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ABSTRACT 

The sudden axial acceleration of a column of liquid bounde d 

at one end by a concave free surface has been found, experimentally, 

to produce a jet which issues from the fr ee surface with a speed 

several times that imparted to the column. 

Theore tical a pproximations to such flows, valid for small 

time, are formulate d subject to the assumption that the fluid is 

inviscid and incompressible. In a special two-dimensional case, it 

is found that, fo~ vanishingly small time, the velocity at the point on 

the free surface from which the jet emanates is 1T /2 times the 

velocity imparted to the column. The solutions to several problems 

in two and three dime nsions assuming that the initial curvature of 

the free surface is small,,lead to values for this ratio depe ndent upon 

the curvature- - the initialvelocity in the case of axial symmetry 

excee ding that of the analogous two-dimensional problem by approxi­

mately 25%. 

Experiments conducted upon the phenome non give values 

systematically in excess of those predicted by the theory, although 

theory and experiment are in qualitative agreement with r e spect to 

the displaceme nt of the free surface. It is suggested that the dis­

crepancy is attributable to effects of finite curvature having been 

imperfectly accounted for in the axially- symme tric analysis. 

Photographic materials on pp. ll5, 120, and 121 are essential 

and will not reproduce clearly on Xerox copies. Photog raphic 

copies should b e ordered. 
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I. INTRODUCTION 

The problem to be considered is that of the motion of a body of 

liquid, partially bounded by a free surface, subsequent to the applica ­

tion of a system of forces which cause it to accelerate impulsive l y . 

Attention will be given specifically to geometries having a free surface 

concave into the fluid and in which the applied accelerations are more 

or less normal to the free surfac e . A promine nt feature of many flow s 

of this type is the formation of a liquid jet which issues from the free 

surface approximate l y parallel to the applied acceleration . An exam­

ple is the splash whi ch often follows the rapid setting down of a liquid­

filled cup. 

The formation of these jets has received attention for its role 

in the initiation and propagation of explosions. Bowde n and M c Onie (l) 

have found that the presence of voids within a liquid explos ive g r eatly 

increases its shock sensitivity and leads to much higher reaction rates 

than prevail in a homogeneous liquid . They con c lude on the basis of 

evidence cited below, that jets emanating from th e surfaces of the 

voids serve to disperse the explosive and increase the surface area 

available for r eaction. 

Bowden and Brunton(2) and Brunton(3 ) , in connection with an 

inves tigation of liquid- solid impact, employed jets formed by the sud­

den extrusion of a liquid through a circular hole. Wh e n the initial f r ee 

surface was concave into the liquid, they observed a small jet to form 

at the tip of th e main stream and rnove two or thr ee times as fast; no 
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such precursor jets were found when the initial free surface was planar. 

Watson and Gibson(4) caused an explosively-created shock wave 

to impinge from below upon several hemispherical air bubbles trapped 

beneath a thin film of plastic in contact with the top of a liquid-filled 

tank. The resulting jets were found to move fast enough to pit an 

aluminum specirnen placed in their path. Watson and Gibson speculate 

that a mechanism of this sort may be operating within a cloud of cavita­

tion bubbles - - the pressure wave from a collapsing bubble possibly 

causing a neighboring bubble to form a jet. Several studie:o (5), (6), (7) 

have implicated j e ts from collapsing bubbles as a possible cause of 

cavitation damage. 

The work of Bowden and his students , summarized in Ref. (8 ), 

is illustrative of the vari ed geometries which can give rise to jets. In 

addition to the e x trusion process mentioned above, they have observed 

j ets when a thin layer of liquid with an elliptical void was squeezed be -

tween a hammer and anvil. J ets were found to e manate into the void 

from the two points having the greatest initial curvature. The phenon1-

enon also occurs when two droplets, impacted in the hammer -anvil 

device , make contact. Jets issue in this case from the points of maxi­

mum curvature on the resulting 11 8 11 -shape . Finally, two explosion bub­

bles collapsing out of phase, Ref . (9), can exhibit an interaction which 

leads to the formation of jets, first in one bubble and then in the other. 

The theory relevant to the forrnation of j ets at a liquid free sur -

face is not at all well-developed. The phenomenon see1ns quite similar 

to that occurring during the collapse of a conical or wedge -shaped liner 
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in a high-explosive charge, Ref. (10 ); however, the problem is much 

more difficult since the mass is distributed through a region of space 

rather than concentrated in a very thin layer. This requires that the 

conservation laws be applied in the form of differential equations 

rather than their more easily handled integrated forms . An attempt to 

tr eat the phenon1enon in terms of the theory of shaped -charges has, 

nevertheless, been made by Kozirev (11 ). 

Birk.ho££ and Caywood (12) , studied the flow n ear the base of 

the up-jet formed behind a wedge after its entry into a tank of water. 

By matching, at one point, the magnitude and direction of a theoretical, 

steady, two -dimensional, jet flow to that d etermined experimentally, 

they found that the field everywhere was adequately described. 

The discharge from a sharp-edge, two-dimensional orifice has 

been examined analytically by Curle (13). He considered the problem 

for both large and small time assuming an initially planar free surfac e . 

The sharp edges, however, lead to unrealistically high ve loc ities and 

hence to a free surface shape for small time which does not seem 

physically reasonable. 

Recently, some numerical work has been done concerning jets 

in real fluids. The shaped-charge problem has b een cons idered by 

Harlow and Pracht (14 ); while Harlow and Shannon (l 5 )have examined 

the phenomena, including the up-jet, associated with the impact of a 

liquid drop against a plane free surface . 

The analytical work pres e nted in the following r epr esents an 

attempt to predict the velocity of the jet formed as a re s ult of 
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impulsive acceleration in systems similar to Bowden's extrusion 

device . Particular attention is given to the velocity a long the free sur -

face jus t as the motion commences. Experiments were c onducted on 

th e phe nomenon using long air bubbles rising through water in a slen­

der c ircular tube . The sudden downward acc e l e rati o n of s u ch a bubb l e, 

by means of a rapidly expanding spark bubble created above it, leads 

to jets closely r esembling thos e discovered by Bowde n . 
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II . FORMULATION AND SOLUTION OF SOME 

BOUNDARY VALUE PROBLEMS 

1. Assumptions and Basic Equations 

The fluid will be assumed to be inviscid and incompr es sible in 

the theor e tical a nalysis. No exper imental evidence has been found to 

suggest that viscosit y plays any important part in the phenomena to b e 

considered . Compressibility, however, must b e invoked to e x plain 

certain features of the flow and it is neglected in the ana lysis w ith th e 

understanding that its effects rnust ultimately be estimated. In addi -

tion, forc es due to surface tension and gravity w ill be n eg l ecte d as 

compared w ith other forces acting on the fluid. 

With these simplifications, the e quations to b e satisfie d by th e 

-+ 
velocity, ;C;,t), and pres sure, p(x, t), 

and 

whe re t i s the time 

-+ 

'V'·u = 0 

-+ 
Du 
Dt = 

1 
-Vp 
p 

p is the fluid density 

are 

a nd D 
Dt 

denotes time-differentiation following a fluid e l e m e nt. 

( 1 . l ) 

( 1 . 2 ) 

Boundary c onditions suitable to this p a ir of equations a r e 

-+ -+ 
U• n -- 0 <.., • • ~ i g id boundarie s ( 1. 3 ) 

p = 0 o n f r ee s urfac e s ( 1 • 4) 

and 
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U•n specified ( 1. 5) 

ove r the remainder , if any, of the surface enc l osing the fluid. n 

denotes the outward-pointing normal to thi s surface. Finally, th e 

kinematic boundary condition 

-+ 
must be satisfied on the fr ee surface F(x, t) = 0 . 

Following Lamb, R ef. (16, p. 10), (see a l so (17) ), o n e as-

sumes that the fluid is subjected to a syste m of arbitrari ly large pres -

sures acting over a vanishingly Sm.all interval of tirne . Integration of 

th·~ Eulerian equation of motion, (1 . 2 ), with respe c t to the ti1nc th e n 

y i e lds 

-+ _.. + 
u(x, 0 ) = \lw ( 1 . 7) 

w h e r e 

1 so+ 
- pdt 
p -

( 1 . 8 ) 

0 

and the flow has been assumed to start fr o m rest . The requirement 

--+-+ + 
that u(x, 0 ) satisfi es the continuity equation, (1. 1 ), then b e comes 

( 1 . 9 ) 

and the boundary conditions (1. 3 ), (1.4), and (1. 5 ) now read 

'Vw•; = 0 on rigid boundaries ( 1 . I 0 ) 

o n free s urfac e s ( 1 . 1 I ) 

and 

specified (1.1 2) 

respectiv e l y . Integ ration of the kinematic boundary condition , 
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(1 .6 ), leads to 

__. + 
F(x, 0 ) = 0 

This has no relevance to the problem solved by w since the free sur -

+ 
face a t t = 0 will not be displaced from its initial position. 

To the boundary conditions resulting fr om the conventional 

formulation, one may add 

w specified ( 1 . 1 3) 

ove r a portion of the bounding surface. From Eq. (1. 8 ) it is c lear 

that - pw repr e sents the impulse per unit area acting a t any point in 

t h e flow . 

2. T he Solution of an Exact Two-Dimensional Problem 

Cons ide r the application of Eqs . (1. 9) through (1 . 12) to the 

problem d e picted in Fig. 1 (a) . The fluid is confined b e twe e n infinite, 

rigid, parallel walls situated at x = ± 1 and the fre e surfac e profile 

i s given by 

rrx rrys 
cos T sinh - 2 - = a (2. 1 ) 

where a is a positive constant and the subscript s denotes a quan -

tity e valuated on the free surface. An impulsive ve l ocity distribution, 

V (x), i s specified a l ong y = 0, Ix I < 1. Th e boundary value proble m 
0 

for w in the region ·:iccupie d by fluid is thus 

(2. 2 ) 

OW 
ox = 0 on x = ± 1, y > 0 (2. 3 ) 

OW 
oy = V 

0 
(x ) on y -· 0' Ix I< 1 (2. 4 ) 
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on 
1TX TTYS 

cos 2 sinh - 2- =a (2. 5) 

and (Y'w) , the velocity at the free surface is sought. All quantities 
s 

in the theoretical analysis will be assumed dime nsionless - - the 

characteristic length and velocity being the channe l half-width and the 

m ean value of V , respectively. 
0 

Before proceeding with the solution, several properties of the 

free s urface geometry will be mentioned. The equation describing 

the fr ee surface can b e written in the form 

2 -1 
y s = 1T sinh 

a 
1TX 

cos 2 
(2. 6) 

It follows that the radius of c urvatur e , R, at the rnidpoint of th e 

fr ee s u rface is g ive n by 

1 
R = y " (0) = 

s 
1T a (2. 6 I) 

and thus dep e nds upon the distance d shown in F i g . l( a ). In the impor -

tant case 

the radius 

a 2 » 1, however, this dependence is largel y e liminat ed and 

2 
approaches - or about 0. 637 channel h alf - w idths. Equa ­

TT 

tio n (2. 6) can also be written in the form 

y = s ~ log [ a TTX 

~OS z 
+\) az . + 1 J 

2 1TX 
cos 2 

so i t is clear that the free surface heig ht is logarithrnically singular 

n ear the c hannel walls . Finally, in case az. » 1, the fr ee surface 

h eight n1casured fron1 y ::: d can be shown t o b e 

Y - d ·-s 
2. 1TX 

l o g cos 
1T 2 ( 2. . 7 ) 
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Equation(2. 7) and an experimental free surface are shown in Fig. 2. The 

radius, R, and d, the column length, are plotted against a in Fig. 3. 

Returning now to the problem posed by Eqs. (2 : 2) through 

(2 . 5), let a conformal transformation be define d by 

s = sin rr; (2. 8) 

and a cornplex impuls e function by 

F(s) = w(s,11) + iw(s,11) 

where 

z = x + iy 

and 

The n1apping defined above transforms th e r egion occupied b y th e 

fluid in the z -plane onto the infinite strip a< 11 < a i n th e s -plane. 

The correspondence between points in the two planes is shown in 

Fig . 1 (b ). Since the c omplex conjugate velocity, u-iv, in the z -

plane is 

U - lV 
dF di; = = ds dz 

rr rrz dF 
2 cos 2 ~ 

the problem for w may be reformulated in the s -plane as 

\72 w = 0 in 0 < 11 < a 

w = 0 on 11 -- a 

ow 
0 0 Is I> 1 

811 = on 11 = 
and 

(2. 9 ) 

(2. 10) 

(2. 1 l ) 

(2 . 12) 
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OW 2 1 
V (x) T] = 0 Is I< 1 

OTJ = on 
' lT . 11"X 0 

cos 2 
(2. 1 3) 

where x is given implicitly by 

s sin 
lTX 

along T] = 0 Is I< 1 = 2 ' 
(2 . 14) 

As conclusions will ultimately be drawn with r espect to axial-

ly-symmetric flows, consideration will be given only to functions V (x} 
0 

which are even. Furthermor e , linearity of the problem permits V (x) 
0 

to be expressed as a Fourier series and the response to each Fourier 

component computed separately. Thus 

since the functions 

a cos nirx 
n 

COS nlTX 

form a complete orthogonal set over -1 <; x < 1 . 

(2. 15) 

The choice a = 1, 
0 

corresponding to a mean upward velocity of unity, will be made in the 

subsequent analysis . 
th . 

Denoting the response to the n term of this 

series by wn' the problem for wn is exactly th2t given by Eqs . (2.10) 

through (2. 14 ) with (2. 13) modified to read 

ow 
n 

Tr] = 
2 COS nlTX 

lT lTX 
cos 2 

(2 . 16 ) 

The problem in the i; -plane will be solved using the Fourier 

cosine transform pair 
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w ( 11 , k ) = S 00 

w ( s , 11 ) co s ks ds ( z . i 7 ) n n 
0 

2 s 00 

w (s, 11 ) = - w (11 ,k)cosksdk (2 . 1 8 ) 
n lT n 

0 

Application of transformation (2. 17) to the problem sol ved by w 
n 

results in 

and 

where 

c\W 
n 

Chl 

w = 0 
n 

on 

COS n1TX 

1TX 
cos 2 

in 

co s ks ds on 1l - 0 

(2. 19) 

(2. 20) 

(2.2 1) 

2 -1 
x = - sin s (2 . 22 ) 

lT 

as the problem t o be solved by W n. The change of variab l e 

s = sinrp 

in the integral of Eq. (2. 21) gives 

dWn zsTI/2 . 
~ = :;;:- cos Zncp cos (ks1n <p )dcp 

0 

(2 . 23 ) 

whic h is an in tegral repr e sentation of J (k), zn the Bcs sl~ .l function l)l 

the first kind and order Zn. (See , for example, R e f. ( 18 ) , p . 15 0 ). 

Now the solution of Eq. (2. 19) satisfying boundary conditi on 
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(2.20)is 

W (T],k) = c (k)sinhk(11-a) 
n n 

wher e c may be shown to be 
n 

J (k) 
Zn 

en= kcoshka 

(2. 24) 

through use of Eq. (2. 23). Finally, inversion by means of Eq. ( 2 . 18 ) 

gives 
2 s 00 J Zn (k ) 

wn (s, 11 ) = rr cos ks sinh k(11 -a) k co sh ka dk 
0 

(2. 25 ) 

The complex ve locity, u - i v n n ' 
for each of the Fourier com -

ponents is 
dF 

n 
u 

n 
- iv 

n = --crz- -

where the expression 

dF aw aw 
n n 

- i 
n 

Cir = ~ ~ 

= - 1 ~ s oo cos k(s -ia) 
co sh ka 

0 

J (k)dk 
Zn 

(2. 26 ) 

follows from Eq. (2. 25 ). If the trigonometric and hyperbolic functions 

appearing in (2. 26) are written in terms of exponential functions and 

the quantity 
1 
-zka 

l +e 
is expanded in a geometric series, term-by-

term integration results in a series of integrals of the form 

S
00

J (k) e -sk dk 
Zn 

0 

where Re ( s ) > 0. These are readily identified w ith the Laplace 
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transform of J (k): Zn 

1 

(See,for example,Ref. (19), p. 1027). The result is 

dF 
n 

where 

~ ( -1 )m -::=:=~ _l-;==:--:;-:::-
1 \ls z+l (s +Vs Z+l )zn 
=o m m m 

00 

\ (-1 )m 

L ""Ip z+l 
m=l V m 

(pl~ )znl 
m m 

s = 2ma - ii; 
rn 

P = 2ma + ii; 
m 

(2. 2 7) 

Althoug h the structur e of the solution is by no ine ans evide nt in general, 

certain limiting cases are not difficult to e xamine. 

