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ABSTRACT
The problem of global optimization of .M phase-incoherent signals
in N complex dimensions is formulated. Then, by using the geometric
approach of Landau and Slepian, conditions for optimality are estab-
lished for N = 2 and the optimal signal sets are determined for
M=2 3, 4, 6, and 12.
The method i1s the following: The signals are assumed to be

equally probable and to have equal energy, and thus are represented by

points Ei, i=1,2 **+ , M, on the unit sphere 8; in N.oIe
Wik. is the halfspace determined by S5 and Sy and containing S5
i = N /== e v
ie. Wy = {reC :](r,si>]2 ](r,sk)l}, then the(EE% = N Wi,
ki
i=1, 2, *+* , M, the maximum likelihood decision regions, partition
Sl' For additive complex Gaussian noise n and a received signal
T = EieJe + H, where 6 is uniformly distributed over [O,Eﬂ], the
@
1 N-1 w(r2+l)
probability of correct decoding is = —ﬁ e U+ )dr,
0]
1 & j- - -
where U(r) = 7 j; 2r|(s,si)|)d0(s), and T =
For N =2, it is proved that U(r) s‘jp IO(2r|<§,§i>|)dc(§) -
Cd.
2K 1 - - .
= . h{zz [Mo(c)-0(8,)]|, where C_ = {ses :|(5,5)] =a}, K is

the total number of boundaries of the net on Sl determined by the

decision regions, and h is the strictly increasing strictly convex

function of G(Caﬂ W), (where W 1is a halfspace not containing Ei)’
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given by h = f IO(2TI<-§,-S—i>|)dU(§). Conditions for equality are
Caﬂ W
established and these give rise to the globally optimal signal sets

for M=2, 3; &, 6, and 12,
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INTRODUCTION

The problem of optimal (minimizing the probability of error)
signal selection for transmission of messages over phase-coherent and
phase-incoherent channels has been a subject of many investigations.
Under the assumption of additive white Gaussian noise, equal energy,
and equiprobable signal sets, Balakrishnan [1] showed in 1961 that
with no bandwidth constraint the regular simplex is globally optimal
for small and large signal-to-noise ratios for the phase-coherent
channel. Landau and Slepian [2] established in 1966 that, in fact, the
regular simplex code is globally optimal for the phase-coherent channel
independent of the signal-to-noise ratio and for a larger class of
probability density functions,

Also in 1966, using the approach of Balakrishnan, Scholtz and
Weber [3] proved that the orthogonal signal set is locally optimal for
the phase-incoherent channel under no bandwidth constraint. For M
phase-incoherent signals in M-1 dimensions, i.e., a bandwidth con-
straint, the signals with |<§i,§5)l = E%I were established as locally
optimal by Weber [4] in 1967.

Using the geometric approach of Landau and Slepian,
we formulate a condition for global optimality of M equi-probable
phase—ihcoherent signals in N complex dimensions. In the geometric
approach, the length of the signal vectors is proporticnal to energy;
and the dimensionality of the space is analogous to bandwidth [8]. For
the set of probability densities which are monotone decreasing away
from the signal vectors (of which the Gaussian is a member), we prove

the validity of these conditions for N = 2 along with some related
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necessary conditions., We then perform a transformation which maps
the unit sphere in 02 onto th; unit sphere in three-dimensional
Eﬁclidean space; With this transformation, we are able to use Euler's
formula to show that the global solutions obtainable by this method are
M=2, 3, 4, 6, and 12; and these have respectively 1, 2, 3, 4, and 5
hyperplanes forming the boundary of their decision regions. We then
obtain the globally optimal signal sets for these M's,

In particular, we demonstrate that the signal sets which are
globally optimal in two complex dimensions are, in fact, the above-

mentioned signal sets for M =2 and M =3 (i.e., the orthogonal

signal set (Ei,§5> = 0 for two signals and l<§i’gb>| = % for three
signals). For four signals, the globally optimal signal set has
l(§1,§5>l = = . For six and twelve signals, the inner product between

V3

the signal vector and the ones determining the decision region are

_ 8 1 . = [ 2
B, — e 1 ..s. J——
given by l(sl,sa)l JE for six signals and l(sl,sJ>| ol JE

for twelve signals,
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CHAPTER I

THE OPTIMUM RECEIVER AND THE EQUIVAIENT VECTOR CHANNEL

In this Chapter we derive the optimum receiver for the trans-
mission of messages over a phase-incoherent channel, In this deriva-
tion, it is assumed that the noise is additive white Gaussian and that
the messages are all equi-probable snd have equal energy.

et {A;x,(t), i =1, 2, +** , M} be the set of real messages to

be transmitted where Aixi(t) is defined on 0 < t < T and has energy
. :

=]

=— . Iet y,(t) be the Hilbert transform of x,(t), i.e.,

2
a3
y; (8) = =®x, (%),
Let si(t) be the complex message defined by si(t) = xi(t) +
jyi(t) which has spectrum
2X,(£) £=20
Si(f) = (l)
0] f <0
and having unit energy.
Iet n(t) be complex white noise with zero mean and power

spectrum

5,,(£) = (2)
6} £ <0

Next we assume that the received signal is of the form

r(t) = Ags, (8) €3° + n(t) (3)
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where 0 represents the phase of the r-f carrier and has a uniform
probability density defined on the interval O < 6 < 2x, i.e.,

1
e 6¢[0, 2x]

p(0) = | ()

0 elsevhere

We now let {mi(t)} be a set of complex orthonormal

i:l, 2, o-o’N
basis functions for the linear space spanned by the {s,(t)}. .
i i=l,2,¢*+,M

Then we define the kth component of the r vector.as

T

= [2) 0" at (5)
0

and similarly

T
k *
5 =fs L(8) @ (%) at (6)
0
T
*
end n* =In(t) 9, (t) dt . (7)
0
This yields for the kth component the equation rk = AisikeJe + nk
and hence we obtain the vector equation
-i‘- = AEeJe + E . (8)

