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ABSTRACT

The sudden axial acceleration of a column of liquid bounded
at one end By a concave free surface has been found, experimentaﬂy-,
to produce a jet which issues from the free surface with a speed
several times that imparted to the column.

Theoretical approximations to such flows, valid for small
time, are formulated subject to the assumption that the fluid is
inviscid and iﬁcompressible. In a special two-dimensional case, it
is found that, for vanishingly small time, the velocity at the point on
the free surface from which the jet emanates is 7w /2 times the
velocity imparted to the column. The solutions to several problems
in two and three dimensions assuming that the initial curvature of
the free surface is small,lead to values for this ratio dependent upon
the curvature- - the initial velocity in the case of axial symmetry
exc'eeding that of the analogous two-dimensional problem by approxi-
mately 25%. ,

Experiments conducted upon the phenomenon give values
systematically in excess of those predicted by the theory, although
theory and experiment are in qualitative agreement with respect to
the displacement of the free sgrface. It is suggested that the dis-
crepancy is attributable to effects of finite curvature having been
imperfectly accounted for in the axially-symmetric analysis.

Photographic materials on pp. 115, 120, and 121 are essential
and will not reproduce clearly on Xerox copies. Photographic

copies should be ordered.
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I. INTRODUCTION

The problem to be considered is that of the motion of a body of
liquid, partially bounded by a free surface, subsequent to the applica-
tion of a system of forces which cause it to accelerate impulsively,
Attention will be given specifically to geometries having a free surface
concave into the fluid and in which the applied accelerations are more
or less normal to the free surface. A prominent feature of many flows
of this type is the formation of a liquid jet which issues from the free
surface approximately parallel to the applied acceleration, An exam-
ple is the splash which often follows the rapid setting down of a liquid-
filled cup.

The formation of these jets has received attention for its role
in the initiation and propagation of explosions, Bowden and McOnie(l)
have found that the presence of voids within a liquid explosive greatly
increases its shock sensitivity and leads to much higher reaction rates
than prevail in a homogeneous liquid. They conclude on the basis of
evidence cited below, that jets emanating from the surfaces of the
voids serve to disperse the explosive and increase the surface area
available for reaction,

Bowden and Brunton(2) and Brunton(3), in connection with an
investigation of liquid-solid impact, employed jets formed by the sud-
den extrusion of a liquid through a circular hole, When the initial free
surface was concave into the liquid, they observed a small jet to form

at the tip of the main stream and move two or three times as fast; no



such precursor jets were found when the initial free surface was planar.

Watson and Gibson(4) caused an explosively-created shock wave
to impinge from below upon several hemispherical air bubbles trapped
beneath a thin film of plastic in contact with the top of a liquid-filled
tank, The resulting jets were found to move fast enough to pit an
aluminum specimen placed in their path. Watson and Gibson speculate
that a mechanism of this sort may be operating within a cloud of cavita-
tion bubbles - - the pressure wave from a collapsing bubble possibly
causing a neighboring bubble to form a jet, Several studies (5), (6),(7)
have implicated jets from collapsing bubbles as a possible cause of
cavitation damage.

The work of Bowden and his students, summarized in Ref. (8),
is illustrative of the varied geometries which can give rise to jets., In
addition to the extrusion process mentioned above, they have observed
jets when a thin layer of liquid with an elliptical void was squeczed be-
tween a hammmer and anvil, Jets were found to emanate into the void
from the two points having the greatest initial curvature, The phenom-
enon also occurs when two droplets, impacted in the hammer-anvil
device, make contact. Jets issue in this case from the points of maxi-
mum curvature on the resulting ''8''-shape, Finally, two explosion bub-
bles collapsing out of phase, Ref., (9), can exhibit an interaction which
leads to the formation of jets, first in one bubble and then in the other,

The theory relevant to the formation of jets at a liquid free sur-
face is not at all well-developed. The phenomenon seems quite similar

to that occurring during the collapse of a conical or wedge-shaped liner



in a high-explosive charge, Ref. (10); however, the problem is much
more difficult since the mass is distributed through a region of space
rather than concentrated in a very thin layer. This requires that the
conservation laws be applied in the form of differential equations
rather than their more easily handled integrated forms. An attempt to
treat the phenomenon in terms of the theory of shaped-charges has,
nevertheless, been made by Kozirev (11),

Birkhoff and Caywood (12), studied the flow near the base of
the up-iet formed behind a wedge after its entry into a tank of water,
By matching, at one point, the magnitude and direction of a theoretical,
steady, two-dimensional, jet flow to that determined experimentally,
they found that the field everywhere was adequately described.

The discharge from a sharp-edge, two-dimensional orifice has
been examined analytically by Curle (13), He considered the problem
for both large and small time assuming an initially planar free surface,
The sharp edges, however, lead to unrealistically high velocities and
hence to a free surface shape for small time which does not seem
physically reasonable,

Recently, some numerical work has been doneconcerning jets
in real fluids. The shaped-charge problem has been considered by
Harlow and Pracht (14); while Harlow and Shannon (15)have examined
the phenomena, including the up-jet, associated with the impact of a
liquid drop against a plane free surface.

The analytical work presented in the following represents an

attempt to predict the velocity of the jet formed as a result of



impulsive acceleration in systems similar to Bowden's extrusion
device, Particular attention is given to the velocity along the free sur-
face just as the motion commences, Experiments were conducted on
the phenomenon using long air bubbles rising through water in a slen-
der circular tube. The sudden downward acceleration of such a bubble,
by means of a rapidly expanding spark bubble created above it, leads

to jets closely resembling those discovered by Bowden,
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II. FORMULATION AND SOLUTION OF SOME

BOUNDARY VALUE PROBLEMS

1. Assumptions and Basic Equations

The fluid will be assumed to be inviscid and incompressible in
the theoretical analysis, No experimental evidence has been found to
suggest that viscosity plays any important part in the phenomena to be
considered. Compressibility, however, must be invoked to explain
certain features of the flow and it is neglected in the analysis with the
understanding that its effects must ultimately be estimated. In addi-
tion, forces due to surface tension and gravity will be neglected as
compared with other forces acting on the fluid,

With these simplifications, the equations to be satisfied by the

velocity, -1"1)(;,1:), and pressure, p(x,t), are

Veu = 0 (1.1)
and
Du 1

where t 1is the time
p is the fluid density
and —[—)]% denotes time-differentiation following a fluid element,

Boundary conditions suitable to this pair of equations are

—

wen = 0 C.. :igid boundaries (1.3)
p=2=0 on free surfaces (1.4)

and
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Ben specified (1.5)

over the remainder, if any, of the surface enclosing the fluid, n
denotes the outward-pointing normal to this surface. Finally, the

kinematic boundary condition

DF
= (1.6)

must be satisfied on the free surface F(;c’,t) = {0,

Following Lamb, Ref, (16, p. 10), (see also (17) ), one as-
sumes that the fluid is subjected to a system of arbitrarily large pres-
sures acting over a vanishingly small interval of time. Infegration of

th=2 Eulerian equation of motion, (1.2), with respect to the time then

yields
u(z, 0"} = Vo (1.7)
where
+
— 1 2]
w(x) = - FS pdt (1.8)
=

and the flow has been assumed to start from rest. The requirement
that :(;, 0+) satisfies the continuity equation, (1.1), then becomes
Viw =0 (1.9)

and the boundary conditions (1.3), (1.4), and (1,5) now read

Vwen = 0 on rigid boundaries (1.10)
w= 0 on free surfaces (1.11)

and
Vwen specified (1.12)

respectively. Integration of the kinematic boundary condition,



(1.6), leads to

7, 07 = 0

This has no relevance to the problem solved by w since the free sur-
+
face at t = 0 will not be displaced from its initial position,
To the boundary conditions resulting from the conventional

formulation, one may add

w specified (1.13)

over a portion of the bounding surface. From Eq. (1.8) it is clear
that -pw represents the impulse per unit area acting at any point in

the flow,.

2. The Solution of an Exact Two-Dimensional Problem

Consider the application of Eqs. (1.9) through (1.12) to the
problem depicted in Fig, 1(a). The fluid is confined between infinite,
rigid, parallel walls situated at x =+ 1 and the free surface profile
is given by

s

X .
cos 5 sinh > = a (2.1)

where a is a positive constant and the subscript s denotes a quan-
tity evaluated on the free surface, An impulsive velocity distribution,
Vo(x), is specified along y = 0, |x| < 1. The boundary value problem

for w in the region wccupied by fluid is thus

V25 = 0 (2.2)
ow
5—;:0 on x=x1, y>0 (2.3)

W:VO(X) on y=0, |x|<1 (2.4)



w=20 on cos %=X sinh s—=a (2.5)

and (Vm)s, the velocity at the free surface is sought. All quantities
in the theoretical analysis will be assumed dimensionless - - the
characteristic length and velocity being the channel half-width and the
mean value of Vs respectively,

Before proceeding with the solution, several properties of the
free surface geometry will be mentioned. The equation describing
the free surface can be written in the form

a

cos ==
a

It follows that the radius of curvature, R, atthe midpoint of the

(2.6)

2 . .-
ys:FSIHh

free surface is given by

=y"0) = 3 2 (2. 6')
S04

=l

and thus depends upon the distance d showninFig, l(a). Inthe impor-
tant case a® » 1, however, this dependence is largely eliminated and
the radius approaches % or about 0,637 channel half-widths. Equa-
tion (2.6) can also be written in the form

2 /
= —
z ™ ©8 _\/ zTTX

coOs —

so it is clear that the free surface height is logarithnﬂcally singular

4

near the channei walls. Finally, in case a® » 1, the frce surface

height measuredfrom y =d can be shown to be

1og cos % s (2.7)

TS

ys—d:—



Equation(2. 7)and anexperimental free surface are showninFig, 2. The
radius, R, and d, the columnlength, are plotted against a inFig. 3.
Returning now to the problem posed by Eqgs, (2.2) through

(2.5), let a conformal transformation be defined by
E sinln (2.8)
and a cornplex impulse function by

where
z =x + 1y
and

L& & + in

The mapping defined above transforms the region occupied by the
fluid in the z-plane onto the infinite strip a <1 < a in the { -plane.
The correspondence between points in the two planes is shown in
Fig. 1(b). Since the complex conjugate velocity, u-iv, in the z-
plane is

i o DL 5L, ne 2F
u-1v_d§dz_2cosza-g—, (2.9)

the problem for w may be reformulated in the { -plane as

V2o =0 in 0<n<a (2.10)
w=20 on N = a (2.11)
Jw

1
o

gﬁ:o on s Bl (2.12)

and
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dw 2 1
Ez;——mm(-«vo(x) on n=0, Jg]<1 (2.13)
COS—-Z—-

where x is given implicitly by

£ = sin X along n=0, Jg|l<1 . (2.14)

As conclusions will ultimately be drawn with respect to axial-
ly-symmetric flows, consideration will be given only to functions Vo(x)
which are even, Furthermore,_linearity of the problem permits Vo(x)
to be expressed as a Fourier series and the response to each Fourier

component computed separately, Thus

- Vo(x) :Z a _cosnmx (2.15)
o

since the functions

cos nmx

form a complete orthogonal set over -1< x< 1. The choice A= 1
corresponding to a mean upward velocity of unity, will be made in the
subséquent analysis, Denoting the response to the nth term of this
series by @ s the problem for w is exactly thet given by Egs. (2,10)

through (2.14) with (2.13) modified to read

8wn 2 cosn
5 = - == (2.16)
M ™ mX
cOs T

The problem in the { -plane will be solved using the Fourier

cosine transform pair



-

o0

Wn('r],k) :S‘o wn(g,n)coskg dg (2.17)

[+ e]
w_(E,1) = %S W_(n,k)cos ki dk . (2.18)
O

Application of transformation (2.17) to the problem solved by W

results in

dZWn
-kK*W_=0 in 0<n<a (2.19)
dnz B
w =0 on n =a (2.20)
and
™o 2 : LOSTTX coskEdt on n =0 (2,21}
dx Tve gos o '
2
where
x = % sin ' ¢ (2.22)

as the problem to be solved by Wn' The change of variable
€ = sing

in the integral of Eq. (2.21) gives

n 2

w/2
& = = SO cos 2ng cos(ksin g )de (2. 23)

which is an integral representation of Jzn(k), the Bessel function of
the first kind and order 2n, (See, for example, Ref, (18), p. 150).

Now the solution of Eq. (2.19) satisfying boundary condition
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(2.20) is

W_(n,k) = c_(k)sinhk(n-2) (2.24)

where c, may be shown to be

T, k)

n = k coshka

through use of Eq. (2.23). Finally, inversion by means of Eq. (2.18)

gives
Jzn(k)

2 (% :
wn(g’n):FSO COSkg Slnhk(T] —a)m dk . (2_25)

The complex velocity, u - ivn, for each of the Fourier com-

ponents is
dF dF

O n ___nd
“n n dz ~ d¢ d=z
where the expression
dF ow ow
n no_; n
dg - 9g amn
. 2 e cos k(t -ia)
=ity SO ~coshka Jen!®)dE Sl

follows from Eq. (2.25). If the trigonometric and hyperbolic functions
appearing in (2.26) are written in terms of exponential functions and

the quantity ——L_ZH is expanded in a geometric series, term-by-
l+e

term integration results in a series of integrals of the form

® -sk
go J Zn(k) e dk

where Re(s) > 0., These are readily identified with the Laplace



13-
transform of JZn(k):

X . fele™ 2Nk = ]

Jo Tem VL (s

(See,for example,Ref, (19), p. 1027). The result is

o0

a NI 1
dar T w4 ~fs 2 o4zl PP
A sm +1 (sm+ sm+1 )
e m
= |
_Z( ) = 1 R— (2.27)
m=1 pnﬂ+ (pm pm+1)
where
S = 2ma - il;

pm:Zma+1t_, .

