v, the expectation,

steady-state velocity. The result is

@ - —
£= [z”’fféjijs /Cé'/zkx /?wi[é)e_’kxgve—kz/‘fﬂ[ﬂ ’ (27)

.

as our fundamental equation relating the velocity to the electric
field. Several excellent reasons for this replacement are presented
in the next and following sections; they are based on an examination
of several other computations in different limits of velocity,
coupling, and temperature. Equation (27) includes the nonlinearities

of the problem: it is just that they are not included precisely.
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III. Comparison with Other Results.

In this section we compare our equation (27) for E versus v
with several other relationships to demonstrate that this equation
includes the physical effects we would expect from the nature of the
problem.

A. Comparison with Equation (26)

As may be seen by inspection, in the limit of low velocities,
where we may expand e"‘kvao in (26) and e_,'kva in (27) in
power series and identify v with v, , the equations agree. This
comparison is valid for arbitrary coupling and arbitrary tempera-
ture.

B. Comparison with Weak Coupling Model

If we consider the special case of the electron in the crystal
lattice under the hypothesis that the interaction is so weak that we
may consider the collisions with optical phonons to occur essentially
independently, that is, sufficiently separated in time that quantum
interferences among these collisions are negligible, then using
first order perturbation theory (Fermi's Golden Rule), we can
determine the net rate at which the electron loses momentum. In
steady state this rate just equals the applied force, in this case the
electric field.

The rate at which the electron loses momentum k in a
lattice at thermal equilibrium is 27/¢s/* S5+ Bk -w,z)/(l-e-"’“"‘),

and the rate at which it acquires momentum k is
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27 [CEl* S(- 4 = BEE )@ A —y) where B ia
the momentum of the electron before the collision. Replacing the
delta function byZ"Y‘s(XF_E: e—-r‘x? A , summing over all possible
k , and averaging p; over a Maxwell-Boltzmann distribution of
electrons with mean velocity v in the direction of E, we obtain for
the equation expressing the conservation of momentum in the %

direction (E/x ),

A3k i /%) kv -/«1 ‘ts)
Esf° a/éf(m,,/c/ A, / T /) ng)

where K. Ll )L (J% -7 f/) . From FHIP we recall

that for low o (x<1l) one uses for] just the free-electron influence
functional which gives A (J'J—- (j/" /) in (27). Again we

~ obtain a consistent correspondence as well as a hint as to how to go
about solving our problem more quickly. This hint is exploited in
section IV, Of course, in order to assume a Maxwel_l—B'oltzmann
distribution as we do, we must assume that for a given velocity the
temperature is sufficiently large so that 1/2mv*<< kT is satisfied.

C. Comparison with Rate of Energy Transfer

One may calculate to lowest order the rate at which energy
is being transferred from the electron to the lattice using the

expression

Wos L g5 Tr(Zepafa; p) (29

2> oo

in a manner similar to that used to calculate Tr(xp). The result is
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e 3 ‘ f'“'.«zf "".Wk'g ~ku§ _kzﬁ G—)
W= Lot Sl (s = Sy )05 (30

Again replacing v, by v we obtain a more physically accurate result,
This is evident for weak coupling by carrying out section B for rate
of energy loss. The result is equation (30) with v, replaced by v

. —/
and A’/g(f) replaced by the free electron Kﬂ{j) . Thus again
from the weakly coupled problem we obtain the essential form of the
velocity dependence and from the arbitrarily coupled problem, the-
form of /\;9(5), which corresponds to a scattering probability ra
(FHIP p. 1011).

(In principle one should be justified in writing \A/O=Ev,
expressing the fact that the rate at which the electron loses energy
must equal the expected value of the force times the velocity,and
this result could be compared with the E-v relation of section B
(28) or (27). If both results were precise, they would, of course, be
equivalent. By the result of the approach used in § II to obtain (27),
we regard the momentum relation to be the more accurate of the two.

However, both relationships give quite similar physical behavior.
We discuss this further in § IV.)

