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Abstract

Laboratory chamber experiments are used to investigate formation of secondary organic aerosol
(SOA) from biogenic and anthropogenic precursors under a variety of environmental conditions.
Simulations of these experiments test our understanding of the prevailing chemistry of SOA formation
as well as the dynamic processes occurring in the chamber itself. One dynamic process occurring in
the chamber that was only recently recognized is the deposition of vapor species to the Teflon walls
of the chamber. Low-volatility products formed from the oxidation of volatile organic compounds
(VOCs) deposit on the walls rather than forming SOA, decreasing the amount of SOA formed
(quantified as the SOA yield: mass of SOA formed per mass of VOC reacted). In this work, several
modeling studies are presented that address the effect of vapor wall deposition on SOA formation
in chambers.

A coupled vapor—particle dynamics model is used to examine the competition among the rates of
gas-phase oxidation to low volatility products, wall deposition of these products, and mass transfer
to the particle phase. The relative time scales of these rates control the amount of SOA formed by
affecting the influence of vapor wall deposition. Simulations show that an effect on SOA yield of
changing the vapor—particle mass transfer rate is only observed when SOA formation is kinetically
limited. For systems with kinetically limited SOA formation, increasing the rate of vapor—particle
mass transfer by increasing the concentration of seed particles is an effective way to minimize the
effect of vapor wall deposition.

This coupled vapor—particle dynamics model is then applied to a-pinene ozonolysis SOA exper-
iments. Experiments show that the SOA yield is affected when changing the oxidation rate but not

when changing the rate of gas—particle mass transfer by changing the concentration of seed particles.
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Model simulations show that the absence of an effect of changing the seed particle concentration is
consistent with SOA formation being governed by quasi-equilibrium growth, in which gas—particle
equilibrium is established much faster than the rate of change of the gas-phase concentration. The
observed effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition:
gas-phase oxidation products are produced more quickly and condense preferentially onto seed par-
ticles before being lost to the walls. Therefore, for a-pinene ozonolysis, increasing the oxidation rate
is the most effective way to mitigate the influence of vapor wall deposition.

Finally, the detailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organ-
ics in the Atmosphere) is used to simulate a-pinene photooxidation SOA experiments. Unexpectedly,
a-pinene OH oxidation experiments show no effect when changing either the oxidation rate or the
vapor—particle mass transfer rate, whereas GECKO-A predicts that changing the oxidation rate
should drastically affect the SOA yield. Sensitivity studies show that the assumed magnitude of the
vapor wall deposition rate can greatly affect conclusions drawn from comparisons between simula-
tions and experiments. If vapor wall loss in the Caltech chamber is of order 107 s, GECKO-A
greatly overpredicts SOA during high UV experiments, likely due to an overprediction of second-
generation products. However, if instead vapor wall loss in the Caltech chamber is of order 1073 s71,

GECKO-A greatly underpredicts SOA during low UV experiments, possibly due to missing autoxi-

dation pathways in the a-pinene mechanism.
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Atmospheric aerosols, defined as solid or liquid particles suspended in a gas with typical diameters
of a few nanometers to tens of micrometers, have significant impacts on climate and human health
(Seinfeld and Pandis, 2006). Aerosols affect climate directly by absorbing or scattering solar and
infrared radiation, altering the radiative balance of the earth (Forster et al., 2007). Aerosols also
affect climate indirectly by acting as cloud condensation nuclei, thereby altering the cloud albedo
or lifetime (Forster et al., 2007). However, aerosols currently have the largest uncertainty of all
radiative forcing due to uncertainties in emissions, optical properties, mixing, and vertical structure
(Forster et al., 2007). Furthermore, long-term exposure to fine particulate air pollution (particles
less than 2.5 pm in diameter) has been shown to increase risk for cardiopulmonary and lung cancer
mortality (Pope et al., 2002). However, the overall premature mortality due to exposure to fine
particulate air pollution is very uncertain, in part due to the difficulty of quantifying particulate
exposure (Ford and Heald, 2016). Enhanced knowledge of aerosol concentrations and properties
worldwide is necessary to more accurately predict their climate and health effects.

Atmospheric particles can be emitted directly (primary aerosols) or formed in the atmosphere
by gas-to-particle conversion (secondary aerosol) (Seinfeld and Pandis, 2006). A significant fraction
of atmospheric particulate mass (20-90%) is organic aerosol (Kanakidou et al., 2005), in large part
secondary organic aerosol (SOA) (Jimenez et al., 2009). SOA is composed of a complex mixture of
thousands of organic molecules, a substantial fraction of which have not been directly measured or
identified (Goldstein and Galbally, 2007). SOA forms in the atmosphere through a series of steps

(Seinfeld and Pandis, 2006):

1. Emission of volatile organic compounds (VOCs) from anthropogenic (vehicular, power plant,

etc.) and biogenic (vegetation, volcanic, etc.) sources.

2. Gas-phase reaction of VOCs to produce oxidation products capable of forming SOA. These
consist of reaction with OH radicals during daylight, reaction with nitrate radicals during
nighttime, reaction with ozone during day and night, and photolysis (Atkinson, 2000). These
reactions can be composed of single or multiple reaction steps and lead to products with a

wide range of volatility.
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3. Mass transfer of low-volatility oxidation products from the gas to the particle phase and/or
heterogeneous and aqueous reactions of gas-phase products to form SOA (Ervens et al., 2011;

Surratt et al., 2010).
4. Further transformation of SOA compounds within the particulate phase.

Environmental chambers are used worldwide to study gas-phase atmospheric chemistry and SOA
formation. In batch environmental chambers, gases (and frequently particles) are introduced into a
Teflon or glass chamber and allowed to mix. Gas-phase reactions are then initiated by the introduc-
tion of oxidants or use of radiation. Concentrations of gases and particles are monitored with a suite
of instruments. The amount of SOA formed from the oxidation of different precursors is measured,
and the SOA yield is calculated as the mass of SOA formed divided by the mass of precursor reacted.
Detailed chemical and physical mechanisms are developed on the basis of chamber data in order to
describe the gas-phase chemistry and SOA formation occurring in the chamber. Parameterizations
and simplified models are developed from SOA yield data for use in regional and global chemical
transport models (CTMs) (Odum et al., 1996; Carlton et al., 2010; Pye et al., 2010).

Historically, models developed from chamber SOA data substantially underpredicted ambient
SOA concentrations (Heald et al., 2005; Volkamer et al., 2006; Ensberg et al., 2014). One reason for
this underprediction has been shown to be vapor wall deposition (Matsunaga and Ziemann, 2010;
Kokkola et al., 2014; Zhang et al., 2014; Yeh and Ziemann, 2014, 2015; Bian et al., 2015; La et al.,
2016). Low-volatility products formed from the oxidation of VOCs deposit on the walls of the cham-
ber rather than forming SOA, lowering the observed SOA yield. Because vapor wall deposition will
not occur during atmospheric SOA formation, chamber-derived yields will then underpredict ambi-
ent SOA formation rates. Understanding and correcting for the influence of vapor wall deposition
is crucial to accurately predicting ambient SOA levels worldwide.

Box models describing gas-phase chemistry, SOA formation, and aerosol dynamics are used
to simulate chamber experiments to test our level of understanding of the chemical and physical
processes occurring within the chamber. Comparison of simulation results with experimental ob-

servations can elucidate missing processes within the model or can illustrate the role of vapor wall
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deposition in influencing observed SOA yields. Here, a number of studies are presented simulating
a variety of chamber experiments using box models of varying complexity.

Chapter 2 describes the development of a coupled vapor—particle dynamics model, in which
particle growth, wall deposition, and coagulation are simulated, along with simplified gas-phase
chemistry and vapor wall deposition. Three different time scales govern the behavior of gas-phase

species in a chamber (for an experiment without aqueous or heterogeneous reactions):

1. The oxidation rate: the rate at which gas-phase products form and then react to produce

further products.

2. The rate of mass transfer to the particle: this rate is dependent on the particle surface area
available for condensation, the compound-specific gas-phase diffusion coefficient, and the gas—
particle accommodation coefficient oy, the fraction of collisions that lead to incorporation of

a vapor species into the particle (Seinfeld and Pandis, 2006).

3. The rate of vapor wall deposition: this rate is less well-understood but is thought to depend
on the compound-specific gas-phase diffusion coefficient, the eddy diffusivity of the chamber,
the surface-to-volume ratio of the chamber, and the gas—wall accommodation coefficient ay,

(McMurry and Grosjean, 1985).

The model is used to illustrate how the relative time scales of these three rates affect the SOA
yield. Furthermore, the role of vapor wall deposition in depressing the observed SOA yield changes
as the relative time scales of these processes change.

Chapter 3 describes the application of this model to the a-pinene ozonolysis system. Simulations
are compared to experiments in which both the oxidation rate and the vapor—particle mass transfer
rate are varied separately and simultaneously. An effect on the SOA yield is observed when changing
the oxidation rate but not when changing the vapor—particle mass transfer rate. These observations
constrain the value of a, and the rate of vapor wall deposition. It is concluded that for the a-pinene
ozonolysis system, the most effective method to mitigate the effect of vapor wall deposition is to

increase the oxidation rate.
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Chapter 4 describes the simulation of a-pinene photooxidation SOA experiments using the de-
tailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmo-
sphere). GECKO-A generates a near-explicit gas-phase oxidation mechanism for a selected VOC
using reactions and rate constants based on experimental data and structure-activity relationships
(Aumont et al., 2005). a-pinene OH oxidation experiments were conducted in the Caltech chamber
again varying both the oxidation rate and the vapor—particle mass transfer rate. Unexpectedly, ex-
periments show no effect when changing either the oxidation rate or the vapor—particle mass transfer
rate, whereas GECKO-A predicts that changing the oxidation rate should drastically affect the SOA
yield. Various chemical and physical processes are explored to rationalize this discrepancy, and the
still uncertain nature of vapor wall deposition is highlighted.

Finally, Chapter 5 summarizes the conclusions of these chapters and suggests future work.
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Chapter 2

Vapor-Wall Deposition in
Chambers: Theoretical
Considerations *

*Reproduced with permission from “Vapor-Wall Deposition in Chambers: Theoretical Considerations” by
McVay, R. C., Cappa, C. D., and Seinfeld, J. H., FEnvironmental Science and Technology, 48, 10251-10258,
doi:10.1021/es502170j, 2014. Copyright 2014 by the American Chemical Society.
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2.1 Abstract

In order to constrain the effects of vapor—wall deposition on measured secondary organic aerosol
(SOA) yields in laboratory chambers, researchers recently varied the seed aerosol surface area in
toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area
(Zhang et al., 2014). Using a coupled vapor—particle dynamics model, we examine the extent to
which this increase is the result of vapor—wall deposition versus kinetic limitations arising from
imperfect accommodation of organic species into the particle phase. We show that a seed surface area
dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically
limited. The existence of kinetic limitation can be predicted by comparing the characteristic time
scales of gas-phase reaction, vapor—wall deposition, and gas—particle equilibration. The gas—particle
equilibration time scale depends on the gas—particle accommodation coefficient ay. Regardless of
the extent of kinetic limitation, vapor—wall deposition depresses the SOA yield from that in its
absence since vapor molecules that might otherwise condense on particles deposit on the walls. To
accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor—wall deposition

and kinetic limitations must be taken into account.

2.2 Introduction

The formation of secondary organic aerosol (SOA) is represented in atmospheric models by SOA
yields (mass of SOA formed per mass of parent volatile organic compound (VOC) reacted), which
are determined in laboratory chambers. It has been established that current atmospheric models
using chamber-derived yields significantly underpredict ambient SOA levels (Ensberg et al., 2014; de
Gouw et al., 2005; Volkamer et al., 2006; Johnson et al., 2006; de Gouw et al., 2008; Kleinman et al.,
2008; Matsui et al., 2009). Recent work has suggested that experimentally determined SOA yields
could be systematically biased low due to wall deposition of organic vapors that would otherwise

contribute to SOA growth (Loza et al., 2010; Matsunaga and Ziemann, 2010; Pathak et al., 2008).
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Zhang et al. (2014) reported the results of chamber studies aimed to constrain experimentally
the effect of vapor—wall deposition on SOA yields. In these experiments, involving toluene as the
parent VOC, the level of seed aerosol was systematically varied in order to modulate the competition
between growing particles and the chamber walls for condensable vapors. The statistical oxidation
model (SOM) of Cappa et al. (Cappa et al., 2012, 2013), updated to account for dynamic partitioning
between vapors and particles and vapors and the chamber walls, was fit to the data. The results
demonstrate clear experimental evidence of the role of vapor—wall deposition on measured SOA
yield. The present work analyzes theoretically the observed dependence of SOA yields on seed
surface area by simulating the key elements of VOC oxidation and aerosol chamber dynamics. The
representation of gas-phase VOC oxidation chemistry in such an analysis need not be complex,
as the essential factors are the rate of progressive oxidation and the volatilities of the oxidation
products. The present study is intended to provide a theoretical structure for assessing the effects

of key processes on vapor—wall deposition in laboratory chamber studies of SOA formation.

2.3 Methods

2.3.1 Gas-Phase VOC Oxidation

To evaluate theoretically the effect of vapor—wall deposition in a typical chamber experiment, the
gas-phase chemistry need only represent the progressive oxidation of a parent VOC. We consider
oxidation of a parent VOC, species A, occurring sequentially according to A—B—C—D. Species
A represents the completely volatile parent VOC, and species B-D are oxidation products, with
mass saturation concentrations decreasing by 1 order of magnitude per generation of reaction. Each
oxidation step can be considered to represent reaction with OH, although the chemical details are
not required. With no loss of generality, each species in this idealized mechanism is assigned the
same molecular weight (200 g mol1); in so doing, the maximum SOA yield possible is 1.0. Since
oxidation leads to progressively lower volatility species, the maximum yield will always be reached

at sufficiently long time if there are no additional vapor loss mechanisms, such as wall deposition.
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2.3.2 Aerosol Dynamic Model

We have developed a coupled vapor—particle dynamics model following the framework of the aerosol
parameter estimation (APE) model of Pierce et al. (2008). The model simulates coagulation, conden-
sation/evaporation, and particle-wall and vapor—wall deposition in a well-mixed laboratory chamber
in which a VOC is being oxidized to SOA. The SOA yield is determined as the ratio of the total
mass of organic oxidation products condensed on both suspended and wall-deposited particles to
the total mass of VOC reacted (both expressed in units of ug m3).

The aerosol size distribution is represented using fixed size bins, with specified mean diameters,
so that the evolution of the chamber aerosol is reflected by the time variation of the particle number
concentration in each bin. The aerosol general dynamic equation is expressed in terms of the particle

size distribution function n(Dp, t) as

on(Dp,t)\ _ (9n(Dp,t) On(Dp, t) In(Dp, t)
( ot > B < ot coag " ot cond/evap " ot wall loss (2.1)

where D, is the particle diameter.

The equation governing the change in the number distribution due to coagulation is (Seinfeld

and Pandis, 2006; Pierce et al., 2008)

(8”(5:7 )mg /K I3, q)n((D3)3, t)n(q, t)dg - n(Dy, t /K (¢, Dp)n(q, t)dg
0

(2.2)
where K (Dp1, Dp2) is the coagulation kernel (Seinfeld and Pandis, 2006) between particles of diam-
eters Dy1 and Dps.

The change in aerosol number distribution due to particle wall deposition is expressed as

an(D,, t) B
< atp >wall loss a 7ﬁ(Dp)n(Dp’ t) (2.3)

where (D)) is the size-dependent first-order loss rate coefficient. The §(Dp) values used in the
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present simulations are those determined experimentally for the Caltech chamber (Loza et al., 2012).
Particles that deposit on the wall during the course of an experiment are treated theoretically in
one of two ways for computing the SOA yield (Loza et al., 2012). In the so-called lower limit, once
particles are lost to the walls, they are assumed to cease participation in condensation/evaporation
or coagulation. The mass of condensed oxidation products on each particle at the time of its
deposition is added to that of suspended particles in computing the SOA yield. The lower limit
will be used in the simulations presented here. Historically, yields have also been reported using the
so-called upper limit, in which particles lost to the wall are assumed to continue to participate in
condensation/evaporation as if they had remained suspended. This approach includes some transfer
of organic vapors to chamber walls but does not account for differences in wall versus particle
transport time scales (Zhang et al., 2014).

The rate of vapor condensation onto a spherical aerosol particle can be expressed as (Seinfeld
and Pandis, 2006):

Ji = 27TDZ‘Dp(Gi — G;BQ)FFS (2.4)

where G; represents the gas-phase concentration of species ¢, and Gf % is the equilibrium gas-phase
concentration, both expressed in ug m 3. D; is the molecular diffusivity of species i in air. The

Fuchs-Sutugin correction for non-continuum gas-phase diffusion is (Seinfeld and Pandis, 2006)

0.75ap(1 + Kn)

= 5 (2.5)
Kn# + Kn + 0.283Knay + 0.750

Frs

where ay, is the accommodation coefficient of the vapor species on the particle. Kn is the Knudsen
number, defined as Kn = 2A4p/Dy. Agp is the mean free path of the diffusing molecule in air,
given by Ayp = 3D; /¢4, and ¢y is the mean speed of the diffusing molecule, ¢y = (8RT/mM4)Y/2,
where R is the ideal gas constant, T is the temperature, and My is the molecular weight of the
diffusing molecule. Numerical values for all parameters that are used in the simulations are given

in Table 2.1. Equations 2.4 and 2.5 are applied in each size bin to calculate the condensation or

evaporation flux of each vapor species to or from a single particle and then scaled by the number
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concentration of particles in that size bin. The flux summed over all size bins produces the rate of
change of each vapor species due to evaporation or condensation.

The vapor—particle accommodation coefficient oy, encompasses all resistances to vapor—particle
mass transfer, including surface accommodation and diffusion limitations in the particle phase
(Vaden et al., 2011; Saleh et al., 2013). Vapor-particle accommodation coefficients are difficult
to predict from molecular properties alone, but have been measured experimentally in both ther-
modenuders and evaporation chamber studies (Stanier et al., 2007; Saleh et al., 2013; Grieshop et al.,
2007; Pierce et al., 2011; Vaden et al., 2011). A range of values have been determined, even for the
same systems. For example, Stanier et al. (2007) measured evaporation rates of a-pinene SOA using
tandem differential mobility analysis and found accommodation coefficients <0.1. Saleh et al. (2013)
measured gas—particle equilibrium time scales of a-pinene SOA in a thermodenuder and concluded
the accommodation coefficient was of order 0.1. However, Lee et al. (2011) measured the volatility
of monoterpene SOA (including that from a-pinene), and found that depending on the heat of va-
porization assumed, accommodation coefficients needed to fit evaporation rates in a thermodenuder
ranged from 0.002 to 0.05. Grieshop et al. (2007) used isothermal dilution to measure evaporation
of a-pinene SOA, and deduced accommodation coefficients of order 0.001-0.01. It should be noted
that the accommodation coefficients determined from these evaporation studies are not independent
of the assumed volatility distribution for the SOA compounds, and may underestimate the influence
of condensed phase reactions (Trump et al., 2014). For toluene SOA, Zhang et al. (2014) measured
SOA yields at different initial seed particle surface areas and found a, = 0.001 based on the observed
aerosol growth; oy = 0.001 is used as the base value in the current simulations.

Calculation of Gf 7 is based on the saturation mass concentrations and the organic aerosol con-

centrations in the particle phase (Pankow, 1994; Bowman et al., 1997):

Gl — AiCf

_ 2.6
Yk Ak Mgt (2.6)

In this equation, A; is the concentration of species i in the particle phase, C; is the saturation

concentration of species i, ., Ay is the sum of all species in the condensed phase, of which i is a
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subset, and M;,;+ is the mass concentration of any initially present absorbing organic concentration,
all expressed in terms of ug m™> of air. In general, Gf ? varies for each size bin, based on the mass
concentration of species ¢ and the total organic concentration in that size bin. For computational
convenience, owing to the presence of coagulation, the concentration of each organic species i in
each size bin is not tracked dynamically; only the total condensed mass of each species over the
entire size distribution is determined. The total mass in each size bin is also tracked, but this mass
is not resolved into organic and inorganic masses because the number of particles in each size bin
changes with time. Consequently, Gf % is calculated globally over the entire size distribution, based
on the total mass of condensed species ¢ and the total mass of condensed organics. (The total
amount of species 7 in the condensed phase includes, as noted, the mass condensed onto particles
that subsequently deposited on the wall.) We validated that this simplification of the actual size-
dependent concentration dynamics captures the basic dependence of SOA yield on aerosol surface
area by creating an equivalent moving bin model without coagulation, in which the total number
of particles in each bin is conserved. The concentrations of each species ¢ in each bin are then
used to calculate G{? for each bin. SOA yields predicted in this manner are virtually identical
to those of the fixed bin model. A nominal (0.01 pug m 3) nonvolatile initial organic seed aerosol
concentration, Mj,;;, is assumed to be present in the chamber regardless of initial inorganic seed
number concentration merely to avoid numerical errors in Equation 2.6 at the first time step. Results
are insensitive to this value up to 1 ug m 3. Simulations (not shown) demonstrate that including
the Kelvin effect in the calculation of the equilibrium vapor pressure has a negligible influence on
the computed SOA yields for size distributions typical of seeded SOA chamber experiments.
Vapor—wall deposition is assumed to occur for species B-D and is characterized by a first-order

deposition coefficient, ka1 on (McMurry and Grosjean, 1985):

A O‘willE
Kuwait, :() z (2.7)
witbor =\ V) S0+ g

where A/ V is the surface area-to-volume ratio of the chamber, a4 is the accommodation coefficient

for vapor species on the wall layer, and k. is the coefficient of eddy diffusion that characterizes the
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degree of mixing in the chamber. For convenience, a single value of «y,,;; is assumed to apply
for each of species B-D. The nominal value of v,y is set to 1x107° (estimated experimentally in
Matsunaga and Ziemann (2010)), and ke = 0.015 s ! (estimated for the Caltech chamber in Zhang
et al. (2014) SI). These values yield kyq1,on = 1.7x107%s71, in good agreement with the optimal
Kwail,on obtained by fitting toluene SOA data in Zhang et al. (2014) (Kkyqi,on = 2.5x10"4s71). The
value of Ky on 15 nOt sensitive to oy > 107 (see Fig. S4 of Zhang et al. (2014)).

Matsunaga and Ziemann (2010) showed that vapor species can dissolve and equilibrate in the
Teflon walls of conventional laboratory chambers and introduced the parameter Cy, to represent the
capacity of Teflon to take up organics. While C, has units of concentration, it does not necessarily
represent a physical layer of organic material on the wall. In the present model, vapor interaction
with the wall is similarly assumed to be reversible, with a rate of desorption of kyq of (Matsunaga

and Ziemann, 2010):

k 1, C*M Y
kwall,oﬁ = [?a Con = kwall,on ( C% ]Ww,yw (2'8)
w Lw wMpYp

where K, is the vapor-wall partitioning coefficient, M,, is the effective molecular weight of the wall
material, vy, is the activity coefficient of the species in the wall layer, M, is the average molecular
weight of the organic species in the particle, and y, is the activity coefficient of the species in the
particle. This equation is derived using the definition K, = RT /My~ P{ and the relationship
C} = Myvy,P?/RT to convert vapor pressure P into saturation concentration (Matsunaga and
Ziemann, 2010). For convenience, we assume that My, = M), and v, = vy (Zhang et al., 2014). As
noted, the saturation concentration C* is taken to decrease progressively by one order of magnitude

for species B-D. The nominal value for Cy, is set at 10 mg m™>, based on observations of Matsunaga

and Ziemann (2010) that C,, varies between 2 and 24 mg m 3 for different compounds.

2.3.3 Numerical Experiments

The coupled vapor-aerosol dynamics-wall model is used to explore the sensitivity of SOA yield to

vapor—wall deposition. The assumed seed aerosol size distribution is based on typical distributions in
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the Caltech laboratory chamber, encompassing 53 size bins, spanning the diameter range from 15 to
800 nm and log-normal with a standard deviation of 1.5. The initial particle number concentration
is varied for different simulations in order to vary the total initial seed surface area. For each
combination of parameters, seven different initial particle number concentrations, given in Table
2.2, are used in order to generate seven initial seed surface areas. The ratio of the initial seed
surface area to the surface area of the chamber walls, based on the Caltech laboratory chambers, is
also given in Table 2.2 for each case. The estimated surface area of the Caltech chamber is 41 m?
assuming a rectangular shape with sides of 2.74 m, 2.43 m, and 2.69 m. Each simulation is run for
20 h of oxidation, and the SOA yield is calculated at the end of each simulation.

