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ABSTRACT

Synthetic biology, by co-opting molecular machinery from existing organisms, can
be used as a tool for building new genetic systems from scratch, for understanding
natural networks through perturbation, or for hybrid circuits that piggy-back on
existing cellular infrastructure. Although the toolbox for genetic circuits has greatly
expanded in recent years, it is still difficult to separate the circuit function from its
specific molecular implementation. In this thesis, we discuss the function-driven
design of two synthetic circuit modules, and use mathematical models to understand
the fundamental limits of circuit topology versus operating regimes as determined
by the specific molecular implementation. First, we describe a protein concentration
tracker circuit that sets the concentration of an output protein relative to the con-
centration of a reference protein. The functionality of this circuit relies on a single
negative feedback loop that is implemented via small programmable protein scaf-
fold domains. We build a mass-action model to understand the relevant timescales
of the tracking behavior and how the input/output ratios and circuit gain might be
tuned with circuit components. Second, we design an event detector circuit with
permanent genetic memory that can record order and timing between two chemical
events. This circuit was implemented using bacteriophage integrases that recombine
specific segments of DNA in response to chemical inputs. We simulate expected
population-level outcomes using a stochastic Markov-chain model, and investigate
how inferences on past events can be made from differences between single-cell and
population-level responses. Additionally, we present some preliminary investiga-
tions on spatial patterning using the event detector circuit as well as the design of
stationary phase promoters for growth-phase dependent activation. These results
advance our understanding of synthetic gene circuits, and contribute towards the
use of circuit modules as building blocks for larger and more complex synthetic

networks.
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Chapter 1

INTRODUCTION

Synthetic biology is the study of re-purposing existing molecular machinery for
engineered applications. Synthetic gene circuits can be used in three possible ways:
to create a completely new module that is intended to be independent from host
operations, to better understand existing networks by adding on an inducible module
for perturbation and measurement, or to implement a hybrid system that diverts an
existing pathway or signal towards a synthetic module. In order to create and apply
synthetic circuits, we need a basic understanding of the underlying biology, but the
implementation and testing of synthetic systems often also leads to new biological
insights and characterizations. Although the toolbox for genetic circuits has greatly
expanded in recent years, it is still difficult, from an engineering perspective, to
separate the circuit function from its specific molecular implementation. As a
result, it is critical to build mathematical models that capture the overall circuit
topology and intended function. Simulation results can then be used to determine
which aspects of experimental outcomes are a result of the circuit topology, and

which are implementation-specific idiosyncrasies.

In this thesis, we describe the design and implementation of two novel synthetic
circuit modules: a biomolecular tracker that regulates protein stoichiometry via
negative feedback (Chapter 2), and a temporal logic gate that both senses and
records the order and timing of chemical events (Chapter 3). We use modeling and
simulation to show that underlying circuit topology governs overall circuit behavior,
and that performance limitations and time constants for each system were set by the
particular sets of genetic and molecular parts used. This distinction, in which the
model does not depend on the specific implementation but is tuned to have realistic
parameters, enabled model-driven experimental design and also hypothesis testing
for unexpected experimental results. In Chapter 4, we extend the temporal logic
gate by adding a spatial element for diffusion-induced patterning and differentiation.
Finally, in Chapter 5, we design stationary-phase combinatorial promoters, and
discuss possible applications for understanding natural biofilm structures or for

implementing growth-phase dependent delays in synthetic circuits.

First, in Chapter 2, we describe a protein concentration regulation circuit that sets
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the concentration of an output protein relative to the concentration of a reference
protein. Though positive and negative feedback systems are an essential feature of
endogenous signaling networks, synthetic circuits more commonly rely on library-
based screening to find optimal expression levels. This type of open-loop approach
is sensitive to downstream synthetic modules, environmental factors, host organism,
and growth phase (Del Vecchio, Ninfa, and Sontag, 2008; Klumpp, Zhang, and
Hwa, 2009; Cardinale, Joachimiak, and Adam Paul Arkin, 2013). In this chapter,
we design a module that regulates relative stoichiometry between two proteins.
Constant relative ratios between proteins has been measured in a variety of complex
signaling pathways, including apoptosis (Federspiel et al., 2016), the MAP kinase
pathway (Kolch, 2000), and G-protein coupled receptors (Ostrom, Post, and Insel,
2000), but it is still difficult to implement more than one regulatory loop in synthetic
circuits. Regulation of stoichiometry ensures constant activity despite cell-to-cell
variation and intramolecular noise. The functionality of this circuit relies on a
single negative feedback loop that is implemented via small programmable protein
scaffold domains. In addition to building and demonstrating dynamic signal tracking
of the experimental circuit, we build a mass-action model to understand the relevant
timescales of the tracking behavior as well as how the input/output ratios and circuit

gain might be tuned with circuit components.

In Chapter 3, we discuss the design and implementation of another novel module,
a temporal logic gate with permanent genetic memory. More importantly, we
show that population-level analysis of stochastic single cell responses can provide
additional information not encoded in single cells. Previously, much work had been
done in creating Boolean logic gates for static chemical signals using molecular-
concentration based systems (Gardner, Cantor, and Collins, 2000; Anderson, Voigt,
and Adam P Arkin, 2007; Moon et al., 2013) or bacteriophage integrases (Bonnet,
Subsoontorn, and Endy, 2012; Bonnet, Yin, et al., 2013; Siuti, Yazbek, and Lu,
2013). Temporal logic gates, which process time-varying chemical signals, have
been much less explored. Pioneering work by Friedland ef al. used serine integrase-
based recombination for the counting and detection of sequential pulses of inducers
(Friedland et al., 2009). But thus far, no work has studied the potential for temporal
logic gates to provide information about the duration of a signal, or the time between
two chemical events. Specifically, we design a circuit with four different genetic
states for no inducer, a only, b only, and a then b. Two of these genetic states, a only
and a then b, express RFP and GFP fluorescence, respectively. Although the circuit

design does have a unique genetic state for b then a, we find that analysis of GFP
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population fractions creates a distinct population-level output for a b then a event.
The most compelling advantage of engineered biological systems over manmade
sensors lies in their inherent capabilities for replication and parallel sensing with
minimal energy and resource requirements. Thus, deployment of synthetic bacterial
devices would almost certainly involve populations of cells, never just a single cell.
Using a combination of Markov-chain stochastic simulations and experimental data,
we find that stochasticity in digital single-cell responses to chemical inputs translates
into analog population-level differentiation, and that this additional information can
provide nuanced details on past events. This system enables us to begin thinking
about using population distributions as circuit readouts, and to design feedback for

maintaining distributions of differentiated cells.

In Chapter 4, we use the same temporal logic gate E. coli strain, but use 2D diffusion
to implement the timing between cell exposure to inducers. This creates spatial
patterning in which cells genetically differentiate based on their distance from the
inducer point sources. While it is well known that steady-state morphogen gradients
are a critical part of embryonic development, more recent studies have shown that
the high levels of precision and robustness in cell differentiation are actually derived
from early decoding of transient, pre-steady-state, morphogen signals (Bergmann et
al., 2007; Tamari and Barkai, 2012). In this chapter, we discuss experimental setup
for diffusion-based experiments, present some preliminary data on spatial patterns
generated from the temporal logic gate strain, and characterize the effect of growth
rate and media on patterning. We show that the temporal logic gate works when the
timing between inducers is regulated by distance between inducer point sources, and
that distinct populations of differentiated cells can be visualized via fluorescence.
We also design a modified version of the temporal logic gate in which fluorescence
only occurs in the overlap region of the two diffusing inducers. When implemented
experimentally, this design was met with limited success, and the reasons for that

are also discussed in detail.

In Chapter 5, we present a small study on combinatorial stationary phase E. coli
promoters and some of their possible applications. Current testing of synthetic
circuits is done almost exclusively in exponential growth phase, but this is neither a
realistic environment for natural bacteria nor a reasonable expectation for engineered
strains outside of the laboratory. Stationary phase gene expression in E. coli has
been widely studied (Miksch and Dobrowolski, 1995; Lee and Gralla, 2001; Lacour
and Landini, 2004; Shimada et al., 2004) and development of inducible stationary-
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phase active promoters would have a number of significant advantages. In particular,
circuit functionality could be partitioned into exponential phase tasks and stationary
phase tasks, or cells could be programmed to conserve resources until some quorum
had been reached. Here, we have identified 13 native 038 promoters from the
literature, as well as a 0038 consensus sequence, and created a test construct with a
GFP reporter. We then measured their activity and growth rate over time in DHS5 -
Z1 E. coli cells, and found that all the promoters turned on in late-log phase but with
varying activity levels. The three promoters with the highest expression profiles
were then combined with tetO operator sites to create 038 — fetO combinatorial
promoters. We show, via time-course traces, that 7 out of 9 engineered promoters
exhibit the correct behavior where they are only active during late-log phase and if

aTc is present to relieve tetR repression.

Additionally, macroscale fluorescence microscopy was used to visualize the spatial
structure of biofilms comprised of 0-38-GFP reporter strains (Chapter 5). E. coli
naturally form biofilms that are comprised of multiple layers of cells in different
growth phases (Serra et al., 2013; Hobley et al., 2015). The availability of sta-
tionary phase active promoters in the context of biofilms means that cells could
be programmed to express different functions based on their location within the
naturally occurring biofilm. Natural biofilms already take advantage of spatial dif-
ferences in growth phase — cells on the biofilm periphery are in exponential phase
and expand quickly, but are also more susceptible to attack and stress, while cells
on the interior in stationary phase are protected but also receive less nutrients (Liu
et al.,, 2015). Combinatorial stationary phase promoters could be used to couple
synthetic model activity to existing cellular infrastructure processes, such as the
complex mechanisms that determine growth phase and 038 production. Rather
than design a synthetic timer, we could use growth-phase dependent promoters to
implement delays or oscillatory behaviors in synthetic circuit activity.

The work presented in this thesis advances our understanding of synthetic gene
circuits, and contributes towards the use of circuit modules as building blocks for
larger and more complex synthetic networks. In future work, we discuss possibilities
of using the temporal logic gate not as an endpoint readout of past events, but as a
population generator that can take a homogenous population of “stem cell” bacteria,
and through timed inputs, reliably create distributions of genetically distinct daughter
cells. A controlled population distribution generator would create new possibilities

for testing distribution-based feedback and building multi-strain consortia.
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Chapter 2

DESIGN AND IMPLEMENTATION OF A BIOMOLECULAR
CONCENTRATION TRACKER

A version of this chapter has been published as a conference paper (mathematical
model, discussed in Santos, Hsiao, and Richard M Murray, 2013), and as a journal

article (experimental results, presented in Hsiao et al., 2015).

2.1 Abstract
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As a field, synthetic biology strives to engineer increasingly complex artificial
systems in living cells. Active feedback in closed loop systems offers a dynamic
and adaptive way to ensure constant relative activity independent of intrinsic and
extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and
tunable mechanism for concentration tracking through negative feedback. Input to
the circuit initiates scaffold production, leading to colocalization of a two-component
system and resulting in the production of an inhibitory anti-scaffold protein. Using
a combination of modeling and experimental work, we show that the biomolecular
concentration tracker circuit achieves dynamic protein concentration tracking in

Escherichia coli and that steady state outputs can be tuned.

2.2 Introduction

Implementation of reliable feedback and control in engineered circuits is a continu-
ing challenge in synthetic biology. Though positive and negative feedback systems
are an essential feature of natural biological networks, synthetic circuits more com-

monly rely on library-based screening to find optimal expression levels. Not only
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Figure 2.1: Overview of circuit design. A) The circuit takes an input that sets the
reference value. The input proportionally modulates activity of a two component
signaling system that then produces an output. The output triggers a negative
feedback response. The negative feedback is the mechanism that generate real-time
tracking behavior. B) The specific implementation of the circuit is shown. The
circuit regulates the production of the amount of target protein (anti-scaffold-YFP)
with respect to the amount of reference protein (scaffold-RFP). Expression of the
target is dependent on the amount of free scaffold. The target contains domains
which sequester free scaffold creating a negative feedback loop. Scaffold, response
regulator, and phosphatase concentrations are induced via Py, Pg,n, and P
respectively.

sal’

are the resulting systems sensitive to relative concentrations between components,
but each time the circuit is expanded, the network of regulatory sequences must be
re-optimized to account for increased load on cell machinery (Klumpp, Zhang, and
Hwa, 2009). More importantly, this type of open loop approach only optimizes for
a single set of environmental parameters, and inherently does not accommodate for
stochastic cell-to-cell variation, changes due to cell growth cycles, or changes in cell

loading from other circuit modules (Cardinale, Joachimiak, and Arkin, 2013).

Closed loop systems provide regulation of individual components that is robust with
respect to environmental disturbances. Negative feedback is a common feature of
natural pathways, and has been shown to decrease transcriptional response time
(Rosenfeld, Elowitz, and Alon, 2002), to provide stability and reduce fluctuations
(Becskei and Serrano, 2000), and to be necessary for oscillatory behavior (Ferrell,
2013).

Active feedback in biological systems has been previously considered at various

levels. Recent studies have designed and studied an RNA-based rate regulating
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circuit with two opposing negative feedback loops (Franco, Forsberg, and Richard
M. Murray, 2008), a system utilizing an RNA binding protein to repress translation
of its own mRNA (Stapleton et al., 2012), and analysis of noise in transcriptional
negative feedback (Dublanche et al., 2006). There have also been demonstrations of
an in silico closed loop system, in which a computer measured fluorescence output
and automatically modulated the activity of a photosensitive transcription factor
(Milias-Argeitis et al., 2011). In that study, the negative feedback occurred in the

software control system outside of the cell.

In this work, we present an in vivo protein concentration tracker circuit. To our best
knowledge, this is the first demonstration of dynamic molecular tracking entirely
within the cell environment. This circuit contains a single negative feedback loop
implemented with scaffold proteins and operates on the timescale of one cell cy-
cle. We show that negative feedback implemented through sequestration results in
“tracking” behavior: the proportional modulation of one protein concentration (the
anti-scaffold) relative to that of the reference protein (the scaffold) over a range of

reference induction levels.

2.3 Results and discussion

Scaffold-based circuit design and implementation

Previously, Weston R Whitaker et al., (2012) designed a scaffold-dependent two-
component system in which the phosphotransfer was mediated by a synthetic scaffold
protein consisting of small protein-protein binding domains. They demonstrated
that weak natural cross-talk between a noncognate histidine kinase and response
regulator pair could be artificially amplified via colocalization onto the scaffold.
By fusing the kinase to the Crk SH3 domain and the response regulator to half
of a leucine zipper, both would be recruited in the presence of a scaffold protein
consisting of the SH3 ligand and the other half of the leucine zipper. Forcing the
kinase and response regulator into close proximity greatly enhances the level of
phosphotransfer and thus the level of downstream expression. The kinase-regulator
pair of Taz and CusR was chosen because of measured low levels of cross-talk upon

long incubations of purified proteins (Skerker et al., 2005).

Building upon this scaffold-dependent two-component system, we designed a neg-
ative feedback circuit by introducing an anti-scaffold molecule that competitively
inhibits scaffold function. The scaffold molecule consists of a leucine zipper domain
(LZX) linked to the SH3 ligand via flexible glycine-serine repeats (Figure 1). The
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two component system is comprised of the chimeric kinase Taz linked to four SH3
domains and the response regulator CusR linked to a single leucine zipper (LZx)
domain (Figure 1A). The presence of the scaffold recruits the HK Taz and RR CusR
into close proximity by forming a ternary complex, resulting in the phosphorylation
of CusR. The phosphorylated CusR becomes an active transcription factor, binding
to its natural promoter (P, ) and activating expression of the anti-scaffold protein
(Figure 1B). The anti-scaffold consists of the complementary LZx and SH3 ligand
domains, which allow it to competitively bind to and consequently sequester the
scaffold protein (K; = 6 nM for the leucine zipper and K; = 100 nM for the SH3
domain (Acharya et al., 2002; Weston R. Whitaker and John E. Dueber, 2011)).
This prevents further phosphorylation of the response regulator, and halts further
production of the anti-scaffold. In the absence of any scaffold protein, no activated

response regulator activity is observed (Figure BT-S2).

We implemented the circuit in a ACusS ACusR E. coli knockout strain (Weston R
Whitaker et al., 2012). In the absence of CusS, the native bifunctional histidine
kinase/phosphatase partner for CusR, activated CusR proteins remain phosphory-
lated. Accordingly, we re-introduced a CusS(G448A) mutant behind an inducible
promoter to tune response regulator deactivation. The G448 A mutation disrupts the
ATP binding site, eliminating kinase autophosphorylation without affecting phos-
phatase activity (Weston R Whitaker, 2012; Zhu and Inouye, 2002). This created
a tunable phosphate sink in our circuit and ensures tight coupling between present
scaffold and activated response regulator concentrations. The negative feedback
circuit with the anti-scaffold is referred to as the closed loop circuit. As a control,
we also built an open loop circuit, which instead of P -driven expression of the

anti-scaffold, only the anti-scaffold reporter is expressed.

We constructed the circuit as a three plasmid system, in which the kinase is con-
stitutively expressed and the scaffold, response regulator, and phosphatase were

cloned behind the inducible promoters P, Py, ., and P, respectively. Dynamic

sal’
tracking behavior was visualized by adding medium strength ssrA degradation tags
(C-terminal, RPAANDENYAAAV) to the scaffold-RFP and anti-scaffold-YFP fu-
sion proteins (Andersen and Molin, 1998). The fluorescent reporters mCherry RFP
and Venus YFP were chosen on account of their similar maturation times (~5 and

15 min, respectively) (Nagai et al., 2002; Shaner et al., 2004).
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Parameter Value Units Description
HKe 00 nM_ Histidine kinase
RRe 0-3000 M Responseregulator
SCot 0-5000 ____ nM__ Scaffold
Phe 0-5000 M Phosphatase
Bas o nM/s___ Transcription + Translation
B ,B,o ,,,,,,,,, 6ot Leaky promoter activity (1% of total induction)
Y 3.84x10% ____ st Deg/dilution (Groban etal, 2009, Munsky etal. 2009]
Neaw Yy st Degradation for ssrA-tagged proteins
o 2 Hill coefficient for anti-scaffold activation
Ko L nM_ Kofor AS activation
B ,kﬁefhss ,,,,,,, 0.003.______ st Phosphatase mediated dephosphorylation [cf. Groban et al., 2009]
r 2.8x10* s Decay constant for diffusion of inducer [cf. Munsky et al., 2009]
Forward and reverse reaction rates
K kf 0.003 s HK autophosphorylation [cf. Groban et al., 2009]
Hke ke 00001 s [ef Pazyetal, 20090
K kf 102.1 st Cognate HK-RR phosphorylation [cf. Groban et al., 2009]
(% k000204 st ___ [of. Grobanetal,2009] _ __ _ ___________________.
K kf 0.0031 sTM? Non-cognate HK-RR phosphorylation [cf. Groban et al., 2009]
__nonceg k00002 _ _____ s'M'_ _ _ [cf Grobanetal, 2009 _ _ _ _ _ _ _ ________________._
k kf 1x10° sTM? SH3 domain/ligand binding [Solomaha et al., 2005]
s ke ksm(01x109 st Ko=0.1uM [Whitaker and Dueber, 2011)
K, kf 1x10° sTM? Leucine zipper binding
LZX K, K. zx (0.01x10%) s’ Kb = 0.01uM [Whitaker and Dueber, 2011]

kSC'HK kf 4 Ki.ghHa sTM" Scaffold binding to HK with 4 SH3 domains
R Ke o hesmo S _________.
kS AR kf K. 2% stM Scaffold binding to RR with 1 LZX domain
e ke Mo S ..
Ko, . kf 1x10° sTM! Phosphatase binding to RR,
Ph:RR k. 1x10° '
Closed Loop Anti-scaffold interactions
kS AS kf Kiizx + Kighs sTM! Scaffold binding to anti-scaffold
o K 0001kuzx S __________.
K kf Kr.sha sTM! Anti-scaffold binding to Sc:RR complex
AS-SH3 ke 0.001 kg s
k kf K zx sTM! Anti-scaffold binding to Sc:HK complex
ASLZX ) 0001 Ky .

Note: In the open loop circuit there is no anti-scaffold, so the closed loop anti-scaffold interaction rates are all zero.

Table 2.1: Table of model parameters. Parameters estimated from the literature are

cited.

Modeling dynamics and steady state circuit behavior

The circuit was modeled using differential equations with all chemical reactions

between species explicitly defined.

The model omits transcriptional activity and

accounts only for protein level behavior. With the exception of the anti-scaffold

production term, all other terms are derived from mass action kinetics. A basic

model of the circuit was previously published (Santos, Hsiao, and Richard M Murray,

2013). Here, we have expanded the model by adding the phosphatase species and all

accompanying reactions. The 25 species arise from combinations of scaffold (Sc),
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response regulator (RR), histidine kinase (HK), anti-scaffold (AS), and phosphatase
(Ph) binding complexes. In total, the model consists of 80 reactions, 25 differential
equations, and 26 parameters (See SI for complete list of chemical reactions). Many
parameters (Table 2.1) were selected from experimental values found in the literature
(Pazy et al., 2009; Groban et al., 2009; Solomaha et al., 2005), and others were
estimated within a physiologically reasonable range.

Model reactions can be classified into five categories: production and degradation,
phosphorylation, scaffold complex formation, activation, and irreversible sequestra-
tion. Phosphorylated species are denoted with a subscript p (e.g. RR;), and com-
plexes are denoted with a colon separating the participating species (e.g. Sc : AS).
Though the possibility of modeling the scaffold as an enzyme-like species was con-
sidered, we could not assume that either the kinase or response regulator would
always be in excess, a requirement of the substrate in a Michaelis-Menten reaction.

Therefore, Michaelis-Menten kinetics were deliberately avoided.

The production rate, S, of the scaffold, histidine kinase, response regulator, and
phosphatase are determined by user input of the total steady state value (in nM)
multiplied by the degradation/dilution rate y. This ensures constant concentration
of these species in solution. The degradation rate vy is applied universally for all
species and is estimated based on a cell division time of 30 minutes (Groban et al.,
2009).

The phosphorylation reactions describe the autophosphorylation of HK and dephos-

phorylation of RR,. Key reactions that describe this process are:

HK = HK_, 2.1)

kl):h kdephos
RR, + Ph =RR,:Ph —— RR + Ph.

r
kPh

The phosphatase forms a complex with the RR,, prior to dephosphorylation. We
model both phosphorylation and dephosphorylation with a two-step reaction model,
an approach consistent with previous models (Huang and Ferrell, 1996). Rate con-
stants for kinase phosphorylation and dephosphorylation of the response regulator
were chosen based on cognate and noncognate phosphorylation rates measured for

natural two-component systems, and occur on the order of seconds (Groban et al.,
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2009). The following equations show phosphorylation in the absence and presence
of scaffold:
ki(oncog

HK, + RR == HK +RR,, (2.2)

r
knoncog

o
Sc:HK,:RR == Sc:HK:RR,.

kogp
Reaction rates for scaffold complex formation were based on the kinetics of the
protein-protein interaction domains SH3 domain/ligand and LZX/LZx. SH3 do-
main/ligand binding has an estimated association affinity K; of 0.1 uM while leucine
zippers have a K; of approximately 0.01 uM (Posern et al., 1998; Acharya et al.,
2002; Grunberg et al., 2010; Weston R. Whitaker and John E. Dueber, 2011). Here
we have examples of histidine kinase and response regulator binding to scaffold via
SH3 and LZX binding, respectively:

4K

Sc + HK, == Sc:HK,, 2.3)

kSH3
k{ZX
SC:HKp + RR == Sc:HKp:RR.

r
kLZX

A phosphorylated response regulator becomes an active transcription factor. We
considered all possible complexes with RR,, as possible activators (shown as RR, ;..
Since the response regulator, CusR, dimerizes upon phosphorylation, the total rate

of AS production, k¢4s, is modeled as a second-order Hill function:

k
0 25 AS, (2.4)
RRZ .
Kras = [ 4 —active ] (2.5)
fAS IBAS IBO (Klz) + RRictive

where RR = RRp + SC:RRp + SC:HK:RRp + SC:HKp:RRp + SC:RRP:AS.

active

The negative feedback component comes about through the irreversible sequestration
of the scaffold once it has bound to the anti-scaffold. We made the assumption that
the individual SH3 and LZX domains on the anti-scaffold bind independently, at
the same rates as HK and RR binding. However, once either the SH3 or LZX
component of the AS has bound to the Sc, this results in a local concentration of
the free domain that is substantially higher than the Kp. Therefore, we assume the

other domain quickly displaces any competing species and sequesters the entire Sc.
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The effective irreversibility comes about through steric hinderance of competing
HK and RR species, both of which only have one compatible binding domain to the
Sc:

Sc:AS

Sc + AS —— Sc:AS,
"

r
LZX SH3

k
Sc:HK + AS == Sc:HK:AS —> Sc:AS + HK, (2.6)

r
kLZX

k£H3 kfzx
Sc:RR + AS == Sc:RR:AS — Sc:AS + RR.
kr

SH3

The validity of the model was tested by comparing the open and closed loop circuits.
In the open loop circuit, the negative feedback binding reactions are set to zero
(Table 1). Experimentally, this was done by replacing the anti-scaffold with a
fluorescent reporter alone. Figure 2.2A shows simulated steady state values for
anti-scaffold (or fluorescent reporter) output over a range of scaffold concentrations
(0 - 1000 nM), with either 0 nM or 100 nM of response regulator. In the cases
with no response regulator, the circuit does not function and production of output
is solely due to simulated leaky anti-scaffold production (Bp). When response
regulator molecules are present, the open loop circuit output decreases significantly
with increasing scaffold. Though it is not intuitive, this can be explained as the
scaffold single occupancy effect (Weston R. Whitaker and John E. Dueber, 2011;
Good, Zalatan, and Lim, 2011), where an overabundance of free scaffold leads to
binding of only kinase or response regulator but not both. When we examine the
prevalence of these intermediate species (Sc:HK, Sc:RR) in simulation, we can see
that the total concentration of singly-bound scaffold increases, decrease in output
is indeed observed (Figure BT-S1A). The same effect also occurs in the closed
loop circuit, but much higher concentrations of scaffold are needed, since the anti-
scaffold sequestration lowers the effective number of free scaffold molecules in
solution (Figure BT-S1B).

Experimental data for the circuit closely recapitulated the model predictions (Figure
2.2B). First, without induction of RR for both open and closed loop circuits, there is
no output YFP. Secondly, the open loop circuit shows the single scaffold occupancy
effect at lower concentrations of scaffold. In the case of no scaffold induction, the
open loop circuit has about four times more background than the closed loop circuit.
This is due to leakiness in scaffold production in the absence of aTc. In the closed

loop circuit, leaky production of scaffold is subdued by the negative feedback, while
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Figure 2.2: Open loop versus closed loop. A) Model predictions of scaffold circuit
with and without negative feedback. Solid lines show anti-scaffold output over a
range of scaffold concentrations (0 - 1000 nM) for open and closed loop circuits
with constant response regulator (100 nM). Dotted lines show lack of output in the
absence of response regulator. Open loop circuit shows scaffold single occupancy
effect at lower levels of scaffold. B) Steady state experimental data of open and
closed loop circuits with and without response regulator matches model predictions.
Both sets of experimental data were normalized by the autofluorescence of a control
E. coli strain (Figure BT-S2).

in the non-regulated open loop, we see significant production of YFP. All data was

normalized to the autofluorescence of a control E. coli strain (Figure BT-S2).