Although the structure of the solution is by no means evident in general,
certain limiting cases are not difficult to examine.

The velocity at the midpoint of the free surface will be consider -
ed first. Substitution of { = ia into (2,27) and rearrangement of the

summation index in the second sum gives

00

an . 4_1(/* (wl)m 1

dg “ia L N Ny n
b=l m=0 “m 5 (Cm+ “m )

where

c = {(2m+l)a
m

Since the midpoint of the free surface is z = id in the z-plane, the
1



-14-

velocity there is simply

TZ an
(u_-iv_) = o O e s
n n'z 2 2 dg
! ;:ia
- 1 1+az ﬂ
S 2 At | ¢-ia
Thus
u (0,d) =0
and

i 0
1 1
v {0, d) = 2\l at Z('” (2.28)
5 : \/c::nfl1 +1 (Cm+\/cni+1)zn

m=o0

That the tangential component of velocity vanishes along the free sur-
face is evident in general from Eq. (2.25), and is a consequence of the
fact that the pressure gradient has no component parallel to the free
surface, This result has been shown to hold for a wide class of per-
turbation flows by Wang and Wu, (Ref, 20), W from Eq. (2.28) has
been plotted against a for several values of n in Fig. 4. Also shown
is the special case n = % which will be taken up shortly. The main
conclusion to be drawn from this figure is the physically obvious one
that when the free surface is several channel-widths or more removed
from the plane along which the impulsive velocities are specified, i, e,
a» 1, the details of the velocity distribution are of no importance,
kncwledge of the mean value (corresponding to n = 0) being sufficient to

determine the velocity at the free surface,

Returning now to Eq. (2,27), the velocity at points on the plane
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tangent to the free surface at its midpoint, will be examined in the

limit a -, From Eq. (2.8) it can be shown that in this approxima-
imx

tion & = Qo = iae

, Sso that Eq. (2.27) becomes

00 00
b w2y peain B i
dg B - Ta 2m+y(x) 2Zm-y(x)
- =0 m=1
where 5
_ 1mX
2
v(x) =e
when
n =0 ’
and gives
an 1
Et— O(Zn-l—l) when 1’1:1,2,3,
£=g a
(o]
Since
z =3+ i 2 sinh ‘a
m™
for the case in question,
L imx
%%—:%cos“—zz—:%ie e when a»1l
so the complex velocity in the z-plane along z =x + id is
=2 m °° m
B o (-1) _ (-1)
5™ Y™ 1y (x) Z 2m+ty (x) E 2m-y(x) : (5 28)
m=0 m=1

At the point z = id, the series in Eq. (2,29) combine to give
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00

; . T -

(uo B 1vo)id* - 21Z Zm+l - T2 *
m=

Thus the limiting velocity at the midpoint of the free surface is %

times the mean value of the upward velocity imparted to the column,
The real and imaginary parts of Eq. (2.29) are shown versus

x in Fig. 5 together with a polynomial approximation to uo(x, d) found

using the method of least squares (see Appendix A), While these quan-

tities are of little intrinsic interest (except, of course,when x = 0);

the fact that

3
wo(x,d) :S‘ uo(x',d)dx' (2. 30)
o

permits w_ to be determined along the plane in question. Using the

polynomial approximation of Appendix A in Eq., (2.30) gives

5
m
wg (%, d)= -Z A, x (2.31)
m=1
where

AZ = 1,152

-A-4 = "2.,585

A6 = B3i./533

A8 =-2.585

AIO: 00,7522 :

This function will play an important role in the later analysis,

Attention will now be given to another special case. As has been



&

pointed out, the functions cosnmx form a complete orthogonal set in
the range -1 <x <1 and thus, once the response to each of these
functions is determined; the response to an arbitrary excitation may be

found by Fourier analysis. When the excitation is given by

V (x) = 5 cos &=, (2.32)

however, the solution is particularly simple (the function has been
normalized to mean value unity over - 1 <x<1),
In this case, boundary condition (2.21) may be integrated in

closed form (replacing n with —;—') to give

dV\f1
2. sink on I
dn - K =
so that
S .
w (§,n) = %S‘ sinkcoskf sinhk(n-a) ..
}i o k% cosh ka

from Eq. (2.18).
Solving for the normal velocity along the free surface in the {-

plane:

ow

1
2

on

ST

n=a

(-oo sink cos kE dk
d k cosh ka .

This integral is evaluated in Appendix B and shown to be

dw :
o - %
5 _ 2 tan! sinhw/2a ' (2.33)
on ™ coshwg/2a
n=a

The normal velocity along the free surface in the z-plane is
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ow ow
s|_m e
on | = 2 °° T2 oy
s n=a
1
= [sinh? —TW—S + cog® T= ztan_1 sinhw/2a (2.34)
- 2 2 cosh it [2a =

where ( )s denotes a quantity evaluated on the free surface in the z-

plane, and
Y

.omx =
§_51n~2——cosh—2—

Note that at the midpoint of the free surface in the limit a - oo,

and the result found in the more general analysis above is recovered.
For comparison with previous results, Eq. (2. 34) is plotted in Fig. 4

as a function of a for x = 0,

3, A Perturbation of the Exact Solution

In order to examine the sensitivity of the exact solution of
Section 2 to small changes in the free surface shape, such a change
will be made and the effects upon the velocity at points on the free sur-
face studied. The perturbation problem will be formulated in the ¢ -
plane of Fig. 1.

Assume first that a zeroth order solution, qJO(g,n ), satisfying

vzq,ozo in 0<H <a (3.1)



and
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ap
o)
—a;-‘q— — 0 On
By
o)
B V(E) on
4;0 =0 on

(3.4)

is known, This solution, of course, will be some linear combination of

the wn‘s determined in Section 2,

Now imagine that the free surface shape in the physical (z)

plane is given by

where

¥g =¥y * b=

_2 '1"1
Yy = 7 sinh

(3.5)

(3.6)

and h(x) is, in some sense, small compared to . The curve onto
yS

which this is mapped by the transformation

2 z
§,:51n1r

will be taken to be

ng =a+gl€g)

(3.7)

(3.8)

where, again, g(g;) is assumed ''small'" and the subscript s denotes

the free surface,

If the solution to this new problem is y(£,n), then it will

satisfy

Vi =0 in

0<n<a+g(€]) (3.9)



=0

_g_qni=o on n=0 , [g]>1 (3.10)
- =ViE) on n=0 , [l<1 (3.11)
and
f =0 on H o= a+g(§;) (3.12)
Further, if ¢ 1is assumed to be of the form
g =i, TR (3.13)
where <<\1JO, then LlJl must satisfy
1
quJl =0 in 0<n <a+tgt)) (3.14)
By ,
a—nl—- =0 on n = 0 (3.15)
and
—-(&')%-G(é‘) on =@ (3.16)
LP] = TBl5g on s q= : :

Boundary condition (3. 12 ) has been expanded in a Taylor's series about
n = a and only terms accurate to the first order in the small quantities
g and ¢1 are retained to give Eq. (3.16). Recalling the physical
interpretation of {, it will be noted that the value of qu on the bound-
ary n =a is -1/p times the impulsive reaction per unit area due to
the acceleration from rest to a speed 84;0/811 of a column of fluid
whose height is g(gé) and whose density is p.

The problem for qu may be made somewhat simpler by exploit-

ing the even symmetry of the problem to note that the derivative
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ol /98¢ must vanish along £ = 0, 0 <n<a, The transformation
1
. - ™ . =
s:U+1'T=-s1nh2—g— (¢ -ia) (3.17)

will map the semi-infinite strip

£<0 , 0<n<a

onto the first quadrant in the s-plane with the boundaries transforming
as shown in Fig. 6, Denoting the value of q;l along o> 0, 7= 0 by
G(o), then the continuation of G(o) into ¢ < 0 as an even function
ensures that the boundary condition along ¢ = 0 will be satisfied.
Now the complex function, Fl(s), analytic in the upper-half
s-plane, whose real part is G(o) along the real axis is given by the

well-known formula

mi o'-s

1 *® Glo')do!
FI(S) oy n=mmms ‘S‘ R

See, for example, Ref, (21), p. 304, Thus the complex conjugate
perturbation velocity is
Fl'(s):;i—l—i:é-:%‘g‘mw (3.18)
-0 (0'-s)

in the s-plane,

The function G(o') will now be calculated assuming a » 1,
Substitution of z = x + iy into the transformation (3.7) gives, after
introduction of Eqs. (3.5) and (3. 6)

; p)
g's = sin F—Z}i\ /{ + -———j? coshh(x) + atan % sinh h(x) (3.19)

cos® —-
2

ancl
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™% a :

n' = acoshh(x) + cos —_\/1 + ————— sinhh(x) . (3.20)
= . cos? X

The geometrical relationships prevailing between these quantities are

shown in Fig, 7. In the case aZ» 1, (3.19) and (3.20) become

g's = atan sz— eh (3.21)
and
7 L aeh {3.22)

respectively. Evidently, then, g(g";) is simply

glEl) = a(e™-1) when a»l (3.23)

For the zeroth order solution, the choice

b E.m) = wl(ﬁ,n)
2

will be made, Hence, from Eq. (2.33),

o .
" o €, 3) = 2 g sinhm/2a
n ™ ™
cosh —=
2a
which becomes
i
o 1 1
a——(é,a):—-———g— (3.24)
n 2 cosh ;?

for large a, From Fig, 7 it is clear that g's is the value of § to be
used in this equation. Thus, in terms of the variable =x, the function

G 1is
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8y
_g(g1s)an_ (g:ssa')

G(x)

LS W (3.25)
Tr&s ’

cosh

Za
where &‘S(x) is given by Eq. (3.21),
The perturbation velocity at the point s = 0, corresponding to
z = id in the z-plane, will now be calculated. It is true, in general,
that the principle value of the integral in Eq. (3.18) must be taken. For
the special case to be considered, however, the function G(og) will

have a second-order zero at 0 = 0 so that the expression

oy co 3
=i =2 S 4 (3.26)
T ™ - O"Z
will converge in the Riemann sense near o' = 0, The relation
w§ ts
o' = - sinh za— (3-27)
follows from (3.17) with ¢ = §'s + ia. Thus
m ‘ITE,TS
oo oo o det s
do 55 cosh —— gs (3.28)
where df ', 1s
h ™% ™ 1
S 1 doi = i
dgs_ae h' tan > + > e dx (3,29)
CcOSs *-é-

from Eq. (3.21). Substitution of (3.25), (3.27), (3.28), and (3.29) into

(3.26) results in
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o o1 h
<8 :-3 _i—'lg—,——eh h'tan 32+ 2 — 1 lax (3.30)
T ls=o o ot P8 cos® ——
sinh >3 2
where
§' = atan 1;-2 eh

Finally, the perturbation velocity in the z-plane at the point (0,d) is

dF _dF, n a
dz |, jq4 98 95 Mo 9| a0d
so that
e 0
akpl .- a—‘-f‘ (3.31)
Y |(o,a) (0, 0)

The choice of y's will be based on experiments performed on

bubbles rising in slender circular tubes, see for exampie Ref, (22),

and Ref, (23), p. 235. These indicate that the liquid film thickness
along the tube wall varies as 1 where 2z 1is the axial coordinate. This
manner of variation can be fouid analytically through application of the
Bernoulli and continuity equations to the liquid film. It is easy to show
that the film thickness corresponding to the free surface shape, Vg
used in the two-dimensional problem of Section 2 varies as ehy_ In
addition, the nose radius of these bubbles is about 0,70 tube radii - -
somewhat larger than the value %: 0.637 found in the limiting case

a» 1 of the two-dimensional theory,

One is thus led to assume that
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ooy 1
ys_bz[l_xz l]+d (3.32)

where b is a constant, If b =1, the radii of curvature of y's and
y, agreeat x = 0; while if b = 0,910, the radius of curvature of y's
is 0.700 at x = 0, Equation (3,32) is plotted for these values of b
in Fig, 8. Also shown is a typical experimental free surface. It is,
of course, axially symmetric; however, Eq. (3.32) with ‘b =0.910
is a rather good approximation.

In view of Eqs. (2.7) and (3. 6),the perturbation h(x) is

1

1-x

h(x) = b 12_r -] + log cos 112}5- ’ (3.33)

Substitution of this into Eq. (3. 30)gives, after numerical integration

and use of (3.31),

oy
sl = 0,01271 (3..34)
% (o, )
when
b =1
and
o
5_1_ = -0,01232 (3.35)
Y l(o,d)
when
b =0.910

Recalling that the case b =1 corresponds only to a perturba-
tion in the free surface shape near the channel walls, it is clear from
result (3, 34) that the velocity at the midpoint of the free surface is not

much affected by such changes. The perturbation velocity there is
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only 0,8% of the zeroth order value, %— . The decrease in the per-
turbation velocity when b = 0, 910 is mainly a consequence of the de-
crease in the nose radius, In any event, the effects of changes in the
free surface shape near the channel walls are negligible in two-dimen-
sions,.