The minimum probability of error receiver is then to select the

1th messages as beling transmitted when

p(IAF,) 2(5;) = max p(FIAF,) 2(5,) (9)
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Assuming complex Gaussian distributed noise with zero mean and variance

ZNO, we obtain
oL |[F-a.5.%2
o 1 s i1 :
p(rIAisi,e) = 5 © ‘ (10)
(zﬁNo)
Then
21
p(FlAiE‘i) =f p('r'IAiEi,e)_p(e) ae . (11)
O .
1l = Jjey2
N 2x o~ Hr-Alsle i
= EE‘[ﬂ % € ae
5 (ZﬂNO)
. = k5 R
% + a2 ok 8ye” Y
= a2xn L N
1 ZNO 1 0]
= X e EEI e ae (12)
(ZnNO) 5
— = 30
o (r,Aisie S
2 - N o, ==
1 0 A48
But =— e de is known to be I, | —————r—"ve
an 0 NO ]
0]

where IO is the modified Bessel function of the first kind, The
minimum probabllity of error declsion rule is to select the ith message

as being transmitted such that Ei maximizes



i
A, |&,5.0] N, .
Iy "‘Lﬁ‘(‘;}—" RS 1CH) (13)

We now assume that the messages are all equi-probable and have

probability p(gi) = % and equal energy Ai2 — Az. Then the optimum

decision rule reduces to selecting Ei to maximize

INECAY
T | ——————
0 Ny
Now
o=}
XZn
IO(X) = EE: n_.\2 (14)
! (g nt)
which is a monotone increasing function of |x|. Therefore the optimum

decision rule is to select Ei such that
|7 = max |51 (15)

For convenience in later sections, we let Nb = % then A2 repre-

sents the signal-to-noise power ratio of the complex signal. Also,
using this notation, we see that all signal vectors {s.].

) 173=1,8; %", M
have unit energy and may be considered as points on the unit sphere

in CN.
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CHAPTER II

FORMUIATION OF THE PROBLEM

In this Chapter, we use the equivalent vector channel presented in
Chapter I. In this formulation, the set of signal vectors
{Si}i=l,2,--',M all have unit energy (i.e., HsiH = 1); and hence we
represent them as points on the unit sphere in CN. The dimensionality
of the complex space is proportional to the bandwidth of the communica-
tion system.[8] The received vector is assumed to be of the form
T = 5.69% £+ B where 8,(t) = x,(t) + Jy,(t) and =x.,(t) is the real

i i i i Al
message transmitted where yi(t) is the Hilbert transform of xi(t).
The noise 1 is assumed to be complex additive Gaussian noise with zero
mean and variance one. © represents the unknown phase of the r-f
carrier and is assumed to be uniformly distributed on [0,2n].

The probability density of receiving a vector Ea given that

xi(t) (xi(t) - Si(t)) was transmitted, is then seen to be (Chapter I,

Eq. (12))
p(E[E,) - ;1—1\7 - (z%1) %'Ej[t ezlG,Ei)lcos o .
_ ;l_ﬁ o~(r%42) 10(2r1<§ 50D | (16)
where r = ||r]|. Thus, we can write
2GlEy) = 5 <G (& 30) (17)

where
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Pr(|<-':lo: ’—S-j_> \) = IO(ZI‘l <§ ’El>l) (18)

is for each fixed r > 0 a strictly increasing function on [0,1].

We may partition CN into M decision regions

R, = Fed:|&,50] = |&,50 |V k4 1}, (19)

and each(zza region contains EieJe for all 0 < 8.< 2,

i=1, 2, *++ , M. We may now write the probability of no decoding

M
a= ) p('s"i)fp('r‘l"s‘i) an(F)
i=1 Crw?i
M
Y @y [ 2 (&) wE)
i=1 1 "
“ 2
_ 'lT\f erNHl L) Gy ar (20)
LA
where
M
) = ) »(5,) [ p (|(5,5,)]) ao(s) (21)
i=1 @in 8.
and Sr = [EECN:H;H = ro}.

0
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Assuning equally probable signals, Eq.(21) can be rewritten as

M
u) =5 ) f P(|G,5;)]) ao(s) (22)
i=1 ' '

and, clearly, Q is max1mlzed if U(r) is maximized for each r > 0.

Now, we let

R ¢
r, £Rng ==L
i : 2 X r

Note, also, if we let W,, De a half-space determined by Ei and s.

containing Ei and defined by

W = Fed: |5 = |E D, (2)
then
@i = in Wik . (25)

Consequently, our problem is to find a condition on the location of

the points s, 5,, *** , EM on the unit sphere in C' such that

[=¢]
2
= }ﬁ:/ﬁ 2N-1 - (x +l)U(r)dr is maximized. Where U(r) =
i

0

M
E:‘f— (|G, )I) do(s) , P, s an increasing function of [0,1],
1=l R

Ry Jgigﬂ S, ; and the decision regions R; are the intersection of a

finite number of half-spaces of CN determined by points on Sl.
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CHAPTER III

THE METHOD OF LANDAU AND SIEPIAN

In this Chapter, we present the method of Landau and Slepian
modified for the phase-incoherent optimization problem.

For 0 <a < 1, we define the "cap" of S, centered at Ei and

of size «a to be

Ci o = {ses;:| (5,5 =2 o} . ' ' (27)

We let O(C ) denote the common value of G(Cl a) i=1 2, ¢+ ., M

and further restrict G(Ca) such that

I']d_-o(sl) < o(ca) < % o(s;) . (28)

-_—

If W 1is a half space which does not contain S; » let

h = f P (|(5,5, RIPE-CICH RS (29)

1 aﬂ W

The method of Landau and Slepian is based on proving the following
properties of h which we shall prove in Chapter IV for N =

(A) h is a function only of U(Ci,aﬂ'w) for fixed o and, in
fact, is a strictly increasing strictly convex function.