The v e lo city at the midpoint of the fre e surface will be c ons ide r -

e d first. Substitution of !; = ia into (2. 27 ) and r e arrangement of th e 

summation index in the second sum gives 

dF 
n 

~ s =ia 
= 

wher e 

c - (Zrn+l )a 
lTI 

Sinc e th e 1nidpoint of t h e fre e surface is z -- id in the z - pla n e , t h e 
l 
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velocity there is simply 

1T Z 

(u -iv } = !.
2 

cos -
2 

1 
n n z 

1 

dF \ 

dS, n s=ia 

Thus 

and 

v (O, d ) 
n 

u (O,d)=O 
n 

00 

= 2~ ~. (-l}m 

L "''c z +1 
m =o V' m 

1 
(2. 28 ) 

Tha.t the tangential component o f ve l ocity vanishes along t h e free sur -

face is evident in gener a l from Eq. (2 . 25 ), and is a consequ e nce of the 

fa ct that the pressur e g radient has n o component parallel to the free 

surface . Thi s result has been shown to hold for a wide class of per -

turbation flows by Wang and Wu, (Ref. 20 ) . v from Eq. (2 . 28 ) has 
n 

been plotted against a for sever al values of n in Fig. 4 . Also shown 

i s the special c ase n = ~ . whi c h will be t aken up shortly. The main 

conclus i on to b e dr a wn from this figure is the physically obvious one 

that when the free surface is several channel-widths or more remove d 

from th e plane along which the impulsive ve loc ities a re specified, i. e. 

a » 1, the detai l s of the velocit y distribution are of no importance, 

knowledge of the mean value (corresponding t o n = 0) being sufficient to 

determine the velocity at the free surface. 

Returning now to Eq. (2. 27 ), the velocity at point s on the plane 
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tangent to the fr ee surface at its midpoint, will be examined in the 

limit a~ oo. From Eq. (2. 8) it can be shown that in this approxima-

tion s 

w her e 

when 

and gives 

= iae 

iirx 
- -2-

dF 
0 

~ s=s 

n = 0 

= 
0 

so that Eq. (2. 27) becomes 

'Y (x) = e 

iirx 
- -2-

dF nl ( 1 l ~ s=!; = O azn+1 
when n = 1, 2, 3, . . . . 

0 

Sinc e 

2 -1 
z = x + i sinh a 

1T 

for the case i n que stio n, 

di; 1T 1TZ ira 
d z = 2 cos 2 = 2 e 

iirx 
-2-

when a » l 

so the compl ex vel ocity in the z -plane along z = x + id is 

u 
0 

- l V 
0 

- ') (-1 )m 00 ] 

l..J 2m--y(x) 
m=l 

At the point z = id, th e series in Eq. (2 . 29 ) combine t o g ive 

(2. 29 ) 
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00 
~ (-1 )m lT 

(u - iv ) = 2i ; 2m+l = - 2 i 
0 0 

id !__./ 

m=o 

lT Thus the limiting velocity at the midpoi nt of the fr ee surface is z 
times the mean val ue of the u pward ve locity i mpar ted t o the column . 

The real and imaginary parts of Eq . (2. 29) are shown versus 

x in Fig . 5 together with a polynomial approximatio n to u
0 

(x, d ) found 

us i ng the method of least squares (s ee A ppendix A ). While these quan-

tities are of little intrin s i c interest (except , of course, when x = 0); 

the fa c t that 

w (x ,d) =Sx u (x 1 , d)dx 1 (2.30) 
0 0 

0 

permits w to be determined along the p l ane in question . Using the 
0 

polynomial approximation of Appendix A in Eq. (2. 30) gives 

5 

w (x, d ) = _\ A x z.m 
o L· zm 

m=l 

w here 

A 2 = 1 . 152 

A 4 = -2.585 

A 6 = 3.533 

AB = - 2.585 

A 1 o= 0. 7522 

This function will p l ay an impo rtant role in the l ate r analysis. 

(2. 3 1) 

Attention will now b e given to another special case. As h as been 
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pointed out, the functions cos n:rrx form a compJete orthogonal s e t in 

the range -1 < x < 1 and thus, once the response to each of these 

functions is determined; the response to an arbitrary excitation may be 

found by Fourier analysis. When the excitation is given by 

(2 . 32) 

however, the solution is particularly simple (the function has been 

normalized to mean value unity over - 1 < x < 1 ). 

In this case, boundary condition (2. 21) may be integrated in 

closed form (replacing n with ~)to give 

so that 

fr om Eq. ( 2 . 1 8 ) . 

dW 
1 

____L sink 
dri = I<"" 

w (s, 11 ) 
1 
2 

on T] = 0 

sinkcosks sinhk(ri -a) 

k 2 coshka 
dk 

Solving for the normal velocity along the free surface in the s -
plane: 

ow 
= ~ \ 

00 
sink cos ks dk 

1T J
0 

kcoshka 

This integral is evaluated in Appendix B and shown to be 

OW 
1 
2 

~ 
2 -1 sinh1T/2a 

= 1T tan co sh 1TS / 2a 
ri=a 

The norma l velocity along the free surface in the z -plane is 

(2 . 33) 



- 18 -

ow 
TTZ 1 

TT S 2 
2 cos -z- a,:;-

., ri=a 
1 
2 

z. TTX ) -1 cos T tan 
sinh TT/ Za 

co sh TTS / Za 
(2. 34 ) 

w here ( )s denotes a quantity evaluated on the free surface in the z-

plane, and 

TTX TTY s 
€, = sin T cosh - 2 -

Note that at th e midpoint of the free surface in the limit a._ oo, 

( aw~ ) _.... !. 
on 2 

s 

and the result found in the more general analysis above is recovered. 

For cornparison with previous results, Eq. (2. 34) is plotted in Fig. 4 

as a function of a for x = 0. 

3. A Perturbation of the Exact Solution 

I n order to examine the sensitivity of the exact solution of 

S ection 2 to small changes in the free surface shape, such a change 

will be made and the effects upon the velocity at points on the free sur -

face studie d . The perturbation problem will b e formulated in the s -
plane of Fig. 1. 

Assurn.e first that a zeroth order sol ution, lji
0

(€,,ri ) , satisfying 

in (3. 1 ) 
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Cll\J 
0 0 &;l = on T] = o Is I > i (3. 2) 

Cll(i 
0 

V(s) 
~ 

= on T] = o , Is I < i (3 . 3 ) 

and 

4i = 0 
0 

on (3. 4) 

is known. This solution, of course, will be some linear combination of 

the w 's determine d in Section 2. 
n 

Now imagine that the free surface shape in the physical ( z ) 

plane i.s giv en by 

where 

y ' = y + h(x) s s 

2 - 1 
y s = lT sinh 

a 
lTX 

cos 2 

(3 . 5 ) 

(3. 6 ) 

and h(x) is, in some sense, small compared to y s . The curve onto 

which this is mapped by the transformation 

will be t a k e n to be 

lT Z 
i; = sin T 

TJ' = a+g(s') s s 

(3. 7) 

(3. 8 ) 

where, again, g (s~) is assumed "small" and the subscript s d e notes 

th e free s urface. 

If the solution to this new problem i s l\J(s, TJ ) , the n it will 

satisfy 

Hl 0 < 11 < a + g (s ~) ( 3 . 9 ) 
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= 0 on 

ori 

otji 
8r] = V(s) on 

and 

~ = 0 on 
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T] = 0 Is I> i 

T] = 0 Is I< 1 

T] = a + g (s I) s 

Further, if t\J is assumed to be of the form 

t\J=t\J +t\J 
0 l 

wher e t\J 
1 

« l~ 
0

, the n t\J 
1 

rnust satisfy 

\i'ltji 
l 

= 0 in 

ot\J 
l = 0 
~ 

on T] = 0 

and 
otji 

.i. = -g(s ') ~ = c(s ') 
't' i s ori s 

on 

(3 .1 0) 

(3 . 11) 

(3 .12 ) 

(3.1 3 ) 

(3.14) 

(3.15) 

( 3 . 16) 

Boundary condition (3. 12 ) has been expanded in a Taylor's series about 

T] = a and only tenns accurate to the first order in the small quantities 

g and t\J are retained to give Eq. (3. 16). Recalling the physical 
l 

interpretation of t\J , it will be noted that the value of t\J 
1 

on the bound-

ary Tl = a is -1 / p times the impulsive reaction per unit a r e a due to 

the acceleration from rest to a speed olj; I ori of a column of fluid 
0 

whose height is g(s ') and whose density is p. 
s 

The problem for ljJ inay be made s omewhat simpler by e x ploit -
1 

ing the even syn11netry of the problem to note that the d~rivative 
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84i / 8s must vanish along s = 0, 0 < T\ < a. The transforrnation 
l 

s =a + iT = - sinh ~ (s -ia) 2a 

will map the semi-infinite strip 

s < 0 

(3.17) 

onto the fir st quadrant in the s-plane with the boundaries transforming 

as shown in Fig. 6. Denoting the value of 4i along a > 0, T = 0 by 
l 

G(a ), then the continuation of G(a) into a < 0 as an even function 

ensur~s that the boundary condition along a = 0 will be satisfied. 

Now the complex function, F ( s ), 
l 

anal ytic in the uppe r -half 

s-plane, whose real part is G(a) along the real axis is given by th e 

well-known formula 

F (s) = 
1 

1 
1Ti 

G(a' )da' 
a' -s 

See, for example, Ref. (21 ), p. 304. Thus the complex conjugate 

perturbation velocity is 

F' (s) 
l 

in the s - plane . 

84i 
l 

= 8cT - i 
84i 

1 
8T - = s 00 

-oo 

G(a')da' 

(a I -S )Z. 
(3.18) 

The function G(a 1 ) will now be calculated assuming a » 1. 

Substitution of z = x + iy into the transformation (3. 7) gives, afte r 

introduction of Eqs. (3. 5) and (3. 6) 

a nd 

1TX; h S's = sin T V ... + z. 1TX 
cos 2 

c o sh h(x ) + a tan 
1TX 

l 
s inh h(x ) (3 .19) 
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COSZ. '!TX 
2 

sinh h(x) (3. 20 ) 

The geornetrical relationships prevailing between these quantities are 

shown in Fig. 7 

and 

In the case az.» 1 , (3.19) and (3.20)become 

'!TX h = atan Te 

T] I 
s = ae 

h 

re spectively. Evidently, then, g(s '
5

) is simpl y 

h 
g(s')=a(e -1) 

s 
when a » 1 

For the zeroth order solution, the choice 

l\J o (s , T] ) = w l (s , T] ) 

2 

will be made. Hence, from Eq. (2. 33), 

which becomes 

ol\J o 2 
8T] (£,a) = 1T 

-1 sinh1T/2a 
tan 

cosh ;~ 

84i 1 
~(£,a) = a 

1 

cosh 'TT; za 

(3.21) 

(3. 22) 

(3.23) 

( 3. 24 ) 

for large a. From Fig. 7 it is clear that s 1 is the value of £ to be 
s 

used in this equation. Thus, in terms of the variable x, the function 

G is 
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8\j! 
= -g(£' ) ~ (£ s' 'a) 

s 811 

= rr£ I 
s 

cosh za 

where £ 1 (x} is given by Eq. (3. 21 ). 
s 

( 3 .2 5 ) 

The perturbation velocity at the point s = 0, corresponding to 

z = id in the z-plane, will now be calculated . It i s true, in gene ral, 

that the pr inc i ple value of the integral in Eq. ( 3 . 18) must be taken. For 

the special case to be considered , however, the function G(a) w ill 

have a second-order ze r o at a = 0 so that the express ion 

G(a') 
da' (3. 26) 

will converge in the Riemann sense n ear a' = 0. The r e lation 

rr£' 
a ' = - s inh 2 a s ( 3 • 2 7 ) 

follows from ( 3. 17) with i; = £' + ia. Thus 
s 

where d£' is 
s 

da ' 
rr£ ' 

rr cosh s d~' = - 2.a za- '=' s 

h [ 1TX 1T d£ 's = ae h' tan 2 + 2 

(3. 28 ) 

(3. 2 9) 

from Eq. (3.21). Substitution of (3 .2'5), (3 .27), ( 3 .28 ), and ( 3 . 29) into 

(3. 26) results in 
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a~ I - ) 1 
h 

-1 eh [h' tan 1 }x l e TTX 
+ TT (3. 30) 8 T - = TT~ I T 2 

cos2 TTX 
S=O 0 

sinhz 2a s 2 

where 

s' atan 
TTX h 

= 2 e 
s 

Finally, the perturbation ve locity in the z-plane at the point (0, d} i s 

dF dF 

d___!_ = ds 
1 

Z Z=id S=O 
x ds I x di; I 

di; i; =ia dz z =id 

so that 

8lj; 
l = 

BY (o , d} 

TT2 8'\J l 
-4~ 

(o , o) 
( 3 . 31 ) 

The choi ce of y' will b e based on experiments pe rforrned on 
s 

bubbles ri s ing in slender c ir c ular tubes, see f or example R ef. (22 ), 

a nd Ref. (23 ), p. 235. These indicate that the liquid film thickness 

along the tube w all varies as L where z is the axial coordinate. This -v;: 
manner of variation can be found analytically throug h application of th e 

Be rnou lli and continuity equations to the liquid film . It is easy to show 

that the film thickn e ss corresponding to the free surface shape, y s' 

used in the two-dimensional problem of S ection 2 varies as 
-y 

e . In 

addition, the nos e radius of these bubbles is abo ut 0. 70 tube radii - -

. 2 -
somewhat larger than the value -,:;:- = 0 . 637 found in the lirniting case 

a » 1 of th e two-dirnens i o nal theory. 

One is thus l ed to a s sun1c that 



-2 5 -

y I = b 'IT r l -l] + d 
s 2 L"\/1"7 (3. 32) 

where b is a constant. If b = 1 , the radii of curvatur e of y' and 
s 

ys agree a t x = O; while if b = 0.91 0, the radius of curvature of y' 
s 

is 0 . 700 a t x = O. Equation ( 3 . 32) is plotted for thes e v alues of b 

in Fig. 8. A l so shown is a typical experimental free surface. It is, 

of course, axially syrn.n1etric; however, Eq . (3. 32 ) with . b = 0 . 910 

is a rat her good approximation. 

