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ABSTRACT 

The problem _of global optimization of . M phase-incoherent signals 

in N complex dimensions is formulated. Then, by using the geometric 

approach of Landau and Slepian, conditions for optimality are estab-

lished for N = 2 and the optimal signal sets are determined for 

M = 2, 3, 4, 6, and 12. 

The method is the following: The signals are assumed to be 

equally probable and to have equal energy, and thus are represented by 

points Si' i = l, 2, ... M, on the unit sphere s1 in CN. If 
' 

Wik is the halfspace determined by s. and sk and containing Si' l. 

i.e. Wik trE cN: I <r-, s i > I :::: I <r, sk> I}, then the~. 
l. 

= n w .k, 
k7h l. 

i = l, 2, ••• , M, the maximum likelihood decision reg ions, partition 

s 1 . For additive complex Gaussian noise n and a received signal 

- je r = sie + n, where e is uniformly distributed over [0, 2~], the 
co 

probability of correct decoding is f r2N-le-(r2+l)U(r)dr, 

where 

2K 
M 

0 

f; . f r0 (2r I (8, S) I )dcr(S), 
i=l~in s 1 

U(r) 
1 and r = \\r\I. -M 

For N = 2, it is proved that u(r) ~ J I 0 (2rl (s,s) I )dcr(s) -

ca 

h(~K [Mo(Ca)-o(s1 )]), where ca= [sES1 :l<s,si)I :::: a}, K is 

the total number of boundaries of the net on s1 determined by the 

decision regions, and h is the strictly increasing strictly convex 

function of (where W is a halfspace not containing s. ), 
l. 



given by h = 

iv 

~ r 0 (2rl(s,si)l)d0 (s). Conditions for equality are 

~w 

established and these give rise to the globally optimal s ignal sets 

for M = 2, 3, 4, 6, and 12. 
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INTRODUCTION 

The problem of optimal (minimizing the probability of error) 

signal selection for transmission of messages over phase-coherent and 

phase-incoherent channels has been a subject of many investigations. 

Under the assumption of additive white Gaussian noise, equal energy, 

and equiprobable signal sets, Balakrishnan [l] showed in 1961 that 

with no bandwidth constraint the regular simplex is globally optimal 

for small and large signal-to-noise ratios for the phase- coherent 

channel. Landau and Slepian [2] established in 1966 that, in fact, the 

regular simplex code is globally optimal for the phase-coherent channel 

independent of the signal-to-noise ratio and for a larger class of 

probability density functions. 

Also in 1966, using the approach of Balakrishnan, Scholtz and 

Weber [3] proved that the orthogonal signal set is locally optimal for 

the phase-incoherent channel under no bandwidth constraint. For M 

phase-incoherent signals in M-1 dimensions, i.e., a bandwidth con-

straint, the signals with l<s.,s. >I = Mll were established as locally 
l. J -

optimal by Weber [4] in 1967 . 

Using the geometric approach of Landau and Slepian, 

we formulate a condition for global optimality of M equi-probable 

phase-incoherent signals in N complex dimens ions . In t he geometric 

approach, the length of the signal vectors is proportional to energy; 

and the dimensionality of the space is analogous to bandwidth [8] . For 

the set of probability densities which are monotone decreasing away 

from the signa l vectors (of which the Gaussian is a member ), we prove 

the validity of the se conditions for N = 2 along with some r elated 
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necessary conditions. We then perform a transformation which maps 

the unit sphere in c2 onto the unit sphere in three-dimensional 

Euclidean space. With this transformation, we _are able to use Euler's 

formula to show that the global solutions obtainable by this method are 

M = 2, 3, 4, 6, and l 2 ; and these have respect ively l, 2, 3, 4, and 5 

hyperplanes forming the boundary of their decision regions . We then 

obtain the globally optimal signal sets for these M's. 

In particular, we demonstrate that the signal sets which are 

globally optimal in t wo complex dimensions are, in fact, the above -

mentioned signal sets for M = 2 and M 3 (i.e., the orthogonal 

signal set <si, sj > = o for two signals a nd \ <si, 80 > I = ~ for three 

signals). For four s i gnals, the globally optimal signal set has 

I (si, sj) \ = '3 For six and twelve signals, the inner product b etween 

the signal vector and t he ones determining the decision region are 

given by \G.,s.)\ = 
1 

J. J J2 for six signals and \<s.,s. >I = ~ 
J. J \/ 5--~-J5 

for twelve signals. 
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CHAPTER I 

THE OPTJMUM RECEIVER A.ND THE EQUIVALENT VECTOR CHANNEL 

In this Chapter we derive the optimum receiver for the trans-

mission of messages over a phase-incoherent channel. In this deriva-

tion, it is assumed that the noise is additive white Gaussian and that 

the messages are all equi-probable a.nd have equal energy. 

Let (A. x. ( t), i = l, 2, 
1. 1. 

• • • M} 
' 

be the set of real messages to 

be transmitt ed where Ai xi (t ) is defined on 0 .~ t ~ T and has energy 

A. 2 
1. Let y. (t) be the Hilbert transform of xi ( t), i.e ., -2- 1. 

y . (t) 
1. 

= ltGx.(t). n: 1. 

Let s. (t) 
1. 

be the complex message defined by s.(t) = x.(t) + 
1. 1. 

jy. (t) which has spectrum 
1. 

2X. (f) 
1. 

f ~ 0 

s. (f) 
l 

0 f < 0 

and having unit energy. 

Let n(t) be complex white noise with zero mean and power 

spectrum 

f :2: 0 

s (f) = 
n 

0 f < 0 

Next we assume that the received signal is of the form 

·e 
r(t) = A.s.(t) eJ + n(t) 

1. 1. 