(B) If V is the intersection of a finite number of half-spaces,

at least one of which does not contain Ei’ then
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f P (1€5,5:2]) ao(&) = n(o(c; N V) (30)
Ci,aﬂ \'
with equality if and only if V 1is a single half-space.
Assuming h has the properties (A) and (B), we may proceed as

follows. For i =1, 2, *** , M, let k, be the smallest integer

such that(EEi is the intersection of distinct half-spaces W

Wipo Wigo
e Wiy s Loy ki is the number of boundaries of the net on Sy

determined by Ri‘ Iet K ©be the total number of boundaries on the
net on Sl; i.e

L |

K = Z ky (31)

i

| -

M
i=

Iet Bij be the portion of the boundary of wij which is a

boundary of Ri' Then RiC can be partitioned into regions Til’
s 3 " "
Tiz’ 3 Tiki’ where each Tij is bounded by Bij and "hyperplanes
through Ei' Hence, if we let

c
Bi o = RN Cy 4 - ' | (32)
and Ty5,0 = Y M (33)
we have the identity
M M , 5 _
Z f f,do = Z [ fido + f fido - Z f f;do (34)
i=1 R, i=1tc, E: o 1T o
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Ietting fi =1, we have

M By
o(5,) =y v olmy ) - ) oTyy o) (35)
J=1
M M 1
= MG(Ca) + Z U(E z Z lJ, . (36)
i:l :L:l :
If we next let f, = P (|<§,'s'i>l) and from Eq.(30), "
Jr (| G,5. )] ) do(s) = h(o(Tij a)) with equality if and only if
2
ij,0
Tij,a = Ci,aﬂ wij'
We may then write the inequality
M kl
ffdcs ffdc+z [fdo Zh(d(l‘ )
ij,a
l R. —l C i=1 E. =il Al
and, from property A, h is a strictly increasing strictly convex
function. Therefore
M ki M kl
' 1
Z Zh(G(Tij,a)) > 2K hl = Z ZG(TU’ (38)
21 321 izl j=1
with equality if and only if G(Tij a) has the same value for all
2
i and j.
Substituting the inequality given in (38) into Eq.(37) yields
M M M M E
l
Y [raoey [rgery [rgo-mll 303 oy
i=1 Ry i=l Ci,cx i=0 Ei,a i=1 j=1

(39)
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Now, from Eq.(36) we note that

Mk, -
h(%ﬁ Z ZO(TU’O‘)) ) h(% (MalCy) Z 9By o) = 9| . (ko)
i=1 3=1 i=1 :

We will now place a restriction on the o(E; O‘) portion of
2

Eq.(39). Let W, and W, be two half-spaces such that

WiN €y o SWNCp | (1)
and
i
o(W,N cl’a) = 5x Mo(c,) - a(s,)] (k2)
M
1
o0 © o) = 3 [Mo(ey) - o(sy) + )" olmy | (43)
=1
Then we may write
h(o(wgﬂ Cl,a)) = h(o(wln Cl,ot)) + ffldc (44)
A
where
A = (Wy-Wy) N C1 (45)
and
M
i 4
A) = = E, .
o(a) = 5% ; o(E; o) (46)
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Now, since Pr(|<§’gi>l) is monotone increasing in its argument,

we have that

JrPr(|<§,§i)\) do(s) = P (o) o(a) =
A

2K_[%XKEEQl)mﬂE)ZZKPAa)G@)

A
,M
_ Z P (o) o8 ) .
i=l
But, since E =R.,NC ¢ we have that
4 100 1" “L,a ¢
M M
) B(0) oy )= ) f P (|G,5,)]) do(s)
i=1 i=1 Ei,a
with equality if and only if O"(Ei cx) =0 .
2

(47)

(48)

(+9)

(50)

(51)

Combining the results from (26), (39), (40), and (51), we obtain

an inequality for U(r)

' - = - 2K . [1
o) < [ 205D a0 - Fulke (o(c)-o6 )] s
i a
and, furthermore, there is equality if and only if such a cap size

exists with the additional properties.

Ly Ti,j,a = Ci,aﬂ Wi,j , Wwhere wi,j is a half space for all
and j.
2. G(Ei,a) = 0 for all i,
1 R :
Bie G(Tij,a) = 5% [Mo(Ca)-cr(Sl)] for all i and Jj.

(52)

i
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CHAPTER IV

THE CASE OF N =2, M > 2

In this Chapter the validity of properties A and B of Chapter
IITI are proved for the case of N = 2, We consider the transformation
which sends (zl, zz) = (xl + Jyy, X, + jyz) into (r,p,9,%) where
zl=,rpeje, 22=r\/5:?ej§, 0<p=<l =-n<0=<xn, -1t<®=<nmq
and r > 0, The jacobian of this transformation is I‘3p so that

dm = r3drdo, where do = pdpd@d® . Thus, the unit sphere in C2 has

x 1
ffpdpdedé = B,
0

_ Jv - g o f 5
If 8. =@ O(l‘,O) and p:(peJe, l--'p2 ed? , then for

measure of Sl) =

;\%zx

O <o <1 the cap equation is

c, = {o:] E,Eo)l 2a} = {p:p 2} . (53)

2

For later convenience, we introduce the notation v =ao - % and
2 .
B =1 - ﬁ 3 then
w1
a(c,) = Iffpdpded@ = P (1-aPY = 27(2(%-' -v) (54)
- -~ O
and the requirement (Eq.(28)) i o(8,) <o(C.) < = o(S,) becomes
’ M L o7 2 i ¥
1 2 . .
E].go,; gl-ﬁ 2 OSVSEB . {55)
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Now, suppose El and s, are linearly independent points on Sl;

2

i.e., El # e Ez and

I

Jy J s
5, =€ 1sleél, l—sl2

w |
Il
(0]
e
=
[RV]
w
(]
&
o
V]
|._l
1
2]
V]

then the "hyperplane" equation | E,El)l = l('ﬁ,'é'z)l becomes

s 5 J(6-8-5)
pzsl2 + (l—pz)(l-slz) + 2Reps,) l-p2 l—sl2 e £ o

[ j(e-—@—é )
pzsl2 + (l—pa)(l—szz) + ZRe ps,) l—p2 v l—sz2 e . .