The parameters used in each simulation are given in Table 2.1. For k[OH]4_. g, the base value
is assigned as 10 s! to represent the product of the toluene-OH rate constant of 5.6x10712 cm?
molec ! s7! and an OH concentration of ~ 2x10% molec cm™2, the approximate value observed during
the toluene SOA experiments in Zhang et al. (2014). The k[OH] for each successive reaction, B—C,
etc., is assumed to be five times the previous k[OH] in order to approximate the increase in reaction
rate as species become more oxidized. Results are insensitive to this reaction rate scaling factor
for values between 1 and 5. «y is varied from 0.001, the best fit value determined by Zhang et al.

(2014), to 1, the ideal accommodation. The saturation concentrations for species B-D are set as

(10! 100 1071] pug m 3.

2.4 Results and Discussion

2.4.1 Increased Partitioning versus Wall Deposition Effect

The clear increase in SOA yield observed by Zhang et al. (2014) with increased seed particle surface
area can arise from two separate effects: (1) increased organic aerosol concentration Cpa via gas—
particle partitioning if condensation is kinetically limited; and (2) reduction in the deposition of
vapor organics to the wall. To evaluate these separate, but potentially overlapping, effects, numerical

experiments were performed with different oy, values and in the presence or absence of vapor-wall
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deposition at varying initial seed surface areas. Figure 2.1 shows Cp4 at the end of 20 h numerical
experiments starting with a parent VOC mixing ratio of 40 ppb (concentration 091:327 pg m3).
Pie charts are shown giving the distribution of products in the organic aerosol phase at the end
of the simulations for the highest initial seed surface area. For a, = 0.001, Cpg increases as
surface area increases both in the presence and absence of vapor—wall deposition. The surface area
dependence of Cpg even in the absence of vapor—wall deposition indicates that the observation of
surface area-dependent yields is not sufficient to prove the existence of vapor—wall deposition.

The increase in Cpy in both the presence and absence of wall deposition is attributable to the
kinetic limitations on organic vapor condensation on particles imposed by a low value of a;. This
limitation is illustrated by comparing the characteristic time scale for gas—particle equilibration
with the time scales for reaction and wall deposition (Figure 2.2). The characteristic time scale for
gas—particle equilibration 74, (i.e., the e-folding time for an aerosol to reestablish vapor—particle

equilibrium after a slight perturbation) is (Seinfeld and Pandis, 2006)

1
T, =
P 277Di(2bms TL(Dp)Dprs)

(2.9)

This time scale is not necessarily that for vapor and particle phases to establish equilibrium in an
SOA formation experiment, which depends on other factors such as the rate of reaction and the
volatilities of the products (Riipinen et al., 2010). In Figure 2.2, 74, is calculated based on the
initial size distribution, but its value will change with time as n(D,) in each size bin evolves (as
discussed below). Quasi-equilibrium growth occurs when the net production rate of condensable
vapors is slow compared to the time to establish gas—particle equilibrium; in this limit, the vapor
and particle phases maintain equilibrium (Shiraiwa et al., 2012; Zhang et al., 2012). The magnitude
of 74 relative to time scales for other processes in the system governs the transition between
kinetically limited and quasi-equilibrium growth (Shiraiwa et al., 2012). Gas—particle equilibrium
is governed by the total organic mass in the system and is not dependent on the surface area of
the inorganic seed. In contrast, kinetically limited condensation, when 74, is competitive with

the time scale for production of condensable vapors, depends on the aerosol surface area. The
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reaction time scale Tpg, controls the production rate of condensable vapors. In Figure 2.2, 7z,
is calculated based on k[OH]o_,p because this reaction controls the production rate for the least
volatile species. For ay = 0.001, 74, exceeds Ty, at the lowest seed surface areas, indicating that
condensation is kinetically limited, and Cpy for ap = 0.001 in the absence of wall deposition in
Figure 2.1 consequently increases sharply with seed surface area. As the seed surface area increases
at o = 0.001, 74, becomes an order of magnitude smaller than 7., and Cpy achieves a plateau at
the highest seed surface areas. As oy, increases, 74, decreases with respect to Ty, and condensation
shifts towards quasi-equilibrium growth. This shift is evident in Figure 2.1, as Cpy in the absence
of wall deposition becomes less dependent on seed surface area as oy, increases.

The presence of vapor-wall deposition introduces an additional time scale into the system, 74, =
1/kyait,on, the characteristic time scale of vapor—wall deposition. 74, must be less than 7y, and
Tg,w for quasi-equilibrium growth. When 7z, = 74,5, Cpa in the presence of vapor-wall deposition
becomes less dependent on seed surface area as o, increases. Ehn et al. (2014) observed SOA yields
from the ozonolysis of a-pinene to increase with increasing particle surface area but required oy = 1.0
to fit the observed growth data. The observed vapor—wall deposition rate was much greater in their
continuously stirred reactor than that in the Caltech chamber (0.011 s versus 2.5x104 s71). In
their reactor, 74,4 ~ 74w even at ap = 1.0, and condensation is kinetically limited. The presence of
vapor—wall deposition depresses the SOA yield from that calculated in the absence of wall deposition
regardless of the value of ap, as seen in Figure 2.1.

Condensation that is kinetically limited produces a narrowing of the particle size distribution,
while condensation dominated by quasi-equilibrium growth produces a broadening of the size distri-
bution (Zhang et al., 2012; Shiraiwa et al., 2012). If condensation shifts towards quasi-equilibrium
growth as seed surface area is increased, the evolution of the particle size distribution should theo-
retically reflect this shift. However, as seed surface area is increased, coagulation will become more
important and may mask any broadening of the size distribution, as smaller particles are scavenged
by larger particles.

Particle distributions shown in the pie charts to the right of Figure 2.1 demonstrate another effect
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of changing the gas—particle equilibration time: decreasing 7,4, by increasing o, shifts the product
distribution towards earlier generation products. As 7,4, decreases, partitioning of species B to the
particle increases preferentially relative to conversion to C and (in the presence of wall deposition)
deposition to the walls.

Yields as a function of Cpy at a constant temperature have historically been parameterized for
use in air quality models (AQMs) such as CMAQ (Carlton et al., 2010) with models such as the
two-product model and the volatility basis set (VBS) (Presto et al., 2006), each of which assumes
instantaneous gas—particle equilibrium. As shown in Figure 2.1, for oy, = 0.001 in this system,
condensation is kinetically limited. Consequently, yields simulated starting with varying Gg and
at varying seed surface areas cannot be described by a single two-product or VBS fit (Figure 2.3).
The points in Figure 2.3 were generated by varying both Gﬂ and seed surface area with (circles)
and without (diamonds) vapor—wall deposition. The size of the markers increases as Gg increases,
and colors correspond to different values of the initial seed surface area. For simplicity, the lines
were generated by fitting a two-product model to the datapoints. (This fit merely illustrates the
discrepancy between the simulation results and common partitioning model predictions.) For a fixed
G% (indicated in Figure 2.3 by markers of the same size), the SOA yield increases as both Cp4 and
seed surface area increase. At a fixed seed surface area, the yield increases as Gg and Cpy increase.
For a fixed final Cpy (visualized by drawing vertical lines in Figure 2.3), the yield increases as seed
surface area increases and Gg decreases. As a result of the kinetic limitation imposed by the low
ayp, the yields depend on Gg in addition to the seed surface area because the time required to reach
a fixed Cpg depends on both parameters. As surface area increases, the same final Cy4 is achieved
with decreasing Gg, and the lower AVOC results in a higher yield.

By contrast, Figure A.1 shows simulations with oy, = 0.01, i.e. 10 times larger. In the absence
of vapor—wall deposition, condensation shifts towards quasi-equilibrium growth with the higher «,
and the yields approach a single curve with little seed area dependence. Yields calculated in the
presence of vapor-wall deposition for ay, = 0.01 maintain a seed surface area dependence at low seed

surface areas but lose this dependence at the highest surface areas. If a similar plot is generated
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for ap = 1.0 (not shown), yields in the presence and absence of wall deposition collapse onto single
(but separate) curves. This further illustrates that yields increase as seed surface area increases only

when condensation is kinetically limited.

2.4.2 Influence of Volatility Distributions

The simulations are based on saturation concentrations that decrease by an order of magnitude per
each generation of reaction. Different combinations of saturation concentrations were also used with
ap = 0.001: Cf = 102 Ug m 3 with subsequent saturation concentrations decreasing by an order
of magnitude per generation, C = 102 or 103 ug m™> with subsequent saturation concentrations
decreasing by 2 orders of magnitude per generation, and all saturation concentrations set to zero.
Each combination produces similar dependence of yield on seed surface area and a depression of
the yield due to vapor—wall deposition (not shown). Saturation concentrations were also varied to
determine if the observed behavior of Zhang et al. (2014) could be qualitatively reproduced using
the present model. Figures A.2-A.5 show that the behavior can be reproduced, supporting the

simplifications employed in the model. More discussion is given in Appendix A.

2.4.3 Influence of Reaction Time Scale

It has been observed experimentally that SOA yields are higher at faster oxidation rates, as the
impact of vapor—wall deposition is lessened (Ng et al., 2007). In Figure 2.4, k[OH] 4_, g is increased
by an order of magnitude (with k[OH]p_, ¢ and k[OH]o_,p again five times the previous k[OH]),
and yields are shown after 20 h of simulation (AVOC will necessarily vary with k[OH]4_,p be-
cause the simulations are run for the equivalent amount of time rather than equivalent amount of
OH exposure). For k[OH]4_,5 = 107* s7! in the absence of vapor-wall deposition, the yield is
approximately 1.0 regardless of seed surface area. The lack of dependence of yield on surface area
seems to contradict the earlier discussion of kinetically limited versus quasi-equilibrium condensa-
tional growth: because increasing k[OH] 4_, p decreases Trqy, with respect to 74 5, the system should

become more kinetically limited and show a stronger dependence on seed surface area. However,
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this effect is observed only if yields are considered at equivalent OH exposure times (see Figure
A.6). For k[OH]45 = 10* s7! in a 20 h simulation, species A is virtually depleted after 15
h. In the absence of vapor—wall deposition, the total concentration of condensable vapors (species
B-D) is no longer changing except via condensation. Condensation will therefore be governed by
quasi-equilibrium growth and is independent of seed surface area. In the presence of vapor—wall
deposition, SOA yields maintain the surface area dependence for k[OH]4_,p = 107* s7! because
vapor—-wall deposition causes condensation to remain kinetically limited throughout the experiment.

This analysis reveals the subtleties in comparing yields measured under different experimental
conditions such as different OH levels, because the effects of both kinetic condensation limitations and

vapor—wall deposition will change with both the rate of oxidation and the duration of an experiment.

2.4.4 Evolution of 7,

The preceding analysis has been based on an assumed initial seed aerosol size distribution: yields
are determined as a function of the initial seed surface area, and 74, (Figure 2.2) is calculated
based on the initial size distribution. The aerosol size distribution changes continuously as particles
grow by condensation and are lost by coagulation or wall deposition. To examine the extent to
which the initial size distribution is a robust metric for comparing different experimental conditions,
we consider the time evolution of 74, for a;, = 0.001 with vapor-wall deposition at each initial
seed surface area (Figure A.7). 74, increases by approximately half an order of magnitude for all
seed surface areas considered but remains within roughly one order of magnitude of 74 4, for which
vapor—wall deposition and vapor condensation remain competitive. Furthermore, differences in the
values of 74 , between different intial seed surface areas remain similar throughout the simulation.
These results indicate that although vapor condensation may become more kinetically limited as
the oxidation progresses, the initial seed aerosol size distribution is a robust metric for comparing

oxidation trajectories.
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2.4.5 Vapor—Wall Deposition Bias in SOA Yield

Figures 2.1-2.4 indicate that the mere increase of SOA yield as seed surface area increases does
not, in itself, prove that vapor—wall deposition is occurring. Furthermore, separating the impacts
of condensational kinetic limitations and vapor-wall deposition is not straightforward. Zhang et al.
(2014) introduced the concept of a wall deposition bias R,

YO

Rwall = 7 (2'10)

the ratio of the SOA yield in the absence of wall deposition, Y9, to that obtained in an equivalent
experiment with wall deposition, Y. R,,,;; is shown as a function of the seed surface area in Figure
2.5 for ap = 0.001,0.01,and 1. For a, = 0.001 (and, to a lesser extent, o, = 0.01), R, decreases
as the seed surface area increases and then reaches a plateau, as observed experimentally in Zhang
et al. (2014). The analysis presented here suggests that the behavior of R, at low surface areas
is influenced by the kinetic limitations that are a consequence of a small ap. Furthermore, R4
changes with k[OH]4_,p and G4p because these parameters affect yields calculated both in the
presence and absence of vapor—wall deposition.

The multi-faceted dependencies of SOA yield and R,,,;; complicate the extrapolation of chamber-
derived yields to atmospheric models. If condensation in the atmosphere is dominated by quasi-
equilibrium growth, chamber experiments should be carried out, if possible, at high seed surface
areas, with high G4 and under rapid oxidation conditions, to minimize the effects of both kinetic
limitations and vapor—wall deposition. If, however, condensation in the atmosphere is also kineti-
cally limited, chamber experiments can be conducted at seed concentrations typical of those in the
atmosphere and a vapor—particle dynamics model, similar to those presented here and in Zhang et
al. (2014), can be used in order to correct for vapor—wall deposition. Thus, challenges will need to be
met in designing experiments that simultaneously minimize the magnitude of vapor deposition to the
chamber walls yet ensure conditions similar to those encountered in the ambient atmosphere. The

strong sensitivity of R4 to the value of the vapor—particle accommodation coeflicient o, points to
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a need for constraining the value of this parameter, establishing the extent to which it varies among
different chemical systems and under differing reaction conditions, and ultimately determining a

value most relevant for the atmosphere.

2.4.6 Effect of Semi-solid SOA

The present simulations do not explicitly address the microphysical nature of the particles. Recent
evidence suggests that SOA often exists in a semi-solid state (e.g. Virtanen et al. (2010); Saukko
et al. (2012)). In such a case, 74, increases relative to 7y, and 7pzp (Shiraiwa et al., 2012). Retarded
gas—particle partitioning resulting from condensed phase diffusion limitations will drive the system
towards kinetically limited SOA growth, and is essentially captured by oy, values < 1. Overall particle
growth is dictated by accommodation into the particle bulk and is thus sensitive to limitations
imposed by particle phase morphology. The results here demonstrate that the dependence of both
the SOA yield and R,,; on seed surface area is important only when SOA growth is kinetically
limited. This suggests that SOA systems in which the SOA exists in a semi-solid state may exhibit
a stronger seed surface area dependence and may exhibit larger wall biases than those for which the

SOA is more liquid-like (i.e., in which bulk accommodation is not a retarding factor).

Figures A.1-A.7 are provided in Appendix A.
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parameter definition value
ap accommodation coefficient of vapor species on particle varied
AV surface-area-to-volume ratio of the chamber 1.6 m*
Qoall accommodation coefficient of vapor species on the wall 107°
o saturation concentrations for species B-D [101 100 1071] ug m 3
Cw equivalent wall organic aerosol concentration 10 mg m
D; gas-phase diffusivity of species i 3x10°% m? s
Gg initial parent VOC concentration 327 pg m 3 (40 ppb)
ke coefficient of eddy diffusion in chamber 0.015 s !
k[OH]4—p product of reaction rate constant and OH concentration 107° g7
kwall,on first-order vapor—wall deposition coefficient 1.7x104 7!
M; species molecular weight 200 g mol !
Minit initially absorbing organic material in seed aerosol 0.01 pg m 3
P pressure 1x10° Pa
p particle density 1700 kg m 3
T temperature 298 K
Table 2.1: Simulation parameters
case initial particle concen- mean particle di- initial particle surface ratio of initial parti-

tration (cm ?)

ameter (nm)

area (um? cm ?)

cle SA to wall SA

10,000
20,000
50,000
100,000
200,000
400,000
600,000

~N OOt W N

100
100
100
100
100
100
100

4.4x10%
8.7x102
2.2x103
4.4x103
8.7x10°
1.7x10%
2.6x10%

2.7x1074
5.3x1074
1.3x1073
2.7x1073
5.3x107°
1.1x1072
1.6x10 2

Table 2.2: Assumed initial aerosol number distribution parameters
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Figure 2.1: Final organic aerosol concentration Cp4 after 20 h of simulation as a function of the
initial seed surface area for simulations beginning with 40 ppb of parent VOC. Conditions for the
simulations are given in Table 2.1 and 2.2. Different combinations of «;, and presence or absence of
wall deposition are shown. The pie charts at the right show the product distribution at the end of
the simulation at the highest seed surface area considered for each of the six simulations. The pie
charts appear top to bottom in the same top-to-bottom order as the Cp4 curves.
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Figure 2.2: Equilibration time scale for gas—particle partitioning as a function of the initial seed
surface area for different values of the vapor-particle accommodation coefficient, ap. The equi-
libration time scale for gas-wall partitioning (7w = 1/kyqi1,0n) and the time scale for reaction
(Trzn, = 1/(k][OH] ¢, p)) are shown as horizontal lines as these time scales are independent of seed
surface area.
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Figure 2.3: SOA yields after 20 h of simulation as a function of the final organic aerosol concen-
tration Cpg for ay = 0.001. The points on the curve were generated by varying the initial parent
VOC concentration Gg with (circles) and without (diamonds) vapor—wall deposition. The size of
the markers increases as G% increases and colors correspond to different values of the initial seed
surface area. The lines were generated by fitting a two-product model to the datapoints.
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Chapter 3

Influence of Seed Aerosol Surface
Area and Oxidation Rate on
Vapor-Wall Deposition and SOA

Mass Yields: A Case Study with
a-pinene Ozonolysis *

*Reproduced with permission from “Influence of Seed Aerosol Surface Area and Oxidation Rate on Vapor-Wall
Deposition and SOA Mass Yields: A case study with a-pinene Ozonolysis” by Nah, T., McVay, R. C., Zhang, X.,
Boyd, C. M., Seinfeld, J. H., and Ng, N. L., Atmospheric Chemistry and Physics Discussion, doi:10.5194/acp-2016-
269, 2016. Copyright 2016 by the Authors. CC-BY 3.0 License.
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3.1 Abstract

Laboratory chambers, invaluable in atmospheric chemistry and aerosol formation studies, are subject
to particle and vapor wall deposition, processes that need to be accounted for in order to accurately
determine secondary organic aerosol (SOA) mass yields. Although particle wall deposition is rea-
sonably well understood and usually accounted for, vapor wall deposition is less so. The effects
of vapor wall deposition on SOA mass yields in chamber experiments can be constrained exper-
imentally by increasing the seed aerosol surface area to promote the preferential condensation of
SOA-forming vapors onto seed aerosol. Here, we study the influence of seed aerosol surface area
and oxidation rate on SOA formation in a-pinene ozonolysis. The observations are analyzed using
a coupled vapor-particle dynamics model to interpret the roles of gas-particle partitioning (quasi-
equilibrium vs. kinetically-limited SOA growth) and a-pinene oxidation rate in influencing vapor
wall deposition. We find that the SOA growth rate and mass yields are independent of seed surface
area within the range of seed surface area concentrations used in this study. This behavior arises
when the condensation of SOA-forming vapors is dominated by quasi-equilibrium growth. Faster
a-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations
for the same initial a-pinene concentration. When the a-pinene oxidation rate increases relative
to vapor wall deposition, rapidly produced SOA-forming oxidation products condense more readily
onto seed aerosol particles, resulting in higher SOA mass yields. Our results indicate that the extent
to which vapor wall deposition affects SOA mass yields depends on the particular VOC system, and

can be mitigated through the use of excess oxidant concentrations.

3.2 Introduction

Secondary organic aerosol (SOA), formed from the oxidation of volatile and intermediate volatil-
ity organic compounds (VOCs and IVOCs), contributes a significant fraction of the global organic
aerosol burden (Kanakidou et al., 2005; Hallquist et al., 2009; Tsigaridis et al., 2014). SOA forma-

tion studies, which are typically conducted in laboratory chambers in the presence of seed aerosol
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particles, provide fundamental data that can be used to predict the rate of atmospheric SOA for-
mation. An essential parameter of interest in laboratory chamber studies is the SOA mass yield
(Y), which is defined as the ratio of mass concentration of SOA formed to mass concentration of
parent hydrocarbon reacted ((AHC), Y = AMo/AHC (Odum et al., 1996, 1997a,b)). The measured
SOA mass yields can subsequently be applied in atmospheric models to predict regional and global
organic aerosol burdens. In order to obtain accurate SOA mass yields from the evolving aerosol size
distribution in chamber experiments, the loss of both particles and vapors to the chamber walls needs
to be accurately accounted for (Crump and Seinfeld, 1981; McMurry and Grosjean, 1985; McMurry
and Rader, 1985; Cocker et al., 2001a; Weitkamp et al., 2007; Pierce et al., 2008; Hildebrandt et
al., 2009; Loza et al., 2010; Matsunaga and Ziemann, 2010; Loza et al., 2012; Kokkola et al., 2014;
McVay et al., 2014; Yeh and Ziemann, 2014; Zhang et al., 2014; Yeh and Ziemann, 2015; Zhang et
al., 2015a; La et al., 2016).

The mechanisms by which particles in chambers deposit on chamber walls are reasonably well
understood. Particles are transported to the boundary layer on the chamber walls via diffusion,
gravitational settling, and electrostatic forces (Crump and Seinfeld, 1981; McMurry and Grosjean,
1985; McMurry and Rader, 1985; Pierce et al., 2008). The rate at which particles are transported
to the edge of the boundary layer is dictated primarily by mixing conditions in the chamber. An
effective approach for characterizing particle wall loss involves measuring the size-dependent wall
loss rates of polydisperse inert seed aerosol (e.g. ammonium sulfate particles) injected into the
chamber during seed-only experiments (Keywood et al., 2004; Pierce et al., 2008). The observed
particle number concentration decay in each size bin is then fitted to a first-order exponential decay
from which the first-order wall loss coefficients are determined as a function of particle size. These
wall loss coefficients are subsequently used to correct for size-dependent particle wall loss in actual
SOA formation experiments.

Vapor-wall deposition mechanisms in chambers are not as well understood or accounted for as
those for particles. The degree to which SOA-forming vapors deposit onto chamber walls is governed

by the rate at which these gas-phase organic molecules are transported to the walls, the strength of
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adherence of the organic molecule to the wall, and the extent of reversible vapor-wall partitioning
(Loza et al., 2010; Matsunaga and Ziemann, 2010; Zhang et al., 2015a). For example, Loza et al.
(2010) showed that the loss of 2,3-epoxy-1,4-butanediol, an isoprene oxidation product analogue, to
walls in the Caltech chamber was essentially irreversible on short time scales but became reversible on
longer time scales. In contrast, glyoxal, a common isoprene oxidation product, exhibited reversible
vapor-wall partitioning over all time scales. Recent studies show that SOA mass yields measured
in chamber experiments can be significantly underestimated due to wall deposition of SOA-forming
vapors that would otherwise contribute to SOA growth (McVay et al., 2014; Zhang et al., 2014,
La et al., 2016). Zhang et al. (2014) found that chamber-derived SOA mass yields from toluene
photooxidation may be underestimated by as much as a factor of four as a result of vapor wall loss.
Consequently, the use of underestimated chamber-derived SOA mass yields in atmospheric models
will lead to the underprediction of ambient SOA mass concentrations (Cappa et al., 2016).

For the toluene photooxidation system, Zhang et al. (2014) showed that the measured SOA mass
yields increased with increasing seed aerosol surface area, demonstrating that increasing the seed-
to-chamber surface area ratio promoted the condensation of SOA-forming vapors onto seed aerosol
particles. However, increasing the seed aerosol surface area to promote condensation of SOA-forming
vapors onto seed aerosol particles may not be effective in all VOC oxidation systems. A modeling
study by McVay et al. (2014) showed that the SOA mass yield depends on seed aerosol surface
area only in cases where the condensation of SOA-forming vapors onto seed aerosol particles is
kinetically limited (i.e., the timescale for gas-particle equilibrium is competitive with or greater than
the timescale for reaction and vapor-wall deposition). In addition to the seed aerosol surface area,
VOC oxidation rate may also play an important role in the effect of vapor wall loss on SOA formation.
Ny et al. (2007) showed that the SOA mass yields from m-xylene photooxidation are dependent
on the oxidation rate, with higher OH concentrations (hence faster oxidation rates) resulting in
higher SOA mass yields. It was suggested that the oxidation rate effect could arise as a result of
competition between growing particles and chamber walls for condensable VOC oxidation products

(Ng et al., 2007). However, McVay et al. (2016) reported similar SOA growth at low and high OH
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concentrations in a-pinene photooxidation. Taken together, these studies show the importance of
understanding how gas-particle partitioning and VOC oxidation rate impact vapor-wall deposition
and SOA mass yields in laboratory chamber experiments.