(1) 

(2) 

(3) 
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where e represents the phase of the r-f carrier and has a uniform 

probability density define d on t'he interval 0 ~ e ~ 2rr,. i. e ., 

p(e) 

We now let 

l 
2rr 

0 

e E[o, 2rr ] 

elsewhere 

rrn (t)} be a set of complex orthonor mal lTi i=l,2,•••,N 

(4) 

basis functions for the linear space spanned by the [si(t)}i=l, 2, •• ·,M· 

Then we define the 
th k component of the r vector· as 

T 

rk = J r(t) cpk*(t) dt 

0 

and similarly 

and 

T 

nk = f n(t) 

0 

-l(-

cpk (t) dt 

* cpk (t) dt . 

This yields for the kth component the equation 

and hence we obta in the vector equation 

- - j8 -r=A.s.e +n 
J. l. 

k k j9 k 
r = A. s. e + n 

l. l. 

The minimum probability of error receiver is then to sele ct the 

ith messages as be ing transmitted when 

p Crl A.s.) p (s.) = max p (rl Aksk) p (sk) 
l.l. l. k 

(5) 

(6) 

(7) 

(8) 

(9) 
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Assuming complex Gaussian di stributed noise with zero mean and variance 

2N
0

, we obtain 

P (rl A . s ., e ) 
J_ J_ 

1 11- - j
9 \l 2 

- - r-A.s .e 
1 2NO i i 

---Ne 
( 2JrN

0
) 

Then 

p(r lA.s.) 
J_ J_ 

= J2 1( p(rlA.s., e) p(e) de 
J_ J_ . 

But 
1 
2Jr 

0 

1 

de 

1 11- - j
9 ll2 

- 2N r-A.s.e 
0 J_ J_ 

is known to be 

(10) 

(ll) 

d9 

where I 0 is the modified Bessel funct ion of the first kind. The 

minimum probabil ity of error decision rule i s to select the ith message 

as being transmitted such that s . 
J_ 

maximizes 



A . 2 
J. 

(

A. \ (r, s. > I ) - 2N0 I 1 1 e p (s . ) 
0 N

0 
i 

6 

We now as sume that the messages ar e all equi-probable and h ave 

(13) 

probability and equal en ergy 2 2 
Ai =A . Then the optimum 

decis ion rule reduces to selecting 

Now 

n=O 

2n 
x 

s . to maximize 
J. 

(14) 

which i s a monotone increasing function of !x i. Ther efore the optimum 

decis ion rule is to select 

max 
k 

s. such that 
J. 

(15) 

For convenience in l ater sections, we l et 1 
N = -0 2 

then A2 
repre-

sents the signal-to-noise power rat i o of the complex signal . Also, 

using this notation, we see t hat all signal vectors [s } i i =l, 2, •••,M 

have unit energy and may be considered as points on the unit sphere 

in CN. 
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CHAPTER II 

FORMULATION OF THE PROBLEM 

In this Chapter, we use the equivalent vector channel presented in 

Chapter I. In this formulation, the set of signal vectors 

rs.} all have unit energy (i.e.. \\s.\\ = l),· and hence we 
l i i=l, 2, • • • , M ' i 

represent them as points on the unit sphere in CN. The dimensionality 

of the complex space i s proportional to the band;·Tidth of the communica-

tion system. [8] The received vector is assumed to be of the form. 

- - j9 - ( ( ) ( ) r = s.e + n where s. t) = x. t + jy. t and x.(t) is the real 
l. l. l. l. l. 

message transmitted where yi(t) is the Hilbert transform of xi(t). 

-The noise n is assumed to be complex additive Gaussian noise with zero 

mean and variance one. e represents the unknown phase of the r-f 

carrier and is assumed to be uniformly distributed on [0, 2rr]. 

The probability density of rece iving a vector r, given that 

x. (t) (x. (t) _, s. (t)) was transmitted, is then seen to be (Chapter I, 
l. l. l. 

Eq. (12)) 

2rr 

~rr J 2 \ (r, s. > I cos e 
. l. 

e d9 

0 

1 -(r
2
+1 ) \ (r - I = ~ e I 0 ( 2r r , si) ) (16) 

rr 

where r \\rll . Thus, we can write 

P(-;\s.) 
l. 

2 
1 -(r +1) P C\<E. ,s.)\) 
Ne r r i (17) 
rr 

where 



P < I <E. , s · > I ) r r 1 

8 

r
0 

( 2r I (E. , s. ) \ ) r 1 

is for each fixed r > 0 a strictly increasing function on [O,l]. 

We may partition CN int~ M decision regi~ns 

and each~. region conta ins s.eje for all 0 ~ e.~ 2~, 
1 1 

i = 1, 2, • • • , M. We may now write the probability of no decoding 

error ( Q.) as 

M 

=[ P <l<E. ,s.> I) dm(r) r r 1 

co 

1 J 2N-l -(r
2
+1) ( ) = ~ r e U r dr 

~ 0 

where 

M 

U(r) I: p(s.) f p <I <s, s. > I) do(s) 
1 r 1 

i=l ~.n s 
i r 

r 

and s trECN: \Ir\\ = ro}. 
ro 

(18) 

(19) 

(20) 

(21) 
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Assuming equa lly probable s i gnals, Eq.( 21) can be rewritten as 

M 

U(r) = ~ -[ J 
i=l~ns 

i r 

P c I (8, s. > I ) da (s) r i 
( 22 ) 

r 
and, clearly, Q is maximized if U(r) is maximized for each r > O. 

Now, we l et 

Note, also, if we l et Wik be a ha lf-spa ce determined by 

containing 

then 

s. and defined by 
]. 

, 

s. 
)_ 

and 

(23) 

(24 ) 

(25) 

Consequently, our problem is to find a condition on the location of 

the points s 1 , s
2

, • • • , sM on the unit sphere i n CN s uch that 

is maximized . Where U(r) 

P i s an increasing function of 
r 

[o, l], 

Ri ~n s1 ; and the decision regions Ri are the intersection of a 

finite number of half- spaces of CN determined by points on s
1

. 
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CHAPI'ER III 

THE METHOD OF LANDAU AND SIEPIAN 

In this Chapter, we present the method of Landau and Slepian 

modified for the phase-incoherent optimization problem. 