If we let
gl = §; l-Sl2 ejal
gz =8, 1—322 ej62
and
§-§ -8 =|§/e°

then the "hyperplane" equation can be rewritten as

2 2
V& (- 3 [l conforsd) = (63 Bis,e,2)

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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If we let t = ——lng—

> 5 and we assume without loss of generality

Sl -Sl

that S, Z 8, then t is well-defined for O <1t < «, and we have

the following cases for Eq.(62). If t =0, the equation is p2 = %;
if t = ®, we have either B =0, B =1, or cos(6-3-8) =0; and

2

if 0<t <=, we have

cos(68-3-8) = g, (u) = . S (63)
t & ,
/() - b
2
’ 2 1 " ’
where for convenience we have let w = p” - = and gt(u) is defined
for |u| =7 = —r g

>
2Vl + t°

Proof of (A).

We now use these transformed equations to establish the convexity

of h. We first let W_ be a half-space, determined by s, and s

1 2
and not containing Eb which intersects C, in a set of positive
measure, That is, S < 8, and
W, = (5: 155D 2 [R50} = (Freos(e-2-8) = g, (u)] (64)

1 .
where for v <71 < 5 define
a
a%_(t) = G(Wtﬂ Ca) = ,[‘ do(p) =.jrkt(u) du (65)
W, Z. v

where



t 2 i)
k (u) = 2x arcos gy (u) , T='—~—'-"-'—2', v=a -3z , and
21+ t
u
gt(u) = R
2 g
=) -
then
' %
au)v(t) aT )
- 2n arcos gt(’r) T e = (arcos gt(u)) du
v

T T
d byt u
0 + fZﬂ' = (arcos gt(u)) du = — f——-—— du
v

t
5

]

bat 2 B0, (66)

tZ

Thus, for fixed v, o (t) is a strictly increasing function of t.
Now, for 0 < w < rcz(-;; - v), which is the range of @, we let t ()

be the inverse function of W, Next, let

T
B (t) =[kt(u) B_(Vu + %) du ' (67)
g | A |

and let hv(w) = Hv(tv(w)) so that Hv(t) = hv(wv(t)). Then

A (6) 3 (o (b)) Ay (t)
- _ L § (68)

and
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M (t)
v fa) A
roe =_jﬂlgf k () B, (Vu+ 3) du
v
T
= 1+_12€T f———u": P (\/U.+ -];) du . (69)
& > T 2
vVT = u
A (e, (1)
We may now write e as
ah, (w (%) jr[
vV 1 u ik
= P (Vu + %) du (70)
W f fee &% D 2
. Tz - v2 v T2 - u? ‘

now integrating by parts yields.

(w (t)) T[22
2O o [ e

which is a positive strictly increasing function of t, and hence of «,
Therefore, we have proved that for each fixed v, hv is a strictly

increasing strictly convex function,

Proof of (B).

We now prove the conjecture that if V 1is the intersection of a
finite number of half spaces, at least one of which does not contain

E&, then

[ 2063 @) = n(otey oo )

C:‘L,aﬂ \'

with equality if and only if V is a single half space. We proceed by

u

H—u

recalling that kt(u) = 21 arcos gt(u) where gt(u) =
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Therefore, we observe that

3k, (u)

du

-1
z

2(F - uz)\/(%) - (#% + 1) W8

-7
4 = (72)
t(E - 112)\#'1'2 - U
which for fixed wu 1is a strictly increasing function of t and is

always negative. Now; let Wt 3 Wt g 20N Wt be half-spaces such that
n 1 2

n
V=N W intersects C, in a set of positive measure and s, 4 W,
i=1 i i
forr 1 =4, 8 we= ; m<Sn,
Now, define gt(u) =1 and kt(u) =0 P6F TLU <-%. Then
L
/e
/Pkt(u) du o 4 W
R
a(WN c,) =§ 1 (73)
2
2 ==
jP[Zx - kt(u)]du_ 8o € Wy .
\ v
Therefore,
L
2
a(v N ch) = jk(u) du (74)
B4

where we describe k(u) as follows. ILet
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d(i) =
-1 i
then there is a partition uo
for ue[uj_l,uj] p
k(u)=7\+£ a(i,)
2 £

- l’ 2, son iy m
s (75)
= m—[—l, *tt,
< g < e < of [v-i] such that
1 Uk '
ke (w) (76)

%

where )\ 1s a constant and (iL) is a collection of not necessérily

distinct elements of {1, 2, <+ , n}

belong to {1, 2, *++ , m} .

In particular, this description shows that k

[V)%], differentiable in (u

derivatives at the left and right end points, respectively.

these derivaties are given by

ok

€y
‘ £
Zizd(lﬁ) du :

dk@u! i

du 2

If we now let W

such that at most two of them

is continuous on

j-l’uj) and has right- and left-hand

In fact,

(u)
(77)

—

& be a half space such that S5 4 Wt and

c(wtﬂ Ca) =a(vn ca) , then u.)v(t) = O(wtn ch) =o(V n Ca) <

o(W, N Ca) = m(ti) for i=1,2, *** , m~%t, >t for 1i-=

1
l) 2’ s " m,
ax(u) _ (W
du 3u

for v € u <71 with equality

Consequently, from Eq.(72)

(78)

if and only if V = Wt for some 1

&
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with t; =t and 1 <i<m But OONtﬂ qa) =a(vn ca) =

1 =

T k(u)du = 2 k_(u) a g Selw) . B £ <u<T impli
(uw)du = ,(u) du  ean e B or Vv £u < T implies

v v E

there is a point uoe[v,%] such that kt(u) =z k(u) for u = u, and

kt(u) < k(u) for u= Uy Since P, is monotone increasing, we may

therefore write

l

_jﬁ P.(|(p,5,7]) do(p) - b (w, (t))= _]P[x(u)—k (W1 P {fu+3) au
vn qz

jr [k(u)-k, (u)] E, (u + du +

[i(u)-k, (0)] B_(/u + %) du

Nl = d L-WNIH

> P,/u 2 .jﬂ [k¥(u)-k (u)] du +_j’ [k(u)-k (u)] duf= 0 (79)