-
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IV. Second Approach - - The Method of Rates

In sections B and C of the last article, the conservation
of the energy and momentum in the steady state was utilized in
finding relationships between electric field and velocity for weak
coupling. In this article we formulate this procedure in a general
manner, This will have the advantage of eliminating the necessity
of having to take time derivatives, as well as casting the result
directly into the form of (27).

The time rate of loss of the electron momentum and the

time rate of loss of electron energy are given by

Tr (57 4 22) o) (31)

and

Tr (2 (Zw % 3)p) (33

respectively. The time derivatives are easily computed from

#O = [0,H , and, if we define
2 " * _+ =ik
RE-—/ (C,; ag € —Cz age

then (31) and (32) become

Tr(5Re k po)=2Z BTz peo)  (313)

K

Tr(;; 13,; w,;/aﬁ-"))z % W;Tr(ﬁ;/(f)) (32 a)
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The expression Tr(f{k p(t)) gives the net rate of production of
phonons of momentum k at time t. Such a quantity is useful not
only in calculating the electric field-velocity relationship, but also,
for instance, in determining the angular dependence of the phonon
ener gy emitted from the polaron '"'shock wave!' for velocities above
the "critical velocity for the emission of optical phonons.'" (This
latter comment refers to the second order perturbation theory
result for the polaron energy. For electron momentum aboveV 2"
(electron energy greater than wy = 1) this energy becomes complex,
and twice its imaginary part is the approximate rate at which
phonons are emitted. )

We again use equation (3) to substitute for p(t), eliminaée
the oscillator coordinates, and transform the result into a double
path integral to obtain

el'/{-(k"z_-)?t) éiw,;(tz-t)

Rf?zTr(ﬁz/@C*z))=/C,:/foel"@;fot:ltéra

i - - . & —_ — - - —
e-/k‘(xt;_ X e’ w(ta—~2) . _é-'k’(xr."xt) e’w"’ £y ~£)

erAwE — f /_c-',gwk-—

c’ok"‘- (Y‘-;—Ytﬂ/) e—ﬁ/u}k—(tz"r)

- § DgayDexty  (34)

where _E_, is given in equation (10). At this point we could use

momentum conservation to give E = 2 ER . This equation also
=

follows immediately from /0%, Se'fe )20 TP i

independent of xtz since the path integral is integrated over Xy o
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However, as we shall see, a more physical approach is to change
the variables of integration in (34) to X = y + ¥t and X' = §' + ¥t,

where v is the expectation velocity of the electron, to obtain

-/ (- 8) /k (Pem Ys) e (trE); R )

/C'/Ia’ﬁﬂ’ £ { AT Pz _)

b (a8 BT bt 8) iR AT T2) |
cf }l[ti .é)e 1K (ﬂz /V§,) e s (t 2 & _ )
* —— Ry oD()//f))ﬁ[y"(t)) (35)

P R HE

where

.

% -2 +. By _
é;_:-‘-,o( (2 + Py 7 )dt _fo "(@?3:_,2_7,_}:&) }7:) it
#7 S &) e e (s, o (ems &5 TV, % g RO

-5, popr) SRTe=T) _ sk (f_weqfr(ﬁw%)) ; (35°)
A ;

N Xt e—/""zi o
5«;}", (= - e PE + e PYi—y b (3‘5'5)

Again to proceed farther, we must approximate the action
.§; 80 tha.t; the path integrals can be'performed, but without loss of
the essential physics. Only now that we are in a systemn translating
with the electron, the replacement of the actual electrostatic

interaction by parabolic potentials centered in the mean position of

the electron should permit a more accurate determination of Eﬁ(g )e
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In particular, Ep( E) 'Vwill have velocity dependence in addition to
that through G(fl), the oscillator distribution. The computation of
this improved approximation is quite involved; the result has only a
small additional dependence on the velocity and offers little further
insight into the problem. This further supports the statement that
}.-{ﬁ(f) is relatively insensitive to the velocity.