Finally, a few remarks seem in order with respect to the valid-
ity of this perturbation analysis, Reference is made specifically to the
assumptions regarding the smallness of the quantity h(x) and its
counterpart in the { -plane, g(§ ‘S), It is clear from Eqgs. (3.33) and
(3.23) that neither is very small for x near x1 and E;'S large, More
fundamental, however, is the assaurnption that (& 'S,' n’s) can be ap-
proximated by Lpl(g 's’ a) + g(E_,‘s) 84%)- (& 's’ a) (see Eq. (3.16)ff, ). This
is a rather close approximation; for in the portion of the { -plane where
g is large, the quantity B:PWO is quite small, The behavior of the term

A
g 8110 can, in fact, be shown from Eqs, (3,21) and (3. 25) to be

h
e

exp - T-%

near

X:l',

4, The Case of a Nearly Planar Free Surface

Although experimental results will be discussed in detail further
on, the major one will be mentioned here in order to motivate the
analysis which follows. It has been found experimentally that, in three

dimensions, the ratio between the initial velocity at the midpoint of the
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free surface and the initial mean velocity imparted to the fluid column
is much closer to three than to w/2. The development in this
section suggests that the difference, in part, is attributable to the three-
dimensional character of the experimental flow,

Consider a column of liquid accelerated impulsively from below
such as that shown in the sketch. The coordinates are (x,y) in two-

dimensions and (r,z) in three,

Assume, however, that the free surface very nearly coincides with the
plane y (or z) = 0; specifically, that the initial free surface height is
given by y =ef(x) in two dimensions and by z = 6g(r) in the case of
axial symmetry, where ¢€,6 €1,

In the interests of simplicity, the choices

é flx) = e[l-COSTrX} (4.1)
and

dg(r) = 8[1-J (k r)] (4.2)

will be made, where k B 3.832 1is the first positive root of J (k) = 0,
1 1
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Further, since the curvature at the origin is

ef"(0) =em®

1

from Eq. (4.1) (4. 3)

=

and

§g"(0) = ;_ k* from (4.2) ; (4.4)

=

the values
1 P~
and

5 = T 20,2140
kz
1

ensure that the radius of curvature at the origin is 2/w, in conformity

with that in the limiting case a » 1 of the exact problem previously

solved, The three free surface shapes are plotted togethef in Fig. 9.
If the column is given a unit impulsive velocity upward, then an

impulse function, ¢'(x,y), may be defined in two-dimensions which

solves the following problem:

Vip' = 0 in y < ef(x) lxl < 1 (4.5)

%’}g:o on x =% 1 (4.6)

g%l—l-l as y > - (4.7)
and

¢'(x,y) =0 on y = ef(x) (4.8)

Since € K 1, boundary condition (4.8) may be written approxi-

mately as
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1 2 1
p'(x,0) + ef 2L (x,0) + 3 €2 Bl o (4.9)
¥ BYZ

Further, if ¢'(x,y) is assumed to be of the form

o', y) = @' BNY) T e@lix,y) +efplx,y) + L (4.10)

then the system consisting of Egs. (4.5) through (4.9) becomes (sub-

stituting Eq. (4.10) and equating powers of ¢ )

vz% = vlq;; = vzq;z' =0 , (4.11)
8(,0'0 ¢! ogp!
5 = Bxl = axz =0 on x=+1 , (4.12)
8(,9:)
3y as y>-o (4.13)
d¢! 9!
5 g% as y—> -o (4.14)
¢ (x,0)=0 (4.15)
acp:)
¢! (x,0) = - £(x) 5y foe, B (4.16)
and
de'!
¢!(x,0) = -f(x) # (x,0) . (4.17)

Consideration of Eqs. (4.11), (4.12), (4.13), and (4.15) leads
immediately to
‘P:)(X,Y)=Y (4.18)

which, when used in (4.16), gives

o (x, 0) = -f(x) (4.19}
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for the boundary condition on ¢' . Recalling that - epp' represents
1 1
an impulse per unit area, say Il' , Eq. (4.19) may be written
I' = pef(x)
1

which is just the impulsive reaction per unit area along the plane y = 0
which would be calculated from Newton's second law assuming that a
rigid column of height ef(x) and density p were suddenly given a unit
velocity upward.
Using
f(x) =1 - cosmx

in Eq., (4.19), one has

¢!(x,y) = - (1 - cosmx e™) (4.20)

so that Eq. (4.17) becomes

! 1
?,(x,0) = = ® [cos2mx - 2cosmx + 1]

Thus the second order solution is

‘P;(X,Y) = ;,_ [ cos 21'rxe=2TW - 2cosmxe” + 1] .(4.21)

Discussion of these results will be deferred pending consideration of
the analogous problem in three dimensions.

If, in three dimensions, the free surface height and the cor-
responding impulse function are 6ég(r) and x'(r,z), respectively, then

the transformations



S

s [
€ 6 , oL X,
s Rl f =% g

and Y_’z )

applied to Eqs. (4.11) through (4.17) give the relevant equations in the
case of axial symmetry, The zeroth order solution is readily found to
be

X'O(r,z): Z (4.22)

which, upon substitution into the analog of Eq. (4.16), gives

X, (r,0) = -glr) . (4.23)

Comparison of this with the corresponding result in two dimensions
(Eq. (4.19) ) shows that, to this order, there is no difference in the
impulse distribution caused by the change from two dimensions to three,

Use of the specific expression for g(r) in (4.23), yields

kz
(r,z)=J (kr L 4. 24
x!(r,2) = J (K r)e (4.24)
so that the boundary condition for the second order solution takes the

form

! — 2 =
x'(r, 0) =k J ik r) -k T (kx) . (4.25)

Now an harmonic function which satisfies the boundary conditions on

r =1 and z = -0 is
knz k =z
' _ ¥ 1
an.]'o(l\nr)e liO(l\Ir)e . (4.26)
1

: =k + k
Xz(r’z) 2o 1

g

If the coefficients a are chosen by
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1
- _2._5 rJ% (k r)J_(k_r)dr |, (4.27)
n 2 o 1 o n

T2 (k)

then boundary condition (4,25) will also be satisfied. (See Ref. (24),
p. 596 or Ref. (25), p. 228).

For kn = 0, Eq. (4.27) may be integrated directly (see Ref. (24),
p. 135) to give

a =J%kx)=0.1622
(] [e] 1

while, for 1 £ ng< 14, numerical integration results in

a = 0,3523

1

a =0,4793

2
a = 0,006881

3

-3 =
and a_< 10 for 4<ng14; a , for example, is 6.6 X 10 7,
Y 14
A rather close approximation, then, involves use of only the first three

terms:

" kzz klz )
2(r,z) = k1[azJ0 (kzr)e - (1 -al)Jo(klr)e + ao] (4.28)

where
k =7.0156
2
These approximate results will nowbe compared with each other
and with the exact two-dimensional solution found in Section 2. Recall
that the quantities -¢'(x,0) and -x'(r,0) represent the impulse per
unit area, normalized by the fluid density, acting across the plane vy

(or z) =0. These, correct to O(Ez,éz), are given by
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“¢'(x,0) = - €p!(x,0) - ¢%o!(x,0) (4.29)

and

- x'(x,0) = - &x/(r,0) - 8% )(r, 0) . (4.30)

They are shown in Fig.10(a) for the values of ¢ and é previously
chosen. In addition, the polynomial approximation found in Section 2
for —wo(x,d) is shown on the same co-ordinates. This quantity is
exact in the sense that no approximations with respect to the smallness
of the free surface height were made in obtaining it.
An immediate conclusion from Fig.10(a) is that the two-dimen-
sional perturbation solution is very close to the exact solution out to
.

nearly half the channel half-width, Inadditiontolending credibility tothe
approximate solution, this fact suggests that the three dimensional ap-
proximate solution may also be fairly accurate near the origin. The
decrease in -¢' and -x' beyond x,r =0.7 is certainly a consequence
of the approximations made in obtaining the perturbation solutions, for
the exact two dimensional solution shows no such decrease,

| Evidently, the impulse calculated in three dimensions is uniform-
ly larger than that in two dimensions - - a notion made more specific
by Fig.10(b) wherein the ratio x'(r, 0)/¢'(x,0) is plotted. Near the
origin where the perturbation solutions are apt to be valid, the ratio
is clos-e to 1.21. It is of interest to note, however, that the ratio is
roughly constant over the entire column even though the three-dimen-
sional free surface height at r =1 is some 6% less than the two-

dimensional free surface height at x = 1. (See Fig. 9).
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The velocity at the origin may be calculated in two-dimensions

from Eqs. (4.18), (4.20), and (4.21):

g_‘)%'(o,o):1+ew+0(e3) (4.31)

while from Eqs. (4.22), (4.24) and (4, 28):

(0,0) =1 + 6l + éz[klkzaz - klz(l-al )] + O(8%) (4.32)

| ©
N

It is more instructive, however, to write these in terrs of the radius

of curvature, R, of the initial free surface at the origin. Thus

9¢' 1

5?(0’0)=1+w_1i+0'-£3) (4.33)
and
By ! 2 4 |5 s
5&(0,0):1+kR+ = a = (1-a )+ O’} (4, 34)
Z 4 szz i 2 1
1

2 - .
If R is chosen to be = for comparison with the exact two-dimension-
al solution, there results
! 3
5 (0,0) = 5

oy

This should be compared to the value w/2 of the exact solution. The

axially -symmetric problem gives

when R.:-%-.
™

In the general case, the initial free surface height can be
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written
ef(r) :S‘A [ cos nmx-1] (4.35)
/., n
1
in two dimensions, and

6g(r) :z B [T (k_r)-1] (4.36)
1

in three, The results corresponding to (4.31) and (4.32) are easily

shown to be

' (0,0 :1+§ A 4,37
¥l (0, 0} of, O ( )
1
and
! =
x.(0,0) =1 +Z k_B_ (4.38)
1

correct to the first order in the small quantities An and Brn' If the

free surface heights ¢« and ég are the same, it follows from (4. 35)

and (4. 36) that

sl
}

o 1—2 k2 B
; n 2 m- m
1

Equations (4.37) and (4. 38) may then be written

? nTh
Linid n
1 1
1 o i
@ Y(O, 0)=1 + R
n’w?A
Ld
1

and
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>:, kmBm
1 2

o 403 00 =l § e R
P
1
respectively, Hence, the midpoint velocity is related to the free sur-
face curvature in a simple way only when An = Bm = 0 for all but a
single m and n,

Finally, the upward velocities along y and 2z equal to zero are
shown correct to the second order in Fig. 11, The two-dimensional
velocity follows from Eqs, (4.18), (4.20), and (4.21), that fo‘r the
axially-symmetric case ':;vas calculated from Eqs. (4.22), (4.24), and
(4.28). The curves of Fig, 11 may be interpreted as representing the
free surface shape for small time. Note that the two solutions approach
one anothér as the distance from the origin is increased. This sug-

gests that the three-dimensional flow may be approximately two-dimen-

sional near the tube wall.
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5. The Exact Solutions of Several Related Problems in Two and

Three Dimensions

The exact two-dimensional analysis cannot be carried over into
three dimensions; for the powerful tool of conformal mapping is no
longer available and application of the boundary condition on the free
surface becomes a difficult undertaking indeed.

In order to formulate a problem which can be solved in three
dimensions, it is useful to consider a column of liquid (in either two
dimensions ©or three) such as that shown in the sketch in Section 4.

If an impulsive velocity upward is imparted to the column across
some plane located in y(or z)< 0, a system of impulses must act
across horizontal planes caused by the reaction of the fluid above the
plane on that below. If this impulse distribution is denoted I(x,y) in
two dimensions, the relation between I(x,y) and the impulse function

w(x,v) used in Section 2 is simply

I(X)Y) = = Pw(X, Y)

from Eq. (1.7), with a similar relation in the case of axial symmetry,

It is clear, then, that if this impulse were known along y = 0, the

function w(x,y) could be determined in y < 0 by solving a boundary-
value problem of the sort discussed previously- - greatly simplified, of
course, in the absence of the free surface. The upward velocity at
the midpoint of the free surface would then be the normal derivative of
this function evaluated at the origin., Analysis along these lines will

begin with a two-dimensional problem,

Representing the impulse function by ¢(x,y), the problem is
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V2p = 0 in y<0 , |x|l<1 (5.1)

LA 1

e = on X =% (5.2)

dg 1 o

3? — as v - 00 (5.3)
and

® specified on y=0 . (5.4)

This is analogous to the exact two-dimensional problem in the limit
a » 1 since the column is assumed to extend to infinity.