In this study, we examine the influence of seed aerosol surface area and oxidation rate on SOA
formation in a-pinene ozonolysis chamber experiments. a-pinene is the most abundant monoterpene,
with global emissions estimated to be 66 Tg yr ! (Guenther et al., 2012). Ozonolysis is the major
atmospheric oxidation pathway of a-pinene, and is estimated to account for reaction of ~46 % of
emitted a-pinene (Griffin et al., 1999; Capouet et al., 2008). «a-pinene ozonolysis, a major source
of atmospheric SOA on both regional and global scales (Kanakidou et al., 2005; Hallquist et al.,
2009; Carlton et al., 2010; Pye et al., 2010), has been the subject of numerous studies (Hoffmann et
al., 1997; Griffin et al., 1999; Cocker et al., 2001b; Gao et al., 2004; Presto et al., 2005; Presto and
Donahue, 2006; Pathak et al., 2007a,b; Song et al., 2007; Shilling et al., 2008; Henry et al., 2012; Ehn
et al., 2014; Kristensen et al., 2014; Zhang et al., 2015b). Here, we measure the a-pinene SOA mass
yield as a function of seed aerosol surface area concentration (0 to 3000 pm? cm’?’) and O3z mixing
ratio (100 vs. 500 ppb). These results are analyzed using a coupled vapor-particle dynamics model
to evaluate the roles of gas-particle partitioning and VOC oxidation rate in influencing vapor-wall

deposition effects on the measured SOA mass yields.

3.3 Experimental

3.3.1 Dark a-pinene Ozonolysis Experiments

Experiments were conducted in the Georgia Tech Environmental Chamber (GTEC) facility. Details
of the dual chamber facility are provided elsewhere (Boyd et al., 2015). Only one FEP Teflon chamber
(volume 13 m3) was used for the entirety of this study. Before each experiment, the chamber is
flushed with dried, purified air for at least 36 h until the aerosol number concentration is <30 cm 3.

All experiments were conducted under dry conditions (< 5 % RH) at room temperature (25 °C).

NOy mixing ratios in these experiments are < 1 ppb. Experimental conditions are summarized in
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Table 3.1.

22 ppm of cyclohexane (Sigma Aldrich, > 99.9 %) was first injected into the chamber to act as an
OH scavenger (~440 times the initial a-pinene concentration). After the cyclohexane concentration
had stabilized in the chamber for 30 min, a known concentration (~50 ppb in all experiments) of
a-pinene (Sigma Aldrich, > 99 %) was injected into the chamber, followed by inorganic seed aerosol
via atomization of an aqueous ammonium sulfate (AS) solution (in seeded experiments). To vary the
seed aerosol surface area, different concentrations of AS solutions were used to generate seed aerosol
particles in the seeded experiments. In the “low AS” experiments, a 0.015 M AS solution was used to
generate seed particles, and the resulting initial total AS seed surface area concentration was ~1000
pm? cm 3. In the “high AS” experiments, a 0.05 M AS solution was used to generate seed aerosol
particles, and the resulting initial total AS seed surface area concentration was ~3000 MmQ cm 3.
In selected experiments, no seed aerosol particles were introduced into the chamber and SOA was
formed via nucleation. After the seed aerosol concentration in the chamber stabilized, O3 (100 or
500 ppb), which was generated by passing purified air into a photochemical cell (Jelight 610), was
introduced into the chamber. The start of O3 injection into the chamber marked the beginning of the
reaction (i.e., reaction time = 0 min). The initial a-pinene:O3 molar ratio was fixed at approximately
1:2 and 1:10 in the 100 and 500 ppb Og experiments, respectively. Oz was injected into the chamber
for 13.5 and 54.25 min in the 100 and 500 ppb O3 experiments, respectively, to achieve the desired
O3 concentrations. The Og injection times were established in separate experiments in which only
O3 was injected into the chamber.

The a-pinene and Og concentrations were measured by a Gas Chromatograph-Flame Ionization
Detector (GC-FID, Agilent 7890A) and Os monitor (Teledyne T400), respectively. GC-FID mea-
surements were taken 12 min apart. A High Resolution Time-of-Flight Aerosol Mass Spectrometer
(HR-ToF-AMS, Aerodyne Research Inc.) was used to measure the aerosol elemental composition
(DeCarlo et al., 2006; Canagaratna et al., 2015). Details on the operation of the HR-ToF-AMS and
its data analysis are described elsewhere (Canagaratna et al., 2015). Aerosol size distributions, num-

ber and volume concentrations were measured by a Scanning Mobility Particle Sizer (SMPS, TSI),
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which consists of a Differential Mobility Analyzer (DMA, TSI 3081) and a Condensation Particle
Counter (CPC, TSI 3775). For nucleation and low AS experiments, the measured aerosol size range
was set to 14 to 686 nm diameter. For high AS experiments, the measured aerosol size range was
set to 17 to 983 nm. Prior checks were made to confirm that no particles larger than 686 nm were
detected in the nucleation and low AS experiments. The SOA mass concentrations reported in this
study were measured using the SMPS. The SOA density was calculated from the ratio of the aerosol
size distributions measured by the HR-ToF-AMS and the SMPS during nucleation experiments

(DeCarlo et al., 2004; Bahreini et al., 2005).

3.3.2 Particle Wall Deposition Correction

Particle wall deposition needs to be accounted for to determine the SOA mass concentration in the
chamber. Two limiting assumptions have traditionally been made regarding interactions between
particles deposited on the chamber walls and suspended vapors when accounting for particle wall loss
in the computation of SOA mass yields ( Weitkamp et al., 2007; Hildebrandt et al., 2009; Loza et al.,
2012; Zhang et al., 2014). The first case assumes that particles deposited on the walls cease to interact
with suspended vapors, and therefore the SOA mass present on these deposited particles does not
change after deposition (Loza et al., 2012; Zhang et al., 2014). Adding the SOA mass present on these
deposited particles to that present on the suspended particles provides a lower bound of the total SOA
mass concentration. In the second case, it is assumed that particles deposited on the walls continue to
interact with suspended vapors as if these particles had remained suspended, and therefore the SOA
mass present on these deposited particles increases at the same rate as those suspended (Hildebrandt
et al., 2009; Weitkamp et al., 2007). Thus, this case provides an upper bound of the total SOA mass
concentration due to the additional uptake of suspended vapors to wall-deposited particles. However,
it must be kept in mind that the calculated SOA mass concentration can be underestimated even in
the upper bound case since the calculation accounts neither for differences in the vapor-particle and
vapor-wall interaction and transport timescales nor for the significantly larger amount of absorbing

mass of the chamber walls (relative to the deposited particles) for suspended vapors (McVay et al.,
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2014; Zhang et al., 2014; McVay et al., 2016).

In this study, we calculate SOA mass yields using the lower bound of the total SOA mass
concentration obtained from SMPS measurements, which has been described in detail previously
(Loza et al., 2012), and will be reviewed briefly here. For each particle size bin 4 at each time

increment At, the particle number distribution deposited on the wall (ny,; ;) is:

Na,ij = Nsij (1 — exp(~B;At)) (3.1)

where 7, ; ; is the suspended particle number distribution in particle size bin 4 at time step j, At
is the difference between time step 7 and time step 7 + 1, and 3; is the size-dependent first-order
exponential wall loss rate obtained from seed-only experiments. The particle wall loss corrected
number distribution (n4os47,,7) is obtained from the sum of the particle number distribution of

deposited particles (1, ; ;) and suspended particles (7 ; ;):

Niotal,ij = Ms,ij + Mw,ij (3.2)

Assuming spherical particles, the particle wall loss corrected volume concentration (Viggq ;) is:

Ntotal,i,j

T3
D, ni0 (Dpit — Dp i) =D5 ; (3.3)
i=1 "9

Viotalj = 6P

where m is the number of particle size bins, D), ;4 and D, ; are the upper and lower limits for
size bin i, respectively, and D, ; is the median particle diameter for size bin i. The term D, ;In10
is needed to convert from a lognormal distribution. Figures B.1-B.4 and Table B.1 show results
from the particle wall loss correction. To calculate the SOA mass concentration (AM, ;), the SOA
density (porg) is multiplied by the difference of the particle wall loss corrected volume concentration

(Viotar,;) and the initial seed volume concentration (Vieeq):

AZMO,]' = Poryg (Vtotal,j - Vseed) (3.4)
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The measured densities of the a-pinene SOA are 1.39 and 1.37 g cm ™ for the 100 and 500 ppb Os
experiments, respectively, and are within the range (i.e., 1.19 to 1.52 g cm’?’) reported in previous
a-pinene ozonolysis studies (Bahreini et al., 2005; Kostenidou et al., 2007; Song et al., 2007; Shilling

et al., 2009).

3.4 Vapor—Particle Dynamics Model

A coupled vapor-particle dynamics model is used to evaluate the influence of seed aerosol surface
area and oxidation rate on SOA formation in the a-pinene ozonolysis chamber experiments. This
model is similar to that used in McVay et al. (2014), and will be briefly described here. Parameters
from the experimental data (temperature, pressure, initial a-pinene concentration) are used as model
inputs. The initial size distribution is set to that measured by the SMPS, with the exception of the
two nucleation experiments. Because nucleation is not explicitly simulated, an approximation is used
in which the smallest diameter bin is initialized with the total number of particles measured at the
end of the experiment (see Table B.1). In each simulation, the decay of a-pinene, the consumption
of Oz, the SOA mass concentration, and the SOA mass yield are calculated throughout the duration
of the experiment. We assume a linear injection rate of O3 based on the time required to inject
the desired Os concentration. For example, O3 is injected at a rate of 500/54.25 ppb min~! for
the first 54.25 min during the 500 ppb O3 experiments. Os simultaneously decays by reaction with
o-pinene at a rate constant of 9.4x10717 ¢cm?3 molec.”! 571 (Saunders et al., 2003). The O3+a-pinene
reaction is assumed to occur in a well-mixed chamber and produces five classes of first-generation
products, which are grouped according to mass saturation concentrations, similar to the volatility
basis set (Donahue et al., 2006): > 103 (assumed to be completely volatile), 102, 10, 1 and 0.1 ug
m 3. Branching ratios between these products are optimized to fit the experimental data. These
branching ratios cannot be compared directly to previously reported VBS parameters for a-pinene
ozonolysis (e.g., Henry et al. (2012)) since VBS parameters are typically mass-based, while the
branching ratios in the model are mole-based. Furthermore, the branching ratios here account for

the influence of vapor wall deposition, while typical VBS parameters do not. We assume that these
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five classes of products have molecular weights 168, 184, 192, 200 and 216 g mole ! based on the
group contribution method (Donahue et al., 2011). The first-generation products are assumed not
to undergo further reaction with Oz upon formation.

The aerosol dynamics in the chamber obey the aerosol general dynamic equation (Seinfeld and

Pandis, 2006):

on(Dy 1)\ an(Dp,w) 9n(Dy. 1) On(Dy. 1)
( ot > a ( ot coag " ot cond/evap " ot wall loss (3.5)

Coagulation is not considered, since an alternative version of the model including coagulation showed
no change in the predicted a-pinene ozonolysis SOA mass concentrations in simulations with and

without coagulation. The change in particle number distribution due to particle wall loss is:

(8n(Dp, t)

ot )wall loss - 7ﬁj (Dp)N(Dp7 t) (3.6)

where, as noted in section 3.3.2, 3;(Dy) is the size-dependent first-order wall loss rate coefficient
obtained from fitting seed-only experiments. The rate at which vapor condenses onto a spherical

aerosol particle is:

Ji = QWDiDp(GZ‘ - G;q)FFS (3.7)

where G; is the concentration of gas-phase species 1, Gie ? is the saturation concentration of gas-
phase species 4, D; is the gas-phase molecular diffusivity (assumed to be 3x1076 m? ¢! (McVay et

al., 2014)), and Fpg is the Fuchs-Sutugin correction for non-continuum gas-phase diffusion:

0.75a, (1 + Kn)

_ 3.8
Kn? 4+ Kn + 0.283Knay, + 0.75ap (3.8)

Frs

where « is the vapor-particle mass accommodation coefficient, and Kn is the Knudsen number,

Kn = 2A4p/Dp. The vapor-particle mass accommodation coefficient accounts for any resistance
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to vapor molecule uptake at the particle surface (e.g. surface accommodation and particle-phase

diffusion limitations). A4p is the mean free path of the gas-phase species, which is:

7T'M,L'

/\AB 3D; SRT

(3.9)

where R is the ideal gas constant, T is the temperature, and M; is the molecular weight of diffusing
gas-phase molecule i. For each particle size bin, Eqs. 3.7-3.9 are used to compute the flux of each
gas-phase species to and from an aerosol particle, scaled by the particle number concentration in
the size bin. The net rate of change for each gas-phase species due to evaporation or condensation
is obtained from the total flux summed over all the particle size bins.

Gf  varies for each particle size bin because it depends on the mass concentration of species i

and the total organic mass concentration in the size bin:

G — AiCf

_ - 3.10
’ Yok Ak + Minig (3.10)

where A; is the concentration of species 7 in the particle phase, C; is the saturation concentration
of species i, ) ;. Ay is the sum of all the species concentrations in the particle phase, and My is
the mass concentration of any absorbing organic material initially present in the seed aerosol. To
avoid numerical errors in Eq. 3.10 at the first time step, My is set to 0.01 pg m™3.

The oxidation products of a-pinene ozonolysis are assumed to be subject to vapor-wall deposition,

which is simulated using a first-order wall-loss coefficient (McMurry and Grosjean, 1985):

A O‘wﬁrlz.llE
kwall :() = (3.11)
wton =\ ) 03 3]

where A/ V is the surface area-to-volume ratio of the chamber (estimated to be 2.5 m™1), gy is the
vapor-wall mass accommodation coefficient, and k. is the eddy diffusion coefficient that describes
mixing conditions in the chamber. Based on the measured size-dependent particle wall loss rates
(method is described in Zhang et al. (2014)), ke is estimated to be 0.03 s for the GTEC chamber.

Vapor-wall deposition is assumed to be reversible, and the rate constant of vapor desorption from
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the chamber walls is:

Kwal, C;f My
kwall,oﬁ = I?aicfm = kwall,on (W (3'12)
w Yw wEp Ip

where C, is the equivalent organic mass concentration in the wall (designated to treat gas-wall
partitioning in terms of gas-particle partitioning theory and not necessarily representative of a
physical layer of organic concentration on the wall (Matsunaga and Ziemann, 2010)), K, is the
gas-wall partitioning coefficient, M, is the effective molecular weight of the wall material, v,, is the
activity coeflicient of the species in the wall layer, M, is the average molecular weight of organic
species in the particle, and 7, is the activity coefficient of the species in the particle. For simplicity,
we assume that My = My and vy = 7vp. Cy is set to 10 mg m 3 based on previous inferences
by Matsunaga and Ziemann (2010). Sensitivity studies (not shown) show no change in model
predictions when varying Cy, above Cp, = 0.1 mg m™>.

In the initial version of the model, after all the a-pinene is consumed, vapor wall deposition
was assumed to continue to deplete the gas-phase oxidation products and aerosol mass evaporates
to maintain gas-particle equilibrium. SOA evaporation was not observed experimentally (i.e., the
SOA mass concentration does not decrease significantly over time after peak SOA growth has been
achieved in these chamber experiments (Fig. 3.2)). In order to represent these observations in the
model, a first-order, particle-phase reaction is introduced by which aerosol species are converted into
non-volatile absorbing organic mass with a timescale of 7,;;,. This mechanism (which is not included
in the model used in McVay et al. (2014)) is similar to that used by the sequential equilibrium
partitioning model, in which aerosol is converted from an absorbing to non-absorbing, non-volatile
phase in order to explain the inhibited diffusion and evaporation observed in a-pinene ozonolysis
SOA (Cappa and Wilson, 2011). Although we assume here that the converted non-volatile aerosol
mass still participates in partitioning, either mechanism invokes a particle-phase process to retard
SOA evaporation.

Model parameters cuy, ap, Toiy and the branching ratios between the oxidation products are

optimized to best-fit the predictions with the experimental observations. Specifically, model pre-
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dictions are compared to experimental data: SOA mass concentration vs. reaction time, a-pinene
concentration vs. reaction time, and Os concentration vs. reaction time. Figure B.6 compares
reaction profiles of measured and modeled O3 and a-pinene concentrations for the base model case.
Sensitivity tests were also performed on each model parameter, shown in Figs. B.7-B.10. Table 3.2
summarizes the parameters used. While the optimized parameters provide a good fit to the data,
we caution that the parameters are interconnected, and other fits may also be possible. We are

confident that our conclusions derived using these parameters are robust.

3.5 Results

Figure 3.1 shows the size-dependent particle wall deposition coefficients inferred from seed-only
deposition experiments. The initial total AS seed surface area concentration in the low AS-seed
only and high AS-seed only experiments (which are conducted using 0.015 M AS and 0.05 M AS
solutions, respectively) are similar to those used in the a-pinene ozonolysis experiments (i.e., ~1000

and ~3000 pm? cm™>

, respectively). While there are differences in the particle wall deposition
coefficients from the low and high AS-seed only experiments, this difference is likely the result of
uncertainties arising from the low particle number concentrations for the larger particles in the low
AS-seed only experiment. As shown in Fig. 3.1, both sets of particle wall deposition coefficients
generally fall within the range of those measured in routine monthly AS-seed only experiments
conducted in the chamber.

The particle wall deposition corrected number concentration data provide a test of the appropri-
ateness of the particle wall deposition correction. This is because the corrected number concentration
should level off at a constant value (i.e., the initial particle number concentration), assuming no sig-
nificant coagulation, when particle wall deposition is properly accounted for since the wall-deposited
particle number distribution is added to the suspended particle number distribution during particle
wall loss correction. We account for particle wall deposition in nucleation and low AS experiments

using deposition coefficients determined from the low AS-seed only experiments, while particle depo-

sition in high AS experiments is accounted for using coefficients determined from the high AS-seed
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only experiments. Figures B.1 and B.2 show the particle wall deposition-corrected aerosol number
and volume concentrations. Over all experiments, the particle wall deposition-corrected final parti-
cle number concentration (i.e., at the end of the reaction) is 9 to 17 % less than the initial particle
number concentration for the low AS and high AS experiments (Table B.1), respectively, indicating
that the particle wall deposition-corrected volume concentrations are slightly underestimated. It
is currently unclear why the particle wall deposition-corrected final particle number concentrations
are somewhat smaller than the initial particle number concentrations, though this could be due to
variations in particle wall deposition rates in the AS-seed only and a-pinene ozonolysis experiments.
As a sensitivity test, we used the average of the low AS-seed only and high AS-seed only particle
wall deposition coefficients to account for particle wall deposition in all the experiments (Figs. B.3
and B.4). While there is a negligible difference in the particle wall deposition corrected volume
concentrations (Figs. B.3 and B.4 vs. Figs. B.1 and B.2), a larger spread (1 to 22 %) exists in
the difference between the initial and final particle number concentrations when the average particle
wall deposition coefficients are used (Table B.1). Therefore, all subsequent nucleation and low AS
data presented here are particle wall deposition-corrected using coefficients determined from the
low AS-seed only experiments, and all high AS data are corrected using particle wall deposition
coefficients determined from the high AS-seed only experiments.

Figure 3.2 shows the reaction profiles of the a-pinene ozonolysis experiments. SOA growth
typically starts within 10 to 20 min of the start of the reaction. At either initial Og concentration,
the molar ratio of O3 reacted to a-pinene reacted is approximately 1:1 (i.e., 50 ppb a-pinene reacted
with 50 ppb O3), which indicates that O3 reacts only with a-pinene and not its oxidation products.
As anticipated, the a-pinene oxidation rates in the 100 ppb Og experiments are significantly slower
than those in the 500 ppb O3 experiments. Figures 3.2a-c show that peak SOA levels are typically
reached at reaction time ~300 to 350 min in the 100 ppb O3 experiments, during which > 95 % of
the injected a-pinene has reacted. In contrast, all the a-pinene reacts within 80 to 90 min of the
start of reaction in the 500 ppb Og experiments, and peak SOA levels are achieved at reaction time

~100 min (Figs. 3.2d-f). These results indicate that the Og concentration dictates both the rate of
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a-pinene oxidation and the time it takes to achieve peak SOA growth.

Figure 3.3 shows the time-dependent growth curves (SOA mass concentration vs. a-pinene
reacted (Ng et al., 2006)) for the 100 and 500 ppb O3 experiments. Only SOA growth data up to
SOA peak concentrations are shown. SOA growth essentially stops once all the a-pinene has reacted.
This is expected, as a-pinene has only one double bond; the first step of a-pinene ozonolysis is rate-
limiting and the first-generation products are condensable (Ng et al., 2006; Chan et al., 2007).
The time-dependent SOA growth curves for experiments corresponding to different seed aerosol
concentrations overlap for both low and high Og concentrations. This indicates that the initial AS
seed surface area does not influence the SOA growth rate within the range of AS seed surface area
concentration used. It is important to note that while it appears that the SOA growth rate is faster
in the 100 ppb Ogs relative to the 500 ppb O3 experiments based on the time-dependent growth
curves shown in Fig. 3.3, this is not the case. Instead, the observed time-dependent growth curves
can be explained by the higher concentration of a-pinene having reacted during the 10 to 20 min
delay of SOA formation in the 500 ppb Os experiments compared to the 100 ppb Os experiments
(Fig. 3.2).

Figure 3.4 shows the time-dependent SOA mass yields as a function of initial total AS seed
surface area for the 100 and 500 ppb O3 experiments. Regardless of the O3 concentration, the SOA
mass yields stay roughly constant despite the increase in AS seed surface area. This indicates that
the surface area concentration of AS seed aerosol does not noticeably influence the partitioning of
gas-phase a-pinene ozonolysis products to the particle phase within the range of AS seed surface
area concentration used. Higher SOA mass yields are observed in the 500 ppb O3 experiments,
which indicates that the a-pinene oxidation rate controls the absolute amount of SOA formed. It
is important to note that these conclusions are robust even when the average of the low AS-seed
only and high AS-seed only particle wall loss coefficients are used to account for particle wall loss in
all the experiments (Fig. B.5). The enhancement of SOA mass yields at higher O3 concentrations
and the lack of a SOA mass yield dependence on AS seed surface area (within the range of AS seed

surface area concentration used in this study) will be discussed further in Section 3.6.
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The a-pinene ozonolysis SOA mass yields obtained in this study are compared to those reported
in previous studies in Fig. 3.5. Table B.2 lists the experimental conditions employed in these studies.
To facilitate comparison between the different studies, all the SOA mass yield and concentration
data (including this study) are adjusted to an organic density of 1.0 g em 3. As shown in Fig. 3.5,
the SOA mass yields obtained at peak SOA growth in this study are generally consistent with those
of previous studies where the chamber was operated in batch mode (that in this study).

The competition between the condensation of SOA-forming vapor to aerosol particles vs. to
chamber walls is investigated using the coupled vapor-particle dynamics model described in Section
3. As noted earlier, optimal model values for a;, aw, T,y and the branching ratios between
the oxidation products were determined for the 100 and 500 ppb Oz experiments by comparing
the observed and best-fit time-dependent SOA, a-pinene, and O3 concentrations profiles (Figs. B.6-
B.10). Sensitivity tests were performed for each parameter to establish that the set of optimal model
values provide the best overall agreement with time-dependent SOA formation profiles observed for
all experiments (Figs. B.7-B.10). Predictions from the coupled vapor-particle dynamics model show
that the optimal parameters are: oy, = 1076, ap = 1, Toiig = 4 h, branching ratios = 0.57, 0.35,
0.04, 0.015 and 0.025 for oxidation products with vapor pressures > 102, 102, 10, 1 and 0.1 pg m 3,
respectively. The best-fit oy = 1076 (Fig. B.7) corresponds to a first-order vapor-wall deposition
rate constant (kyqz,0n) Of 104 s71. This Kwall,on value is comparable to that reported by Matsunaga

and Ziemann (2010) for a 8.2 m® chamber.

3.6 Discussion

a-pinene ozonolysis has been carried out at two Oz mixing ratios (100 and 500 ppb) under varying

AS seed aerosol surface area concentrations (0, ~1000 and ~3000 gm? cm 3).

