

BIBLIOGRAPHY

- [1] I. Agnolin and J.N. Roux. “Internal states of model isotropic granular packings. III. Elastic properties”. In: *Physical Review E* 76.6 (2007), p. 061304.
- [2] A. Alarcon-Guzman, G.A. Leonards, and J.L. Chameau. “Undrained monotonic and cyclic strength of sands”. In: *Journal of Geotechnical Engineering* 114.10 (1988), pp. 1089–1109.
- [3] J.E. Andrade. “A predictive framework for liquefaction instability”. In: *Géotechnique* 59.8 (2009), pp. 673–682.
- [4] J.E. Andrade, A.M. Ramos, and A. Lizcano. “Criterion for flow liquefaction instability”. In: *Acta Geotechnica* 8.5 (2013), pp. 525–535.
- [5] R. D. Andrus and K. H. Stokoe II. “Liquefaction resistance of soils from shear-wave velocity”. In: *Journal of Geotechnical and Geoenvironmental Engineering* (2000).
- [6] R.D. Andrus et al. “Comparing liquefaction evaluation methods using penetration- V_S relationships”. In: *Soil Dynamics and Earthquake Engineering* 24.9 (2004), pp. 713–721.
- [7] K. Been and Mike G. Jefferies. “A state parameter for sands”. In: *Géotechnique* 35.2 (1985), pp. 99–112.
- [8] A.W. Bishop. “The stability of tips and spoil heaps”. In: *Quarterly Journal of Engineering Geology and Hydrogeology* 6.3-4 (1973), pp. 335–376.
- [9] R.W. Boulanger. “High overburden stress effects in liquefaction analyses”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 129.12 (2003), pp. 1071–1082.
- [10] R.W. Boulanger. “Relating K_α to relative state parameter index”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 129.8 (2003), pp. 770–773.
- [11] R.W. Boulanger and R.B. Seed. “Liquefaction of sand under bidirectional monotonic and cyclic loading”. In: *Journal of Geotechnical Engineering* 121.12 (1995), pp. 870–878.
- [12] B. Cambou, M. Jean, and F. Radjai. *Micromechanics of granular materials*. John Wiley & Sons, 2013.
- [13] G. Castro. “Liquefaction of sands, Harvard soil mechanics series 81”. In: *Cambridge, MA: Harvard University* (1969).
- [14] J.C. Chern. “Undrained response of saturated sands with emphasis on liquefaction and cyclic mobility”. PhD thesis. University of British Columbia, 1985.

- [15] J. Chu, S.C.R. Lo, and I.K. Lee. “Instability of granular soils under strain path testing”. In: *Journal of Geotechnical Engineering* 119.5 (1993), pp. 874–892.
- [16] R.F. Craig. *Soil mechanics*. Van Nostrand Reinhold Company, 1978.
- [17] P. A. Cundall and O. D. L. Strack. “A discrete numerical model for granular assemblies”. In: *Géotechnique* 29.1 (1979), pp. 47–65.
- [18] Y. F. Dafalias and M. T. Manzari. “Simple plasticity sand model accounting for fabric change effects”. In: *Journal of Engineering mechanics* 130.6 (2004), pp. 622–634.
- [19] A. Daouadji et al. “Diffuse failure in geomaterials: Experiments, theory and modelling”. In: *International Journal for Numerical and Analytical Methods in Geomechanics* 35.16 (2011), pp. 1731–1773.
- [20] A. Daouadji et al. “Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths”. In: *Géotechnique* 63.5 (2013), pp. 368–381.
- [21] F. Darve and O. Pal. “Liquefaction: a phenomenon specific to granular media”. In: *Proceedings of the 3rd International Conference on Powders & Grains*. 1997, pp. 69–73.
- [22] F. Darve et al. “Failure in geomaterials: continuous and discrete analyses”. In: *Computer methods in applied mechanics and engineering* 193.27 (2004), pp. 3057–3085.
- [23] H. Deresiewicz. “Stress-strain relations for a simple model of a granular medium”. In: *Journal of Applied Mechanics. Transactions of ASME* (1958), pp. 402–406.
- [24] R. Dobry and T. Abdoun. “An investigation into why liquefaction charts work: A necessary step toward integrating the states of art and practice”. In: *Proc., 5th Int. Conf. on Earthquake Geotechnical Engineering*. Chilean Geotechnical Society Santiago, Chile. 2011, pp. 13–44.
- [25] R. Dobry et al. *Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method*. Tech. rep. US Department of Commerce, National Bureau of Standards, 1982.
- [26] J. Duffy and R.D. Mindlin. “Stress-strain relations of a granular medium”. In: *Journal of Applied Mechanics. Transactions of ASME* (1957), pp. 585–595.
- [27] National Research Council (US) Committee on Earthquake Engineering Research. *Liquefaction of soils during earthquakes*. National Academy of Science, 1985.
- [28] Erik Eberhardt. “Rock slope stability analysis—utilization of advanced numerical techniques”. In: *Earth and Ocean sciences at UBC* (2003).