For o <a < 1, we define the "cap" of s
1 

centered at 

of size a to be 

s. 
l. 

and 

(27 ) 

We let a(c ) a denote the common value of a(c. ), i = 1, 2, • • • , M i,a 
and further restrict a(c ) 

a 
such that 

If W is a half space which does not contain si , let 

h::: J 
c. n w 
i, a 

P (\<s,s.>I) da(s) . r J. 

(28) 

(29) 

The method of Landau and Slepian is based on proving the following 

properties of h which we shall prove in Chapter DI for N = 2: 

(A) h is a function only of a(C. n W) i,a for fixed a and, in 

fact, is a strictly increasing strictly convex function. 

(B) If V is the intersection of a finite number of half-spaces, 

at least one of which does not contain then 



f 
c. n v 
i, a 

ll 

P <l<s,s.)\) dcr(s);;:: h(cr(c . n v)) 
r i i,o: 

with equality if and only if V is a single half- space. 

Assuming h has the properties (A) and (B), we may proceed as 

follows. For i = l, 2, • • • , M, let k. be the smallest integer 
l. 

(30) 

such that~i is the intersection of distinct half-spaces wil' wi2' 

• • • W • i e ik. ' . . , 
l. 

determined by Ri. 

M 

ki i s the number of boundaries of the net on s
1 

Let K be the total number of boundaries on the 

K = ~ L ki 

Let 

i=l 

be the portion of the boundary of W. . which is a 
l.J 

boundary of Ri. Then Ric can be partitioned into regions Til' 

(31) 

Ti2' • • • , T .k , where each T .. 
l. i l.J 

is bounded by B .. 
1.J 

and "hyperplanes" 

through s . . Hence, if we l et 
l. 

E. a R.n C . 
c 

= i, l. i,o: 

and T .. 
l.J, a T .. n C. 

l.J i,o: 

we have the identity 

f J 
i=l R . 

l. 

, 

f .do + 
l. f 

E. 
i, a 

(32) 

(33 ) 



Letting f . .= l, l. we have 

= Mo(c ) + ex 

l2 

+ a(E. ) -. i,ex 

M 

L o(E. ) -i,ex 
i=l 

o(T. . )l 
iJ, ex J 

M ki 

\ \ o(T .. ) L L l.J,ex 
i=l j=l 

If we next let f. = P (\(8,8.)j) and from Eq.(30), · l. r l. 

(35) 

(36) 

f P (I (8, 8.) I) do(8) ;;:: h(a(T.. )) with equality if and only if 
r i iJ, ex 

T .. 
l.J' ex 

Tij,ex = ci,exnwij" 

We may then write the inequality 

M M 

L f I: 
i=l c. 

i , ex i=l 

k. l. 

\h(cr(T .. )) L l.J,ex 
j=l (37) 

and, from property A, h is a strictly increasing strictly convex 

function. Therefore 

(38) 

with equality if and only if o (T. . ) 
l.J' ex 

has the same value for all 

i and j. 

Substituting the inequality given in (38) into Eq.(37 ) yields 

M M M M 
k. 

l. 

I: f fido ~ [ f fido + 2= f fid<J - 2K h( .!c_ LL o(T. . )) 
2K l.J' ex 

i=l R. i =l c. i=l E. · i=l j=l l. i, ex i, ex 
(39) 
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Now, from Eq. (36 ) we note that 

M 

L cr(E. ) -i,a 
i=l 

We will now place a restriction on the cr(E. ) portion of 
i, a 

Eq. (39 ). Let w1 and w2 be two ha lf-spaces such that 

w
1
n c

1 
c w

2
n c

1 ,a , a 

and 

The n we may write 

where 

and 

h(cr(w2n c1,a)) = h(o(w1n c 1,a)) + J f 1dcr 

A 

A = (W -W ) n cl a 2 1 , 

M 

cr(A) l L o(E. ) = 2K i =l i,a 

(40) 

(41) 

(42) 

(43 ) 

(44) 

(45) 

(46) 
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Now, since P c I <s, s. > I ) r l. 
is monotone increas ing in its argument, 

we have that 

But , 

JP Cl <s,s . ) I) d<J(s) ;;e: p (a:) o(A) ~ 
r i r 

A 

2K f Pr( l (s, si) I) do(s) ;;e: 2KPr (o:) o(A) 

A 

P (a:) o(E . ) 
r i , o: 

i=l 

s i nce E. 
i , a: == R.n C. c 

l. i ,o: we have that 

M M 

J [ p (a:) o(E . a:) ~ [ P c I <s, s. >I) r i, r i 
i=l i=l E . 

i , a: 

wi th equality if and only if o(E . ) = 0 
i, a: 

(48) 

(49) 

do(s) (50) 

(5l) 

Combining the results from (26 ), (39), (40), and (5l), we obtain 

an i nequal ity for U(r) 

U(r ) ~ f p c I <s, s. > I ) r J. (52 ) 

Ci a: 
' 

and, furthermore, there is equality if and only if such a cap size 

exists with the additional properties . 

l. T . . =C . nw . . 
J.J ) a: i, a: l.J 

, ,where w . . 
J. J 

is a half' space for all i 

and j . 

2 . 

3 . for all i and j . 



l5 

CHAPTER IV 

THE CASE OF N = 2, M ;;:: 2 

In this Chapter the validity of properties A and B of Chapter 

III are proved for the case of N = 2. We consider the transformation 

which sends 

·e 
zl = rpeJ , 

and r > O. 