We compared protein expression to fluorescence output to verify the use of fluores-
cence traces as a proxy for protein concentration. Western blot quantification was
done with an analogous circuit containing a bicistronic scaffold(3xFLAG)/RFP and
anti-scaffold-GFP(3xFLAG) (Figure BT-S3). mCherry is expressed from its own
RBS instead of tethering directly to the scaffold (12 kDal) to provide a substantial
size difference from the anti-scaffold (44 kDal). Quantification of band intensities
show good agreement between anti-scaffold expression and measured fluorescence
output (Figure BT-S4). These results served to validate both the model and the use

of synthetic scaffolds as a tunable mechanism for negative feedback.

Characterization of step response
We characterized circuit response time by testing the closed loop response to step
inputs. Using a programmable microfluidic plate (CellAsic) under a microscope,

step induction of the scaffold protein was achieved by flowing in 0, 37.5, or 75
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Figure 2.3: Step induction of closed loop circuit. A) aTc induction of Sc-RFP began
30 minutes after start of experiment and continued for the rest of the experiment. B)
Scaffold-RFP/OD measurements for no induction (left), 37.5 nM induction (middle),
and 75 nM induction (right). Response time (7}) is quantified by finding the time
needed for fluorescence to increase from 10% (gray dotted line) to 90% of the
maximum value (blue dotted line). A two-fold increase in aTc results in a four-fold
increase in scaffold expression and a two-fold increase in response time. The insets
show growth curves for each condition. C) AS-YFP/OD measurements show 2.5
fold increase between the two inputs and a three-fold increase in response time.
Fluorescent measurements are normalized such that the maximum of the middle
column (37.5 nM aTc) is 1 a.u. to better visualize fold change.

nM of aTc (Figure 2.3A) after 30 minutes of growth in normal media. Cellular
production of response regulator and phosphatase was pre-induced by incubating
cells with arabinose and salicylate. Microscopy analysis methods are described
in Figure BT-S5. Growth curves for all the conditions are in Figure BT-S7. In
all conditions, expression of scaffold-RFP (Figure 2.3B) began about 30 minutes
after induction, and occurred almost simultaneously with that of anti-scaffold-YFP
(Figure 2.3C). Although we had selected mCherry and Venus-YFP on account of
their similar maturation times, Venus still matures faster than mCherry (5 and 15
min, respectively). We believe that although there is a delay in mCherry maturation,
the scaffold is immediately functional, leading to the near overlap of RFP and YFP

expression. In order to better visualize the fold change, fluorescence output is
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normalized by the maximum value of the lowest step input.

Response times (7;.) for fluorescent detection of scaffold (RFP) and anti-scaffold
(YFP) were quantified. In control theory, response time is the amount of time
needed for an output signal to increase from 10% to 90% of its final steady state.
As cells reach stationary phase, circuit expression gradually turns off, and no steady
state in fluorescence output is maintained. The 0 nM aTc case shows basal expression
of the fluorescent proteins. We observed that scaffold induction, regulated by a P,
promoter, has a 4-fold expression increase between 37.5 nM (Figure 2.3C) and 75
nM (Figure 2.3D) induction, but only a 2-fold increase in response time (50 min
to 100 min). anti-scaffold output, regulated by the scaffold concentration, shows a
2.5 fold increase in maximum expression and a 3-fold increase in response time (40

min to 120 min).

This step input characterization revealed that scaffold and anti-scaffold fluorescence
could be observed almost simultaneously about one cell cycle (30 min) after aTc
induction of scaffold transcription. Following induction of the circuit, the response
time to maximum expression increases in a linear-like fashion with increasing scaf-

fold induction.

Circuit closely follows three step induction

Following step input characterization, we investigated circuit response to multiple
step-up inputs. Figure 2.4 shows the results of a three step scaffold induction
experiment with one hour steps corresponding to 50 nM increases of aTc inducer.
Growth curves are shown in Figure BT-S8. The single negative feedback loop
in the circuit represses overproduction of anti-scaffold but there is no mechanism
for feedback in the case of an excess of scaffold or anti-scaffold. As such, the
model predicts that increases in inducer will lead to immediate increases of scaffold
followed closely by the anti-scaffold but once induction is turned off, degradation of
proteins depends on the endogenous ClpXP degradation machinery (Figure 2.4A).
Additionally, the upward slope of each curve should overlap until induction ceases.

Step-up induction was performed on cells pre-incubated in arabinose and salicy-
late, activating expression of response regulator and phosphatase, respectively. As
shown in Figure 2.4B, experimental results for a three step induction are consistent
with model predictions, and show overlapping curves during the ascent, with each
individual curve dropping off slowly as induction ceases. The chemical induction

of the scaffold produces a much smoother output curve compared to the response
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Figure 2.4: Multi-step induction of tracker circuit. A) Simulation results for a three
step induction show overlapping response times with each curve decreasing based
on degradation rate after induction ceases. Upper panel shows aTc induction pattern
with one hour steps increasing in 50 nM increments starting 30 minutes after start
of experiment. B) Experimental time traces for Sc-RFP show overlapping fluores-
cence output, with each curve decreasing at a time proportional to the number of
steps. Corresponding anti-scaffold-YFP data show similar overlaps and proportional
decreases. Fluorescent measurements are normalized such that the maximum value
of the one step curve is 1 a.u. to better visualize fold change. Growth curves are
shown in Figure BT-S8.

regulator-modulated anti-scaffold. Due to high levels of leaky expression, the open

loop circuit did not respond to multi-step inductions (Figure BT-S8).

Inducer diffusion rates contribute to cumulative effect of sequential pulses
We observed in our model that variations in inducer diffusion rate would greatly
affect the outcome of sequential pulses (Figure 2.5A). The removal of aTc from

the cytoplasm and surrounding media is not instantaneous, and induction does not
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Figure 2.5: Two pulse induction of circuit. A) Model results for a range of inducer
decay constants from 2.8x 107 to 107>/s. Fast diffusion (left) shows two independent
pulses, intermediate diffusion (middle) results show some overlapping protein from
first and second pulses, and slow diffusion (right) shows large amounts of overlapping
protein from the first to the second pulse. B) Experimental data for zero, one, and
two pulses of 50 nM aTc. Data are normalized by maximum of single pulse
induction (middle column). C) Simulations with improved inducer diffusion rates
(r=2x107%s).

go to zero. Growth curves are shown in Figure BT-S9. Given two sequential 30
minutes pulses spaced one hour apart, the diffusion constant determined whether
two independent, identical outputs occurred, or if an additive effect would take
place. Essentially, if the first pulse of inducer is not given sufficient time to diffusion
out of environment, aTc molecules from the first pulse are still present when the
second pulse occurs. We modeled inducer diffusion following a pulse with an
exponential decay term, SBs. = Binqgexp(—rt) (Munsky, Trinh, and Khammash,
2009). Figure 2.5A shows two pulse simulation results when the default decay

constant (r = 2.8 x 10™* /s, middle column) is increased or decreased by 10-fold.

When we tested two pulse induction in vivo (Figure 2.5B), we ran simultaneous
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experiments with zero, one, and two 30 minute pulses of aTc(50 nM). The single
pulse fluorescence maximum (Figure 2.5B, middle column) was normalized to 1
a.u. Itis clear from the two pulse fluorescence output data that the diffusion rate of
aTc after a pulse in vivo was actually much slower than expected in silico. In fact, so
much of the scaffold from the first pulse remained that there was almost a two fold
increase in maximal expression during the second pulse. This was an effect which
had not been apparent previously during the multi-step inductions, where we showed
sequential increases in inducer concentration. These data show that modulation of
pulse frequency, but not concentration, can result in the same additive effect as

increasing inducer concentration.

We then sought to improve our model by tuning the inducer decay constant (Figure
2.5C), generating outputs which demonstrated the nearly two-fold increase observed
in vivo. Although the optimized decay rate (r = 2 x 107%/s) better captured gene
expression during log phase, we consistently observed a rapid decrease in fluores-
cence as cells approached stationary phase. We believe this is due to upregulation of
ClpX and other ssrA machinery in stationary phase (Farrell, Grossman, and Sauer,
2005). This resulted in improved model performance when simulating dynamic

circuit behavior.

Model-informed exploration of parameter space

Circuit limitations were explored in silico. Specifically, we investigated the effects
of tuning response regulator and phosphatase concentrations on the ability of the
anti-scaffold output to track the scaffold reference. Response regulator and phos-
phatase concentrations are easily accessible parameters via inducible promoters in
our experimental system. In Figure 2.6A, a scan of input-output response curves
is shown over a range of response regulator and phosphatase concentrations (See
Figure BT-S10 for explicit values). For each curve in the grid, the scaffold con-
centration in which the single occupancy drop-off occurs was found, and the slope
of the curve up to that concentration was found with a linear fit. The maximum
scaffold occupancy limit is the concentration of scaffold molecules at which each
scaffold molecule only has either a response regulator or histidine kinase. The slope
of the curve up to that point represents the anti-scaffold to scaffold ratio which
can be achieved by the circuit. In the case where the single occupancy limit does
not appear, the last concentration is used. Data shown in Figure 2.6B indicates
that increasing response regulator values result in a greater AS/Sc ratio (up to 1.5

fold increase), while increasing phosphatase serves to bring down that ratio. The
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Figure 2.6: Model-based exploration of parameter space. A) Simulations of scaf-
fold to anti-scaffold inputs and outputs over a range of phosphatase (100 - 5100 nM,
500 nM increments) and response regulator (10 - 1510 nM, 150 nM increments)
concentrations. Enlargement shows the scaffold single occupancy limit concentra-
tion and curve fitting for each curve. Red dotted lines show curve fits - the slope
represents the anti-scaffold to scaffold ratio. B) Heat map showing anti-scaffold to
scaffold ratio for each curve shown in part A. Increasing response regulator results
in greater AS/Sc ratios. Gray box represents estimated experimental phosphatase
induction range. Black box estimates experimental response regulator induction
range. C) Heat map of maximum scaffold occupancy limit. Higher concentrations
of phosphatase result in decreased maximum scaffold occupancy limit.

effect of increasing phosphatase is apparent when the maximum scaffold occupancy
limit is examined (Figure 2.6C). Furthermore, the simulations show that some min-
imal amount of phosphatase is necessary for a sufficiently high response regulator
turnover rate so as to approach a 1:1 ratio. As phosphatase concentration increases,
active response regulators are quickly dephosphorylated, decreasing the efficacy
of the scaffolds, lowering the maximum occupancy concentration, and making the

drop-off more steep. Based on experimental outputs of our circuit, however, we
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believe the actual achievable dynamic range of the circuit is limited to the lower left
corner of the parameter space. The qualitatively estimated induction range is shown

with the black and gray rectangles in Figure 2.6B and 2.6C.

Model Experimental E

W RROnM “Constant Ph (50 M) - 0% Ara *No Ph (0 nM salicylate)
9000 | m AR 10nM =@~ 0.0001% Ara

M RR 1000M 10 [ =@= 0.001% Ara
8000 [ m RR 1000nM
=@~ 0.01% Ara

AS/Sc Ratio

0.007 0.018 0.387 0.438

: + B
0,003 0012 0018 0.085

0 0.0001 0.001 0.01 :
Incroasing r0sponse regulator (Arabinoss: %/0)

Anti-Scaffold(nM)
Anti-scaffold: YFP/OD (au)

4000
3000
2000
1000
— —
%0 500 1000 1500 1 5 10 15 20 25
Scaffold(nM) Scaffold: RFP/OD (au)
C Model D Experimental I
10000 9 »
 PhOnM *Constant RR (100 nM) =@ 0uM Salicylate AS/Sc Ratio
9000 - m Ph 5onM 8 | @ 1uM Salcylate o
8000} m i: ggggg‘M =@= 10uM Salicylate 0121 0129 0096  0.080 [N
7 | =@=100uM Salicylate 0017 0011 000 0010
7000 X
6 0 1 10 100
6000

Scaffold Occupancy Limit

49.11 51.22 44.29 46.55
+ + + +

Anti-Scaffold(nM)

321 136
RFP(a)  RFP(a

Anti-scaffold: YFP/OD (au)
o

o 1 10 100

*Constant RR (0.001% ara)

0 500 1000 1500 10 20 30 40 50 60 70 80 90
Scaffold(nM) Scaffold: RFP/OD (au)

Figure 2.7: Steady state experimental tuning of response regulator and phosphatase.
A) Simulation data of input-output curves with increasing response regulator con-
centrations (0 - 1000 nM). Increasing response regulator increases the scaffold
occupancy limit as well as overall AS/Sc ratio. B) Experimental data of steady state
scaffold to anti-scaffold curves with ten-fold increases in response regulator induc-
tion (0 - 0.01 % arabinose). There was no additional induction of phosphatase (0 nM
salicylate). C) Simulation data of input-output curves with increasing phosphatase
concentrations (0 - 5000 nM) with constant response regulator concentration of
100 nM. Increasing phosphatase decreases the scaffold occupancy limit and overall
AS/Sc ratio. D) Experimental data of steady state circuit behavior with ten-fold
increases in salicylate. Response regulator concentration is constant (0 - 100 uM
salicylate). E) Ratios of YFP/RFP ratios from (B) as a proxy for As/Sc ratios with in-
creasing response regulator. Scaffold occupancy limit was not observed in response
regulator experiments. F) Ratios of YFP/RFP ratios and scaffold occupancy limit
values from (D) with increasing phosphatase. All experimental data was normalized
by baseline auto-fluorescence values.

By modulating response regulator and phosphatase concentrations, a range of max-
imal expression levels for scaffold and anti-scaffold can be achieved. Figure 2.7A
and B shows steady state circuit response to varying levels of response regulator

induction in both the model and experimental circuit. Increasing RR concentra-
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tions increases the gain of the system by increasing the number of available active
transcription factors for the AS promoter. In simulation data (Figure 2.7A), we see
that the scaffold occupancy effect is mitigated by higher levels of response regula-
tor. This is consistent with our previous explanation, since more regulator means
almost all free scaffold molecules will exist as Sc:RR. Experimental data for tuning
response regulator concentration via ten-fold increases of arabinose (Figure 2.7B)
do not extend the scaffold levels far enough to show the occupancy effect, but the

increasing output gain is evident.

The presence of phosphatase in the circuit modulates the amount of time that phos-
phorylated response regulator is active. As such, tuning phosphatase concentrations
changes RR «— RR cycling time. Early versions of the circuit did not include the
phosphatase species (Santos, Hsiao, and Richard M Murray, 2013), and we were
unable to observe dynamic behavior due to buildup of RR,,. Using the model, we
explored the effects of adding a phosphatase prior to testing in vivo. Figures 2.7C
and D shows steady state responses across a range of phosphatase concentrations.
Simulation results show that increasing phosphatase decreases overall circuit output
(Figure 2.7C) by decreasing the average time RR,, is active. Experimental results
(Figure 2.7D) support model predictions and show this suppression of output with

increased induction via salicylate.

In Figure 2.7E and F, these experimental steady state data are analyzed using the
same techniques shown in Figure 2.6. Figure 2.7E shows anti-scaffold to scaffold
ratio and scaffold occupancy limit as calculated based on RFP/YFP fluorescence
data with ten-fold increases in response regulator induction with no phosphatase
present. Similar to the analysis used in the model, if the single occupancy drop
is not observed, the highest scaffold concentration is taken. Figure 2.7F shows
the same metrics with ten-fold increases in phosphatase induction with constant
response regulator (0.001% arabinose induction). Experimental data is presented as
a function of fold change from background fluorescence, and so cannot be compared
directly with model data (presented in nM). However, the overall trends are in
agreement. As response regulator increases, we see a significant increase in anti-
scaffold to scaffold ratio, and little change in the occupancy limit. With increasing
phosphatase, we see a slight decrease in AS/Sc ratio and scaffold occupancy limit.
We believe these data show us that our experimental range occupies only a small
fraction of that shown by our model (Figure 2.7B,C), and that these limitations are

due to the limited dynamic range of the inducible promoters (Pg,5-RR, P ,-Phos,
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Figure BT-S11).

Scaffold-based circuits for rapid feedback

We have designed a novel negative feedback tracker circuit using modular synthetic
scaffold proteins and a two-component system with scaffold-dependent phospho-
rylation. The use of scaffold proteins for negative feedback could potentially be a
robust way of linking modules and ensuring constant performance despite intrinsic
and extrinsic noise. scaffold proteins have been shown to be powerful hubs for
organization of regulatory feedback in natural networks, usually by colocalization
of phosphorylation machinery (Good, Zalatan, and Lim, 2011). Previous studies
have rewired the naturally occurring Ste5 scaffold in the yeast MAPK cascade to
redirect signals, to modify delays in signaling time, and to introduce ultra sensitivity
(Park, Zarrinpar, and Lim, 2003; Bashor et al., 2008). The modular scaffold proteins
used in this study were previously used to control phosphotransfer to non-cognate
response regulators, building a synthetic signaling pathway (John E Dueber et al.,
2009; Moon et al., 2010; Weston R. Whitaker and John E. Dueber, 2011). Here we
have taken those same scaffolding modules and built an entirely synthetic feedback
circuit. The system allows for tunable control of output gain and cycling time. Most
importantly, the proportional anti-scaffold tracking of the scaffold is maintained

over a range of component concentrations.

After we designed the circuit framework, we constructed and then experimentally
validated an ODE-based mathematical model. Through selection of parameters and
reaction rates based on the literature, we obtained a model able to reasonably predict
circuit behavior. Comparisons between simulation and experimental data confirmed
the presence of scaffold-mediated negative feedback, and we used the model to scan
the parameter space in a way that would have been time and resource intensive to
explore in vivo. We found that steady state circuit gain can be tuned by changing
response regulator concentrations and cycling time is controlled by varying phos-
phatase levels, observations which were supported by experimental data. Following
initial step induction system characterization of step input response time, expression
of both the reference (Sc-RFP) and output (AS-YFP) protein was shown to be fast
and responsive to multi-step inputs. Finally, we found that pulse-modulated induc-
tion could result in additive circuit response, leading to improvement of the model

through more accurate inducer diffusion parameter values.

A scaffold-based biomolecular tracking circuit has potential applications in active
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regulation of component expression in synthetic circuits. The relatively small size
(approx. 60 AA) of the scaffold and anti-scaffold proteins facilitates attachment to
larger proteins, represented in this work by mCherry-RFP and Venus-YFP. Rather
than open loop tuning of regulatory sequences and large-scale screening, scaffold-
based negative feedback could be utilized. By attaching the scaffold to a native
protein, it may also be possible to tie synthetic circuit inputs to naturally occurring
cycles in vivo. Itis well known that many natural cell processes such as developmen-
tal segmentation, circadian clocks, and stem cell multipotency involve oscillatory

gene expression (Bessho, 2003; Imayoshi et al., 2013).

Furthermore, response to signal transduction may be modulated not by amplitude,
but by frequency (Cai, Dalal, and Elowitz, 2008). We have shown that the scaffold-
modulated protein tracker follows changes in both amplitude and frequency, and
exhibits good agreement with a mass-action model. Future iterations of this design
may improve tracking fidelity by including reverse feedback loop to compensate for

over—expression.

2.4 Materials and Methods

Cell strain, media

The circuit was implemented in the E.coli cell strain WW62, a variant of BW27783
(CGSC 12119) with knockouts of EnvZ, OmpR, CusS, CusR, CpxA, and CpxR. All
cell culture was done in optically clear MOPS EZ Rich defined medium (Teknova,
M2105), with 0.4% glycerol instead of 0.2% glucose. The use of glycerol as a
carbon source was done to prevent interference with the arabinose induction of the

Py ap pPromoter.

Tested arabinose induction levels were 0, 0.0001%, 0.001%, 0.01%, and 0.1% (20%
stock solution). Anhydrotetracycline (aTc) was diluted in media at concentrations
of 0, 5, 15, 30, 60, 90, 120, 150 nM. Sodium salicylate was resuspended at a stock

concentration of 100 mM and diluted 1:1000 in media for experiments.

Plasmids

Plasmids used in this study were derived from those used in Whitaker et al.(Weston R
Whitaker et al., 2012).The plasmid encoding the SH3-ligand-LZX-mCherry scaffold
(pVHOOL1) has a high copy backbone(ColE1) with ampicillin resistance. The CusR-
LZx response regulator and SH3-domain-LZx-VenusYFP anti-scaffold plasmids
(pVHOO03 for closed loop, pVHO009 for open loop) are on a medium copy backbone
(pBBR1) with kanamycin resistance. The 4SH3-domain-Taz histidine kinase and
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CusS-G448A phosphatase are on a low copy plasmid (p15A) with chloramphenicol
resistance. Detailed plasmid maps are shown in Figure BT-S11, and a complete list

of plasmids and strains can also be found in the Supplementary Materials.

Plate reader experiments

Plate reader data were collected on a Biotek HIMF machine using the kinetic read
feature. Cell were grown in two consecutive overnight cultures in MOPS EZ rich
media. On the day of the experiment, overnight cultures were diluted 1:40, and
grown to OD ~ 0.1 prior to start of experiment. Cells were incubated in the plate
reader at 37C and shaken at 800rpm between reads. Measurements were taken every
five minutes. Cells were grown in clear bottomed 96-well microplates (PerkinElmer,
ViewPlate, 6005182) and sealed with breathable clear membranes (Sigma Aldrich,
Breath-Easy, Z380059). mCherry was read at excitation/emission of 580/610 with
gain 140, Venus was read at 500/540 with gain 100, GFP was read at 488/525 with
gain 75.

Analysis of the data was done by taking fluorescence readings at late log phase
for each independent well. Experimental conditions were done in triplicate and
repeats were averaged. Fluorescence per OD was normalized by the fluorescence
of a control strain (lacking mCherry/YFP/GFP) such that the cell autofluorescence

equals 1 a.u. (Figure BT-S2). Error bars shown are standard error of the mean.

Western blots

Cultures were grown for five hours in a deep-well microplate at 37C with a range
of aTc from 0 - 120 nM. Arabinose was kept constant at 0.001 %. No salicylate
was used. After five hours, OD600, RFP, and GFP were measured in a plate-reader.
Western blot samples were collected and spun down. Because aTc concentration can
affect growth rates, the volume spun down was calculated based on OD to ensure
consistent cell mass. Pellets were resuspended in lysis buffer and boiled for 10
minutes. Samples were run on 4-20% tris-glycine gels (Novex, 150V for 1 hr) and
a semi-dry transfer apparatus was used (Bio-Rad, 15V for 20min) to transfer onto
a PVDF membrane. Monoclonal anti-FLAG M2-peroxidase (HRP) antibody was
diluted 1:88,000 in 5% milk. Blot imaging was done using the Chemi Hi Resolution
setting on a BioRad ChemiDoc MP imager. Quantification of band intensity was
done using Image Lab 5.0 (BioRad).
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Microscopy

Step induction data were taken using the CellAsic ONIX microfluidic perfusion
system for bacteria (BO4A). The microscope is an Olympus IX81-ZDC enclosed in
a custom heater box. Images were taken using a 100x oil immersion phase objective.
Fluorescence filters are 580/630 for mCherry (Chroma 41027) and 510/560 for YFP
(Chroma 31040 JP2). Microscope media was augmented with oxidative scavengers
Trolox (200 nM) and sodium ascorbate (2 mM).

Overnight cultures were then diluted 1:500 in media containing arabinose (0.01%)
and/or salicylate (100uM) four hours prior to loading in the CellAsic plate. This is
to ensure steady state concentrations of response regulator and phosphatase prior
to aTc induction of the scaffold. Cells were diluted 1:10 again before loading.
Microscopy movies were taken inside a temperature controlled environment set at
37C, and images were taken at 10 minute intervals. Exposure time was 10 ms for
brightfield and 500 ms for mCherry and YFP fluorescent channels.

Analysis of microscope movies was done using custom algorithms in ImageJ and
MATLAB. For each frame, the phase image is converted to a binary mask of the
cell colony. The mask is then used to find total mCherry and YFP fluorescence in
the frame. After subtraction of background fluorescence, the total fluorescence is
normalized by the total cell area (fluorescence intensity per pixel). For step induction
experiments, fluorescence is normalized such that the maximum fluorescence of the
lowest concentration induction is equal to 1 a.u. Figure BT-S5 shows the microscopy
analysis workflow. Error bars shown in microscopy time trace data are the standard
error of the mean between analysis of different positions (n = 7 to 10) on the same

experimental plate.

Model implementation

The model was implemented using the Simbiology toolbox in MATLAB and the
odel5 solver (See Supplementary files for MATLAB code).
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2.6 Supplementary information

Supplementary Figures
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Figure BT-S1: Modeling of single occupancy effect. Dotted lines show intermediate
scaffold complexes (labeled as IntSc). IntSc is the sum of Sc:RR, SCIRRP,SCIHK,
Sc:HK,,. Solid lines represent antiscaffold concentrations. It is apparent from the
model that the drop off in steady stand antiscaffold concentrations corresponds with
the increase in intermediate scaffold complexes. This is true for both the open and
closed loop circuits. However, the closed loop circuit exhibits this behavior at much
higher concentrations of scaffold relative to the open loop.
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Figure BT-S2: GFP, RFP, and YFP autofluorescence of control E. coli strains.
FP del shows a control strain transformed with the three plasmid system without
fluorescence reporters. FP del provides the native autofluorescence of our particular
E. coli strain, and these values are used for normalization of plate reader data. Sc
Del is a control strain without the scaffold plasmid, and shows the level cross talk
between the HK and RR in the absence of Sc. Auto-fluorescence of the E. coli is
shown to be independent of arabinose and aTc concentrations.
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Figure BT-S3: Circuit used for Western blot analysis. The circuit used for Western
blot analysis has the same architecture as the circuit in Figure 1 of the main text. The
main differences are the bicistronic scaffold/mCherry and the use of GFP instead
of YFP. mCherry is expressed from its own RBS instead of tethering directly to
the scaffold (12 kDa) to provide a substantial size difference from the antiscaffold
(44 kDa). The scaffold and antiscaffold are tagged with the 3xFLAG epitope. We
expect the addition of the tag not to significantly affect circuit function. None of
the molecules have degradation tags and there is no additional phosphatase in the
system.
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Figure BT-S4: Comparison of fluorescence data to Western blots. A) Both the
scaffold and antiscaffold are tagged with the 3XFLAG-tag epitope. The scaffold is
expressed on a separate RBS from the mCherry to create a size difference between
the scaffold-3xFLAG (12 kDa) and the antiscaffold-GFP-3xFLAG (44 kDa) bands.
B) Western blot (15s exposure) of closed loop versus open loop over a range of aTc
induction values (0-120 nM). AS denotes antiscaffold band at 44 kDa, Sc denotes
scaffold band at 12 kDa, and GFP denotes open loop GFP expression at 29 kDa.
Longer exposure (42s) of the blot reveals the scaffold bands more clearly. C)
GFP fluorescence versus Western blot quantification of antiscaffold-GFP-3xFLAG.
Western blot results for the closed loop versus open loop circuits (Figure 3B) show
bands at the expected molecular weights, with significantly darker bands for the
antiscaffold (CL) / GFP (OL) than the scaffold (15s exposure). The fluorescence
measurements of the experimental cultures were taken immediately prior to lysis
for protein blotting. Comparison of GFP/OD and antiscaffold band intensity as a
function of aTc induction shows very good agreement in output curves between
measured fluorescence and antiscaffold concentrations in both the open and closed
loop circuits. D) Western blot quantification of the scaffold-3xFLAG. Measured
RFP/OD and band intensity of scaffold cannot be compared since RFP expression is
independent of scaffold expression. The discrepancy between open loop and closed
loop scaffold expression is due to sequestration of the scaffold in the Sc:AS complex,
which we believe protects the scaffold from degradation in the closed loop circuit.
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Figure BT-S5: Microscopy analysis overview. A) 100x phase images are converted
into binary masks. CellAsic plate features such as the small and large square pillars
shown in the figure, are filtered out in Imagel. The remaining cell segmentation
is saved as a binary .PNG file. The binary image is converted into a matrix in
MATLAB, and used to extract only cell fluorescence from mCherry and Venus-YFP
channels. The fluorescence background average is calculated from the area outside
the mask and subtracted from every subsequent frame. B) Total RFP and YFP fluo-
rescence and total cell area are extracted from each frame. C) The total fluorescence
is divided by total area to find average fluorescence per pixel. The fluorescence traces
shown in Figures 3, 4, and 5 are derived by averaging the average fluorescence per
pixel of each frame, with an average of 5-7 frames per experimental condition. Mi-
croscopy analysis protocol based on a protocol established by the Phillips group at
Caltech (http://www.rpgroup.caltech.edu/courses/PBL/bootcamp2011/
protocols_and_references/Matlab_Tutorial_2010.pdf).