3.6.1 Seed Aerosol Surface Area Effect

Figure 3.3 shows that the time-dependent SOA growth curves for experiments with different seed

area concentrations overlap at both Os concentrations, which indicates the AS seed surface area
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does not affect the rate of SOA growth within the range of AS seed surface area concentration used
in this study. This observation differs from findings by Pathak et al. (2007b) for the Oz+ca-pinene
system, who showed that even though the final SOA mass yields measured in the reaction of 7.3 ppb
a-pinene with 1500 ppb O3 were similar in their seeded and unseeded experiments, SOA growth
was considerably slower in unseeded experiments compared to seeded experiments. The authors
suggested that the slow SOA formation rate in their unseeded experiment was the result of SOA
formation being limited by the mass transfer of semi-volatile oxidation products to newly formed
particles (via nucleation) during the early stages of the experiment. These newly formed particles
have a significantly smaller aerosol surface area for gas-particle partitioning as compared to that of
seed aerosol particles in the seeded experiments. Consequently, the semi-volatile oxidation products
accumulated in the gas phase during the early stages of the unseeded experiments, resulting in slower
SOA growth compared to the seeded experiments. The observation that the presence of seed aerosol
does not influence the SOA growth rate in the present study may be explained by the relatively high
concentrations of a-pinene reacted and SOA mass loadings obtained. Previous studies have shown
that the delay between the onset of VOC oxidation and SOA formation in unseeded experiments
is most pronounced at low aerosol loadings (Kroll et al., 2007). We note that the concentrations
of a-pinene reacted and SOA mass loadings obtained in this study are significantly larger than
those reported by Pathak et al. (2007b). Therefore, it is possible that due to the relatively large
concentrations of a-pinene reacted in this study, substantial concentrations of gas-phase oxidation
products are generated, which results in rapid partitioning into the particle phase even in the absence
of seed aerosol. This is evident from the large increase in the particle number concentration during
the early stages of the unseeded 100 and 500 ppb Og experiments, where the particle number
concentration increased to ~8000 and ~10000 particles cm® during the first 45 min of the 100 and
500 ppb Os experiments, respectively (Fig. B.la and B.2a). Thus, the SOA growth rates are not
controlled by the presence of AS seed in this study.

Figure 3.4 shows that for both initial O3 mixing ratios used, the time-dependent SOA mass yield

is similar at any given AS seed surface area (see also Table 3.1). The absence of a SOA growth
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dependence on the AS seed surface area is similar to observations reported by McVay et al. (2016)
for the a-pinene photooxidation (OH-driven chemistry) system, but differ from those reported by
Zhang et al. (2014) for the toluene photooxidation system in which the SOA mass yield increased
with the surface area concentration of seed aerosol.

The best-fit ap, = 1 (Fig. B.8) suggests the absence of significant limitations to vapor-particle
mass transfer in the present a-pinene ozonolysis study, and that SOA formation is governed by quasi-
equilibrium growth (McVay et al., 2014), which occurs when SOA-forming vapors are produced at
a rate that is significantly slower than that required to establish gas-particle equilibrium (Shiraiwa
et al., 2012; Zhang et al., 2012). Moreover, the characteristic timescale to establish gas-particle
equilibrium is less than those for reaction and vapor-wall deposition. When the vapor and particle
phases maintain equilibrium, gas-particle equilibrium is controlled by the amount of organic matter
in the VOC system. As a result, the rate of condensation of SOA-forming vapors is independent of
the seed aerosol surface area (McVay et al., 2014). The best-fit ay, = 1 is within the approximate
range of «; coefficients determined from a-pinene ozonolysis SOA thermodenuder studies (o) =
0.1) (Saleh et al., 2013) and a-pinene photooxidation chamber studies (a, = 0.1 or 1) (McVay et
al., 2016). Notably, this result differs markedly from that for toluene photooxidation (Zhang et
al., 2014), where o;, was determined to be 0.001, and for which, since the SOA mass yield was
strongly dependent on the seed aerosol surface area, the condensation of SOA-forming vapors onto
seed aerosol particles was kinetically limited (McVay et al., 2014). Kinetically-limited SOA growth
occurs when the timescale for gas-particle equilibrium is competitive with or exceeds the timescale for
reaction and vapor wall deposition, and may reflect imperfect accommodation of gas-phase organics
to the particle phase. The markedly different behavior of the a-pinene and toluene SOA systems

could be due to differences in SOA volatility and aerosol physical phase state (McVay et al., 2016).

3.6.2 Oxidation Rate Effect

At higher O3 concentrations, the a-pinene oxidation rate increases, leading to higher SOA mass

yields (the “oxidation rate effect”). This behavior was previously observed by Ng et al. (2007) for
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the m-xylene photooxidation system, for which the oxidation rate effect was attributed to the loss
of semi-volatile condensable products to chamber walls in competition with condensation onto seed
particles to form SOA.

SOA formation from a-pinene ozonolysis is presumed to be driven by a range of semi- and low-
volatility first-generation products arising from reaction of O3 with the single C=C double bond (Ng
et al., 2006). These products are subject to two competing routes: condensation to particles to form
SOA or deposition on the chamber walls. Each process can be represented in terms of a first-order
rate constant: kyqir, on and kparsicle,on (s1). The rate of vapor-wall deposition of condensable species
A is then kyq1 o [A] (molec em™3 s71) and the rate of condensation onto particles is Eparticie,on Al
(molec cm ™3 s71). Increasing the rate of reaction increases the concentration of [A], but the relative
rates of vapor-wall deposition and condensation onto particles will remain the same. In general,
however, both vapor-wall deposition and vapor-particle condensation are reversible processes (McVay
et al., 2014; Zhang et al., 2014). The first-order rate constant for evaporation from the wall can be

represented as Matsunaga and Ziemann (2010):

c*
kwall,oﬁ = kwalhon (Cz > (3.13)
w

where O} is the saturation concentration and Cy, is the assumed equivalent wall organic concentra-

tion. The rate of evaporation from particles is:

C*
kparticle,oﬁ = hparticle,on (CZ) (3'14)
aer

where Cger is the organic aerosol concentration (Coer = > Ap + Minit).

The difference between Cger and Cy, is the key to explaining the oxidation rate effect. At the
beginning of the experiment, Cyer is very small because the inorganic seeds are essentially non-
absorbing. Therefore, kpgrticie,off i large, and the net SOA growth is small. In contrast, Cy is
considered to be substantial (on the order of 10 mg m3) and to be essentially constant throughout

the experiment (Matsunaga and Ziemann, 2010; McVay et al., 2014; Zhang et al., 2014). Model
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predictions are insensitive to the value of Cy, since, in any event, C, is significantly larger than
Caer (Zhang et al., 2014). Therefore, kyq, o is small at the beginning of the experiment and
the net vapor wall loss rate is fast. As Cger increases, the net SOA condensation rate increases
relative to the net vapor wall loss rate. When the reaction rate increases corresponding to higher
O3 concentrations, Cyer grows more quickly because more condensable species are available to form
SOA, and the net condensation rate increases more rapidly. Therefore, the observed oxidation rate
effect is due to vapor wall deposition, and arises because vapor-particle and vapor-wall condensation
are essentially reversible processes. This explanation is consistent with simulations varying the Og
concentration in which all species are non-volatile (i.e., do not evaporate from the particles or the
wall). In this case, no oxidation rate effect is observed as the Os concentration increases. The
growth curves for different O3 concentrations overlap, and the same yield is obtained regardless of
O3 concentration (Fig. B.11).

Sensitivity tests were performed to determine the point at which SOA formation is no longer
influenced by the O3 concentration. In these simulations, the initial a-pinene concentration is fixed
at 48 ppb, while the O3 concentration is varied from 75 to 1000 ppb. The rate of O3 injection
is assumed to remain constant as the Os concentration is increased to mimic the experimental
protocol (i.e., Oz injection time is increased to achieve higher O3 concentrations). The Og injection
rate used in these simulations is fixed at 500/54.25 ppb min~!, which is the same as that used to
analyze results from the 500 ppb O3 experiments. Model predictions in Fig. B.12 show that the
maximum SOA mass concentration increases with increasing Og concentration up to approximately
500 ppb O3. Beyond this O3 concentration, the SOA growth curves overlap and the maximum
SOA mass concentration does not increase even when more Og3 is added. This plateau arises due
to the lengthening time required to inject increasing amounts of Os. More than 1 h is required
to inject > 500 ppb of O3, and by this time, virtually all of the a-pinene has reacted. Increasing
the O3 concentration after all of the a-pinene has reacted does not lead to any changes in the
SOA mass concentration. However, if a faster injection rate of Og is used, the oxidation rate effect

will persist to higher Os concentrations (i.e., > 500 ppb O3) (Fig B.13). With a faster injection
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rate, 500 ppb Og is injected before all of the a-pinene has reacted. Continuing to inject O3 to a
higher concentration (i.e., 750 ppb) will cause a-pinene to decay faster and SOA to grow faster than
when the Oz injection stops at 500 ppb. The oxidation rate effect is then apparent at higher Og
concentrations. If, instead of using an injection rate of O3, simulations are run using fixed initial Og
(not possible experimentally), the rate effect persists to even higher O3 concentrations. The relative
increase in yield with increasing O3 concentrations slows at very high O3 concentrations because
the rate of reaction becomes substantially faster than the vapor wall deposition rate, and there is

less marginal effect to increasing the reaction rate.

3.6.3 Interplay of the Seed Aerosol Surface Area Effect and the Oxidation

Rate Effect

In this study, we observe an oxidation rate effect but not a seed aerosol surface area effect. In Zhang
et al. (2014), a seed aerosol surface area effect was observed, but the variation of the oxidation rate
was not studied. A key aspect of vapor wall deposition is the potential interplay between the seed
aerosol surface area effect and the oxidation rate effect. To examine this interplay in the a-pinene
ozonolysis system, simulations were carried out by varying the seed aerosol surface area and the Og
concentration simultaneously, while using the branching ratios, oligomerization rate, and vapor wall
deposition rate parameters obtained in the present study. The initial a-pinene concentration was
set to 50 ppb, and a fixed O3 concentration was used in place of a linear injection. a;, was varied at
0.001, 0.01, and 1 in these simulations. Figure 3.6 shows the SOA mass yield at peak SOA growth as
a function of both the seed aerosol surface area and O3 concentration for o, = 1, 0.01, and 0.001. For
ap = 1, the oxidation rate dominates: SOA mass yield increases significantly as Og concentration
increases while the seed aerosol surface area has a negligible effect. For o, = 0.01, both effects can
be observed in different regions: at low Og concentrations and high seed aerosol surface areas, the
oxidation rate effect dominates; at low seed aerosol surface areas and high O3 concentrations, the
seed surface area dominates. At low seed aerosol surface areas and low Oj3 concentrations, both

effects are present. For ap = 0.001, the seed aerosol surface area effect dominates except at very
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high seed aerosol surface areas. These observations show that the presence of an oxidation rate effect
and/or seed aerosol surface area effect depends on a complex interplay of factors, such as oy, the

rate of hydrocarbon oxidation, and the amount of seed surface area present.

3.7 Implications

In this study, we systematically examine the roles of gas-particle partitioning and VOC oxidation rate
in the presence of vapor-wall deposition in a-pinene ozonolysis. We show that despite the presence
of vapor-wall deposition, SOA mass yields at peak SOA growth remain approximately constant
regardless the seed aerosol surface area (within the range of AS seed surface area concentration
used in this study). This observation is consistent with SOA formation in the a-pinene ozonolysis
system being governed by quasi-equilibrium growth, for which there are no substantial limitations
to vapor-particle mass transfer. This result was demonstrated in a previous modeling study which
showed that increasing the seed-to-chamber surface area ratio will lead to increased SOA growth only
in cases in which the condensation of SOA-forming vapors onto seed aerosol particles is kinetically
limited as a result of imperfect accommodation of gas-phase organics to the particle phase (McVay
et al., 2014).

An important implication of this study is that diverting vapor-wall deposition in chamber stud-
ies via the addition of ever-increasing quantities of seed aerosol particles is not effective in VOC
systems for which SOA formation is governed by quasi-equilibrium growth. This study also under-
scores the importance of accounting for particle wall deposition appropriately in chamber studies,
to avoid erroneous conclusions regarding the role of gas-particle partitioning (quasi-equilibrium vs.
kinetically-limited SOA growth) in influencing vapor wall loss in the VOC system.

We note that the present study shows that the SOA mass yield is independent of seed aerosol

surface area concentration for values ranging from 0 to ~3000 pm? cm 3.

This corresponds to a
seed-to-chamber surface area ratio of 0 to ~1x1073, which is substantially smaller than the range

used by Zhang et al. (2014) to study the influence of vapor-wall deposition on toluene photooxidation

SOA formation in the Caltech chamber (i.e., 0 to ~5x103). It is possible that a SOA mass yield
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dependence on the seed surface area may have become more apparent had a larger range of seed
aerosol surface area (i.e., > 3000 gmZcm3), and hence a larger range of seed-to-chamber surface area
ratio, been used here. One consideration is that coagulation may become increasingly important,
and will need to be accounted for, when higher seed aerosol number concentrations (relative to those
used in this study) are used (Seinfeld and Pandis, 2006; Pierce et al., 2008). A detailed analysis of

3 on a-pinene ozonolysis SOA

the effect of seed aerosol surface area concentrations > 3000 ,um2cm’
mass yields will be the subject of forthcoming work.

Higher SOA mass yields at peak SOA growth are observed in the present study when Oz is
increased from 100 to 500 ppb. This is because a-pinene is oxidized more quickly, which leads
to gas-phase oxidation products being formed more rapidly, and consequently partitioning more
quickly onto AS seed aerosol particles before they are lost to the chamber walls. Therefore, the
oxidation rate effect (i.e., higher SOA mass yields as a result of faster hydrocarbon oxidation rates)
is a consequence of vapor-wall deposition. An important implication of this study is that SOA mass
yields can be affected by vapor-wall deposition in VOC systems that are not characterized by slow
mass accommodation of gas-phase organics to the particle phase (Zhang et al., 2014). Thus, this work
demonstrates that the effect of vapor-wall deposition on SOA mass yields can be mitigated through
the use of excess oxidant concentrations. It should be noted that the a-pinene ozonolysis SOA mass
yields (absolute values) increased by 5 to 9 % when Oj is increased from 100 to 500 ppb (for an initial
a-pinene concentration of ~50 ppb), where SOA formation is governed by quasi-equilibrium growth.
In the absence of vapor-wall deposition, SOA mass yields are predicted by the model used here to
approximately double from those observed experimentally. In contrast, Zhang et al. (2014) showed
that the presence of vapor-wall deposition led to underestimation of SOA formation by factors as
much as four in the toluene photooxidation system, where the condensation of SOA-forming vapors
onto seed aerosol is kinetically limited. Taken together, these results indicate that the magnitude
by which vapor-wall deposition affects SOA mass yields depends on the extent to which the VOC
system is governed by kinetically-limited SOA condensational growth.

Given these observations of how gas-particle partitioning can influence the magnitude by which
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vapor-wall deposition affects SOA mass yields, an overriding question is: what controls the gas-
particle partitioning behavior of SOA formed in different VOC systems? «; describes the overall
mass transfer of vapor molecules into the particle phase (McVay et al., 2014; Zhang et al., 2014).
Thus, ay affects the vapor-particle equilibrium timescale, which, depending on the extent to which
it is competitive with the timescales for reaction and vapor-wall deposition, determines whether
SOA formation is governed by kinetically-limited or quasi-equilibrium growth. Markedly different
oy values could arise from the physical phase state of the SOA formed. As discussed by McVay et
al. (2014, 2016), if the SOA formed exists in a semi-solid state (Vaden et al., 2010; Virtanen et al.,
2010; Cappa and Wilson, 2011; Vaden et al., 2011; Virtanen et al., 2011; Kuwata and Martin, 2012;
Perraud et al., 2012; Saukko et al., 2012; Abramson et al., 2013; Renbaum-Wolff et al., 2013), a low
value of ap might be expected owing to retarded surface accommodation and particle-phase diffusion
(Zaveri et al., 2014). Quantification of ay, is challenging experimentally, and reported oy, values for
the same system can vary by several orders of magnitude (Grieshop et al., 2007; Stanier et al., 2007;
Vaden et al., 2011; Miles et al., 2012; Saleh et al., 2013). Therefore, a, of SOA formed in different
VOC systems need to be better constrained through a combination of experimental and modeling
efforts.

The SOA mass yield from the ozonolysis of monoterpenes in the GEOS-CHEM chemical transport
model (19 % at 10 pug m3) is currently based on that measured in a-pinene ozonolysis studies by
Shilling et al. (2008) (Pye et al., 2010). Shilling et al. (2008) measured these SOA mass yields
in a teflon chamber operated in continuous-flow mode, as opposed to batch mode, which is how
experiments in the present study and most of those shown in Fig. 3.5 and Table B.2 were conducted.
While it is not possible to directly compare our results with those of Shilling et al. (2008) due to
differences in SOA mass concentrations, the SOA mass concentrations and yields measured in the
current study are generally consistent with those of previous batch chamber studies. The SOA
mass yields at ~10 ug m™2 SOA mass concentration measured by Shilling et al. (2008) are generally
higher than those measured in chambers operated in batch mode (Griffin et al., 1999; Cocker et

al., 2001b; Presto et al., 2005; Presto and Donahue, 2006; Pathak et al., 2007b) (Fig. 3.5). One
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possible explanation for the higher SOA mass yields in the continuous-flow, steady state, mode is
that the SOA-forming vapors are in equilibrium with the organic mass present on the chamber walls
and seed aerosol, hence minimizing the irreversible loss of SOA-forming vapors to the chamber walls
(Shilling et al., 2008). However, the extent to which SOA mass yields obtained in a continuous-
flow reactor are influenced by vapor wall loss is unclear. Using a continuous-flow reactor, Ehn et al.
(2014) observed a-pinene ozonolysis SOA mass yields to increase with increasing seed aerosol surface
area but required ay, = 1 to fit the observed SOA growth. The observed vapor-wall deposition rate
constant in their continuous-flow reactor (0.011 s !) is two orders of magnitude larger than that of the
GTEC chamber (104 s71). The estimated timescales for gas-particle and gas-wall partitioning are
also approximately equal in their continuous-flow reactor. This indicates that SOA condensational
growth is kinetically limited in their continuous-flow reactor even at oy, = 1 (Ehn et al., 2014; McVay
et al., 2014), which suggests that SOA mass yields measured in their continuous-flow reactor may
be significantly affected by vapor-wall deposition.

Previous studies on SOA formation from the OH and NOgs oxidation of biogenic VOCs have
similarly reported higher SOA mass yields in the presence of higher oxidant concentrations. For
example, in the NOg oxidation of S-pinene, Boyd et al. (2015) reported SOA mass yields 10 to 30
% higher than those previously reported by Fry et al. (2009, 2014). In addition to differences in the
experimental conditions of the two studies, Boyd et al. (2015) hypothesized that the higher SOA
mass yields could also be a result of the higher NO3 concentrations used in their study (which led to
faster S-pinene oxidation rates) compared to those used by Fry et al. (2009, 2014). The oxidation rate
effect was also observed in the m-xylene photooxidation system, where Ng et al. (2007) showed that
the SOA mass yields were dependent on the m-xylene oxidation rate, with higher OH concentrations
(and hence faster oxidation rates) resulting in higher SOA mass yields. Together, these studies show
that faster hydrocarbon oxidation rates can alleviate the effects of vapor-wall deposition on SOA
mass yields in different VOC systems.

This gives rise to the question: should chamber SOA experiments on different VOC systems

be performed under as rapid oxidation conditions as possible (i.e., large oxidant concentrations) to
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reduce the effects of vapor-wall deposition? A recent study by McVay et al. (2016) reported similar
SOA growth under low and high OH levels for a-pinene photooxidation. The authors hypothe-
sized that the autoxidation mechanism likely becomes a more important pathway at low OH levels
(Crounse et al., 2013), and thus contributes substantially to SOA growth. Therefore, it is possible
that certain reaction pathways and mechanisms (which are important in the atmosphere) are biased
when unusually high levels of oxidants are used in chamber experiments (e.g. autoxidation). Thus,
this underscores the need to design chamber experiments that simultaneously mitigate the mag-
nitude of vapor-wall deposition while ensuring that reaction conditions, and consequently reaction

pathways and oxidation products, are atmospherically relevant.

Figures B.1 - B.13 and Tables B.1 - B.2 are provided in Appendix B.
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Table 3.1: Experimental conditions and results for the a-pinene ozonolyis experiments

Experiment Initial Seed Initial AMS SOA Mass
Surface Area [a-pinene]®  (ug m™3)  Yield® (%)
(i em ®)  (ugm ?)

100 ppb O3 nucleation 0 290.2423.2  62.0+£1.2¢9  22.64+1.9
100 ppb O3 low AS 1130 280.5+22.4  63.0+0.87  23.3+1.9
100 ppb Os high AS 2700 238.7419.1  50.6+1.69  23.3+1.9

500 ppb O3 nucleation 0 274.4421.9 87.340.3¢  31.842.5
500 ppb O3 low AS 1300 264.9421.2  75.740.6°  28.6+2.3
500 ppb Os high AS 2720 236.1+£18.9 66.3£1.9¢  28.14+2.4

%Concentration of a-pinene injected into the chamber. All the a-pinene reacted in the 500 ppb O3
experiments, but not the 100 ppb O3 experiments.

bUncertainties in the peak SOA mass concentration (AMj) are calculated from one standard devi-
ation of the aerosol volume as measured by the scanning mobility particle sizer.

¢SOA mass yields at peak SOA growth are reported.

4The SOA mass concentration is calculated using the density = 1.39 g cm ™ obtained from the 100
ppb O3 nucleation experiment.

€The SOA mass concentration is calculated using the density = 1.37 g cm ™3 obtained from the 500

ppb O3 nucleation experiment.
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Table 3.2: Coupled vapor—particle dynamics model parameters

Parameter Definition Value
ap Vapor-particle mass accommodation coefficient 1
Qy Vapor-wall mass accommodation coefficient 1076
Tolig Timescale of oligomerization 4h
c* Saturation vapor pressures and branching [0.57(> 103), 0.35
ratios of oxidation products (10%), 0.04(10), 0.015
(1) and 0.025(0.1)]
D; Gas-phase molecular diffusivity 3x106 m? st
AV Surface area-to-volume ratio of the chamber 2.5m !
Cuw Equivalent organic mass concentration in the wall 10 mg m™3
ke Eddy diffusion coeflicient 0.03 st
M; Molecular weight of the diffusing gas- 168, 184, 192, 200
phase molecule ¢ and 216 g mole™!
Mt Initially absorbing organic material in seed aerosol 0.01 pg m3
P Pressure 1x10° Pa
T Temperature 298 K
Pseed Density of inorganic seed 1700 kg m™
Density of organic material on seed particle 1300 kg m ™3
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Figure 3.1: Particle wall deposition coefficients (8;) measured during the low AS-seed only and
high AS-seed only experiments in GTEC. Also shown are the particle wall deposition coefficients
(labeled “Other”) measured in previous routine monthly AS-seed only experiments in the chamber.
These previous routine monthly AS-seed only experiments were performed using either a 0.008 M

AS or a 0.1 M AS solution.