(zl' z2 ) = (xl + jyl' 

z2 = rJl-p
2 j iP 

e ' 

The jacobian of this 

x2 + jy2) into (r,p,9, <.P ) where 

0 ~ p ~ 1, -rr < e ~ rr, - 1( < cp ~ rr, 

transformation is r3p so that 

dm = r 3drdo, where do pdpd9d<.P Thus, the unit sphere in c2 has 

1( 1( l 

f f f pdpd9d<.P 
-1( -1( 0 

jy 
If s0 = e 0 (l,o) and p 

O <a< l the cap equation i s 

2 
2rr • 

For later convenience, we introduce the notation 

2 t3 = l - - then · 
M ' 

1( 1( 1 

J J f pdpd9d <I? 
- rr - rr a 

then for 

2 V=a l 
- 2 and 

1 1 
and the requirement (Eq.(28)) M o(S1 ) ~ o(Ca) ~ 2 cr(S1 ) becomes 

(53) 

(54) 

1 ~ a2 ~ 1 -
1 o ~ v ~ ~2 t3 (55) 

2 M 
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Now, suppose s1 and 

s ..1. ej1) s and 

s 2 a r e linearly independent points on s1 ; 

i.e., l r 2 

- j yl( j 11. s 1 = e s1e , Ji - s1
2

) 

- - jy2 ( j02 s
2 

- e s
2

e 'v l - s/) , 

then the "hyperplane" equat ion \(p,s
1

>\ = \(p,s
2

) \ becomes 

If we let 

j 6i 
e 

and 

' 

then the "hyperplane" equat i on can b e rewritten as 

2 l 2 2 
( p - - )(s - s ) 2 2 l 

(56) 

(57) 

(59) 

(60) 

(61) 

(62) 
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If we let t Isl and we assume without los s of generality 
2 2 ' s -s 

l l 

that then t is well-defined for 0 ~ t ~ CP' 

the fol lowing cases for Eq. (62 ). 

if t = ro, we have either (3 = o, 

if 0 <t < ro 

' 
we have 

cos ( 9- <P - 0) u 

where for convenience we have let 

for \ u I ~ T = t ~ ~ . 

2J1 + t
2 

Proof of (A) . 

If 

(3 

u 

t = o, 

= l , or 

l 2 
p - 2 

the equation 

cos ( e- <P-o) 

and 

and we have 

i s 2 l 
p - - · - 2' 

= O; and 

(63) 

is defined 

We now us e t hese transformed equations to establish the convexity 

of h. We first let Wt be a half- space, determined by and 

and not ~ontaining s 0 which intersects Ca in a set of positive 

measure. That is, s1 ~ s 2 and 

where for 

where 

v < T < ~ define 
2 

I 
'r 

do (p) = J kt (u) du 
v 

(64) 

( 65) 



then 

cm (t) v 
at 

u 

= 2rc arcos gt(T) 

T . 

2 
- u 

T 
dT J o - + 2rc-dt at 

v 

18 

t 
v =ex 2 

(arcos gt(u)) du 

J u 0 + f 2rc ~t (arcos gt (u)) du 4rcT du = t2 
V JT2 

-
2 

v u 

__ 4rc
2

T J~2 2 ' - v > 0 . 
t 

l 
- 2 , and 

(66 ) 

Thus , for f ixed v, mv(t) i s a strictly increas i ng function of t. 

Now, for 2 l 
0 :s;; m < re (2 - v), which is the range of mv, 

be the inverse function of Next, l et 

T 

H (t) = f kt(u) Pr(Ju + ~) du 
' v 

v 

and let h (m) = H ( t (m)) so that H (t) = h (m (t)) . v v v v v v 

oH (t) v Oh (m (t)) v v O:D (t) v 
at 00) ot 

and 

we let t (m) v 

Then 

(68) 
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We may now write 
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= J ~t kt(u) Pr (Ju+ ~) du 

v 

l 

2 
- v 

as 

now integrating by parts yields. 

= P (ex) r f,.JR2 ,. - u 
+ 2 2 

,. - v 
v 

which is a positive strictly increasing function of t, 

Therefore, we have proved that for each fixed v, 

increasing strictly convex function. 

Proof of (B) . 

h v 

(69) 

(70) 

(71) 

and hence of w. 

is a strictly 

We now prove the conjecture that if V is the intersection of a 

finite number of half spaces, at l east one of which does not contain 

then 

J Pr(\<S,si)\) dcr(S) ~h(cr(ci,cxnv)) 
ci,cxn v 

with equality if and only if V is a single half space. We proceed by 

recalling that kt(u) = 2:rr arcos gt(u) where gt(u) = J,Iu 2 
4 - u 
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Therefore, we observe that 

- re 

l 2- rt::"2 2 2 
2(1+ - u >J(i;)- - (t + l) u 

-rcT 
(72) = 

which for fixed u is a strictly increasing function of t and is 

always negative. Now, let Wt , Wt , • • • W be half-spaces such that 
l 2 ' tn n 

v = n w 
. l t . 
1= ]_ 

intersects Ca in a set of positive measure and 8
0 

q wt. 

for i = l, 2, • • • , m ~ n. 

Now, define gt (u) = l and kt(u) = 0 for 

l 
2 ,,.. 
j kt(u) du 

v 

o(wtn ca) = l 
2 f [ 2n:2 - kt (u) ]du 

Therefore, 

l 
2 

v 

o(v n ca) = f k(u) du 

v 

where we describe k(u) as follows. I.et 

l 
T < U < 2· Then 

]_ 

(73 ) 

(74) 



+ l 

d(i) 

- l 

then there is a partition 

for uE[ u. 1, u . J , 
J - J 

k(u) 

i 

i 
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= l, 2, ... m 
' 

' (75) 

= nH- l , .. . n 
' 

< ••• <~ of such that 

(76) 

where ~ is a constant and (i~) is a collection of not necessarily 

distinct elements of 

belong to [l, 2, 

[l, 2, 

' m} • 

• • • n} 
' 

such that at most two of them 

In particular, this description shows that k is continuous on 

differentiable in (u. 1,u.) and has right- and left- hand 
J - J 

derivatives at the left and right end points, respectively. In fact, 

these der i vaties are given by 

dk(u) l \ 
du = 2 (__, d(i~) 

ok (u) 
t . 