No inducer 37.5nM aTc

aTc (nM)
aTc (nM)

Total Cell Area (px)

N W B (%)) (2]
Total Cell Area (px)

N Wb 01O

-y
e

(=)
o

0 2 6 8 0 2 4 6 8

4
Time (hrs) Time (hrs)

Total Cell Area (px)
IS o

N

33

75nM aTc

2 4 6 7 B

Time(hrs)

Time (hrs)

Figure BT-S6: Growth curves for step induction experiment shown in Figure 3 of
the main text. Shown is the quantified total cell area extracted from phase contrast

microscopy images.
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Figure BT-S7: Growth curves for multi-step induction experiment shown in Figure
4 of the main text. Shown is the quantified total cell area extracted from phase

contrast microscopy images.
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Figure BT-S8: A) Open loop circuit with no aTc induction. Red trace is scaffold-
mCherry, yellow traces is antiscaffold-Venus. B) Open loop circuit with 30 minutes
of media only, followed by 2 hours of media with 50 nM aTc, followed by 2 hours of
150 nM aTc, then back to media only. C) Closed loop circuit with no aTc induction.
D) Closed loop circuit with two step induction described in (B). Fluorescence traces
for all four panels are normalized by the closed loop maximum values. RFP is
normalized by cIRFP, ., and YFP is normalized by clYFP,,,, /2
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Figure BT-S9: Growth curves for oscillating induction experiment shown in Figure
7 of the main text. Shown is the quantified total cell area extracted from phase

contrast microscopy images.
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Figure BT-S10: Heat maps from parameter space exploration with values shown.
The model was used to find the antiscaffold to scaffold ratio as well as the scaffold
occupancy limit over an 11 x 11 matrix of response regulator and phosphatase
values. Both RR and Ph values cover the range of 0 to 100 nM in 10 nM increments.



4
4‘5x 10
*Constant aTc (150 nM)
4
35
3
a
8 25
&
c 2
1.5
1
0.5
ol ‘ ‘
10° 10° 10*

Salicylate Concentration (nM)

36

x 10*

*Constant aTc (150 nM) & 0% Ara

- 0.001% Ara 7
-4~ 0.01% Ara
¥ 0.1% Ara

—@ *—0
10° 10* 10
Salicylate Concentration (nM)

Figure BT-S11: Py, response curve is shown over a range of salicylate levels (0,
1, 10, 100uM). The circuit used was an open loop circuit with Py,;-CusS(G448A)
and Pc,sr-GFP. RFP represents scaffold-mCherry, and GFP is the open loop output
(no antiscaffold). As salicylate concentration increases, induction of CusS(G448A)
phosphatase concentration increases. Increased CusS(G448A) activity decreases
concentrations of activated CusR response regulator, resulting in lowering levels of

GFP.



A 4973 SH3(1)
o, /;% SH3(2)

; SH 3‘/ A /
GS Ilnker(Z)
GS linker, GS linker
GS linker(3) /4, -
GS I|nker(4}/

pWW2149
4,973 bp

(0 NS
e N o

005z

7904

S %
NahR Taz HK
y ~CusS Phos Mut (G448A)

SH3 domain-¥
pVH028  GS linker
7,904 bp  GS linker/#

SH3 domairf,
SH3 domairi/
SH3 domain/l

6,000

ZASN é\“&“
—

000'y

37

B AAV Deg Tag
g -

N
GS Ilnker\\\mﬁ
LZX\‘/SHE pep (.1uM)

ColE1 origin—y
' GS linker pvHO01
4,444 bp

005z

Gs Linker
GS linker

9
SH3 pep (.1uM)

Shine-Delgarno RBS /
PKS001_FWD3 mCherry

3,500
000t

pVHO11
4,503 bp

Kan/neoR—§ e
PVH009
9,446 bp

9,000 9,446

004

000,

‘ GS linker v2 Cusk GSlinker o ‘L' .
SH3 domain us o7f3 inker
97}j/ QM= //(LZx
LZx put ‘,p- {000 LZx Ng/ffGFP
CusR Lzx » sH3 \
S GS linker 7
$ GS Linker & g i
© _ o 2
Gs Linker . 2 n;f 3
pVHO03 = pVHO15
9,794 bp 2 o 9,713 bp
2 = < .
%
5 “\%V
000's 000's
CusR zuuo

/ffGFP \

GS linker 3xFIag

pVHO16 \
9,365 bp
<
@“Q

000,

000¥

9.365

Figure BT-S12: Plasmids used in experimental work. A) Histidine kinase plasmids.
pWW2149 has the Taz chimeric histidine kinase with four SH3 binding domains
behind a constitutive promoter. pVHO028 has the mutated phosphatase, CusS mut
G448A, behind an inducible pSal promoter in addition to the Taz HK. Backbone is
p15A ori with CmR. B) Scaffold plasmids. pVHOO1 contains the scaffold-mCherry-
AAV fusion behind an inducible pTet promoter. pVHO11 contains the bicistronic

scaffold/mCherry.

Backbone is ColE1 with AmpR. C) Closed loop antiscaffold

plasmids. pVHO0O03 contains the response regulator, CusR, behind a pBAD promoter,
as well as the antiscaffold-YFP behind the pCusR promoter. pVHOI5 has a fast-
folding GFP reporter(ffGFP) (instead of YFP) with no degradation tag. D) Open
loop antiscaffold plasmids. pVHO09 is the open loop version of pVHO003, in which
the sequence for the antiscaffold has been deleted, and only pCusR-YFP remains.
pVHO16 has ffGFP reporter (instead of YFP) with no degradation tag. Plasmid
maps generated with the software Geneious (version 6.1 created by Biomatters).
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Production and Degradation Reactions (other species are degraded with rate y and

not produced)
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Sequestration of Scaffold by Antiscaffold

Kfscas

Sc+ AS —— ScAS

kr
X ScHKAS —25, s AS + HK

rASy7x

k
Sc: HK + AS
k

k
Sc: HK, + AS
k

"ASLZX
Sc: RR+ AS ScRRAS —> Sc: AS+RR
krASsH3
k fASSH3 krASLZX
Sc: RR, + AS ScRR,AS —%, Sc ¢ AS + RR,

krASSH3

Additional Reactions with Phosphatase-bound Complexes

Sc+ Ph: RR, ———= Ph: Sc:RR,

krSc HK

Sc:HK + Ph: RR,—— Ph:Sc: HK : RR,

krSc RR

Sc: HK, + Ph: RR,

—— Ph:Sc: HK, : RR,

krsc:RR

k
Ph:Sc: RR,+HK KPh:Sc:HK:RRp

krSc HK
Ph: Sc: RR +HK — Ph: Sc:HKp:RRp
krse:HK
krassus kras; 7x
Ph:Sc:RR,+ AS Ph:Sc:RR,: AS —— Sc: AS+ Ph:
krASsH3

Non-Mass Action - Activation of Antiscaffold Expression
ky
¢ = As
Y

RR?
k — [ active ]
ras = Bas|Bo (—K2 TRR

active

ky
L ScHK,AS —2™ Sc : AS + HK,

40

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
(2.34)
(2.35)
(2.36)
(2.37)

RR,

(2.38)

(2.39)

(2.40)

where RR, .. = RRp+Sc : RRp+Sc : HK : RRp+Sc : HKp : RRp+Sc : RRp . AS.

active



List of plasmids and cell strains used

41

Plasmids

Name

Resistance

Description

pWW2149

Chloramphenicol

Contains pCon-Taz (histidine kinase).

p15A origin of replication, low copy.

pVHO028

Chloramphenicol

Contains pCon-Taz (histidine kinase) and
pSal-CusSmut (phosphatase). Also has
NahR for the pSal promoter. p15A origin
of replication, low copy.

pVHO01

Carbenicillin/Amp

Contains  pTet-Scaffold-mCherry-AAV
and TetR genes. ColEl1 origin of
replication, high copy.

pVHO11

Carbenicillin/Amp

Contains bicistronic pTet-
Scaffold(3xFLAG)-ShineDelgarno-
mCherry and TetR genes. ColEl origin
of replication, high copy.

pVHO003

Kanamycin

Contains pBAD-CusR (response regu-
lator) and pCusR-antiscaffold-YFP-AAV.

pBBRI1 origin of replication, medium

copy.

pVHOI15

Kanamycin

Contains pBAD-CusR (response
regulator) and  pCusR-antiscaffold-
GFP(3xFLAG). pBBR1 origin of

replication, medium copy.

pVHO009

Kanamycin

Contains pPBAD-CusR (response regula-
tor) and pCusR-YFP-AAV. pBBRI1 origin

of replication, medium copy.

pVHO16

Kanamycin

Contains pPBAD-CusR (response regula-
tor) and pCusR-GFP(3xFLAG). pBBR1

origin of replication, medium copy.

pVH002

Carbenicillin/Amp

Contains pTet-Scaffold with no fluores-
cent protein. Used as a control for aut-

ofluorescence.

pVHO004

Kanamycin

Contains pBAD-CusR and pCusR-
antiscaffold with no fluorescent protein.

Used as a control for autofluorescence.
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Strains (All in WW62 E.coli)

Name | Plasmids Contained Description

eVH15 | pWW2149/pVHO11/pVHO15 | Closed loop Western blot circuit.
Cm/Carb/Kan resistance.

eVHI16 | pWW2149/pVHO11/pVHO16 | Open loop Western blot circuit.
Cm/Carb/Kan resistance.

eVH38 | pVHO028/pVHO001/pVH003 Closed loop tracker circuit. Cm/Carb/Kan
resistance.

eVH39 | pVHO028/pVHO001/pVHO09 Open loop tracker circuit. Cm/Carb/Kan
resistance.

eVHOS | pww2149/pVH002/pVHO004 | Autofluorescence control strain.
Cm/Carb/Kan

eVH42 | pVHO028/pVH003 Scaffold-less closed loop control.
Cm/Kan

eVH43 | pVH028/pVHO009 Scaffold-less open loop control. Cm/Kan
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Chapter 3

A POPULATION-BASED TEMPORAL LOGIC GATE FOR
TIMING AND RECORDING OF CHEMICAL EVENTS

A version of this chapter has been published as a journal article (Hsiao et al., In

press).

= A
gl

=11 Stochastic ."UU
response UUUUU

Engineered bacterial sensors have potential applications in human health monitor-
ing, environmental chemical detection, and materials biosynthesis. While such
bacterial devices have long been engineered to differentiate between combinations
of inputs, their potential to process signal timing and duration has been overlooked.
In this work, we present a two-input temporal logic gate that can sense and record the
order of the inputs, the timing between inputs, and the duration of input pulses. Our
temporal logic gate design relies on unidirectional DNA recombination mediated by
bacteriophage integrases which detect and encode sequences of input events. For an
E. coli strain engineered to contain our temporal logic gate, we compare predictions
of Markov model simulations with laboratory measurements of final population
distributions for both step and pulse inputs. Although single cells were engineered
to have digital outputs, stochastic noise created heterogeneous single cell responses
that translated into analog population responses. Furthermore, when single cell ge-
netic states were aggregated into population-level distributions, these distributions
contained unique information not encoded in individual cells. Thus, final differ-
entiated sub-populations could be used to deduce order, timing, and duration of

transient chemical events.
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3.2 Introduction

Engineered bacteria could one day be powerful self-replicating biosensors with
environmental, health, and industrial applications. Synthetic biology has made
important strides in identifying and optimizing genetic components for building
such devices. In particular, much work has focused on Boolean logic gates which
detect the presence or absence of static chemical signals (Gardner, Cantor, and
Collins, 2000; Anderson, Voigt, and Arkin, 2007; Wang et al., 2011; Moon et al.,
2013; Shis et al., 2014) and compute a digital response.

Temporal logic gates, which process time-varying chemical signals, have been
much less explored. Pioneering work by Friedland ef al. used serine integrase-
based recombination for the counting and detection of sequential pulses of inducers
(Friedland et al., 2009). But thus far, no work has studied the potential for temporal
logic gates to provide information about the duration of a signal, or the time between
two chemical events. Here, we present a temporal logic gate that allows us to infer
analog signal timing and duration information about the sequential application of

two inducer molecules to a population of bacterial cells.

Similar to previous temporal logic gates, our design takes advantage of the irre-
versibility of serine integrase recombination. While bistable switches have been
successfully deployed as memory modules in genetic circuits (Kotula et al., 2014),
such switches require constant protein production to maintain state, and are sensitive
to cell division rates and growth phase. The large serine integrases, on the other
hand, reliably and irreversibly flip or excise unique fragments of DNA (Yuan, Gupta,
and Van Duyne, 2008). Thus logic circuits built from integrases intrinsically include
DNA-level memory that requires virtually no cellular resources to maintain state,
thus enabling permanent and low-cost genetic differentiation of individual bacterial
cells based on transient integrase induction. Further advantages of the serine in-
tegrates include the short length (40-50 bp) and directionality of their attachment
sites. Serine integrases recognize flanking DNA binding domains (attB, attP) and
subsequently digest, flip or excise, and re-ligate the DNA between the attachment
sites. Flipping or excision activity is determined by the relative orientation of the
sites, which allows complex orientation-dependent behavior to be programmed into
integrase circuits. Well-known serine integrases include Bxb1, TP901-1, and ¢C31,
all of which have been used to demonstrate static-input logic gates (Siuti, Yazbek,
and Lu, 2013; Bonnet, Yin, et al., 2013), and some have cofactors that can reverse
directionality (Bonnet, Subsoontorn, and Endy, 2012; Khaleel et al., 2011). Re-
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cently, an entirely new set of 11 orthogonal integrases was characterized, greatly

expanding the set of circuits that can be built (Yang et al., 2014).

In contrast to previous studies of temporal logic gates, our work leverages the
stochastic nature of single-cell switching to create a robust population level response
to a time-varying chemical signal. The fundamental nature of living cells that
makes them so attractive for engineering — their extremely low energy operation in
the limit of using small numbers of molecules to represent information — is also
inextricably linked to stochasticity and noise. By traditional engineering standards,
synthetic circuits would ideally perform identically in every cell in a population.
When this ideal is applied to biology, the stochastic nature of molecular processes,
particularly at low copy numbers, presents a significant barrier to reliable outputs
from engineered cells. Thus, while natural cellular dynamics and differentiation take
advantage of noisy gene expression (Elowitz et al., 2002; Siiel et al., 2007) synthetic
circuits often require noise reduction for proper function (Dunlop et al., 2008).
Recent work has taken a different direction, towards understanding of population-
level dynamics. This includes analysis of both stochastic cellular responses to inputs
(Uhlendorf et al., 2012; Ruess et al., 2015), and changes in collective population-
level memory in response to stress (Mathis and Ackermann, 2016). Such efforts
suggest that a deeper understanding of the inherent heterogeneity in biological
systems might eventually lead to circuit design which operates on distributions of

cellular responses, rather than depending on homogeneous responses from all cells.

It is with this vision in mind that we designed a two-input temporal logic gate
using strategically interleaved and oriented integrase (Bxb1, TP901-1) DNA recom-
bination sites and used this gate to engineer an E. coli strain with four possible
genetically-differentiated end states. This strain contains single genomic copies of
the temporal logic gate, ensuring digital-yet-stochastic responses from individual
cells. We then utilized the heterogeneity of individual cellular responses to en-
code sequences of chemical inputs into the overall population response, and used a
stochastic model of single cell trajectories to predict the population response. By
analyzing the distributions of final cell states, we can deduce the timing and pulse
duration of transient chemical pulses, and show that cumulative population level
distributions contain additional event information not encoded in any single cell.
Furthermore, because the states are genetically encoded, we can recover details of a

chemical event long after its occurrence.
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3.3 Results
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Figure 3.1: Design overview of a temporal logic gate. A) A temporal logic gate
distinguishes between two chemical inputs (a,b) with different start times. B) Imple-
mentation of the temporal logic gate using a set of two integrases with overlapping
attachment sites. Chemical inputs a and b activate production of integrases intA
and intB, which act upon a chromosomal DNA cassette. C) Table with all possible
inputs and outcomes to the event detector. D) Sequence of DNA flipping following
inputs with inducer a before inducer b (event E,;;,). E) Sequence of DNA flipping
following inducer inputs with b first (event Ej,). In any events in which b precedes
a, the uni-directionality of the intB attachment sites results in excision.

Design of a two-integrase temporal logic gate

We have designed a two-input temporal logic gate that differentiates between the
start times of two chemical inputs and produces unique outputs accordingly (Figure
3.1A). The design relies on a system of two-integrases with nested integrase at-
tachments sites (Figure 3.1B). The use of integrases irreversibly invert segments of
DNA, resulting in a memory feature that can be maintained for multiple generations
(Bonnet, Subsoontorn, and Endy, 2012).

The design of the integrase temporal logic gate hinges on interleaving the attB
attachment site of integrase B (intB) with the attP site of integrase A (intA), thus
ensuring that the possible DNA flipping outcomes are mutually exclusive (Figure
3.1B). The serine integrases used in this design are TP901-1 (intA) and Bxb1 (intB).
The fluorescent proteins mKate2-RFP (RFP) and superfolder-GFP (GFP) are used

as placeholders for future downstream gene activation as well as real-time readouts
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of the logic gate. The design also features a terminator (Bba-B0015) and a strong
constitutive promoter (P7). In the case where there are no inputs, the terminator

prevents expression of RFP from the constitutive promoter.

There are five possible basic events that could occur in a two-input system (Figure
3.1C): no input, inducer a only (E,), inducer b only (E}), inducer a followed by b at
a later time (E,), and inducer b followed by a at a later time (Ep,). Consequently,
in a perfectly resolved temporal logic gate there should be five unique DNA states
corresponding to the five types of events: S, (the initial state), S,, Sp, Sap, and
Spa- This design is limited to only four DNA states due to excision when Ej, occurs
(Sp = Spa). The two fluorescent outputs correspond to the two states that occur
when inducer a is detected first — RFP is produced when the cell is in state S,, and

GFP is produced when the cell is in state Sgp.

Figure 3.1D illustrates the sequence of recombination that occurs during an event E,
that results in DNA state S, and the production of GFP. Upon addition of inducer
a at time ¢1, TP901-1 flips the DNA between its attachment sites, reversing the
directionality of the terminator and the Bxb1 attB recognition site (state S,). Then,
when inducer b is added at some time ¢, that is greater than ¢, the directionality
of the Bxbl sites is such that the DNA is flipped to reverse the directionality of
the P7 constitutive promoter (state S,5). If inducer b is added first (Figure 3.1E),
the Bxbl attachment sites are uni-directional, a configuration that results not in

recombination, but in excision of the DNA between the sites (state Sp).

Once DNA recombination has occurred, it is irreversible. The unique attB and attP
attachment sites are recombined into attL and attR sites, respectively, to which the
integrases cannot bind without additional excisionase cofactors (Ghosh, Pannunzio,
and Hatfull, 2005). The nesting of the integrase attachment sites is the key design
feature that produces the temporal a then b logic, and the irreversibility of the
recombination records the event in DNA memory. The result is a genetic record
that can both be sequenced later and immediately read via constitutive production

of fluorescent outputs.

A Markov model for integrase recombination

The most compelling advantage of engineered biological systems over manmade
sensors lies in their inherent capabilities for replication and parallel sensing with
minimal energy and resource requirements. Thus, deployment of synthetic bacterial

devices would almost certainly involve populations of cells, never just a single cell.



51

A Initial state B DNA states Protein states
Yinta
a | b first az| athenb Oin
.E @ Yints
Pt DIy Bunp
Excisiun\ ? !
C D al > al >
= 5 5
g 45 —s, | 45 S
X 4 S 4 —
all > 235 —s, | 35 S
® 3 — S, 3 —S
Sos 25 —Sa
o 2 2
> t @15 15
t t £,1 :
05/ .
! At 2 2 0 Og —
0 5 10152025308540 0 5 10 1520 25 30 35 40
Time (h) Time (h)

Figure 3.2: A Markov model of integrase-mediated DNA flipping. A) The four
possible DNA states, illustrated with DNA state diagrams. All DNA begins in the
initial state S, and there are no reverse processes. The propensity functions a,a3,
and a3 are dependent on the concentration of the two integrases and correspond to
the events b first (Ep), a only (E,), and a then b (E,;), respectively. B) Represen-
tation of the same model as a Markov chain. Integrases are represented simply as
protein states with production (74, yp) and degradation (9 4, 0 g) rates. C) Graphical
representation of inducer step functions. At is defined as difference between the
start time of the first inducer and start time of the second. D) Simulation results
for inducer separation times of 0 and 5 hours. There are four possible DNA states,
but all cells end up in either the S, or S, final states. Individual trajectories are
simulated for 5000 cells and the number of cells in each DNA state are summed for
each time point (Appendix Fig. ED-S2).

It is therefore important to understand how stochastic single cell responses affect
overall population-level distributions and outcomes. We created a Markov model of
integrase-mediated DNA flipping and then used a stochastic simulation algorithm
(Gillespie, 1977) to simulate individual cell trajectories (Figure 3.2A). All of the
four possible DNA states are represented in the model: the original state (S,), the
intB excision state (Sj), the intA single flip state (S,), and the a then b double flip
state (S4p). We have implemented the system experimentally by chromosomally
integrating the target DNA into the genome of the E. coli cell. This allows us to
assume that each cell only has one copy of the temporal logic gate (Haldimann and
Wanner, 2001), and that each cell can be characterized by the tuple (DNA, IntA, IntB)
(Figure 3.2B). The DNA termis S,, S,, Sp, or Syp, and IntA and IntB are non-negative
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integers representing the molecular copy number of each integrase. Once a DNA
cassette has flipped into any of the states other than the original state S,, there is
no reverse process. The logic gate is designed such that if integrase B is expressed
prior to integrase A, the DNA cassette is excised and the chain reaches the dead-end
Sp state. In order for a cell to successfully detect E,p, it first needs to switch into

state S, then transition into state S,;, upon addition of inducer b.

Since each cell contains only a single copy of the temporal logic gate DNA, we
can expect each cell to behave differently, and to be highly susceptible to internal
and external noise. This stochastic behavior will create a heterogeneous population
response that can be analyzed for a more complex profile of event than if all the
cells behaved uniformly. In order to capture the heterogeneity of cell population, we
model the temporal logic gate using a stochastic model. Specifically, the stochastic
transitions between the DNA states and the production/degradation of integrases are
mathematically modeled by a continuous-time Markov chain over the state space
(DNA, IntA, IntB) as illustrated in Figure 3.2B. Definitions of transition rates can
be found in Appendix Table S1.

In silico, the dynamics of a single cell translates to each stochastic simulation of
the Markov model starting with (DNA = S, IntA = 0, IntB = 0) state. We define
P (S0), P:(Sa), P:(Sp) and P;(S,p) as the probability that the DNA state of a single
cell is S,, Sq, Sp and S, at time ¢, respectively.

The temporal dynamics of the probability can be modeled by the following ordinary
differential equation (ODE)

Pr(So) —E; [ (IntB) |So ] — B¢ [ (IntA) S, ] 0 0 0][P:(So)
d | Pi(Sa) | _ E; [ (IntA) S, ] -E:[a3(IntB)[Sq] 0 0| | P:(Sa) 3.0
dt | Pr(Sp) E;[a(IntB)|S, ] 0 0 0| Pe(Sp) | B
P (Sap) 0 E¢las(IntB)[Sq] 0 O] [P+ (Sap)

where the notation E;[:|-] stands for the conditional expected value at time ¢ (Full

derivation, Appendix Section 12.1).

Serine integrases are produced as monomers that form dimers, search for specific
attB and attP sequences, and, once both attB and attP sites are occupied, form a
tetramer (dimer of dimers) that digests, flips, and re-ligates the DNA (Yuan, Gupta,
and Van Duyne, 2008; Rutherford et al., 2013). Though some cooperativity in ®C31
binding to attB has been found (McEwan, Rowley, and Smith, 2009), cooperativity
in Bxbl or TP901-1 integrase binding to attB and attP not been observed (Ghosh,
Pannunzio, and Hatfull, 2005; Singh, Rockenbach, et al., 2014).
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Rather than account for all individual DNA-integrase interactions, we have created a
minimal model of stochastic transitions where only the final DNA states (S,, S4, Sp,
Sap) and the number of integrase monomer molecules (intA, intB) are tracked and
all integrase activity is encompassed in the kqjp. term. Since no cooperativity has
been observed in Bxbl or TP901-1 DNA binding (i.e. occupation of attB does not
increase the probability of attP binding), we represent the required tetramerization
as a fraction where flipping efficiency is zero unless at least four molecules are
present. Thus, the propensity functions for state transitions as a function of integrase

concentration, «;(Int, ), are defined as

) o . Int, (Int,—1) (Int,-2) (Int,.-3)
a;(Int,) := kﬂlp* ( K“i‘* +K§* Int, +K§* Int, (Int,~1)+ K4, Int, (Int,~1) (Int,~2) +Int. (Int,~1 ) (Int,~2) (Int,-3) )’ (3 ’ 2)

where Int, is integrase concentration, Kg. is the dissociation constant, kgip. is the
rate of flipping if the tetramer is formed, i = 1,2,3, and * = A, B (See Appendix
ED-S1 for visualization of «;(Int.), Appendix Section 12.2 for full derivation).

We also define the time between the introduction of the first inducer (z;) and the

arrival of the second inducer (¢) as the inducer separation time (At), such that
At =ty — 1y, (3.3)

as shown in Figure 3.2C.