- [29] S.A. Galindo-Torres et al. “Strength of non-spherical particles with anisotropic geometries under triaxial and shearing loading configurations”. In: *Granular Matter* 15.5 (2013), pp. 531–542.
- [30] B.O. Hardin and F.E. Richart Jr. “Elastic wave velocities in granular soils”. In: *Journal of Soil Mechanics and Foundations Div* 89.SM1 (1963), pp. 33–65.
- [31] R. Hill. “On the elasticity and stability of perfect crystals at finite strain”. In: *Mathematical Proceedings of the Cambridge Philosophical Society* 77.1 (1975), pp. 225–240.
- [32] O. Hungr et al. “Rapid flow slides of coal-mine waste in British Columbia, Canada”. In: *Reviews in Engineering Geology* 15 (2002), pp. 191–208.
- [33] I.M. Idriss and R.W. Boulanger. “Semi-empirical procedures for evaluating liquefaction potential during earthquakes”. In: *Soil Dynamics and Earthquake Engineering* 26.2 (2004), pp. 115–130.
- [34] I.M. Idriss and R.W. Boulanger. *Soil liquefaction during earthquakes*. Earthquake engineering research institute, 2008.
- [35] K. Iida. “The Velocity of Elastic Waves in Sand”. In: 16 (1938), pp. 131–144.
- [36] K. Ishihara. “Liquefaction and flow failure during earthquakes”. In: *Géotechnique* 43.3 (1993), pp. 351–451.
- [37] K. Ishihara, R. Verdugo, and A.A. Acacio. “Characterization of cyclic behavior of sand and post-seismic stability analyses”. In: *Proc., 9th Asian Regional Conf. on Soil Mechanics and Foundation Engineering*. Vol. 2. 1991, pp. 45–68.
- [38] T. Iwasaki et al. “A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan”. In: *Proc., 2nd Int. Conf. on Microzonation*. National Science Foundation Washington, DC. 1978, pp. 885–896.
- [39] A.X. Jerves, R.Y. Kawamoto, and J.E. Andrade. “Effects of grain morphology on critical state: a computational analysis”. In: *Acta Geotechnica* (2015), pp. 1–11.
- [40] K.-I. Kanatani. “Distribution of directional data and fabric tensors”. In: *International Journal of Engineering Science* 22.2 (1984), pp. 149–164.
- [41] R. Kawamoto et al. “Level set discrete element method for three-dimensional computations with triaxial case study”. In: *Journal of the Mechanics and Physics of Solids* (2016).
- [42] H.D.V. Khoa et al. “Diffuse failure in geomaterials: Experiments and modelling”. In: *Computers and Geotechnics* 33.1 (2006), pp. 1–14.