7

100 ppb O3 500 ppb O,
50 gpe, ,.\nm_ 50
- 40 N 40
* AM 60 — . .
® L\[o?—pinene] - 30 : 30
40 - .
- 20 o - 20
L]
20 — .
"'0.... (a) Nucleation [~ 10 s (d) Nucleation [~ 10
.0..¢..... 5 5 .J. L B
'|'I1'|'ITFI11TH'|'ITH'|'|T|'|'I'|TI'|'|'ITH1‘|TI‘|‘HT_ _"|-r...|......|....|....|....|....|_
~ 50 - — 50
. f’."“ww B
2
o~ - 40 . L 40 5
‘(’E 6o+ ° :o 'g
o - 30 . ~303
e 40 — . ® =
3 - 20 e -20g
‘e 10 207 e L 10°
104 & "-..". (b) Low AS o (e) Low AS
LT
G—‘.. .lc..... o D—l.l,'f L e
IR R e e I B B B
70 -
60 50 gp-— — 50
L4 .
. s - 40 e W 40
o7, . \-s".'-",wu-\,_ 60 ° P O e T
40 . ‘mfh I 30 ..o' 30
30 . et 40 — -
Y d - 20 . ~ 20
al o’.." 20 N
. -
104 A -.-...,"" (c) High As [~ 10 _,‘ (F) High As [~ 10
o L LT T P o
0 0 0-dMe e -0
R R L L R a R E R Ry R o e e e e e
0 100 200 300 400 0 50 100 150 200 250 300
Reaction time (min) Reaction time (min)

Figure 3.2: Reaction profiles of the a-pinene ozonolysis experiments. Panels (a), (b) and (c) show
results from the nucleation, low AS and high AS 100 ppb Os experiments, respectively. Panels
(d), (e) and (f) show results from the nucleation, low AS and high AS 500 ppb O3 experiments,
respectively. As explained in the main text, the SOA mass concentrations (AM,) for the nucleation
and low AS experiments are obtained using the particle wall rates obtained from the low AS-seed
only experiments, while the SOA mass concentrations (AM,) for the high AS-seed experiments are
obtained using the particle wall rates obtained from the high AS-seed only experiments.
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Figure 3.3: Time-dependent SOA growth curves for a-pinene ozonolysis. Panels (a) and (b) show
10 min-averaged results from the 100 ppb and 500 ppb O3 experiments, respectively. Only SOA
growth data up to the point of SOA peak growth are shown.
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Figure 3.4: 10 min-averaged SOA mass yields over the course of an a-pinene ozonolysis experiment
as a function of initial total AS seed surface area concentration for the (a) 100 ppb O3 experiments,
and (b) 500 ppb O3 experiments. Symbol color indicates the SOA mass concentration and symbol
size indicates the time after Og is injected into the chamber. The x symbols are the SOA mass
yields at peak SOA growth obtained from the experimental data. The y-axis error bars represent
the uncertainty in the SOA mass yield at peak SOA growth, which originates from the a-pinene
injection and the aerosol volume concentration measured by the SMPS at peak SOA growth (one
standard deviation).
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Figure 3.5: Comparison of SOA mass yields obtained in this study to those of previous dark
a-pinene ozonolysis studies (Table B.2). The SOA mass yields and concentrations of majority of
these previous studies (Hoffmann et al., 1997; Griffin et al., 1999; Cocker et al., 2001b; Gao et al.,
2004; Presto et al., 2005; Presto and Donahue, 2006; Pathak et al., 2007b; Song et al., 2007) were
previously compiled by Shilling et al. (2008). Similar to Shilling et al. (2008), all the data shown
here (including those reported in this study) have been adjusted using an organic density of 1.0 g
em ™3, and to 298 K using a temperature correction of 1.6 % per K, as recommended by Pathak et
al. (2007b) to facilitate easier comparison among the different studies.
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Figure 3.6: SOA mass yields at peak SOA growth as a function of both the seed surface area and O3
concentration for oy = 1, 0.01, and 0.001. The SOA mass yields at peak SOA growth are indicated
by colors and contours. Note that the color bars for panels (a), (b) and (c) have different SOA
mass yield ranges. Simulations were carried out using the branching ratios, oligomerization rate,
and vapor wall deposition rate parameters obtained in this study. The initial a-pinene concentration
was set to 50 ppb, and a fixed O3 concentration was used in place of a linear injection.
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Chapter 4

SOA Formation from the
Photooxidation of a-pinene:
Systematic Exploration of the
Simulation of Chamber Data *

*Reproduced with permission from “SOA formation from the photooxidation of a-pinene: systematic exploration
of the simulation of chamber data” by McVay, R. C., Zhang, X., Aumont, B., Valorso, R., Camredon, M., La, Y. S.,
Wennberg, P. O., and Seinfeld, J. H., Atmospheric Chemistry and Physics, 16, 2785-2802, doi:10.5194/acp-16-2785-
2016, 2016. Copyright 2016 by the Authors. CC Attribution 3.0 License.
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4.1 Abstract

Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile
organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data
tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring
in the chamber itself. a-Pinene photooxidation is a well-studied system experimentally, for which
detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-
NO a-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for
Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concen-
trations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH
levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater
SOA growth under high OH levels. SOA formation in the chamber is a result of a competition
among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products,
and condensation into the aerosol phase. Various processes — such as photolysis of condensed-phase
products, particle-phase dimerization, and peroxy radical autoxidation — are explored to rationalize
the observations. In order to explain the observed similar SOA growth at different OH levels, we
conclude that vapor wall loss in the Caltech chamber is likely of order 107 s™!, consistent with
previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict
the contribution to SOA of later-generation oxidation products under high-OH conditions. More-
over, we propose that autoxidation may alternatively resolve some or all of the measurement—model
discrepancy, but this hypothesis cannot be confirmed until more explicit mechanisms are established
for a-pinene autoxidation. The key role of the interplay among oxidation rate, product volatility,

and vapor—wall deposition in chamber experiments is illustrated.

4.2 Introduction

Secondary organic aerosol (SOA) contributes substantially to the tropospheric particle mass loading

(Jimenez et al., 2009), which in turns influences visibility, direct radiative forcing, cloud formation,
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and human health (Hallquist et al., 2009). Monoterpenes contribute significantly to global SOA
formation, with an estimated emission rate of 100-130 TgCyr ' and SOA mass yield of 10-20 %
(Hoffmann et al., 1997; Pye et al., 2010; Guenther et al., 1995). Of the terpenes, a-pinene has the
highest estimated emission rate of 34 Tg Cyr ' (Pye et al., 2010). Numerous studies have examined
SOA formation from both the OH oxidation and ozonolysis of a-pinene (Hoffmann et al., 1997;
Griffin et al., 1999; Kamens and Jaoui, 2001; Takekawa et al., 2003; Presto et al., 2005a,b; Ng
et al., 2006; Pathak et al., 2007; Shilling et al., 2008; Ng et al., 2007a; Eddingsaas et al., 2012Db).
Ozonolysis is a more efficient route to a-pinene SOA than OH oxidation ( Griffin et al., 1999), and the
ozonolysis path has received considerable attention. Fewer studies have examined SOA formation
from OH oxidation of a-pinene, and even fewer studies have focused on low-NO conditions, under
which most a-pinene is oxidized (Noziére et al., 1999; Ng et al., 2007a; Claeys et al., 2009; Eddingsaas
et al., 2012a). However, nearly half of the global sink of a-pinene has been estimated to be reaction
with OH (42 %); the remainder is oxidized predominantly by Os, with only 12 % oxidized by NO3
(Capouet et al., 2008).

As in virtually all volatile organic compound (VOC) systems that lead to SOA, the OH oxidation
of a-pinene is complex, and parts of the mechanism are still not fully characterized (Peeters et al.,
2001; Vereecken et al., 2007; Eddingsaas et al., 2012a,b). Theoretical and experimental work has
indicated that heretofore unidentified alkoxy and peroxy isomerization channels may contribute
substantially to SOA formation (Peeters et al., 2001; Capouet et al., 2004; Vereecken et al., 2007,
Ehn et al., 2014; Rissanen et al., 2014). Further evidence suggests that particle-phase dimerization
reactions are also important to SOA growth in the a-pinene system, although most studies have
focused on the ozonolysis path (Gao et al., 2004a,b; Lopez-Hilfiker et al., 2015). Condensed-phase
photolysis has also been shown to affect SOA formation from a-pinene, although again the focus
has been predominantly on SOA produced via ozonolysis (Henry and Donahue, 2012; Donahue et
al., 2012; Epstein et al., 2014; Wong et al., 2015). Uncertainty in the mechanism of SOA formation
by photooxidation leads to uncertainty in global predictions of a-pinene SOA (Pye et al., 2010).

Experiments in environmental chambers produce the basic data on the extent of SOA formation
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from volatile organic compounds and provide a means to test our understanding of the underlying
chemistry of SOA formation. Simulations with explicit chemical mechanisms provide a means to
evaluate predictions of SOA formation using chamber observations made under a variety of conditions
(Capouet et al., 2008; Valorso et al., 2011). The goal of the present work is to carry out such an

evaluation for the a-pinene OH photooxidation system.

4.3 «a-Pinene Photooxidation Mechanism

4.3.1 Gas-phase Oxidation

A near-explicit gas-phase oxidation mechanism for the oxidation of a-pinene was generated using the
Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) (Aumont
et al., 2005; Camredon et al., 2007). GECKO-A automatically assigns reactions and rate constants
on the basis of experimental data and structure—activity relationships (SARs), producing chemical
mechanisms far more detailed and explicit than can be written manually (Aumont et al., 2005). As
described in Valorso et al. (2011), a protocol is implemented in GECKO-A to reduce the number
of species generated to meet computational limits while maintaining as much chemical detail as
possible; for example, gas-phase chemistry is not generated for species with vapor pressures below
10713 atm, and isomer substitution is allowed for position isomers for non-radical species formed
with a maximum yield less than 2% after two or more generations. Vapor pressures are estimated
using the Nannoolal et al. (2008) method. Four generations of oxidation of a-pinene in GECKO-A
(a generation encompassing reaction with an oxidant such as OH up to the formation of a stable
product) yield 9 x 10° reactions and 1.8 x 10° species. SOA predictions for the base case are found
not to be sensitive to the number of generations beyond three (sensitivity tests not shown).

OH oxidation of a-pinene proceeds predominantly via OH addition, with minor channels pro-
ceeding via hydrogen abstraction. An overview of the base mechanism in GECKO-A for the OH
oxidation of a-pinene is shown in black in Fig. 4.1 and discussed in more detail in Valorso et al.

(2011). Updates to this mechanism (shown in blue in Fig. 4.1) were added here based on recent
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literature. Vereecken et al. (2007) proposed several non-traditional pathways in the OH oxidation of
a-pinene based on quantum and theoretical chemical calculations. Species in Fig. 4.1 are labeled to
be consistent with Vereecken et al. (2007). Species R1 is formed with 22 % yield by a prompt ring
opening of the four-membered ring following initial OH addition to the double bond in a-pinene
(Peeters et al., 2001). A 40:60 ratio of syn vs. anti stereochemistry is estimated for species R1
(Vereecken et al., 2007). The anti conformer is predicted to undergo a 1,6-hydrogen shift to form a
peroxide, forming a radical stabilized by allyl resonance, R7. This reaction is predicted to dominate
over all other peroxy reactions for the anti conformer even in high-NO conditions. The position of
oxygen addition to the alkyl radical R7 is not well constrained. The branching ratio between addi-
tion at the secondary and tertiary sites has conservatively been predicted to be 50:50 ( Vereecken et
al., 2007). Vereecken et al. (2007) calculate that the syn conformer of R1 will not only participate in
traditional peroxy chemistry but will also undergo ring closure to form a six-membered ring, species
R3. Vereecken et al. (2007) calculate a rate constant for this reaction of 2.6s ! at 298 K. Species
R2 in Fig. 4.1, formed from the reaction of the syn conformer of species R1 with NO and RO2, is
predicted to undergo a ring-closure reaction to form species R10. This reaction is predicted to dom-
inate over acetone elimination and hydroxy formation, the previous pathways for R2 in GECKO-A
(Valorso et al., 2011). R10 adds oxygen and then participates in the usual peroxy reactions.

The HO9 chemistry has also been updated in GECKO-A. The main reaction channel for reaction
of alkyl peroxy radicals with HO9 is formation of hydroperoxides. Recent evidence indicates that
the reaction of some peroxy radicals with HO2 can also lead to an alkoxy radical, regenerating OH
(Hasson et al., 2004; Dillon and Crowley, 2008; Birdsall et al., 2010; Eddingsaas et al., 2012a). This
reaction is promoted by the presence of neighboring polar functional groups, which can stabilize the
intermediate leading to the alkoxy through hydrogen bonding (Hasson et al., 2005). This pathway
has been added to GECKO-A for molecules with an oxygenated moiety in the « position to the
peroxy radical. Estimates of the yield of the alkoxy for small acyl peroxy radicals range from 0.15
to 0.7 (Hasson et al., 2004; Dillon and Crowley, 2008); however, branching ratios for the larger

molecules in the a-pinene mechanism have not been determined. In light of this uncertainty, the
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branching ratio between the hydroperoxide and the alkoxy has been assigned to 80: 20 in GECKO-A.

Ozonolysis chemistry in GECKO-A does not explicitly include the Criegee biradicals formed
from the addition of O3 to the a-pinene double bond; rather the predicted products of the Criegee
intermediates are directly assigned to the a-pinene ozonolysis reaction. This simplification over-
looks potential reactions of the stabilized Criegee intermediates (SCIs) with water, alcohols, acids,
carbonyls, etc. (Ma et al., 2008; Tobias and Ziemann, 2001). Reaction of SCIs with water to
form pinonaldehyde is thought to be significant (Capouet et al., 2008), and a direct route to pinon-
aldehyde has been added in GECKO-A. The initial reaction step for ozonolysis is shown in Fig.
C.1 in Appendix C. Furthermore, Ma et al. (2008) proposed several later-generation intramolec-
ular isomerization reactions to form low-volatility acids. These reactions have been implemented
in GECKO-A as a sensitivity test. Virtually no change in predicted SOA concentrations is ob-
served when adding these reactions or when changing the branching ratios of the SCI products.
Separate (not shown), purely ozonolysis simulations showed very little SOA formation, indicating
potential missing pathways in the ozonolysis mechanism forming low-volatility products. Updating
the ozonolysis mechanism should be the subject of future studies. The above updates constitute the
base mechanism. Sensitivity tests applied on this base mechanism are addressed in the sections that

follow.

4.3.2 Condensed-phase Photolysis

Photolysis of gas-phase compounds containing carbonyl, peroxide, or nitrate chromophores is in-
cluded automatically within oxidation schemes generated by GECKO-A (Aumont et al., 2005). For
the simulations presented here, compound-specific photolysis rates are calculated using cross sec-
tions and quantum yields described in Aumont et al. (2005) and measured irradiance data in the
Caltech chamber. Photolysis of condensed-phase compounds, recently shown to lead to rapid loss of
a-pinene SOA (Henry and Donahue, 2012; Donahue et al., 2012; Epstein et al., 2014; Wong et al.,
2015), is included here as a possible reaction route. Because GECKO-A does not generate chemical

reactions within the condensed phase, radical species produced by condensed-phase photolytic reac-
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tions are assumed to be irreversibly lost and to not participate in subsequent chemistry (Hodzic et
al., 2015). This approximation likely represents an upper limit to the actual physical process since
it does not account for recombination of fragments in the particle phase (Henry and Donahue, 2012;
Hodzic et al., 2015). Two methods of calculating condensed-phase photolysis rate constants were
tested in Hodzic et al. (2015): (1) all photolabile compounds in the condensed phase are assigned
the same empirically derived rate constant, and (2) the condensed-phase photolytic rate constant
for each species is set to the corresponding gas-phase value. Hodzic et al. (2015) showed that the
second method generally results in a greater loss of SOA. Therefore, assumption (2) is tested in
the present simulations to evaluate the maximum possible impact of condensed-phase photolysis on

overall SOA growth.

4.3.3 Particle-phase Dimerization

The importance of aerosol-phase dimerization and oligomerization reactions has been demonstrated
(Kalberer et al., 2004; Gao et al., 2004a,b; Tolocka et al., 2004; Yee et al., 2013; Shiraiwa et al.,
2013; Fahnestock et al., 2014). These include alcohol + carbonyl to form hemiacetals and acetals,
hydroperoxide + carbonyl to form peroxyhemiacetals and peroxyacetals, carboxylic acid + alcohol to
form esters, and aldehyde self-reactions to form aldols (Ziemann and Atkinson, 2012). Shiraiwa et
al. (2013) modeled a generalized particle-phase reaction of an SVOC + carbonyl with a rate constant
of 12M s when fitting the observed evolution of the particle size distribution of dodecane SOA.
In contrast, Capouet et al. (2008) modeled the formation of peroxyhemiacetals during a-pinene SOA
formation using a rate constant of 0.06 M1 s™1; they found that these reactions had a minor impact
on SOA yield, except during ozonolysis with large VOC /NO,, ratios that led to high hydroperoxide
yields.

In the present work, particle-phase dimerization reactions have been added to the GECKO-A
a-pinene oxidation scheme for aldehydes, hydroperoxides, alcohols, and carboxylic acids. Three reac-
tion pairings are considered: aldehyde 4+ alcohol, aldehyde + hydroperoxide, and carboxylic acid + alcohol.

As a first approximation, reactions are assumed to be irreversible and to form nonvolatile products.
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The mass of dimers becomes part of the organic aerosol mass into which gas-phase species can
partition. The rate constant is set to be the same for each dimerization reaction, and two values
are tested: 12M s! (Shiraiwa et al., 2013) and 0.01 M 's™ (Ziemann and Atkinson, 2012). The
rate constant is converted from liters of solution to volume of chamber air based on the amount of

organic aerosol condensed at each time step.

4.4 Box Model for SOA Formation

Each a-pinene oxidation scheme generated for the different sensitivity tests is coupled to a box model
describing the chemical dynamics within the chamber, including dynamic transport of vapors to the

particle phase and to the chamber walls.

4.4.1 Vapor—Particle Transport

In previous versions of GECKO-A, instantaneous equilibrium partitioning is assumed to occur be-
tween the vapor and particle phases (Camredon et al., 2007; Lee-Taylor et al., 2015). As a more
general treatment of vapor—particle transport, dynamic partitioning for mass transfer between the
gas and the particle phase is implemented here as described in La et al. (2016), with a few modifi-

cations. Mass transfer to and from the particle is represented by

dG;
< dtZ) = *kngi + kpgpia (4'1)
8p
dPpP;
< Z) = kgp Gi — kpg Pi, (4.2)
dt ) e

where kgp, and kg are first-order rate constants for transport to and from the particle (s1), and
G; and P; are concentrations in the gas and particle phase, respectively. Mass transfer can be
limited by gas-phase diffusion, interfacial accommodation, or particle-phase diffusion (e.g., Mai et
al., 2015). Particle-phase diffusion in GECKO-A is assumed to be sufficiently rapid that particles
are well mixed. Recent studies have shown that the assumption of rapid particle-phase diffusion in

SOA may not be accurate owing to semi-solid behavior (Perraud et al., 2012; Cappa and Wilson,
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2011; Vaden et al., 2010, 2013; Virtanen et al., 2010, 2011; Kuwata and Martin, 2012; Saukko et
al., 2012; Abramson et al., 2013; Renbaum-Wolff et al., 2013). Computationally, the gas—particle
accommodation coefficient, ayp, is used to approximate resistances to gas—particle partitioning from
surface accommodation and particle-phase diffusion (Saleh et al., 2013). Therefore, the overall rate

constant of mass transfer kg, can be approximated as

1 _ 1 n 1
kgp kdiff kint

(4.3)

with kgig = 4mDgrp Cp and ki = apfnrrg Cp, where Dy is the species gas-phase diffusivity, r, is
the particle radius, Cp, is the number of particles per unit volume of air, ap is the gas—particle
accommodation coefficient, and ¢ is the gas-phase mean velocity (Seinfeld and Pandis, 2006). In
the present work, the accommodation coefficient oy, is treated as a parameter that can be varied in
order to produce the best fit to the observed SOA growth. In the model, a single particle size bin
is used, so that all particles have the same radius. For all experiments except nucleation, the initial
inorganic seed radius is set at 50nm, and the initial number concentration is calculated from the
measured initial seed surface area. GECKO-A does not currently include a mechanism for nucleation;

3 was assumed with

therefore, for the nucleation experiment, an initial seed concentration of 10% cm™
an initial radius of 5 nm. The number concentration of particles Cp, in the model remains unchanged
over the course of the experiment as 7, grows owing to condensation of organic aerosol. Particle wall
loss is not included in GECKO-A. SOA growth in the a-pinene system is essentially independent of

seed surface area (discussed in the Results section); therefore, lack of particle wall loss in GECKO-A

will not substantially affect SOA predictions. 7} is calculated at each time step as

1

3 (4 3 Maer Caer 3
_ (3 (4 r 4.4
P (47T (37r pO+NAPOACp>) 7 (44

where 7 is the initial inorganic seed radius, Maer is the organic aerosol mean molecular weight,
Cher is the organic aerosol mass concentration (moleccm ), and poa is the organic aerosol density

(1.32 gcm 3 for a-pinene SOA; Ny et al., 2007a). Condensation to and evaporation from the particle
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occurs until equilibrium is reached between the gas and particle phases (if ever). The gas-particle
partitioning at equilibrium is assumed to follow Raoult’s law; therefore the reverse rate constant for

mass transfer from the particle to the gas phase is calculated from the relationship (La et al., 2016)

ko _ BT Coe
kpg PVaP MaerYaer

(4.5)

where R is the ideal gas constant, T is the temperature, PV2P is the species vapor pressure, and Yaer

is the activity coefficient in the particle phase (assumed to be 1).

4.4.2 Vapor—Wall Transport

Chamber data are affected by wall deposition of semi and low-volatility vapors (Loza et al., 2010;
Matsunaga and Ziemann, 2010; Kokkola et al., 2014; Yeh and Ziemann, 2014, 2015; Zhang et al.,
2014, 2015; Bian et al., 2015). Partitioning of vapor species between the gas phase and the chamber
wall is based on the parameterization of Matsunaga and Ziemann (2010) and is implemented as
described in La et al. (2016), with minor variations. Reported values for the rate of transport
from the gas to the wall, kgw, span several orders of magnitude in different chambers (Matsunaga
and Ziemann, 2010; Zhang et al., 2014, 2015; Loza et al., 2010, 2014). Wall loss rates directly
measured in the Caltech chamber are of order 10°-1076s7! (Zhang et al., 2015; Loza et al., 2010,
2014), although Zhang et al. (2014) fit a wall loss rate of 104 s during toluene SOA experiments.
Gas—wall equilibration timescales, 7g v, of order 10-100 min have consistently been measured in the
8.2m3 chamber used by Yeh and Ziemann (2015). With 75w = 1/(kgw + kwg) (La et al., 2016), these
timescales correspond to wall loss rates of 103-104s™t. The Yeh and Ziemann (2015) chamber
is smaller than the Caltech chamber, 8.2 vs. 24m?; however, the differences in measured wall loss
rates are greater than expected if wall loss scales with the surface-to-volume ratio of the chamber. It
has been suggested that rapid initial vapor wall loss could be difficult to distinguish from changes in
concentration due to injection and mixing during the long fill period in the Caltech chamber (Zhang

et al., 2014; Loza et al., 2014). Vapor species could potentially rapidly equilibrate with the wall and
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be subsequently lost to the wall with a much slower uptake owing to relaxation of the Teflon polymer
(Yeh and Ziemann, 2015). Sensitivity tests in the present work examine the extent to which these
differences indicate significantly slower vapor wall loss in the Caltech chamber or arise from the
procedure by which experimental measurements were carried out. Furthermore, Zhang et al. (2015)
showed that kgw may depend on the species’ volatility; here we assume kgw to be the same for all
species in order to evaluate the order of magnitude of kg needed to fit the observations. The nominal
value is set to 103571, As an additional sensitivity test, we implement the kow parameterization
developed by Zhang et al. (2015) in which kg increases as species’ volatility decreases. Transport

between the gas phase and the wall is represented by the balance equations

dG;
( dtﬁ) = *kgw G; + kwg Wi, (4.6)
gw
dW;
( q l) = kgw G — kwg Wi, (4.7)
t ) e

where kgw and kyg are first-order rate constants for transport to and from the wall, and W; is the
concentration in the wall layer. The reverse rate is calculated assuming gas—wall partitioning follows

Raoult’s law (La et al., 2016):

ke _ RT Gy ws)
kwg pvap MW’YW7 '

where Cy, is the equivalent overall organic mass concentration in the wall, My, is the equivalent molar
weight of the organic concentration in the wall, and ~y, is the activity coefficient in the Teflon film.
Values of Cy/Myyw must be determined experimentally from chamber observations (Matsunaga
and Ziemann, 2010; Zhang et al., 2015). In the present simulations, a nominal Cy/Myyw value
of 120 pmol m™3, the value determined by Matsunaga and Ziemann (2010) for 2-ketones, is used
for all species except for a-pinene, for which Cy/Myvyw = 20 pmol m 3, the value determined by

Matsunaga and Ziemann (2010) for alkenes. Cy /My is varied as a sensitivity test.
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4.5 Experimental

Six a-pinene photooxidation experiments were conducted in the Caltech dual 24 m? environmental
chambers at ~ 298K and < 5%RH (Table 4.1). Prior to each experiment, the Teflon chambers
were flushed with purified, dry air for 24 h until the particle number concentration was < 10 cm™>
and volume concentration was < 0.01 pm® cm 3. Hydrogen peroxide (HOg) was used as the OH
source by evaporating 113 uL of 50 wt % aqueous solution into the chamber with 5L min ! purified
air for 110 min, resulting in an approximate starting HoO9 mixing ratio of 2 ppm. Experiments were
conducted at low NO (< 2ppb). Heated 5Lmin ! of purified, dry air was flowed through a glass
bulb containing liquid a-pinene into the chamber for 30 min, introducing ~ 50 ppb a-pinene into
the chamber. Ammonium sulfate (AS) seed aerosol was injected into the chamber by atomizing
0.015 or 0.1 M aqueous (NH4)2S0O4 solution into the chamber for 30 to 90 min, varying the initial
AS concentration in order to vary the seed surface area (SA) available for condensation. After ~ 1h
of mixing, photooxidation was initiated. Four of the experiments were performed using the full
set of blacklights, for which the calculated jno, = 4 X 1073571, with varying amounts of inorganic
seed particles (Table 4.1). The remaining two experiments were performed using only 10 % of the
available blacklights, for which the calculated jno, = 3.7 X 10451, again with varying amounts of
inorganic seed particles.

Relative humidity (RH) and temperature were monitored via a Vaisala HMM211 probe. O3 and
NO, mixing ratios were measured by a Horiba Os analyzer (APOA-360) and a Teledyne NO, ana-
lyzer (T200), respectively. a-Pinene concentration was monitored by a gas chromatograph equipped
with a HP-5 column (15m x 0.53 mm ID x 1.5 pm thickness, Hewlett-Packard) coupled with flame
ionization detector (GC/FID, Agilent 6890N). The size distribution and number concentration of
seed particles and organic aerosols were characterized using a custom-built Scanning Mobility Par-
ticle Sizer (SMPS) counsisting of a Differential Mobility Analyzer (DMA, TSI, 3081) coupled with a
Condensation Particle Counter (CPC, TSI, 3010).