If we formulate the result for Ry in terms of the model of

§1I, we obtain
Rz=/¢/

( —/(W ‘kxv)i e’.[“"lz_kxv)t )e_kz@%(fjj
T\ T e e Pwr —y

——

/- o PR e

/(W“ /‘Q’)t e"' wy — Ky)t _kz/];*(ﬁ)

(W —k e ~ 1l =kt 2
/C"/I {e g e al 6——k/(("f) (36)

-y / - e-'ew/&_ eﬂ‘aﬁ_'—'/

and if we let t;—>a for steady state, we recover our basic E-v
relation (27) from E :KZkXRE. Using W = wa( Ri » we also obtain
approximately the rate at which energy is bkeing transferred from

the electron to the optical vibrations of the crystal, as discussed in
$III.C. Physically this quantity must equal the product of the field
and the expectation velocity (Ev), which also gives an E-v relation.
One might be tempted to argue that we should constrain our oscillator
distribution to be such that the two E-v relations agree identically,
But then another calculation with the RE would not have the accuracy

one might claim on the basis of such agreement. We prefer to

regard (27) as our final expression, and use greater care in
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applying the approximate rate, Rf .
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V. Note Regarding a Variational Principle

The most natural variational method to try would be to
extend Feynman's approach in reference (1) to our distribution of

oscillators at finite temperature. The result is

| = W,) __3 _ mw,t

P h=y gl

- W,}-f _ 2, .
fé{f%ﬁ" Crf (/ _/w,‘.""' :wfﬁ_/ )c’ k= (37)

= I
where 2 — % -Z(Wn) (/ — Ccos Wn"i’) (37&)

and ?(W,,)“-'-MW,,"-{- 'gjl%)'f;xﬂé(@ﬂ)z?w:) p{fl. (375)

(Note Z{v) = -Z(-i( V + i€ )): see (A-14).) This inequality tells us
that if we choose the Z(wn), n=1,2,..., sothat F, is as small as
possible, then the corresponding oscillator distribution G(M), or
for that matte1; the corresponding Z(v), which is all we need, is the
distribution to be used in computing ﬁﬁ(e ). However, if we write

Kﬁ (€) (26a) in the equivalent form

B Jwé /_ —rew €
/f(! -"f 277'/ Z(W) };—Z"‘? c"’“’-—/) 6;8)

and recall all poles and zeroes of Z(w) lie in the lower half plane,

then we see that knowing Z(w) only at w = iw, is insufficient to
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determine I-{p(é’). To be sure one can still introduce a distribution
of oscillators which depends on only a few parameters and minimize
(37) with respect to each to obtain the value of thesé parameters.
But the problem of determining a variational principle for processes
similar to the polaron one considered here is much harder and

deéper than this.
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VI. Numerical Results

The crucial test of our E-v relationship is, in the absence
of experimental data, physical reality. Taking for our distribution
of oscillators, a single oscillator, just as was used in references
(1) and (2), choosing for the frequency and oscillator strength
parameters those values giving the lowest free energy at zero

(1, 2)

temperature, using the Fr8 hlich Hamiltonian, and assuming
Wi = 1 for all Ic-, we present the electric field versus velocity for
couplings of @ = 3 and o = 7, for B's between 20 and .00l. In our
units P is the ratio of the energy of the longitudinal optical mode
to the average thermal energy of the lattice., Typical longitudinal
reststrahl energies range between room temperature and six times
room temperature. (The longitudinal reststrahl can be determined
from the experimentally measured transverse reststrahl frequency
using w /wT l/_~—_'( ) where & is the DG dielectric constant
and &, is the electronic contribution to the dielectric constant.)
For numerical work it is convenient to cast the integrand of
(27) into a purely real form. In general, _Kﬁ(g) is positive and
otherwise wll-behaved in the region-=2<fe(§)s@, s ITm(€)sf, If we
shift the contour from Im(§) = 0 to Im(§) = p/2,we obtain

cos Wy —ikev($+ils) _ 2 ¢
== I dé‘f(am’/C//(x mﬁwf%c (847%%) s Aa(8) (39)

where 7 i —cCos W§ J
" /fgfngdwﬁ‘/;uﬂ)(llaﬁé ,%_a—_,. 2,',,;, B/, (393.)
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rk V(é"“"‘%)