In v i ew of Eqs . (2 . 7) and (3 . 6), the perturbation h(x) is 

'IT~] 'ITX h(x ) = b z: -1 + log cos y 
1 -xz 

(3.33) 

Substitution of this into Eq. (3 . 30) g i ves, after numerical integration 

and u se of (3 . 31 ) , 

atP 
1 = 0 , 0127 1 8Y (o, d) 

(3 . 34 ) 

w h e n 

b = 1 

and 

ayi 
1 -0 . 0 1232 ay = 

(o, d) 
(3 . 35) 

when 

R ecalling that the case b = 1 corresponds only to a perturba-

tion in the free surface s h ape n ear th e c h annel w a lls, it i s c l ear fro1n 

r e sult (3 . 34 ) that the ve locity at t.h c rnidpoin t of the free ::; urface is no t 

much affected by such c hang es . The p e rturbation ve loc ity there is 
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only O. 8% of the zeroth order value, 
TT 

2· The decrease in the per -

turbation velocity when b = O. 910 is mainly a consequence of the de-, 

crease in the nose radius. In any event, the effects of changes in the 

free surface shape near the channel walls are negligible in two-dimen-

sions . 

Finally, a few remarks seem in order with respect to the valid-

ity of this perturbation analysis. Reference is made specifically to the 

assumptions regarding the smallness of the quantity h(x) and its 

counterpart in the i; -plane, g(s 's). It is clear from Eqs. (3. 33) and 

(3. 23) that neither is very small for x near ± 1 and t. i 
~ s large. More 

fundamental, however, is the assumption that l\i(s'; ri') can be ap-
olji s s 

proximated by l\J (s' , a}+ g(s' } ~ (s' , a} (see Eq. (3. 16)££. }. This 
1 S S VT] S 

is a rather close approximation; for in the portion of the i; -plane where 

g is large, 
84i 0 

g ~ can, 

near 

ol\J 
the quantity 

811
° is quite small. The behavior of the term 

in fact, be shown from Eqs. (3, 21) and (3 . 25) to be 

x = 1 

h 
e 

exp - r:x 

4. The Case of a N early Planar Free Surface 

Although experimental results will be discussed in detail further 

on, the major one will be mentioned here in order to motivate the 

analysis which follows. It has been found experimentally that, in three 

dimensions, the ratio between the initial velocity at the midpoint of the 
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free surface and the initial mean velocity imparted to the fluid column 

is much closer to three than to rr/2. The development in this 

section suggests that the difference, in part, is attributable to the three-

dimensional character of the experimental flow. 

Consider a column of liquid accelerated impulsively from below 

such as that shown in the sketch. The coordinates are (x, y) in two-

dimensions and {r, z) in thr ee . 

y,z 

x, r 

Assume , howeve r, that the free surface very nearly coincide s with the 

plane y {or z) = O; specifically, that the initial fr e e surfac e height is 

given by y = E f{x) in two dimensions and by z = 6g{r) in the case of 

axial symmetry, where E, 6 « 1. 

In the interests of simplicity, the choices 

E f(x) = E[ 1 -cos rrx) (4. 1) 

and 

og(r) ::: ol 1-J (k r)] 
0 1 

(4. 2) 

,.._, 
will b e rnade , where k ::: 3. 832 is the first positive r o ot of J (k) = 0. 

1 l 
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Further, since the curvature at the origin is 

l 
E f 11 ( 0 ) =E 1r2 from Eq. (4. 1 ) R. = (4. 3) 

and 

1 
6g 11 (o) =} \z6 from (4.2 ) 

R = (4 . 4) 

the values 

1 "" 
E = 2 1T = 0 . 1592 

and 

"" 6 = = 0 . 2 1 40 

ensure that the radius of curvature at the origin is 2/'TT, in conformity 

with that in the limiting case a » 1 of the exact problen1 previously 

solved. The three free surface shape s are plotte d together in Fig . 9. 

If the column is given a unit impulsive velocity upward , the n an 

impulse function, <p 1 (x, y), may be defined in two-dimensions which 

solves the fo llowing probl em: 

"V zcp ' = 0 in y< Ef(x ) lxl < l (4 . 5) 

ocp' 
ax = 0 on X = ± 1 (4. 6 ) 

O<p I ._. 1 as y- - 00 
Oy (4. 7) 

and 

<p I (X , y) = 0 on y -· d (x ) (4. 8) 

Since E « 1, boundary co ndition (4. 8 ) rnay b e written approxi-

rnate l y as 
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Ocp I 1 Ozcp I 
cp 1(x, 0) + ef oy (x, 0) + l Ezfz = 0 

oyz. 
(4. 9) 

Further, if cp'(x,y) is assumed to be of the form 

cp '(x,y} = cp' (x,y ) + ecp '(x,y} + e 2cp 1(x,y) + ... 
0 l 2. 

(4.10) 

then the system consisting of Eqs. (4. 5) through (4. 9) becomes (sub-

stituting Eq. (4. 1 O) and equating powers of e ) 

\Jzcp I = \Jl.cp I = \lzcp I = 0 (4.11) 
0 l 2. 

0cp I ocp' ocp' 
0 l 2. 0 1 (4.12) ox = ax- = ox = on X=± 

ocp ' 
0 

-+ 1 (4.13) ay as y-~-oo 

ocp ' ocp' 
l 2. 0 as y - - 00 (4.14) ay = FY = 

cp' (x, 0) = 0 (4 .15 ) 
0 

0cp I 
cp I (x , O) = - f(x) 

0 (x, 0) (4.16) 
l ay 

and 
ocp' 

cp 1(x, 0) = -f(x } l (x , 0) (4. 17) 
2. ay 

Consideration of Eqs. (4.11), (4.12), (4.1 3 ). and (4 . 15) l ead s 

immediat e ly to 

<p I (x ' y) = y 
0 

which, when used in (4. 16 ), gives 

cp' (x, 0) = -f(x } 
l 

(4.1 8 ) 

(4.19) 
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for the boundary condition on cp 1 
• 

l 
Recalling that - E P'P I 

l 
represents 

an impulse per unit area, say 11 

l 
Eq. (4.19) may b e written 

1 1 = pef(x) 
l 

which is just the impulsive r eaction per unit ar ea along the plane y = 0 

which would be calculated from N e wton's second law assuming that a 

rigid column of height ef(x ) and density p we r e sudde nly g i ven a unit 

ve locit y upward. 

Using 

f(x) = } - COS 1TX 

in Eq , (4 . 19), one has 

cp 1(x,y ) = - (1 - COS1TXe 1TY ) 
l 

so that Eq. (4. l 7) beco m es 

cp I l 
z.(X, 0) = z 1T [COS 21TX - 2COS1TX + l] 

Thus the second order solution is 

1 [ 2 1Ty 1TY 
cp~(x,y ) = 2 1T cos21Txe - 2cos 1Txe + I] 

(4. 2 0) 

.(4 . 21) 

Di scu ss ion of these r esults will b e deferred p er.ding consideration of 

t he analogous pr oblem in thr ee dimensions . 

If , in thr ee dimensions, the free surface h eight and the cor -

responding i1npulse func tion are 6 g(r) and x 1 (r, z ), r espec t ive l y, then 

the transformations 
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e -~ c5 cp' -x 1 
n n 

f - g 

and 

applied to Eq s . (4 . 11 ) through (4. 17) give the re l evant equations in the 

case of axial s y mmetry. The zeroth order solution is r eadily found to 

be 

x'(r,z ) =z 
0 

which, upon substitution into the anal og of Eq . (4 . 1 6 ), gives 

I 

Xi(r , 0 ) = - g(r ) 

(4. 22) 

(4. 23 ) 

Comparison of this with the correspo nding result in two dimensions 

(Eq. (4. 1 9 ) ) shows that, to this order, ther e i s no diffe r e nce in the 

impulse distribution caused by the change from two dimensions to thr ee. 

Use of the specific expr ession for g (r) in (4 . 23 ), yie lds 

k z 
x ' ( r , z ) = J (k r )e 1 

- 1 
1 0 1 

(4. 24) 

so that the boundary conditio n for the second order solution takes the 

form 

x ' ( r, 0) = k J z (k r) - k J (k r) 
2. i 01 i 0 1 

(4 . 25) 

Now an harmonic function which satisfies the boundary conditions on 

r = l and z = -00 is 
00 

k k z 

l 
z 

x ' ( r,z ) k a +k a J (k r )e n 
k J (k r )e 1 (4 . 26) = z. 1 0 1 n o n 1 0 1 

n = l 

If th e coefficients a are chosen by 
n 
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2 (' 
1 

r J z (k r )J (k r )dr 
J z. (k ) J0 o i o n 

o n 

(4 .27) 

then boundary condition (4. 25) will also be satisfied. (See Ref. (24 ), 

p. 596 or R ef . (25 ), p . 228). 

For k = 0, Eq . (4 . 27) may be integrated directly (se e R ef. (24), 
n 

p. I 3 5) to give 

a = J z (k ) ~ 0 . 1 6 2 2 
0 0 l 

while, for 1 ~ n ~ 14 , numerical integration results in 

a 
l 

a 
z 

a 
3 

- 3 
and a < 1 0 for 4 < n < 14; 

n 

= 

= 

= 

0.3523 

0,4793 

0 , 006881 

a ' 14 
for example, is 6. 6 X 10-

7
. 

A rather close approximation, then, involves use of only the fi rst thr ee 

terrns: 

1 k z k z 
X z(r , z ) = k [a J (k r )e z - ( 1 -a )J (k r )e 1 + a ] 

l zO Z l 0 l 0 
(4 .2 8 ) 

where 

k ~7 . 015 6 
z 

These approxirn.ate results will now be c ompared w ith each o ther 

and with th e exac t two-dirne nsio nal solution found in Se c tion 2 . R ecall 

that the quantities - cp ' (x, 0) and -x 1 (r, 0) r e pr esent th e irnpuls e p e r 

unit area , normalized by the fluid d e nsity, a c ting ac ro ss the p l ane y 

(or z) = 0. These , correc t to O(Ez, oz), a r e g iven by 
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-tp I (X, 0) = erp'(x, 0) - e 2rp'(x, 0) 
1 z 

(4. 29) 

and 

- X 1 
( r, 0) = - 6 x' ( r, 0) - 6 2 x 1 

( r, 0) 
1 z 

(4. 30) 

They are shown in Fig.I O(a) for the values of e and 6 previously 

chosen. In addition, the polynomial approximation found in Section 2 

for -w (x, d) is shown on the same co-ordinates. This quantity is 
0 

exact in the sense that no approximations with respect to the smallness 

of the free surface height were made in obtaining it. 

An immediate conclusion from Fig .1 0 (a ) is that the two-dimen -

sional perturbation solution is very close to the exact solution out to 

nearly half the channel half-width. In addition to lending credibility to the 

approx imate solution, this fact suggests that the three dimensional ap-

proximate solution may also be fairly accurate near the origin. The 

-decrease in -cp' and -x' b eyond x, r = 0. 7 is certainly a consequence 

of the approximations made in obtaining the perturbation solutions, for 

the exact two dimensional solution shows no such decrease. 

Evidently, the impulse calculated in three dimensions is uniform-

ly larger than that in two dimensions - - a notion made more specific 

by Fig.IO(b) wherein the ratio x'(r, O)/cp'(x, 0) is plotted. Near the 

origin where the perturbation solutions are apt to be valid, the ratio 

is close to 1. 21. It is of interest to note, however, that the ratio is 

roughly constant over the entire column even though the three-dimen-

sional free surface height at r = 1 is some 6% less than the two-

dime nsional free surface height at x = 1. (See Fig. 9 ). 
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The ve l ocity at the origi n may be calculated in two-dimensions 

from Eqs. (4 . 18), (4. 20), and (4 . 2 1 ): 

Bcp 
1 

( 0 0 ) = 1 + E iT + Q( E 
3 

) ay , (4.31) 

while from Eqs. (4 . 22), (4. 24) and (4. 28): 

~· ( 0 0) = 1 + 6 k + 6 z [ k k a - k z ( 1 - a ) ] + 0 ( 6 3 
) 

az ' . l l z z l l 
(4.32) 

It is mor e instructive, however, to write these in t e r rns of the radius 

of curvature, R, of the initial free su r face at the origin . Thus 

8cp' 
( 0' 0) ay = i + -

1-+o ie 3
) 

rrR ' 
(4. 33) 

and 

~· (0 0) 1 + 2 + 4 [~' a, - (1 -a, j + 0(6' J = kR az ' kZRZ l 
l 

(4.34) 

2 
If R is chosen to be for co1nparison with the exac t two-dimension-

TI 

al solution, the r e results 

8cp I (0 0) = 3 
ay ' 2 

This should be compared to the value TI/ 2 of the exact solution. The 

axially-symmetric problem gives 

when R = ~ . 
1T 

8v ' "" 
~ (0,0) = 1.974 

In the general case, the initial fre e surface height can be 
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Ef ( r ) = \""' A [ co s mrx - 1 ] L n 
1 

in two dimensions, and 

og(:r)=l 
1 

B (J (k r)-1) 
n o m 

(4. 35) 

(4.36) 

in three. The results corresponding to (4. 31) and (4. 32) are easily 

shown to b e 

cp' (0,0} = 1 +) mrA 
y L..J n 

(4. 3 7) 

1 

and 

x'(O,O) 
z 

k B 
mm 

(4.38) 

correct to the first order in the small quantities A and B . If the 
n m 

free surface heights Ef and og are the same, it follows from (4. 3 5) 

and (4. 36) that 

Equations (4. 37) and (4. 38 ) may then be written 

and 

cp ' (0, 0) = 1 + 
y 

) nTIA 
.· n , __ J 

1 

l 
1 

1 
R 
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~~ 

/__J k B m m 

x~ ( o, o) 1 + 1 2 = R. 

l k 2 B 
m m 

1 

r espectively . H e nc e , the rnidpoint velocity is related to the free sur-

face curvature in a simple way only when A = B = 0 for all but a 
n m 

single rn and n. 

Finally, the upward velocities along y and z equal to zero ar e 

shown correct to the second order in Fig. 11 . The two - dimensional 

velocity follows from Eqs . (4 . 18), (4 . 20), and (4. 21 ), that for the 

axially-· symmetric case was calculated from Eqs . (4 . 22), (4. 24), and 

(4 . 28) . The curves of Fig. 11 may be interpreted as repr esenting the 

free surface shape for s1nall time . Note that the two solutions apprrach 

one another as the distance from the origin is increased . This sug-

ge sts that the three -dimensional flow rnay b e approximately two-dimen-

sional near the tube wall. 
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5. The Exact Solutions of Several Related Problems in Two and 

Three Dimensions 

The exac t two-dimensional analysis cannot be c arried over into 

three dimensions; for the powerful tool of conformal mapping is no 

l o nger available and application of the boundary condition on the free 

surface b ecomes a difficult undertaking inde e d. 

In o rder to formulate a problem which can b e solved in three 

dimensions, it is useful to consider a column of liquid (in either two 

dimensions or three) such as that shown in the sketch in S ection 4. 

If an impulsive velocity upward is imparted to the column across 

some plane located in y(or z) < 0, a system of impuls es must act 

across horizontal planes caused by the reaction of the fluid above the 

plane on that below. If this impul se distribution is denoted I(x, y) in 

two dimensions, the relation between I(x, y) and the im?ulse function 

w(x, y) used in Section 2 is simply 

I(x,y) = - pw(x,y) 

from Eq . (1 . 7 ), with a similar relation in the case of axial symmetry . 

It is clear, then, that if this impulse were known along y = 0, the 

function w(x, y) could be determined in y < 0 by solving a boundary­

value problem of the sort discussed previously- - greatly s implified, of 

course, in the absence of the free surface. The upward ve loc ity at 

the midpoint of the fr eE! surface would then be the normal derivative of 

this function evaluated at th<.~ origin. Analysis a long thctie lines will 

b egin with a two -clin\ensional proble1n . 

R epre s e nting th e irnpuls e function by cp(x, y), the problern is 
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'V?.cp = 0 in y<O !xi < l ( 5. 1 ) 

acp 
= 0 on x = ± 1 (5. 2) ox 

acp 
-+ 1 as y-+-oo { 5. 3) 8y 

and 

specified on y = 0 (5. 4) 

This is analogous to the exact two -dimensional problem in the limit 

a » 1 since the column is assumed to extend to infinity. 