Yo

with equality if and only if k(u) = kt(u) for all ue[v,%]. Hence

f 2 (1G,51) @9(5) = 1 (o(V 1 C)) (80)

VN Ca

with equality if and only if V 1is a single half-space.
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CHAPTER V

SOME NECESSARY CONDITIONS

In this Chapter we establish some necessary conditions that must
be satisfied for the existence of an optimal signal set. We consider

the case in which ki 22 for 1=1, 8, *v , M2 23K z2M 8 x =

Me .zt
2K 2

For a given allowable cap size, i.e., 0 <v < % B , one such

necessary condition is the existence of a half-space W such that

t
o(W,n C,) = ';_T{ Mo(c,) - o(s)] . (81)
We now define
W (v) = 2= M0(C_)- o(s))] = 2mx(5 B-v) (82)

which iIs in the domain of tv’ the inverse function of w,. Hence, we

define

T (v) = t (W _(v)) (83)

then

wv(Tx(v)) = wx(v) . ' (84)

Thus, the half-space determined by t = Tx(v) must satisfy the

necessary condition
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M (v) 2w (T (v)) 3y (v) aw, (Ty (v))
5 =t o~ = 2

Now, from Eq.(82), we have that

a_(v)
ov

N (86)

Now, for convenience of notation, we define

T (v)
1) - . @D
200, 4 sz(v)
Then we may write
v (v)
a (T, (V) = f B gy Y (88)
- X
which yields
2, (T_(v)) " :
____éé__m_ o kTX(v)( ) _ . ?ﬂ arcos gTX{v)(V) ; (89)

and, from Eq.(66) we have that

amv(Tx(v)) . hnTX(v)

o) -V (90)

Now, sub?tituting Egs.(86), (89), and (90) into Eq.(85) and solving
_T (v)
%

= , Wwe obtain

for
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BTX(V) _ TXZ(V)[arcos gT (v)(v) - X |
S y (91)
T (D7 2 () - v
Now, from Eq.(52), we have
== o, —_ 2K 1
5,00 = [2.(1GE1) a0() - En (& to(c,)-o(5,)])
Ca .
1
2
= Zﬂz-jﬁf} u o+ %) du - %-hv(wx(v))
1
g2
-2 [p e D - En e (92)
-
Then,
U (v) (T,(+)) 2 (T (v)) oL (v)
__&__.—_-aﬂp(a)-—aﬂ‘fav haHVatX . avv
2 (v) - u? -y
= EE— [x - arcos g (v)(v) Jr\// = AP (Vu + ).
(93)

Another property of the U (v) equation is obtained with the aid of
x

the convexity property of hv' This is that

U (v) » %h (W (v)) '
x B ;—2- HAL V] = srgireeeee TR ) p 20, ()

If we now consider requirement 2, Chapter III, i.e.,
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=0, we find some additional requirement for

) 1
the existence of the cap is the existence of a v = OLZ ok

Cc
U(Ei,a) = U(Riﬂ ci,o: )

2

ogv sgz'-ﬁ such that

2
2 arcos gTX(V)(v) = _E_K'?ﬁ
arcos ng(v)(v) =x : (95)

We shall show, in fact, that there is exactly one such v, call
it V(x), and V(x) is the unique point at which the maximum of T,
and the minimum of U, occurs in the interval [O,%’—- Bl.

First of all, for x = i s B (v)(v) =cos X ®v =0, sowe
x

2
let V(-g) = Dz for x<j-21- we have
& (v)(v) = cos x ®
it
T (v) = L . (96)
%

cosx (%—)2 - v

On the other hand,

&
a8 = [ k() an
v
v
arcos (27)
= 21 arcos [-—i———:r d(}- gogn ) (91)
t tann 2 ’ ‘

arcos (2vV)

and integrating by parts, we obtain
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mv(t) = Bﬁ[% arcos jt(v) - vV arcos gt(v)] (98)

where
1
3, (v) = S— . (99)
L 4t \/(%)2 -7

Hence, the defining equation for TX(V)

(T, (V) = W (v)
becomes

E arcos 3 (v) - v arcos (v) = x(é B - V) (100)

2 IT_(v) ) T TR ;

Thus, we are looking for a value of v which satisfies the system

v

T,(),\/()? - v

= cos x . ' (101)

1 = cos B x . (102)
2 1.2 2
Ny gy T
The solution is easily found to be
1l tan B x
El -5 E (103)

and
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sin B x

TX(V(X)) = . (104)
Véoszax - coszx

To show that V(x) < % g for 0<£x <

FLS

= 5 Ve consider

2 tan x (% B -~ V(x)) =p tan x -~ tan pPx. This function is 0 for
x = 0 and has derivative B(seczx - seczax) and since 0 <pB <1
B(seczx - seczﬁx) =20 =

B tan x - tan Bx =2 0 ¢ (105)

Finally, if U, = UX(V(X)) is the value of u, which will be

attained if an optimal signal set occurs for a given value of x, we

&, (V(x))
have Ué(x) = —=5—— < 0. Thus, for fixed M, U, is a decreasing
function of x; and, hence, the maxinum possible wvalue of U0 is
: 2K : bl
obtained for s = B - 1, i€, = W1 -
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CHAPTER VI

A TRANSFORMATION INTO THREE-SPACE

In this Chapter we perform a transformation that maps the unit
sphere in CE onto the unit sphere in three-dimensional real
Euclidean space. In particular, we apply this transformation to the
hyperplane equation (Eq.(62)) and to the equation for the boundary of
the cap.