(Only the real part of enters, of course, but (39) is
a just-as-good place to start.) Making the substitutions indicated

in the first paragraph, we find

-

i 2 AC5) X35 _
E v‘ Vo sinh B/ f 2&()( f‘ls /4() a2 Acs)
S S/”,;}(—j O)
where ‘
4 pE—w, _cosh fvefz.— cos s Vol (40 a)

A(S.) = ¥+ 7 wr v, sinb f¥o/2

and w, and v, are the variational parameters corresponding to .
The values used here are o = 3, Vg = 3.4, wy=2.5, anda =7, v, =5.8§
W, = 1. 6. (FHIP p. 1012.) While one would expect these values to be
valid only for large B (low temperature), we use them for all
temperatures. In fact for high temperatures (>0.1) the E-v
relation no longer depends significantly on w,, vo. This is seen by
expanding A(s) for small B: A(s) = (Vo / Wo )(s + 1), and setting
z = (W, /vy )x in the first integral. Therefore, we expect the
numerical results to be about as good as would be obtained if
different v5, W, were inserted at each temperature.

The results of the computer work are shown in figures 1
and 2. For B 25,0, the linear region was also calculated by hand.
The variables shown (EE, vv) are related to the dimensionless

variables (E, v) used above by the equalities
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'

where m, is the mass of the electron in eV-sec‘?‘/ _{gz, To obtain
eE, the force on the electron in eV/ &, and vy, the velocity in

R/sec , one uses

_vr_‘—* \/}m%-' VHEw, "vv (/8/5\‘-’4) (5‘2&)
eEs \/’r"n:_:’ (h WL)B/"'EE [%) (425)

where m is the fixed-lattice, effective mass, and'ﬁwL is
expressed in eV.

The physical interpretation of the curves is straightforward.
For f22.0, about room temperat‘ure and below, the field-velocity
.'relation is linear until the translational kinetic energy of the
electron approaches the reststrahl energy (verticai dashed line),
Then the electric field must be increased to a threshold approxi-
mately independent of temperature before the velocity of the electron
can again be increased éubstantially. However, once the threshold
is reached, further incr.eases in the electric field appear to no
longer correspond to physical velocities. This means that beyond
the threshold of the electric field, the elecfron is effectively

""pulled out' of the polaron state, and other mechanisms, such as
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acoustic phonon scattering, impurity scattering, etc., must be
included in the physics of the problem to limit the electron's
acceleration, For higher temperatureé, p<2.0, the effect is less
dramatic., However now the threshold for breaking out of the
polaron state inrcreases-, with temperature, as does the velocity
where this occurs. This is evident physically if we recall that
for only 53'<' 2.0 do we have appreciable numbers of optical phonons
in the crystal, and as the temperature increases further, this |
number increases rapidly. Thus the electron encounters far
more scattering from phonons already present, and consequently
higher and higher fieldé are required to overcome this damping.
Let us consider, as a specific example, the case of
MgO: o =3; assume \/—Z,,,'*: oz 13 ’ﬁwL = .0730V9.65/3.03 = .13eV(.10)
Then the threshold field for temperatures < 750°K (B=2) is about
.1evV/& . Thus on the basis of this theory, we would predict‘ that
in order to accelerate an electron in MgO to energies of over .l3e V,
an electric field strength of about .lev/K (107 volts/cm) is
necessary. This may be a relevant minimum voltage for the
operation of cold electron emission devices using MgO as the

{1, 12) The threshold for exceeding the reststrahl

insulator.
energy for A1203 will lie higher by about a factor of 2, and that for

BeO, lower by about the same factor.
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VII. Conclusions.