It is convenient to assume

ox,y) :Y+¢m(x,y) {5.5)

where (Prn(x’y) describes the effects of an impulse distribution along
y = 0 given by
m

cpm(x, 0) = -x

, (5.6)

and

|chm‘—’ 0 as ¥ =00 (5= 7}

Linearity then permits the construction of more general solutions
through the use of superposition. The integer m  will be assumed
even in view of the symmetry of the problem, The solution of Eq.
(5.1) which satisfies boundary conditions (5.2) and (5.7) is
o0
e (x,v) :Y B (m) cosnmxe Y (5.8)
m 3 “_/—“ el . -
n=o

Application of (5.6) gives B~ in the form

1
B (m) = - 25 x' cos nmwx dx . m even
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The details of the integration are left to Appendix C,

Turning now to the velocity at the origin, the expression

/

de =
5y (0.0 =9 (0,0) =§ nw B (m) (5.9)
n=1

P4

follows from Eq. (5.8). The first five of these are, again for m
even,

95, ,(0,0) = 0.88254
04, ,(0,0) = 0.36943
26, ,(0,0) = 0.2437 (5.10)

g y(0,0) - 0.1836

0,0) =0,148
¢10‘Y(
Thus, if ¢(x,0) is given as a polynomial of the form

5
¢(x,0):-$A g (5.11)

the resulting velocity at the origin is just

5
g_‘; (0,0) = 1 +2 Ay®om, y(0:0) (5.12)

m=1
For example, use of the coefficients Azm corresponding to the
impulse found to be acting in the exact two-dimensional case (Eq.(2.31))
results in

%"—; (0,0) = 1.560 =~ 0.993 «/2

- a difference of 0.7% with respect to the exact result,
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The three-dimensional analog to this problem will now be solved,

If - denotes the analog of ? then it must satisfy

vzxmzo in 240 , <1 (5.13)
3
a;(m =0 on # =1 (5.14)
[Vl = 0 as z > - (5.15)
and
m
X == F on z =0 . (5.16)
The counterpart of Eq., (5.5) is
x(r,z):z+xm(r,z) . (5.17)

The solution of Eq. (5.13) which satisfies boundary conditions
(5.14) and (5.15) is

k z

C,(m)J_(k_r)e (5.18)

18

X (Ts2) =

n=1

where kn is the nth positive root of

Jik)=0 .

The requirement that ; satisfy boundary condition (5.16) results in

I

2 m-+l

C (m) = - ———S\ T J (k_r)dr (5.19)
< J2k ) Yo @

which is evaluated in Appendix D,

Differentiation of (5,18) with respect to z vyields the velocity
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at the origin in the form

MXm 0,0 0,0
9z (’ ):Xm’z(’ ):

[
? knCn(m) ; (5.20)
n_:l

Evaluation of this for the first five even values of m gives

XZ’Z(O, 0) = 1.5392

x4,z(0,0) = 0,70714

Xé,z(O,O) = 0.4876 (5.21)
XS,Z(O’ Q) = 0. 3737

X10 Z(0,0) = 0.311
Thus, if y(r,0) is known in terms of a polynomial approximation

5
x(r,0) = - D™ 3 (5.22)

il Zm
m=1

then the velocity at the origin is given by

5
ax. i} ? ,
5 (0,0)=1+ ) D, x, (0,0) . (5.23)

m=1
The question now, of course, is the value of Dzm' Alternative -
ly, one may seek the amount and character of the difference between
the impulse per unit area, -pe¢(x,0), acting in two dimensions and
the analogous quantity, -px(r,0), in three. Some guidance in this
matter can be had through consideratiAon of the perturbation problem
of Section 4.

In view of the results of that analysis, the approximation chosen
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is
xl{x,0) = 1,21 wo(r,d)
where wo(r, d) is the impulse function found for the two-dimensional

exact solution of Section 2 with x replaced by r. Since a polynomial

approximation to this function is known in the form

5
2m
wo(r,d) = -z' AZmr
1

where the A, 's are given in Eq, {2z,31), the D, 's of Eq. (5.22)
are simply

szﬂ =1,21 Azm

Substitution of these, together with - Z(0, 0) from Eq. (5.21),

in Eq. (5.23) gives

BX (0,0) =1+ (1.21) (0.9259) = 2,12 ;  (5.24)

an increase of 36% over the corresponding result in two dimensions,
Note that a portion of the increase is due solely to the fact that the
response at the origin to a given impulse is greater in three-dimen-

sions than in two, 1i.e,

0 1le o s o
Xarn,z( ,0)> go?-m,y(o’ 0), while the remain

s

der is due to the increase of the impulse: [D | > |A
Zm Zm

6. The Effect of Finite Column Length

It has been found in Section 2 that the flow produced in a column
of fluid by a non-uniform velocity applied impulsively at one end will,
in general, depend upon the column length. Specifically, tae analysis

shows that non-uniforrnities in the applied velocity may be important
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when the column length is less than half its width. The results of
Section 2 are of little value for columns shorter than this, however,
because of the dependence of the initial free surface curvature, 1/R
upon the column length, d, (see Eq. (2.6') and Fig. 3).

The phencomena peculiar to short fluid columns will be examined
using the axially-symmetric perturbation model of Section 4. Suppose

that the initial free surface shape is given by
6g(r):6[1~Jo(klr)] . (6.1)

where & « 1 as before, and that a non-uniform velocity, 1 + uo(r),
is applied impulsively across the plane z = -d. If €(r,z) denotes the

resulting impulse function, then it must satisfy

ViQ = 0 in r<l1 , -d<z<sg(r) , (6.2)

Qr =0 on r=1 (6.3)

Q=0 on z = b6g(r) , (6.4)
and

S?.Z:I +uo(r) on z = -d (6.5)

where the subscripts denote partial differentiations.

The solution of this system will be assumed to have the form
ir.z2) = 2 + Qo(rl z) + &Ql(r,z) (6.6)
where QO represents the flow produced by the non-uniform velocity at

z = -d and 62 is a small perturbation due to the non-planar free
1

surface. Substituting (6.6) into (6.2) through (6.5) and equating powers
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of 6 results in the following system to be satisfied by Qo and £ :
1

7290:0 in r<l, -d<z<0 |,
Q =0 on r el (6.7)
o, r
QO:O on z = 0 (6.8)
Qo,z =u_(r) on z=-d |, (6.9)
viQ =0 in r<l , -d<z<o0 |,

1
Q =0 on #=d (6.10)
L
QL: - g(r)[l-l—Qo,z] on =0 , (6.11)

and

Q =0 on 2 ==d . (6.12)
1,2

As in Section 4, the free surface boundary condition (6,4), has been
expanded about z = 0 to give Egs. (6.8) and (6.11). Finally, it will

prove convenient to write

o0

uo(r) :Z DnJO(knr) (6,13)

n=1

where the kn‘s are the roots of
1 =
Jo(k) =0 .

In view of (6.13), the harmonic function satisfying (6.7), (6. 8),

and (6., 9) is

‘ i sinh knz
2,(r,z) =Z D i eosnk = Tolut! - (6.14)
n:l & =

Using this and (6.1) in (6,11) gives
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o0
n
Ql(r,O) = [Jo(k1 r)-1] 1: W Jo(knr) . (6.15)

n=1
Now for all but the s‘mallest values of d, the series in Eq. (6,15)
will be dominated by its first term. For example, if d is one-half
the radius of the cylinder, the series begins with
D D

_ 1 I
QO z= 5 A8 JO(k]_ r) + mg Jo(kgr)+ ”

3

Thus
< ~ = =
u?l(r, 0)=Jd (klr) & Dlsech kld[ azJ (klr) (1 a1 )J (klr)]

where the additive constants have been dropped and the approximation
Ji(kr)=a +aJ (kr)+aJ (kr)
[e) 1 K 1 0 2O 3
with

=0, 3523

)
]

a 0.4793

2

1

has been used (see Eq, (4.27) ff. ). Iavoking boundary condition (6.12),

it is clear that

coshkl(z-i-d)
Ql(r,z): coshk d Jo(klr)
1
cosh kz(z+d) coshk (z+d)
; (1 1 ”
+Dlse<.hk1d az coshkzd Jo(kzr) ( al) coshk d Jo(l\lr)
1

(6.16)

where the sign of approximate cquality indicates that terms of the order
D sechk d have been neglected in comparison to D sechk d.
2 2 1 1

Solving for the upward velocity at the midpoint of the free sur-

‘face from (6,6), (6.14), and (6,16):
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2
QZ(O’ 0) Lo kl—R tanhkld
> k
+ D sechkd|l + ——|a =% tanhk d - (1-a )tanhk d (6.17)
1 1 kiR' 2 kl 2 1 1

where the relation

6 = =

k*R
1

from Eq. (4.4) has been used. Note that in the limit d = oo,

2

k R
1

Q_(0,0)=1+

in agreement, to the first order, with Eq. (4.34).

The results of this section are summarized in Fig. 12 where
QZ(O, 0) from Eq. (6.17) is plotted against d for R = 2/w and several
values of Dl . Figure 12 may be compared to Fig. 4 where the mid-
point velocity is shown for the exact two-dimensional solution, The
axially-symmetric solution for D1 = 0 (uniform applied velocity)
reaches its asymptotic value at d = 0,6. This does not occur in the
two-dimensional case n = 0 until a= 3, corresponding to d=1.12
and R= 1,05 % . The approximations made in obtaining (6.17) are

equivalent to assuming that

uo(r) = D1J0(k1r)

so at the tube centerline, the impressed velocity exceeds the mean

value by the factor (1+D ), The curve for D = 0,571 = w/2 - 1 thus
1 : 1
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corresponds to the case n =1/2 in Fig, 4 for which the impressed

P % ;
velocity is 5 cos —- . The peaks occur at d= 0,19 and d= 0,24 in
two and three-dimensions, respectively; however, the radius of curva-
ture in two-dimensions is 1, 94 % or almost double the value used in
the axially-symmetric solution,

The existence of a peak in the velocity as the column length

increases from zero is a consequence of the non-uniformity in the ap-

plied velocity interacting with the free surface curvature to produce a

velocity at the origin greater than either could produce alone,

7. A Solution Valid for Finite Time

The previous analysis has been concerned with the flow in a
suddenly accelerated body of liquid just after the start of motion, The
evolution of this motion for a short time after its impulsive start will
now be taken up. The solutions previously studied are in this case
just initial values,

It will be convenient to deal with the velocity potential ¢(x,vy,t)
in two dimensions., The problem to be solved will be that of
liquid confined between rigid walls, extending to negative infinity
with a free surface in the finite part of the xy-plane. If the free
surface height is taken to be y = n(x,t), then the problem for
¢ and mn 1is given by

Vi =0 in vy<n , Ix|<1 (7.1)
¢ =0 on x =% 1 (7.2)

and
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cpy"l as y > - - (7.3)

In addition, the requirement that the pressure vanishes on the free

surface leads to
1 2 2% _
¢t z(¢X+fpy)—F(t) on ¥ = fd%, t) (7.4)

where F(t) is an arbitrary function of the time. The kinematic bound-
ary condition,

2 h-y)=0

Dt

on the free surface, reads

nt:¢ - @M on Y:T‘](X,t) - (7.5)

Finally, initial values
+
n(x,07) = n (x)
and
+
Ve (x,y,07) = Ve _(x,y)
must be specified,
In view of the nonlinear character of Eqs. (7.4) and (7.5), ap-
proximations with respect to the free surface height will be made in
order to obtain a solution. It will be assumed that the free surface is

very nearly planar and that, for small time, its shape may be ap-

proximated by
N, t) = x) + tl 14 (x)] + 80 (x) (7.6)

where MNge M and m_ are characterized by some parameter e « 1,
1 2

This assumption permits any quantity, f(x,vy,t), to be evaluated on
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y =n(x,t) by means of the approximation
of
£Ge,m,t) = £(x, 0,8) + n(x, ) g (x,0,1) . (7.8)

It will also be assumed that the potential, ¢ , may be expressed in

the form

ele,y,t) =y to lxv)+ttp (x,y) , (7.9)

valid for small time, where 25 and gol are small in a sense to be
defined below,

Substitution of Eqs. (7.6) and (7.9) into the set (7.1) through
(7.4) and use of approximation (7, 8) results in the following system

correct to the second order in the small quantities o P and Mo
1

qup =0 (7.]—0)
1

¢1,x:0 on x==%1 (7.11)
-0 S 7.12

Po i as y © (7.12)

x
T + ¢ +

O,Y o,y =0 on y:O

o¥o,yy
(7.13)
The fact that the flow at infinity is independent of time has been used

to eliminate F(t). The free surface height follows from (7.5) in the

form
= Pey T Nefs, vy " To,xPe,x W ¥ED (7.12)
and
-1{ +o + +
nz T2 (Pl,Y o,¥YYy TlO(pl:yY TII(PO:YY nosxqalsx nosxgpo:xy nlixwoix

i on =0 , (7.15
L — y ( )
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For simplicity, the initial values n o(x) and ¢ o(x,y) will be

assumed to be those found in Section 4. Thus
N o) = ef(x) (7.16)

where f(x) =1 - cosmx and e 1, From Eqgs, (4.10), (4.18), (4.20),
and (4.21) it is clear that, with an obvious change in notation, ¢
]

may be written

¢ b, y) = e0 i, y) + @ P, y) (7.17)
where
cp(il)(x,y) = cosmxe"” -1 (7.18)
(2) ™ 2Ty Ty
e, (x,y) = Z-[COSZ‘ITXS -2cosmxe 7 +1] ., (7.19)

The first order correction to the free surface height follows

readily from Eqgs. (7.14), (7.16), and (7.17) as

'ql(x) = ercos mx + O(¢) (7.20)
so that
n(x,t) = e(l-cosmx) + t[ l+ewrcos mx] + O(t?e)
from Eq. (7.6). At the ;origin this becomes
n(0, t) = t(1l+ew) + O(t?)
which is simply the upward velocity at the origin found in Section 4,

Eq. (4.31),multiplied by the time,



wE

A solution of the form

2
o =) 4, ®
1 1 1

will now be sought, Using this and Eq. (7.16) in Eqs. (7.10) through

(7.13) and equating coefficients of powers of € gives

Vz‘P(l) = VZ‘P(Z) = 0
1 ) |

<p(1): (2)=0 on x =% 1
1K L, X
(ST C R |
—_ h - .

cpl,y . (Pl,Y when v )
), ) |

+ =0 o =0 T. 21
e, Uop n y ( )

and

@), ), 1 1) 1 (F, (?) © _
? +£<p1,y+ > ‘Po,x+ > ¢O,y+¢0,y+f(po,yy =0 on y=0, (7.22)

If Eq. (7.18) is used in (7,21), the solution for qpfl) is clearly
1
o0

1
Substitution of this into (7.22) gives

- MCOS X ew

401(2)(}(, 0) = - WZB— + cos 2mx - cos wa

so that
2
fPl( )(X,Y) = -m? [é—+ cos 2Tx ezﬁy - CcOs TX e“y] .