J.~ 

OU 

If we now let Wt 

cr(wtn ca) = cr(v n ca) 

be a half space such t hat 

' 
then m (t) = cr(wtn c ) v a 

80 ~ Wt and 

cr(V n Ca) ~ 

cr(Wt n C) = m(t.) 
i a i 

for i = l, 2, • • • , m -+ t. > t 
J. 

for i = 

l, 2, • • · , m. Consequently, from Eq . (72 ) 

dk(u) ~ okt(u) 
du ou 

for v ~ u ~ T with equality if a nd only if V = wt. for some i 
J. 

(77) 

(78) 
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with t. = t 
J. 

and l ::; i ::; m. But 

l l 
2 2 I k(u)du = f kt(u) du and 

dk ( u) Ok t ( u) 
-- '2: ---du ou 

v v 

for v ::; u ::; T implies 

there is a point such that for u ::; u
0 

and 

for Since P is monotone increasing, we may 
r 

therefore write 

l 
2 

- hv(wv(t))= J [k(u)-kt(u)] Pr(Ju + ~) ~u 
v 

l 

~] 
v 

[k(u)-kt(u)J Pr(Ju + ~) du + j [k(u)-kt(u)J Pr(Ju + ~) du 

uo 

l 

~ P~[? [k(u)-kt(u)] du+ J [k(u)-kt(u) ] dul 0 (79) 

v uo J 
with equality if and only if k(u) = kt(u) for all 

J Pr(\ 0i,s0 ) \) do(p) :;:: hv(o(v n ca:)) 
v n ca: 

with equality if and only i f V is a singl e half-space . 

Hence 

(80) 
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CHAPI'ER V 

SOME NECESSARY CONDITIONS 

In this Chapter we establish some necessary conditions that must 

be satisfied for the existence of an optimal signal set. We consider 

the case in which k . ~ 2 for i = 1, 2, ••• , M ~ 2K ~ 2M ~ x = 
]. 

Mrr . rr 
2K::;; 2 . 

For a given allowable cap size, i.e., one such 

necessary condition is the existence of a half-space Wt such that 

We now define 

1 2rrx(- f:)-v) 
2 

(81) 

(82) 

which is in the domain of t ' v 
the inverse function of Hence, we 

define 

T (v) x t (W (v)) 
v x 

then 

ru (T (v)) = W (v) v x x 

Thus, the half-space determined by t 

necessary condition 

T (v) must satisfy the x 

(83) 

(84) 
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~ (T (v)) 
v x 

+ 

Now, from Eq.(82), we have that 

CW (v) 
x 

- 2:n:x 

Now, for convenience of notation, we define 

1" ( v) 
x 

T (v) 
x 

Then we may write 

ru (T (v)) k (u) du 
T (v) v x 

v x 

which yields 

an (T (v)) 
v x k_ (v) 

- -or (v) 
x 

ov 

and, from EQ. ( 66) we have that 

an (T (v)) v x 
ot 

(v) 
= - 2~ arcos gT (v) 

x . 

Now, substituting Eqs.(86), (89), and (90) into Eq.(85) and solving 
oT (v) x for we obtain 

' 

(85) 

(86) 

(88) 

(89) 

(90) 
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2 
Tx (v)[arcos gT (v)(v) - x] 

x 

2 
- v 

Now, from Eq. (52 ), we have 

Ux(v) = f Pr(\(p,s0)\) do(p) - ~K hv(~K [Mo(c
0
)-o(sl)]) 

ca 
l 
2 

= 2rc2 f Pr Vu+ 
v 
l 
2 

~) du - ~ h (W (v)) 
2 x v x 

= 2n
2 J Pr(Ju + ~) du - ~ Ry(Tx(v)) 

v 

= - 2n2P (o:) - ~~01\r(;(v)) + OHy(Tx(v)) oTx(v)J 
r XL ot av 

(9l) 

(92) 

,. (v) 

gT (v)(v)] } 

2 2 ,. (v) - u f1 
_x_2 ___ _.,,.2 dP r (Vu + ~) . 

x v ,- (v) - v 
x 

Another property of the U (v) equation is obtained with the aid of 
x 

the convexity property of h . This is that v 

If we naw consider requirement 2, Chapter III, i.e., 

(93) 

(94) 
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c o(E. ) = o(R.n C. ) = 0, we find some additional requirement for i,a i i,a 

the existence of the cap is the existence of a v = a 2 

l 
0 s v s 2 t3 such that 

2n: 
2 arcos g'rx(v)(v) = 2K/M 

l 
2 , 

We shall show, in fact, that there is exactly one such v, call 

it V(x), and V(x) is the unique point at which the maximum of 

and the minimum of U occurs in the interval x 

First of all, for n: x- -- 2 ' 

let V(¥) = O; for 
1( 

x< 2 we have 

gT (v) (v) = cos x 
x 

T (v) v 

x 

On the other hand, 

,. 
ro)t) = J kt(u) du 

v 

2 
- v 

gT (v) (v) = cos x ~ v = o, 
x 

arcos(21") [ 

= 2n: J arcos t t!n.n.] d(~ cos .n. ) 
arcos ( 2v) 

and integrating by parts, we obta in 

so we 

T 
x 

(96) 

(W) . 