- [43] B. Knight, C. Hichens, and J. Tozer. “BHP’s deadly dam collapse linked to ramping up production”. In: *ABC News* (2016). URL: <http://www.abc.net.au/news/2016-02-29/bhp-samarco-dam-collapse-brazil-linked-to-ramping-up-production/7201022>.
- [44] S. L. Kramer. *Geotechnical earthquake engineering*. Prentice Hall Upper Saddle River, NJ, 1996.
- [45] M.R. Kuhn, W.C. Sun, and Q. Wang. “Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability”. In: *Acta Geotechnica* 10.4 (2015), pp. 399–419.
- [46] R.S. Ladd. “Specimen preparation and cyclic stability of sands”. In: *Journal of the Geotechnical Engineering Division* 103.6 (1977), pp. 535–547.
- [47] R.S. Ladd. “Specimen preparation and liquefaction of sands”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 100.10 (1974), pp. 1180–1184.
- [48] P.V. Lade. “Static instability and liquefaction of loose fine sandy slopes”. In: *Journal of Geotechnical Engineering* 118.1 (1992), pp. 51–71.
- [49] J. S. Lee and J. C. Santamarina. “Bender elements: performance and signal interpretation”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 131.9 (2005), pp. 1063–1070.
- [50] X. Li and X.-S. Li. “Micro-macro quantification of the internal structure of granular materials”. In: *Journal of engineering mechanics* 135.7 (2009), pp. 641–656.
- [51] X. S. Li and Y. Wang. “Linear representation of steady-state line for sand”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 124.12 (1998), pp. 1215–1217.
- [52] K.W. Lim et al. “Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment”. In: *Acta Geotechnica* (2015), pp. 1–11.
- [53] H. Liu and T. Qiao. “Liquefaction potential of saturated sand deposits underlying foundation of structure”. In: *Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, Calif.* 1984, pp. 21–28.
- [54] G. Marketos and C. O’Sullivan. “A micromechanics-based analytical method for wave propagation through a granular material”. In: *Soil Dynamics and Earthquake Engineering* 45 (2013), pp. 25–34.
- [55] B.W. Maurer et al. “Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 140.7 (2014), p. 04014032.
- [56] R.D. Mindlin. “Compliance of elastic bodies in contact”. In: *Journal of Applied Mechanics* (1949), pp. 249–268.

- [57] R.D. Mindlin and H. Deresiewicz. “Elastic spheres in contact under varying oblique forces”. In: *Journal of Applied Mechanics. Transactions of ASME* (1953), pp. 327–344.
- [58] U. Mital and J.E. Andrade. “Mechanics of origin of flow liquefaction instability under proportional strain triaxial compression”. In: *Acta Geotechnica* (2016), pp. 1–11. doi: [10.1007/s11440-015-0430-8](https://doi.org/10.1007/s11440-015-0430-8). URL: <http://link.springer.com/article/10.1007/s11440-015-0430-8/fulltext.html>.
- [59] U. Mital, R.Y. Kawamoto, and J.E. Andrade. “Effect of fabric on shear wave velocity in granular materials”. submitted. 2016.
- [60] U. Mital, T. Mohammadnejad, and J.E. Andrade. “Flow liquefaction instability as a mechanism for lower end of liquefaction charts”. submitted. 2016.
- [61] T. Mohammadnejad and J.E. Andrade. “Flow liquefaction instability prediction using finite elements”. In: *Acta Geotechnica* 10.1 (2015), pp. 83–100.
- [62] J.P. Mulilis et al. “Effects of sample preparation on sand liquefaction”. In: *Journal of the Geotechnical Engineering Division* 103.2 (1977), pp. 91–108.
- [63] T.T. Ng and E. Petrakis. “Small-strain response of random arrays of spheres using discrete element method”. In: *Journal of engineering mechanics* 122.3 (1996), pp. 239–244.
- [64] J. O’Donovan, C. O’Sullivan, and G. Marketos. “Two-dimensional discrete element modelling of bender element tests on an idealised granular material”. In: *Granular Matter* 14.6 (2012), pp. 733–747.
- [65] J. O’Donovan et al. “Analysis of bender element test interpretation using the discrete element method”. In: *Granular Matter* 17.2 (2015), pp. 197–216.
- [66] A.M. Ramos, J.E. Andrade, and A. Lizcano. “Modelling diffuse instabilities in sands under drained conditions”. In: *Géotechnique* 62.6 (2012), pp. 471–478.
- [67] L. Rothenburg and N.P. Kruyt. “Critical state and evolution of coordination number in simulated granular materials”. In: *International Journal of Solids and Structures* 41.21 (2004), pp. 5763–5774.
- [68] I. Sanchez-Salinero, J. M. Roesset, and K. H. Stokoe II. *Analytical studies of body wave propagation and attenuation*. Tech. rep. DTIC Document, 1986.
- [69] H.B. Seed. “Design problems in soil liquefaction”. In: *Journal of Geotechnical Engineering* 113.8 (1987), pp. 827–845.
- [70] H.B. Seed and I.M. Idriss. *Ground motions and soil liquefaction during earthquakes*. Vol. 5. Earthquake Engineering Research Institute, 1982.
- [71] H.B. Seed and I.M. Idriss. “Simplified procedure for evaluating soil liquefaction potential”. In: *Journal of Soil mechanics & Foundations Div* 97.9 (1971), pp. 1249–1273.