In the following set of simulations and experiments, we will consider cases with
step inputs (Figure 3.2C), where the inducers are either present or not present.
Concentrations of the inducers when they are “on” will be held constant. Also, it
is important to note that inducer a is still present during and after time At when

inducer b is introduced.

Simulations of the Markov model were done with biologically plausible parameters
in order to predict qualitative circuit behavior (Appendix Table S1). We limited
the parameters to only the basic processes (integrase production, degradation, and
DNA flipping), and parameter values were chosen to be within biological orders of
magnitude. The single production rate constants, kproqa and kproqp, combine the
transcription and translation rates of each integrase. When an integrase in the model
is induced, its production rate, ., is the sum of kp4+ and any leaky transcriptional
expression, Kieaks+ (* = intA or intB). The integrase monomer disassociation constant,

K., was estimated from measured Bxbl binding constants (Singh, Ghosh, and
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Hatfull, 2013). Parameter values for preliminary simulations were kproda = kprodp =
50(um?- hr)~!, kgeg = 0.3hr™! (2.3 hr half-life), kipa = kpipp = 0.4hr™", kieara =
kieaks = O(um?-hr)~!, and K44 = Kqp = 10 molecules.

Our analysis of initial numerical simulation results highlight the significant role that
the inducer separation time, Az, plays in setting the final population distributions
(Figure 3.2D). For each At, individual cell trajectories were generated with the
assumption that each cell only has one copy of the target DNA (N = 5000 trajectories).
Then, at every time point, the total number of cells in each DNA state is counted
(Appendix ED-S2). Figure 3.2D shows the contrast between adding both inducers
simultaneously (At = Oh) and adding inducer b after a 5 hour delay (Af = 5h). Since
both inducers are present by the end of simulation, all of the cells must have a final
state that is either the S, state or the S; state. No cells remain in the original S,
configuration. S, is a transient state that builds up prior to the addition of inducer b
and begins to convert to S,, immediately after the introduction of b. These initial
simulation results suggest that A may be a way to reliably tune the final population

fractions of S,;, versus S, state cells.

Population distributions reflect inducer order and separation time

We used the model to further investigate the effects of varying both inducer order
and separation time on population distributions in our experimental system, and
to understand the possible outcomes. In Figure 3.3, we simulate in silico cell
populations that have been exposed to a sequence of overlapping step functions (N
= 5000 trajectories).

In the case of an E,;, event, the proportion of cells that successfully detect a then b
and switch to state S, is a function of the inducer separation time, At (Figure 3.3A).
High At means increasing the time that cells spend in only inducer a, allowing for
most of the population to transition from S, — S, before the addition of any inducer
b. Exposing cells to the inverse sequence of events, Ej,, results in a decrease of S,
cells proportional to increasing Ar (Figure 3.3B). High At in an Ej, event means
that S, — Sj is the dominant reaction and cells that get partitioned into S, will
not respond to a. If we plot the final number of S, cells from both E,; and Ep,
as a function of Ar (Figure 3.3C), we see that the two curves do not overlap. Sgp
fractions exposed to E,; increase monotonically with A¢, while those exposed to
Ep, decrease monotonically with Az. Thus measuring the fraction of S,; cells is

sufficient to determine both the order of events and the timing, Az, between them.
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Figure 3.3: Simulation results for inducer separation time for At = 0 — 10h. A)
The population fraction (N/5000 cells) that switches into state S, following an E,
event is dependent on the inducer separation time, Az. The gray to dark green color
gradient represents increasing At values. Square markers indicate final population
fractions for specific values of Az. B) In the case of the inverse Ej, event, the fraction
of cells in state S,; decreases proportionally to At. Circular markers indicate final
population fractions for specific values of A¢. C) Final S, cell fractions from
Figure 3.3A, B are plotted as a function of Az. Blue line with square markers are
endpoint population fractions from an E,;, event. Yellow line with circular markers
are final endpoint population fractions from an Ep, event. The gradient inside the
markers corresponds to increasing Ar value. The dotted gray line corresponds to the
Atgp, the value of Ar at which > 90% of the cells are in state S,,. All simulations
were done with a population of N = 5000 cells. D) Chart showing differences
in information that can be recorded at the single-cell versus the population level.
In particular, Ep, does not have a unique single-cell genetic state, but has a clear
distinct population-level phenotype.

Additionally, we can define a detection limit, Atgg, for which the inducer separation
time results in > 90% of population switching into the S, state (Figure 3.3C). This
Atgo limit provides a way to capture the two response regimes of the population.
If the inducer separation time is less than the detection limit (At < Atgg), then the
rate of population switching is fast enough such that the number of S,; cells will

correspond uniquely to some Af value. If At > Atgg, then most cells have already



56

switched to a final state, and the differences in S, cell count are too small to uniquely

determine At.

The single-cell limitations of the temporal logic gate circuit can be overcome by
measuring the number of S,;, cells as a fraction of total cells. Though the logic gate
itself does not have a unique genetic Sp, state and cannot distinguish between a b
only event versus a b then a event, these simulation results suggest that population-
level fractional phenotypes can provide this additional information (Figure 3.3D).
In the case of E,, fractions of S,; will always be above 50%, while S,; fractions
less than 50% indicate Ej,. Additional figures showing how populations of S,, Sp,
and S, cells change with At can be found in Appendix ED-S3.
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Figure 3.4: In vivo results for varying inducer separation time from At =0 — 8h. A)
Populations of cells exposed to an E,j, event sequence. Cell-switching to state S,;,
(indicated by GFP fluorescence) begins when inducer b (aTc) is added. Maximum
normalized GFP fluorescence increases as a function of the inducer separation time
At. Gray to dark green gradient represents increasing At values. Square markers are
final endpoint measurements. Error bars represent standard error of the mean. B)
Cells exposed to the inverse Ep, sequence of events. GFP fluorescence is inversely
proportional to the inducer separation time between b and a. Circular markers are
final endpoint measurements. C) Final population distributions from Figure 3.4A,
B at 30 hours are plotted as a function of Az. Cells were gated by GFP fluorescence
to identify percentage of S, cells. Dotted line marks Azgy detection limit.

In vivo step induction data supported model predictions and showed that population
fractions of S, cells could be tuned using At (Figure 3.4). DHSa-Z1 cells were
chromosomally integrated with one copy of the integrase target DNA and then
transformed with a high copy plasmid containing Ptet-Bxb1l and PBAD-TP901-1.
When Ar was varied from O — 8 hours, we observed results qualitatively similar

to model predictions. In Figure 3.4A, the cells have been exposed to an E,
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event, where inducer a is present from time ¢ = 0 h to ¢4, and b is present from
t = At h to tepqg. GFP expression during time course measurements is used as a
proxy for S, state cells and flow cytometry was used to measure final populations.
Comparisons of bulk fluorescence versus cytometry cell counts suggest that in
single copy integrants, overall GFP is a good approximation of population S, levels
(Appendix Fig. ED-S12).

In Figure 3.4A, the number of cells in the GFP-expressing S,; state increases
proportionally with increasing At, and continue to be responsive even when the two
inducers are separated by 8 hours. There is some expression of GFP in the presence
of only inducer a (E,), indicating some basal levels of intB. RFP expression, a
proxy for the number of cells in state S,, begins to increase at t = 0 h and drops
at time ¢+ = Ar when inducer b is added (Appendix Fig. ED-S4A). Aligning all of
the GFP expression curves by At (Appendix Fig. ED-S5) shows that lower values
of At not only have lower final GFP expression values, but also have slower rates
of GFP production. This is consistent with modeling results because if we assume
inducer b has an equal probability of entering any one cell, then in case of small
At (At < 4 hours) there is a much larger number of S, cells and so the rate of
Sa — Sup state conversion will be lower. In the case of Ar > 4 hours, the majority
of cells in the population are already in the S, state configuration, and so the rate
of cell state conversion to S, will be much higher. When cells are exposed to Ep,,
the number of S, cells decreases proportionally to At (Figure 3.4B), and there is
no RFP expression above background (Appendix Fig. ED-S4B). In both types of
events, the cells maintained their state for up to 30 hours in liquid culture and when
re-streaked as single colonies. (Additional data with a more distinct color scheme
and OD curves for this set of experiments can be found in Appendix Figures S6, S7.

Single colony analysis in Appendix Fig. ED-S11.)

Final S,; (GFP) population fractions are sufficient to differentiate between popula-
tions that have been exposed to E,;, versus Ej, within one hour of separation time
between inducers (Figure 3.4C). Final populations after 30 hours of growth were
measured via flow cytometry and plotted against Az. As At increases, so does the
Sap sub-population. The cells that encountered Ep, have lower S,; fractions with
high At, and at At = 6 h the final S,; sub-population is equal to the baseline expres-
sion of a b only population, indicating that the addition of inducer a after a 6 hour
exposure to only inducer b has no effect at all. Based on where the GFP fraction

exceeds 90% of the maximum S,; population fraction, the Atgg detection limit for
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the experimental system is ~ 4 hours. These experimental results show that the S,;,
population fraction clearly diverges for E,;, and Ej;, when At # Oh, indicating that
Sap fractions alone can be used to determine both event order and separation time.

Further analysis of population-level data for all of the measurable fluorescent cell
states can provide additional insights into differences in partition growth rates and
leaky integrase expression (Figure EV3.5, Appendix Fig. ED-S8-ED-S10). In
Figure EV1, experimental populations from the step input experiments have been
gated into quadrants such that S,;, S;, and S, + S populations can be counted. Even
with maximum induction at highest At, the maximum population fraction that can
be switched appears to be approximately 60% of the total population. We believe
this is due to the non-fluorescent cells (S,,5;) having a slight growth advantage over
differentiated cells. Studies have shown that unnecessary protein production has
inverse effects on cell growth (Tan, Marguet, and You, 2009; Scott et al., 2010), and
even with single copy integrants, this would result in some overrepresentation of non-
fluorescent cells in the population. Single colony analysis of the final populations
shows that S, cells persist in the population even with 30 — 40 hours of inducer
exposure (Appendix Fig. ED-S11E).

Leaky expression of intA and intB can also be inferred from the no inducer, a
only, and b only populations (Figure EVIA, EV1B) and we can conclude that
leaky expression is quite low, not exceeding ~ 0.5 — 3 %. Even accounting for the
overrepresentation of non-fluorescent cells, the baseline population split when both
a and b are added simultaneously (Az = 0 h) is just under 50% of the total GFP
population fraction. This suggests that the integrase flipping rates, kgip4 and kqips,

may not be equal and that the basal expression rates, kjeak4.p should be non-zero.

Varying model parameters for integrase activity and basal expression

Prior to proceeding with additional model-driven experimental designs, model pa-
rameters were modified to better represent asymmetrical integrase activity. The
parameters for integrase flipping and leaky basal expression were tuned to account
for the asymmetrical population responses to E,j versus Ep, events (Figure 3.4C).
We hypothesized that this asymmetry arises from a combination of unequal inte-
grase activity when searching for and flipping the DNA, as well as leaky background

expression of the integrases (Figure 3.6).

To understand overall trends in model behavior, we varied kgipa and kieap While

holding the other parameters constant. When the relative flipping efficiency of intA
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Figure 3.5: Flow cytometry data for varying inducer separation time from Az =
0 — 8h (~ 10 cells per population). The populations are gated by fluorescence
into quadrants Q1 (GFP only), Q2 (GFP and RFP), Q3 (RFP only), and Q4 (non-
fluorescent). There is a transitory phase (Q2) in which cells contain both GFP and
RFP. This is due to slow dilution of RFP through cell division even after cells have
switched to S,; and begun production of GFP. Cells in Q1 + Q2 are used for the final
GFP population fractions in Figure 3.4C. A) E,;, cell populations plotted by their
RFP and GFP expression with increasing Az. Leaky expression of PBAD-intA can
be estimated by looking at Q3 of the No inducers, b only populations (~0.5 — 2%).
Leaky expression of Ptet-intB can be estimated with Q1 + Q2 fractions of the a only
population (~ 2-3%). B) Ej, populations with increasing A¢. C) Population fractions
by quadrant for E,;. D) Population fractions by quadrant for Ep,. Individual flow
cytometry histograms can be found in Appendix Fig. ED-S8—ED-S10.
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Figure 3.6: Varying model parameters for integrase flipping and leaky expression.
A) As DNA flipping rates of intA (kgipa) are decreased relative to kgipp, the pop-
ulation of S, cells at A = 0 h has a downward shift. Simulations are done with
N = 3000 trajectories/marker. B) Increasing the leaky expression of intB (kicaxp)
changes the maximum threshold of cells that correctly identify S,; even at high
At. Leakiness is defined as a percentage of the induced integrase production rate
(kproax). C) The model was revised to more closely match the experimental data
by constraining parameters for leaky expression and varying integrase flipping (N
= 5000). Mean squared error was calculated between the experimental data and the
initial and revised models to find an optimized pair of kg;p4 g values (Appendix Fig.
ED-S13). The final parameters were set to be kfipa = 0.2hr™!, kaipp = 0.3hr™ 1,
kieaka = 0.01 - kprodA (/Jm3 'hr)_la and kjeakp = 0.02 - kprodB(,um3 'hr)_1 (Appendix
Table S2).

(kfiipa) was varied from 0.2 to 0.5 hr_l(kﬂipB = 0.3 hr~!), we observed a bias in the
baseline population split when both inducers are introduced simultaneously, At =
0 h (Figure 3.6A, N = 3000). Previously in the preliminary model (Figure 3.3C),
the two integrases were assigned equal flipping rates, and the population split was
expected to be 50/50 for S,/S,. As the flipping rate of intA decreases relative to
that of intB, that baseline shifts downwards to favor the more active integrase, intB.
Varying the basal expression of intB (kieaxp) from 1% to 20% of the intB production
rate (kproap) monotonically decreases the maximum S, population fraction that can
be reached in an E,; event (Figure 3.6B, N = 3000). If there is a constant level
of un-induced intB, then there will always be a minimum population of S} cells

inhibiting the maximum fraction of S, cells.

These simulation results showed that by varying kgip4 and kjeakp, we could tune the
baseline shift at Az = 0 and the maximum S,;, ceiling at high Az to better approximate
our experimental system. However, experimental measurements of leaky integrase

expression showed that leaky expression was actually quite low (1% for intA, 1-3%
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for intB)(Figure 3.4C, Figure EV1, b only, a only). Given actual measurements for

kieaka,B, We constrained those parameters and fit the model by varying kgipa 5.

In order to find the best pair of values for kgips and kgipp, the flipping efficiency
parameters for both integrases were varied from 0.1 to 0.6 hr~! in silico (N = 500
cell trajectories), creating a matrix of simulated S,; population fractions for each
combination (Appendix Fig. ED-S13). Leaky basal expression of the integrases
was held constant based on experimentally measured values (Kjeak, = 1% of Kprodas
kieak, = 2% of kproap), and experimental data was normalized to a 70% population
maximum for fitting purposes. Mean squared error was found by comparing model
fits with experimental data (Appendix Fig. ED-S13A), and the combination with
the minimum MSE was chosen (Appendix Fig. ED-S13B).

Figure 3.6C shows Ar versus S,, simulation results for final revised parameters.
The final parameters were set to be kaipa = 0.2hr™!, kgipg = 0.3hr™!, kjeaka =
0.01- kprodA(,um3 -hr)7!, and ke = 0.02 - kprodg(,um3 -hr)~! (Appendix Table
S2). The introduction of leaky integrase expression into the model suggests that the
high leaky expression of intB, around 2% of the population will “detect” E}, and be
in state S, even when no inducer a has been introduced. Additionally, preliminary
simulation results suggest that the Atgg detection limit can be tuned by increasing or
decreasing the overall production rate kp,q« (* = A or B) (Appendix Fig. ED-S14),
though this remains to be experimentally verified in future work.

In silico parameter space exploration shows that varying Kip« and kjeak« parameters
enables tuning of baseline Ar = Oh split for E,;, / Ep, and the maximum ceiling
for S, population fraction. Fold-change variations in relative rates allowed us to
understand overall trends in the final populations, and we adjusted the model to
account for inequalities in integrase flipping and leaky basal expression. Since
leaky expression was measured to be small, we primarily tuned flipping rates.
This process led us to more relevant model-informed predictions of experimental
outcomes. With the refined model, we were interested to see whether distributions of
the RFP-expressing S, state could provide information that measuring S, fractions

alone could not.

Deducing pulse width from S, population fractions
Using the fraction of S,;, (GFP) cells alone, we can determine Ar values up to a
Atgo limit for any given sequence of two step inputs. Now consider a pulse type of

event, in which inducer a begins at time # = 0 h, remains constant throughout, and
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Figure 3.7: Simulation results for pulse width modulation. Simulations were done
with revised parameters found in Figure 3.6C. A) Inducer a can be used as a reference
signal against which to measure the time and duration of the inducer b pulse. B)
The population eventually divides into one of two partitions: those that see inducer
a first and those that see inducer b first. Only if a cell has entered the a first pathway
does it have the possibility to express RFP or GFP. Furthermore, S, can be thought
of as a necessary precursor to S,,. C) A matrix illustrating a subset of the Ar and
PW,, values to be tested. D) Simulation results show that for any given At, the
number of cells in §; = total number of cells — (S, + S,») E) The fraction of the
population in the S, state is totally independent of A7 and depends only on the pulse
duration of inducer b. F) Once PW,, is known, then the fraction of the population
in S, state can be used to find the time at which the pulse of inducer b began. N =
3000 cell trajectories for each value of At, PWy,.

inducer b is introduced as a finite pulse at time ¢t = Ar h (Figure 3.7A). The start
time of inducer a then becomes a reference for when the entire system is activated
and ready to detect inducer b. Cell states are measured via flow cytometry at time
tend> Where tep,qg > 24 hours. Modeling results presented in this section are using the

refined set of parameters defined in Figure 3.6C and Appendix Table S2.

If either of the two inducers is present in the media to some limit 7¢,;, we would
expect all of the S, cells will end up in one of two populations (Figure 3.7B). Cells
that encounter inducer b first will be in the S}, state, while cells that encounter a first
will either be in the S, or S, states. In the previous sections, once an inducer was
added to the population, it was not removed, and the assumption was made that at
times greater than 24 hours, only a negligible number of S, cells remained. This

type of step function induction also meant that only the number of S,; cells (GFP)
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was needed to uniquely determine the separation time Az because any and all cells

that had switched to S, would eventually become S.

However, in the case of a transient pulse, some cells that are in the S, state (RFP)
will not ever encounter inducer b. Assuming the kie,xp is small, these cells will
remain in the S, state. Therefore, the population of a first cells equals S, + S,5. We
simulated a matrix of populations exposed to varying inducer separation times (Af)
and inducer b pulse widths (PW};) to measure the resolution of detectable events
(Figure 3.7C). In simulation (Figure 3.7D), we can see that the two populations
mirror each other to add up to 100% of the total cells (N = 3000 cells, additional
simulations in Appendix Fig. ED-S16).

Given that the step induction of b is equivalent as a pulse of infinite length (PW;, =
o0) and our prior experimental evidence showing that virtually no cells remain in
state S, when PW, = oo, we reasoned that the number of S, cells could be used to
deduce information about the pulse width of b. This hypothesis was tested in silico
by running a matrix of simulations with varying At and PW,,. In Figure 3.7E, we see
that the fraction of S, cells over the total number of cells decreases monotonically
with increasing PW,, and the curves overlap regardless of A¢. The overlap occurs
despite non-zero leakiness of intA and intB. The maximum number of S, cells does

not go to 1 at PW;, = Oh because of leaky intB expression (kjeakp = 0.02 - kprodp)-

Analytically, we solved Eq. 3.1 for P,(S,) to ensure that the S, population fraction is
only dependent on PW,,. If inducer a is used as a constant reference signal, all cells
transition into either of S,, S, or S,;, state, thus P, (S;) = 1 — (Poo(Sp) + Poo(Sap)).
If we assume that the basal leaky expression of intB is zero (kieaxg = 0), P/ (Sp) +
P;(S,») = 0 holds for r < At, since there is no intB that turns DNA state into S,
or Syp. Then, we can show that P;(Sp) + P;(S,p) is dependent only on PW,, the
duration of the pulse width of inducer B, for # > At. This conclusion holds as long as
kieakp is negligibly small compared to other kinetic constants (kfipa, kfiipB, Kdeg> ¥ A
and kproqp) (See Appendix Section 12.3 for full derivation).

If S, population fractions can be modulated by changing PW,, then conversely,
we should be able to use measured experimental RFP population fractions as a
way to determine PWj. Once PW,, is known, then the S,; fraction can be used to
uniquely determine the time between inducers, At (Figure 3.7F). Furthermore, the
genetically encoded state means that these population fractions should be maintained

and measurable at a time, ¢,,4, that is much later than the time of the events.
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Figure 3.8: Determining arrival time and pulse duration of inducer b with population
fractions. A) Simulation results from testing an 11 X 11 matrix of parameters with Az
and PW,, varying from 0 — 6 hours in increments of 0.5 hours. Each point represents
a population of 3000 cells. Increasing PW), goes from right to left, and increasing Az
goes from bottom to top. B) Experimental results showing RFP and GFP expression
as a function of increasing At and PW,,. Fluorescence values have been normalized
to the highest GFP and RFP fluorescence in the sample set. Experimental results
from exposing temporal logic gate E. coli populations to varying PW}, and At values
(0 — 6 hours, 0.01%/vol L-ara, 200 ng/ml aTc, measurements taken at 48 hours). C)
A scatterplot of each population using their RFP and GFP fractions as coordinates
(~ 10° cells per population). The non-induced control samples are indicated with a
dotted circle on the bottom left, and the samples with PW;, = Oh are on the bottom
right. Samples with the same PW,, are connected with a solid line, and line darkness
represents increasing PW,, duration. Samples with the same At are shown with the
same colored shape marker and increasing A¢ goes from bottom to top.

These conclusions can be extended in simulation to create a scatterplot of S, cells
versus Syp cells in a population (Figure 3.8A) over an 11 X 11 parameter matrix
varying At and PW;, from O — 6 hours in increments of 0.5 hours (Additional plots
in Appendix Fig. ED-S17). Each point on the chart in Figure 3.8A represents a
simulated population (N = 3000) exposed to a unique combination of At and PW,
values. Vertical lines represent the same PW, value, and points with the same
shape and color have the same At¢ value. The simulation results suggest sufficient
resolution of events as long as PW;, and At values are between O — 4 hours. For
any single value of PW;, we can follow the increasing At values vertically and
see that the population response saturates after 4.5 hours resulting in overlapping
between populations with 4.5 < Ar < 6 hours. We can trace any individual At
value horizontally from right to left, and observe that the points begin to cluster and

overlap when 4.5 < PW,;, < 6 hours. These simulation data suggest that there should
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Figure 3.9: Selected flow cytometry panels for Figure 3.8C populations. Cell
populations are gated by RFP and GFP fluorescence into quadrants Q1 (S,;,, GFP
only), Q2 (S,», RFP and GFP), Q3 (S,, RFP only), and Q4 (S,,S», non-fluorescent).
Percentage of total cells in each quadrant is shown under the quadrant label in each
panel. A) Control population not exposed to any inducers. There is minimal leaky
expression (1.2%) into Q3 after 36 hours of growth. B) Populations for PW}, and
At values of 0, 3, and 6 hours. For PW,, = Oh populations, ~ 60% of the cells
switch to S, (Q3), with ~ 3% intB leaky expression going into QI and Q2. As
PW, increases, the S, fraction drops from 60%(PW,=0h) to 10-20%(PW,=3h) to <
10%(PWp,=6h). As At increases, the percentage of cells in S, (Q1) increases from
20-40% (At = Oh) to 40-50% (At = 3h) to 50-60% (At = 6h). S, populations (Q3)
also drift downwards with increasing A¢, rather than staying constant as predicted
in simulation. Lower At results in higher S, populations, which, combined with S,
cells, make up Q4. Critically, the percentage of the population expressing both RFP
and GFP simultaneously (Q2) is always < 3%. This ensures that RFP is a reliable
determinant of S, state cells, and subsequently, of PW,,.

be some defined detection range of Ar and PW,, where each possible combination

of the two is uniquely identifiable.

Experimentally, we tested a 7 X 7 matrix of varying At and PW}, (0 — 6 hours, 1 hour
increments) on independent populations of the temporal logic gate E. coli strain
(Figure 3.8B). All populations, except for the control, were exposed to inducer a (L-
ara 0.01%/vol) at time ¢ to t¢,4. Pulses of inducer b (aTc, 200ng/ml) were achieved

by sampling Sul of the population and diluting 1:100 into fresh media with only
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inducer a (M9CA + 0.01%/vol L-ara). Populations were sampled in triplicate and
pooled for flow cytometry analysis after 24 additional hours of growth in inducer a
(~ 36 hours after start of experiment)(Figure EV3.5). Variability between triplicates
measured via bulk fluorescence can be found in Appendix Figs. ED-S18, ED-S19.
For all values of Af, the number of S, cells (RFP) is highest when there is no
exposure to inducer b (PW;, = Oh) and decreases monotonically as a function of
PW,, (Figure 3.8B, top). We see a more pronounced separation of the At curves
when we look at S,; (GFP) cell fractions (Figure 3.8B, bottom). The number of
Sap cells is dependent on both Ar and PW), and increases proportionally with both

increasing b pulse duration and inducer separation time.

By counting population fractions of RFP versus GFP expressing cells, we can resolve
the different populations that result from varying At and PW,, values (Figure 3.8C).
As with Figure 3.8A, each point on the graph represents an independent population
of cells (OD ~ 0.7, ~ 10° cells counted per population). All of the populations
exposed to either or both of the inducers occupy fractional coordinates that are
unique from that of the no inducer controls (indicated by dotted circle). We see
that if Az is constant and PW,, increases (Figure 3.8C, right to left) then the S,
fraction decreases as S, fractions increase. For constant PW, with increasing
At(Figure 3.8C, bottom to top), the S, cell fraction remains mostly constant relative
to increasing S,p. In the case where there is no b pulse (PW, = 0Oh), we see maximum
S. (RFP) cell fractions of about 60% with minimal S,; populations that are about the
same as no inducer S,p levels. Overall, populations with different PW,, exposures
are well separated by S, (RFP) fraction up to 4 hours. Even for PW; at 5 and 6
hours the populations have unique S,/S,; coordinates, just not unique S, fractional

values.

This method of profiling is only valid if the fraction of S, state cells can be used as a
measure of PW,, that is independent of A¢. In previous experiments with step inputs
(Figure EV3.5), there would be a significant population of cells with both GFP and
RFP fluorescence, since they had transitioned to S,; but had not yet fully diluted out
built up RFP protein levels from being in S, for extended periods. If a significant
percentage of the population remained in this transition state (Q2), that would make
RFP an unreliable measure of S, state cells. However, flow cytometry analysis of the
pulse-modulated populations (Figure EV3.5) showed that although there were some
cells expressing both RFP and GFP (Q2), these cells were always less than 3% of

the total population. (Additional flow cytometry analysis can be found in Appendix
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Fig. ED-S20-ED-S25.) Thus, RFP was measured to be a reliable determinant of
S, state cells, and subsequently, of PW,,.