The equation (Eq.(62)) of the hyperplane between two signals, say

89 and Ez, is
e —— L2 2 1.2 2 1 2 2
l<P:Sl>\ = l<9:52>| @\/Qg) ol CIU |€| cos(6-2-8) = (p°- z)(s,7-5;") @
1 v 2 2
F-5 |E| cos(¥) = u(s2 -5, ) (106)
where we have defined u = p2 - % and V¥ = 0-8-8§. The equation for the
boundary of the cap about signal Ei is
_— 1 Byl 2 x 2 2 2 L
1G] =a e 2@ - 5,20 - 0% + 2osy/1 - 8,21 - oF cos y - 2

1 1
© 25 u + ZV/% - 8 ZV/% - u® cos =V (107)

where v =a -
Now, Egs.(106) and (107) are for a given cap size (a) and a given
set of signal vectors, functions only of the two variables ¥ = 6-% and

u, Solving for u as a function of ¥, we obtain from (106)
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i Igl cos (x-5) (108)

Zvézz—slz + l%lz cosZ(Xré)

and from (107)

vs' i\/vzs‘z- (s‘2 + (% - siz) cosz(xfs))(vz - %)
W= N 2 L05)
2s T+ (E -5 ) cos"(x-8)

Using the coordinate transformation shown in Figure VI-1 for § = O,

we transform the u,X equations into points on the unit sphere in three

real dimensions with

\
X = 2u
v =\/I_; b cos (%) (110)
7 =\/1 w ?®  sin (%)

/

In Section VII, Eqgs.(108) and (109) are used to illustrate the con-
figurations of the caps and hyperplaﬁes. These figures are then trans-
formed by (110) and plotted on the surface of a unit sphere in three
dimensions.

Substituting the transformation (110) into the hyperplane Eq.(106),
we see that the hyperplane for § = 0 1s given by X = ty where

t = ——%;J—g and the intersection with the unit sphere is given by the
s, -8
2 "1

set of equations
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'
Unit sphere in
three dimensions
v/ 2
1 - Lu® sin(x)
Point determined
b u
X V1 - 4 cos(x)
2z |
7.
/3
20U
x
FIGURE VI-1

The co-ordinate transformation from the unit sphere in
C2 onto the unit sphere in three-dimensional real space

(6 = 0),
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(111)

Z = f1 —ch sin §

That is, the hyperplane in C2 is transformed into a two-dimensional
real plane which intersects the sphere and passes through the origin,.
The decision regions in three dimensional real space are now the inter-
section of half spaces determined by these transformed hyperplanes.
Iet Hijt denote the hyperplane in three-space between Ei and Ej.
Then let Wijt be the half-space containing Ei' The decision region

(EE;t is then the intersection of M-l of these half spaces, 1i,e.

R = q W, (112)
1 k#i ik

and is therefore a convex regilon bounded by a certain number of hyper-
planes that pass through the origin. Now, by using this transformation,
we note that the maximum likelihood regions forming the net on the
three-dimensional sphere can be composed of regular spherical polygons.
Since the(EEit are convex, a vertex on the surface of the sphere must be
formed by at least three edgeé. Thus, we have that 3V < 2K where -V
is the total number of vertices on the net and K 1s the total number

of edges on the net. We may now apply Euler's formula [5], V-KiM = 2,

for the net and obtain an ineqguality for K
K < 3(M-2) (113)

Since we require the same number of boundaries on each of the
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decision regions, the total number of boundaries K must be an
integer (I) times the total number of signals divided by 2; 1i.e

*2

i

™
5 . (]_'Lbr)

We may therefore rewrite (65) as an inequality for I or M as

< OM-12 - g (115)
or
12
M= %_—_—I . (1_'L6)

Now, as shown in Chapter V, UO(r) Eq.(52) is a monotone decreas-
ing function of x and hence a monotone increasing function in K,
Therefore, for a given M, we wish to choose K and thus I as large
as possible. Consequently, we wish to obtain equality in inequalities
(115) and (116) since these codes wiil‘have the maximum number of
boundaries for each decision region and the same number of boundaries
for each region. The only cases of equality are M = 3, L, 6, and 12,
The corresponding values of K are K =3, 6, 12, 30. When M = 2,

the above inequalities do not hold since there are no vertices.
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CHAPTER VII

SOLUTIONS FOR N = 2

In this Chapter we use the results of Chapters IV, V, and VI to
construct the globally optimum signal sets for N =2, M= 2, 3, L,
6, and 12. We obtain the value of |<§i:§5>\ for all 1i,Jj for each
of these cases. We then graphically present the results for these
cases showing the location of the signal vectors, the caps, and the
hyperplanes.

Two Signals:

If M =2, then B =0, and the requirement O < v < % B=>v =0

and o ZJ%= . Also, 1 = %ﬁ < M-1 ® K = 1. Thus the decision region
for El must be

— == - = - 2 _1

{p:\(p,sl>\ 2 |<P,SO>|} = {pap £ E} d (117)

s, _ iyo _ iyl
t = = =0 ®s; =0. That is, s, =e¢ (1,0) and s, =€ (0,1)
l-sl
and hence (so,sl) = @,
Three Signals:
Tt 1

M=3’ K:3$ X:-E’ B:-s—

Then V(x) =0 and o = %F sy b= TX(V(X)) = Bl = tan % =

[ 2 2
cOoSs Px-cos X
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s s :
L. Hence s i = =twsl=szzm=%‘-, and there-
V3 1.g 2 1-s 2 sin x
1 2
5 b8 5 37
iy iy i(d + = iy i(6+2—
- —_ 1,1 2 4, Lo 2,1 2
5o =¢ (1,0) s, =e 5 e 5 -2-\/5), and s, =e (Ee
1 . = £ e 2 = i
-2-\/§), resulting in \(so,sl)l = \(so,sz)| = I(sl,sz)[ =3
Four Signals:
1t d
M=U4 K=6 = x= T . B=3F
Then V(x):}_wzl and az\/é , t= sin =/6 L
’ % n/3 6 3 2 2 \/E
cos” z - cos” =

Therefore we have

_ i iy ; o
0] 3 8 e 8 2
sg=¢ (L,0) , s, = \/-? -t ) \/3
iy / 1y
Ez =€ - l l(6+ ) and s = 3 \}—_ e
3
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resulting in

I(EO:_S_]_H = \<-S—OJE2>| = \(50’-5_3)\ = l(gl:-gzﬂ = |<—3—ng3>\ =
(5,,5.0] = =

Six Signals:

v(x)=%-222 ;‘;S z\lf and o = 1\;_\/3? % = sle
3 2v3 \/cos2 /6 - cos” n/b
So=l
_ _ N _sin /6 _ 1
By =8p = By = F)y = 5Tn _—E

Select s_ = 0,
elec 5

Therefore we have the following set of signals.