In this paper we have treated the motion of an electron in
a polarizable crystal under the influence of a D.C. electric field.
Starting with the crystal in thermal dynamic equilibrium, the
electron was injected with zero velocity, and its subsequent steady-
state motion was determined using two methods. In one approach
the expectation value of displacement of the electron was found, and
the time derivative gave the steady-state velocity. In the othe rl
approach, the rate of loss of electron momentum to the lattice was
set equal to the electric field to obtain the E-v relationship. In
both cases no approximation regarding the field strength, velocity,
lattice coupling constant, or temperature was ever made. However,
the part of the action in the Feynman Path Integral related to the
electron-lattice interaction is approximated as closely as possible
to physical reality, and expansions in the difference of the exact and
approximate actions are combined in mannersrsuggested by the
exact solution of similar problems. The resulting expression rela-
ting E, fhe electric field, to v, the velocity of the electron, is an
explicit formula for E as a function of v, and was evaluated
numerically over a temperature range of .2'105 for two coupling
constants. The results give physically reasonable thresholds for
the electric field strengths necessary to '"pop' the electron out of the
polaron, which may be at the root of the current problem of the low
yield in tunnel-emission devices. They also exhibit.-i:he qualitatively

expected features of E-v curves in 3 below threshold,
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Appendix - - The Calculation of the Path Integral

In this section we outline the calculation of |
U= [f % Bke) Plee) (4-1)

where é:is given by equation (12). In order to avoid the usual
problems which arise in performing path integrals over finite
intervals with complex exponents (especially the presence of un-
damped transcients), we change the limits of the time integrals from

[~
Ja

appropriately to ensure that physically we are still working with the

o0
to J:__ , while at the same time changing F(t) and F'(t)

same problem., To facilitate this transition, we recall that the path

(1) Thus if in

integral may be interpreted as a kernal or propagator.
F(t) and F'(t) we represent the E field to be turned on at t=0 from a
zero value for t<0, the propagation from t==-e2 to t=0 will result in
zero displacement of the electron. Similarly the fields may be
turned off at t=t,, but in the evaluation of < x> this is not necessary.
For example, to calculate v, one sets F(t) = Eult) + KL&(t - t7) and
FYt) = Eu(t) where u(t) =1 ,t20, and u(t) = 0, t<0. Because we will
use a number of different F(t) and F'(t) , we consider general F

and F' here.

Thus we must evaluate

j= ffe"f"lﬂﬁ?m)ﬁ (Rre)) B | (A-Z)
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where

Z'=1 :At(-szjq;H:-}ﬂ. Ree)— [ dt (Lmils+Fle)-Xte))
oo &0 F
+ 72 [INGR) Lot # IR (t-4) (Rte=X bey)?
Ly P - 2 ; - o 2
* A (£-2") (Xcey—x(eh) =~ f, (b€ (Rpp)~ X e )
- Arce-t) (%e9-5) § (A-3)
First express x, x', F, and F' by their Fourier Transfor‘ms:
= oo . ® - = SvE
g-v: 5;‘,, X&) e—’vr/t X&) = 27 3, €

;;{: Lc:’ k*l&je-f'wfdt_ | X{i"): [w "

I e Dee)y el (A-5)
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- 224 (e an . [ &R (e aom e"ﬂ"ﬂ(;riv-rf))

/ -

e / e L
= }v'f_.,, (m:;'fr/lj(};u-v—ié) e~ N(n+vrie)
e SCn+ Sn—-v3 -

, _ -
We note that since &(t), %'(t), F(t), F't) are real, §.= f.-v, $.~ 5., 9

-~ — '—/_ = /% o0
£y"'f.—v-, JC;r""E-v . Thus by changing Liv to fo 4V e obtain

I= e Bee)pen SENHED  vse (A7)

where
X'=f 4= { (201 200) 6, b0 = (e + 250§, §F
(2 ()= 2,0)8, 8 + (27w - 2 o) BT Bl