For any given PW},, we observed higher experimental S, (RFP) population fractions
with lower Ar (Figure 3.8A top), resulting in a diagonal slant for each value of
PW,, (Figure 3.8C). Upon further investigation, we believe this is due to a slower
S, AN S, transition than we anticipated. In our model, we assume S, 2, S, equal
to S, SENI ab» Since both transitions are mediated by intB. However the diagonal S,
fractions with increasing At for each value of PW, suggest that the «; transition
rate may be actually be slower than @, or 3. Simulation results with adjusted
transition rates (| < ay = a@3) recapitulated the slanting S, population fractions
(Appendix Fig. ED-S27). This inequality in transition rates could have arisen
from differences in DNA sequence length or from differences in the DNA excision
required for S, — S, instead of the recombination that occurs in the other transitions.
Differences in DNA excision or recombination for a single integrase are important
experimental parameters, but do not ultimately affect our conclusions about the
overall system. Despite unequal intB transition rates, experimental implementation
of the temporal logic gate still produces unique (S,, S,p) fractional coordinates for

each combination of Az, PWj, even though S, values are not unique for higher PW,,.

Model-informed predictions on population fractions in response to pulses of inducer
b led to experiments that could produce unique S, and S,; coordinates for different
combinations of At and PW;,. However, experimental data also revealed areas in
which the model had been oversimplified. While it is important to have a model to
understand overall properties and limitations of the experimental system, it is also
impractical to design simulations that can account for all possible variations that
might occur in the implementation of biological devices. Therefore, we believe that
future workflows should also involve calibration protocols for specific applications

of engineered biological populations.

Practical use and calibration of populations for event detection

Curve-fitting methods were used to automatically convert experimentally measured
RFP and GFP population fractions into PW), and Ar values and to evaluate the
resolution with which population ratios can be used to determine inducer separation
time and pulse duration. Using the experimental data from Figure 3.8B,C, we
generated fitting curves for PW;, as a function of RFP population percentage(R),
and for At as a function of both GFP population percentage (G) and PW}, (Appendix
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Figure 3.10: Determining prediction resolution for PW; and At from population
data. A) A mesh generated from fitted curves for PW; as a function of RFP
population percentage(R) and At as a function of pulse width and GFP population
percentage(G). Experimental data is overlaid. B) Comparison of actual versus
estimated PW,, values generated by fitted function PW;,(R). For each actual PW,
value, the average of the estimated PW,, values with + 1 standard deviation (Slightly
offset on the x-axis for better comparison). C) Comparison of actual versus estimated
At generated by the fitted function At(G, PWj). For each actual Ar values, the
average of the estimated Az with + 1 standard deviation (Slightly offset on the x-axis
for better comparison).

Fig. ED-S28, ED-S29,Table S3). We will denote these functions with PW,(R)
and At (G, PW,), respectively. The functions PW,(R) and At(G, PW}) can then be
used to generate a mesh of estimated PW;, and Az values for any given normalized

fluorescence values (Figure 3.10A, Appendix Eq. 8-11).

The estimated values were compared against the actual values to determine the
approximate time window with which a specific PW,, or At can be resolved. For
each actual value of PW; and At, we calculated the average and standard deviation
for the set of estimated values. The standard deviation allows us to visualize the
range for which the majority of predictions will fall for any given actual value. For
instance, a PW}, of 1 hour can be detected +0.25 hours, but as PW), increases, this
prediction window widens and for PW; > 3 hours, the resolution of detection is
closer to =1 hour (Figure 3.10B). Similarly, predicted values of A¢ fall within +0.5
hours for 0 < At < 3 hours and increase to +1 hours when A¢ > 3 hours (Figure
3.10C). Using these fitting functions, we can also pre-generate a reference table
that converts RFP and GFP population fractions into predicted PW; and At values
(Appendix Table S4).
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3.4 Discussion

Engineered biological systems have inherent capabilities for replication, parallel
processing, and energy efficiency. These advantages rely on the existence of bacteria
not as single cells, but as populations. As the field moves forward with synthetic
gene circuits, it is important to understand outcomes not just as single-cell outputs

but as overall population-level distributions.

We have designed and implemented a temporal logic gate that takes advantage of the
population dynamics to collectively sense and record sequences of transient chemical
inputs. We show both that single cells independently sense and record events, and
that aggregate population fractions create unique outcomes that provide information
not encoded in single cells. As with all engineered systems, proper calibration of
these temporal logic gate populations will be required prior to deployment in the
“field.” We envision a process similar to the one described in this report. First,
experimental populations are exposed to a matrix of PW;, and At values. This will
set the maximum and minimum RFP and GFP population fractions and provide
necessary data for determining the Aty limit and producing the fitting functions
PWy(R) and At(G, PW;). Once the fitting functions have been determined, values
for PW;, and At for experimental samples can be estimated within + 0.25 to 1 hour
of the actual values. A calibrated table could also be generated and used for as a

reference for samples that have been exposed to unknown conditions.

The stochastic nature of molecular processes often presents a significant barrier to
homogenous outputs from an engineered population of cells. This implementation
of event detection via population fractions takes advantage of stochastic and het-
erogenous individual responses to environmental conditions in order to map final
population fractions back to unique sequences and durations of chemical events.
The sensitivity of the system and the Atgg detection limit could potentially be mod-
ulated by increasing or decreasing protein production rates via tuning of plasmid
copy numbers, signal concentration, or transcription/translation sequences. The use
of digital cellular outputs combined with the analog population response creates
event detection systems that are more robust to stochasticity and can be tuned more

easily. We plan to explore these possibilities in future work.

As a proof-of-concept, we have used the common laboratory inducers L-arabinose
and aTc as inputs, but we anticipate that our temporal logic gate system could be
used modularly with any biosensors of choice. In particular, we believe there are

possibilities for detection of miRNAs and biofilm formation. Stable populations
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of microRNAs (miRNAs) circulating in the blood have generated a lot of interest
as biomarkers for human health (Cortez et al., 2011). These short (~ 20-30nt)
regulatory RNAs have been shown to have sequential tissue-specific expression sig-
natures that correlate with pregnancy, tumor formation, and other diseases (Gilad
et al., 2008; Mitchell et al., 2008), and synthetic biology has developed many cus-
tomizable RNA sensors (Friedland et al., 2009; Green et al., 2014). Detection of
miRNAs would require implementation of the temporal logic gate in mammalian
cells. Though recombinase-based synthetic circuits have not been shown in mam-
malian cells, serine integrases have been used quite effectively in a wide variety of
mammalian cell types, primarily for genome editing and integration (Keravala et al.,
2006; Xu et al., 2013).

Another possible application of this would be detection of harmful biofilms. Biofilms
are self-assembling, highly structured, multi-species consortia that develop in stages
and have sophisticated networks of interaction and function (Stoodley et al., 2002;
Flemming and Wingender, 2010; Elias and Banin, 2012). Unnatural biofilm devel-
opment in environments such as industrial water sources or waste streams can be both
harmful for both the natural environment and the industrial mechanisms. Detection
of biomarkers for known strains of biofilm colonizers would provide early warning
of changing ecosystems, and although we do not yet fully understand these networks,
itis known that quorum-sensing plays a critical role in the process. Quorum-sensing
molecules and receptors are available in the synthetic biology toolbox and so may
provide an accessible way of detecting the sequential colonization of different mi-
crobes. Field deployment of engineered bacteria will likely involve transient signals,
low-nutrient environments, and possibly even other microbial competitors (i.e. soil,
flowing rivers, the digestive tract). We used minimal media in this study to better
approximate low-nutrient environments, and anticipate further characterization in
more customized ‘local’ environments (i.e. gut model or air model or soil model)

and with hardier microbial chassis.

Finally, this study focused on the population outputs as indicators of past events,
but we believe that this temporal logic gate could be used to reliably differentiate
a single strain into controlled sub-populations via input pulse order, duration, and
frequency. In recent years, it has been recognized that many natural systems modu-
late cellular behavior not only by changing the concentration of signaling molecules
but also by regulating signal pulse frequency (Cai, Dalal, and Elowitz, 2008; Lin
et al., 2015). If we consider the fluorescent proteins GFP and RFP in this circuit as
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simply placeholders for downstream genes, then this system could easily be applied
as a top-down population differentiator. By modulating the sequence of inputs,
one could systematically predict and create mixed populations of genetically dif-
ferentiated cells. This greatly expands our capability to design synthetic systems
that have controllable distributions as outcomes, not just digital on/off phenotypes.
Furthermore, we can then begin to develop frameworks for understanding the role
of feedback and control theory in modulating these sub-populations given differ-
ent starting distributions or uneven growth rates due to resource limitations. As
the scientific community turns towards further understanding of microbiomes and
multi-cellular consortia, engineered bacteria populations could be used not only as
a tool for investigating the activities of natural communities but also as a way to

build synthetic communities from the ground up.

3.5 Materials and methods

Cell strains and plasmids

All plasmids used in this study were designed in Geneious 7.1 (Biomatters, Ltd.)
and made using standard Gibson isothermal cloning techniques. Integrases Bxbl
and TP901-1 are on a high-copy plasmid (pVHed0S5, plasmid map in Figure ED-S9)
with a ColE1 origin of replication (original template from the Dual Recombinase
controller (Bonnet, Yin, et al., 2013), Addgene Plasmid 44456). Integrase A (Bxb1)
is behind a Ptet promoter and integrase B (TP901-1) is behind a PBAD promoter. The
plasmid has been modified with an additional TetR gene. The temporal logic gate was
integrated into the Phi80 site on the E. coli chromosome using CRIM integration
(Haldimann and Wanner, 2001) and screened for single integrant colonies. The
integration plasmid template and DH5a-Z1 strain were generously provided by J.
Bonnet and D. Endy and modified to contain the temporal logic gate (pVHed07,
plasmid map in Figure ED-S9).

Additional DNA and oligonucleotides primers were ordered from Integrated DNA
Technologies (IDT, Coralville, lowa).

A custom formulation of MOCA media was used for all experiments. The media
contained 1x M9 salts (Teknova, M1906) augmented with 100mM NH,CL, 2mM
MGSO,, 0.01% casamino acids, 0.15 ug/mL biotin, 1.5 uM thiamine, and 0.2%
glycerol, and then sterile filtered (0.2 pum).
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Simulations of the model

The stochastic simulation algorithm by Gillespie (Gillespie, 1977) was implemented
to generate the sample paths of individual cells using the Markov model (see Table
S6 for the definitions of Markov transitions and transition rates). All simulation
runs and their analyses were done with MATLAB (R2014b,The MathWorks, Inc.).

Simulated populations were done with 3000 — 5000 individual cell trajectories.

Experimental methods

Prior to all experiments, cells were grown overnight from plate cultures in M9CA for
two days, then diluted to OD 0.1 and recovered for 4-6 hours at 37°C. L-arabinose
and anhydrous tetracycline (aTc) were used as inducers a and b, respectively. L-ara
was used a concentration of 0.01% by volume, and aTc was used a concentration of
200 ng/ml (450nM). All media contained the antibiotics chloramphenicol (Sigma
Aldrich, Inc (C0378); 50ug/ml) and kanamycin (Sigma Aldrich, Inc (K1876);
30ug/ml). All experiments were performed with the aid of timed liquid handling by
a Hamilton STARIet Liquid Handling Robot (Hamilton Company).

For step function experiments, the cells were diluted to OD 0.06-0.1 into a 96-
well matriplate (Brooks Automation, Inc., MGB096-1-2-LG-L) with 500ul total
volume in M9CA. Cultures were incubated at 37°C in a Biolek Synergy HIF plate
reader with linear shaking (1096 cycles per minute) (BioTek Instruments, Inc.) and
inducers were added at appropriate time by the Hamilton robot. OD and fluorescence
measurements (superfolder-GFP ex488/em520, mKate2-RFP ex580/em610) were
taken by the Biolek every 10 minutes. Each experimental condition was done was

triplicate on the plate.

For the pulse experiments, single 500ul cultures were grown at 37°C in the BioTek
plate reader (linear shaking, 1096 cycles per minute) and inducers added at time
At by the Hamilton liquid handler. Pulses were achieved through dilution of the
culture into fresh MOCA media containing 0.01% L-arabinose. The Hamilton was
programmed to sample 5 ul of the culture and dilute it into 500 ul of fresh MOCA +
0.01% L-ara to achieve pulsatile exposure to aTc. This was done in three independent
triplicates for each experimental condition. 96-well deep-well plates containing the
diluted cultures were then incubated at 37°C incubated for an additional 24 hours (~
36 — 40 hours from start of experiment). Final endpoint populations were measured

using the plate reader and also stored and further analyzed using flow cytometry.

Analysis of experimental data was done using custom MATLAB scripts. All de-
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picted error bars are standard error of the mean. Fitting of curves was done in
MATLAB.

Flow cytometry

Experimental cultures were spun down, washed, and resuspended in sterile PBS with
15% glycerol and stored at -80C (Jahn et al., 2013). Cultures were then thawed on
ice, and diluted to 10° cells/ml in sterile PBS prior to running on the flow cytometer.
Flow cytometry was done using a MACSQuant(r) VYB (Miltenyi Biotec, Germany)
at the Caltech flow cytometry core facility. Flow data analysis and gating was done
with FlowJo Version 10.0.8r1 (Flowjo, LLC, Ashland, OR). For inducer separation
time experiments shown in Figure 3.4, ~ 10° cells were measured per population.
For pulse induction experiments shown in Figure 3.8, ~ 10° cells were measured

per population.
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3.9 Appendix (Supplementary Information)

A Markov Model for integrase recombination

Parameters used for simulations

The parameters were chosen to be in biological orders of magnitude. Tetrameteri-
zation of the integrase is represented with the expression

) i ] Int, (Int,—1) (Int,~2) (Int,-3)
a;(Int.) := kﬂlp* ( K 3‘* + Ki Int, +K§* Int, (Int,—1)+Kg.Int, (Int,—1) (Int,2)+Int, (Int,~1 ) (Int,~2) (Int,-3) ) (3 4)

fori = 1,2,3 and * = A, B (see Tetramerization of integrase in Appendix Section
12.2 for the derivation, and Fig. S1).

0.4

0.35

0.3+

0.25 1

0.2}

0.15

Propensity function, a,(Int.)

0.05 -

0 L L L L
0 20 40 60 80 100
Number of integrase monomers, Int.

Figure ED-S1: Visualizing the nonlinear term for integrase tetramerization (Eq.
3.4). The propensity function, a;(Int.), as a function of integrase monomers,
Int,, is zero until at least four monomers are present. Parameters for flipping and
dissociation constant are kgip« = 0.4 hr~!, and K4, = 10 molecules.
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Parameter | Value Units
a See equation (3.4)
s See equation (3.4)
a3 See equation (3.4)
oA kdeg (IntA)
0g kgeg (IntB)
kproda + kieaka, if inducer a exists
YA . .
Kieak A, if no inducer present
kprodB + kieaks, if inducer b exists
VB . .
KieakB, if no inducer present
kprodas | 50 (um?- hr)™!
Kdeg 0.3 hr~!
kftipA 0.4 hr!
ketipB 0.4 hr!
kicakA 0 (um?>- hr)™!
Kieaks 0 (um?- hr)~!
Kia 10 molecules
Kap 10 molecules

Table 3.1: Initial Markov transition rates and parameters. We define the rate of
DNA state transitions as @, @, and a3 using the rate of DNA flipping for a unit
concentration of IntA(kqip4) and IntB(kgipp). The notations IntA and IntB denote
the copy number of each integrase, and [S,] = 1([S,] = 1) if the DNA state is
So(Sy) and [S,] = O([S,] = 0) otherwise. The production and degradation rates of
the integrases are defined by y and 6, respectively. kproga and kproqp are the protein
production rate constants, and kjeax4 and kieaxp are the basal leaky expression rate
constants. We assume the plasmid copy number is proportional to the volume of
a cell. In this paper, we use 1 um® (1 femtoliter) as the estimated volume of a
single E. coli cell. The integrase degradation/dilution rate constant Kgeg = 0.3hr™!
sets the protein half-life to approximately 2.3 hours. The binding constant, K4, was
estimated based on Bxbl K, binding constants 70 nM (Singh et al, 2013). When
converted into molecules in 1 femtoliter volume, this translated to 7 molecules

23 ]
(70nM x % x 1070 x 101155”113 = 7 copies.)
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Figure ED-S2: Example of individual cell trajectories and total summed population
from stochastic simulations (At = 5h). A) Individual simulated cell trajectories for
the possible cell states. A sample of 100 cells out of the population of 5000 has been
shown here for clarity. The panels, from top to bottom, show time and duration of
induction, cells in state S, (blue), cells in state S, (red), cells in state S, (yellow),
cells in state S, (purple), copies per cell of integrase A (green), and copies per cell
of integrase B (sky blue). B) Summed totals of all possible DNA and protein states
for all 5000 cells.
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simulation (Supplementary to Figure 3 in the main text). For each value of At, a
population of 5000 individual cell trajectories was generated and summed. A) S,
cell counts for E,j, event. In the case of a only, 100% of the cells become S,. For
the other states, the cell count drops off at time At as S, transition into S;5. B) Sp
state cells for E,;. The number of S, cells that transition is a function of available
S, cells left at time A¢r. With high A¢, the most cells are already in S,. C) S, state
cells for E,; decrease exponentially with time as they convert into either S, or S,.
D) S, state cell count with an Ej, event are inversely proportional to At. E) S, state
cells gain fractional dominance with increasing A¢ during with an Ej, event. In the
case of b only, 100% of the cells become S;,. F) S, state cells decrease exponentially

with Ep, event as well.
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Experimental results for varying inducer separation time
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Figure ED-S4: RFP expression for in vivo experiments with increasing At (Supple-
mentary to Figure 4 in the main text). A) RFP expression as a proxy for S, state cells
when population is exposed to E,;. B) RFP expression when the inverse Ep, event
occurs. C) Endpoint RFP bulk fluorescence measurement of cultures as a function
of Az. In an infinite step induction experiment, we expect no cells to be expressing
RFP since all S, cells become S,,. However, cultures with later Ar values spend
up to 8 hours in S, and build up a lot of RFP that does not completely dilute even
upon switching to S;5. D) Flow cytometry counts of RFP population. The flow
cytometry shows that a high percentage of cells are expressing a low amount of RFP.
Quadrant analysis of RFP vs GFP populations shows that these RFP-expressing cells
are all in Q2, the transitory quadrant in which cells have switched to S,; but still
have undiluted RFP molecules (Figure EV1). See also Appendix Figure ED-S12
for conversion between flow populations and bulk intensity measurements.



79

9000 Allgngd by mduger b induction time 9000 Aligned by inducer b |ndqctlon time
m No inducer é At =3h
8000 @aonly 1 8000} 74t =4h
At =0h % At = 5-8h
At=1h
70001 ®M=10 ¢ 4 7000t
@ At=23h At=2h
6000 g At=4h 6000 | 1
At = 5h
® At =6h a At = 1h
o = =
95000— ® - 7h 1 95000—
o ® At =8h o At oh
@ 4000 - 1 54000+ 10t =
3000 3000 -
2000 + 2000 +
1000 - /9 1000
0 00000" M K
-10 0 10 20 30 5

Time (h)

Figure ED-S5: In vivo GFP expression curves aligned by At (Supplementary to
Figure 4 in the main text). A) Curves have been aligned by At such that cell
switching to S,;, and GFP expression all starts at time 0. B) Zoomed in panel shows
different slopes of the various At curves.
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Figure ED-S6: Time-course data for Figure 4 with more separated color scheme.
The color gradient used in Figure 4 can make it difficult to distinguish individual
curves, and so here we have more color-separated plots. A) GFP fluorescence with
event E,;,. B) GFP fluorescence with event E,,. C) RFP fluorescence with E,;. D)

RFP fluorescence with Ej,,.
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Figure ED-S7: OD growth curves for in vivo experiments with increasing Az (Sup-
plementary to Figure 4 in the main text). Growth curves are fairly linear due to
growth in MOCA minimal media at 37C. A) OD growth curves for cells subjected
to E,p event. B) OD growth curves for cells subjected to Ep, event
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Figure ED-S8: Flow cytometry populations, RFP vs GFP (Fig. 4). Populations
are split into quadrants Q1 (GFP only, S;5), Q2 (GFP + RFP, S,;), Q3 (RFP only,
Sa), and Q4 (non-fluorescent, S, + S,.) ~ 100,000 cells were analyzed for each
population.
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Figure ED-S9: Flow cytometry GFP histograms (Fig. 4). ~ 100,000 cells were
analyzed for each population.
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Figure ED-S11: Single colony analysis of non-fluorescent colonies in At experiment
(Fig. 4) was done to determine genetic state (S, or S,). A) Experimental cultures
were diluted 1:10,000 after experiment and plated on LB agar plates with no inducer.
B) 48 + 2 single colonies were randomly picked from each plate and re-streaked
on a new agar plate. C) Single colonies were counted based on fluorescence and
the resulting distributions are similar to those measured via flow cytometry. D)
The non-fluorescent colonies from each condition were then re-streaked again onto
plates with 0.01% arabinose. Only S, cells would turn red (S,), while S, cells would
remain non-fluorescent. We determined that 100% of the no inducer and a only
non-fluorescent colonies were S,, while the 100% of the non-fluorescent colonies
in the other experimental conditions were S,. E) Revised genetic state distributions
based on single colony analysis of non-fluorescent colonies.
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Comparing plate reader fluorescence readings with flow cytometry

We were interested to know how bulk culture florescence compared with actual
single cell expression profiles. With bulk fluorescence, it is possible that bimodal
expression of fluorescent molecules result in a few bright cells dominating the
overall fluorescence measurement, and so we wanted to ensure that this was not
the case with our time-course measurements. Endpoint bulk fluorescence was
measured via BioTek Synergy H1F plate reader (BioTek Instruments, Inc, VT, USA)
and normalized by the maximum fluorescence. Flow cytometry was done with
a MACSQuant VYB flow cytometer (Miltenyi Biotec, Germany), and for both
RFP and GFP, cells were counted and their relative fluorescence intensity was
measured. Flow cytometry data was gated using FlowJo Version 10.0.8r1 (Flowjo,
LLC, Ashland, OR).

In Figure ED-S12, we compare bulk fluorescence (Fig. ED-S12A) with flow cy-
tometry populations (Fig. ED-S12B), then reconstruct the bulk fluorescence mea-
surements by multiplying the cell counts with average measured intensity (Fig.
ED-S12C). We find that GFP fluorescence is not disproportionately skewed by bulk
fluorescence, indicating that cells that are “on” in state S,; have a relatively tight
distribution and are not overly dominated by a minority of bright cells. This can also
be seen in the GFP histograms (Fig. ED-S9). For this experiment, in which both
inducers are present long after At induction, we would expect no cells to remain in
state S,. However, we still measure RFP at the endpoint. We find that this RFP
is leftover RFP from cultures that spent more time in S, prior to transitioning to
Sap (Fig. EV1). These cells have stopped production of RFP, but existing RFP
concentrations have not yet diluted completely. Flow cytometry analysis of cell
counts find a high number of cells with low RFP fluorescence. This can also be seen
in the RFP histograms (Fig. ED-S10).
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Figure ED-S12: Comparison of plate reader bulk fluorescence readings with flow
cytometry cell counts. A) Bulk fluorescence GFP and RFP readings normalized
by max GFP and max RFP. B) Flow cytometry counts of cell percentages about
GFP and RFP gated thresholds. C) Re-creating bulk fluorescence data from average
intensity per cell multiplied by number of cells.
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Varying model parameters for integrase activity and leaky basal expression

Parameter | Value Units

kprodA 50 (/’lm3. hr)_l
kprodB 50 (,um3 ' hr)_l
kdeg 0.3 hr!

Kftipa 0.2 hr~!

ketips 0.3 hr!

kieaka 0.01 >kkprodA (,ums : hr)_]
kleakB 0'02*kpr0dB (,um3 ) hr)_l

Table 3.2: Table of revised parameters for uneven flipping to better match experi-
mental data. IntA was set to be less efficient in flipping, and leakiness was added.
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Figure ED-S13: Fitting model parameters for Figure 5C. In stochastic simulations,
the flipping efficiency parameters for both integrases, kqipa, g, were varied from 0.1 to
0.6 hr~! for E,;, (N = 500 cell trajectories). Leaky basal expression of the integrases
were held constant based on experimentally measured values (kjeak, = 1% of kproda,
kicak, = 2% of kproap). A) Simulation results for each set of kqip4 p parameters were fit
to a one-term Gaussian function (MATLAB, fit(x,y,’gauss1’)). Mean squared error
(MSE) was calculated by comparing the fitted curves to experimental data from
Figure 4C (MATLAB, goodnessoffit(reference,model)). This graph shows fits from
varying kgipa for constant kqipp = 0.3hr 1. Experimental data is shown in black.
B) Heatmap showing MSE values for combinations of kqipa p parameters. Lower
MSE values indicate a better fit. Best fit is for kgipp = 0.3hr™!, kgipa = 0.2hr™1. C)
Surface plot showing MSE values for combinations of kg4 5. Lower MSE values
indicate a better fit.
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Figure ED-S14: Varying protein production rates to tune the Atgg limit. A) Simula-
tion results for varying kp,oq4, from 5 to 100 (um?- hr)~'(N = 2500 per population).
Aty is the limit with which S, population fractions can be used to resolve unique
At values, and therefore determines overall system sensitivity to inputs. Based on
simulation results, Atqq is inversely proportional to protein production rate. Curve
fits were generated for each set of simulated populations (MATLAB, 2-term expo-
nential fit) in order to find Argy. B) Experimental results show lower Argg at half
induction of integrases. Protein production rate was modulated by reducing the
concentrations of the inducers. We compared population-level responses with full
inducer concentrations (ara: 0.01%/vol, aTc: 200ng/ml) and half inducer concen-
trations (ara: 0.005%/vol, aTc: 100ng/ml). The data was fit to a 2-term exponential
function (MATLAB, 2-term exponential fit) and the Atgg limit was estimated based
on the fitted curve. The At values are consistent with being in the saturation regime
of integrase production.

Simulation results suggest that the Azgy detection limit can be tuned by increasing or
decreasing the overall production rate kp,q« (* = A or B) (Appendix Fig. ED-S14).
In Figure 4C, the Atgg limit was ~ 4 hours, meaning that within the 0 — 4 hour
window, S,; population fraction can be used to uniquely determine At. Outside
of this window, the only assertion that can be made is that Az > 5 hours. In
silico, we see that the rate of protein production is inversely proportional to the
Atgg detection limit (Appendix Fig. ED-S14A). When ko448 is high, integrase
molecules accumulate faster, increasing the probability of DNA flipping, and thus
causing the S,;, population fraction to saturate at lower At values. However, within
that smaller time window, S, fractions would also be measurably different at much
smaller intervals, and so Az could be resolved with much higher resolution. When

protein production is slow, the stochastic DNA recombination events happen less
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frequently, resulting in a population that is more sensitive to inputs for a longer
period of time (high Atgg), but has lower resolution overall since the population
fractions are not changing as quickly. These simulation results were compared to
some preliminary experimental data in which lower production rates for intA and
intB were approximated by halving the inducer concentrations for both a and b
(Appendix Fig. ED-S14B, ED-S15). At9y was estimated by fitting curves to the
experimental data to determine maximum S,; (MATLAB, 2-term exponential fit).
When inducer concentrations were halved (ara: 0.005%/vol, aTc: 100ng/ml), we
see that the Atgg is the same as before, so even with half induction, we are still in

the saturation regime of integrase production.