It follows, then, from (7.15) that the second order correction to the

free surface height is

i = é— me?cos 2mx

2

Thus the free surface height at x = 0 is



-52-

n(0,t) = t{l4em) + 3 & + O(PS (7.23)

from Eqs. (7.6) and (7. 20).

It will be convenient to have an expression for the velocity of
the free surface at its midpoint in terms of the displacement there,.
Inversion of Eq. (7.23) gives

T
14ew

correct to the first order in n. The velocity, nt(O,t), then follows
from (7.2 3) as

n,(0,t) = 1 +em+ Ern + 0O(@n?) . (7.24)

In addition, the time-average velocity, Ht(O, t), is readily found to

be
- 1 3 3.2
T1':(0,1:): 1—1— =1 +en + ?EZ'ITT] + O(e'n%)
Writing ew s = o , these become
2 2T
TR

3 ™
g = 2‘[1 L > ’1}
and

—_ 3 m
“tzz[”ﬁn]

respectively. The time-average velocity is the quantity of physical
interest, for it is the result of the velocity calculated from the free
surface displacement measured at two instants in time. As an example,
if m = 0.5 (a free surface displacement of one-fourth the channel
width) the mean velocity is increased by about 13% over its initial

instantancous value,
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8. Effects Due to Compressibility

Application of even approximately ;'Lrnpulsive forces to aﬁy real
fluia will, in general, result in a system of pressure waves arising
as a consequence of compressibility., The effects produced at a free
surface by such waves §vill now be considered in the acoustic limit.

To fix ideas, consider an axially-symmetric column of liquid
with a free surface having the shape shown in f‘ig, 13 and suppose an
acoustic wave is incident upon the free surface from below. The
hemispherical cap has radius R and the radius of the circular column
will be taken as the unit of length,

e Several results from the theory of acoustics will be needed,
First, for an acoustic wave moving with speed c¢ into fluid at rest,
the result P

Vo= — (8.1)

" can be shown to hold, Here, Y is the velocity behind the wave, P,

the pressure jump across it, and p is the fluid density. It can also
be shown that an acoustic wave incident upon a plane free boundary
will cause a»jump in velocity- there, ¥ normal to the free surface,
‘given by

2p

VB ° cosa (8.2)
S PC

where o is the angle between the normal to the wave and the normal
to the free surface.
For a curved free surface, assume that, locally, the flow is

described by (8.2); then for the case in question, the velocity, ¥
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along the free surface just after passage of the wave will be

Zpo

n = cos 6 (8. 3)

where Vo is everywhere normal to the initial free surface and 6 is
the polar angle shown in Fig. 13. Note that no flow normal to the free
surface will occur when the wave propagates parallel to the free
boundary, This is a prediction of acoustic theory; however, it does
not seem possible that a wave could propagate at all if it were re-
quired to travel parallel to a free surface, It should be borne in mind
also that a complicated system of reflected waves will arise due to the
curved free surface and that Eq, (8. 3) neglects any effects due to this
system,

Now suppose that subsequent to the passage of the wave, the
flow is that of an incompressible fluid, Conservation of mass

may then be expressed as

iqnds = 0 (8.4)

where S is a closed surface within the fluid and q, the normal
component of velocity at each point of S, Define the mean axial

velocity, v, by

;—fk:Sv q_dS (8.5)
[ n
o0

where S00 is a surface far below the free surface in Fig, 13 and A
is the column cross-sectional area. Applying Eq. (8.4) to a control

volume formed of the column walls and the free surface, Sf, gives
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— 1
V:IS. vndS . (8.6)
Sf

Thus, if the column cross-section is circular and of unit radius, use

of Eq. (8.3) results in

4pOR_2' w/2 Zpo

v = S‘ cosBsinfdf = — R?* . (8.7)
pc - ; pc o -

Appealing now to Eq, (8.2"), the ratio of the velocity, v, at the mid-

point of the free surface to the mean velocity defined in (8,7) is found

to be

/ e, 0 (8.8)
v
or 2.04 if R =0,7 tube radiiand 2,47 if R = 0,637,

In the light of the analysis assuming complete incompressibil-
ity, it would seem that the velocity, pO/pc, of the fluid behind the
wave should be used as the reference value, v, in computing the
ratio vc/;. This is probably a better approximation to the '""'mean
velocityl imparted to the column'' in the sense in which the phrase was
applied to incompressible flow, Note that this would exactly double
the ratios calculated abové. The quantity v given by (8.6) is, how-
ever, more easily estimated experimentally., If the acoustic wave is
assumed to travel past the hemispherical cap instantaneously then the

expression

AAtv = S‘ v_AtdS
n
Sf

is merely the volume of fluid displaced at the free surface in a time
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At measured from the instant the wave passes,

9. Summary of Theoretical Analysis

The most important results of the preceding analysis will now
be collected and compared with one another, First, from the exact
two-dimensional solution of Section 2, it has been found that when a
liguid column having a rather special free surface shape is accelerat-
ed impulsively, the resulting jump in the velocity at the free surface
midpoint is close to w/2 times the mean velocity imparted to the
column. The jump in velocity on the free surface is everywhere
normal to that surface and is given for a long column by Eq., (2. 34)
in the form

dw

mX

T ™= T
= 5 sec —- sech|> tan 5 (9.1)

Q)
s Nl'-‘

if Eq. (2.1) is used and the limit as a - o is taken. This formula
permits the free surface shape a short time after the start of the

motion to be found from B

1
A = 82 t + O(t?)

B

where A is the displacement measured normal to the initial free sur-
face and t is the time,

Evidence has been adduced to show that the fluid located near
the walls of the channel has a negligible effect on the jump in velocity
experienced near the middle of the free surface. The most convincing
demonstration is that of Section 4 wherein a perturbation analysis

was carried out based on the assumption that the free surface is
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nearly planar. The jump in velocity at the midpoint of the free sur-
face was found, in two-dimensions, to be only 4% less than that cal-
culated from the exact analysis when the two free surfaces had the
same curvature at the center of the channel. Figure 9 shows the
free surfaces in the two cases to be vastly different near the channel
walls, This insensitivity is also apparent from the results of
Section 3, These show that the jump in the velocity at the free sur-
face midpoint is changed a negligible amount when the manner in
which the free surface height becomes infinite near the channel wall
is changed.

In the case of very long fluid columns, evidence has been found
to suggest a relationship between the two-dimensional results dis-
cussed above and the case of axial symmetry, Recall that the as-

sumption of a nearly plane free surface led, in Section 4, to

1
(P'Y(O,O) =1+ ﬁ, (9.2)

for the jump in velocity at the origin in two-dimensions, and to

2
x',(0,0) =1 + = (9.3)
1

in three. R 1is the radius of curvature of the free surface at its mid-
point and kl = 3.832 is the first positive root of Jl(k) = 0. Note that
these are strictly valid only when the second term is small compared
to unity; however, in two dimensions the expression has been shown

to be quite close to the exact result when the second term is as large

as one-half,
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Since the column of liquid was assumed to have been given an
upward speed of unity, it is clear that the second term in each of the
equations above represents a sort of '""amplification' due to the curva-

ture of the free surface. It will be seen from (9. 2) and (9. 3) that

this ""amplification'', kZR in three dimensions, exceeds the analogous
1

quantity, Fll_i in two dimensions, by the factor
21
— = 1.640

1

for all values of R, Using results (4,33) and (4. 34), which are cor-

rect to the second order in the small quantities . and . - , gives
TR klR
0.974
7y = 1,95

for this factor when R =2/,
A similar comparison can be made between the quantities

¢2m’y(0, 0) and . - Z(0, 0) calculated in Section 5, From Egs.

(5.12) and (5.23), it is evident that these, too, represent an '""amplifica-
tion''. In this case, however, the free surface shape is not necessar-
ily the same in two and three dimensions. Rather, the impulse act-

ing across the plane tangent to the free surface at its midpoint is as-
sumed to have the same functional dpendence upon the horizontal co-

ordinate., That is, ¢ (0,0) and .

(0,0) represent the veloc-
2m, y Z

’

S o3 - : : 2 2
ity induced at the origin by the non-uniform impulses x ' and r =

2

respectively, The ratio X (0,0)
2In

B g .._u.._’?'__.._

2m q)zrn,y(o’ 0)

is a measure, then, of the effectiveness of a given impulse in
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accelerating the fluid at the free surface midpoint in three dimen-
sions as compared to two, The table below shows the first five

B m's calculated from the results of Section 5.
2

m ﬁgm
1 1,744
2 1.914
3 2,000
4 2,057
5 2. 10

Evidently, an impulse “™ in three dimensions leads to a
velocity about double that produced by an impulse len in two dimen-
sions, This compares favorably with the value 1,95 found above
from the second order perturbation analysis based on the assumption
that the free surfaces have the same curvature at their midpoints,

Summarizing the results for long, axially-symmetric columns,
the first order perturbation of Section 4 predicts an upward velocity
equal to 1,82 times the mean velbcity imparted to the column, while
the solution correct to the second order gives 1.97. The independ-
ent calculation of Section 5, in which the impulse found to be acting
in the exact two-dimensional case was applied without change to the
axially-symmetric problem, gives 1,926, If the impulse is increas-
ed by 21% as suggested by the results of the perturbation analysis,
the midpoint velocity is found to be 2,12 times the mean velocity

(see Eq. (5.24) ).
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The effects of a non-uniform velocity applied to a circular
liquid column are shown in Section 6 to be important at the free sur-
face only when the column length is less than its radius. For very
short columns, however, the interaction between a curved free sur-
face and non-uniformities in the applied velocity can lead to velocities
at the free surface midpoint much higher than one might expect
intuitively, see Fig, 12 | This also indicates that the free surface
shape at points remote from its midpoint is not important in determin-
ing the magnitude of the jump in velocity there. The greatest inter-
action occurs when d = 0,2 - - corresponding to a column whose dia-
meter is ten times its length. In these circumstances, it seems un-
likely that the free surface shape near the cylinder walls could have
any significant effect on the velocity near the center; the free surface
curvature, however, has pronounced effects,

The solution of Section 7, valid for finite (but still small) time
and a nearly planar free surface, shows that in two dimensions the
midpoint velocity increases only slightly as the free surface moves

1

away from its initial position. Writing ¢ = —— , the result from
R
Eq. (7.24)is

i} =L # or e
st (0,t) =1+ = + TTRZn(o,t)

where n(0,t) is the displacement of the free surface midpoint
measured with respect to the origin. Hence, when this point is dis-
placed half the channel half -width (n = 0.5), its instantaneous veloc-
ity is increased by about 26% if R = 2/w. The time-average veloc-

ity, however, will increase only about 13%,
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Finally, the analysis of Section 8 relevant to the impingement
of an acoustic wave upon the free surface indicates that the velocity,
Vs at the free surface midpoint should be related to the mean veloc-

ity, v, by Eq. (8.8):

where v is based upon the volume of fluid displaced at the free sur-
face shortly after the passage of the wave, see Eq, (8.6). Note that
the dependence upon the free surface curvature differs from that found
subject to the assumption of incompressibility., The results for

R = 2/w differ by about 20%; the acoustic approximation giving

2.47

, while the results of the analysis assuming incompressibility

are in the range 1,93 - 2,12,
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III, EXPERIMENTAL INVESTIGATION

10, Apparatus and Procedure

The experiments to be described were performed on bubbles
rising in a circular glass tube nominally 7/16" in diameter. Such
bubbles, when more than a tube diameter in length, have the property
that their upper free surfaces are quite steady and very nearly
hemispherical in shape, see, e.g., Taylor (22 Y The.sudden down -
ward acceleration of a bubble of this kind by means of a spark dis-
charge in the liquid above it leads to the formation of a jet resembling
those studied by Bowden and his students, (1), (2), (3), (8).

A sketch of the apparatus appears in Fig.14. A bubble was
formed by a burst of air at a pressure of about 10 psig. admitted at
the bottom of the water -filled tube, Approximately 18 in, above was
a two-inch long working-section on which a high-speed camera was
focused. Immediately above this was an aluminum fitting which held
a quartz-crystal pressure transducer. Finally, into the glass tube
extending above the fitting was inserted a spark gap. As the bubble
rose into the working-section, the spark gap was triggered - - crea-
ting a spark bubble which, as it grew, drove the liquid beneath it down-
ward, The result was a jet emanating from the apex of the spherical-
cap bubble,

The photographic system consisted of a Beckman-Whitley model
224 rotating-drum camera used in conjunction with a strobe system.