CJ.) (t) 
v 

where 

2 
- v 
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Hence, the defining equation for T (v) 
x 

m (T (v)) = W (v) 
v x x 

becomes 

1 1 
2 arcos jT (v)(v) - v arcos gT (v)(v) = x(2 ~ - v) 

x x 

Thus, we are looking for a value of v which satisfies the system 

v 

1 

2 
- v 

cos x 

The solution is easily found to be 

and 

1 tan ~ x 
V(x) = 2 tan x 

cos ~ x 

(98) 

(99) 

(100) 

(101) 

(102) 

(103 ) 
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T (V(x)) 
sin t3 x = x 

Jcos
2

t)x -
2 cos x 

show that l 
V(x) ~ 2 t3 for 0 <x 11: 

< 2} we consider 

(~ t3 2 V(x)) = t3 tan x - tan t)x. This function is 0 for 
. 2 2 

and has derivative t)(sec x - sec t)x) and since O<t)~l 

t3 tan x - tan t)x ~ 0 

is the value of U which will be 
x 

(lo4) 

(105) 

attained if an optimal signal 
OU (V(x)) 

Uc) (x) = _x~Ox,..---

set occurs for a given value of x} we 

have 

function of x· 
' 

~ o. Thus} for fixed MJ u
0 

is a decreasing 

and} hence, the maxinum possible value of u
0 

is 

obtained for ~K = M - l } i.e 'J 
11: 

x = M- l 
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CHAPTER VI 

A TRANSFORMATION INTO THREE-SPACE 

In this Chapter we :perform a transformation that maps the unit 

sphere in c2 onto the unit sphere in three-dimensional real 

Euclidean space. In particular, we apply this transformation to the 

hyperplane equation (Eq.(62)) and to the equation for the boundary of 

the cap. 

The equation (Eq. (62 )) of the hyperplane between two signals, say 

and is 

where we have defined 
2 1 

u = p - 2 and * 8-ii?-6. 

2 l 2 2 
(p - -)(s -s ) = 2 2 l 

(l06) 

The equation for the 

boundary of the cap about signal s1 is 

where V=Ci. 
2 1 

- 2 and s 

I Ji 1 2·r;--:;, = 2s u + 2 J:i:' - s V ij:- - u- cos ~ v 

l 
- 2 . 

(107) 

Now, Eqs. (lo6 ) and (lo7) are for a g i ven cap s i ze (a) and a give n 

set of signal vectors, functions only of the two variables x = 8-ii? and 

u. Solving for u as a function of x, we obtain from (106) 
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(l08) 

and from (l07) 

u 

' J 2 ' 2 '2 l '2 2 2 l vs ± vs - (s + (4 - s ) cos (x--o))(v - 2) 
' 2 l '2 2 

2s + (4 - s ) cos (x-o) 
(l09) 

Using the coordinate transformati on shovm in Figure VI-l for o = o, 

we transform the u,x equations into points on the unit sphere in three 

r eal dimensions with 

x = 2u 

y =Vi- 4u2 cos ( x) (llO) 

z =Jl - 4u
2 sin ( x) 

I n Section VII, Eqs . (l08) and (l09) are used to i l lustrate the con-

f igurations of the caps and hyperplanes . These figures are then trans-

formed by (llO) and plotted on the surface of a unit sphere in three 

dimensions . 

Substituting the transformation (llO) into the hyperplane Eq . (lo6), 

we see that the hyperplane for 6 = 0 is given by x = ty where 

t = -'-'I s"-'-1 _ 
2 2 

s2 -sl 
and the intersection with the unit sphere is g iven by the 

set of equations 
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y 

Point determined 

Unit sphere . in 
three dimensions 

.J l - 4u2 sin(x) 

by x, u 

J l - 4 U 
2 

COS ( X) 

x 

FIGURE VI-l 

The co-ordinate transformation from the unit sphere in 

c
2 

onto the unit sphere i n three-dimensional r eal space 

(& = o). 

x 
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x = ty 

z =Jl - x 
2 

sin ~ 
(ill) 

That is, the hyperplane in c2 is transformed into a t wo-dimens ional 

real plane which intersects the sphere and passes through the origin . 

The decision regions in three dimensional real space are now the inter-

section of half spaces determined by these transformed hyperplanes. 

Let 
t 

H . . 
J.J 

denote the hyperplane in three-space be tween s. and 
J. 

t 
Then let W.. be the half-space containing s .. The decision region 

J.J J. 

~t is then the intersection of M-l of these half spaces, i.e. 
i 

= n w t 
kti ik 

(ll2) 

and is therefore a convex region bounded by a certain number of hyper-

planes that pass through the or igin. Now, by using this transformation, 

we note that the maximum likelihood reg ions forming the net on the 

three-dimensional sphere can be composed of regular spherical polygons. 

r:D t . 
Since the~. are convex, a vertex on the surface of the sphere must be 
. J. 

formed by at l east three edges . Thus, we have that 3V ~ 2K where V 

is the total number of vertices on the net and K is the total number 

of edges on the ne t. We may now apply Euler's formula [5], V-K+M = 2, 

for the net and obtain an inequality for K 

K ~ 3 (M- 2 ) (ll3) 

Since we require the same number of boundaries on each of the 



33 

decision regions, the total number of boundaries K must be an 

integer (I) ti.mes the total number of signals divided by 2; i.e., 

K = 
IM 
2 (ll4) 

We may therefore rewrite (65) as an inequality for I or M as 

or 

6M - 12 
I ~ ---­

M 

M ~ 12 
6 - I 

(ll5) 

(ll6) 

Now, as shown in Chapter v, u0 (r) Eq. (52) is a monotone decreas-

ing function of x and hence a monotone increasing function in K. 

Therefore, for a given M, we wish to choose K and thus I as large 

as possible . Consequently, we wi sh to obtain equality in inequalities 

(ll5) and (ll6) since these codes will have the maxi mum number of 

boundaries for each decision region and the same number of boundaries 

for each region. The only cases of equality are M = 3, 4, 6, and 12. 

The corresponding values of K are K = 3, 6, 12, 30 . When M = 2, 

the above inequalities do not hold since there are no vertices. 



CHAPTER VII 

SOLUTIONS FOR N 2 

In this Chapter we use the results of Chapters IV, V, and VI to 

construct the globall y optimum signal sets for N = 2, M = 2, 3, 4, 

6, and l 2 . We obtain the value of I (Sp s j ) \ for all i, j for each 

of these cases . We then graphically present the r esults for these 

cases showing the location of the signal vectors, the caps, and the 

hyperplanes . 