Varying protein production rates more accurately is something we would like to
pursue further. We limited the scope of this study to a single concentration of
inducer and Afqy such that we could fully understand the information that can be

gained from other states in the system.
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Figure ED-S15: Varying protein production rates, timecourse. Here, we have used
half the normal inducer concentrations to test the effects of lower protein produc-
tion rates. Concentrations of a and b are 0.005%/vol arabinose and 100ng/ml aTc.
A) RFP fluorescence over time for E,;(left), Ep,(center), and endpoint population
fractions as measured by flow cytometry (right). B) GFP fluorescence over time
for E,p(left), Ep,(center), and endpoint population fractions as measured by flow
cytometry (right). C) Population distributions gated by quadrants. Overall popu-
lation behavior was the same as full inducers, but response was more graded with
increasing At.
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Figure ED-S16: Deducing pulse width, additional states with varying Az, PWj, N =
3000 cells. A) S, cells decrease as function of PW,. S, fraction is independent of
At. B) The sum of S, + S, is the fraction of cells that see a first, and this increases
with Ar and PWj,. C) The number of S, cells increases with Ar and PW),. D) The
number of S}, cells decreases with At but increases with PWj,.



90

3000 T 3000 T T T T T
—#— DeltaT:0h —#— PulseWidth:0h
—#—DeltaT:0.5h ——PulseWidth:0.5h
—=—DeltaT:1h —m—PulseWidth:1h
Be:la;:;hsh PulseWidth:1.5h
L eltaT:: 4 L PulseWidth:2h | {
2500 DeltaT:2.5h 2500 PulseWidth:2.5h
DeltaT:3h PulseWidth:3h
DeltaT:3.5h PulseWidth:3.5h
DeltaT:4h PulseWidth:4h
DeltaT:4.5h PulseWidth:4.5h
2000 - —@—DeltaT:5h |+ 2000 [ —#—PulseWidth:5h |
—#— DeltaT:5.5h ——PulseWidth:5.5h
» —&—DeltaT:6h » —&—PulseWidth:6h
8 8
s} o
1500 - 1 < 1500
19 @
ES] =
< <
1000 4 1000 [
500 4 500
L
0 . . . . . 0 . . . . .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
A only cells A only cells

Figure ED-S17: Unique populations for different combinations of Az and PW,
(Fig.7). Each point represents a simulation with 3000 cells. A) Lines represent
increasing At values. B) Lines represent increasing PW,, values.
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Figure ED-S18: Fluorescence measurements vs flow cytometry for Figure 7C.
Experimental pulse modulated populations were sampled and grown in triplicate in
96-well microplates. At and PW;, were varied from O — 6 hours. Dotted circle shows
control populations with no inducer exposure. A) Fluorescence measurements show
standard error between triplicates for RFP and GFP fluorescence. Differences in
single cell fluorescence expression results in skewing of population coordinates. B)
Triplicates were pooled for flow cytometry measurements (Same data as Figure 7C).
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Figure ED-S19: Additional replicates of pulse experiments show final populations
are sensitive to starting cell density. Az and PW), were varied from 0 — 6 hours. Dotted
circle shows control populations with no inducer exposure. These data were not used
for the main manuscript. While overall trends were consistent, bulk fluorescence of
final populations showed skewing, which we hypothesize is a function of starting OD
combined with differences in growth rates and variation in single cell fluorescence.
While starting OD is quite low, these differences can become magnified over the 12
hour time frame with which the cultures are being sampled (e.g. At = 6h+ PW; =6
h results in the last population getting sampled 12 hours after start of experiment).
All populations were then grown for an additional 24 h after sampling. Optimal
starting OD was determined to be 0.06 — 0.08 (data used for Fig. 7 had starting
OD of 0.072-0.074, Fig. ED-S18). A) Bulk fluorescence (plate reader) of pulse
modulated populations sampled from batch cultures that started at OD 0.083-0.1.
B) Bulk fluorescence of populations sampled from cultures started at OD 0.12-0.14.
C) Fluorescence of populations sampled from cultures started at OD 0.066 — 0.073.
D) Fluorescence of populations sampled from cultures started at OD 0.060 — 0.065.
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Figure ED-S20: Flow cytometry data for Figure 7BC. GFP histograms, selected
panels. ~ 1 million cells were measured for each population.
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Figure ED-S21: Flow cytometry data for Figure 7BC. RFP histograms, selected
panels. ~ 1 million cells were measured for each population.
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Figure ED-S22: Population quadrants for Figure 7BC. ~ 10° cells were measured
for each population. Populations are split into quadrants Q1 (GFP only, S,5), Q2
(GFP + RFP, S,3), Q3 (RFP only, S,), and Q4 (non-fluorescent, S, + Sp.) The Q2
population is < 3% for all conditions. A) Cultures that were incubated without
any inducer exposure remained non-fluorescent. B) Population distributions as they
changed with increasing PW;,. Individual subplots (left to right) are increasing At.
C) Population distributions as they changed with increasing Az. Individual subplots
(left to right) are increasing PW,,.
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Figure ED-S23: Complete flow cytometry data for Figure 7BC, RFP vs GFP. ~ 1
million cells per population.
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Figure ED-S24: Complete flow cytometry data for Figure 7BC, GFP histograms. ~
1 million cells per population.
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Single colony analysis of pulse modulated populations

Since a significant fraction of all experimental populations from pulse experiments
consisted of at least 30% non-fluorescent cells, we wished to determine whether
these colonies were S, or S, state cells. Five experimental populations from the
same experimental cultures as Fig. 7BC were diluted 1:10,000 and plated onto
LB agar plates with no inducers (Figure ED-S26A). We selected populations from
the corners of the experimental matrix to get the widest range of results (A7 = 0, 6,
PW;, = 0,6). 60+10 colonies were re-streaked onto a new agar plate with no inducers
(Figure ED-S26B). The number of RFP (S,), green(S,5), and non-fluorescent (S,,
Sp) colonies were counted. In Figure ED-S26C, we see that population distributions

from single cell counts closely matched overall flow cytometry data.

We chose the first 8 non-fluorescent colonies from each population for detailed
analysis (Figure ED-S26D). We colony-PCR amplified the genomically-integrated
DNA memory cassette for each colony (S,,S4,5.» = 404bp, S, = 220bp). We also
included controls from the original strain (S,), a RFP fluorescent colony (S,) and
a GFP fluorescent colony (S,5). We then purified each PCR-amplified product and
sequence confirmed all products (Sequencing primers, ED_seq_1F/ED_seq_1R).
The 8 non-fluorescent colonies were also re-streaked on LB agar + 0.01% arabinose
plate to separate S, versus S, cells (Figure ED-S26E). When exposed to fresh
arabinose, only S, state cells should turn red. The results from re-streaking onto

inducer a matched PCR and sequencing results exactly.

Using S,:S) ratios derived from colony counts (Figure ED-S26F), the original non-
fluorescent distributions shown in Figure ED-S26C were revised. Our random
sample for the no inducer population revealed no leaky expression, though flow
analysis revealed about 1-2% leaky fluorescent expression. For the PW; = Oh
populations, these populations never encountered inducer b, and so have similar S,
population fractions. Of the remaining cells for the two PW; = Oh cases, we see
some intB leaky expression, resulting in non-zero S, and Sp fractions for both.
While it is not surprising that higher exposure to inducer b (PW; = 6h) would result
in mostly S, cells, it was surprising that some fraction of S, persisted over the entire
40 h experiment. We conclude that the integrase controller plasmid has minimal
leaky expression, and that over-representation of non-fluorescent states is likely due
to a growth advantage over fluorescent states. Furthermore, these data show that
overall integrase flipping (S, + Sa» + Sp) is about 90% efficient with about 10%

persistent S, population which can be utilized for future responses.
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Figure ED-S26: Single colony analysis of pulse modulated populations to determine
genetic state. A) Five experimental populations from the same experimental cultures
as Fig. 7BC were diluted 1:10,000 and plated onto LB agar plates with no inducers.
B) 60 + 10 individual colonies were re-streaked onto a new agar plate with no
inducers. The number of RFP (S,), green(S,5), and non-fluorescent (S,, Sp) colonies
were counted. C) Population distributions from single cell counts closely matched
overall flow cytometry data for entire population. D) We used colony PCR to amplify
the genomically-integrated DNA memory cassette from 8 non-fluorescent colonies
for each population (S,,S,,5,» = 404bp, S, = 220bp). Controls are from the original
strain (S,), a highly RFP fluorescent colony (S,) and a highly GFP fluorescent
colony (S,5). E) The 8 non-fluorescent colonies were also re-streaked on LB agar +
0.01% ara plate to test whether only S, state cells would turn red. Colonies matched
PCR and sequencing results exactly. F) Colony counts of S, versus S, cells for the
non-fluorescent fraction of each population. G) Revised distributions based on S,
versus Sp population ratios derived from panel F.
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Model exploration of S, dependence of At

Though our model predicted complete independence of S, state from At separation
times (Appendix Fig. ED-S27A), our experimental outcome showed a small linear
dependence (Figure 7B,top), where lower At values resulted in higher S, population

fractions.

This dependence on At resulted in a right-to-left slant in RFP population fractions
for any given PW), value that was not predicted by our model (Figure 7A versus 7C).
Upon examination of our model, we believe this is the result of unequal reaction
rates during the S SN S, transition compared to S, SEN .+ 10 our model we had

assumed that these rates were equal, since both are mediated by intB:

a1 = kaipp f (Intp), (3.5)
a3 = kaipp f (Intp), (3.6)

where f(Intp) is the tetramerization term:

f(IntB) = kﬂipB( Intg (Intg—1) (Intg2)(Intg—3) )’ (37)

KgB+KgBIntB+KdzBIntB (Intg-1)+K4pIntg (Intg—1) (Intg-2)+Intg (Intg—1) (Intg—2) (Int g-3)

where Intp is integrase B concentration, Kgp is the dissociation constant, and kgipp

is the rate of flipping if the tetramer is formed.

We had made this assumption because the DNA attachment sites attB and attP are
the same for both transitions, and so binding kinetics should be the same. Changing
other parameters such as Kqp or Kgipp did not regenerate slanting behavior since
these parameters were universal for both a; and a3. However, S, — S, is an
excision reaction rather than recombination, and so the physical looping of the DNA
could have different kinetics (Appendix Fig. ED-S27D).

Only when we consider the excision reaction to be slower than the other two recom-

bination reactions,

a1 <y = @3,

were we able to see this effect of RFP drifting with increasing Ar.

In Appendix Figure ED-S27E and F, simulation results for @1 = 0.6, = 0.6a3 show
the separation of S, curve by At, and nonlinear RFP with increasing At in the RFP
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vs GFP plot. When the transition rate is decreased even more (| = 0.4a, = 0.6a3,

Appendix Figure ED-S27G, H), the slant increases even more.

Intuitively, the reason slower S, — S transition rates would cause this effect
is because at lower separation times the dominating cell state is S,, and so the
predominant reactions are S NN S, versus S, NER S,. In the case of equal reaction
rates, 50% goes to Sy, and 50% goes to S,. S, SENN .b €an only occur after S, cells
appear, and so cannot occur until after some delay. If @; < @7, however, then the
population split will be unequal as S, cells are more likely to transition to S, over
Sp.

For large At, the dominating cell state is S,, and so the predominant reactions are
[03
S, = S,,- In this case, few S, remain, so @; and a, become less relevant as a3

converts S, cells into S, in a pulse width dependent manner.

[ a
So, if we consider the S, SENEN ab conversion rate to be the baseline, then S = S, is

generating a higher proportion of S, cells than predicted at low At because a; > 1.

Uneven transition rates are not unsurprising for experimental systems, however,
changing PWj, is still the dominating determinant of cell fractions. When designing
future systems it may be relevant to characterize switching rates. Despite unequal
intB transition rates, each combination of PW;, and At still maps to unique (S, Su»)

fractional coordinates, even though S, values are not unique for higher PWj,.
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Figure ED-S27: Simulations with unequal intB transition rates. A) Initial model
parameters assume equal transition probabilities for a1, @2, and @3. B) Model
simulations showing total independence of S, from At values. C) S, versus S
populations with constant S, fractions for any given PW;. D) We hypothesized that
the excision reaction from S, — S, maybe be slower than S, — S,;. E) S, cell count
as a function of pulse width (PW}) with @ = 0.6a; = 0.6a3. At curves no longer
completely overlap and low Ar values result in higher S, fractions. F) S, fraction
versus S, fraction shows right to left slanting behavior observed in experimental
results (Figure 7B,7C). G) S, cell count as a function of pulse width (PW;) with
even slower S, — S, transition rate (a; = 0.4a, = 0.6a3). H) S, fraction versus
Sap fraction shows right to left slanting behavior.
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Practical use and calibration
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F Parameter | Fitted Value
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i -5.587
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k -0.046
t -5.742
u -4.115
v -2.944
w 0.1113

Figure ED-S28: Fitting experimental data for PWj,, At. A) RFP population fractions
from experimental data plotted with known pulse widths on the y-axis. B) Curve fit to
determine PW;, dependence on RFP. A power fit (general form PWy(R) = a; RV +¢))
to the data generates parameters a; = 24.3,b; = -0.25,¢c; = -8.4. C) GFP
measurements from experimental data plotted with known Az values. D) Curve fits
to determine At dependence on GFP and RFP population fractions. Data from each
value of PWj, is fitted to a different curve of general form At(G, PW;) = arG” + ¢;.
Parameter b, was separately fit to be 1.5. Parameters a, and ¢, are functions of
PW,. E) Parameters a, and c; are then fitted to their own exponential curves (general
forms ar(PWy) = he!™Wo + jekPWo and ¢r (PW),) = te*Wr 4+ vePWr) to determine
dependence on PW,,. Fitted parameters are: h =1.6,i=-5.5, j =0.029, k = -0.046,
t=-57,u=-41,v=-29,w =0.1. F) A table of all the fitted parameters.
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Figure ED-S29: Resolution for determining PW),, At from population distributions.
A) Connected experimental values create a mesh. Area between meshlines represent
the accuracy with which values of PW}, and At can be determined from experimen-
tally derived RFP and GFP population fractions. RFP fractions for pulse widths from
0 — 6 hours are well separated but with decreasing resolution as PW}, increases. GFP
fraction is dependent on both RFP and GFP and is also well separated, with the ex-
ception of At =2, 3 hours. B) Mesh generated from the curve fits for PW,(R), At(G)
discussed in Figure ED-S28. Experimental values are colored by At value to show
fit. C) Mesh generated from the curve fits for PWy(R), At(G) discussed in Figure
ED-S28. Experimental values are colored by PW,, value to show fit. D) Estimated
PW), values were generated from experimental RFP population fraction (%) using
the fitted equation for PW;(R). The estimated values were plotted against the actual
PW,, values of the experiment. The vertical gray bars show approximate spread in
estimated values, the numbers above the bars indicate length of the bars (in hours).
The variance in estimated values increases with higher PW,,. If there is no pulse,
the resolution with which we can deduce that based on fluorescence is £0.25 hours.
If the pulse width is 3 hours or greater, our prediction capabilities decrease to a
window of +1 hour. For each actual PW, values, estimated PW,, averages with
+ 1 standard deviation are slightly offset on the x-axis for better comparison. E)
Estimated versus actual values for A¢. Estimated Ar values are generated using the
fitted curve for At(G, PW;). Variance in At predictions is more consistent than that
for PW,,, with a resolution of +0.25 hours for actual At from 0 — 3 hours, and an
estimation window of +0.5 hours for actual values between 4 — 6 hours. For each
actual At values, predicted At averages with + 1 standard deviation are slightly offset
on the x-axis for better comparison.
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Fitting equations and reference tables

Fitting of curves was done with experimental data from Figure 7C using the MAT-
LAB curve fitting toolbox. Curves for PW;,(R) and At(G, PW}) were fit to two-term
power functions. Curves for the At coeflicients a;(PW}) and ¢ (PW,;) were fit to

two-term exponential functions.

R = RFP population (%) (3.8)

G = GFP population (%) 3.9

PW,(R) = a1 R” + ¢; (3.10)
AH(G, PWp) = axaG” + ¢ (3.11)
ar(PWp) = he'tWo 4 jekPWo (3.12)
c2(PWp) = tePWo 4 yePWo (3.13)

Parameter | Fitted value
aj 24.3
by -0.258
cl -8.483
by 1.5
h 1.608

i -5.587
j 0.029
k -0.046
t -5.742
u -4.115
v -2.944
w 0.1113

Table 3.3: Fitted parameters for PW;(R), At(G, PWp)



At Prediction table PW,, Prediction table
GFP GFP

RFP || 0% | 10% | 20% | 30% | 40% | 50% | 60% RFP || 0% | 10% | 20% | 30% | 40% | 50% | 60%

0% - - - - - - - 0% ) o o o 0 ) 00

1% || 0 0 0 0 0 0 0 1% || 15.8 | 158 | 15.8 | 15.8 | 158 | 15.8 | 15.8
10% || O 0 0 0 0.7 3.0 5.6 10% || 49 | 49 4.9 4.9 4.9 4.9 4.9
20% || 0 0 0 02 | 25 5.0 7.9 20% || 2.7 | 2.7 2.7 2.7 2.7 2.7 2.7
30% | O 0 0 0.9 33 6.0 9.1 30% || 1.6 1.6 1.6 1.6 1.6 1.6 1.6
40% || 0 0 0 2.9 6.3 | 102 | 145 40% || 09 | 09 0.9 0.9 0.9 0.9 0.9
50% || 0 29 | 16.1 | 33.1 | 53.3 | 76.2 | 101.6 50% || 04 | 04 | 04 | 04 | 04 | 04 0.4
60% || 0 | 526 | o 00 o0 00 00 60% 0 0 0 0 0 0 0
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Table 3.4: Generated table of PW}, and Ar based on fitted curves. RFP and GFP are
population fractions. Use of this system for event detection requires calibration of
the system first in the lab by running experimental conditions for PW}, and At from
0 to 6 hours, fitting for the appropriate parameters, and generation of a similar table
prior to deployment in the “field”.
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Derivation: A Markov model for integrase-based temporal logic gates

NOTE: Full derivations were done by Yutaka Hori and can be found in the appendix

of Hsiao et al., In press.

List of plasmids and cell strains used

Plasmids

Name Resistance | Description

pVHed05 Cm Controller plasmid (slightly mod-
ified Dual Recombinase Con-
troller)

pVHed07 Kan Integration plasmid for temporal
logic gate in Phi80 site

pAH123 (Addgene 66077) | Amp (30C) | Helper plasmid needed for chro-
mosomal integration in Phi80 site

Cell strains

Name

Resistance | Description

DH5ea-Z1

received from Endy lab

E. coli pir 2+

Necessary for cloning integration plas-
mids (contains the pir protein needed for

replication of R6K origin of replication)

eVHed07 Kan/Cm Chromosomally integrated temporal logic
gate strain with integrase controller plas-
mid
Sequencing primers
Name Sequence ™
ED_seq_F1 | AAGCTTATGCCAACACAATT | 59C (with Phusion Hotstart Flex
2x Mastermix)
ED_seq_R1 | AGCTTCGTGGTTTGTCTG 59C
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Plasmid maps
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Figure ED-S30: Plasmid maps of temporal logic gate system. A) Design of the
temporal logic gate. B) Controller plasmid for integrase A (Ptet-Bxb1) and integrase
B (PBAD-TP901-1)
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Chapter 4

APPLICATION OF TEMPORAL LOGIC GATE FOR
DIFFUSION-ACTIVATED SPATIAL PATTERNING

4.1 Abstract

In previous work (Chapter 3), we demonstrated a two-input temporal logic gate
circuit in which order and timing of the two-inputs could be sensed and recorded.
This work was done in liquid culture, and inducers were introduced to the cultures at
varying times. Here, we show that differential exposure of temporal logic gate cells to
inducer order and timing can be achieved via point source diffusion on a 2D surface.
We demonstrate that final cell state is then a function of position and proximity
to inducer point sources, where only cells in the overlap region between the two
inducers are exposed to ana then b event. This resulted in spatially differentiated sub-
populations that could be imaged with fluorescence microscopy. We characterize the
effects of growth rate and inducer distance on patterning. Additionally, we design
a modified version of the temporal logic gate, called the Dual Function Cassette
(DFC), that has unique outputs (though not unique genetic states) for a then b and b

then a, and report on those spatial patterning results.
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4.2 Introduction

Spatial differentiation with diffusing inducers has been a long-standing model of
multi-cellular development. Many studies have been done elucidating the effect of
morphogen gradients on embryonic development, in which cell fates are dependent
on steady state signal concentration (Porcher and Dostatni, 2010). In particular, the
passive diffusion of the Bicoid (Bcd) transcription factor in Drosophila along the
anterior-posterior axis is a classic example. Bcd induces transcription of downstream
genes, called gap genes, in a concentration-dependent manner. However, modeling
the steady state concentration gradient of Bcd alone does not account for the observed
robustness in precision of patterning nor the rapid speed with which downstream gap
genes are expressed (< 90 minutes) (Bergmann et al., 2007). Recent evidence shows
that gap gene expression is defined, not by the steady state gradient, but by transient
pre-steady-state Bed profiles (Bergmann et al., 2007). Further investigations into
Bcd mediated gap gene activation showed that this “early decoding” during the first
14 cell divisions is what enables patterning precision and robustness to noise (Tamari
and Barkai, 2012). Morphogen induced differentiation triggered by geometric
confinement has been shown to be sufficient for replicating early embryonic spatial

patterning in human stem cells (Warmflash et al., 2014).

Synthetic bacterial systems could potentially be useful as simplified models of
multi-cellular development. While much work has been done investigating spatial
patterning with reaction-diffusion systems (Kondo and Miura, 2010; Hori et al.,
2015), our temporal logic gate circuit uniquely interprets transient signals and
encodes these signals into DNA states with differentiated transcriptional activity.
Synthetic feedback circuits with quorum sensing molecules have been created to
generate bullseye patterns (Basu et al., 2005) and macroscale colony structures
(Blanchard and Lu, 2015) but these systems have no memory and cells do not retain

differentiated genetic states.

The two-integrase temporal logic gate design featured in Chapter 3 utilizes stochastic
responses in single cell behavior to generate population fractions that reflect inducer
order and timing between the two inducers, and retains memory of events through
DNA recombination. In previous experiments, inducers were added to liquid cul-
tures at different times and population fractions were measured. We hypothesized
that another way to implement delayed exposure to inducers was to use spatial dif-
fusion of molecules. In the following chapter, we show preliminary experimental

results in which we subject a uniform lawn of event detector E. coli to diffusing
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inducers and observe the subsequent fluorescence patterning. This resulted in spa-
tially differentiated sub-populations that were dependent on inducer diffusion rates
and concentrations. We also designed a new event detector circuit, called the Dual
Function Cassette (DFC), that has unique outputs (though not unique genetic states)
for a then b and b then a, and report on spatial patterning results for those new

circuits.

4.3 Spatial patterning with temporal logic gate

Chapter 3 introduced an integrase-based temporal logic gate (Figure 3.1) that used
two integrases (Bxbl and TP901-1) to implement logic with four unique genetic
states (S,, Sq, Sp, Sap). The final population fractions were characterized by man-
ual addition of inducers into liquid culture. However, we hypothesized that slow
diffusion on a 2D surface might also be sufficient for triggering event detection in
temporal logic gate cells. Here, we show that diffusion-based delays are sufficient to
create the timing differences necessary to trigger the temporal logic gate in a reliable
way. Spatial patterns are characterized by testing plasmid-based and chromosomally

integrated temporal logic gate strains on different types of media.

Figure 4.1A show the experimental set-up for 2D diffusion experiments. Standard
petri dishes with 1% agar + MOCA minimal media were made and a biopsy punch
(2mm diameter) was used to create point sources for liquid inducers, which were
added at high concentration (arabinose 2%/vol, aTc 20 ug/ml). We expect these
inducers (both small molecules) diffuse at a rate proportional to the density of
the agar and the concentration of inducer, and to have some radius of induction.
Since the inducers do not diffuse instantaneously, cells spread uniformly over the
surface would encounter different sequences of events (Figure 4.1B). In the non-
overlap regions, cells closer to the inducer a source will see @ only and switch
to state S, (RFP fluorescence), while cells closer to the b source switch to state
Sy (no fluorescence). Within the overlapping region between the two inducers,
there will be two populations: Cell closer to source a will encounter a then b and
switch to S,, (GFP fluorescence), while cells closer to source b will encounter b
then a and switch to state S, (no fluorescence). We tested both a plasmid-based
version of the temporal logic gate (multiple copies of DNA targets, much higher
fluorescence), and the chromosomally integrated version used in the previous chapter
(single chromosomal copy of DNA target, lower fluorescence output). Additional
information about plasmids and strains constructed are described in Materials and
Methods (Table 4.1).
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arabinose alc arabinose alc
Inducer a Inducer b Inducer a Inducer b

ANz, -

b only

ab’~ab ba’~b

athenb b then a

Figure 4.1: 2D diffusion experiment with temporal logic gate. A) Diagram of
inducer diffusion. Point sources of arabinose (inducer a) and aTc (inducer b) will
induce cells within a certain radius. Only a small region in the center will be exposed
to both inducers. B) Diagram of expected cell states based on overlapping inducer
diffusion. C) Spatial patterning from a uniform lawn of plasmid-based temporal
logic gate strain. RFP expression occurs where the cells encounter a only and switch
to state S,, while GFP expression occurs only where cell encounter a then b and
switch to S,p. D) Diffusion pattern with chromosomally integrated temporal logic
gate strain.

Diffusion experiments with a uniform lawn of the plasmid-based temporal logic
gate created a bright red circle around the inducer a point source intersecting a
bright green crescent centered around the inducer b point source (Figure 4.1C). The
RFP expression corresponded to where cells encountered a only and switched to

state S,, while the GFP expression corresponded to where cells encountered a then
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b and switched to S,,. The chromosomally integrated strain resulted in the same
pattern but with lower fluorescence overall (Figure 4.1D). Higher resolution images
of Figure 4.1C,D are shown in Figure 4.3BE.

B C

Figure 4.2: Microscopy of spatially differentiated colonies. Cell cultures of plasmid-
based temporal logic gate were mixed with liquid media and spotted around inducer
point sources. A) Plate imaged in ambient light shows overnight cell growth is
independent of location on the plate. B) Blue light imaging shows RFP/GFP
segmentation only between the two point sources. C) Cells in the overlap region
(middle circle) were extracted and imaged at 10x magnification (Olympus IX81).
Images were taken of cells in the red, middle, and green quadrants (labeled D,E,F).
D) Within the overlap region, cells closer to the arabinose point source encounter
inducer a only (S,) and so express RFP. The densely grown cells show curly growth
patterns. E) Cells that are equidistant from the two point sources are a mix of S,
(RFP) and S,; (GFP). F) Cells in the overlap region that are closer to the aTc point
source can sense a then b, and switch to state S,;, (GFP).