The bubbles were back-lighted by a xenon flashlamp. Typically, the
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system was operated at a repetition rate of about 7000 pictures per
second, with a total running time of about 8 ms. The interval be-
tween pictures was measured with a Beckman-Berkeley timer ac-
curate to 0,1 us,

The spark gap incorporated 0, 030 in, diameter tungsten
electrodes with a gap of about 0,005 in, supported by 3/32 in, brass
rods pressed into holes drilled lengthwise through a three-quarter
inch long acrylic cylinder which served to position the assembly with-
in the tube. Two extra holes in the acrylic electrode holder allowed
water to flow into the tube above the spark gap assembly as air was
admitted at the bottom of the tube to form a bubble. The brass
electrode supports were connected by means of shielded cable to a
thyratron switch which, when triggered, discharged a capacitor across
the spark gap. The energy of the discharge was typically one-half
Joule - - the 0, 01 mfd. capacitor having been charged to 10kV,

Pressure histories within the tube were taken with a Kistler
model 601 A quartz transducer, This device has a circular active
surface nominally one-eighth inch in diameter and a resonant frequen-
cy of about 130 kHz, Its signal was fed to a Kistler charge amplifier,
the output of which was displayed on a Tektronix 551 oscilloscope and
photographed,

Photographs of one experiment are shown in Fig. 15, The
undeformed spherical-cap bubble appears in the first picture.

Near the top edge of all the pictures is the spark gap with its holder

just outside the camera field. A portion of a small air bubble trapped
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beneath the holder is visible at the edge of the first frame. The
spark gap was triggered a few microseconds after the first picture
and a spark bubble approximately 0.6 tube diameters in size is vis-
ible in the following frame, Note that the air bubble beneath the
spark gap holder has suffered a partial collapse. Subsequent pictures
show the spark bubble collapsing and the formation of a jet at the
apex of the now-deformed spherical-cap bubble. Note the cavitation
arising in the fifth frame after the collapse of the spark bubble,

In this particular sequence, the small bubble beneath the
spark gap holder is of interest, for it seems to be the cause of the
sheet of water which began to form at the base of the jet in frame ten,
As this bubble collapsed and rebounded, successive sheets were
formed; the next one begins at about 3,2 ms, followed by a third

shown in the final series,

11. Reduction of the Data

The practice among investigators of bubbles rising through
liquid in circular tubes has been, usually, to provide a flat-sided
enclosure around the tube filled with a liquid having the same re-
fractive index as the cylindrical tube, This largely eliminates re-
fractive distortion in planes perpendicular to the tube axis and per-
mits accurate measurements to be made directly from photographic
negatives, For examples of this technique, see (22), (26), or (27).
In at least one case, (28), a grid ruled on a small glass plate was

inserted in the tube, photographed, and the resulting pattern used to
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determine the distortion caused by the circular tube.

In the present study, the use of a water-filled box was found
to be inconvenient. This was a consequence of the fact that experimen-
tation was conducted in nearly complete darkness in deference to the
camera; whose shutter, opened and closed by hand, was open for a
relatively long period of time during any given experiment, Admis-
sion of sufficient external light through the box to fix the position of a
bubble as it rose and still not fog the film proved to be a major prob-
lem,

Distortion was ultimately measured rather than eliminated.
This was accomplished by inserting a carefully made gage into the
tube and photographing it. The apparent horizontal position of each of
twelve points along the gage, measured from the photograph, was
compared to the true position of each point, The comparison showed
that the true distance between two points on the same horizontal plane
was the overall scale of the photograph multiplied by 0,763 times the
apparent distance between the points. This ratio was constant to with-
in 2% out to three-quarters of the true tube radius,

A check upon this quantity was made by measuring the ap-
parent dimensions of the spark gap for experiments in which it was in
the camera field, This permitted independent calculation of the ratio
mentioned above. Agreement was found usually to within 2%, and to
5% in every case,

In addition to refractive distortion in horizontal planes caused

by the circular tube, the curved free surface near the apex of the
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spherical-cap bubble led to distortion in vertical planes. This
prevented accurate measurementof the displacement of the jet tip in
its early stages of formation;italsoaccounted for the fact that the jet
seemedtoissue from a point in space somewhat below the apex of the
bubble,

The photographic data were reduced using a machinist's
microscope accurate to 0, 0001 in, The negative was aligned on the
movable table of the microscope to make the axis of symmetry of the
bubble coincide as closely as possible with one direction of table trav-
el, This direction is termed =z'" in the following discussion, For

each value of z'', the radial position, r‘jk and r'', of two points on

the bubble free surface were read - - one point on either side of the
axis of symmetry. The bubble centerline was determined by averag-
ing r’_'*_ and r' for each z'"' then averaging the results to find a
single number for each photograph, Knowing this, and the value of

z''" at the apex of the bubble, the coordinate system was translated to
the apex. The vertical coordinates, =z', of the points in this system
were multipiied by the scale of the photograph, F, and the horizontal
coordinates, r', by sF to give the true physical dimensions., s is,
of course, the factor 0,763 discussed above. F was determined from
the apparent size of the spark gap assembly for those experiments in
which it was within the camera field. In all the experiments, care
was taken not to disturb the relative position of the camera and the
tube, so the value of F was nearly constant at 1,57, The physical

dimensions were finally rendered dimensionless by the tube radius,
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Rt = 0,223 in, |

In addition, coordinate§ of points on the spark bubble surface
were determined by a scheme analogous in all respects to that de-
scribed above. The origin of the coordinate system was, in this case,
takenatthe spark gap. Finally, the displacement of the jet tip was
determined for several frames subsequent to its formation,

For comparison with the theoretical results of Part II, the
value of the mean velocity imparted to that portion of the water column
between the spark gap and the spherical-cap bubble is of major impor-
tance. This quantity was determined in two ways. The most accurate,
when it could be applied, was to calculate the volume of the spark
bubble. The mean velocity was then taken to be one-half the change
in this quantity divided by the corresponding time interval and the
cross-sectional area of the tube. The calculation was made relatively
simple by the fact that the spark bubble was very nearly spherical
even when its diameter was close to half that of the tube,.

The other method for determining the mean velocity exploits
the continuity equation in the form (8, 6) of Part II to find the mean
velocity, '\'rf-, in terms of the volume of liquid displaced at the free
surface in the time between successive frames. Let (rr‘l, zr'l) denote
the value of (r',z') for the nlCh point on one side of the axis of sym-
metry (n=0 denotes the point at the bubble apex), The volume of
liquid, Q, bounded by the free surface, the plane z' = 0, and the

cylinder whose radius is ri\l may then be approximated by
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Since two values of r}l are known for each 2;1, the volume can be
determined twice to afford a check, Note that the primed variables
refer to distances measured on the actual photograph,

If the volume, (Q, is determined for two consecutive photo-
graphs (using the value of z'l found for the apex of the bubble in the
first as the reference in both cases), to give Ql and Qz’ then the
mean velocity, v, of the liquid column is just

= Q‘2 -Q1
T owt
in units of tube radii per second if t is the time in seconds between
the two photographs. Denoting by z:: the displacement of the mid-
point of the free surface in successive frames, the centerline velocity,

N AB
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tube radii per second. The quantity TC given by
v

2
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is to be compared to the results of the analysis of Part II. Note that
this ratio is not likely to be determined particularly accurately - -
containing, as it does, the difference between two quantities which in
practice are often within 15 per cent of one another. In addition, the
factors s and F appear to the second power so that errors contain-
ed in them will be approximately doubled when the ratio is formed,
The effects of errors in the factor s upon the calculated
radius of curvature of one of these bubbles can be made clear by con-

sidering an ellipse given by

for which it can be shown that the radius of curvature, R, evaluated
at r = 0 1is

2
B = Seaff
bz

Now, a small change in the horizontal semi-axis of length a cor-
responds to a small change in the factor s which accounts for dis-
tortion in horizontal planes. Since a appears to the second power, it
is clear that the uncertainty in R will be approximately double the
uncertainty in s,

The accuracy of the photographic measurements depended upon
the dimension being estimated. For example, the apparent diameter

of the well-defined electrodes was determined to within 2% or less.



0

Measurements on the bubble free surface were repeatable to about
0.0005 in, Since differences were taken, this cannot be given in
terms of a percentage; however, measurements were repeated on one
of the spark bubbles and the results for its mean radius found to agree

within 1, 6%. Hence, the volume in this case was determined to with-

in 5%.
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12, Experimental Results

Initial free surface shapes of three representative bubbles are
shown in Fig. 16 together with arcs of radius 0. 65 for comparison.
The bubble profile was not found to vary in any systematic way with the
dimensionless distance, ds' to the spark gap, nor were any variations
found to occur when experiments were performed using a dilute solu-
tion of a high molecular weight polymer instead of tap water, Radii of
curvature were obtained at the bubble apexes by averaging values cal-
culated for the coordinates of points on the free surfaces. The values
so obtained agreed with estimates determined by plotting the points and
estimating the radii graphically,

The initial downward velocities of the apexes of the bubbles were
found, with a few exceptions, to be in the range 20 - 50 feet per second
while the jets were observed to travel at speeds slightly higher, An
intimate relation does not necessarily exist between these quantities
since the spark bubble often continued to expand after the time at which
the velocity of the free surface midpoint was calculated. Table I sum-
marizes the results for the nose radii, the initial midpoint velocities,
and the ultimate velocities attained by the jets. The scatter in the
values for the radius, R, 1is apt to be a consequence of errors in the
factors s and F as discussed in Section 11,

Mean radii for several spark bubbles are shown in Fig, 19,
These were determined by averaging values calculated for about 20

points on the bubble surface; error bars in the figure indicate the maxi-

mum and minimum values for the individual points. The spark bubbles
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were invariably elongated in the direction of the tube axis, although
the opposite seems true in the photographs due to distortion in hori-
zontal planes,

Figure 20(a) shows the history of a spark-produced pressure
wave in the apparatus of Fig, 14, Electrical disturbances created as
a result of the spark discharge were responsible for the initial tran-
sient, Following a quiescent period, there can be seen a low-level
excitation caused by disturbances propagating within the tube wall,
subsequent to this was a pulse due to the passage of the first wave in
the water, The frequency of the oscillation following the pressure
pulse was approximately the natural frequency of the transducer and so it
is not likely to represent the pressure field behind the first wave.

The record shown in Fig. 20(a) was made with no bubble in the
tube; however, the presence of a bubble did not change the pressure
history in any essential way, nor did the character of the trace vary
with the distance between the transducer and the spark gap. Pressure
measurements were also made with the transducer mounted in the wall
of a 12 in, diameter tank containing about 1l in. of water. A spark-
produced pressure wave incident normally upon the transducer was
observed to produce a history closely resembling that shownin Fig.20(a).
The peak pressure was, in this case, in the neighborhood of 300 psig.
when the spark gap was brought to within 1/4 in. of the transducer and
fell rapidly as the distance was increased. The risetime and pulse
width did not vary significantly, however.

That the wave system behind the initial pressure front is quite
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complicated is shown by the schlieren photographs of Fig. 20(b). The

pictures are of several pressure waves with varying amounts of delay
introduced into the photographic apparatus. Note the rarefaction

waves ahead of the main compression wave in the photograph taken
12us. after the spark was triggered, these are doubtless a consequence
of the compliance of the glass tube. What appear to be two compres-
sion waves converging toward the tube axis can be seen in the photo-
graph taken at 15us, Note also that the thickness of the initial front is
much smaller than the tube diameter. Since the pressure transducer
was about a fourth of the tube diameter in size, it seems unlikely that
even the maximum pressure was determined accurately.

The speed of the photographic system did not permit the waves
reflected upward from the surface of the spherical-cap bubble to be
viewed; however, widespread cavitation was often observed in the water
column after a time sufficient for the compression wave to be reflected
- - an example is the experiment shown in Fig., 21(a). This is con-
vincing evidence that the reflected system was predominately tension

as one would expect,
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IVv. DISCUSSION AND COMPARISON WITH THE THEORY

The radii at the apexes of the bubbles used in these experiments
were observed to be less than that found by other investigators for
bubbles rising in somewhat larger tubes, Table I shows the value 0, 66
tube radii to be typical of the bubbles examined in the course of the
present study; that given by other authors is 0,70 - 0,71, see (23), (26),
and (29). The discrepancy seems to be an effect of surface tension,
Though no detailed studies of its effects upon the nose radii of these
bubbles have been made, the work of Zukoski, (30), shows that surface
tension will affect their rate of rise.

Define the surface tension parameter, 2, by

g a
pgR}
where
o = surface tension constant (73 c.g.s. units for water at
room temperature)
p = density of liquid for a gas bubble rising through liquid
g = acceleration due to gravity
and

Rt = tube radius = 0,223 in. = 0.565 cm.