It is convenient to as su1ne 

cp{x, y) = y + cp (x, y) 
m 

{ 5. 5) 

where cp (x, y) describes the effec ts of an impulse di s tribution a l o ng 
rn 

y = 0 give n by 

and 

cp (x, 0) 
m 

m 
= -x 

as 

(5. 6) 

(5 . 7) 

Linearity then permits the cons truction of more general solutions 

through the us e of superposition. The inte ger m will b 2 assumed 

even i n v iew of the symmetry of the problen1. The solution of Eq. 

(5. 1) whic h satisfies boundary conditions (5 . 2) and (5. 7) i s 

00 

cpm(x,y) = 2.. B (m) cos mrx emry 
n 

Application of ( 5. 6) gives 

n =o 

B in the form 
n 

B (m) = - 2S 1 
x

1
ncosnTTxdx 

n 
0 

m even 

(5. 8 ) 
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The details of the integration are left to Appendix C. 

Turning now to the velocity at the origin, the expression 

acp 
m 

n--y (0, 0) = cp (0, 0) 
u m,y 

00 

- ") 
- I 

'--' 
n=l 

mr B (m) 
n 

(5. 9) 

follows frorn Eq. (5 . 8 ). The fir st five of these are, again for m 

even, 

cp
2 

(o, o) = o. 88254 
,y 

cp4 (0,0) = 0. 36943 ,y 

cp6 (0,0) = 0.2437 
,y 

cp8 (0,0) =0. 1836 ,y 

cplO (0, 0) = 0.148 ,y 

Thus, if cp(x, 0) is given as a polynomial of the form 

5 

cp(x, 0) = - ). 
,;_J 

A lm 
x 

lm 

m=l 

the r e sulting velocity at the origin is just 

ocp ) ay (O, o 
5 

= 1 + l ~mcplm, y(O, O) 

m=l 

For example, use of the coefficients A corresponding to the 
lm 

(5. 10) 

(5. 11) 

(5.12) 

impulse found to be acting in the exact two-dimensional case (Eq.(2. 31 )} 

results in 

otp --... 
oy (0,0) = 1.560 = 0.993 rr/ 2 

- a diffe rence of 0. 7% with r e spec t to th e exact r es ult. 
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The three -dimensional analog to this problem will now be solved. 

If Xm denotes the analog of cpm' then it must satisfy 

in z < 0 

= 0 on r = 1 

as z .... -00 

and 

on z = 0 

The counterpart of Eq. (5. 5) is 

x (r, z ) = z + x (r, z) 
m 

r < 1 (5.13) 

(5. 14) 

(5. 15) 

(5. 16) 

(5. 1 7) 

The solution of Eq. (5. 1 3 ) which satisfies boundary conditions 

( 5 . 1 4 ) and ( 5 . 1 5 ) i s 

where k is the 
n 

00 k z 
X (r,z) =) C (m)J (k r)e n 

m l-J n o n 

th 
n 

n = l 

positive root of 

J I (k)' = Q 
0 

(5.18) 

The requirement that Xm satisfy boundary condition (5. 16) results in 

C (m) = 
n 

2 s 1 
m+1 --- r J (k r )dr 

J z(k ) 0 o n 
o n 

(5. 19) 

which is evaluated in Appendix D . 

Differentiation of (5. 18) with respect to z yields the velocity 
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at the origin in the form 

00 
Bx 
a m (0,0) =x (0,0) 

z m,z 
'\' 

= / . 
.__J 

k C (m) 
n n 

n=l 

Evaluation of this for the first five even values of m gives 

x 2 (0, 0) = 1. 5392 
,z 

x4 (0, 0) = 0. 70714 
' z 

x
6 

(O, o) = o.4876 
'z 

Xg (0 , 0) = 0. 3777 
' z 

XlO,z(O ,O) = 0.311 

(5.20) 

(5 . 21) 

Thus, if x (r, 0) is known in terms of a polynomial approx imation 

5 

x(r 1 0) = - [. 
m=l 

then the v e locity at the origin is given by 

5 

ft (0, O) = 1 + l Dz.mXz.m, z (O, 0) 

m=l 

(5.22) 

(5. 23) 

The question now, of course, is the value of D . Alte rnativ e­z.m 

ly, one may seek the amount and character of the difference between 

the impulse per unit area, -pcp(x, 0), acting in two din1ensions and 

the analogous quantity, -px(r, 0), in three. Some guidance in this 

matter can be had through consideration of the perturbation problem 

of Section 4. 

In vie w of the results of that analysis, the approximation chosen 
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x(r, 0) = 1. 21 w (r, d) 
0 

where w (r, d) is the impulse function found for the two -dimensional 
0 

exact solution of S ection 2 with x replaced by r. Since a poly:nomial 

approximation to this function is known in the form 

5 

w (r, d) = - \ A rzm 
o L zm 

1 

where the A 1 s are given in Eq. (2. 31) , the D 1 s of Eq. (5. 22) 
zn1 zn1 

are simply 

= 1. 21 A Zm 

Substitution of these, together with x (0, 0) from Eq. (5. 2 1 ), 
zm, z 

in Eq. (5. 23) gives 

~ (0 0) = l + (1.21) (0. 9259) = 2.12 oz ' (5. 24) 

an increase of 36% over the corresponding result in two dimensions. 

Note that a portion of the increase is due solely to the fact that the 

response at the origin to a given irnpulse is greater in three-dime n -

sions than in two, i.e. Xz (0, 0) > <Pz (0, 0), while the remain-m, z m,y 

der is due to the incr ease of the impulse: ID I > IA I zm Zrn · 

6. The Effect of Finite Colun1n Length 

It has b een found in Section 2 that the flow produced in a column 

of fluid by a non-uniform velocity applied impulsive ly at one e nd will, 

in general, depend upon the colurn.n length . .Spe cifically, t:1e a nalysis 

shows that non-uniforrnities in the applied velocity may be i mportant 
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when the column length is less than half its width. The results of 

Section 2 are of little value for columns shorter than this , however, 

becaus e o f the dependence of the initial fre e surface curv ature, l / R 

upon the column leng th, d, (see Eq. (2. 6 1
) and Fig. 3). 

The phenomena peculiar to short fluid columns w ill be examined 

us i n g the axially -s yrnmetric perturbation mode l of S ection 4. Suppose 

that the in:i.tial free surface shape is given b y 

6 g ( r) = 6 [ 1 -J (k r)] 
0 l 

where 6 «. 1 as before, and that a non-uniforrn vel ocit y, 

( 6. l ) 

+ u ( r ), 
0 

i s appli e d impulsive l y across th e plane z = - d . If rl(r, z ) d e n o tes th e 

resulting impulse function, the n it must satisfy 

and 

n = o 
r 

ri = 0 

r2 = 1 + u (r) z 0 

in r < 1 - d < z<og (r) 

on r = 1 

on z=og (r) 

o n z = - d 

where the subsc ripts denote partia l differentiations. 

( 6 . 2) 

( 6. 3 ) 

(6. 4) 

( 6. 5 ) 

T h e solution of thi s system will b e assume d to h ave the forrn 

rl(r, z ) = z + r2 (r z ) + {£!. (r z ) 
0 l l ' 

(6. 6) 

where r2 represents the flow produced b y the non-uniform veloc i t y at 
0 

z = - d a n d orl is a small perturbati on due to the non - p l anar free 
l 

surface. Sub s tituting (6 . 6 ) into (6 . 2 ) through (6 . 5 ) and equating powe r s 
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of 6 results in the following system to be satisfied by S1 and n: 
0 1 

y2.S1 = 0 in r < 1 -d <7 < 0 
0 

n = 0 on r = 1 ( 6. 7) 
o,r 

S1 = 0 on z = 0 ( 6. 8) 
0 

S1 = u (r) on z = - d ( 6. 9) 
o,z 0 

Y'2.S1 = 0 in r < 1 -d < z < 0 

S1 = 0 on 
i , r 

r = 1 (6. 10) 

S1 = - g{r)[ l+n ) on z = 0 (6 . ll) 
L o,z 

and 

S1 = 0 on z = - d (6.1 2) 
1' z 

As in Section 4, the free surface boundary condition (6 . 4), has been 

expanded about z = 0 to give Eqs. (6 . 8) and (6 . 11 ). Finally, it will 

prove convenient to write 

D J (k r) 
no n 

where the k 1 s are the roots of 
n 

JI {k) = 0 
0 

(6. 13) 

I n view of (6 . 13), the h a rmonic function satisfying (6. 7), (6. 8 ), 

and (6 . 9) is 

S1 (r,z') 
0 

00 

=I D 
n 

U sin g this and (6. 1) in (6 . 11) gives 

sinh k z 
n 

k coshk z Jo(knr) 
n n 

(6.14) 
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[ 

~ D 
n (r, O) = [ J (k r}-1] l _;\ h~ d 

1 o 1 ~ cos n 
n = l 

J (k r~ 
o n J (6. 15) 

Now fo r all but the smallest values of d, the series in Eq. (6 .15) 

w ill be do1ninated b y its first t erm. For example, if d is one-half 

th e radius o f the cylinder, the se ries begins with 

D D 
no, z = 3 .is J o (kl r) + 16~ 5 8- Jo(kzr} + ... 

T hus 

~2 (r, 0)::: J (k r} + D sech k d[ a J (k r) - (1- a )J (k r)] 
1 0 1 1 1 202 1 0 1 

where the additive cons tants have been dropped and th e approxi1nation 

with 

J 2 (k r) = a. + a J (k r) + a J (k r) 
o 1 o 1 0 1 z Oz 

a = O. 3523 
l 

a = 0.4793 
2 

h as been used (see Eq . (4. 27) ff. ). Invoking boundary condition (6 . 12), 

it is clear that 

S1(r,z)::: 
l 

co sh k (z+d } 

cos
1
hk d J o (\r} 

l 

co sh k (z+d ) 

cos~kd J o (\r)-(l-\) 
2 

+Dsechkd[a 
l l 2 

cash k (z +d) 
l 

c o sh k cl 
1 

J (k r )] 
0 1 

(6 .1 6 ) 

where the sign of approxin1atc equ ality indicates that t errns of th e order 

D sech k d have been n eg l ected in con1pa r ison to D scch k d . 
2 2 l 1 

Solving for the upward ve l ocity at the midpoint of the free sur -

face from (6. 6), (6 . 14 ) , and (6. 1 6 ): 
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2 
r.i z ( 0, 0 ) = 1 + k R tanh k 

1 
d 

l 

(6.17) 

where the relation 

6 = 

from Eq. (4 . 4) has b een used. Note that in the limit d _. oo, 

2 
rlz(O, 0) = 1 + k R 

l 

in agreement, to the fir st order, w ith Eq. (4 . 34 ). 

The results of this section are sun1marized in Fig. 1 2 w h ere 

r.l (0, 0) from Eq. (6. 17) is plotted against d for R = 2/rr and several 
z 

values of D . Figure 12 may be compared to Fig. 4 wh e re the rnid -
1 

point ve l ocity is sho wn for th e exact two-dimensional so lution . The 

axially-symmetric solution for D = 0 (uniform applied ve locit y ) 
l 

r eaches its asymptotic value at d::::: 0. 6. This does not occur in the 

two-dimensional case n = 0 until a ::::: 3, corresponding to d ::::: 1. 1 2 

and R::::: 1. 05 ~ . The approximations made in obtaining (6. 17) a r e 
Tr 

e quivalent to assuming that 

u (r) = D J (k r) 
0 l 0 l 

so at the tube cent e rline , the impress e d ve loc ity exceeds the mean 

value by the factor (l+D ). 
l 

The curve for D = 0. 5 71 ::::: rr / 2 - l thus 
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corresponds to the case n = 1/2 in Fig. 4 for which the impressed 

1 
. . 7T TIX 

ve ocity is 2 cos 2 The peaks occur at d = 0. 19 and d = 0 . 24 in 

two and three -dimensions, respectively; however, the radius of curva-

ture in two-dimensions is 
2 

1. 94 or almost double the value used in 
7T 

the axially -symmetric solution. 

The existence of a peak in the velocity as the column length 

increases frorn zero is a consequence of the non-uniformity in the ap-

plied v elocity interacting with the free surface curvatur e to produce a 

velocity at the origin greater than either could produce alone. 

7. A Solution Valid for Finite Time 

The previous anal ysis has been concerned with the flo w in a 

suddenly accelerated body of liquid just after the start of motion. The 

evolution of this motion for a short time after its impulsive sta rt will 

now be taken up. The solutions previously studied are in this c as e 

just initial values . 

It will be convenient to deal with the velocity potential <p (x, y, t) 

in two dimensions. The problem to be solved will be that of 

liquid confined between rigid walls , extending to negative infinity 

with a free surface in the finite part of the xy-plane . If the free 

surface h e ight is taken to be y = TJ (x, t), then the problem for 

<p and TJ is given by 

in y < TJ lxl < 1 (7. 1) 

-- 0 on x = ± (7. 2) 

and 
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rp ...... 1 
y 

as (7 . 3) 

In addition, the requirement that the pressur e vanishes on the free 

surface l eads to 

on y = ri (x, t) (7. 4) 

where F(t) is an arbitrary function of the time. The kinematic bound-

ary condition, 

gt (ri -y} = 0 

on the free surface, reads 

on y = ri(x,t) 

Finally, initial values 

and 

must be specified. 

+ YJ (x, 0 ) = YJ (x ) 
0 

+ 'V rp (x , y, 0 ) = 'V rp (x, y) 
0 

( 7 . 5) 

In view of the nonlinear character of Eqs. (7 .4) and (7.5), ap -

proximations with respect to the free surface height will be made in 

order to obtain a solution. It will be assumed that the free surface is 

very nearly planar and that, for small time, it s shape n>ay b e ap-

proxirnated by 

YJ (x, t) = YJ (x ) + t[ 1 +ri (x )] + tlri (x} 
0 1 l 

(7 . 6) 

where ri , ri and ri are characterized by some parameter E « I. 
0 l l 

This assumption permits any quantity, f(x, y , t), to be evaluated on 
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y = iJ (x, t) by means of the approximation 

of 
f(x, iJ, t} :::::: f(x, 0, t} + iJ(X, t} oy (x, 0, t} (7. 8) 

It will also be assumed that the potential, cp , may be expressed in 

the form 

cp(x,y,t} = y + cp (x,y} + tcp (x,y) 
0 l 

(7. 9) 

valid for small time, where cp 
0 

and cp 
1 

are small in a sense to be 

defined below. 

Substitution of Eqs. (7. 6) and (7. 9} into the set (7. 1) through 

(7.4} and use of approximation (7.8} results in the following system 

correct to the second order in the small quantities cp
0

, cp
1 

and iJ
0

: 

(7.10} 

cp = 0 
1, x 

on x = ± 1 (7.11} 

cp -- 0 
1. y 

as (7. 12} 

and 

1 z 1 z 
cpl+ ilo'l'1,y + 2 cpo,x + 2 cpo,y + cpo,y + iJocpo,yy = O on Y = O • 

(7.13) 

The fact that the flow at infinity is independent of time has been used 

to eliminate F(t). The free surface height follows from (7. 5) in the 

form 

on y = 0 (7.14) 

and 

1 
iJ = -[ cp +cp +TJ cp +11 cp -11 cp -11 cp -11 cp z 2 1 , y o, yy o 1 , yy 1 o , yy o, x 1 , x o, x o , x y 1 , x o, x 

+ 11 cp ] on y = 0 . (7 . 15) o o,yyy 
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F or simplicity, the initial values T) (x ) and <p (x, y ) will be 
0 0 

assumed to be thos e found in Section 4. Thus 

T)
0

(x)=Ef(x ) (7.16) 

where f(x)=l -cOS1TX and e«l. FromEqs . (4.10) , (4.1 8 ), (4.20), 

and (4. 21) it is c lear that, with an obvious change in notation, <p 
0 

may be written 

where 

<p (x, y) = £<p (l )(x, y) + e2cp (2.}(x , y) 
0 0 0 

cp (i)(x ,y) =cos 1TXe1TY - 1 
0 

<p ~2 ) (x, y) = ¥- [ cos 21TX e21TY - 2 cos 1TX e 1TY + 1] 

(7. 1 7) 

(7. 18 ) 

(7.19) 

The fir st order correction to the f ree surface height follows 

readily from Eqs. (7.14), (7.16), and (7.17) as 

so that 

3 T) (x ) = rncos 1TX + O(e) 
1 

T)(x ,t) = e(l-cOS1Tx) + t[ l+rncos1Tx ] + O(t2.e) 

from Eq . (7. 6 ). At the origin this becomes 

TJ(O, t) = t(l+rn) + O(t2.) 