Diffusion-differentiated cells were imaged at 10x magnification on a fluorescence
microscopy (Figure 4.2). Cultures of plasmid-target strain were spotted onto an
agar plate with inducer point sources and incubated overnight (Figure 4.2A). RFP
fluorescence (S, state, a only) was observed for regions encircling the arabinose point
source, GFP fluorescence (S,p, @ then b) was only observed in the region between

the the two point sources, and no fluorescence was observed for cells encircling the
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aTc source or that were too far away from either source (Figure 4.2B). Fluorescence
patterns were confirmed by further imaging cells in the overlapping region at 10x
magnification (Figure 4.2C). Cells in the region between the two point sources show
segmentation based on distance from each point source (Figure 4.2C) — cells closer
to the arabinose source are predominantly red (S, )(Figure 4.2D), those in the middle
are a mixture of red and green (Figure 4.2E), and those closer to the aTc source are
green (S,p)(Figure 4.2F). A sharp border between RFP and GFP populations was
not observed; instead, there was a gradual transition where the population became

predominantly red or green.

4.4 Effect of growth rate on spatial patterning

Spatial patterning results were compared for plasmid and chromosomal event de-
tector strains growing on three different types of media: LB, M9CA, and MOPS. In
previous liquid culture experiments (Chapter 3), cells were grown in minimal media
MOCA with 0.2% glycerol — the slow cell division time ensured integrase buildup
in each cell, and prolonged the time before stationary phase, thus producing more
consistent outcomes. Here, we hypothesized that rich media would also result in
both less efficient DNA flipping and less time for the cells to respond to inducer,
since the population saturates faster. Cell doubling times in LB, MOPS, and M9CA
are roughly 20 minutes, 45 minutes, and 2 hours, respectively. MOPS and M9CA,
unlike LB, are defined medias and so have less background autofluorescence in the
GFP channel.

Spatial patterning outcomes are dependent on the relative ratio between the rate
of inducer diffusion and the rate at which the population reaches stationary phase.
While inducer diffusion rates are a function of agar density, the type of media sets
the growth rate. This relationship between population growth and inducer diffusion
becomes clear if we focus only on the diameter of RFP expression surrounding
the arabinose (left) point source in Figure 4.3. Since the starting concentration of
arabinose was the same for all six conditions, the radius of RFP expression reflects
how far arabinose had diffused when the population reached stationary phase and
stopped responding. The RFP radius is greatest for patterns on M9CA (Figure
4.3B,E) and notably smaller for those on LB (Figure 4.3A,C) and MOPS (Figure
4.3C,F) — this is true for both plasmid and chromosomal strains. Cell response to aTc
also follows this pattern, but it is more difficult to visualize since GFP expression
only occurs if population saturation is slow relative to inducer diffusion. This

only occurs on MOCA (Figure 4.3C,F) and perhaps in some cases of MOPS (Figure
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Figure 4.3: Comparison of spatial patterning with LB, M9CA, and MOPS media.
Fluorescence images of diffusion experiments on agar plates were taken using an
Olympus MVX10 macroscope (0.63x). The plasmid-based temporal logic gate
strain was compared to the chromosomally-integrated strain. Arabinose (inducer a)
point source was placed on the left, and aTc (inducer b) point source was placed
on the right. A) Plasmid-based strain grown on LB shows RFP expression around
arabinose point source but no GFP. B) Plasmid-based strain grown on M9 shows
clear segmentation between the circle of S, around the arabinose point source and
a crescent of GFP (S,;) where the arabinose ring intersects with the aTc ring.
C) Plasmid-based strain grown on MOPS shows a smaller diameter ring of RFP
expression compared to LB. D) Chromosomal strain grown on LB small RFP circle
around arabinose point source. E) Chromosomal strain grown on M9CA shows
sharply delineated region of GFP cells (S,5) where arabinose and aTc overlap. F) A
slight GFP overlap region can be seen for chromosomal cell grown on MOPS.

4.3F). Additionally, note the sharp crescent of GFP expressing cells where arabinose
intersects with aTc, in contrast with the largely diffuse ring of RFP expressing cells
surrounding the arabinose point source. We believe this is because the induction
curve for aTc induction of Ptet is much sharper than the induction curve for arabinose/
PBAD. The ultrasensitivity in de-repression of tetR results in a remarkably crisp
GFP circle where aTc and arabinose meet.

Overall, just as with liquid culture experiments, we concluded that MOCA was the
best medium with which to grow the event detector circuits, and the plasmid version
was possibly even preferable due to brighter fluorescence.
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Figure 4.4: Designs for dual function cassette (DFC) event detector circuits. A)
Layout for DFC design # 1. B) Truth table for DFC #1: RFP is expressed for a
then b and GFP is expressed for b then a. C) Mechanism of action for DFC #1
response to E,;, shows excision when exposed to inducer a, and then activation of
the Ptet promoter when exposed to inducer b. D) Mechanism of action for DFC
#1 response to Ep, shows two step flipping and activation of PBAD. E) Expected
spatial patterning and genetic state of cells when exposed to diffusing point sources
for DFC #1. F) DFC #2 design is the same as DFC #1 except the integrases have
been switched. G) Truth table for DFC #2. H) DFC #2 response to E,;. I) DFC
#2 response to Ep,. J) Expected fluorescence and genomic state patterning for DFC
#2.
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We designed a modified version of the temporal logic gate to change the fluorescence
outcomes for E,; and Ep,. In particular, the original circuit expressed RFP with a
only and GFP for a then b, with no fluorescent output for b then a. In order to fully
visualize the overlap region between the two inducers, we designed a circuit that

would only express fluorescence for a then b and b then a.

The Dual Function Cassettes (DFCs) fundamentally utilize the same circuit topology
as the original design, but the DNA target designs now have inducible promoters
rather than a constitutive promoter (Figure 4.4). Furthermore, these inducible
promoter are the same promoters used to induced the integrases. The two designs
have the same topology — the positions of the two integrase binding sites in DFC
#2 is simply the inverse of their positions in DFC #2. mKate2, the RFP previously
used in the temporal logic gate, was switched out for mCherry because mCherry

has faster maturation times.

In Figure 4.4A, the design for DFC #1 consists of the same interleaved integrase
attachment sites as in the previous temporal logic gate circuit, however the consti-
tutive promoter has been replaced with the same promoters that activate production
of the integrases (P4 = PBAD, Pp = Ptet). Additional terminators have also been
added to prevent read-through. The truth table for the DFC #1 has RFP expression
for E,, and GFP expression for Ej, (Figure 4.4B); however, this does not arise
from a new unique genetic state. Rather, the addition of the first promoter removes
obstruction by the terminators and the second inducer then activates the promoter
(Figure 4.4C,D). If the circuit works as intended, the final fluorescence patterning
would occur only where the two inducer diffusion circles overlap (Figure 4.4E).
The design and outputs for DFC #2 are the inverse of DFC #1 (Figure 4.4F-J).
Additional information about plasmids and strains are described in Materials and
Methods (Table 4.2).

4.6 2D diffusion results for Dual Function Cassette circuits

The Dual Function Cassette (DFC) circuits were implemented as plasmid targets in
DHS5a-Z1 E. coli (Table 4.2). Two different distances between inducer point sources
(1.5cm and 2.5cm) were tested, as well as low (Figure 4.5) and high (Figure 4.6)
concentrations of inducer source. All patterning was done on M9CA agar plates.
Inducer concentrations were 2% arabinose w/vol ( inducer a), and 20ug/ml aTc
(inducer b)) for high induction and 1/10th of that for low induction.

Diffusion-induced patterning results for the DFC strains at low inducer concen-
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Dual Function Cassette 1 Dual Function Cassette 2
A then B - RFP Athen B - GFP
B then A - GFP B then A - RFP

sfGFP
mCherry

o ‘G

*Inducer point source (ara 0.2%, aTc 2ug/ml) SIGFP

Figure 4.5: 2D diffusion patterning results for DFCs, low inducer source concen-
trations. Experiments were done with MOCA agar with E. coli lawn of DFC#1 and
DFC#2 strains. Inducer point sources were 1/10th the usual concentration (inducer
a(left): arabinose 0.2%, inducer b(right): aTc 2ug/ml). A) DFC #1 strain with
1.5cm distance between inducer point sources. Color image is composite of RFP
and GFP channels (shown in smaller circles). B) DFC #2 strain with d = 1.5cm
between inducers. C) DFC #1 strain with d = 2.5cm between point sources. D)
DFC #2 strain with d = 2.5cm between point sources.

trations suggested inducer concentrations were too low for DNA recombination to
occur. Rather than seeing fluorescence only in the overlap region, we observed
uniform circles around each of the inducer point sources, which give an indication
of background fluorescence expression. In Figure 4.5A, the DFC #1 strain has been
exposed to inducer point sources that are 1.5cm apart, with low concentrations.
Looking back at the circuit diagram (Figure 4.4A), we hypothesize that this RFP
expression is background fluorescence from terminator run-through by P4. Simi-
larly, the GFP fluorescence observed in these results may be the result of backwards
activity by Pp. In Figure 4.5C, where the inducers clearly do not overlap, this leaky
background expression is overtly clear. Furthermore, when P4 is the promoter
immediately upstream of GFP (DFC #2), we see no leaky fluorescence expression

around the arabinose point source. Figure 4.4B,D also shows that the crisp circular



122

pattern is characteristic of Ptet and not of the fluorescent reporter. From these
patterning results, we observed significant background fluorescence around each
point source. We believe this may be due to insufficient terminator insulation and
bidirectional activity by Pp (Ptet), though more experiments need to be done to

confirm this.

Dual Function Cassette 1 Dual Function Cassette 2
A then B - RFP A then B - GFP
B then A - GFP B then A - RFP
mCherry mCherry
A B .
d=1.5cm I
SfGFP SIGFP
C mCherry D mCherry

d=2.5cm

* Inducer point source (ara 2%, aTc 20ug/ml)

Figure 4.6: 2D diffusion patterning results for DFCs, high inducer source concen-
trations. Experiments were done on M9CA agar with E. coli lawn of DFC#1 and
DFC#2 strains. Inducer point source concentrations were inducer a (left): arabinose
2%, inducer b (right): aTc 20ug/ml. A) DFC #1 strain with 1.5cm distance between
inducer point sources. Color image is composite of RFP and GFP channels (shown
in smaller circles). B) DFC #2 strain with d = 1.5cm between inducers. C) DFC
#1 strain with d = 2.5cm between point sources. D) DFC #2 strain with d = 2.5cm
between point sources.

Patterning results for high concentration inducer point sources show a then b de-
pendent fluorescence but not b then a dependent fluorescence for both circuit types
(Figure 4.6). For DFC #1 (Figure 4.6A,C), we expect cells in the overlap region to
express RFP for a then b and GFP for b then a. Despite some background RFP ex-
pression, significant RFP fluorescence over background was observed in the overlap
region between the point sources (Figure 4.6A, mCherry inset), indicating a then b

differentiation. However, we do not observe GFP fluorescence above background,
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possibly because background GFP expression is already too high. For DFC #2 pat-

terns (Figure 4.6B,D), we see the inverse effect, where regions of a then b overlap
show high fluorescence, but RFP background is too high to observe any additional
fluorescence for b then a regions. Overall, inducer concentrations are high enough
such that both distances between inducers (1.5cm and 2.5cm) have overlap regions,
with the 1.5cm distance having a larger overlap region that extends beyond the other

inducer point source.

4.7 Conclusions and Future Work

We have shown that two-dimensional diffusion of inducers can be used to induce
DNA recombination and differentiation in temporal logic gate E. coli strains. When
cells are spread uniformly, their distance relative to each of the point sources de-
termines the order and timing with which they encounter each inducer. Since two
of the final genetic states express fluorescence, we were able to use macro- and
microscale fluorescence imaging to produce spatial patterning and to investigate the

relationship between inducer diffusion rate and cellular growth rate.

We also discussed modified designs of the temporal logic gate, called the Dual
Function Cassette #1 and #2 (DFCs). These new circuits were designed to produce
fluorescence only in the overlap region between the two diffusing inducer. Testing
of spatial patterning with the DFCs showed high background fluorescence and
uneven promoter responses for a then b versus b then a. Preliminary analysis of
these experiments suggests that terminator run-through and bidirectional promoter
expression may be the reason, though more experiments need to be done to confirm
this.

In future work, we would like to test other designs for patterning — particularly, new
designs that would generate unique genetic states as well as unique fluorescence
outputs. Previous studies have shown that a single integrase can have multiple pairs
of orthogonal attachment sites by mutating the central dinucleotide at the heart
of the DNA recombination reaction (Ghosh, Bibb, and Hatfull, 2008; Colloms et
al., 2014). Results from Roquet et al., n.d. (unpublished) show that a finite state
machine with unique genetic states for all possible inducer sequence combinations
can be made using these orthogonal sites. This greatly expands the design space for
genetic memory and DNA recombination. Additionally, we would like to build a 2D
model to simulate communities of cells and their responses to diffusing inducers.

Using these models, we would like to show that the unique aspect of transient
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signal encoding in DNA memory can lead to spatial patterning regimes that are

inaccessible by Turing reactions alone.

4.8 Materials and Methods

Media, agar plates, and inducers

Media used in these experiments were LB (Sigma, 1.3022), MOPS EZ Rich (Teknova
M2105, 0.4% glycerol instead of glucose), and a custom formulation of M9CA. The
media contained 1x M9 salts (Teknova, M1906) augmented with 100mM NH4CL,
2mM MGSO4, 0.01 % casamino acids, 0.15 ?g/mL biotin, 1.5 ?M thiamine, and
0.2% glycerol.

M9 and MOPS agar plates for diffusion experiments were made by autoclaving bac-
toagar under normal plate-making protocols at twice the normal concentration (15g
/ 500mL), and making the media at also twice the normal concentration (500mL).
When the agar was cooled to 50C, the two solutions were mixed. These plates were

cooled to room temperature and stored at 4C indefinitely.

Prior to experiment, plates were warmed at 37C. Low-melting point top agar with
cell cultures was prepared as described in Appendix D (Final top agar 0.33%, cell
OD 0.15). Once top agar had solidified, inducer point sources were create using a

2mm biopsy punch and inducers were added (2% arabinose wt/vol, 20ug/ml aTc).

Plasmids and strains

pVHed02 Temporal logic gate on low-copy plasmid (CarbR)

binase Controller, Addgene #44456)(CmR)

DRC High copy plasmid with Ptet-Bxb1l and PBAD-TP901-1 (Dual Recom-

pVHed05 Modified DRC plasmid with additional copy of tetR repressor (CmR)

eVHed03 Plasmid-based temporal logic gate with DRC controller plasmid

eVHed06 Plasmid-based temporal logic gate with pVHedO5 controller plasmid

pVHedO5 controller plasmid

eVHed07 Chromosomally integrated temporal logic gate strain (®80 site) with

Table 4.1: Table of relevant strains for temporal logic gate experiments

Microscopy

All patterning images in this section were taken with a Olympus MV X10 macroscope
(0.63x), with the exception of Figure 4.2 — those 10x images were taken with an
inverted Olympus IX81 scope. Agar plates were prepared as detailed in Appendix

D, Protocol for creating an even lawn of E. coli using top agar, and incubated at
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pVHed05 Dual recombinase controller plasmid + extra tetR. Has PBAD-TP901-1

and Ptet-Bxb1 (CmR)

pVHed22 Plasmid with DFC #1 — Dual response with RFP for A then B and GFP

for B then A (CarbR)

pVHed23 Plasmid with DFC #2 — Dual response with GFP for A then B and RFP

for B then A (CarbR)

eVHed13 DFC #1 experimental strain — DHSa@-Z1 strain with pVHed22 +

pVHed05 (CarbR/CmR)

eVHed14 DFC #2 experimental strain — DHSa@-Z1 strain with pVHed23 +

pVHed05 (CarbR/CmR)

Table 4.2: Table of relevant plasmids and strains for dual function cassette (DFC)
designs

37C overnight.
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Chapter 5

STATIONARY PHASE PROMOTERS FOR GROWTH-PHASE
INDUCED DELAYS AND SPATIAL PATTERNING

5.1 Abstract

Current bacterial synthetic circuits rely on the fast dilution and high protein expres-
sion that occurs during exponential phase. However, constant exponential phase
is both difficult to ensure in a lab environment and almost certainly impractical in
any natural setting. Here, we characterize the performance of 13 E. coli native
038 promoters, as well as a previously identified 0-38 consensus promoter. We
then make tetO combinatorial versions of the three strongest promoters to allow for
inducible delayed expression. The design of these combinatorial promoters allows
for design of circuits with inducible stationary phase activity that can be used for

phase-dependent delays in dynamic circuits or spatial partitioning of biofilms.

5.2 Introduction

We envision the future of synthetic biology to involve the deployment of engineered
bacteria into potentially harsh and minimal nutrient environments for long periods
of time. Although current synthetic circuit testing is done almost exclusively in
exponential growth phase, this is neither a realistic environment for natural bacteria
nor a reasonable expectation for engineered strains outside of the laboratory. The
common constitutive and inducible promoters reduce their gene expression activity
considerably when the population reaches stationary phase, and there are not yet
well-defined parts libraries for stationary phase active promoters. Stationary phase
gene expression in E. coli has been widely studied (Miksch and Dobrowolski, 1995;
Lee and Gralla, 2001; Lacour and Landini, 2004; Shimada et al., 2004; Gorochowski
et al., 2014) but we have not yet been able to take advantage of stationary phase

stage promoters for synthetic circuits.

Here, we present a small step towards finding, characterizing, and engineering a
stationary-phase active promoter library by mining the existing literature for known
stationary phase sigma-factor promoters, testing their activity, and engineering them
into inducible combinatorial promoters. The creation of this library would have a
number of significant advantages. Most importantly, cell functionality could be

partitioned into exponential phase tasks and stationary phase tasks. Cells could
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be programmed to conserve resources until some quorum had been reached, and
experimental strains would not have to be constantly diluted to maintain exponential
growth. Furthermore, dynamic circuits that rely on delayed stationary phase activity
would be repressed until the start of the experiment and presence of the inducer. We
also examine the use of these promoters for visualization and spatial partitioning of

bacterial biofilms.
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Figure 5.1: Panel of stationary phase promoters. Native promoter sequences in
DH5a-z1 E. coli as previously identified by Lee et. al (Lee and Gralla, 2001),
ordered by increasing strength of GFP expression. Orange traces represent OD600
and blue traces represent GFP fold change as normalized by the DH5a-Z1 control
strain. Time of GFP increase is highlighted with gray boxes. All of the promoters
turned on in late-log phase. Cells were grown at 37C in LB media.

5.3 Native promoter panel

We began with a set of 21 sigma38 promoters previously identified in the literature
(Lee and Gralla, 2001). 038, also known as 0§ or RpoS, is a RNA polymerase
co-factor that is selectively expressed during stationary phase from the rpoS gene.
First identified by Lange and Hengge-Aronis in 1991(Lange and Hengge-Aronis,
1991), 0-38 is the main stationary phase and stress response promoter and controls
more than 500 genes (Serra et al., 2013). After identifying the section of putative
promoter sequences, we designed a test plasmid with the promoter sequence, a stan-
dardized bicistronic ribosomal binding sequence (BCD2-RBS), and a fast folding

green fluorescent protein (sfGFP). Figure 5.1 shows the full panel of 0-38 promoters
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tested, in which all the promoters have minimal expression until late-log phase and
then express GFP with a range of characteristic strengths. The full panel includes
13 native promoters and one sigma38 consensus promoter created from the con-
sensus motifs of the other promoters (Lee and Gralla, 2001). The control was a
non-fluorescent DH5a-Z1 strain. All of the promoters turned on in late-log phase —
we are currently investigating whether that is due to late-log expression of 038 or

individual cells reaching stationary phase at different times.
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Figure 5.2: Panel of combinatorial 038 promoters. Combinatorial versions of the
strong three native 0-38 promoters were designed and tested. Orange lines represent
OD600 traces, blue lines show GFP fold change over control. A) Design of the
test system consisted of cloning each promoter variation in front of BCD2-sfGFP
and then transforming the plasmid into a Z1 strain that constitutively makes TetR
repressor. B) Control plasmid with Ptet-GFP that only expresses GFP when aTc is
present in the media (Added at time t=0h). C) Pdps native promoter and variations.
Working combinatorial promoters are highlighted in green. D) PproU promoter and
variations. E) Ps38 consensus and variations.

5.4 Engineered combinatorial promoters

From this panel of working 038 late-log phase promoters, we chose the strongest
three promoters, PproU(#20), Pdps(#8), and Ps38consensus (#21) to create combi-
natorial promoters. For each of the three s38 promoters, we designed three variations
of a tetR combinatorial promoter. In the tetl variant, a single tetO DNA binding
motif was placed directly upstream of the promoter sequence 3’ of the -10 region.

In the tet2 variant, the tetO motif was placed between the -10 and the -35 regions,
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with all of the original spacing bases deleted. In the tet3 variant, the tetO motif was
again placed between the -10 and -35 regions with 2 original spacing bases on either

side.

All nine combinatorial promoter variants, plus the original promoters, and a control
Ptet promoter were tested in media with and without aTc in a DH5a-Z1 strain which
constitutively produces tetR (Figure 5.2A). The control Ptet-GFP plasmid turns on
only when aTc is present in the media (added at time = Oh) (Figure 5.2B). The
original stationary phase promoters turn on in late log phase independently of aTc,
and the successful combinatorial promoters only turn on in late log phase when aTc
is present (Figure 5.2CDE). The working combinatorial promoters are highlighted

with green rectangles, with seven out of nine working on the first attempt.

Endpoint Fluorescence of Combinatorial Stationary Phase
Promoters
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Figure 5.3: Endpoint fluorescence of combinatorial versus native stationary phase
promoters.

We can compare the performance of the top three combinatorial promoters (dps-
tet3, proU-tetl, s38con-tet3) with the native promoters, and we see at least a 50%
reduction in overall expression strength (Figure 5.3). This indicates that replacing
the bases between the -10 and -35 regions either decreases overall 0-38 affinity, or

the aTc induction was not high enough to full relieve tetR repression.

5.5 Spatial patterning of biofilms

E. coli naturally form biofilms that are comprised of multiple layers of cells in
different growth phases (Serra et al., 2013; Hobley et al., 2015). The availability of
stationary phase active promoters in the context of biofilms means that cells could
be programmed to express different functions based on their location within the
naturally occurring biofilm. Within a natural biofilm, the cells on the edges are

in exponential phase and dividing to expand the biofilm, the cells in the bottom
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Figure 5.4: Use of stationary phase promoters for understanding biofilms. A)
Diagram copied from Hobley er. al (Hobley et al., 2015). E. coli biofilms are
comprised of multiple layers of cells in different growth phases. B) Imaging of
native 038 promoters within an E. coli biofilm. Ptet-GFP with no aTc and the
constitutive P7-GFP strains are presented as controls. C) Biofims of colonies with
combinatorial 0-38 promoters with and without aTc.

central layer are post-exponential and no longer dividing, and the cells in the upper
central layer, furthest from the nutrients in the agar, are in stationary phase (Figure
5.4A) (Hobley et al., 2015). Natural biofilms already take advantage of spatial
differences in growth phase — Cells on the biofilm periphery are in exponential
phase and expand quickly, but are also more susceptible to attack and stress, while
cells on the interior in stationary phase are protected but also receive less nutrients
(Liu et al., 2015). Additionally, we could potentially combinatorial stationary phase
promoters to purposely couple synthetic model activity to the existing cellular
infrastructure, i.e. the complex mechanisms that determine growth phase and 038
production. Rather than design a synthetic timer, we could use growth-phase
dependent promoters to implement delays or oscillatory behaviors in synthetic circuit

activity.

In preliminary experiments, when we spot strains with the native 0-38 promoters onto
LB agar, we see spatially dependent expression of GFP compared to a constitutive
strain (Figure 5.4B). Notably, we see differential expression of the each of the three
different stationary phase promoters, with Pdps expression primarily around the
outer ring, PproU expression going out in tendrils from the center, and s38consensus

expression evenly spread out (Figure 5.4B).
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When the combinatorial promoters Pdps-tet3, PproU-tetl, and Ps38-tet3 are tested
on plates with and without aTc, we can observe GFP expression turning on based on
aTc availability. Because the overall output of these promoters is much weaker than
the endogenous promoters, it is more difficult to see the same phenotypic differences

observed in Figure 5.4B, thus far.

5.6 Conclusion

In future work, we would like to further understand the biological mechanisms
behind these promoters — are they active in late log phase, or are different cells
reaching stationary phase at different times? What is the protein production rate
after the population reaches full stationary phase? We would also like to explore
interesting new genetic circuit designs that can be achieved with delays implemented
using these promoters. Directed evolution and error-prone PCR libraries of these
promoters could also be used to select for higher expression or tighter expression

windows.

In order to fully take advantage of spatially-dependent expression, we need to first
understand promoter expression in the context of the E. coli biofilm. In addition to
taking top down images, we are planning to take cross-sections of the biofilm to see

if layers can be visualized.

038 is not only the main stationary phase promoter, it’s also the general stress
response promoter. It would be advantageous to find the promoter sequences of less

promiscuous growth-phase dependent transcription factors.

5.7 Materials and Methods
All cells were grown in LB media at 37C in DH5a-z1 E. coli. Biofilms were spotted
from 5-10ul of liquid cultures and grown at 29C or 37C for 24-48 hours.
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Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

Synthetic biology is a continuous process of identifying molecular components,
testing them in a non-native environment, and re-factoring them to improve their
performance against specified metrics. While it is not yet obvious what bioengineer-
ing paradigms should be, it is clear that mixing-and-matching biological components
does not follow the rules of traditional engineering standards and practices. Recent
work, including this one, has shown that the field is pivoting away from precise
uniformity and minimizing noise. Instead we have begun to design for, and even

take advantage of, the stochasticity and delay inherent in biological systems.

Although a great deal of progress has been made in creating libraries of characterized
genetic and molecular tools and components, it is still difficult to abstract away from
the specific limitations of the way that circuits are implemented. We have taken
a function-based design approach to two projects: a negative feedback loop that
works as a concentration regulator, and a temporal logic gate that can detect order
and timing between two inputs. In both circuits, the molecular implementations
determined the limitations and time constants of the experimental system, the overall
behavior of the system was determined by the circuit topology, and could be modeled
without precise fitting of biological parameters. Furthermore, we used both models
for forward predictions on experimental outcomes as well as insight into unexpected

experimental results.

In Chapter 2, we demonstrated a novel negative feedback tracker circuit that main-
tains the ratio between an input and an output protein. The underlying topology
of the circuit was a single negative feedback loop, a common motif for regulating
steady state concentrations. Our implementation with modular synthetic scaffold
proteins and a scaffold-dependent two-component system resulted in extremely rapid
responses to input. This is because two of the components, the kinase and response
regulator, could be constitutively produced with minimal cross-talk. We used sim-
ulation data to investigate how output gain, steady-state ratios, and cycling time
could be tuned by changing how quickly the response-regulator is de-activated, and

verified these predictions experimentally.
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In Chapter 3, we designed and implemented a temporal logic gate that takes advan-
tage of population dynamics to collectively sense and record sequences of transient
chemical inputs. We not only demonstrated that single cells independently sense and
record events but also that aggregate population fractions create unique outcomes,
providing information not encoded in single cells. The use of bacteriophage inte-
grases provided a way to simultaneously achieve temporal logic and memory within
a relatively small region of DNA; however, the ability of the circuit to generate of
population fractions proportional to past events relied only there being delay and
stochasticity in single cell responses to inputs. This was proven with a stochastic
Markov-chain model that represented integrase activity only as probabilities for
state transitions, but still produced useful predictions on overall population-level
outcomes. Therefore, the conclusions of this study could be generalized for other
implementation of temporal logic gates, provided the network topology consisted

of delayed, stochastic digital switches.