Using the room temperature properties of water gives X = 0,23,

which has been found by Zukoski (see Fig. 2 of his paper) to be suf-
ficiently high to slow the upward velocity of a long bubble by about 17%

compared to a similar bubble rising in the absence of sarface tension,
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Dumitrescu, (27), studied long bubbles rising through water in
tubes of various diameters and found that the apexes of those which
rose in a tube 0,99 cm. in diameter were slightly more pointed than
those observed in larger tubes. He gives no values for the radii of
curvature at the apexes, but suggests that surface tension is respons-
ible for the difference in shape. Goldsmith and Mason, (26),found that
surface tension decreased the nose radii of bubbles rising through
viscous liquids, and while they investigated air bubbles rising in water-
filled tubes of approximately the diameter of that used in the present
work, . gave no values for the nose radii, Although the work of
Dumitrescu and of Goldsmith and Mason is largely qualitative with
respect to the effects of surface tension upoun the radius of curvature,
there is none which contradicts the present finding that the radius is in
the neighborhood of 0. 66 tube radii.

The volume calculations described in Section 1l yield results
such as those shown in Fig. 17 for a typical case., The ordinate is the
volume, in units of the tube radius cubed, within the confines of the
free surface, the horizontal plane through the apex of the undeformed
bubble, and the cylinder whose radius is the abscissa, The difference
between the ordinates for r = rl, say, represents the volume dis-
placed at the free surface for r < r1 in the time between the frames
from which the calculations were made. This difference is shown in
Fig, 18 to the same scale as Fig, 17. It will be seen that the differ-
ence, at its maximum, is about 30% of the volume shown in the pre-

ceding figure and that it becomes roughly constant for r = 0,6, In
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reducing the data, the displaced volume was determined at five or six
points in the range 0,65 < r < 0.80 and upper and lower limits estab-
lished for each side of the bubble - - a total of four values. Linear
interpolation was used to find the volume for values of r differing
from those for which it had been calculated.

The ratio of the initial velocity at the free surface midpoint ¥,
to the initial mean velocity, ;f’ based upon the volume of fluid dis-
placed at the free surface, is shown in Fig. 22 for each of the bubbles
listed in Table I, Also shown is the ratio VC/VS, where ;s is the
mean velocity calculated from the spark bubble volume. Error bars
in the case of Vf indicate the highest and lowest values among the
four from which each of the averages (summarized in Table II) was
obtained, It will be seen in Fig. 22 that these ratios are rather broad-
ly scattered around threve for all values of ds’ and so exceed by
about 50% the value predicted from the incompressible analysis, The
estimate of Bowden and McOnie (Ref. 1), for the ratio of jet velocity
to mean velocity was two or three for jets moving at speeds in the
neighborhood of 6000 feet per second, They gave no values for the
initial curvature, however,

The ratios v‘:/;f and vc/;s agreed within 20% for all but
two of the experiments; these exceptional cases are indicated in
Table II by question marks adjacent to the entries. In the absence of
cavitation, conservation of mass requires that the volume displaced
by the lower portion of the spark bubble must appear as a displacement

at the free surface or that flow must occur across the horizontal
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plane through the electrodes. Flow parallel to the tube wall in the
liquid film below the bubble apex seems less likely, Differences be-
tween VS and Vf for a single experiment are not attributable to any
phenomena associated with compressibility because displacements
were measured after a time sufficient for the system of pressure
waves to undergo many reflections and be dissipated. Finally, the
data were reduced assuming axial symmetry, so any deviation of the
spark bubble from this condition leads to errors in ;s'

Cavitation was not observed in experiments having ds £ 4, Bl,
and in this case, shown in Fig. 15, the cavities were of negligible
extent, The experiment in which dS was 2.15 featured cavitation in
significant amounts and a very irregular spark bubble, hence the ap-
proximate agreement between ;s and \_;f is simply coincidence.
This experiment was exceptional in that a small jet had formed in the
time between the first two frames of the photographic record prevent-
ing precise measurement of the midpoint displacement.

The pressure maxima from histories exemplified by that of
Fig. 20(a) were observed to vary unpredictably from 200 psig. to be-
yond 400 psig.; however, the average taken over 30 - 35 consecutive
experiments performed at a single value of the spacing between the
spark gap and the transcducer was found consistently to be in the

interval 290 - 350 psig. with a standard deviation of 30 - 40 psig,.
Using 350 psig., it follows from Eq. (8.1): v_= pO/pC, that the
velocities behind the first wave were of the order of 5 feet per
second. If this were doubled at the free surface as predicted by

simple acoustic theory, the resulting increase at the free surface
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midpoint would be about 25% of the initial midpoint velocity for many
of the bubbles studied. It is likely, however, that the acoustic waves
were stronger than indicated by the pressure traces for the reasons
mentioned earlier. Hence the possibility remains open that the com-
plete removal of compressibility effects would lead to satisfactory
agreement,

Discrepancies due to the finite displacement of the free sur-
face do not seem to be important, The displacement used to calculate
v, was typically less than 0,3 tube radii (see Table III), hence one
would expect the midpoint velocity to be affected by less than 15%,
based upon the two-dimensional analysis of Section 7. The experi-
mental evidence does not warrant the drawing of definite conclusions,
though, since effects of this magnitude would not make themselves ap-
parent when the data scatter to the extent indicated by Fig, 22,

The analysis of Section 5 indicates that, for a column whose
length is less than its radius, the effects of non-uniformities in the
applied velocity will be of importance in predicting the velocity at the
free surface. These non-uniformities may be characterized by the
coefficient D1 introduced ir Section 6 and can be estimated for the
experiments in the following way: First, suppose that the spark
bubble can be idealized as an expanding sphere, then when its radius
and radial velocity are RS and RS, respectively, the axial compon-
ent velocity, v, on the spherical surface is

v = R cos@
S

Z
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where 6 is the polar angle, Now if one assumes that this velocity

acts across a horizontal plane, the Fourier-Bessel coefficients, Dn’

follow in the form

2];2_ Rs
D = ————E—S‘ Jo(k r)r cos 6 dr
B 1%k ) Y .

o' n

since v 0 when r > R .
5

Making the substitution r = Rsin@, there results

ZR;RS w/2
B, & — g J (kR sin 0)sin 6 cos® 046
J;(kn) o

which can be shown (see Ref. (24), p. 373, for instance) to be

The requirement that the mean velocity, DO, be unity gives

so that, finally, D = 3,15 and D = 1.68 for the typical case
1 2

Rs = 0.5, This is certainly an overestimate for D since the approxi-
1

mation used for the axial velocity contains a physically unrealistic
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discontinuity in its slope.

Now the effective column length, d, is apt to be somewhat less
than the distance, ds, to the spark gap due to the presence of the
spark bubble, so from Fig. 12 one would expect the midpoint velocity
for the experiments with the lowest values (dS =0.73, 0,83) to
exceed, by possibly more than 50%, the same quantity for experiments
with larger values of ds. Reference to Fig. 22, shows, however, no
compelling evidence to suggest that this occurred in the experiments,
The midpoint velocity does indeed increase with respect to the mean
velocity based upon the spark bubble volume, however, the trend is
not confirmed by the other ratio,

The experiments shown in Figs, 15 and 21(a) are typical of
some thirty-five of which photographs were made. In two cases, how-
ever, a very different behavior was observed. One of these is shown
in Fig. 21(b) where it will be seen that a small jet, much less well-
defined than the others, was formed. This experiment and a similar
one (ds = 1.01 in Table I) are characterized by very low initial mid-
point velocities, which suggests that the stabilizing forces due to sur -
face tension were nearly sufficient to prevent the formation of a jet,

No accurate estimates have been made of the relation between
the maximum mean velocity imparted to the column and the ultimate
jet velocity. For experiments in which the motion was slow enough to
permit accurate estimates of the maximum spark bubble size to be
made, the corresponding velocities were sufficiently low that surfacec

tension was likely to have been important, converscly, when the
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velocities were high enough to render surface tension effects neg-
ligible, the temporal resolution of the camera permitted only very
approximate estimates of the maximum spark bubble size, Briefly,
the jet velocity was found to be only slightly greater than the maxi-
mum mean velocity at the lowest speeds and increased to about 4
times this quantity at the highest.

The theoretical analysis is only indicative with respect to the
final jet velocity; however, if a steady flow of this kind exists, it is
easy to show that the steady jet velocity should exceed the mean veloc-
ity by a factor of two in either two or three dimensions. This may be
seen by considering the flow as it appears to an observer moving with
the mean velocity. Such an observer will perceive that fluid approach-
es along the free surface near the walls with unit velocity, say, turns
through 180°, and leaves with unit velocity along the jet free surface.
Thus to an observer with respect to whom the fluid at infinity is at
rest, the velocity of the jet will be two units.

The process of jet formation in these experiments may be
understood in the context of Taylor instability, for as the spark bub-
ble collapsed, the liquid beneath it was accelerated upward, creating
a situation at the free surface conducive, by Taylor's criterion, to
the growth of small perturbations in the velocity or displacement
there.

Finally, the free surface shape just after the start of motion
is shown for one case in Fig. 23, and for comparison a theoretical

curve determined from the exact two-dimensional analysis of Section
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.2'. The exact solution was continued from the experimental free sur-
face rather than the corresponding theoretical shape shownin Fig. 2.

The disagreement is, of course, rather severe near the centerline,

where three-dimensional effects are likely to be significant; closer to
the tube wall, however, where these phenomena are of lesser impor-
tance, the theoretical and experimen'.cal shapes are somewhaf closer,
The two-dimensional midpoint displacement, (AC)Z’ was determined

for Fig. 23 by the relation

B ('\f‘c/;)2

c e

B — c
2 (VC/Vf)3 3

where the subscripts 2 and 3 refer to two and three dimensions,

respectively, and (vc;’V)z is the theoretical value, /2.
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V. SUMMARY

Several mathemat.ical models have been propounded to account
for the jet observed to form at the curved free surface of a column of
liquid subjected to a rapid acceleration. The fluid has been assumed
inviscid throughout and incompressible in most of the analyses. A
two -dimensional problem was solved exactly for small time and forms
the standard against which the results of more approximate theories
were tested for reasonableness, This solution predicts that the
element of fluid situated at the midpoint of a rather special curved
free surface should suffer a jump in velocity equal to w/2 times
the mean velocity applied impulsively to the column. Further, the
theory predicts that the velocity jump elsewhere on the free surface is
less - - suggesting the possibility of jet formation.

Several perturbation analyses have been carried out in Section
4 based upon the assumption that the initial free surface is nearly
planar. The results for the midpoint velocity of a two-dimensional
problem of this kind were found to agree within 5% with those for a
special case of the exact problem, while those of the corresponding
three-dimensional problem predict a jump in velocity at the free sur-
face midpoint in the neighborhood of twice the mean velocity imparted
to the column. In both cases, the increment in velocity at the free
surface midpoint was found to be proportional to the curvature of the
initial free surface and to be greater there than at other points on the
free surface, see Eqs. (4.33), (4.34), and Fig. 11,

An attack on the axially-symmetric problem has also been
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made by assuming that the system of impulses acting across the
horizontal plane through the midpoint of the free surface is the same
as - - or closely related to - - the analogous quantity found to be act-
ing in the two-dimensional problem which was solved exactly. Though
no firm basis exists for such an assumption, the results to which it
leads are not unreasonable in view of those found in two-dimensions,
and they do tend to confirm the results of the axially-symmetric
perturbation analysis,

Experiments employing slender bubbles risingin a circular
tube were conducted upon the phenomenon., The apex radii of these
bubbles, listed in Table I, were found to be within a few per cent of
that used in the theory, and when accelerated rapidly downward, were
observed to deform in a manner resembling that predicted theoretically,
see Fig. 23. Quantitatively, however, the midpointvelocity was found to
be systematically in excess of that predicted by the three-dimensional
perturbation analysis. It is likely that the approximations made in
obtaining the solution of the axially -symmetric problem are to blame for
a portion of the discrepancy; however, one is led to speculate that
effects associated with compressibility are also of importance,

The effects peculiar to very short columns subject to non-
uniformly-applied impulsive velocities have been examined for an
axially-symmetric column with a nearly planar free surface, It was
concluded that the jump in velocity experienced by the free surface is
affected to a negligible extent, even by strong non-uniformities, unless

the column's length is smaller than its radius. This finding was not
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borne out conclusively by the experiments, however.

A solution valid for slightly longer times than were those dis-
cussed above was found for a simplified two-dimensional problem.
The results indicate that the velocity of the fluid element at the free
surface midpoint should increase as the motion proceeds; however,
the increase is slight and no manifestations of the phenomenon were
observed in the experiments,

Finally, effects associated with compressibility were consider-
ed in a very approximate way and the conclusion reached that the im-
pingement of a plane acoustic wave upon a hemispherical free surface
should lead to effects qualitatively similar to those arising in the
various incompressible analyses. Specifically, the velocity at the
midpeint of the free surface was found to exceed the velocity at other
points situated thereon - - again suggesting a jet. The factor by which
the velocity at this point exceeds the mean velocity (based upon the
volume of fluid displaced at the free surface) depends strongly upon the
behavior of the acoustic waves as they propagate past the bubble apex;
however, and no experimental evidence was obtained to justify any

assumptions in this regard.
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TABLE I

Summary of Nose Radii and Velocities

dS R ¥ vJ
0.73 0.65 46.3 66.6
0.83 0.66 39.6 59.9
0.98 0.62 37.4 57. 1
1.01 0.68 23,2 3,79
1.02 0.66 30,2 37.8
1.04 0.68 28,1 35,0
1.30 0.67 18,7 6.70
1.61 0.67 33,2 43,2
2,18 0.67 72.4 136.2
*3.18 1 34,3 49,0
3 28 0.62 44,2 54,3
3.67 0.66 23.2 22.0
*7.46 0.66 48.5 86.8
23.4 0.62 33,9 58. 4
ds = distance from spark gap to bubble apex, tube radii

R = radius of curvature of undeformed bubble, tube radii; cf
R =2/w=0.64 used in theoretical analysis.
V= initial midpoint velocity, feet per second

VJ. = ultimate jet velocity, feet per second
.
indicates 50 ppm. polyethylene dioxide solution

¥ indicates photograph of undeformed bubble was unviewable, initial
shape was taken to be that of bubble for which dS = 3.26,
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TABILE II

Summary of Velocity Ratios

0.83
0.98
1,01
1,02
1.04
1.30
1.61
2.15
3.18

*1_ 28
3,67

. 48

23,4

v/

2,

v

f

.11
.12
.47
.62
.14
93
.18
.36
.53
.22
.26
.56

.92

96

3

VC/VS

62

.88
.56
.56
.14
.62
.30
.10

.84

(?)