Two Signals: 

If M = 2, then f3 = o, and the r equirement 0 
l 

S:VS:2f3=:>V = 

and 
l Also, l 2K 

~ K = l. Thus the decision region a: =ff . s; - s; M-1 
M 

for sl must b e 

0 

(ll7) 

o. That is, and 
iyl 

e (O,l) 

Three S i gnals : 

M 3, K 3 =:> X= ~ f3 
l 

2 ' =3 

Then V(x) 0 and l t T (V(x )) 
s i n f3x :rr a: = 72- ' = tan b x 

Jcos 2f3x- cos 2~ 
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Four Signals: 

M = 4, 

Then, V(x) = ~ tan rc/6 = i J2 
tan rc/3 and a = 3 ' 

Therefore we have 

' 

- - iy2(!._ i( &t 2rc) {fl 
s2 - e J'3 e 3 'V ·~f ' 

sin ~x l 
= 2' 

sin x 

and 

and trere-

sin rc/6 l 
t=/ 2rc 2rc=J2 

vcos 6 - cos 3 



resulting in 

l 

J3 

Six Signals : 

V(x) 

M = 6, 

s - l 0 -

Select s 5 = O. 

1l 2 
K = 12 ~ x = '4 , (3 = '3 

sin rr. 6 l 
sin rr = r:: 