In Chapter 4, we demonstrated that the temporal logic gate also be used for spatial
patterning and differentiation. This was achieved by spreading a uniform lawn of
cells across an agar plate with a point source for each inducer. The inducer order and
timing was then determined by a cell’s proximity and placement relative to the two
diffusing point sources. Using fluorescence images, we characterized the effects of

inducer concentration, cellular growth rate, and diffusion rate on patterning.

In Chapter 5, we identified 13 ¢-38 stationary phase promoters from the literature
and designed 7 combinatorial promoters that activate only in late-log phase and in
the presence of inducer. We tested applications of these promoters for visualizing

the growth phase of cells across a biofilm.

6.2 Future work

In Chapter 2, modular scaffold domains were used to implement a negative feedback
loop for ratiometric control of two proteins. This would be an alternative to open-
loop tuning of each component in a synthetic circuit, where absolute concentration is
not important as long as ratios are maintained. scaffold proteins in natural networks
are hubs for signal cascades, usually by colocalizing phosphorylation machinery
(Good, Zalatan, and Lim, 2011), and previous studies have rewired the MAPK
cascade in yeast to redirect signals, modify delays, and introduce ultra sensitivity
(Park, Zarrinpar, and Lim, 2003; Bashor et al., 2008). Although endogenous

signaling cascades use protein ratios for feedback and activation, there has not yet
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been a synthetic circuit with more than one layer of feedback. Future iterations of
our design could improve tracking fidelity by including a second reverse feedback
loop to compensate for over-expression, and orthogonal circuits could be made with
other pairs of two-component systems. This will facilitate building of synthetic

signal cascades by regulating ratios between parts of the cascade.

In Chapter 3, we designed a integrase-based temporal logic gate for detecting se-
quences inputs and genetically modifying the cells accordingly. Furthermore, we
showed that counting population fractions are a reliable method of determining
past events. Future directions for this circuit are primarily focused on applications
for generating distributions and spatial patterning for multi-cellular consortia. The
temporal logic gate could be used not as a endpoint readout of past events, but as
a population generator that can take a homogenous population of “stem cell” bac-
teria, and through timed inputs, reliably create distributions of genetically distinct
daughter cells. A controlled way to generate population distributions opens up pos-
sibilities for testing distribution-based feedback. We are collaborating with another
graduate student to apply a finite state projection model to our integrase circuit, and

to design additional layers of feedback once the cells have differentiated.

Preliminary work for spatial patterning using the temporal logic gate was presented
in Chapter 4. Although much work has been done on diffusion-reaction patterns, our
system has unique properties that result from genetic memory of transient events.
We are collaborating with another graduate student on a 2D model to explore patterns
and addition feedback that could be implemented. The goals of this model would
be to show how our system creates a platform for downstream communication and
feedback that is not accessible with Turing patterns alone. Eventually, this may
create a model system that could provide insights on embryonic development or be

a starting platform for a synthetic multi-strain bacterial consortia.

In Chapter 5, we designed combinatorial stationary phase promoters. We plan to
use the natural un-modified promoters to understand location-dependent growth
within natural biofilms, and then to use to the combinatorial promoters for position-
dependent activation with a synthetic biofilm. Furthermore, inducible stationary
phase promoters are “AND” gates with built in delay, since one of the inputs would
be late-log phase. This opens up possibilities for circuit design, in which a time-
delay threshold is implemented. For instance, one could design a circle in which
cells wait to commit to a differentiated state until all they are saturated, allowing

conservation of resources up until that time. Additionally, it is difficult to use the
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same parts for different circuits if they are to be implemented in the same cell.
Stationary phase promoters would allow for partitioning of phase-dependent tasks,

and provide temporal orthogonality for repeated parts.

The work presented in this thesis contributes towards a framework where circuit
design can be abstracted away from the specific molecular implementation. More
directly, this work has led to future applications for building synthetic multi-cellular
communities with multiple layers of feedback within single cells, between cells, and
between populations of differentiated cells. These robust biological devices would
modulate their activity in response to growth phase, competition, and specified

inputs.



138

Appendix A

CRIM CHROMOSOMAL INTEGRATION PROTOCOL

A.1 Overview

The CRIM (Conditional-replication, integration, and modular) plasmid system is
a series of plasmid vectors which use the R6K replicon for maintenance as an
autonomous DNA element in pir+ hosts and contain an attP site for site-specific
integration into the chromosome of non-pir+ hosts. Integration into non-pir+ hosts
requires the expression of the corresponding lambdoid phage Int protein (i.e. inte-
gration into attBA requires attPA and IntA). The procedure outlined here is directly
adapted from the 2001 Haldimann and Wanner paper.

Sources:

* Haldimann, A., & Wanner, B. L. (2001). Conditional-Replication, Inte-
gration, Excision, and Retrieval Plasmid-Host Systems for Gene Structure-
Function Studies of Bacteria. Journal of Bacteriology, 183(21), 638476393.
http://doi.org/10.1128/JB.183.21.6384-6393.2001

* http://openwetware.org/wiki/Rao:CRIM

A.2  Materials

Desired host containing the Int expressing helper plasmid at 30°C. All of these
helper plasmid have the Ts SC101 replicon and the int gene under APRM regulated
by the Ts AcI857 repressor. The idea is to cure the plasmid while expressing the

corresponding Int.

Plasmid integration site

pINTts Int(1)

pAH69 Int(HK022)

pAH123 Int(480)

pAHI121 Int(P21)

pAHI130 Int(P22) - Not recommended for el4+ strains (e.g.

MG1655).
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Creating your CRIM plasmid

* You will need a pIT3 backbone that has an attP Phi80 site and an R6k-origin

of replication (i.e. pIT3_KP_280 from Jerome Bonnet).

The Phi80 integrase will integrate the entire plasmid into the chromosome at
the Phi80 site. Use your favorite cloning method (Gibson, golden gate, etc),
but at the end, make sure you transform into a competent E. coli pir2+ strain
- Only a pir2+ strain will replicate your plasmid (since it has an R6k-ori).

Recover and grow at 37C on a plate as normal.

CRIM integration

. Grow an overnight of your Int expressing strain in LB (Amp 100 ug/mL) at

30°C.
The following morning, subculture your Int expressing strain 1:100 in fresh

LB(Amp 100 ug/mL).

* Concentrate cells for electroporation 100X. 5 mL of culture will make

50 uL of electrocompetent cells.

. Grow with vigorous shaking at 30°C, until your culture has reached an OD600

of around 0.6.

* Do not let the cells enter late-log/stationary phase. You need them to

continue growing during recovery so they can express Int effectively.

Prepare the cells for electroporation at 100X concentration (modified from

Emzo’s quick and dirty electrocomp protocol)

» Take 1 ml of the culture and spin down in 5000rpm for 2 min

* Resuspend in 10% cold glycerol, keep on ice, spin down again.

* Repeat 3x, then resuspend in 50ul (since there’s always some liquid left,
that will give you 100ul)

* Electroporate with 100ul + 1ul of CRIM plasmid.

* Recover in 1 mL LB or SOC for 1 hr at 37°C for efficient recovery and

Int expression.

5. After one hour, move the cultures to 42°C for 30 minutes before plating.

* This step helps cure the plasmid and allows for high level expression
of the Int protein. This step increases the efficiency of integration and
should not be omitted. A high level of false positives have been observed

when recovery is only done at 37°C.
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. Plate on selective agar for your CRIM’s marker at 37C.

e Jtis advisable to plate 1:10 and 1:100 dilutions as the integration process

is usually efficient and this helps reduce false positives.

. The next day, restreak some colonies on a fresh plate and grow at 42°C to
clear the helper plasmid.
. The third day, PCR check the integration using the primers suggested in the

paper.
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Appendix B

MOCA MINIMAL DEFINED MEDIA RECIPE

Source: Adapted from protocol found on Rob Philips’s lab website

MO salts are used for making minimal media; the salts provide basic ionic buffering
for the cells, and also provide an environment with comfortable osmotic properties.

However, there are no nutrients.

B.1 5x M9 salts for bacteria
Per Liter:

30g Na,HPO,

15¢ KH,PO,

5¢g NH,CI

2.5g NaCl

15mg CaCl, (optional)

Add ingredients to water in 2L flask and heat with stirring until dissolved. Pour
into bottles with loosened caps and autoclave. Cool to < 50 deg C before adding
nutritional supplements and antibiotics. Tighten caps and store concentrated media

indefinitely at room temperature.

B.2 MOICA recipe
Before use, dilute concentrated media to 1x w/ sterile water and add the following

sterile solutions, per liter to make minimal (MGC) media:

MOCA recipe:

1X M9 minimal media (1X salts + ImL 1M MgSO,)
0.2% glycerol

0.01% casamino acids
0.15 ug/mL biotin
1.5 uM thiamine

For 1L total volume, mix together:
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* 200 mL sterile 5X M9 salts

e 2mL IM MgSO,

* 4mL 50% glycerol

* 2mL 5% casamino acids

* ImL 150 ug/mL biotin

e 250 uL 6mM thiamine

* 800 mL water to 1000 mL total

* mix together, filter sterilize

To make 1L plates:

Autoclave 15g agar in 800mL water for 15 min.

Add everything else listed above (5x M9, MgSO,, glycerol, CA, biotin, thi-
amine)

Cool to 50 deg C. and add antibiotics.

Pour 32-40 mL medium/plate for 25-30 plates/liter.
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Appendix C

SEMI-DRY WESTERN BLOT PROTOCOL

Western blot protocol used for Hsiao, Santos, et al., 2015 (Used for proteins 30-50

kDal) (Based primarily on David Chan lab’s Western protocol / also C. Smolke lab

protocol found online)

C1

Lysing cells and running SDS-PAGE gel

1. Resuspended 50ul of cell pellet in 100ul of lysis buffer.

C.2

Added 12.5 ul of resuspended cells + 12.5ul of protein loading dye (save the
rest of the resuspended cells in -20C)
Boil cells by heating to 95C for 10 minutes

. Load 20ul of sample into 4-12% tris gel
. Prepare the ladder by mixing Sul of Western C Protein standards (ladder for

westerns) and Sul of Kaleidoscope prestained ladder (multi colors to help look
at how well the gel runs/transfers). Don’t heat this mixture and load the 10ul
into the ladder well of your gel.

Run gels at 150V for 1hr (or 200V for 30 min).

Pre-Equilibration and Transfer

. Pre-equilibrate gels for 5 - 10 minutes in transfer buffer. (5 min for smaller

MW proteins, 10 minutes for other)

2. Soak Whatman paper (2 / gel) in 1x semi-dry transfer buffer

Cut PVDF membranes to the size of gel and also trim off the top left corner
(to keep track of orientation),

- Soak in 100% MeOH until opaque / transparent ~1 min

- Transfer to MilliQ water until it stops streaking ~2 min

- Soak in 1x semi-dry transfer buffer ~5 min

Remove Whatman paper from 1x semi-dry transfer buffer, and place on semi-

dry transfer apparatus

. Make the transfer sandwich by aligning PVDF with the bottom layer of What-

man paper, placing the trimmed off corned in the top left.

Using two hands, carefully move the gel onto the PVDEF.
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7. Using hands, quickly re-wet the top Whatman paper and place on top of gel.

C3

C4

. Cover the apparatus and run at 15V for 20 minutes.

Blocking and antibody staining

. Immerse the PVDF in 5% Milk in TBST (2.5g in 50ml 1x TBST). Place on a

nutator for 1 hr at room temp.

. Prepare the 3xFLAG-HRP antibody 1:88,000 in 5% milk in TBST (0.5ul of

antibody in 4.4ml milk/tbst) also add 0.44 ul of Strep-HRP antibody for the
Western C ladder. Vortex.

. Prepare the pouches, add the PVDF, seal two sides and add 2ml of antibody

solution to the front of the PVDF.
Leave on the nutator for 1 hr at room temperature (or overnight in the cold

room).
Wash 3x in TBST (15 min each)

. Add 2ml of immobilon hrt mix to the top of the pvdf. Pipette it over the pvdf

for about a minute.

Developing

Developing on a Bio-Rad ChemiDoc gel imager

1. Place the PVDF on the imaging stage

2. Open the Image Lab software and select “Blot” then “chemi high sensitivity”

3. You can have it auto-detect exposure time or set your own

Developing on an X-ray developer

1. Put the PVDF on the Kodak developing cassette.

Make sure you turn the machine on 15 minutes before use to warm up. (Put
the lid on, turn on the water, turn on the button on the left.)

When developing, turn off all the lights and turn on the red lamp.

. Take out a sheet of film and place it opposite the PVDF on the cassette.
. Do 1s, 5s, 10s, 30s exposures. Press the button on the right of the developer

to get it to roll the film in. (For a <1s exposure, use your hand to press film
directly onto the PVDEF.)
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C.5 Recipes
Protein Loading Dye Recipe

* For 50 mL

* 12.5 mL glycerol

* 3.75 g SDS

* 15.5mL 0.5 M, Tris pH 6.8 (or 7.75 mL dH20 + 7.75 mL 1.0 M Tris)

* Pinch of bromophenol blue ( 10 mg)

* Bring volume up to 50 mL

* May need to add some water before adding SDS to get the SDS soluble. Watch
out! SDS takes up lots of volume!

* After you make the main solution, add 5 uL. of BME for every 95 uL of dye

before use (do this in the hood, it’s an organic solvent).

Lysis Buffer

* 50 mM Tris (0.302 g in 50mL)

* 150 mM NaCl (0.420 g in 50mL)
* 0.1% Triton X-100 (50ul in 50mL)
* pHS8.0

10x SDS - PAGE Running Buffer

* 30.3g Tris-HCI
* 71.3g Glycine
* 5g SDS

* Or, you can just buy the 10x and dilute down to 1x.

Semi-dry Transfer Buffer

* 10x Semi-dry transfer buffer stock (1 L)
» - 58.1g Tris HC1

* -29.3¢g Glycine

* - 10g SDS

1x Semi-dry Transfer in MeOH (20%)

e - 50ml 10x buffer
e - 100ml MeOH
e - 350ml ddH20
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10x TBS

* For 1 L:

- 80g NaCl

-2g KClI

- 30g Tris-HCl

- 700ml H20

* Adjust pH to 8.0 with HCl
* Adjust volume to 1L

1X TBST

e for 1L:

e - 100ml 10x TBS
* -900ml ddH20

* - Iml Tween-20
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Appendix D

PROTOCOL FOR CREATING AN EVEN LAWN OF E.COLI
USING TOP AGAR

Used for diffusion experiments in Chapter 4. Adapted from the methods of Basu,
S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic
multicellular system for programmed pattern formation. Nature, 434(7037), 1130-
1134. doi:10.1038/nature03461

Materials

» Use agarose and media to create a 1% stock solution of agar in media

 Ultrapure low melting temp agarose from Life (16520-050) (It may not be
necessarily to use the expensive agarose, 1 just used it because it was already
in the lab).

* The low melting temp agarose melts at 65C and doesn’t solidify until 25C

* Cell growth media (M9, MOPS, LB etc) + antibiotics

* Overnight culture of cells (Measure the OD first)

* Pre-warm agar plate that you're going to add the top agar to (pre-warm in 37C

so that the plate isn’t cold and the top agar doesn’t solidify instantly).

Protocol

* Re-melt the 1% agar stock solution in the microwave ( 1min, mix every 10
sec).

* Combine the agar, fresh media, and cell culture in a falcon tube such that

* The final agar concentration is 0.33%

* The final cell OD600 is 0.15

* The total volume is 3mL (Make up the difference with fresh media + antibi-
otics)

* Pipette 1 - 2 ml of the mixture on top of the pre-warmed agar plate so that the
surface is evenly covered but there isn’t extra liquid sloshing around. The low
agar concentration means that you have time before it solidifies so no need to
rush.

* Let cool for a little bit at room temp until agar solidifies.



148

* Making plates with bacterial lawns for spatial patterning

1.

Make M9 agar plates (1% agar). These can be made anytime ahead of
the experiment and kept at 4C.

2. Incubate culture of cells overnight.

. Dilute overnight culture 1:100, allow to outgrow for 2-4 hours.

4. Make 1% top agar in M9 (no antibiotics) with ultra pure low melting

point agar (ThermoFischer, #16520050) by microwaving it.

. Mix top agar with liquid culture to obtain final cell OD 0.15 with 0.35%

agar.

. Pipette 2ml of the top agar + cell mix on a pre-warmed M9 agar plate

and then remove 1ml once evenly spread over the plate.

7. Let cool at room temperature for 1 hr.

8. Punch holes for inducers using a biopsy punch (or just a cut off pipette

10.

11.
12.

tip in a pinch)

. Add inducers at maximum concentration (arabinose 20%, aTc 20mg/ul)

into the holes until filled — the volume will be about 50ul.

Place the plate in 37C incubator with the lid facing up for about 2 hours
(just so the inducer won’t drip out, but may not be a huge problem).
Flip plate over to prevent condensation, and incubate at 37C overnight.
After 24 or 48 hours, image the place on blue light source or with the

stereoscope.
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Appendix E

MAKING CHEMICALLY COMPETENT CELLS

Adapted from protocol developed by Wes Whitaker.

Preparation:

(Two days before) Streak cells onto LB agar plate and grow overnight
(One day before) Inoculate cells from plate into a SmL LB culture and grow

to saturation overnight.

Pre-chill the following (on ice or in -20C):

Rotor (Set the centrifuge to 4C)
25mL pipet for resuspension
Two 50-ml Falcon tubes instead
50-100 .6mL Eppendorf tubes
TSS solution (on ice)

200ul tips

Protocol:

Dilute the overnight culture 1:100 in 100mL LB

Outgrow to OD 0.5-0.7 at 37C (~2-3 h)

Divide all 100mL into the two pre-chilled 50ml Falcon tubes.

Spin Falcon tubes at 3500 rpm for 5 min in pre-chilled centrifuge.

Do the rest of the protocol on ice or at 4C (I fill an autoclave tray with ice and
stick everything in it)

Resuspend in 5 mL ice-cold TSS

Add 1mL KCM

Aliquot into 60uL/tube (Just stick the little aliquots into the ice)?

Freeze in liquid N2 or directly place in -80C for storage. (I keep aliquots on

ice until I’'m all done and then dump them in a box and put them in the -80C.)

TSS Recipe
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* 10% PEG-3350
* 5% DMSO
¢ 20mM MgCl,

For 500mL TSS:

* 50g PEG

25mL DMSO

10mL MgCl, (190mg)
500mL LB

Sterile filter

KCM Recipe:

* 0.5M KCI (74.55g/mol)
* 0.15M CaCl, (110.98g/mol)
¢ 0.25M MgCl, (95.211g/mol)

For 10ml KCM:

372mg KCl
166mg CaCl,
238mg MgCl,
10ml MilliQ water
Autoclave

Transformations:

1. Thaw 60ul pre-aliquoted chem. competent cells on ice.
Add 1ul plasmid (1-10ng/ul) (or 10ul of ligation mix, or 2-3ul of Gibson

reaction)

™

Gently flick to mix

Incubate on ice for 10 minutes

Heat shock at 42C for 90 s

Add 100uL 2YT or SOC (or even LB) and incubate for 30-90min depending

on needed efficiency (may not be necessary for Carb/Amp plasmids) ?

AU

7. Plate on LB/Agar with antibiotics, grow overnight at 37C
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Appendix F

LIQUID HANDLING ROBOT PROTOCOLS

These protocols were used for Hsiao, Hori, et al., In press, and written by Sean
Sanchez, our robotics lab technician. The liquid handling robot used is the STARIet
by Hamilton Robotics interfaced with a BioTek HIMF plate reader for incubation

and measurement.

F.1 Step induction for event detector populations

Protocol name: Timed_induction.med

Materials

* 96 well Matriplate (600ul volume)(Brooks Automation, Inc., MGB096-1-2-
LG-L)

40ml of M9CA media in 50ml Falcon tube

16ml of eVHed07 cells at ODO0.3 in 50ml Falcon tube (measure the OD using
in a matriplate with BioTek)

(Dilute overnight culture 4 hrs ahead of experiment to allow recovery)

600ul Eppendorf of Arabinose inducer at concentration of 1% (0.01% final)

600ul Eppendorf of aTc inducer at concentration 20ug/ml (200ng/ml final)

[sIszeT Is]
[eleel o]
[eXeze]eTe]
[sXeletele]
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3_MTPNestCB

I 4_MTPNestCB
I

Figure F.1: Hamilton robot deck layout.
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Setup (Figure F.1)

* Media and Cells go in the falcon tube holders
* Inducers A (arabinose) and B (atc) go in the chiller rack
* Empty Matriplate goes in the row 10, facing forward

* Now you are ready to run the protocol (green play button)

=]
500 5 5.00

7\srsanche\Pul !

Cancel | OK I

Figure F.2: Hamilton robot step input volumes.

Load Tubes

o Load tubes: Media goes in Falcon tube 1, cells in Falcon tube 2, inducer(s) in position 1 (and 6) of chiller block

Figure F.3: Hamilton robot step input prompt.

Running the protocol

* The protocol will first add 340 ul of M9 media to each well (will take about
20 minutes)
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It will then add inducer A to the top four rows and inducer B to the bottom
four rows

Then it will add 80ul of cells to each well by sucking up 80ul x 12 per channel
and dispensing down the row

Then it will add another 80ul of cells to each well (this is because it can?t do
160ul for all the wells at a time)

Then it will add the opposite inducer to Column 3 ( the A7 = 0 h row)

Then it will put the plate in the BioTek plate reader (prewarmed to 37C) and
the plate reader will shake for 10 minutes before reading.

The plate reader will read to the Gen5 experiment file called VH_Robot test -

2 inducer.xpt

F.2 Pulse induction for event detector populations

Protocol name: Pulse Induction.med

This robot protocol will induce cultures in a 96 well matriplate that are growing
in the biotek at 37C

At Oh, 30s, 1/2/3/4/5/6 hours it will take 5Sul samples from the main culture
and dilute it into a 96 well deep well plate that contains fresh media with
inducer A. This will simulate a pulse of inducer B

Starting OD 0.06 (OD IS KEY) — use 500ul in a matriplate to test the OD
before you begin

Final arabinose concentration is 0.01%

Final aTc concentration is 200ng/ml

Materials

96 well matriplate (600ul volume)
100ml M9CA media

— 14ml of M9CA with no inducer
— 85ml of M9CA + 0.01% arabinose (42.5ul of 20% stock in 85ml)

50ml 0.2um sterile filtered MilliQ water

Starting culture of eVHed07 (diluted overnight in the morning to 0.3 and
allowed to recover for 4-6hrs)

Two 1ml deep well 96 well plates

600ul Eppendorf of arabinose inducer at concentration of 1% (0.01% final)
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— Dilute stock 1:20 (30ul in 600ul)
* 600ul Eppendorf of aTc inducer at concentration 20ug/ml (200ng/ml final)
— Dilute stock 1:100 (6ul in 600ul)

Setup for dilution plates B1 and B2

» See Figure F.4

* Add 500ul of MO9CA with NO INDUCERS to the first three columns of plate
B1 (use multi-channel pipette with media reservoir)

* Then add 500ul of MOCA + 0.01% arabinose to all the other wells in B1 and
B2

Setup for matriplate with main cultures

* See Figure F.5

* Dilute starting eVHed(07 culture such that the starting concentration is 0.066
and total volume is 500ul (use Biolek to check — this is critical because
measurements on the nanodrop will be slightly different).

* Fill all other wells with 500ul of filtered water (this maintains humidity and

decreases evaporation of cultures).

Robot protocol

» See Figure F.6 to find where all the things go on the robot deck

Inducers in the chill rack

Matriplate in the back facing the plate reader

Plate 1 in the middle facing the plate reader

Plate 2 on the outside facing the plate reader

* Set the inducer volumes for the robot to Sul of each so that they?re diluted
1:100

* Check the box that says No for simulation

* Figure F.7 shows time table with which cultures get sampled and diluted.
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Plate B1 (dilution plate) Plate B2 (dilution plate)
3h 4h

no inducer dt=0h dt=1h 2h
(control) 4 5 6

I 6 M m Qg N @ >

Figure F.4: Pulse exp. dilution plates. These are 96-well deep well plates with
500ul of fresh M9CA + 0.01% arabinose that 5ul of the cultures get diluted into.
These plates incubate for an additional 24 hrs at 37C after all cultures have been
sampled. Populations in these plates are what get measured as the final populations.

Plate A - Main culture plate
96-well square plate
1T 2 3 4 5 6 7 8 9 10 11 12

T 660 mm g N @™ >

Figure F.5: Pulse experiment culture plate setup on matriplate.
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Figure F.6: Pulse exp. Hamilton robot layout.
Table 1 (Time table for adding inducer B)
no inducer gt=0h & =1h dt=2h ot=3h dt=4h dt=5h dt=6h
t=0h add inducer B
t=1h add inducer B
t=2h add inducer B
t=3h add inducer B
L=dh add inducer B
t=6h add inducar B
t=Bh add inducer B
t=7h
t=8h
t=9h
t=10h
t=11h
t=12h
=13h
Table 2 (Time table for taking out 5ul samples)
no inducer da=0hn dt=1h dt=2h dt=3nh dl = 4h dt=5h dlL = 6h
t=0h |samplepw=0 |sample pw=20
t=230s |sample pw = 30gsample pw = 30g sample pw =0
t=1h [samplepw=1 |sample pw =1 [samplepw =30gsample pw =0
t=2h [samplopw=2 |eample pw=2 [samplopw =1 |sample pw = 10geamplopw =0
t=3h [ecamplepw=3 |eample pw=13 [camplepw =2 [camplepw =1 |eample pw =30gcample pw=0
t=d4h [samplepw=4 |eamplepw=4 [samplepw=3 |samplepw=2 |samplepw=1 |sample pw =304 samplapw =0
t=5h |[samplepw=5 |samplepw=5 |[samplepw=4 |[samplepw=21 |samplepw=2 |sample pw=1 |samplepw = 30gsamplepw=0
t=6h |samplepw=6 |samplepw=6 |samplepw=5 [samplepw=4 |samplepw=3 |samplepw=2 [samplepw=1 |sample pw=30s
t=7h samplepw =6 [samplepw=5 [samplepw=4 |samplepw=3 |samplepw =2 [sample pw=1
1=8hn samplepw =6 [samplepw=5 |samplepw=4 |samplepw=3 |samplepw=2
1=9n semplepw =8 |sample pw =5 |samplepw =4 [sample pw =3
=10h sample pw =6 [samplepw =5 |sample pw=4
t=11h samplepw =6 [sample pw =5
t=12h sample pw = B

Figure F.7: Pulse exp. sampling time table.
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