(?)

= distance from spark gap to bubble apex, tube radii

= initial midpoint velocity

= mean velocity based on volume displaced at free surface

= mean velocity based on spark bubble volume

indicates 50 ppm polyethylene dioxide solution,
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TABLE III

Summary of Spark Bubble Radii and Initial

Free Surface Displacement

dS AC RS t
0.73 0.242 0. 46 0.096
0.83 0.260 0. 46 0.122
0.98 0. 320 0.51 0. 160
1. 01 0.170 0. 32 0.139
1. 02 0.200 0. 39 ‘ 0.122
1;04 0.200 0. 48 0.127
1. 30 0.122 0. 38 0.122
1.61 0. 292 0.59 0.161
*2.15 0.593 0. 68 0.150
*3.18 0. 159 0. 099
*3.26 0.311 0. 150

3.67 0. 202 0. 166
7. 46 0. 392 0. 150
23. 4 0.118 0. 150

ds = distance from spark gap to bubble apex, tube radii

t = time in ms. from spark discharge

A = free surface displacement at midpoint with respect to initial

€ position
R =.mea.n spark bubble radius, tube radii

]
sk

indicates 50 ppm polyethylene dioxide solution.
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APPENDIX A

Polynomial Approximation to wo(x, d)

The real part of Eq. (2.29) can be shown to be

T X
u, = - U(x) sin >

where

< m
Uix) ZZH) 2 am ™
ol 4m*“+1+4m cos -

= m
) Z(-l) 2m . (A1)
m:l

2,1 ™
4m*“+1 -4m cos >

In finding the least squares approximation to U, Eq. (A-1) was eval-
uated for -1 <x <1 atintervals of 0,05, The approximation was then
weighted in favor of points near the origin (the neighborhood of greatest
interest) by counting twice the values of u, at x =% 0.05, £ 0,10,

+ 0,15, £ 0,20, £ 0,25, and =z 0.30,.

The final approximation is

5
d) = b 2m-1
uO(x, ) = Zm-—lx (A-_Z)
m=1
where
bl = -2,3049
b3 =10, 340

b5 =-21,.199
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20,681

o’
]

o
n

-7.5220

This may be integrated according to Eq. (2.30) to give

A _ me-l
2m = 2m

where the AZm's are given with Eq. (2, 31)
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APPENDIX B

Evaluation of

) .
cos kf sink
LE) = S‘o "k coshka s

It is convenient to examine the integral obtained by differentia-

tion with respect to &:

o .
_ sink§ sink
r'E) = - ‘go SoenlE, °F

which may be written in the form

LHE )k __i(1-6 )k

1 o0
! = o
') 4 Re S—oo cosh ka dk

Now consider

00 eiak
g_wmdk » @ real,

This may be found in Ref, (B-1), p. 30 to be

m 1

o
cosh 55—
a

=]

Use of this result, with @« =1x £, in Eq. (B-1) leads to

1'(g)=£[ : - !

™ ™
osh T (1+€) cosh o (1-£

A little manipulation gives

; T ; €
sinh zz sinh -Z—a—

IMEY = = o5

which may be integrated to yield

inh? X_ 2 TE
sinh 5 + cosh 5

(B-1)



Now recall that I(§) is the normal derivative, along n = a, of
the harmonic function w (§E,m). This permits a fundamental property

2
of functions of this type to be invoked to evaluate the constant, Specif-

ically, 9w

§3n G =0
C

where the integral is taken over the boundary of the region occupied by

(S

fluid in the { -plane., The contribution to this integral along n = 0 is
-2 in view of the normalization chosen in Eq. (2.32). Since the first
term of the expression (B-2) is positive-definite, the constant must be
set equal to zero to ensure convergence along 1 = a. Note that the
velocity must be at least finite at infinity, precluding all but finite con-

tributions to the integral from the portions of the contour at infinity.

Reference

(B-1)A. Erdelyi, ed. Tables of Integral Transforms, Vol, 1, Calif,
Inst. of Tech. Bateman Manuscript Project, McGraw-Hill, 1954,
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APPENDIX C

Calculation of Bn(:rn) and Related Sums

Integration by parts of the right side of the equation

1
B (m) = - ZS. x  cosnmwxdx
n o m

results in

B_( ):(-l)n_H 2m _ m(m-1) B te-2) (C-1)
n (am)?  (an)f n

Bn(Z) is readily shown to be

fal )n+l 2 2
| (nm)?

Mathematical induction can then be used to show that, in general,

m
B (Ee] = 2(_1)m+n+1 z (2m)! (-l)k
n .

. m > 1
(nP L (2k-1)(nn ym-2k
The first five of these are

By {3} = (1P AR

n (nm )?

B (4) = (-1)77 204 [1 3 ‘l

" (nm)? (nm)?

B (6) = (c1)7H 216 [1 45, 5!]

- (nw)? (nm)  (nmw)

B (8) = (1% 2°8 [ 67, 415467 _ T ]

&= (nm)? (nw)? (nw )t (nm)°

B_(10) = (-1 2-10[1 _8:9 _6:7-8-9 4:5:6:7:8-9 , 9! 8] _
(nw)? (nw)? (nw )t (n'rr)6 (nm)

The sums
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oo

P, y(O, 0) :zln'rr Bn(m)
n=

are then, for the first five even values of m,
<p2’y(o, Q) = 2)\1
(P4 Y(O: 0) :4()\-1-3'7\. 3)
= -4 | =
(pé,y(o, 0) = 6(R1 445N 3+5.)\5) (C-2)

9, (0,0) = BNy =6-Th 5 +4:5:6 T ;=TI\ )

3

@10, ¢(0:0) = 10(X | -89\ 346789\ S-4:5:6 789N ,+91\ )

where the )\p's are given by
0
n+l
X =2 Z ﬂl_
P (n‘lT)p

n=1

The first few of these are tabulated below for p odd.

P A

P

1 4.4127% 107
3 5.8152 X 10 °
5 6.3533 X 10~
7 6.5728 X 10~
9 6.6966 X 107°

Substitution of these in Eqs, (C-2) gives Eqs. (5.8). Note that the

calculation of . - y(O, 0) involves the difference between rather large
]

numbers as m increases, Consequently, the accuracy of this quantity

is somewhat less than the five figures retained in Rp‘ This fact is



reflected in Eqgs. (5. 8).
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APPENDIX D

Calculation of Cn(m) and Related Sums

The equation for Cn(m) may be written

- m+1
C_(m]} = - ; S‘ y J_(n)dn
n k m+zJ‘5(k ) = o
n o' n

after an obvious change of variable, Two integrations by parts gives

2

C_(m)=- —22_ .2 G (m.2) (D-1)
. KJ (k) K
n o' n n

where the relations

J0)=J (k. )=0
1 1

gnJo(n n =nJ (n)

and

‘S‘Jl(n Jan = - J _(n)

have been used. The recursion relation (D-1) connecting Cn(m) and
Cn(m—Z) is the same as that derived in Ref, (24), p. 581, Cn(O) can
easily be shown to vanish so the other Cn's follow from (D-1).

As in the two-dimensional case discussed in Appendix C, it is

possible to find a general expression for Cn(Zm)_ The formula

m
G em) = LT (Lt 2 |2t
" K J (k) -1 |k

n 6" n =1 n
can be shown to hold by means of mathematical induction. It follows

that



il

S PR L .
= k27 (k_)
n o n
24 2.4
Cp4) = - — E_- - ]
k2T (k) 17
* 4.6 | 2+4%:6
i ° . . zl L] z. z.
cnw)=-_T£Ji_&,,6f_F4i 8 _24668]
kJ (k) Kk’ k2 k?
) : .82. 6282, v42.62.82+
& (10) = « 2210 P _8:10 , 6-82:10 4628210 , 24 68810]
n o n n n n n
The sums o
X, 2(0:0) = ) 1, (m)
n=1

then may be written, for m =2, 4, 6, 8, and 10,

XZ,z(O’O) = Zal
X4,z(0’0) = 4((11—2°4a3)
2
X, z(0:0) = 6lay-4-6ast2:4" bag) (D-2)

1 B2 s By Bl + 6° ~Ba

Xg, 5(0,0) = Blay-6-8ay 5 2)

(0,0) = 10(a, -8 +10a,+6+8%+10a, -4 -6%8%10a +2-42-62-82-10a§

X10, z 5 7

whezre the czp's are

18

o = -2 1

P < P
n=1 knJo(kn)

1
The quantity - Z @, may be found in Ref.(D-), p. 166, The others
have been calculated using the values of kn and Jo(kn) in Ref. (D-2).

The results for p=1, 3, 5, 7, and 9 are shown in the following
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table:
P a,
1 7.6958 X 107
3 7.4099 %X 107°
5 5.6774 X 10~
7 4,0212% 10~
9 2.7734 X 107°

Use of these values in Eqgs, (D-2) gives (5.20). Note that the terms in
the expressions for X2 Z(O, 0) become rather large with increasiny

m - - the last two terms in X10 Z(O, 0), for example, are
-36.734 4+ 20,263, Thus, even though five figures have been retainec

in ap, the final result is accurate only to three figures,

References

(D-1) E. Jahnke, F. Emde, Tables of Functions with Formulae
and Curves, 4th Ed., Dover, New York (1945),

(D-2) F, W. J. Olver, ed. Roy, Soc, Math, Tables, 7, Bessel

Functions, Part III, Zeros and Associated Values, Cambridge
Univ. Press, (1960).
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Fig, 2: Comparisorn of free surface required for cxact two-
dimension solution with an axially~-symmectric frec
surfac. obscerved experimentally,
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Fig. 3: Variation of free surface curvature R,
and column length, d, with the
parameuter, a.
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Fig. 4: Midpoint velocity for exact two-dimensional solution,
n=0,1,2 from Eq. (2.28) n = 1/2 from Eq. {2, 34),
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TYPICAL EXP
-——-b=1.0 i
-—- b =0.910 !

Fig, 8: Showing typical experimental free surfacce shape and
surface shapes used in perturbation solution from
Eq. (3.32)
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2- DiM.
EXACT __+

2-DIM.
APPROX.

3-DIM. APPROX ~

Comparison of free surface heights for ¢xact and

approximate theories, Two-dimensional exact

from Eq. {2.7), two-dimensional approximate

from Eq, (4.1), and three-dimensional approximate
from Eq. {4,2),
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Comparison of exact and approximate theorics;

exact two-dimensional impulse, - (x,d),
from Eq. {2.31), approximate two-dimensional
impulse, -v'{x,0), from Eq. {4, 29), and

approximate three-dimensional impulse from
Eq. (4.30),
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Fig. 10{b}: Comparison of approximate theories: ratio of
three-dimeoensional nnpulse, -x'(r, 0}, to
two-dimensional impulse,  -p'{x, 0}.
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Fig. 12: Effect of finite column length on the velocity at
the free surface midpoint in the casc of axial
symmetry,
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/ GLASS TUBE

Fig, 14: Experimental apparatus.
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Photographs of typical experiment, time increasing from right to left
and top to bottom, Note cavitation in second and fifth frames and
sheet jets in subsequent photographs, Top series, 0 -2,64 ms,;
rightmost strip in lower series, 2,64 - 4, 12 ms; final series
5.44 - 6,44 ms, Pictures within each series 0,165 ms, apart,

dS - 1,61 tube radii,
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Fig. 16: Experimental free surface shapes for three typical bubbles; the arcs
are of radius 0, 65,
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SPARK BUBBLE RADIUS, TUBE RADII
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Fig, 19: Mean radii for typical spark bubtles, d_ is distance ir tube



Fig. 20(a): Typical pressure history, horizontal scale: 50us per
large division, vertical scale: 100 psig per large division,
spark gap 44,7 tube radii above transducer,

Fig. 20(b): Schlieren photographs of spark-produced pressure waves,
delays are 6,12,15, and 25us. with respect to spark,

scale is approximately twice actual size,



Fig,

Cavitation caused by compression wave reflection at bubble

Fig, 21(a):
free - surface, time between frames: 0,150 ms,, ds = 28,4,

Very small jet produced by weak acceleration, time
) I Y )
1,30

21(b): J
between frames: 0,130 ms,, ds -

==
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Fig, 22: Ratio of initial midpoint velocity to initial mean velocity,
based on displaced volume at free surface and on spark bubble volume,

Shaded symbols are for 50 ppm. polyethylene dioxide solution,
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Fig, 23: Experimental free surface displacement for ds = 3,67 compared

to exact two-dimensional theory for long column,