15 + E)
e

L
/2

_ iy _ iy
8, =e O(l‘,O) » Sp=¢€ l(

d
'V

_ ivgf i(s + ISI’E) 1 _ iY3 . i(e+ 15+E) 1
S2 = ﬁ e . B E » 53 = € —é- ] ) \E
= 1'Y]+ 1 i(s + %j_{) 1 _ i'Y5 %
5), = e \/—E_ e 5 ﬁ ;) S5 =e (0,1)
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resulting in

‘GQ:E:L)\ = 1<-S—0;E2>\ =2 \(—5—0133” i ‘<§OJ_S_u>l = .|<E1’E2>I =
‘Gli-s__:;)I = ‘<E11.S_’)_|,>l = l(§1)§5>| i I(§2:-§3>\

= ‘(Eg:gq)l = |<§2:E5>l = \(5-3:;)_,_)‘ = |<E J§5>\ = l(g)_pEé}l Z%

and \(‘5055)\ = Q.

Twelve Signals:

o =

and a = (l +

then 8. = L

sin n/6 ’ 2
Sl = 8 = 8, = 8 =8 = —.—é— £ | et 0.85065
> 3 L 5  sin x/5 5 _vﬁ;
e 5 e %5 B 55 S 0 B __Jsingx - sin’gx _\/singn/5 - sineﬂ/6
6 "7 "8 "9 10 sin x = sin /5
= [3= \/; ~ 0.52573 and s, = O.



The optimum signal set is therefore

iy
e (1,0)

0
1l

2

_ iyl(\/\z i(m%‘-
l e e
5 -5

0
I

0 |
Do
1
D
'_1-
)
oo
&
Ny
1 [A%]
e
]
|—J|
~~
o
+

n|
-
1
(0]
e
<
=
—
\N
1 [AV]
ol
D
e
~—~
o
+
wl

wl
(o)

1

o

0l
-
11
(0]
i
&g
——
AN I (O8]

1 1
gt
(0]

}J-
~~
o
+
wl
N
-
\N
1 o
"
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- eiY 3 - JE_ i(s + %E) 2

8 B<V 5 J5 Vs -5 ’
: ’ 67 |

AT

°9 5 -5 Vs[5 ’

. . B
= o elYlO 3 - \/g el(Y * ‘5—) 2
- 2 3
19 5 -\/5 Vs .5

and

— iy
e TH0,1)

t:m

which results in

|<§O’El>‘ = I(EO:E2>l = |<EO:-§3>I = |(Eo:gu>| = !<EO:E5>l =

1G5 = 1G5 = 1G5 = 1GLE)] = 16,5

I <-S-)+) -55> | = | <§)+: E9> | = I (E},{,) El()> I = I <-s’—53 _5-6) 1 = \<g5) §10> | =
1Ee| = 1Geme | = [Gempp)| = 1G5 = 1G5y =
l<-§8: -S_9> ‘ = l <‘-§8’ §11> ‘ = l<§9: §10> \ = ‘ <—S-9: gll> l = l <E10T§ll> | =

\/5?/3 5
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‘<_s-o’g6>l = ‘<§o?-§7>| = ‘(EOJEB)‘ \<_S-03E9>l = KEOJE_'LOH =

= ‘(EiJEL>l = |(5i:gé>\ = l<Ei’EiO>I - \<Ei?gil)\ )

~
w|
i
2]
W
~
|

|<‘s_2)gj+>l = |<-S_2:E5>| = \<EZJE6)\ = \(-5—22-59” = ‘<§2JEJ_'|_>‘ =
‘(5-3:.5_5)‘ = l<-§3:§7>l = \(E3;Elo>l = ‘(53,'511)‘; IE,L,E6)‘ =

= \(S—}.;’-S-l]_)\ = \<g5:g7>\ =5 l<§5:-§9>| = \(55’;11)‘ =

A~

n|
=
.

n|
(o0}

~
|

|G 5| = |GeBy = 1,501 = |G,5,00] = G50 =

K-S-O’.s-ll)‘ = \Cs_lz-s_g)l = l(EZ:ElOH = I<§3’g6>‘ = \<§1+)E7>1 =
\(Eé,Eé)l = 0.

Using the signal sets just presented, we substitute in hyperplane
equation (Eq.(108)) and the equation for the boundary of the caps
(Eq.(109)). We now graphically present the results for M = 2, 3, U,
6, and 12, showing the relationship of the hyperplanes and the caps

both in the wu,¥ coordinate system and in the x,y,Zz coordinate system,
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FIGURE VII-1

The optimal signal set for M =2, K =1 shown in

the wu,x and the x,y,z co-ordinate system,
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FIGURE VII-2

The optimal signal set for M =3, K =3 shown in the

u,x and the x,y,z co-ordinate system.
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K =6 shown in the

X,¥,% co-ordinate system.
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K = 12 shown in the
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__O,

The optimal signal set for M

co-ordinate system,
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hyperplane
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FIGURE VII-5

shown in the

X = 30

M = 12,

The optimal signal set for

co-ordinate system.

Xy¥y2

u,x and the
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CHAPTER VIIT

CAICUIATION OF THE FROBABILITY OF ERROR

FOR PHASE-INCCHERENT ORTHOGONAL SIGNALS

Using the notation of Chapter I and assuming equal energy and

equi-probable signals, we have

o - |lp-n5, 7|7
P(rlsi) = —l-—N (118)
7

The probability of correct decoding assuming orthogonal signals is then

458 392

Hr -As, ;& o

< mlnHr -AS.
ki

P[<S>> {z,s, 3]
‘ r l ii? ‘ TyBy l

= P[l(Agieje + H,Ei)l > max ](As eJe n,s. )1 ]
k#i
- P[\AeJe + @,5)]% > max |G, Yl | (129)
k£i

Since we are using orthogonal signals, let the orthonormal basis
functions be wi(t) = si(t). Then the probability of correct decoding

can be written as

P[IAeje + ni|2 = iég \nklz] (120)
i

i
where the n  are independent complex normal distributed with zero mean
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and variance one, Since the statistics of the noise do not depend
upon which signal was transmitted, we have that the probability of

being correct is independent of which signal was transmitted.