(7. 2 0) 

whi c h is simply the upward velocity at the origin found in S ection 4, 

Eq. (4. 31 ), multiplied by the time. 
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A solution of the form 

will now be sought. Using this and Eq. (7.16} in Eqs. (7 . 10} through 

(7 . 13} and equating coefficients of powers of E gives 

and 

(1 } 
cp y ' 

l ' 

cp (l } + cp ( l ) = 0 
l o,y 

on x = ± 1 

when y-- -oo 

on y = 0 (7 .2 1) 

cp(Z)+fcp(l} + _21 cp(l)z. + _21 cp(l)z +cp(Z) +fcp(l) = 0 on y=O . (7 . 22) 
i i , y o, x o , y o, y o, yy 

If Eq. (7.18) is used in (7.21}, the solution for cp ;
1

> is clearly 

cp ( l} = - 'IT COS 'ITX e 'TTY 
l 

Substitution of this into (7 . 22) gives 

cp
1
(z} (x, O} = - 11"

2 ~ + cos 21Tx - cos 'ITj 

so that 

It follows, then, from (7. 15} that the second order correction to the 

free surface height is 

Thus the free surface height at x = 0 is 
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(0 ) (l+) 1 tZZ3+0(t3~3) T] , t : t ETT + z E TT " (7 . 23) 

from Eqs. (7. 6) and (7. 20). 

It will be convenient to have an expression for the velocity of 

the free surface at its midpoint in terms of the displacement there. 

Inversion of Eq. (7. 23) gives 

t = _!L_ 
1 +ETT 

correct to the first order in Tl · The velocity, T]t(O, t), then follows 

from (7. 2 3) as 

(7.24 ) 

In addition, the time - average vel ocity, T]t(O, t), is readily found to 

be 

Writing 
1 1 these become E'TT = = 2rr ' Tiz.R 

T]t = f [ 1 + ~ T] ] 

and 

- 3[ 'TT 

T]] T]t = 2 1 + IT 

respective ly. The time-average velocity is the quantity of physical 

interest, for it is the result of the velocity cal culated from the fr ee 

surface displacement measured at two instants in time. As an exampl e, 

if TJ = 0 . 5 (a free surface displacement of one -fourth the c h anne l 

width) the m e an velocity is increased by about 13% over its initial 

instantane ou s value . 
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8. Effects Due to Compressibility 

Application of even approximately impulsive forces to any real 

fluid will, in general, r esult in a system of pressure waves arising 

as a consequence of compressibility. The effects produced at a free 

surface by such waves will now be considered in the acoustic limit. 

To fix ideas, consider an axially-symmetric column of liquid 

with a free surface having the shape shown in Fig. 1 3 and suppose an 

acoustic wave is incident upon the free. surface from below. The 

hemispherical cap has radius R and the radius of the circular column 

will be taken as the unit of length. 

Several results from the theory of acoustics will be n eeded. 

First, for an acoustic wave moving with speed c into fluid at rest, 

the result 

VO= 

can be shown to hold. Here, 

(8. 1 ) 

v is the velocity behind the wave, 
0 

the pressure jump across it, and p is the fluid density. It can also 

be shown that an acoustic wave incident upon a plane fre e boundary 

will cause a jump in velocity there, 

given by 
2po 

v normal to the fr ee surface, 
s 

v = cos Q' (8. 2) 
s pc 

where a is the angle between the normal to the wave and the normal 

to the fr ee surface. 

For a curved free surface, assume that, loc ally, the flow is 

described by (8. 2); then for the case in question, the velocity, v 
n 
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along the free surface just after pas sage of the wave will be 

v = 
2p 

0 

n pc 
cos e (8. 3) 

where v is everywhere normal to the initial free surface and e is 
n 

the polar angle shown in Fig. 13 . Note that no flow normal to the fr ee 

surface will occur when the wave propagates parallel to the free 

boundary. This is a prediction of acoustic theory; however, it does 

not seem possible that a wave could propagate at all if it were re -

quired to travel parallel to a free surface. It should be borne in mind 

also that a complicated system of reflected waves will arise due to the 

curved free surface and that Eq. (8. 3) neglects any effects due to this 

system. 

Now suppose that subsequent to the passage of the wave, the 

flow is that of an incompressible fluid. Conservation of mass 

may then be expressed as 

(8. 4) 

where S is a closed surface within the fluid and q the normal 
n 

component of velocity at each point of S . 

velocity, v, by 

vA =S s 
00 

q dS 
n 

Define the mean axial 

(8. 5) 

where S is a surface far below the free surface in Fig . 13 and A 
00 

is the column cross -sectional area, Applying Eq, (8. 4) to a control 

volume formed of the column walls a.nd the free surface, Sf ' gives 
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v = ~SS vndS 

f 

(8. 6) 

Thus, if the column cross -section is circular and of unit radius, use 

of Eq. (8. 3) results m 

v = 
4p R 2 
. 0 

pc S 
rr/2 

cos e sine d8 = 
0 

2p 
0 

pc 
(8. 7) 

Appealing now to Eq. (8.2 ' ), the ratio of the velocity, v c' at the mid­

point of the free surface to the mean velocity defined in (8 . 7) is found 

to be 

( VC 1 
= (8. 8) 

or 2. 04 if R = O. 7 tube radii and 2. 47 if R = O. 637. 

In the light of the analysis assuming complete incompressibil -

ity, it would seem that the velocity, p
0

/pc, of the fluid behind the 

wave should be used as the reference value, v, in computing the 

ratio v c/v. This is probably a better approximation to the "mean 

velocity imparted to the column" in the sense in which the phrase was 

applie d to incornpres sible flow. Note that this would exactly double 

the ratios calculated above. The quantity v given by (8. 6) is, how -

ever, more easily estimated experimentally. If the acoustic wave is 

assumed to travel past the hemispherical cap insta ntaneous ly then the 

expression 

is m e rely the volume of fluid displaced at the free surface in a time 
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At measured from the instant the wave passes. 

9. Summary of Theoretical Analysis 

The most important results of the preceding analysis will now 

b e collected and compared with one another. First, from the exact 

two - dimensional solution of Section 2, it has been f o und that when a 

liquid column having a rather speci a l free surfac e shape is a c c e l e rat -

ed in1pul sively, the resulting jurnp in the veloc ity a t th e free s urface 

midpoint is close to ;r / 2 times the rnean ve loc ity i m parte d t o th e 

colun1n . The juni.p in ve locity on the free surface is e verywhere 

normal to th a t surface and is given for a l ong column by Eq . (2 . 34) 

in the form 

ow 
1 

0 ;; = ~ sec ;r; sech( ~ tan ~x ) ( 9. 1 ) 

if Eq. (2. 1) is used and the limit as a --.. oo is take n. This formula 

permits the free surface shape a short time afte r the start of the 

motion to b e found from ow 
1 

A = 0~ t + O(t2
) 

where A is the displacement measured normal t o th e i n itial free s ur -

fac e a nd t is the time. 

E vidence has been adduced to show that the fluid loc ated n e ar 

the walls of the channel has a negligible e ffe c t on the jurnp in v elo c ity 

experienced near the middle of the f re e surface. The most conv inc ing 

demonstration is that of Section 4 whe r ein a p e rturbation a nalysis 

w a s c arried out based on the assu1nption that the fr e e surfa ce i s 
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nearly planar. The jump in velocity at the midpoint of the fr ee sur -

face was found, in two-dimensions, to be only 4% l ess than that cal-

culated from the exact analysis when the two fr ee surfaces had th e 

same curvature at the center of the channel. Figur e 9 s hows the 

fr ee surfaces in the two cases to be vastly different near th e channel 

walls. This insensitivity is a lso apparent from the r esults of 

S ec tion 3 . These show that the jump in the ve locity at the free sur -

f ace midpoint is changed a n egligible amo unt wh e n the rnanner in 

which the fre e surface height b ecomes infinite near th e c hanne l wall 

is c h a nged. 

In the case of ve r y l ong fluid columns, evid e n ce h as b een found 

t o suggest a relationship between the two -dimensiona l results dis -

c ussed above and the case of axial symmetry. Recall tha t the as -

surnpti on of a nearly plane fr ee surface led, in S ection 4, t o 

(9. 2) 

for the JUinp in ve locity at the origin in two-dim e ns i ons , and to 

x '(O,O) = z 
2 

l + k R 
l 

( 9 . 3 ) 

i n three . R is the radius of curvatur e of the free surface at its inid-

point and k = 3. 832 is the first positive root of J (k) = 0. Note tha t 
l l 

the s e a r e stric tly v alid .only when the second terin is small compared 

t o unity; however, in two di1nensions the expr ess ion h as been shown 

to b e quite close to the exact result w h e n the second terin is as large 

as o n e - h a lf . 
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Since the column of liquid was assumed to h a ve b e en g i ven a n 

upward spe ed of unity, it is cle ar that the se c ond t e rm in e a c h of th e 

e qua tions above represents a sort of 11 amplific ation11 du e to t h e curva -

tur e of th e fr ee surface. It will be seen from (9. 2 ) and (9. 3 ) tha t 

this 11 amplific ation11
, 

l 

k 
2
R in three dimensions, exce e d s th e a nalogous 

l 

quantity , in two dime nsions, by the factor 

2n 
k= 1 . 640 

for a ll v a lue s o f R . Using r e sults (4 . 33) a n d (4. 34), w h ich a r e co r-

1 2 
rec t to th e s econd order in th e small quantities n R and kR , gjve s 

0.974 
1/2 

f or this factor when R = 2 / lT . 

l 

- l. 95 

A sirnilar comparison can b e made b e twe e n the quanti ties 

<;> (0, 0) and x (0, 0) calculated in Section 5 . F r om Eqs. 
zm ,y zm,z 

(5. 12) a n d (5. 2 3 ), it is evident that these , too , r epr e s ent an "arnplifica -

tion''. In this c as e , howe ver, the fre e surface s h a p e is not n ecessar -

ily the s a me in two and thre e dirn.e n s ions . R a th e r, the impulse act-

ing ac ros s th e plane tangent to th e fr ee s urface a t it s n1idpo i n t i s as -

smned to have the same functional dpendence upon the ho ri zontal c o -

ordina t e . That is, cp (0, 0) and x (0, 0) r e pr esent the ve loc-
zm,y zm, z 

ity induce d at t he origin by the non-uniform i m pulse s 

r e spe ctive ly. The r a tio x (0,0) 
zm, z 

13 z 11"1 = cp ( 0 ' 0 ) 
zn1, y 

2.m 
x a n d 

is a measur e, the n, of the e ff e ctiv e nes s of a given i mpu ls e in 

Zrn 
r 
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accelerating the fluid at the free surface midpoint in three di1nen-

sions as c01npared to two. The table below shows the f irst five 

13 's calculated from the results of Section 5. 
zm 

m 13 z.m 

1 1 . 744 

2 1 . 914 

3 2 . 000 

4 2 .057 

5 2 . 10 

Evidently, a n impulse /rn 1n thre e din1ensions l eads to a 

velocity about double that produced by an i m puls e in two d irnen-

sions. This co1npares favorably with the value 1. 95 found above 

from the second order perturbation analysis based on the assumption 

that th e free surfaces have the same curvature at their midpoints. 

Summarizing the results for long, axially-sy1nmetric columns, 

the fir s t order perturbation of Se ction 4 predi cts an upward ve l ocity 

e qu a l to 1 . 82 times the mean ve loc ity imparted to the column, while 

the solution correct to th e second order gives 1 . 97. The inclepcnd-

ent calculation of S ectio n 5, in w hic h th e impuls e foun d to b e acting 

in the exact two -din1e nsional case was applie d without c h a n ge to the 

axi a lly -s y1nrn.e tric problem, gives 1 . 926. If the impul se i s increas-

ed by 2 1% as suggested by the results of the perturbation analysis, 

the midpoint ve l oc ity is found to be 2 . l 2 times the inean ve l ocity 

( see Eq. ( 5.24 ) ). 



-60-

The effects of a non-uniform velocity applied to a circular 

liquid column a r e shown in Section 6 t o be important at the free sur -

face only w h e n the column length is les s than its radius. For very 

short col umns, however, the interaction between a curved f r e e sur -

face and n on-uniformities in the applied ve lo c ity c an l ead to ve l ocities 

at the fre e surface midpoint much higher than one might exp ec t 

intuitive l y, see Fig. 12 . This also indic a tes that the free surface 

shape a t points r e m o te from its midpoint. i s not i mportant in d e termin-

ing th e magnitude of the jump in velocity there. The greatest inte r-

action occurs w h e n d:::: 0. 2 - - co r responding t o a co l lllnn whos e dia -

me t e r i s t e n ti1nes its l e ngth. In th e s e c ircumstances, it se e rns u n -

like ly that the free su rface shape n ear the cylind e r wall s could have 

any significant e ffe c t on the ve locity near the center ; the fr e e surfac e 

cur vature, however, has p r onou nced effects . 

The solution of Section 7, valid for finit e {but s till small) time 

and a ne a rly p lanar free surface, shows that in two dime n s ions the 

midpoint ve l ocity inc reases only slig htly as the free surface mov es 

W 
. . 1 

r1ting E = -- , 
1l° R 

away fr o m its initial position. the r e sult from 

Eq. (7 .24 )is 

?t- (O,t) = 

where TJ (0, t ) i s t he displacement of the fre e surface n1idpoint 

measured w ith r esp ect to the origin . H e n ce, when thi s p oint i. s dis -

p l ace d h alf the c h a nne l half-width (TJ :::: 0. 5 ), it s ins tantaneous ve lo c-

ity is inc r e as e d by about 26% if R = 2 /rr. The tirn e-aver a gc vclo c -

ity, h o weve r, wi ll inc reas e o nly about 1 3% . 



-61-

Finally, the analysis of Section 8 relevant to the i1npingement 

of an acoustic wave upon the free surface indicates that the velocity, 

v c, at the free surface midpoint should be related to the mean veloc -

ity, v, by Eq . (8. 8 ): 

v c 1 
= 

v 

where v is based upon the volume of fluid displaced at the free sur-

face shortly after the passage of the wave, see Eq. (8. 6 ). Note that 

the dependence upon the free surface curvature differs from that found 

subject to the assun1ption of inco1npressibility. The results for 

R = 2/TT differ by about 20%; the acoustic appr oximation giving 

2.47, whil e the results of the analysis assuming incornpressibility 

are in the rang e 1. 93 - 2. 1 2 . 
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III. EXPERIMENT AL INVESTIGATION 

lO. Apparatus and Procedure 

The experiments to be described were performed on bubbles 

rising in a circular glass tube nominally 7/16 11 in diameter. Such 

bubbles, when more than a tube diameter in length, have the property 

that their upper free surfaces are quite steady and very nearly 

hemispherical in shape, see, e .g., Taylor (22 ). The sudden down­

ward acceleration of a bubble of this kind by means of a spark dis -

charge in the liquid above it leads to the formation of a jet resembling 

those studied by Bowden and his students, (1 ), (2), (3), (8). 