Measured volume distributions must be corrected for particle wall loss; the DMA measures the

total volume of particles, which is a mixture of organic aerosol and inorganic seed. By accounting for
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particle wall loss, the seed volume can be subtracted and the mass of SOA calculated. Two limiting
assumptions have traditionally been made when correcting for particle wall loss (Loza et al., 2014):
in the lower bound, once deposited, particles are assumed to no longer interact with the vapor. The
mass of SOA present on a particle at the moment of its deposition is added when calculating the
total SOA. In the upper bound, deposited particles are assumed to continue growing at the same
rate as suspended particles, and this SOA is similarly added to the total SOA. The upper bound
can be viewed as an early approximation of vapor wall loss from a time when vapor wall loss was
less well understood. However, this approximation does not account for the differing mechanisms
of vapor—particle and vapor—wall transport, which is reflected in different timescales. Moreover, the
absorbing mass of the wall, represented by the parameter Cy,, is ~ 3 orders of magnitude higher than
the mass of deposited particles (Zhang et al., 2014). The upper bound is therefore less appropriate
to use when vapor wall loss is accounted for separately, and thus the lower bound is used to correct
the SOA data, using size-dependent wall loss rates measured in the Caltech chamber. Figure C.2
shows temporal plots of the experimental non-particle-wall-loss-corrected total volume and the total
volume with both the upper and lower bound particle wall loss correction. (Gaps in the volume data
resulted when the DMA was taken off-line briefly to clean the inlet.)

The initial concentrations of HoOg, NO,, and O3 in the chemical model were optimized to
match the a-pinene decay and O3 formation. The initial mixing ratio of HoO9 was optimized to
be 2 ppm, yielding predicted OH levels of ~ 2 x 10% molec cm™ for the 100 % UV experiments and
~ 2105 molec cm ™ for the 10 % UV experiments. Although experiments were conducted under low-
NO conditions, background levels of NO, were observed in the chamber. Due to voltage interference
in the NO, measurements at such low values, it was not possible to determine the exact amount
of NO, present in the chamber. Therefore, the initial background concentration in the simulations
was set to 0.1 ppb, split evenly between NO and NOs. NO and NOg then evolve throughout the
simulation according to the standard inorganic gas-phase reactions. Ozone formation was observed
during the experiments, giving evidence of the presence of NOg in the chamber. Because any NOg

initially present in the chamber is quickly photolyzed, a NO, wall off-gassing rate of 2.5 ppt min ! is
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needed to match the observed ozone formation (e.g., Valorso et al., 2011). Predicted SOA formation
is not sensitive to the assumed NO, off-gassing rate. An initial Og concentration was measured in
the chamber; however, this was attributed to interference by HoOo because a-pinene did not decay
in the dark, as would have occurred in the presence of O3. Therefore, the initial O3 was set to zero
in the model. Comparisons of measurements and model predictions for the decay of a-pinene and
the evolution of O3 are shown in Figs. C.3 and C.4 in Appendix C.

Figure C.5 shows the amount of a-pinene predicted to react with OH vs. Os, using both the
modeled and measured O3 concentration. For the 100 % UV experiments, ~2-3 % of the total a-
pinene is predicted to react with Os, using either the modeled or measured O3 concentration. For the
10% UV experiments, ~ 20 % of the total a-pinene is predicted to react with O3 using the modeled
O3 concentration. For experiment 141113, roughly the same amount of a-pinene is predicted to
react with Og based on the measured O3 concentration. However, for experiment 141125, because
the model underpredicts the Og concentration, much more a-pinene is predicted to react with the

measured O3 concentration, ~ 49 %.

4.6 Results

Experimental particle-wall-loss-corrected SOA growth curves as a function of reacted a-pinene are
shown in Fig. 4.2 for the six photooxidation experiments. With the exception of the nucleation
experiment, SOA growth is observed immediately upon irradiation, similar to Ng et al. (2007a).
When presented as a function of reacted a-pinene, the growth curves essentially overlap, regardless
of the UV level or the initial seed particle concentration. Overlap at two different UV intensities
indicates that SOA growth is not very sensitive to the oxidation rate for these conditions. SOA
yields (ratio of maximum mass of SOA formed to mass of a-pinene reacted) for these experiments
range from 17 to 26 %, at the low end of the range of previously reported yields of 26-45 % for this
system (Ng et al., 2007a; Eddingsaas et al., 2012b).

Figure 4.2 also shows predictions from the base GECKO-A mechanism for the six experiments.

In the GECKO-A model, the two main parameters representing vapor—particle and vapor—wall
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transport, ap and kgyw, are set to nominal values of 1 and 1073571, respectively. C /(Myyw) is set
to 120 pmolm 3 for all species except a-pinene. These parameters give a good agreement for the
100% UV experiments. Figure C.6 in Appendix C shows the effect of varying the vapor—particle
accommodation coefficient oy for different values of the vapor wall loss rate kgw. op = 1 or 0.1
yields almost identical SOA predictions for all experiments except nucleation. In the nucleation case,
ap = 0.1 results in substantially less SOA predicted, which may result because nucleation is not
treated explicitly in GECKO-A but instead approximated by initializing the particle concentration
with particles of 5nm radius. Lowering the value of ap to 0.01 or 0.001 delays the onset of SOA
formation for the 100 % UV experiments, which is not consistent with experimental observations.
Lowering kgyw results in substantial overprediction of SOA for the 100% UV experiments. For
the 10% UV experiments, all combinations of parameters underpredict the SOA. Figure C.7 in
Appendix C shows the effect of varying Cy /(Myww) for different values of the vapor wall loss rate
kgw. Cw/(Mwyw) controls partitioning between the gas phase and the wall at equilibrium; therefore,
variations in Cy/(Mw7w) have more of an effect on SOA predictions when using a faster wall loss
rate because equilibrium is approached sooner. The base Cy/(Myyw) and kgyw = 1073571 give
the best agreement for 100 % UV experiments; however, SOA for the 10 % UV experiments is still
underpredicted. This discrepancy will be addressed subsequently. All subsequent simulations are
conducted with oy, = 1 and the base Cy /(Myyw)-

The best-fit a, = 1 (and 0.1 for all experiments except nucleation) for the 100 % UV experiments
suggests that there are no substantial limitations to vapor—particle mass transfer (Mai et al., 2015).
This conclusion is consistent with the experimental observation that the SOA growth in this system
is virtually independent of the amount of seed surface area present; dependence of SOA growth on
seed surface area occurs only with diffusion- or accommodation-limited vapor—particle mass transfer
(McVay et al., 2014). Optimal ap, =1 or 0.1 is consistent with Saleh et al. (2013), who determined
accommodation coeflicients of order 0.1 for a-pinene ozonolysis SOA. This result differs from that
of Zhang et al. (2014), who observed toluene SOA formation to depend strongly on the seed surface

area and consequently to adhere to a low oy, = 0.001. The different behavior observed for a-pinene
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and toluene SOA may reflect differences in SOA formation mechanisms; however, it is not possible
to discern the reason for the difference based solely on the data at hand. If a-pinene SOA behaves as
a semi-solid (Perraud et al., 2012; Cappa and Wilson, 2011; Vaden et al., 2010, 2013; Virtanen et al.,
2010, 2011; Kuwata and Martin, 2012; Saukko et al., 2012; Abramson et al., 2013; Renbaum-Wolff et
al., 2013), a lower o, might be expected. However, if, once formed, SOA is converted into a glassy
state through hydrogen bonding or oligomerization (Cappa and Wilson, 2011), SOA formation itself
could still be characterized by a high a.

The observation that SOA growth is insensitive to oxidation rate (shown by the overlap of the
growth curves in Fig. 4.2 for different UV exposures) is not consistent with predictions regarding
the interplay of reaction rate and vapor wall loss: if the reaction rate increases relative to the vapor
wall loss rate, successive generations of low-volatility species will be produced more quickly and
will condense preferentially onto particles before their precursors are lost to the chamber walls,
leading to a higher SOA yield (Zhang et al., 2014; McVay et al., 2014). Such behavior was observed
experimentally by Ng et al. (2007b): higher SOA yields were observed in the aromatic system using
HONO as an OH precursor than when only NO and NOg were present initially, leading to much lower
OH levels. This “rate effect” was tentatively attributed by Ng et al. (2007b) to loss of semivolatile
organics to the chamber walls, albeit at a time when the nature of vapor wall deposition was less well
understood. A dependence of SOA growth on oxidation rate is also predicted by the base scenario in
GECKO-A: the SOA levels are predicted to be substantially lower at 10 % UV owing to significant
organic mass loss to the walls. A number of explanations can be advanced for the overlap of the

growth curves at high and low UV, and these are systematically explored below.

4.6.1 Negligible or Slow Vapor Wall Loss

In the absence of vapor wall loss, the growth curves predicted by GECKO-A overlap at high and low
UV (Fig. C.8 in Appendix C). Oxidation occurs more slowly under low UV owing to the decreased
rate of generation of OH, but if condensable species or their precursors do not deposit on the walls,

the same amount of SOA eventually forms. However, in the absence of vapor wall loss, GECKO-A
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overpredicts SOA substantially for the high-UV experiments and slightly for the low-UV experiments.

At a low level of vapor wall loss, kegw = 1072571, the growth curves predicted by GECKO-A still
essentially overlap (Fig. 4.3). A rate effect, in which the SOA yield depends on the rate of oxidation,
is observed only if the rate of oxidation is slower than or competitive with other loss processes.
The rate constant for the reaction of OH with a-pinene is 5.23 x 10 ! em3 molec ' s (Atkinson
and Arey, 2003). OH concentrations predicted by GECKO-A of 2 x 10% and 2 x 10° molec cm™
for the high- and low-UV experiments, respectively, give overall reaction rates of 107* and 107°s71.
(OH reaction rate constants for oxidized products will be slower than that for a-pinene, and the

L exceeds

reaction rate slows in later generations.) A vapor wall loss characterized by kgw = 1035~
substantially either of these reaction rates, and thus at this wall deposition rate the effect of changing
oxidation rate is strong. At a much slower wall loss, kgw = 107°s71, the rate effect is less pronounced,
leading to overlap of the growth curves predicted by GECKO-A. The absence of a rate effect in the
experimental observations is consistent with a slower vapor wall loss rate, in accord with wall loss
rates that have been measured previously in the Caltech chamber (Loza et al., 2010, 2014; Zhang et
al., 2015).

With a vapor wall loss rate of 10°s 1, SOA predictions match the data fairly well at low UV,
within 10 pgm™ of the final SOA concentration, but remain overpredicted by 80 to 200 pgm™ at
high UV. Thus, a slow wall loss rate alone is not sufficient to reconcile the predictions at high and
low UV. However, it is instructive to examine the contribution of different generations of reaction
to SOA predictions with this slow vapor wall loss (Fig. 4.4). GECKO-A predicts that SOA will
consist of almost entirely second-generation products. At the end of the experiment, simulations
under high UV predict ~100pgm™3 of second-generation products, as opposed to ~ 50 pgm™ for

low UV. Thus, reducing the contribution of second-generation products in high UV may result in

closer model-data agreement for both high- and low-UV conditions at a slow vapor wall loss rate.
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4.6.2 Overcontribution of Second- and Later-generation Species

As a sensitivity test, all OH reaction rate constants, except that of OH + a-pinene, are reduced by
varying factors. Figure C.9 in Appendix C shows the impact of reducing the OH rate constants to
1, 10, and 50 % of the default values at a vapor wall loss rate of 10°s1. A reduction to 10 % and a
wall loss rate of 107°s7! result in the best fit to both high- and low-UV experiments (Fig. 4.5), albeit
with an overprediction up to 75 % for the high-UV experiments and a 20-40 % underprediction for
the low-UV experiments. While this result does not necessarily suggest that reaction rate constants
in GECKO-A are overpredicted by an order of magnitude, it does suggest that second- and higher-
generation compounds may be primarily responsible for the model-measurement discrepancy at
differing UV levels. An excess contribution of later-generation compounds to SOA in GECKO-
A could be due to several factors: (1) overprediction of the OH reaction rate constants by the
SARs, (2) assumed reaction pathways in GECKO-A, (3) underestimation of volatilities for later-
generation species, or (4) significantly faster wall loss rate for later-generation products. Each of
these possibilities is considered in turn.

OH reaction rate constants in GECKO-A are based on SARs from Kwok and Atkinson (1995) and
subsequent updates, which have been shown to predict OH reaction rate constants within a factor of
2 for alkanes, alkenes, and diols but may be more uncertain for the complex and highly functionalized
compounds in later generations of a-pinene oxidation (Bethel et al., 2001). For example, Bethel et
al. (2001) showed that OH rate constants for 1,2-hydroxyaldehydes are overestimated by factors
of 3—4 using the established SARs. Although rate constants are likely not overpredicted by an
order of magnitude as the simulations suggest, it is possible that uncertainties in the SARs for
later-generation species may contribute to the overprediction of these products by GECKO-A.

SARs used to predict reaction pathways and branching ratios in GECKO-A are also prone to
uncertainties. In the reaction of peroxy radicals with HO9, the dominant pathway in GECKO-A
is formation of the hydroperoxide (assumed branching ratio 80 %). «-Pinene hydroxy dihydroper-
oxide (C19H1605) is a second-generation compound formed via two such reactions with HOg that

is predicted by GECKO-A to contribute significantly to SOA under the high-UV conditions. Fig-
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ure C.10 in Appendix C shows that eliminating the mass of this compound from SOA predictions
in the absence of vapor wall loss results in a much more significant decrease in SOA at high UV
(~ 100 pgm=3) than at low UV (~ 15pgm™3). a-Pinene hydroxy dihydroperoxide results from two
successive OH reactions and is therefore formed more rapidly and in greater amounts at a higher OH
level. a-Pinene hydroxy dihydroperoxide has been observed in the gas phase with an estimated 3 %
yield (Eddingsaas et al., 2012a). In the high-UV simulation, this compound is formed with >30%
yield; therefore, it is likely that reaction pathways leading to this product are overrepresented in
GECKO-A.

A second pathway for the reaction of peroxy radicals with HO5 is formation of an alkoxy and
regeneration of OH, added to GECKO-A with an uncertain branching ratio of 20 % and only for
peroxy radicals with an oxygenated moiety in the a position. Simulations show that SOA predictions
are not sensitive to the second assumption but are very sensitive to the assumed branching ratio for
this reaction (Fig. 4.6). Increasing formation of the alkoxy leads to decreasing SOA formation, with
a greater effect at high UV than at low UV. Uncertainty in this branching ratio in the a-pinene
system could be a major factor leading to the high—low-UV discrepancy.

Finally, Praske et al. (2015) recently identified a third HOg reaction channel for peroxy radicals
produced from methyl vinyl ketone (MVK): formation of a carbonyl and regeneration of OH and
HO2. In place of a hydroperoxide, which results from the standard HO2 reaction channel, this
reaction produces a ketone which has a higher vapor pressure and therefore forms less SOA. If this
reaction occurs in the a-pinene system, the absence of this pathway in GECKO-A could contribute
to SOA overprediction.

Volatilities in this version of GECKO-A are estimated using the Nannoolal et al. (2008) method,
which is based on the Clausius—Clapeyron equation. Boiling points are estimated using the Nannoolal
et al. (2004, 2008) method with some group contributions taken from Compernolle et al. (2010)
(Valorso et al., 2011). Limited experimental data exist for vapor pressures of semivolatile and low-
volatility species, and uncertainty in vapor pressure estimation increases as vapor pressure decreases

(Valorso et al., 2011). Therefore, underprediction of vapor pressures for later-generation species
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could lead to excess SOA. Indeed, Valorso et al. (2011) showed that significant uncertainties in SOA
predictions result when using different methods for vapor pressure estimation. While the Nannoolal
et al. (2008) method generally led to the highest volatilites and the lowest SOA predictions when
compared to the Myrdal and Yalkowsky (1997) method and the SIMPOL-1 method from Pankow
and Asher (2008), each of these methods estimates vapor pressures via a group contribution method
(i.e., summing the contributions of all functional groups). If this approach is less accurate for
compounds with many functional groups, the volatilities may be underpredicted and these species
may be overpredicted in SOA.

A final possible explanation for the overprediction of higher-generation SOA species is that
significantly faster vapor wall loss exists for these more functionalized species. Zhang et al. (2015)
showed that vapor wall loss rates increase as compound vapor pressure decreases. They measured
wall loss rates for primarily first-generation oxidation products to be 10°-100s™1 in the Caltech
chambers. Implementing the kgw parameterization developed by Zhang et al. (2015) in GECKO-A
yields similar SOA predictions to those based on assuming a fixed kgyw = 10271 (with the exception
of the nucleation experiment, in which the kgy parameterization predicted more SOA than using a
fixed kgw = 107° S’l). However, it is certainly possible that later generation, more functionalized
compounds could exhibit significantly faster wall loss than predicted by the parameterization of
Zhang et al. (2015). As one example, Krechmer et al. (2015) fit a wall loss rate of 3 x 10 3s ! for
a C5H1gOs5 isoprene oxidation product in the Caltech chambers. If later-generation species in the
a-pinene system exhibit markedly higher wall loss as well, SOA overprediction in GECKO-A will be
reduced.

In summary, if GECKO-A overpredicts the contribution of later-generation species, the measurement—
model discrepancy at differing UV levels could be reduced. Reducing the contribution of second-
generation species also requires a slower vapor wall loss rate to fit the data, which is actually more

consistent with those that have been measured in the Caltech chamber.
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4.6.3 Condensed-phase Photolysis

If condensed-phase photolysis occurs in the chamber but is missing in GECKO-A, both the high—
low-UV measurement—model discrepancy and the high wall loss rate needed to match the 100 %
UV observations could potentially be explained. If condensed-phase photolysis is an efficient loss
mechanism for SOA at 100 % UV, a lower vapor wall loss rate would be required in order to continue
to fit experimental observations. Because condensed-phase photolysis would be less efficient at 10 %
UV, at this slower wall loss rate the low-UV SOA predictions will increase in the direction of the
observations. However, this effect is not seen in the simulations. Figure 4.7 shows the effect of
condensed-phase photolysis, with the radicals produced assumed to be lost permanently. Two wall
loss rates are shown: the default kg = 10371 and a slower kow = 104571, Only one high-UV
experiment is shown, but the results are similar for all high-UV experiments. Moreover, condensed-
phase photolysis has no effect on the low-UV predictions (not shown).

Under high-UV conditions, the assumed presence of condensed-phase photolysis leads to a slight
reduction in SOA predictions at the end of the experiment, regardless of kgw. Note that the cur-
rent implementation of condensed-phase photolysis represents an upper limit: compounds in the
condensed phase are taken to photolyze at the same rate as in the gas phase, and fragmentation
products are lost permanently. The minor effect of this photolysis upper limit can be explained
by comparing the wavelength-dependent photon flux of the chamber to absorption cross sections of
species predicted to constitute the SOA (Fig. C.11 in Appendix C). Wong et al. (2015) found that
the main absorption region of SOA produced by a-pinene ozonolysis corresponds to characteristic
absorptions of carbonyl and peroxide functional groups and that the SOA absorption is strongest
between 240 and 400 nm. Although products of a-pinene OH oxidation and ozonolysis differ, per-
oxide and carbonyl functional groups are generated during both (Eddingsaas et al., 2012a). The
photon flux in the Caltech chamber is less intense than the solar flux in this region, particularly for
the wavelength region over which peroxides photolyze (Fig. S11). Because peroxides are expected
to be abundant in a-pinene SOA (Capouet et al., 2008; Eddingsaas et al., 2012a), the effect of

condensed-phase photolysis may be underrepresented in the Caltech chamber as compared to the



103

atmosphere.

The minor effect of condensed-phase photolysis in these simulations is consistent with the findings
of Hodzic et al. (2015) that reduction in SOA from both gas-phase and condensed-phase photolysis
for various systems, including a-pinene, is minor during the initial 10 h of a simulation but becomes
substantial over a week of atmospheric ageing. Moreover, this result indicates that this process does
not explain the high-low-UV measurement—model discrepancy. Even in the presence of condensed-
phase photolysis, at a wall loss rate kgw = 10%s71 a strong overprediction of SOA still exists at
100 % UV. Although condensed-phase photolysis is potentially important in the atmosphere on longer
timescales (Hodzic et al., 2015), it does not explain the low-UV measurement-model discrepancy of

these experiments.

4.6.4 Autoxidation Chemistry

Autoxidation has been demonstrated to be important in SOA formation (Crounse et al., 2013;
Ehn et al., 2014; Rissanen et al., 2014; Jokinen et al., 2014; Mentel et al., 2015; Rissanen et al.,
2015). Formation of extremely low-volatility organic compounds (ELVOCs) via autoxidation has
been observed from both the OH oxidation and ozonolysis of a-pinene, with higher yields observed
from ozonolysis (Ehn et al., 2014; Jokinen et al., 2014). In autoxidation, a peroxy radical undergoes
an intramolecular hydrogen abstraction to form a hydroperoxide, generating an alkyl radical which
then adds oxygen to reform a peroxy radical. This pathway becomes important only when the rate
of hydrogen abstraction is competitive with bimolecular reactions of the peroxy radicals with NO,
HOg3, and ROg (Crounse et al., 2013). Because lower UV intensities will lead to lower HO2 and RO2
concentrations, intramolecular hydrogen abstraction could potentially be favored under low UV. For
the high-UV experiments, the predicted lifetime with HO9 is ~ 10s; for the low-UV experiments it
is ~50 s, indicating that autoxidation may potentially be more important under low UV.
Moreover, during the low-UV experiments, 20-50 % of a-pinene reacts with Og instead of OH,
compared to only 2-3% for the high-UV experiments. As discussed previously, the ozonolysis

mechanism in GECKO-A is likely incomplete and may be lacking pathways to SOA precursors, such
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as autoxidation. Because autoxidation is much more efficient from the ozonolysis pathway than from
the OH pathway (Ehn et al., 2014; Jokinen et al., 2014), more ELVOCs will likely be produced under
low UV and will increase the amount of SOA formed. Furthermore, autoxidation could also explain
the difference in SOA yield observed between the two low-UV experiments. Experiment 141125 has
a higher yield than experiment 141113 and also has a higher observed O3 concentration. ELVOC
production was likely higher during this experiment owing to the increased fraction of a-pinene
reacted via ozonolysis.

Autoxidation is observed to occur immediately upon oxidation (Rissanen et al., 2015), indicating
that it is likely a first-generation process. Second-generation species are predominantly responsible
for the discrepancy in model predictions between high and low UV due to the difference in OH levels
(Fig. 4.4). Unlike second-generation products, autoxidation products will not depend on the OH
concentration and will not be produced more slowly under low UV. Therefore, adding autoxidation
pathways will likely increase the fraction of SOA composed of first-generation products, which may
lead to similar predictions for high and low UV.

However, explicit mechanisms and rate constants are still lacking for autoxidation in the a-
pinene system, although they have been developed for simpler cycloalkenes (Mentel et al., 2015;
Rissanen et al., 2015). A recent computational study found that the cyclobutyl ring in «-pinene
must open in order for intramolecular hydrogen shifts to be competitive with the peroxy bimolecular
sink reactions (Kurtén et al., 2015). The currently accepted a-pinene ozonolysis mechanism does
not include rapid opening of this ring. Kurtén et al. (2015) investigated several pathways to break
this ring but found none that could explain all of the characteristics of observed ELVOCs from «-
pinene. In the absence of explicit mechanisms, the effect of autoxidation cannot be fully tested. To
approximate the effect, a C19H150g9 species (an ELVOC predicted by Kurtén et al., 2015) is added
with a 7% molar yield (based on the 6-8 % yield measured by Ehn et al., 2014) as a direct product
from the a-pinene 4+ O3 reaction. This addition has no effect on SOA concentrations for the high-UV
experiments but increases the final SOA concentrations for the low-UV experiments by ~ 10 pg m ™3

(not shown). However, adding this fixed ELVOC yield does not increase SOA predictions for low
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UV at the beginning of the experiment, when no O3 is present. Therefore, although autoxidation
via ozonolysis is likely important towards the end of the low-UV experiments, other explanations
are needed to reconcile the underprediction of SOA at the start of the experiment. Autoxidation via
OH oxidation could potentially resolve part of this discrepancy, but no pathways or yields are yet
available. Overall, autoxidation is a likely process to explain the measurement-model discrepancy
at high and low UV but is in need of more study. The presence of significant autoxidation could

furthermore lead to a different best-fit vapor wall loss rate.