P, = B[B(|ae?® + n*|? > max 0| |n)3
k#£i
el « P(|ae?® + 0t > [oF|2 Y] (121)
kfi
Now, \nk\z is.equal to the sum of the squares of its real and

imaginary parts, and these parts are each identically distributed

independent, normal, mean zero, and variance one half, Therefore,

\nkl2 has a chi-squared density of rank two and mean one,

-lnk|2 \nklz >0
) e
k2
P(|n|%) = (122)
0 elsewhere
Jje 3 .
j® & 2 e x 07| -|nkz k|2
P[lAe + nil > |nkl = _/ﬁ e -dln I
0
Jje i2
R L (223)
Resulting in the probability of correct being
" § N-1
Je i 2
P - | [1-e” T+ 2 (221)
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i-je i : ; S
Iet n=n"e then n and n are ldentically distributed
random variables since n’ is invariant under phase translations.

Therefore, we obtain

N-1
P =E SRy (125)
By expanding in a binomial series, we obtain
N-1 5 )
k K
By = z K] (-1) E[e aad ] (126)
k=0

Now, since n is a complex normal random variable with zero mean and

variance one, we have

2 2
E{e—kllﬂnl ] ___ilt_. Ie- [(n)” + k{Aﬂl)Z_l(_ln
L b oga? kA o°

2w (e G gl b
kil n: U

n

We see that the above integral in brackets is the integral of a complex

5 kA . 1 .
normal density of mean =T and variance =i and is therefore equal

to unity. We therefore have that the probability of being correct is

2
Z(l)

kA~
The probability of error is 1 - Pc and may be written as

A9

K+l
) (128)
k+ 1

2
) A%

HJ
ZH—'

(129)
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CHAPTER IX

COMPARISON OF THE PROBABILITY OF ERROR BETWEEN THE

GLOBALLY OPTIMAL SIGNALS IN C2 AND ORTHOGONAL SIGNAIS

In the previous Chapter we obtained the probability of correct
decoding for orthogonal phase-incoherent signals, In this section, we
obtain the probability of correct decoding for the globally optimal
phase-incoherent signal sets in complex two space. We then calculate
and present the probability of error for both these cases as a function
of signal-to-noise ratio,

By using Egs.(20), (52), and (67) we may obtain the probability

of correct decoding for unit of signal-to-noise ratio (A = 1).

I 2
P = f% I F H1L) U(r) dr (130)
o™
' - 1/z T
where U(r) = 258 _[~Pr(Uu + %-) du - %E kt(u) E}(Uu + %) du (131)
v v

but Pr(\/u + %) = IO(ZrVu + %) (132)

® 1/2 T
2
. - / 1 1 / 1
S P, = 2-/”r3€ (r"+1) _[‘IO(Br u + E) du - E;}_/.kt(u)lo(z u + E)du dr
0] v

v

(133)
In order to calculate the probability of being correct for any signal-
to-noise ratio, we see from Eq.(12), Chapter I, that the above equation

must be modified to become

® 1/2 T
i
_ 3 -(r“+A%) Joo 1L 1 J &
P = 2_/rr e —[—IO(ZAr u + §) du - Egzv[ﬁkt(u)IO(ZA u + Z|dwdr
0 v

M (134)



50

where
k, (u) = 2rn arcos ... N— (135)
¥ tl/h-az
and
Te -~ (136)
1+t

The probability of error can now be calculated from the abofe
equation by Pe = L = Pc for the signal-to-nolse ratios desired.
Figure IX-1 shows a performance comparison of the orthogonal signal
(M = N) and the globally optimal signals in C2 as a function of
signal-to-noise ratio Az. Figure IX-2 shows the degradation in
probability of error as the number of signals increases for fixed

signal-to-noise ratios.



Probability of Error

]
oI
w

~
o

51

M signals in two dimensions

M orthogonal signals in M dimensioins
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FIGURE IX-1

Comparison of the probability of error for orthggonal
signals and globally optimum signals in C°,
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Comparison of the probability of error for globally
optimum signals in C as a function of the number
of signals for fixed signal to noise ratio (A%).
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CHAPTER X

CONCLUSIONS

We have formulated a set of conditions for the global optimality
of M equally probable, equal energy phase-incoherent signals in N
complex dimensions., In this method, we consider the signal vector as
poiﬁts on the unit sphere in Cz; and, by means of a geometric argu-
ment similar to that of Landau and Slepian, we proved the validity of
these conditions for N = 2.

We then perform the unit sphere in C2 onto the unit sphere
in three real-dimensional Euclidean space. Using this transformation,
we map the hyperplane equation and the equation for the boundary of
the cap. We then establish that the only signal sets in C2 that can
be shown to be globally optimal by this method are M =2, 3, b, 6,
cand 12. We determine that for the globally optimal signal sets there
are respectively 1, 2, 3, 4, and 5 hyperplanes determining the optimum
decision regions. DNext, we determine what these globally optimal
signal sets are for these values of M's. These sets are those for

which the inner products between a given signal vector and the ones

making up the decision region about the given vector are <E£’E5> = 0
- 1 — - 1.
for M = 2, l(gi,sj)| =% for M=3 l(si,sj)l = J? for M =L,
- = 1 - = 2
|(si,sj)| == for M=6, and |(si,sj)\ = [——  for M= 12,

2

5 -/5

We then compare the probaﬁility of error performance between the

globally optimal signals in C2 and the orthogonal signal sets in CM

as a function of the signal-to-noise ratio,
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