A sketch of the apparatus appears in Fig.14. A bubble was 

formed by a burst of air at a pressure of about 10 psig. admitted at 

the bottom of the water -filled tube. Approximately 18 in. above was 

a two-inch long working-section on which a high-speed camera was 

focused. Immediately above this was an aluminum fittir..g which held 

a quartz-crystal pres sure transduce r. Finally, into the glass tube 

extending above the fitting was inserted a spark gap. As the bubble 

rose into the working-section, the spark gap was triggered - - crea­

ting a spark bubble which, as it grew, drove the liquid beneath it down­

ward. The result was a jet emanating from the apex of the spherical­

cap bubble. 

The photographic system consisted of a Beckman-Whitley model 

224 rotating-drum camera us ed in conjunction with a strobe system. 

The bubbles were back-lighted by a xenon flashlamp. Typically, the 
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system was operated at a repetition rate of about 7 000 p icture s per 

second , with a total running time of about 8 ms. The interval b e -

tween pictures was measured with a Beckman-Be rke ley timer ac -

curate to 0 .1 µ s . 

The spark gap incorporated 0. 030 in . dia1neter tungsten 

e lectrodes with a gap of about 0. 005 in. supported by 3/ 32 in. brass 

rods pr e ssed into h oles drilled l e ngthwise through a three-quarte r 

inch l ong acrylic cylinder which s erved to position the assembly with­

in the tube . Two extra hole s in the acrylic e l ec trode holde r a llowed 

water to flow into the tub e above the spark gap as sernbly as ai r was 

admitted at the bottom of the tube to form a bubble. The brass 

e l ectrode s u pports were connected by means of shielded cable to a 

thyratron switch which , when triggered, discharged a capacitor across 

the spark gap . The energy of the discharge was typically one-half 

Joule - - the 0. 01 mfd. capa citor having been charged to 10 kV. 

Pressure histories within the tube were taken with a Kistler 

m.odel 601 A quartz transducer. This d evi ce has a c ir c ular active 

surface nominally one - e i g hth inc h in diameter and a resonant fr e que n­

cy of about 1 30 kHz. Its signal was fed to a Kistler charge arnplifier, 

the output of which was di s played on a T ektr oni x 551 oscilloscope and 

photographed. 

Photographs of one experiment are shown in Fig . 15. The 

undeformed spherical-cap bubble appears in the fir st pictur e . 

Near the top e dge of a ll the pictures is th e spark gap with its holder 

just outs ide the came ra fie l d . A portion of a s 1nall a ir bubble tr apped 
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beneath the holder is visible at the edge of the first frame. The 

s park gap was triggered a few microseconds after the first picture 

and a spark bubble approximately 0.6 tube diameters in size is vis -

ible in the following frame. Note that the air bubble b e neath the 

spark gap holder has suffered a partial collapse. Subs e que nt pictur e s 

show the spark bubble collapsing and the formation of a jet at the 

apex of the now-deforrned spherical-cap bubble. Note the c avita tion 

arising in the fifth frame ,after the collapse of the spa rk bubble . 

In this particular sequence, the small bubble b e neath the 

spark gap holder is of interest, for it seems to be the c ause of the 

sheet of water which began to form at the base of the j e t in fr a m e t e n. 

As this bubble collapsed and rebounded, successive shee t s w e r e 

formed; the next one begins at about 3. 2 ms. followed by a third 

shown in the final series . 

11 . R e du.ction of the Data 

The practice a1nong investigators of bubble s ri s ing thro u g h 

liquid in c ircular tubes has be e n, usually, to prov ide a flat-side d 

enc losure around the tube filled with a liquid hav ing the same re­

fractiv e index as the cylindrical tube . This largely eliminate s r e -

fra c tive distortion in planes perpendicular to th e tube a xis and per -

mits accurate measurements to be made directly from photographic 

negatives. For examples of this t echnique, se e (22 ), (26 ), or (27 ). 

In at l e ast one c as e , (28 ), a g rid rule d on a s 1nall glass p late was 

inse rte d in the t ub e, photographe d, and the r e sulting p a tte rn us e d to 
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determine the distortion caused by the cir cular tube. 

In the present study, the use of a water -filled box was found 

to be inconvenient. This was a consequence of the fact that experimen ­

tation was conducted in nearly complete darkness in deference to the 

camera; whose shutter, opened and closed by hand, was open for a 

relatively long period of time during any given experiment. Admis -

sion of sufficient external light through the box to fix the position of a 

bubble as it rose and still not fog the film proved to be a major prob -

le1n. 

Distortion was ultimately measured rather than eliminated. 

This was accomplished by inserting a carefully made gage into the 

tube and photographing it. The apparent horizontal po sition of each of 

twelve points along the gage, measured from the photograph, was 

compared to the true position of each point. The comparison showed 

that the true distance between two points on the same horizontal plane 

was the overall scale of the photograph multiplied by 0. 763 times th e 

apparent distance between the points. This ratio was c onstant to with­

in 2% out to three -quarters of the true tube r adius . 

A c h eck upon this quantity was made by rneasuring the ap ­

parent d i mensions of the spark gap for experiments in which it was 1n 

the camera field. This permitted independent calculation of the ratio 

mentioned above . Agreement was found usually to within 2"/o, and to 

5% in every case. 

In addition to refractive distortion in horizontal planes caused 

by the circular tube, the curved free sur face near the apex of the 
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spherical-cap bubble led to distortion in vertical planes. This 

prevented accurate measurement of the displacement of the jet tip in 

its early stages of formation; it also accounted for the fact that th e jet 

seerned to is sue from a point in space somewhat below the apex of the 

bubble. 

The photographic data were reduced using a machinist's 

microscope accurate to 0. 0001 in. The negative was aligned on the 

movable table of the microscope to make the axis of symmetr y of the 

bubble coincide as closely as possible with one direction of table tr av-

e l . This direction is terined z" in the following discussion. For 

each value of z", the radial position, r" and + 
r II 

' 
of two points on 

the bubble fr ee surface were read - - one point on e ither s ide of the 

axis of symmetry . The bubble centerline was determined by averag-

ing r" and r" for each z" then ave raging the r esults to find a + -
single number for each photograph. Knowing this, a nd the value of 

z" at the apex of the bubble, the coordinate syste1n was translated to 

the apex. The vertical coordinates, z' 
' 

of the points in this systerr1 

were multiplied by the scale of the photograph, F, and the h orizontal 

coordinates, r' , by sF to give the true physical dirn.ensions . s is, 

of course, the factor 0. 763 discuss e d above. F was d etermined from 

the apparent size of the spark gap assembly for those expe riments in 

which it was within the camera field. In all the experirnents, care 

was taken not to disturb the relative p osition of the carne ra and the 

tube, so the value of F was nearly constant at 1. 57. The physical 

dimensions were finally rendered dimensionless by the tube radius, 
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Rt= 0. 223 in. 

In addition, coordinates of points on the spark bubble surface 

were determined by a scheme analogous in all respects to that de-

scribed above . The origin of the coordinate system was, in this case, 

taken at the spark gap. Finally, the displacement of the jet tip was 

determined for several frames subsequent to its formation. 

For comparison with the theoretical results of Part II, the 

value of the mean ve l ocity imparted to that portion of the water column 

between the spark gap and the spherical - cap bubble is of major impor-

tance. This quantity was determined in two ways. The most accurate, 

when it could be applied, was to calcul ate the volume of the spark 

bubble . The mean velocity was then taken to be one -half the change 

in this quantity divided by the corresponding time interval and the 

cross -sectional area of the tube . The calculation was made r elatively 

shnple by the fact that the spark bubble was very nearly spherical 

even when its diameter was close to half that of the tube. 

The other method for determining the mean velocity exploits 

the continuity equation in the form (8. 6) of Part II to find the mean 

velocity, 'f• in terms of the volume of liquid displaced at the free 

surface in the time between successive frames. Let (r 1
, z 1

) denote 
n n 

the value of (r 1 , z 1 ) for the nth point on one side of the axis of sym-

metry (n= O denotes the point at the bubble apex) . The vo lume of 

liquid, Q, bounded b y the fr r~e surface, the plane z 1 = 0, and th e 

cylinde r whose radius is rN may then be approximated by 
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sz.F> 
Q = 2n S(r' z' N) 

R3 n' n' 
t 

in units of cubic tube radii, where Rt is the tube radius and 

N 

s ( r I z I ' N) = "\ A r I r' z' n' n /.._; n n n 
n=l 

with 

Ar' = r' - r' 
n n n-1 

r' = .!_(r' + r' ) 
n 2 n n-1 

z-• = .!_ (z' + z' ) 
n 2 n n-1 

Since two values of r' are known for each z', the volume can be 
n n 

determined twice to afford a check. Note that the primed variables 

r efer to distances measured on the actual photograph. 

If the volurne, Q, is determined for two consecutive photo-

graphs (using the value of z" found for the apex of the bubble in the 
0 

first as the reference in both cases), to give Q and Q , then the 
l z. 

mean velocity, v, of the liquid column is just 

Q -Q 
v = z. l 

nt 

in units of tube radii per second if t is the time in seconds b e tween 

the two photographs. Denoting by z' 
c 

the displace m e nt of the mid-

point of the free surface. in successive frames, the centerline velocity, 

is 
Fz ' 

c 
v = 

c Rtt 
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The quantity 

v 
c 

v 
= Zz 1 

c 

v 
c 

v 
given by 

is to be compared to the results of the analysis of Part II. Note that 

this ratio is not likely to be determined particularly accurate l y - -

containing, as it doe s, the difference between two quantities which in 

practice are often within 15 per cent of one another. In addition, th e 

factors s and F appear to the second power so that er rors contain-

ed in them will be approximately doubled whe n the ratio is formed. 

The effects of errors in the factor s upor~ the calculated 

radius of c urvature of one of these bubbles can be made clear by con-

sidering an ellipse given by 

= 1 

for which it can b e shown that the radius of curvature, R, e valuated 

at r = 0 is 

z(O) 

Now, a srnall change in the horizontal semi-axis of length a cor -

r e sponds to a small change in the factor s which accounts for dis -

tortion in horizontal planes. Since a appears to the s econd power, it 

is c lear that the uncertainty in R will be approximately double the 

uncertainty in s. 

The a ccuracy o f the photographic measurements depended upon 

the din>ension being estimated . For example, the apparent diameter 

of the well -defined electrodes was determined to within 2% or le ss. 
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Measurements on the bubble free surface were repeatable to about 

0. 0005 in. Since differences were taken, this cannot be given in 

terms of a percentage; however, measurements were repeated on one 

of the spark bubbles and the results for its mean radius found to agree 

within 1. 6%. Hence, the volume in this case was determine d to with­

in 5%. 
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12 . E xperimental Results 

Initial free surface shapes of three representative bubbles are 

shown in Fig. 16 together with arcs of radius 0. 65 for comparison . 

The bubble profile was not found to vary in any systematic way with the 

dimensionless distance, ds' to the spark gap, nor were any variations 

found to occur when experiments were performed using a dilute solu­

tion of a high molecular weight polymer instead of tap water. Radii of 

curvature were obtained at the bubble apexes by averaging values cal­

culated for the coordinates of points on the free surfaces . The values 

so obtained agreed with estimates determined by plotting the points and 

estimating the radii graphically. 

The initial downward velocities of the apexes of the bubbles were 

found, with a few exceptions, to be in the range 20 - 50 feet per second 

whil e the jets were observed to travel at speeds slightly higher. An 

intimate relation does not necessarily exist between these quantities 

since the spark bubble often continued to expand afte r the time at which 

the velo c ity of the free surface midpoint was calculated . Table I sum­

marizes the results for the nose radii, the initial inidpoint velocities, 

and the ultimate velocities attained by the jets. The scatter in the 

values for the radius, R, is apt to be a consequence of e rrors in t he 

factors s and F as discussed in Section 11. 

lvfean radii for several spark bubbles are shown in Fig . 19 . 

Thes e were determined by averagin g values calculated for a b o ut l O 

points on the bubble surface; e rror bars in the fig ur e indicate the m ax i -

1num and inini1num values for th e indiv idual points. The spark bubbles 
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were invariably elongated in the direction of the tube axis, although 

the opposite seems true in the photographs due to distortion in hori­

zontal planes . 

Figure 20(a) shows the history of a spark-produced pressure 

wave in the apparatus of Fig. 14. Electrical disturbances created as 

a result of the spark discharge were responsible for the initial tran­

sient . Following a quiescent period, there can be seen a low-level 

excitation caused by disturbances propagating within the tube wall, 

subsequent to this was a pulse due to the passage of the first wave in 

the water. The frequency of the oscillation following the pressure 

pulse was approximately the natural frequency of the transducer and so it 

is not likely to represent the pressure field behind the first wave. 

The record shown in Fig. 20(a) was made with no bubble in the 

tube; however, the presence of a bubble did not change the pressure 

history in any essential way, nor did the character of the trace vary 

with the distance between the transducer and the spark gap. Pressure 

measurements were also made with the transducer mounted in the wall 

of a 12 in. diameter tank containing about 11 in. of water. A spark­

produced pressure wave incident normally upon the transducer was 

observed to produce a history closely resembling that shown in Fig .2CXa). 

The peak pressure was, in this case, in the neighborhood of 300 psig. 

when the spark gap was brought to within 1 /4 in. of the transducer and 

fell rapidly as the distance was increased . The risetime and pulse 

width did not vary significantly, however. 

That the wave system behind the initial pressure front is quit e 
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complicated is shown by the schlieren photographs of Fig. 20(b). The 

pictu res are of several pressure waves with varying amounts of delay 

introduced into the photographic apparatus. Note the rarefaction 

waves ahead of the main compression wave in the photograph taken 

12 µs. after the spark was triggered, these are doubtless a consequence 

of the compliance of the glass tube. What appear to be two com pres -

sion waves converging toward the tube axis can be seen in the photo­

graph taken at 15µs. Note also that the thickness of the initial front is 

much smaller than the tube diameter. Since the pressure transducer 

was about a fourth of the tube diameter in size , it seems unlike ly that 

even the max imum pressure was determined accurately. 

The speed of the photographic system did not permit the waves 

reflected upward from the surface of the spherical-cap bubble to be 

viewed; however, widespread cavitation was often observed in the water 

column after a time sufficient for the compression wave to be refle c ted 

- - an exampl e is the experiment shown in Fig. 21 (a). This is con ­

vincing evidence that the reflected system was predominately tension 

as one would expect. 
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IV. DISCUSSION AND COMPARISON WITH THE THEORY 

The radii at the apexes of the bubbles used in these experiments 

were observed to be less than that found by other investigators for 

bubbles rising in somewhat larger tubes. Table I shows the value 0, 66 

tube radii to be typical of the bubbles examined in the course of the 

present study; that given by other authors is 0, 70 - 0. 71, see (23), (26), 

and (29). The discrepancy seems to be an effect of surface tension. 

Though no detailed studies of its effects upon the nose radii of these 

bubbles have been made, the work of Zukoski, (30), shows that surface 

tension will affect their rate of rise. 

Define the surface tension parameter, ~ by 

~= 

where 

a = surface tension constant (73 c. g. s. units for water at 

room temperature) 

p = density of liquid for a gas bubble rising through liquid 

g = acceleration due to gravity 

and 

Rt = tube radius = O. 223 in. = 0, 565 cm. 