4.6.5 Particle-phase Dimerization

If dimerization is more competitive with gas-phase fragmentation at the lower OH levels at 10 %
lights, increased SOA growth could result. Figure 4.8 shows one 100% UV and one 10% UV
experiment with two different values for the dimerization rate constant: 0.01 M s ! (Ziemann and
Atkinson, 2012; Capouet et al., 2008) and 12M s~ (Shiraiwa et al., 2013) using the same base kow =
103571, The 12M!s7! rate constant results in significant SOA overprediction for both the 100 %
and the 10 % UV experiments; the slower dimerization rate constant still results in an overprediction
for the 100 % UV experiment but an underprediction at 10 % UV. For this rate constant, rapid vapor
wall loss combined with the slower chemistry at low UV prevents significant SOA formation, despite
dimerization. In the high-UV experiment, because gas-phase chemistry occurs faster relative to
vapor wall loss, even a slower dimerization rate increases SOA predictions. While dimerization
increases SOA predictions for low UV, it has the same effect at high UV. Therefore, dimerization in
its current implementation in GECKO-A does not resolve the low-UV discrepancy without causing

an SOA overprediction for high UV.

4.6.6 Enhanced Wall Loss at High UV

To recapitulate, using the base chemistry in GECKO-A, predictions agree with the high-UV exper-

iments when using a relatively fast vapor wall loss rate of 1073 s 1, and predictions approximately

match the low-UV experiments when using a much slower wall loss rate of 10 s™!. This result
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prompts the hypothesis that vapor wall loss could somehow be dependent on the UV level. The
diffusion coefficient and the eddy diffusivity could change based solely on the UV level if a change
in the UV level results in a temperature change in the chamber. The temperature of the chamber
was ~ 3 K higher for the high-UV experiments than for the low. Gas-phase diffusion coefficients are
~ T3/2 (Incropera et al., 2007). A 3K temperature increase will result in an increase in the diffusion
coeflicient by only a factor of 1.015. The eddy diffusivity characterizes the degree of turbulent mixing
in the chamber, which could be increased by temperature variations. When UV lights are turned
on, the temperature in the chamber increases by 2-3 K and then gradually decreases to the original
temperature from a well-controlled recirculating chilled-water system. This small fluctuation is not
expected to cause a dramatic increase in turbulence in the chamber. Therefore, increase of vapor

wall loss for high-UV experiments is deemed incapable of explaining the modeling discrepancy.

4.7 Atmospheric Implications

From the systematic analysis of the experiments and mechanism predictions (and in the absence
of explicit autoxidation mechanisms), two hypotheses could explain some or all of the inability
of the base case in GECKO-A to simulate both the high- and low-UV experiments. The first
hypothesis is that later-generation species overcontribute to the SOA in GECKO-A. To compensate
for this overcontribution necessitates the assumption of rapid vapor wall loss in order to fit the
high-UV data; when extended to the low-UV experiments, this rapid wall loss results in significant
SOA underprediction, since later-generation species are produced more slowly at the lower OH
levels. This overcontribution could be the result of several possibilities, each of which has different
implications for atmospheric SOA formation. If some reaction pathways are under- or misrepresented
in GECKO-A, atmospheric predictions from GECKO-A may then overestimate SOA. If instead all
reaction pathways in GECKO-A are realistic but the rates are simply overpredicted, these compounds
may still form in the atmosphere but will be affected by competing processes such as dry and wet
deposition and uptake into cloud particles (Hodzic et al., 2014; Mouchel-Vallon et al., 2013). If

volatilities are too low in GECKO-A, atmospheric predictions will then be biased high. Finally, if
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higher-generation species simply exhibit a faster wall loss, these compounds will be produced quickly
in the atmosphere and will generate significant SOA.

This hypothesis implies that vapor wall loss in the Caltech chamber is likely slower than that of
the base case assumed in GECKO-A. This slower wall loss is consistent with measurements in the
Caltech chamber (Loza et al., 2010, 2014; Zhang et al., 2014) but is considerably slower than those
measured in the 8m3 chamber used by Yeh and Ziemann (2015), 1073-10"%s7. Differences in the
size and operation of two chambers may contribute to the differences in measured wall loss rates.

The vapor wall loss implied by the present experiments results in an order of magnitude slower
rate than that fit by Zhang et al. (2014) during toluene SOA photooxidation. This difference could
potentially indicate differences between chemical systems or could also arise from the manner in
which the modeling was performed: Zhang et al. (2014) used the Statistical Oxidation Model of
Cappa and Wilson (2012) vs. the GECKO-A model used here. An implication of this difference is
that the wall loss bias (the ratio of the yield predicted in the absence of vapor wall loss divided by
the observed yield) for the a-pinene system is likely lower than the 1.6 predicted by Zhang et al.
(2014). However, because we could not definitively fit here both the high- and low-UV experiments,
we cannot calculate a corresponding wall loss bias.

The second hypothesis with the potential to explain the measurement—model discrepancy is
autoxidation. Autoxidation from both the OH and ozonolysis pathway could be important during
the low-UV experiments. Explicit mechanisms and rate constants are needed in order to test this
hypothesis. If significant, the presence of autoxidation could change the vapor wall loss rate implied
by these simulations.

Although other processes do not reconcile the high—low-UV model discrepancy, such processes
may still be important. Condensed-phase photolysis, though not significant over the short timescale
of chamber experiments, has been shown to potentially have a more significant effect in the at-
mosphere (Hodzic et al., 2015). Particle-phase reactions have been shown to generate significant
amounts of high-molecular weight, low-volatility species in the a-pinene system (Docherty et al.,

2005; Lopez-Hilfiker et al., 2015; Gao et al., 2004b), albeit more efficiently in ozonolysis (Lopez-
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Hilfiker et al., 2015). Even if particle-phase dimerization is significant in this system, the assumed
irreversible formation of dimers in GECKO-A may not accurately represent particle-phase reactions,
which have been suggested to be reversible (Ziemann and Atkinson, 2012; Trump and Donahue,

2014).

Figures C.1-C.11 are provided in Appendix C.
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Table 4.1: Initial conditions for photooxidation experiments.

Expt.  Desc. T (K) RH (%) HCp Initial Seed Surface Duration

(ppb) Area (pm? cm ) (min)
141007  Nucleation 300 <5% 51 0 300
141016  Low SA 300 <5% 56 1.7 x 103 534
141028  Med SA 300 <5% 53 3.2 x 103 233
141118 High SA 208 <5% 51 3.4 x 103 410
141113  10% UV, Low SA 297 <5% 53 9.9 x 102 1070
141125 10% UV, Med SA 297 <5% 49 2.4 % 103 1160
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Figure 4.1: Overview of the a-pinene + OH oxidation mechanism in GECKO-A. Reactions in black
are those originally implemented in Valorso et al. (2011). Additions to this mechanism are shown
in blue. Species are labeled to be consistent with Vereecken et al. (2007). All subsequent chemistry
is generated in GECKO-A according to the standard protocols in GECKO-A.
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Figure 4.2: Mass of SOA, Moy, as a function of reacted a-pinene. Experimental data are shown
with filled circles, with colors corresponding to individual experiments (see Table 4.1), and have been
corrected for particle wall loss (see text). Predictions using the default GECKO-A are shown as solid
lines with the colors corresponding to the different experiments. In GECKO-A, the vapor—particle

accommodation coefficient is set to ap, = 1 and the vapor wall loss rate is set to kgw = 10~
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Chapter 5

Conclusions and Future Work
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The effect of vapor wall deposition on SOA yields measured in chambers is complex. Chapter
2 shows that the effect of vapor wall deposition depends on the relative time scales of the gas-
phase oxidation rate, the rate of gas—particle mass transfer, and the rate of gas—wall mass transfer.
Changing either the gas-phase oxidation rate, by changing the oxidant concentration, or the rate of
gas—particle mass transfer, by changing the concentration of seed particles, can affect the influence
of vapor wall deposition and thus affect the observed yield. Simulations show that changing the rate
of gas—particle mass transfer by increasing the seed particle concentration affects the measured SOA
yield only in instances in which SOA formation is kinetically limited arising from slow accommoda-
tion of organic species into the particle phase. This effect is observed experimentally for the toluene
system, as discussed in Appendix D. For systems with kinetically limited SOA formation, increasing
the concentration of seed particles lessens the influence of vapor wall deposition by promoting faster
condensation onto particles and thereby increases the observed SOA yield.

Chapter 3 applies the model developed in Chapter 2 to a-pinene ozonolysis experiments in
which an effect on the SOA yield is observed when changing the oxidation rate but not when
changing the concentration of seed particles. Model simulations show that the absence of an effect
of changing the seed particle concentration is consistent with SOA formation being governed by quasi-
equilibrium growth, in which gas—particle equilibrium is established much faster than the rate of
change of the gas-phase concentration. In contrast to the toluene system of Appendix D, for a-pinene
ozonolysis and other systems governed by quasi-equilibrium growth, increasing the concentration of
seed particles is not an effective way to mitigate the influence of vapor wall deposition. The observed
effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition: gas-phase
oxidation products are produced more quickly and condense preferentially onto seed particles before
being lost to the walls. Therefore, for a-pinene ozonolysis, increasing the oxidation rate is the most
effective way to mitigate the influence of vapor wall deposition. Model sensitivity studies show that
the presence of an oxidation rate effect and/or seed particle effect depends on a complex interplay
of factors, such as aj, (the vapor—particle accommodation coefficient), the rate of hydrocarbon

oxidation, and the concentration of seed particles. Depending on the relative time scales of the
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oxidation rate and the rate of gas—particle mass transfer, increasing either the oxidation rate or the
seed particle concentration or both can be effective in mitigating the effect of vapor wall deposition
in depressing the measured SOA yield.

Appendix D shows that the toluene system is characterized by kinetically limited SOA formation,
and therefore an effect on SOA yield is observed when increasing the seed particle concentration.
However, variation of the oxidation rate was not studied. Experiments in which the oxidation rate
and seed particle concentration are varied simultaneously during toluene SOA experiments would be
useful to determine how best to mitigate the effects of vapor wall deposition for this system. Similar
experiments should be carried out for other precursors.

In addition to conducting experiments that minimize the effect of vapor wall deposition, it is
necessary to use models to correct SOA yields for this effect, as is done in Appendix D. However, a
complication to attempting to correct chamber-derived SOA yields for vapor wall deposition is the
still-debated magnitude of the vapor wall deposition rate. In Appendix E, vapor wall deposition rates
for individual species are directly measured in the Caltech chamber to be of order 107°-1076 s71.
However, wall deposition rates of 102-10"* s7! have been observed in other chambers (Yeh and
Ziemann, 2015; Matsunaga and Ziemann, 2010; Krechmer et al., 2016), with the differences in these
rates too great to be explained merely by differences in the surface-to-volume ratios of the chambers.
Furthermore, the behavior of vapor wall deposition is very different between that measured in
Appendix E and Krechmer et al. (2016). In Appendix E, slow continuous vapor decay is observed,
with no equilibration with the wall. In Krechmer et al. (2016), rapid vapor decay followed by vapor—
wall equilibration is observed. Both studies measured vapor wall deposition rates of individual species
formed in situ in chambers; however, there are important differences in how the experiments were
carried out that could explain the differences in measured rates. In Appendix E, oxidation products
were generated via photooxidation that lasted for one hour, while Krechmer et al. (2016) generated
products with only 10 s of photooxidation. If during the one hour of photooxidation in Appendix E,
individual species saturate in the wall layer, slower wall deposition may be observed after lights are

turned off because the concentrations in the wall are closer to equilibrium. Furthermore, different
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instruments are used in the two studies to monitor vapor decay: the study in Appendix E used a
CF30" CIMS while Krechmer et al. (2016) used a NO3 or I CIMS. Differences between the CIMS,
especially in the inlet region, could contribute to the discrepancies in measured wall deposition rates.
To resolve these discrepancies, more experiments are needed to measure vapor wall deposition rates
of individual compounds. Both possible causes for the discrepancy, experimental protocol and CIMS
differences, should be examined: experiments should be conducted in the Caltech chamber using the
protocol of Krechmer et al. (2016) and, if possible, using a NO5 or I" CIMS. If indeed the CIMS is
found to be the source of the discrepancy, a computer model should be developed for the Caltech
CF30~ CIMS to better understand the behavior of vapor species within the CIMS.

Chapter 4 explores how the assumed magnitude of the vapor wall deposition rate can greatly affect
conclusions drawn from comparisons between simulations and experiments. a-pinene+OH SOA ex-
periments were carried out at different seed particle concentrations (changing the rate of gas—particle
mass transfer) and different UV intensities (changing the oxidation rate). The experimentally-
observed SOA yield is not affected when changing either the rate of gas—particle mass transfer or the
oxidation rate. Simulations are performed using the detailed model GECKO-A which predict that
changing the oxidation rate should drastically affect the SOA yield. Two alternative hypotheses
are advanced to explain this discrepancy depending on the assumed magnitude of the vapor wall
deposition rate. If vapor wall loss in the Caltech chamber is of order 107® s71, GECKO-A greatly
overpredicts SOA during high UV experiments, likely due to an overprediction of second-generation
products. However, if instead vapor wall loss in the Caltech chamber is of order 103 s+, GECKO-A
greatly underpredicts SOA during low UV experiments, possibly due to the absence of autoxidation
pathways in the a-pinene mechanism. As the conclusions from this study will be drastically different
depending on the order of magnitude of the vapor wall deposition rate, it is of paramount importance

to resolve the discrepancy between different measurements of this rate.
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A.0.1 Comparison to Zhang et al. (2014)

The SOA growth data from Zhang et al. (2014) can be plotted similarly to Figure 2.3 to observe the
competing effects of kinetic limitations and vapor wall deposition. The yields over the course of each
toluene low-NOy photooxidation experiment in Zhang et al. (2014) are shown as circles in Figure A.2
as a function of Cpy for different seed surface areas. The lines in Figure A.2 are yields calculated
using the SOM model with parameters fit to the experimental data at each surface area but in the
absence of vapor wall deposition (see SI of Zhang et al. (2014) for more details). Yields over the
course of one representative experiment from Ng et al. (2007) are shown as diamonds for comparison.
The measured yields from Zhang et al. (2014) quickly reach a plateau with respect to Cpy, indicating
that the SOA formed via the low-NOy pathway is essentially nonvolatile for Cpg > 10 pg m™3.
These yield curves clearly diverge at different surface areas, due to both vapor wall deposition and
kinetic growth limitations. Yields calculated in the absence of vapor wall deposition diverge into
separate curves solely as a result of kinetic limitations on particle growth. These yields are higher
than the measured yields because species that would have otherwise condensed to the walls are able
to partition to particles. The model presented here qualitatively reproduces this behavior, Figure
A.3. To match the nonvolatile behavior observed in the low-NOyx case of Zhang et al. (2014), the
saturation concentrations of species B through D are all decreased to 10 yg m™>. The magnitudes
of the yields clearly differ from Zhang et al. (2014), but the general behavior is reproduced.

Yields over the course of each toluene high-NOy photooxidation experiment in Zhang et al. (2014)
are shown in Figure A.4, circles representing observed yields and lines representing calculated yields
from the SOM model in the absence of vapor wall deposition. Although the yield curves as a
function of Cpy do diverge slightly, the effect is much less pronounced than in the low-NOy case.
Furthermore, the yields do not reach a plateau with respect to Cp4. To match this observed
behavior, Figure A.5, the saturation concentrations of species B through D are set as [103 10!
1071] ug m™3. The reaction rate constants are set as k[OH]4_,p = k[OH]p_,c = 5x107° s~ and
kE[OH]c_p = 5x107* s71. These parameters do not necessarily represent volatilities or rates of the

toluene high-NOy experiments in Zhang et al. (2014), but merely to show that the present model
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can reproduce the general behavior.
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Figure B.3: Raw and particle wall loss (PWL) corrected number and volume concentration data
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Figure B.4: Raw and particle wall loss (PWL) corrected number and volume concentration data
for the 500 ppb Og experiments. All the raw data are particle wall loss corrected using the average
particle wall loss rates (i.e. average of the particle wall loss rates obtained from low AS-seed only
and high-AS seed only experiments).
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Figure B.5: 10 min-averaged SOA mass yields over the course of an a-pinene ozonolysis experiment
as a function of initial total AS seed surface area concentration for the (a) 100 ppb Oz experiments,
and (b) 500 ppb O3 experiments. Here, all the data have been particle wall loss corrected using the
average particle wall loss rates (i.e. average of the particle wall loss rates obtained from low AS-
seed only and high-AS seed only experiments). Symbol color indicates the SOA mass concentration
and symbol size indicates the time after O3 is injected into the chamber. The x symbols are the
SOA mass yields at peak SOA growth. The y-axis error bars represent the uncertainty in the peak
SOA mass yield, which originates from the a-pinene injection and the aerosol volume concentration
measured by the SMPS at peak SOA growth (one standard deviation). As discussed in the main
text, the use of average particle wall loss rates for particle wall loss correction does not change the
conclusions of this work: 1) SOA mass yields are enhanced at higher Os concentrations, and 2)
there is a lack of a SOA mass yield dependence on the seed surface area within the range of AS seed
surface area concentration used in this study.
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Figure B.6: Reaction profiles of the measured and modeled O3 and a-pinene concentration in the
a-pinene ozonolysis experiments. Panels (a), (b) and (c) show results from the nucleation, low AS
and high AS 100 ppb Oz experiments, respectively. Panels (d), (e) and (f) show results from the
nucleation, low AS and high AS 500 ppb Og experiments, respectively. The blue lines that fit the a-
pinene concentration measurements and the green lines that fit the O3 concentration measurements
are model simulation results that come from the coupled vapor-particle dynamics model using the
optimal model values: ap = 1, ay = 1076, Tolig = 4 h, branching ratios = 0.57, 0.35, 0.04, 0.015
and 0.025 for oxidation products with vapor pressures > 103, 102, 10, 1 and 0.1 g m™3, respectively
(described in the main text).
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Figure B.7: Results of sensitivity tests performed for ay,.
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Figure B.8: Results of sensitivity tests performed for o,. Note that for all experiments except the
two nucleation experiments, a, = 1 and «y = 0.1 give identical results.
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Figure B.9: Results of sensitivity tests performed for 7,j,.
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Figure B.10: Results of sensitivity tests performed for the branching ratios of oxidation products
with vapor pressures > 103, 102, 10, 1 and 0.1 pug m™3.
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Figure B.11: Results from the coupled vapor-particle dynamics model showing how SOA mass
concentration (AM,) changes as a function of reacted a-pinene at different O3 concentrations,
assuming all the a-pinene oxidation products are non-volatile. In these model simulation runs, the
initial a-pinene concentration is fixed at 48 ppb, while the O3 concentration is varied from 75 to
1000 ppb. The Oz injection rate used in these model simulation runs is 500/54.25 ppb min~!.
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Figure B.12: Predictions from the coupled vapor-particle dynamics model showing time-dependent
growth curves for SOA formation from a-pinene ozonolysis at different O3 concentrations. In these
model simulation runs, the initial a-pinene mixing ratio is fixed at 48 ppb, while the O3 mixing
ratio is increased from 75 to 1000 ppb. In the model, the Oz injection rate is assumed to be fixed
at 500/54.25 ppb min~!, and the injection time is increased to achieve the desired O3 concentration
(i.e., 75, 100, 250, 500, 750 or 1000 ppb) in the chamber. The predicted AM, decreased slightly at
the end of the experiment at the higher O3 concentrations (250, 500, 750 and 1000 ppb) due to SOA
evaporation. It is important to note that SOA evaporation is predicted at high O3 concentrations
in the coupled vapor-particle dynamics model, but not observed in chamber experiments.
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Figure B.13: Results from the coupled vapor-particle dynamics model showing how SOA mass
concentration (AM,) changes as a function of reacted a-pinene at different O3 concentrations. In
these model simulation runs, the initial a-pinene concentration is fixed at 48 ppb, while the Og
concentration is varied from 75 to 1000 ppb. Here, the O3 injection rate is five times faster that
the base rate used in the model. The base rate is 500/54.25 ppb min~!, similar to the rate used to
analyze results from the 500 ppb Os experiments. As discussed in the main text, the oxidation rate
effect persists at a higher O3 concentration when a faster O3 injection rate is used. It is important
to note that SOA evaporation is predicted at high O3 concentrations in the coupled vapor-particle
dynamics model, but not observed in chamber experiments.
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Table B.1: Initial and particle wall loss corrected final number concentrations®

Experiment Initial Final % Final %
Number Number Change® Number Change®
Concentration Concentration® Concentration?

100 ppb Oz nucleation 23 8222 3.5 x 104 9152 3.9 x 104
100 ppb Og low AS 39119 32553 -16.8 38689 -1.1
100 ppb Oz high AS 51254 45280 -11.7 39889 -22.2

500 ppb O3 nucleation 1 11303 1.6 x 106 11974 1.7 x 106
500 ppb O3 low AS 39800 35216 -11.5 38905 -2.2
500 ppb Oz high AS 44196 40191 -9.1 35189 -20.4

¢Particle number concentrations (dN).

bThe data shown here correspond to those shown in Figs. B.1 and B.2. The nucleation and low AS
data have been particle wall loss corrected using particle wall loss rates determined from the low
AS-seed only experiments. The high AS data have been particle wall loss corrected using particle

wall loss rates determined from the high AS-seed only experiments.

(Difference between initial and particle wall loss corrected final number concentration) o

c h —
% Change Initial number concentration

100%

4The data shown here correspond to those shown in Figs. B.3 and B.4. All the data have been

particle wall loss corrected using the average particle wall loss rates (i.e. average of the particle wall

loss rates obtained from low AS-seed only and high-AS seed only experiments).



Table B.2: Comparison of experimental conditions used in this work with those of previous dark
a-pinene ozonolysis studies. The SOA mass yields and concentrations of these studies are shown

Fig. B.6.
Study Temperature RH Seed OH O3 AHC
(K) (%) Scavenger  (ppb)  (ppb)
Cocker et al. (2001)¢ 301.2-302.9 <2, 39- None, 2-butanol  130-600 22.6-
49.2 (NH,)2S04 212.3
and NH4HSO4
Cao et al. (2004)° 293 55 MgSOy4 cyclohexane  24-270 12-135
Griffin et al. (1999)  303.3-309.9 5 (NH4)2SO4  2butanol  67-260  16.7-65
Hoffmann et al. (1997)  289.3-322.1 N.A. (NHy4)2SO04 None 210-327  38-154.1
Pathak et al. (2007Db) 288-313 <10 None, 2-butanol 750- 3.7-8.5
(NHy4)2S04 3100
Presto et al. (2005)¢ 295 <10 None 2-butanol  160-605 15-210
Presto et al. (2006)% 295 <10 None 2-butanol  260-350  13.4-135
Shilling et al. (2008)¢ 298 40 (NH4)2S04 1- and 2- 50, 300, 0.3-22.8
butanol 535
Song et al. (2007)f 300.6-301.7 <2 None cyclohexane  46-369  5.9-81.1
This study 298 <5 (NHy4)2SO04 cyclohexane 100, 500 42.4-52.1

%Data collected using aqueous seed aerosol is excluded from our analysis.

bData collected using acidic seed aerosol is excluded from our analysis.

¢Only dark experiments in which [a-pinene]/[NOy] > 15 are used in our analysis.
40nly dark o-pinene ozonolysis experiments are used in our analysis.
¢Data collected in batch mode and continuous-flow mode are used in our analysis.

IData collected using organic seed aerosol is excluded from our analysis.
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Appendix C
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Figure C.1: Overview of the a-pinene + Og initial reaction step in GECKO-A. All subsequent
chemistry is generated according to the standard protocols in GECKO-A.
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Figure C.2: Caption on next page.
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Figure C.2: Total particle volume as a function of time, non-particle wall loss corrected (blue
data points) and using two different corrections for particle wall loss. Red data points have been
corrected with the lower bound assumption, in which deposited particles are assumed to not interact
with vapor, and the mass of SOA present on a particle at the moment of its deposition is added
to the total SOA. Green data points have been corrected with the upper bound assumption, in
which deposited particles continue to grow via condensation at the same rate as suspended particles.
The dramatic increase in the upper bound towards the end of the low UV experiments is likely an
artifact of how the upper bound is calculated. The Aerosol Parameter Model (Pierce et al., 2008)
is used to constrain the rate of condensation to particles by fitting the DMA size distribution at
each time step, and this condensation rate is then applied to deposited particles. At the end of
the low UV experiments, only 11% of the initial total number of particles remain suspended, as
opposed to 30-40% for the high UV experiments. SOA growth in the a-pinene system is not seed
surface area dependent (discussed in the Results section), and condensation to suspended particles
will not decrease due to the decreased number. Therefore, at the end of the low UV experiments,
the condensation rate per suspended particle is very large. With the upper bound correction, the
deposited particles then grow with the same high condensation rate, despite the fact that transport
to deposited particles will be slower than transport to suspended particles. The upper bound is
likely a substantial overestimation for these experiments.
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Figure C.3: Decay of a-pinene as a function of time for the six different photooxidation experi-
ments. Experimental datapoints are shown with blue data points, and GECKO-A predictions are
shown with solid red lines.
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Figure C.4: Ogs formation as a function of time for five of the six experiments. The O3 analyzer
malfunctioned during one of the experiments (not shown). Because a-pinene was not observed to
decay before lights were turned on, the initial O3 concentration was assumed to be zero. Therefore,
the experimental O3 measurements have been normalized to the measured value at time zero (lights
on). A NOy wall off-gassing rate of 2.5 ppt min~! was optimized to match the observed O3 formation.
Although predicted O3 concentrations do not correspond exactly to Oz observations, SOA was not
affected by changing the NOy wall off-gassing rate.