V2 

t sin rr./6 
~~~----'-'--~~~~ l 

~cos 2 
rr./6 - cos

2 
rr./4 

Therefore we have the following set of signals. 

_ i y4( l i ( 6 + '!?-) l ) 
s 4 = e J2 e , J2 , 
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resulting in 

l<SO'si>I = \<so,82> \ = \<so,s3> I = l<"so,s4>\ = .l<si,82> 1 = 

\<Si,s3>I = l<si,s4>l = l<si,s5 >I l<s2,s3> l 

= \<s2,s4>1 = l<s2,s5>\ = \<s3,s4>1 = l<s3,s5>\ 

Twelve Signals: 

M = l2, K = 30 => X = ; , f3 = ~ 

V(x) = ~ tan 1( 6 == ~ ~ ~ 0.39733 
2 tan 1( 5 2 J~ 

and o: == ~ ( 1 13 
+ J5 ) ~ 0. 947 27 

3(5 - J5) 

t = sin 1(/6 = ~ ~ l.6180 
J 2 16 2 I V 3 - J5 cos 1( - cos 1( 5 

then s0 == l 

g = C:- ~ 0.52573 and sll == O. 
5 If 5 

:= ~ ~ 0.85065 V575 
Jsin21(/5 - sin21(/6 

sin 1(/5 



The optimum signal set is therefore 

- iy 
s

0 
= e (l,O) 

_ iy1(J2i i(o + ; ) ,j3 _ J5 ) 
s

1 
= e e , 

5-15 5-J5 

- iy2(J 2 i( 6 + ;1!) , J 3 - J5 ) 
s 2 = e r-; e Ir 

5 -v 5 5 -v5 

_ iy3(J5 i(o + 1!) 
s = e e 
3 5 - J5 , ~i v~ 

, 

__ iy4(~ i(O + 7;) J3 _ .J5 ) 
s 4 - e e , , 

5-J5 5-/5 

, 

- - iy7(J 3 -J5 i(O + 2;) J 2 ) 
s7 - e e ' ' 5-15 . 5-J5 
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- i y~J 3 - J5 i ( 6 + i") s8 = e r;: e , 

5 -v 5 8) , 

- - i y 9()3 -J5 i ( 6 + g·) J 2 ) s -e e , , 
9 5-/5 5-15 

- iyiof;i-J5 i(y + ~re) ~ 
slO = e e , , 

5-/5 5-J5 
and 

which results in 

\<ss,s9> \ = \<ss,s11>I = \<s9,s1o>I = \<s9,sll> I = \ <s1o~ll>I 

J5 ~15 
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I (so,s6> I == I <so, s7 >I == I <so, ss> I I <so, s9> I == I <so, slo> I 

\<sl's3> I == I <sl, 84> I I <8l, 8s> I == \<8l , 8l o> I == I <8l' 8l l> I 

\<82,s4>1 I <82, 85 >I == I <82, 86> I I <s2, 89> I \<82'8n >I == 

I <83, 85 >I I <83, s-1 >I I <s3, 8l o> I == I <s3, 8ll> I I <s4, 86> I == 

I <84, 8s> I == I <84, 8l l> I I <85, 81 >I == I <85, 89> I == I <85, 8n> I == 

\ <8 6' 8 8 > I == I <s6, 89> I == I <81, s-9> I == I (87' sl o> I == I <8s' 8l o> I 

"J3 -15 
5 -J5 

And 

Using the signal sets just presented, we substitute in hyperpl ane 

equation (Eq . (l08)) and the equation for the boundary of the caps 

(Eq. (l09)) . We now graphically present the results for M == 2, 3, 4, 

6, and l 2, showing the r e l ationship of the hyperpl anes and the caps 

both in the u, x coordinate system and in the x,y,z coordinate system. 



x 

1( 

2 

0 

1( 

,_ 

- 2 

- 1( 

1 
- 2 

41 
------- hyperplane and cap ( coi ncide for 

M = 2, K = 1) . 

sl so 

I I I 

1 0 1 1 
- 4 4 2 y 

u 

L x 
z 

FIGURE VII-1 

The opt i mal s i gnal set for M = 2, K = 1 shown in 

the u, x and the x, y, z co-or dinate system. 
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FIGURE VII- 2 

The optimal signa l s e t for M = 3, K = 3 shown i n the 

u,x and the x, y,z co- ordinate s ystem. 
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FIGURE VII-3 

The optimal s i gnal set for M = 4, K =6 shown in the 

u,x and the x,y, z co-ordina te system . 
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FIGURE VII-4 

The optimal s i gnal set for M = 6, K = l 2 shown in the 

u,x and the x,y, z co - ordi nate system . 
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FIGURE VII-5 

1 
2 

The optimal signal set for M = 1 2, K = 30 shown in the 

u,x and the x,y,z co-ordinate system. 
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CHAPTER VIII 

CALCUIATION OF THE PROBABILITY OF ERROR 

FOR PHASE-INCOHERENT ORTHOOONAL SIGNAIS 

Using the notation of Chapter I and assuming eq_ual energy and 

eq_ui-probable signals, we have 

(118) 

The probability of correct decoding assuming orthogonal signals is then 

P[l(r,s.)\ >max \(r,sk)\J 
1 

kri 

·e 2 2 
= P[ \AeJ + (n, SJ.. ) I > max I (n, sk) I ] 

kf i 
(119) 

Since we are using orthogonal signals, let the orthonormal basis 

functions b e cpi(t) = si(t). Then the probability of correct decoding 

can be written as 

where the 
i 

n 

(120 ) 

are independent complex normal distributed with zero mean 



and variance one. Since t he statistics of the noise do not depend 

upon which signal was transmitted) we have that the probability of 

being correct is independent of which signal was transmitted. 

\nk\2 Now) i s equal to the sum of the squares of its real and 

imaginary parts, and these parts are each identically d i stributed 

independent) normal) mean zero) and variance one ha l f. Therefore) 

\nk\ 2 has a chi-squared density of rank two and mean one. 

e - \nk\ 2 \nkl 2 > 0 

(121) 

P( \nk\
2

)- (122) 
0 el sewhere 

(123) 

Result ing in the probability of correct being 

[ 

j8 i 21N-l] 
Pc= E (1-e -\Ae + n \ (124 ) 



Let 
i -je 

n == n e 

48 
i 

then n and n are identically distributed 

random variables since ni is invariant under phase translations. 

Therefore, we obtain 

By expanding in a binomial series, we obtain 

(125) 

(126) 

Now, since n is a complex normal random variable with zero mean and 

variance one, we have 

E[e-k\A+n\2]-! fe-[{n)2+ k(A+n)'\dn 

= _!_n e -\~:[! k+l e - (k+l) 
k+l :n: 

n 

kA 2 
[n + -] l 

k+l . dnj (127) 

We see that the above integral in brackets is the integral of a complex 

normal density of mean kA 
k+l 

and variance k:l and is therefore e~ual 

to unity. We therefore have that the probability of be ing correct is 

kA2 
N-1 - k+l 

pc == L (-1) k (.N1l) _e --
k =0 k + 1 

The probability of error is 1 - P and may be written as c 

(128) 

(129) 



CHAPTER IX 

COMPARISON OF THE PROBABILITY OF ERROR BE'IWEEN THE 

GLOBALLY OPTIMAL SIGNAIS JN c2 
AND ORTHOGONAL S I GNAIS 

In the previous Chapter we obtained the probability of correct 

decoding for orthogonal phase-incohe rent signals. In this section, we 

obtain the probability of correct decodi ng for the globally optimal 

phase - incoherent signal sets in complex two space. We then calculate 

and present the probabil ity of error for both these cases as a function 

of signal-to-noise ratio . 

By using Eqs.( 20) , (52) , and (67) we may obtain the probabili ty 

of correct decoding for unit of signal- to- noise ratio (A = 1). 

where 

but 

:. p 
c 

p 
c 

U(r) 

ro -J ~ r3e - (r2+1) 
- 2 

0 rr 
1/2 

' 2 f Pr(Ju + = 2n: 

v 

U(r) dr (130) 

'f 

1 
) du -

2K f kt (u) Pr(Ju + ~) du 2 M 
(131) 

v 

(132) 

du - 2~xf kt(u)I0 ( 2,Ju + ~)Jdr 
v lc133) 

In order to calculate the probability of being correct for any signal-

to- noise ratio, we see from Eq. (12), Chapter I, that the above equation 

must be modified to become 

du - 2~xJ kt(u)I0(2Aq)didr 

v (134) 
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where 

2rc areas 
u 

and 

t 

The probability of error can now be calculated from the above 

equation by p 
e 

1 - p c for the signal-to-noise ratios desired. 

Figure DC-1 shows a performance comparison of the orthogonal signal 

(M = N) and the globally optimal signals in c2 as a function of 

signal-to-noise ratio A2 . Figure DC-2 shows the degradation in 

probability of error as the number of signals increases for fixed 

signal-to-noise .ratios . 

(135 ) 

(136) 
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FIGURE IX-l 

Comparison of the probability of error for orth~gonal 

signals and globally optimum signals in C . 
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CHAPTER X 

CONCLUSIONS 

We have formulated a set of conditions for the global optimality 

of M equalJ..y probable, equal energy phase-incoher ent signals in N 

complex dimensions. In this method, we consider the signal vector as 

points on the unit sphere in C2· 
' 

and, by means of a geometric argu-

ment similar to that of Landau and Slepian, we proved the validity of 

these conditions for N = 2. 

We then perform the unit sphere in c2 onto the unit sphere 

in three real-dimensional Euclidean space. Using this transformation, 

we map the hyperplane equation and the equation for the boundary of 

the cap. We then establish that the only signal sets in c2 that can 

be shovm to be globally optimal by this method are M = 2, 3, 4, 6, 

and 12. We determine that for the globally optimal signal sets there 

are respectively l, 2, 3, 4, and 5 hyperplanes determining the optimum 

decision regions. Next, we determine what these globally optimal 

signal sets are for these values of M's. These sets are those for 

which the inner products between a given signal vector and the ones 

making up the decision region about the given vector are 

for M = 2, \<S.,s. >I 
J. J 

1 for M 
J2 

l 
2 
6, 

for M = 3, \<s.,s.>\ = 1c 
1 

J V3 
I <s., s. > I = er_ 

i J V5-J5 
and 

<'Si' sj > = o 

for M 4, 

for M 12. 

We then compare the probability of error performance between the 

globally optimal signals in c2 and the orthogonal signal sets in CM 

as a function of the signal-to-noise ratio. 
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