IS PR R A (A-8)

an —._"- - Bap -
a Y(VJ z vV f /e‘/“"-” (A vie) (/4 ﬂa)

N S ~ ) 2v* '
Zwy=zmV it/?é" —foa/ﬂ L] ﬂ[ﬂi—v"*/"—‘)@'%)

These are defined only forv 2 0, We are permitted to regard f-u—-
o
and ,f,,,. independently for the following reason. The Fourier

Transform of X(t) has a real part &, ( even in+v) and an imaginary
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part b, (0odd in v ). To integrate X(t) over all possible paths is
equivalent‘ to integrating a, and b, independently over all poésible
values, but only for those v2 0, And as ?, and Ef are simple
linear combinations of 3, and b. , they are to be integrated
independently. Hence, completing the squares in (A-7) we oi:tain

T i EEEL  BEEE)

2,00+ 21600 2+ 2,00

. GI_-‘V)(;I*__‘"") (ﬁw (v.)) [A‘/ﬂ)

CZ, ) + )2 (v)+ 2, (v))

Letting Z(v) = Zl(v) + Z’;_(V'), we find

— — w A .

Z(0= mv*+ %%’ﬂ f., a1 %ﬂ‘)‘ J;;—v"'—i s ,U%0 (A‘//)
and (A-10) becomes L
Tt £% (£-5) , S(HZE) /

o CX/J/_I Z'C'V‘J %)

(-5 )-8 (280 —Zcw)
Z(v) 2%~) (P —1) ) (A'/Z)

To convert this result from the frequency to the time
domain, we must specify Z(v) for negative frequencies, and find
an expression for Y(v) = 1/Z(v). To accomplish this we note that
Z(iw) is real, and hence that by the Schwartz Reflection Principle, we
must have Z(Vv) = Z*(—v*) for all compiex -~ which can be reached
by analytic continuation of Z(iw) off the positive imaginary axis.

This condition will be satisfied if we replace & by €V in (A-11),



P

vy = v 9«( A) fam [920) A (A-13)

for all complex V. Since we must have Im (Z(v)) = -Im (Z(-Vv)}, v

real, and since Im (Z(v)) = %Lﬁ GCv)

= -Im (Z(-v)) for v 2 0
and Im (Z(v)) = _ff_‘ﬁ?_) GEFv) = -Im (Z(-7v)) for V<€ 0, we have
G(0) = 0, Also we may define G(v) = -G(-v) consistently for
mathematical convenience, Physically this says that if we were to
include oscillator potentials with negative frequencies, and hence
negative energies ¥ (n + /4), in our approximate action (12) we

- would have to change the sign of the coupling to provide for absorp-
tion energy.

As written in (A—13)J Z(v) has no poles in the upper half

plane. Writing Z(~v) in an equivalent form as follows

. e (- y: (_V- lé) |
Z(v)=m(v+/6)z+g_"v§(;ﬂ£dﬂ 6101) /l:—@""“‘)z , (AH)

represents a function with neither zeroes nor poles in the upper
half plane. If we let w [(v)= Im (Y(V)) = Im (1/Z(v)), the /(v)
is also odd inv, and using the Kramers-Kronig relations we find

Re (Yu)= P, Btsd—dw (1-15)
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Combining real and imaginary parts of Y(v) we obtain finally

_ (% 2uw/[hw
y(w)—fo - ,V-i >m, /Zm) (A-1¢)

Inserting this expression into (A-12) along with (A-4) and performing

_fa.a;l.v_ gives
T =T #frzay Pezienn =
ex/az(_[ déf dt' {/:ﬁ-“) F[f) (_/f"’?fl/)'f'

+ ey Flan K, (16-#0)=2 Fiy Flao (t-z'bz) A-17)

where

~rwy
H69= [ o ) (5w + 257 ) (A-18)

It is interesting to note that the form of the result is very similar to

the form of the action (A-3).
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