Using the room temperature properties of water gives ~ = 0. 23, 

which has been found by Zukoski (see Fig . 2 of his paper) to be suf-

ficiently high to slow the upward velocity of a long bubble by about 1 7% 

compared to a si1nilar bubble rising in the absenc e of s.J.rface tension. 
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Dumitrescu, (27 ), studied long bubbles rising through water in 

tubes of various diameters and found that the apexes of those which 

rose in a tube 0. 99 cm. in diameter were slightly more pointed than 

those observed in larger tubes. He gives no values for the radii of 

c urvature at the apexes, but suggests that surface tension is r e spons -

ible for the difference in shape. Goldsmith and Mason, (26 ),found that 

surface tension decreased the nose radii of bubbles rising through 

viscous liquids, and while they investigated air bubbles rising in water -

filled tubes of approximately the diameter of that used in the present 

work, . gave no values for the nose radii. Although the work of 

Dumitrescu and of Goldsmith and Mason is largely qualitative with 

respect to the effects of surface tension upon the radius of curvature, 

there is none w hich contradicts the present finding that the radius is in 

the n e ighborhood of 0. 66 tube radii . 

The volume calculations described in Section 11 yie ld r esults 

s u ch as thos e shown in Fig. 17 for a typical case. The o rdinate is the 

volume, in units of the tube radius cubed, within the confines of the 

free surface, the horizontal plane through the apex of the undeformed 

bubble , and the cylinder whose radius is the abscissa. The diffe r ence 

between the ordinates for r = r , say, represents the volume dis -
1 

placed at the free surface for r ~ r in the tim e between the frames 
1 

from which the calculations were made . This difference is shown in 

Fig. 18 to the same scale as Fig. 17. It will be seen that the differ -

ence, at its maximum., is about 30% of the volume shown in the pre -

ceding figure and that it becomes roug hly constant for r == 0. 6. In 
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reducing the data, the displaced volume was determined at five or six 

points in the range 0. 65 < r < 0. 80 and upper and lower limits estab-

lished for each side of the bubble - - a total of four values . Linear 

interpolation was used to find the volume for values of r differing 

from those for which it had been calculated. 

The ratio of the initial ;:velocity at the free surface midpoint v 
c 

to the initial mean velocity, v f' based upon the volume of fluid dis -

placed at the free surface, is shown in Fig. 22 for each of the bubbles 

listed in T able I. Also shown is the ratio v /v , where v is the 
c s s 

mean velocity calculated from the spark bubble volume. Error bars 

in the case of vf indicate the highest and lowest values among the 

four from which each of the averages (summarized in Table II) was 

obtained. It will be seen in Fig. 22 that these ratios are rather broad-

ly scattered around three for all values of d , and so exceed by 
. s 

about 50% the value predicted from the incompressible analysis. The 

estimate of Bowden and McOnie (Ref. 1), for the ratio of jet velocity 

to mean velocity was two or three for jets moving at speeds in the 

neighborhood of 6000 feet per second. They gave no values for the 

initial curvature, however. 

The ratios v c/vf and v c/vs agreed within 20% for all but 

two of the experiments; these exceptional cases a re indicated in 

Table II by question marks adjacent to the entries . In the absence of 

cavitation, conservation of mass requires that the volume displaced 

by the lower portion of the spark bubble must appear as a, displacement 

at the free surface or that flow must occur across the horizontal 
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plane through the electrodes. Flow parallel to the tube wall in the 

liquid film below the bubble apex seems less likely. Differences be-

tween vs and vf for a single experiment are not attributable to any 

phenomena associated with compressibility because displacements 

were measured after a time sufficient for the system of pressure 

waves to undergo many reflections and be dissipated. Finally, the 

data were reduced assuming axial symmetry, so any deviation of the 

spark bubble from this condition l eads to errors in v . 
s 

Cavitation was not observed in experiments having d < 1 . 61, 
s 

and in this case, shown in Fig. 15, the cavities were of negligible 

extent. The experiment in which d was 2. 15 featured cavitation in s 

significant amounts and a very irregular spark bubble, hence the ap-

proximate agreement between vs and vf is simply coincide nce . 

This experiment was exceptional in that a small jet had formed in the 

time between the first two frames of the photographic r ecord prevent-

ing precise measurement of the midpoint displacement . 

The pressure maxima from histories exemplified by that of 

Fig . 2 O(a) were observed to vary unpredictably from 200 psig. to be -

yond 400 psig. ; however, the average taken o ve r 30 - 35 consecutive 

experiments performed at a single value of the spacing betwee n the 

spark gap and the transc.u.cer was found c onsistently to be in the 

interval 290 - 350 psig. with a standard deviation of 30 - 40 psig. 

Using 350 psig., it follows from Eq. (8 . 1 ): v = p / p , that the 
0 0 c 

velocities behind the first wave were of the order of 5 feet per 

second. If this were doubled at the free surface as predicted by 

simple acoustic theory, the resulting increase at t11e free surface 
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midpoint would be about 25% of the initial midpoint velocity for many 

of the bubbles studied. It is likely, however, that the acoustic waves 

were stronger than indicated by the pressure traces for the reasons 

mentioned earlier. Hence the possibility remains open that the corn-

plete removal of compressibility effects would lead to satisfactory 

agreement. 

Discrepancies due to the finite displacernent of the free sur -

face do not seem to be important. The displacement used to calculate 

v was typically less than 0. 3 tube radii (see Table III), hence one 
c 

would expect the midpoint velocity to be affected by less than 15%, 

based upon the two -dimensional analysis of Section 7. The experi-

mental evidence does not warrant the drawing of definite conclusions, 

though, since effects of this magnitude would not nlake th(~ rnselves ap-

parent when the data scatter to the extent indicated by Fig .. 22. 

The analysis of Section 5 indicates that, for a column whose 

length is less than its radius, the effects of non- uniforrnitics in the 

applied velocity will be of importance in predicting the velocity at the 

free surface. These non-uniformities may be characterized by the 

coefficient D introduced ir. Section 6 and can be e stirnated for the 
l 

experiments in the following way: First, suppose that the s park 

bubble can be idealized as an expanding sphere, then when its radius 

and radial velocity are R s 
and 

. 
R, 

s 
respectively, the axial c ornpon-

ent velocity, v ' z 
on the spheric al surface is 

. 
v .. R cos() 

z s 
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where e is the polar angle. Now if one assumes that this velocity 

acts across a horizontal plane, the Fourier-Bessel coefficients, Dn, 

follow in the form 

D = 
n 

2R R 
___ s_ r s J (k r)r cos e dr 
J 2(k ) J 0 o n 

o n 

since v = 0 when r > R . 
z s 

Making the substitution r = Rs in e, there 1·~sults 

D 
n 

2Rz.R. 
s s 

J 2(k ) 
o n 

S 
n/2 

0 

J (k R sin 8 )sin 8 cosz. () d8 
o n 

which can be shown (see Ref. (24), p. 373, for instance) to be 

D = n J 2(k ) 
o n 

k ~v2k; n s n s 

The requirement that the mean velocity, D , be unity gives 
0 

2 = 

so that, finally, D = 3.15 and D = 1 .68 for the typical case 
1 ?. 

R = 0. 5. This is certainly an overestin1ate for D since the approxi­
s 

mation used for the axial velocity contains a physic a lly unrealistic 
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discontinuity in its slope. 

Now the effective column length, d, i s apt to b e somewhat les s 

than the distance, d , to the spark gap due to the presence of the 
s 

spark bubble, so from Fig. 12 one would expec t the midpoint velocity 

for the experime nts with the lowest values ( d = 0 . 7 3 , 0 . 8 3 ) to 
s 

exceed, by possibly rnore than 50%, the same quantity for experi1ne nts 

with larger value s of d . Reference to Fig. 22, shows, however, no 
s 

compelling evidence to suggest that this occ urred in the experin1ents. 

The midpoint velocity does indeed increas e with r es pect to the mean 

velocity based upon the spark bubble volume, howeve r, the trend is 

not confirmed by the o ther ratio. 

The experiments shown in Figs. 15 and 21 (a) are typica l of 

some thirty-five of which photographs were made. In two cases , how-

ever, a very different b e havior was observed . One of th e se is shown 

in Fig. 2l(b) where it will be seen that a small jet, much l ess well-

defined than the others, was formed. This experiment and a similar 

one (d = 1 . 01 in Table I) are characterized by very low initial mid­
s 

point velocities, which suggests that the stabilizing forces due to sur -

face tension were nearly sufficient to prevent the formatio n of a jet. 

No accurate e stimates have been made of the relation b e twe e n 

the maximum mean velocity imparted to the column and th e ultimate 

jet velocity. For experiments in which the motion was slow enough to 

permit accurate estimates of the maximum spark l>ubble siz.e to b e 

made, the corresponding velocities were sufficientl.y low that surface 

tension was likely to have b ee n in1portant, conversl'ly, wlil'n t he 
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velocities were high enough to render surface tension effects neg­

ligible, the temporal resolution of the camera permitted only very 

approximate estimates of the maximum spark bubble size. Bri efly , 

the jet velocity was found to be only slightly greater than the maxi ­

m.um mean velocity at the lowest speeds and increased to about 4 

times this quantity at the highest. 

The theoretical analysis is only indicative with respe ct t o the 

final jet v e loc ity ; however, if a steady flow of this kind e xi s ts, it i s 

easy to show that the steady jet velocity should exceed the mean veloc ­

ity by a factor of two in either two or three dimensions . T h is may be 

seen by considering the flow as it appears to an obs e rve r moving with 

the mean veloc i ty. Such an obse rver will perceive that fluid approa.ch ­

es along the free s urface near t h e walls w ith unit velocity, say, tu r ns 

through 1 80° , and leaves with unit vel ocity along the jet free surface . 

Thus to an observer w ith respect to whom the fluid at i nfinity is at 

rest, the velocity of the jet will be two units. 

The process of jet formation in thes e expe riments may b e 

under stood in the context of Tay l or instability, for as the spark bub ­

ble c ollapsed, the liquid beneath it was accele r a t ed upward, creating 

a situation at th e free s urface conducive , by Tayl or 1 s criterion, to 

the g!' o w th of small perturbations in the velocity or displ acement 

there. 

Finally , the fr ee surface shape just afte r the start of motion 

is shown for one case in Fig. 23, a n d for c omparison a theoretical 

c u rve deter mined from the exact two - dimensional analysis of S e cti on 
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2. The exact solution was continued from the experimental free sur -

face rather than the corresponding theoretical shape shown in Fig. 2. 

The disagreement is, of course, rather severe near the centerline, 

where three -dimensional effects are likely to be significant; closer to 

the tube wall, however, where these phenomena are of lesser impor-

tance, the theoretical and experimental shapes are somewhat closer. 

The two-dimensional midpoint displacement, 

for Fig. 23 by the relation 

(A ·) = c z 

(v /v) 
c 2 

(v /vf) c ~ 

(A ) 
c 3 

(A ) , was determined 
c 2 

where the subscripts 2 and 3 refer to two and three dimensions, 

respectively, and (v /v) is the theoretical value, TT/2. 
. c z 
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v. SUMMARY 

Several mathematical models have been propounded to account 

for the jet observed to form at the c urved free surface of a col umn of 

liquid subjected to a rapid acceleration. The fluid has been assumed 

inviscid throughout and incompressible in most of the analyses. A 

two -dimensional problem was solved exactly for small time .and forms 

the standard against which the results of more approximate theories 

were tested for reasonableness. This solution predicts that the 

element of fluid situated at the midpoint of a rather special curved 

free surface should suffer a jump in velocity equal to rr/2 times 

the mean velocity applied impulsively to the column. Further, the 

theory predicts that the velocity jump elsewhere on the free surface is 

less - - suggesting the possibility of jet formation . 

Several perturbation analyses have been carried out in Section 

4 based upon the assumption that the initial free surface is nearly 

planar. The results foi; the midpoint velocity of a two-dimensional 

problem of this kind were found to agree within 5% with those for a 

special case of the exact problem, while those of the corresponding 

three-dimensional problem predict a jump in velocity at the free sur -

face midpoint in the neighborhood of twice the mean velocity imparted 

to the column. In both cases, the increment in velocity at the free 

surface midpoint was found to be proportional to the curvature of the 

initial free surface and to be greater there than at other points on the 

free surface, see Eqs. (4 .33), (4.34), and Fig. 11. 

An attack on the axially-symmetric problem has also been 
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made by assuming that the system of impulses acting across the 

horizontal plane through the midpoint of the free surface is the same 

as - - or closely related to - - the analogous quantity found to be act­

ing in the two-dimensional problem which was solved exactly. Thoug h 

no firm basis exists for such an assumption, the results to which it 

leads are not unreasonable in view of those found in two -dimensions, 

and they do tend to confirm the results of the axially-symmetric 

perturbation analysis . 

Experiments employing slender bubbles rising in a circular 

tube were conducted upon the phenomenon . The apex radii of these 

bubbles, listed in Table I, were found to be within a few per cent of 

that used in the theory, and when accelerated rapidly downward, wer e 

observed to deform in a manner resembling that predicted theoretically, 

see Fig . 23 . Quantitatively, however, the midpoint velocity was found to 

be systematically in excess of that predicted by the three -dimensional 

perturbation analysis . It is likely that the approximations made in 

obtaining the solution of the axially-symmetric problem are to blame for 

a portion of the discrepancy; however, one is led to speculate that 

effects associated with compressibility are also of importance. 

The effects peculiar to very short columns subject to non­

uniformly-applied impulsive velocities have been examined for an 

axially-symmetric column with a nearly planar free surface. It was 

concluded that thE'i jump in velocity experienced by the free surface is 

affected to a negligible extent, even by strong non-uniformities, unless 

the column's length is smaller than its radius. This finding was not 
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borne out conclusively by the experiments, however . 

A solution valid for slightly longer times than were those dis -

cussed above was found for a simplified two-dimensional problem. 

The results indicate that the velocity of the fluid element at the free 

surface midpoint should increase as the motion proceeds ; however, 

the increase is slight and no manifestations of the phenomenon were 

observed in the experiments . 

Finally , effects associated w ith compressibility were consider­

ed in a very approximate way and the conclusion reached that the im­

pingement of a plane acoustic wave upon a hemispherica 1 free surface 

should lead to effects qualitatively si::nilar to those arising in the 

various incompressible analyses.. Specifically, the velocity at the 

midpoint of the free surface was found to exceed the velocity at other 

points situated thereon - - again suggesting a jet. The factor by which 

the velocity at this point exceeds the mean velocity (based upon the 

volume of fluid displaced at the free surface) depends strongly upon the 

behavior of the acoustic waves as they propagate past the bubble apex; 

however, and no experimental evidence was obtained to justify any 

assumptions in this regard. 
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TABLE I 

Summary of Nose Radii and Velocities 

d R v v. 
·s c J 

0 . 73 0.65 46.3 66.6 

0.83 0.66 39.6 59.9 

0.98 0.62 37 .4 57. 1 

1. 01 0.68 23.2 3 .79 

1.02 0.66 30.2 37.8 

1.04 0.68 28.1 35 .0 

1.30 0.67 18.7 6 . 70 

1. 61 0.67 33.2 43.2 

-·--.-
2 .15 0.67 72.4 1 36. 2 

~:c 

3.18 t 34.3 49.0 
.. , .. 
-·-3. 26 0.62 44 .2 54.3 

3.67 0.66 23.2 22.0 

-·-.,, 
7.46 0 . 66 48 . 5 86.8 

23.4 0.62 33 . 9 58. 4 

ds = distance from spark gap to bubble apex, tube radii 

R = radius of curvature of undeformed bubble, tube radii; cf 
R = 2 /-rr == 0 . 64 used in theoretical analysis . 

v = initial midpoint velocity, feet per second c 
v . = ultimate jet velocity, feet per second 

J 
:O:< 
indicates 50 ppm . polyethylene dioxide solution 

t indicates photograph of undeformed bubble was unviewable, initial 
shape was taken to be that of bubble for which d = 3. 26. 

s 
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T A BLE II 

Summary of V e locity Ratios 

d v c / v f s 
v / V' 

c s 

0 , 7 3 3 . 11 3 .62 

0. 83 3 . 12 3 . 88 

0 .98 3 , 47 3 .56 

1. 01 2 , 62 2,56 

1 . 02 3. 14 5 .1 4 ( ? ) 

1. 04 2.93 2 , 62 

1. 3 0 3. 1 8 3 . 30 

1 . 61 3 . 36 2 ,1 0 ( ? ) 
... . ,. 