- [72] H.B. Seed and W.H. Peacock. *Applicability of laboratory test procedures for measuring soil liquefaction characteristics under cyclic loading*. Earthquake Engineering Research Center, University of California, 1970.
- [73] R.B. Seed and L.F. Harder. “SPT-based analysis of cyclic pore pressure generation and undrained residual strength”. In: *Proceedings of the H. Bolton seed memorial symposium*. Vol. 2. 1990, pp. 351–376.
- [74] D.J. Shirley and L.D. Hampton. “Shear-wave measurements in laboratory sediments”. In: *The Journal of the Acoustical Society of America* 63.2 (1978), pp. 607–613.
- [75] K.H. Stokoe, S.H.H. Lee, and D.P. Knox. “Shear moduli measurements under true triaxial stresses”. In: *Advances in the art of testing soils under cyclic conditions*. ASCE. 1985, pp. 166–185.
- [76] J. Thomas. “Static, cyclic and post liquefaction undrained behavior of Fraser river sand”. MA thesis. University of British Columbia, 1992.
- [77] X. Tu and J.E. Andrade. “Criteria for static equilibrium in particulate mechanics computations”. In: *Int J. Numer. Meth. Engng* 75 (2008), pp. 1581–1606.
- [78] Y.P. Vaid and J.C. Chern. “Cyclic and monotonic undrained response of saturated sands”. In: *Advances in the art of testing soils under cyclic conditions*. ASCE. 1985, pp. 120–147.
- [79] Y.P. Vaid and J.C. Chern. “Effect of static shear on resistance to liquefaction”. In: *Soils and Foundations* 23.1 (1983), pp. 47–60.
- [80] Y.P. Vaid and A. Eliadorani. “Instability and liquefaction of granular soils under undrained and partially drained states”. In: *Canadian Geotechnical Journal* 35.6 (1998), pp. 1053–1062.
- [81] Y.P. Vaid and S. Sivathayalan. “Fundamental factors affecting liquefaction susceptibility of sands”. In: *Canadian Geotechnical Journal* 37.3 (2000), pp. 592–606.
- [82] G. Viggiani and J. H. Atkinson. “Interpretation of bender element tests”. In: *Géotechnique* 45.1 (1995), pp. 149–154.
- [83] I. Vlahinić et al. “Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images”. In: *Granular Matter* 16.1 (2014), pp. 9–21.
- [84] R.V. Whitman. “On liquefaction”. In: *Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Calif.* 1985, pp. 12–16.
- [85] D.M. Wood. *Soil behaviour and critical state soil mechanics*. Cambridge university press, 1990.

- [86] J.A. Yamamuro and K.M. Covert. “Monotonic and cyclic liquefaction of very loose sands with high silt content”. In: *Journal of Geotechnical and Geoenvironmental Engineering* 127.4 (2001), pp. 314–324.
- [87] S. Yamashita et al. “Interpretation of international parallel test on the measurement of Gmax using bender elements”. In: *Soils and foundations* 49.4 (2009), pp. 631–650.
- [88] T.L. Youd and I.M. Idriss. “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”. In: *Journal of geotechnical and geoenvironmental engineering* 127.10 (2001), pp. 817–833.
- [89] M. Zeghal and C. Tsigginos. “A micromechanical analysis of the effect of fabric on low-strain stiffness of granular soils”. In: *Soil Dynamics and Earthquake Engineering* 70 (2015), pp. 153–165.