2. 15 2,53 2.84 

':' 3 . 18 3.22 

-·-.,. 
3.26 3,26 

3 . 67 3.56 

:::' 
7.46 2 . 92 

23 . 4 2 . 96 

ds = distance from spark gap to b u bble a p ex, tube radii 

v = initial midpoint ve loc ity 
c 

vf = mean vel ocity bas ed on volume displaced at free surface 

v = mean ve l ocity based on spark bubbl e volume 
s 

indicat es 50 ppm polyethyl ene dioxide sol ution. 
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TAB L E III 

Summary of Spark Bubble Radii and Initial 

Free Surface Displacement 

d .6. R 
s c s 

0.73 0.242 0.46 

0.83 0.260 0.46 

0.98 0.320 0. 51 

1. 01 0. 170 o. 32 

1. 02 0.200 0.39 

1. 04 0 . 200 0. 48 

1. 30 0. 122 0 . 38 

1. 61 0 . 292 0.59 

·'· ···2. 15 0. 593 0.68 

):~ 

3. 18 o. 159 
... ... 

3.26 o. 311 

3.67 0.202 

~::: 

7.46 0. 392 

23 . 4 0. 118 

ds = distance from spark gap to bubble apex, tube radii 

t = t i me in ms. from spark discharge 

t 

0.096 

0. 122 

o. 160 

o. 139 

0 . 122 

0. 127 

o. 122 

0. 161 

0 . 150 

0 . 099 

0. 150 

o. 166 

o. 150 

0. 150 

.6. = free surface displace ment at midpoint with respect to initial 
c . . 

position 

R = mean spark bubble radius, tube radii 
s 

':'indicates 50 ppm polye thyl e n e dioxide solution. 
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APPENDIX A 

Polynomial Approximation to w (x, d) 
0 

The real part of Eq. (2. 29) can be shown to be 

u
0 

= - U(x) sin Tr; 

00 

U(x) = I(-1 )m 2m 
Z TrX 

m=l 
4m +1+4m cosy 

00 

- I(-l)m 2m 

4m2 +1 -4m cos TrX 

m=l 2 
(A-1) 

In finding the least squares approximation to u , Eq. (A-1) was eval­
o 

uated for -1 < x < 1 at intervals of O. 0 1
,;. The approximation was then 

weighted in favor of points near the origin (the neighborhood of greatest 

interest) by counting twice the values of u at x = ± O. 05, ± 0. 10, 
0 

± 0. 1 5, ± 0. 2 0, ± 0. 2 5 , and ± 0. 3 0. 

The final approximation is 

5 

( d) = ~ b XZ.m -l 
.uo x, L zm-1 (A-2) 

m=l 

where 

bl = -2. 3049 

b3=10.340 

b
5

=-21.199 
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b7 = 20. 681 

b9 = - 7. 5220 

This may be integrated according to Eq. (2. 30) to give 

b 
Zm-1 

where the A 's zm 

A = Zm 2m 

are given with Eq. (2. 31) 
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APPENDIX B 

I(s) = soo cos ks sink dk 
k coshka 

0 

It is convenient to examine the integral obtained by differentia-

tion with respect to s: 

sin ks sink dk 
co sh ka 

which may be written in the form 

1 SO() ei(l+s)k_ei(l-s)k 
I'(s) = 4 Re cosh ka 

Now ·.::onsider 

-oo 

iak e 
cosh ka 

dk a real. 

This may be found in Ref. (B-1 ), p. 30 to be 

1T 1 

a cosh ira 
~~a 

dk 

Use of this result, with a = 1 ± s, in Eq. (B-l) leads to 

I'(s) = ~[ 1 4a ir 
cosh za (1 +s) cosh ~ (1 -; i] 

A little manipulation gives 

I' (s) 

· h ir · h irs sin Za sin Za 

which may be integrated to yield 

(B-1) 
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sinh~ 
2a 

cosh ~~ 
+ const (B-2) 

Now recall that I(s) is the normal derivative, along 11 = a, of 

the harmonic function w (s, 11 ). This permits a fundamental property 
1 
2 

of functions of this type to be invoked to evaluate the constant. Specif-

ically, aw 
. 1 

2 d1 = 0 on-

where the integral is taken over the boundary of the region occupied by 

fluid in the !;,-plane. The contribution to this integral along 11 = 0 is 

-2 in view of the normalization chosen in Eq. (2. 32). Since the first 

term of the expression (B-2) is positive-definite, the constant must be 

set equal to zero to ensure convergence along 11 = a. Note that the 

velocity must be at least finite at infinity, precluding all but finite con-

tributions to the integral from the portions of the contour at infinity. 

Reference 

(B-1 )A. Erdelyi, ed. Tables of Integral Transforms, Vol. 1, Calif. 
Inst. of Tech. Bateman Manuscript Project, McGraw-Hill, 1954. 



-95-

APPENDIX C 

Calculation of B (m) and Related Sums 
n 

Integration by parts of the right side of the e quation 

S
l 

Bn(m) = - 2 xm cos mrx dx 

results in 

n+i 
B (m) = (-1) n 

0 

2m -- -
(mr)z. 

B (2} is readily shown to be 
n 

(-l )n+1 ~ 
; (mr)2 

m(m-1) B (m-2) 
n (mr)2 

Mathematical induction can then be used to show that, in general , 

m 
2(-l)m+n+i l (2m)! (-l)k 

B (2m) = ~----n 2 · 1 Zm-Z.k 
(mr) k = l (2k-l ).(nir) 

m > 1 

The first five of these are 

B (2 ) = (-l )n+1 2·2 
n (nir )2 

B (4) = (-1 )n+1 ~ [1 3! ] 
n (nir )2 (nir )2 _ 

B (6) = (-l}n+i ~[1 - .±..:2_+ 5
'] 

n (nir)2 (nir)2 (mr)4 

B (8 ) = ( - l)n+1 2·8 [l 6 ·7 4 · 5·6·7 7! ] 
n (nir )z. - (nir )2 + (nir )4 - (nir )6 

(C-1} 

B ( l O) = ( - l )n + 1 2 · 1 0 f1 _ ~ + 6 • 7 · 8 · 9 4 · 5 · 6 · 7 · 8 • 9 + ~] . 
n (nir)z. l (nir)z. (nir)4 (nir}6 (nir) 

The sums 
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<Xl 

cp (0, 0) ='\ mr B (m) 
m,y /_; n 

n=l 

are then, for the first five even values of m, 

cp
2 

(0,0)=2>-- 1 ,y 

<PB,y(O, 0) = 8(>-. 1 -6·7>-.
3
+4·5·6 ·7X. 5 -7!>-. 7 ) 

(C-2) 

cplO,y(O,O) = 10(>-. 1 -8·9>-. 3 +6·7·8·9>-. 5 -4·5·6·7·8·9A. 7 +9!>-.
9

) 

where the >-. 's are given by 
p 

The first few of these are tabulated below for p odd. 

p A. 
p 

1 4.4127X 10-1 

3 5,8152 X 10-? 

5 6. 3533 x 10-3 

7 6. 5728 x 10-4 

9 6. 6966 x 1 o-s 

Substitution of these in Eqs. (C-2) gives Eqs, (5. 8). Note that the 

calculation of cp (0, 0) involves the difference between rather large 
am, y 

numbers as m increases, Consequently, the accuracy of this quantity 

is somewhat less than the five figures retained in A. . p 
This fact is 
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reflected in Eqs. (5. 8 ). 
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APPENDIX D 

Calculation of C (m) and Related Sums 
n 

The equation for 

C (m) = 
n 

C (m) may be written 
n 

after an obvious change of variable. Two integrations by parts gives 

C (m) = 
n 

2m 

k 2 J (k ) 
no n 

where the relations 

J ( 0 ) = J (k ) = 0 
l l n 

ST] J (T] )dri = T] J (T]) 
0 l 

and 

C (m-2) 
n 

(D-1} 

have been us ed. The recursion relation (D-1) connecting C (m) and 
n 

C (m-2) is the same as that derived in Ref . (24 ), p. 581 . C (0) can 
n n 

easily be shown to vanish so the other C 's follow from (D-1 ). 
n 

As in the two-dimensional case discussed in Appendix C, it is 

possible to find a general expression for C (2m). The formula 
n 

m+1 
C (2m) = 4 (-l) 

n kz J (k ) 
n o n 

~ _(-l /(m! )7..(2-) Zm-21. 
L 1! (1-1 >' k 
l=I n 

can be shown to hold by means of mathematical induction. It follows 

that 
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c (2) = -
2•2 

n k 2 J (k ) 
n o n 

c (4) = -
2·4 

[1 _ :·24] n k 2 J (k ) 
no n n 

c (6) = -
2·6 

[1 
4·6 2 ·42 ·6 ] - -- + n k 2J (k ) kz k4 

n o n n ,n 

c (8) = -
2·8 ~ 6 ·8 4·6 2 ·8 _ 2 • 4 2 

• 6
2
•8 ] 

1 - ~ + n k 2 J (k ) k4 k6 
n o n n n n 

c (10) = -
2·10 

[1 -
8·10 
--- + 

6 • 8 2 ·lo 4 • 62 • 8 2 • 1 0 
n 

k 2 J (k ) kz k4 
no n n n 

The sums 
00 

x (0, 0) = ~ k C (m) 
m,z L n n 

n=l 

then may be written, for m = 2 , 4, 6, 8, and 10, 

x2 , z(O, 0) = 2a1 

x 4 , z(O, 0) = 4(a1-2·4a3 ) 

2 
x6,z(0,0)= 6(a1-4·9a3+2·4 6a5) 

k6 
n 

2 2 2 
X 8 I Z ( 0 1 0 ) = 8 ( Q 1 - 6 ' 8 Cl' 3 +4 ' 6 ' 8 Cl' 5 - 2 ' 4 ' 6 ' 8 Cl' 7 ) 

2•42 ·62 •82 •10] 
+ 8 

k 
n 

(D - 2) 

2 2 2 2 2 2 
lO(a -8·10a +6·8 •lOa -4·6·8 •lOa +2•4 ·6 ·8 ·lOa_) 

whe:re the a 's are p 

1 

1 3 5 7 ~ 

00 

ap = - 2 l k P3 l(k ) 
n=l n o n 

The quantity - z a
1

, may be found in Ref. (D-:0, p. 166. The others 

have been calculated using the v alues of k and J (k ) in Ref. (D..2). 
n o n 

The r e sults for p = 1, 3, 5, 7, and 9 are shown in the following 
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table: 

p Q' 
p 

1 7. 6958 x 10 
- 1 

3 7. 4099 x 10 
-Z 

5 5.6774X 
- 3 

10 

7 4. 0212 x 10-4 

9 z. 7734 x 10-5 

Use of these values in Eqs. (D-2) gives (5. 20). Note that th e te::-ms iE 

the expressions for Xz (0, 0) become rather large with i:::icreas rn.'?: 
m,z 

m - - th e l ast two terms in Xio, z(O , 0 ), for example , are 

- 36 . 734 + 20. 263. Thus, even though five figures have been retainec 

in a , the final result is accurate only to three figures . 
p 

References 

(D - 1) E . J ahnke, F . Emde , Tabl es of Functions with Formul ae 
and Curves , 4th Ed., Dover, New York (1945 ) . 

(D-2) F . W . J . O lver, ed. Roy . Soc . Math. T abl es, 7, Bessel 
Functions, Part III, Zeros and Associated Values, Cambridge 
Univ. Press , (1960) . 
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Fig . 2: C ornparis or.. of fr ee surfact~ r equir e d f or , ·x a c t two ­

d i 111cnsion s o llltiu n with an a:x ially- s yrn rn e tr ic fr , .. , _. 
s <1 rfac .· ubs t~ r\" <.' <l vxp <' ri1n c nt.al.ly . 
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and col u m n l e ngtl1 , d , wi.th t h e 
µa ram ,_:t E:: r, a . 
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Fig . 4: Midpoint velocity for exact two-dilne nsional s o lution, 

n = 0,1,2 fromEq. (2.28),n = l /2 frornEq .(2. 34) . 
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s-pl ane under the transformation s :- -·s inh1r/ 2a(s-ia ). 
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Fig. 7: Geometry of perturbed free surface in z -planc and 
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TYPICAL EXP. 
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F i g . 8: Showing typi cal e xperirnental fr ee suriac,~ shape and 
surface shapes us c• d in perturbati on s o llitio n fron1 

E q . (3 . 32.) . 
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Fig . 9: Co1nparison of fr ee surfac e h eights for <·x a c t rind 
approxi mate theorie s. Two --clime n si.ona l t•xac t 
from Eq . (2 . 7 ) , t wo--dime nsional a pproxi111ate 
from Eq. (4 . 1 ), and thr ee - dime nsio nal app r oxin1at..:: 

fron1 Eq . (4 .2). 
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Fig . 1 O{a}: C o n1pari son of exact a nd approxima t e thc'ori.c s ; 
exact two -tli1n c nsio nal i1npu l s c , --w {x, cl), 
frcnn Eq . (2. 31 ) , approximate twu-·c1l1ne11siunal 
irnp u l s e , _,,., •(x , 0), fr o rn E q . (4. 2 9) , a nd 
appr oxi mate thrc e ·-dirnc,nsio n a l i1npu.ls~; fr u rn 

Eq. (4 . 30). 
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Fig . l O(b) : Compa rison of approxirn.ate th .:; orie s: ratin of 
thr <' C··dim .:.~ nsi.on al .i.1npuls e , --x 1 \r, 0 ) , ti:· 
two --dirn.ensi o nal irnpuls<? , -~') 1 (x , 0 ). 
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FREE SURFACE 

~ACOUSTIC WAVE -

F ig. 1 3 : A cou.s tic wave inc ide nt •t))On a cu r v<'cl tr .::c 
snrface . 
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Fig . 14 : E x p e r inH:ntal a p p aratu s . 



Fig . 15: P hotog r aphs of typical experiment, time increasing from right to l eft 
and top to bottom. Note cavitation in s econd and fifth frames and 
sheet jets in subsequent photographs . T op s e ries, 0 - 2. 64 ms.; 
rightmost strip in lowe r s e ries, 2 . 64 - 4. 12 ms; fina l series 
5.44 - 6.44 ms. Pic tur es within each series 0 . 165 ms. apart , 

d = 1. 6 1 tube radii. 
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Fig . 16 : E xperimental fr e e surface s h a pes for three typical bubble s ; the ar c s 
are of radius 0. 65. 
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Fig. 20(a): Typical pressure history, horizontal scale : 50µs per 
l arge division, vertical scal e: 100 psig p e r l arge division, 
spark gap 44. 7 tube r adii above transducer. 

Fig . 20(b): Schl ieren photog r aphs of spark-produced pressure waves, 
d e lays arc 6, 12, 15, and 25µs. with r espec t to spark, 
scale is approxirnat e l y twice actual size. 



Fig. 21 (a): Cav itation caused by compression wave r eflection at bubble 
fr ee surf ace, ti1nebetweenfran1e s : 0 .1 50 m s. , d = 23.4. 
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Fig. 2 1 (b}: Ver y s mall jet produced b y weak acceleration, time 
between fram e s: 0. 130 ms . , cl = I. 30. s 
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