169

50 T T T T T 60 [ e
—— Total model reacted <t [ — Total model reacted
40 I React w/ mod. OH 1 sof- [ React w/ mod. OH
[ React w/ mod. O, ] [ [ React w/ mod. O,
T 4L - - -Reactw/ meas, E g O .. _Reactw/meas
] 1 e
@ : E o 3f °
& 20 ] c
c 7 c r
a ] ‘G 20F
S 10f B s |
< ] < 10
or - E ok .
141007: 100% UV, Nucleation ] E 141016: 100% UV, 1.7x10° pm? cm™
- e b b e b e b e b b e b ol b v b b b b b b by
1—%0 50 100 150 200 250 300 350 1—050 0 50 100 150 200 250 300 350 400
Time (min) Time (min)
50— 50 [T ]
—— Total model reacted B f = Total model reacted q
40 [ React w/ mod. OH E 4o I React w/ mod. OH ]
[ React w/ mod. O, ] [ I React w/ mod. O, ]
S 4L - - -React w/ meas, E g o - 1
R . 1 e ]
P Expt ] o r ]
S 20 J S 20f J
c 7 c [ 7
s ] s ! ]
S 10 ] [Ty ]
< 1 a0 1
e o e
141028: 100% UV, 3.2x10° um? cm™> ] [ 141118: 100% UV, 3.4x1C° pm? cm™> ]
— P S S I T N T O SO S NNEN T R N ol b b b b b b b bl
100 50 100 150 200 250 1—0 0 50 100 150 200 250 300 350 400
Time (min) Time (min)
40 T T T L e e T
357—Total model reacted e ] sl — Total model reacted 1
[ React w/ mod. OH ~ 1 [ [ React w/ mod. OH ]
3o/~ [l React w/ mod. O, - so- [l React w/ mod. O, -
g 25| - - -Reactw/meas. O, .. ] g 25 - - - React w/ meas. O, ]
@ 2 - Exet ] @ 2o ° Expt ]
=4 =
@ 1 Q I 1
£ 151 B £ 151 B
s ] = ]
S 101 B S 10 B
< ] < ]
51~ B 5 B
of- ' - o- . -
Ly, 1L1310% UV, 994G pmPem ] [ 0., 141125:30% LV, 2440 ymPom S| ]
:gOO 0 200 400 600 800 1000 1200 :300 0 200 400 600 800 1000 1200
Time (min) Time (min)

Figure C.5: Amount of a-pinene predicted to be reacted with OH versus Og, for both modeled
and measured Og concentrations. The solid blue line shows the total a-pinene reacted. The green
area shows the amount reacted with OH based on the modeled OH concentration. The red area
shows the amount reacted with O3 based on the modeled O3 concentration. The dashed black line
shows the amount predicted to have reacted with the measured Os concentration. Because the Os
monitor malfunctioned during experiment 141118, the dashed line is not shown for this experiment.
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Figure C.6: Mass of organic aerosol as a function of time. Experimental measurements are shown
with blue data points. GECKO-A predictions are shown for different combinations of the vapor-
particle accommodation coefficient o, and the vapor-wall loss rate kgt Red line: ap=1 and kg =
1073 s71; green line: ap=0.01 and kg, = 1073 s71; blue line: ap=0.001 and kg, = 1073 s71; pink
line: ap=1 and kgyy = 107* s71; cyan line: ap=0.01 and kg, = 1074 s71; black line: a,=0.001 and
kgw = 104 gL, ap=0.1 is not shown; this value gives almost identical predictions to ap=1 with
the exception of the nucleation experiment, in which significantly less SOA is predicted. For the
100% UV experiments, decreasing o, delays the onset of SOA formation which is not consistent
with the observations. Lowering the wall loss rate to 107* s7! for the 100% UV experiments results
in significant overprediction of SOA for all a; except oy = 0.001. Although this combination
yields an ending SOA similar to that of the experiment, the shape of the curve does not agree
with experimental observations. Based on these sensitivity tests, ap = 1 and kg = 1073 s were
determined to provide the best fit for the 100% UV experiments. All of the combinations shown
result in significant underprediction for the 10% UV experiments.



171

150 [ 220
] 200-141016: 100% UV, 1.7x10° pm? cm > 5
180 —
160 —
&~ 100-141007: 100% UV, Nucleation & a0l ]
1 I
€ £ [ 1
> o 1201 g
=1 =4 r 1
~ ~ _ 100~ b
3 S ol 1
= sof s o ]
“r W -
40 ! B
20— *
o e ok i R EP R U R
0 50 100 150 200 250 300 0 100 200 300 400 500 600
Time (min) Time (min)
120 [T T T T 180 [ e e
- 1 1601141118: 100% UV, 3.4x1C° um? cm™3 R
1001-141028: 100% UV, 3.2x10° pmcm ] 140’ 1
o~ sof 4 o~ 120 B
I ] i L 4
€ ] £ 100~ -
2 eof ] 2 ]
< ] < 80— -
o] ] St ,
= 4 = eof 7 E
] L NV ]
] 401 fae! B
201 4 t 4
] 20— —
ob P S SR S BRI ok e T P I
0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450
Time (min) Time (min)
40— 60 [T T T T T T T T T T T T T
35141113: 10% UV, 9.9x10% um? cm™ B of
30 * E
e ] o~ 401141125 10%
£ ] £ E
2 20- - 2 sof
3 | s f
<O 151 1 =X b
10— b L
] 10F
it / — [
of/‘ . L b e e B \7 E
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (min) Time (min)

Figure C.7: Mass of organic aerosol as a function of time. Experimental measurements are shown
with blue data points. GECKO-A predictions are shown for different combinations of C,/(Myyw)
and the vapor-wall loss rate kgy: Red line: Cy /(Myyw)x10 and kg = 1073 s71; green line: base
Cw/(Myyw) and kgy = 1073 s71: blue line: Cw/(Myyw)x0.1 and kg = 1073 s71; magenta line:
Cuw/(Myvyw)x10 and kg = 107* s71; cyan line: base Cuw/(Myvyw) and kgy = 104 s71; and black
line: Cyy/(Myy)x0.1 and kg = 104 571,
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Appendix D

Influence of vapor wall loss in
laboratory chambers on yields of
secondary organic aerosol *

*Reproduced with permission from “Influence of vapor wall loss in laboratory chambers on yields of secondary
organic aerosol” by Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and
Seinfeld, J. H., Proceedings of the National Academy of Sciences, 111, 5802-5807, doi:10.1073/pnas.1404727111,
2014.



!
7,
~

CrossMark
& click for updates
178
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Secondary organic aerosol (SOA) constitutes a major fraction of
submicrometer atmospheric particulate matter. Quantitative sim-
ulation of SOA within air-quality and climate models—and its
resulting impacts—depends on the translation of SOA formation
observed in laboratory chambers into robust parameterizations.
Worldwide data have been accumulating indicating that model
predictions of SOA are substantially lower than ambient observa-
tions. Although possible explanations for this mismatch have been
advanced, none has addressed the laboratory chamber data them-
selves. Losses of particles to the walls of chambers are routinely
accounted for, but there has been little evaluation of the effects
on SOA formation of losses of semivolatile vapors to chamber
walls. Here, we experimentally demonstrate that such vapor losses
can lead to substantially underestimated SOA formation, by fac-
tors as much as 4. Accounting for such losses has the clear poten-
tial to bring model predictions and observations of organic aerosol
levels into much closer agreement.

M ost of the understanding concerning the formation of
secondary organic aerosol (SOA) from atmospheric oxi-
dation of volatile organic compounds (VOCs) over the past 30 y
has been developed from data obtained in laboratory chambers
(1). SOA is a major component of particulate matter smaller
than 1 pm (2) and consequently has important impacts on re-
gional and global climate and human health and welfare. Ac-
curate simulation of SOA formation and abundance within 3D
models is critical to quantifying its atmospheric impacts. Mea-
surements of SOA formation in laboratory chambers provide the
basis for the parameterizations of SOA formation (3) in regional
air-quality models and global climate models (4). A number of
studies indicate that ambient SOA concentrations are under-
predicted within models, often substantially so, when these tra-
ditional parameterizations are used (e.g., 5, 6). Some of this bias
has been attributed to missing SOA precursors in emissions in-
ventories, such as so-called intermediate volatility organic com-
pounds, to ambient photochemical aging of semivolatile compounds
occurring beyond that in chamber experiments (7) or to aerosol
water/cloud processing (8). The addition of a more complete
spectrum of SOA precursors into models has not, however, closed
the measurement/prediction gap robustly. For example, recent
analysis of organic aerosol (OA) concentrations in Los Angeles
revealed that observed OA levels, which are dominated by SOA,
exceed substantially those predicted by current atmospheric
models (9), in accord with earlier findings in Mexico City (10).

Here, we demonstrate that losses of SOA-forming vapors to
chamber walls during photooxidation experiments can lead to
substantial and systematic underestimation of SOA. Recent
experiments have demonstrated that losses of organic vapors to
the typically Teflon walls of a laboratory chamber can be sub-
stantial (11), but the effects on SOA formation have not yet been
quantitatively established. In essence, the walls serve as a large
reservoir of equivalent OA mass that compete with the partic-
ulate SOA for SOA-forming compounds.

5802-5807 | PNAS | April 22,2014 | vol. 111 | no. 16

Toluene Photooxidation Experiments

The effect of vapor wall loss on SOA formation has been com-
prehensively assessed based on results from a series of 18-h
toluene photooxidation experiments conducted in the California
Institute of Technology (Caltech) environmental chamber under
both high- and low-NOj conditions (SI Appendix, Toluene Photo-
oxidation Experiments and Table S1). Toluene is a component of
motor vehicle emissions and an important SOA precursor (1).
Initial [VOC]/[NOy] ratios were 5.4 + 0.3 ppbC/ppb, similar to
current conditions in Los Angeles. In these experiments, the ratio
of initial seed particle surface area (SA) to chamber wall SA was
systematically varied by changing the concentration and diameter
of (NH,4),SO, seed aerosol and keeping all other conditions the
same [i.e., hydroxyl radical (OH) and toluene concentration]. In
this manner, the influence of seed SA on SOA formation can
be isolated.

Fig. 1 shows the observed time-dependent SOA yields, defined
as the mass of SOA formed per mass of VOC reacted, de-
termined from the evolution of the particle size distributions (S
Appendix, Fig. S1) as a function of initial seed SA for the high-
and low-NOy experiments. The SOA concentrations have been
corrected for physical deposition of particles to the walls (S
Appendix, Particle Wall Loss Correction), which is the appropriate
correction to use here as our analysis explicitly accounts for
loss of vapors to the walls, discussed further below. Except for
the unseeded experiment, the SOA yield for each low-NOy

Significance

Atmospheric secondary organic aerosol (SOA) has important
impacts on climate and air quality, yet models continue to have
difficulty in accurately simulating SOA concentrations. Nearly
all SOA models are tied to observations of SOA formation
in laboratory chamber experiments. Here, a comprehensive
analysis of new experimental results demonstrates that the
formation of SOA in laboratory chambers may be substantially
suppressed due to losses of SOA-forming vapors to chamber
walls, which leads to underestimates of SOA in air-quality and
climate models, especially in urban areas where anthropogenic
SOA precursors dominate. This analysis provides a time-
dependent framework for the interpretation of laboratory
chamber experiments that will allow for development of
parameterized models of SOA formation that are appropri-
ate for use in atmospheric models.
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Fig. 1. Hourly averaged lower bound SOA yields over the course of

a toluene photooxidation experiment as a function of initial ammonium
sulfate seed surface area for (A) high-NO, and (B) low-NO, conditions.
Symbol color indicates the SOA mass concentration and symbol size the
time after lights were turned on. The filled circles are from the current
experiments and the open diamonds from ref. 21. The dashed gray line
and x are the end-of-experiment yields from the optimized best-fit SOM
simulations.

experiment is reasonably constant with time (from 4 to 18 h) and
Coa at any given SA. For each high-NOy experiment there is
a clear increase in the yield with Coa and time. The toluene
SOA vyield at a given Cop is generally lower for high-NO, than
for low-NOy conditions at a comparable initial seed S4. These
differences in the time-dependent yields indicate differences
in the chemical pathways leading to SOA formation between
low- and high-NOy conditions. Most importantly, the absolute
amount of SOA formed for the same initial conditions in-
creases with seed SA4, consistent with refs. 12 and 13, with an
indication of a plateau being reached at the highest seed SA4.
The SOA formed in the unseeded experiments is particularly
small. Typical laboratory chamber experiments use initial seed
SA < 10° pm2 cm™>, which corresponds to seed-to-wall ratios
of <1 x 107 in most chambers. These experiments definitively
demonstrate that SOA yields vary with seed SA. This variability
may partially explain some of the differences in SOA yields
reported in the literature.

Zhang et al.
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SOA Modeling and the Influence of Vapor Wall Loss

The increase in yield with seed SA is consistent with loss of
vapors to the chamber walls, and likely results from an increase
in the rate of mass transfer of vapor species to the particles
relative to the walls. Quantitative understanding of the role of
vapor wall loss is necessary to characterize the extent to which
SOA yields in chamber experiments are underestimated relative
to the atmosphere. The loss of “extremely low volatility” organic
compounds to chamber walls has recently been implicated
as important for understanding SOA formation for a different
chemical system, a-pinene + Oj (13, 14). The competition be-
tween vapor condensation to particles versus to chamber walls
is quantitatively examined here using a time-dependent, parame-
terizable model of SOA formation, the statistical oxidation
model (SOM; refs. 15, 16; SI Appendix, The Statistical Oxidation
Model). The SOM accounts for vapor wall losses based on
observations showing that wall losses of semivolatile species in
Teflon chambers are reversible (11). Such wall loss is modeled
dynamically and depends on the equivalent OA mass of the
chamber walls (C,,, mg m~>), the first-order vapor wall loss rate
coefficient (k,, s™'), and the vapor saturation concentration of
compounds i (C}, pg m™>). k,, reflects the combined effects of
turbulent mixing in the chamber, molecular diffusion of vapor
molecules through the near-wall boundary layer, and any pene-
tration into chamber walls. k,, is likely to be chamber specific,
as the extent of turbulent mixing depends on specific chamber
operating conditions, but is reasonably independent of com-
pound identity (11). Values of k,, for a range of gases were es-
timated in one study (17) to range from ~2 x 10~ to 107> s/,
corresponding to timescales of many hours to 10 min. The largest
ky, values are appropriate only for chambers with active mixing,
which the Caltech chamber does not have (SI Appendix, Vapor
Wall Loss). Observations (11) suggest that C,, varies somewhat
with compound identity, ranging from ~2 to 24 mg m~>, com-
pared with chamber OA concentrations that are usually 1-3
orders of magnitude smaller; a value of 10 mg m~ is used here
as the base case. Gas-particle partitioning is modeled dynami-
cally assuming absorptive partitioning, including correction for
noncontinuum effects and imperfect accommodation, the latter
of which is characterized by the mass-accommodation coeffi-
cient, a. The accommodation coefficient reflects the overall
transfer of vapor molecules into the particle bulk, and is likely
dependent on the chemical makeup of both the vapor and par-
ticle phases and processes that occur at the particle surface. This
formulation is more general than most previous analyses of SOA
formation in environmental chambers, which typically assume
instantaneous gas-particle equilibrium.

Optimal values for k,, and o have been determined for the sets
of low- and high-NOy experiments by comparing observed and
simulated best-fit time-dependent Cpa profiles for a wide range
of ky, and a. The k/a pair that provides for the best overall
agreement with the time-dependent SOA formation observed
across all experiments at a given NOy condition, excluding the
nucleation experiments, is considered the optimal solution (Fig.
2 A and B) (SI Appendix, Optimizing k,, and « and Fig. S3). For
low-NO, experiments, the optimal k,, = 2.5 x 107™* s~ and « =
2 x 107°. The independently determined values for high-NO, ex-
periments are similar: &, = 2.5 x 10 s™ and « = 1 x 107, The
simulations provide good overall agreement with the observed seed
SA dependence only for a combination of a small a and a k,, on
the order of 107 57!, indicating that both parameters are im-
portant to describing chamber SOA formation. (It should be
noted that a reasonable fit for an individual experiment can be
obtained for many k/a pairs, including when instantaneous gas-
particle equilibrium is assumed, i.e., when o = 1. This is not
meant to imply that the absolute values of these parameters are
not important, but that only in analyzing the combined datasets

PNAS | April 22,2014 | vol. 111 | no. 16 | 5803

EARTH, ATMOSPHERIC,
AND PLANETARY SCIENCES



!
7
=y

180
A low-NO, B high-NO,
so T T T
60 |- —
40 - -
20 -
0

3
Con (ngm)

o888

T T 1

L1 1

Seed Surface Area ————p

0 0 1 1 1
0 5 10 15 0 5 10 15 20
Reaction Time (hours) Reaction Time (hours)

C T T T T T
5r ® high-NO,|
B low-NO,
4+ _
g
X 3 + -
2 ° o ﬁ o N
o o
u]
1 1 1 1 1 1
0 2 4 6 8 10 qo410°

Initial Seed Surface Area (um2 cm's)

Fig. 2. Observed (points) and simulated (lines) SOA concentrations for each photochemical oxidation experiment performed for different initial inorganic
seed surface area for (A) low-NO, and (B) high-NOy conditions. The dashed lines indicate the experiment to which the SOM was explicitly fit, and the solid lines
indicate simulation results based on those fits. (C) The wall loss bias factor, Ry, as a function of seed surface area. Filled symbols use the optimal ky/« pair
and the corresponding best-fit SOM parameters determined from A and B. Open symbols assume a = 1 and each experiment was individually fit using the

optimal k. The error bars indicate the 16 SD in R4 for each experiment over the period when Coa > 0.5 pg m

at multiple seed S4 can optimal k,, and o« values be uniquely
established.) The determined optimal k,, values are consistent
with theoretical estimates (SI Appendix, Vapor Wall Loss and Fig.
S4) and some observations (11), but larger than some previous
observations in the Caltech chamber (18), most likely reflecting
the limited time resolution of those observations, which might
not have allowed for separation of filling and mixing of the
chamber from wall loss, but potentially also reflecting differences
between chemical systems.

The small optimal a values required to reproduce the observed
seed SA dependence likely reflect mass-transfer limitations
within the particle phase, which can occur for highly viscous SOA
particles (19). When a ~10~%, mass accommodation is relatively
slow and the vapors and particles cannot be assumed to be
in instantaneous equilibrium. The timescale associated with
reaching gas-particle equilibrium (tg.peqm) varies with seed S4

5804 | www.pnas.org/cgi/doi/10.1073/pnas.1404727111
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and size (ST Appendix, Gas-Particle Partitioning Timescales and
Fig. S5). Given a = 1073, Tg.p.cqm Tanges from ~230 min for the
smallest seed SA to only ~30 min for the largest seed SA. Thus,
at the smallest seed SA Tg.p cqm is similar to the timescale de-
termined for gas wall loss (1/ky, = 67 min) and the influence of
gas wall loss is more pronounced.

Importantly, loss of condensable vapors to the chamber walls
leads to a low bias in the observed SOA formed even for the
experiments with the highest seed SA. To quantitatively assess
this bias, simulations have been performed using the best-fit
SOM parameters determined for the optimal ky/o pair above,
but with k,, = 0 (no wall loss). The ratio Ryay = Csoa(kw = 0)/
Csoa(kw,optima) has been calculated for each experiment and
quantifies the bias in the SOA yield due to traditionally un-
accounted for vapor wall losses. The magnitude of R,.; depends
on the experiment considered, decreasing with increasing seed

Zhang et al.
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SA and reaching a plateau at large seed SA4 (Fig. 2C). For
the seeded experiments, Ry, averaged over the period when
Coa > 0.5 pg m~ varied from 3.6 (£0.6) to 2.1 (+0.2) for low
NOy and from 4.2 (+0.9) to 2.1 (+0.2) for high NOy in going
from lowest to highest seed S4, and where the uncertainties are
1 SD over the averaging period. These ratios correspond to end-
of-experiment corrected mass yields of 1.6 (low NOy) and 0.93
(high NOy), substantially exceeding the values currently used
in chemical transport models for toluene (~0.47 for low NOx
and ~0.12 for high NOy; ref. 4). Given an O:C ratio for toluene +
OH SOA of ~0.7 (20), the carbon yields would be 0.94 (low
NOy) and 0.55 (high NOy). [The calculated end of experiment
O:C are 0.67 (low NOy) and 0.91 (high NO,).] This implies
that ~6% and ~55% of the product carbon mass remains in the
gas phase for low- and high-NOy conditions, respectively. The
oxidation process is a balance between functionalization and
fragmentation. In the absence of fragmentation, the carbon yield
would asymptote to 100%. The low-NOy carbon yield in the
absence of vapor wall loss is close to 100% and the SOA yield is
approximately independent of the total OA mass, which together
indicate that fragmentation plays only a minor role. Fragmen-
tation is comparably more important under high-NOy conditions.

Interestingly, Ry, values similar to those determined for the
optimal ky,/a pair are obtained when vapor wall loss is
accounted for (i.e., ky # 0) but when it is assumed that a = 1 (i.e.,
that gas-particle equilibration is effectively instantaneous) during
fitting of each individual experiment (Fig. 2C). This indicates
that the magnitude of « is not key to fitting of an individual
experiment, but when the experiments are taken together as
a combined dataset « is indeed key to matching the observed
dependence on seed surface area. Related, a is not key to there
being an influence of vapor wall loss on the overall SOA yield,
which is controlled more so by the magnitude of &, although at
lower seed SA for a given k, the derived Ry, increases as o
decreases. The finding that large Ry.; values are obtained even
when a = 1 indicates that the general conclusions here regarding
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vapor wall loss are robust with respect to knowledge of a. This is
important because other chemical systems might not exhibit as
slow mass accommodation but could still be affected by vapor
wall loss. Clearly, loss of condensable vapors to the chamber
walls can suppress SOA yields relative to those that are relevant
for the atmosphere.

Dependence on Experimental Conditions

For a given chamber, the extent to which vapor wall loss affects
SOA yield will depend on the combination of (i) the rate of
oxidation and duration of a given experiment, (ii) the precursor
VOC concentration, (iii) the particular chemical pathways as-
sociated with oxidation of a given species, i.e., the precursor
identity, and (iv) the seed SA. This is illustrated for the toluene
low-NOy system by carrying out a series of 18-h simulations
where [OH] is varied from 1 to 100 x 10° molecules cm~ and
[toluene]ipiial from 1 to 900 ppb for a seed S4 = 1,000 pm? cm™>
using the SOM parameters and optimal k,/a determined above.
The calculated R, varies with oxidant and precursor concen-
tration (actually, VOC loss rate), with smaller Ry,; when oxi-
dation is faster and at larger precursor VOC concentration (Fig.
3 and SI Appendix, Fig. S6). (Note that these calculations do not
account for differences that might result from changes in the
relative importance of RO, + HO; versus RO, + RO, reactions
as [VOC]initia and [OH] are varied.) Such “rate effects” have
been observed for SOA produced in aromatic systems (21). The
seed SA dependence is substantially reduced when the [VOC]ipigial
is large, especially at high [OH]. Overall, these dependencies,
along with differences in the initial seed S4, may help explain
some of the differences (and similarities) in historical aerosol
yields measured in different chambers.

Vapor Losses and Sensitivity to C,,

The observed time-dependent Cpa to which the SOM was fit
were corrected to account for physical deposition of the particles
to the walls. Loss of vapors, excluding growth of suspended
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Fig. 3. Calculated SOA yield bias as a function of initial toluene concentration and OH concentration when k,, = 2.5 x 107*s™" and C,, = 10 mg m~3. The Ryai
values for a given [toluene] and [OH] are indicated by colors and contours, and are averaged over the period when Csoa > 0.5 pg m~ to the end of an
experiment at 18 h. Results are based on the optimal fit of the SOM to the low-NO, experiments.
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particles, was separately accounted for assuming that the vapors
continuously interact with the Teflon chamber walls, with C,, =
10 mg m™ (11). Some previous studies (22, 23) have alterna-
tively assumed that vapors interact only with particles that have
deposited to the walls during that experiment, as opposed to with
the walls directly, and further that the timescales associated with
partitioning between vapors and suspended or wall-deposited
particles are the same (SI Appendix, Particle Wall-Loss Correc-
tion). In this alternative scenario, the effective C,, is time de-
pendent (and zero at the start of an experiment) and related to
the suspended particle concentration and the particle wall loss
rate. Most chamber experiments aim to limit the extent of par-
ticle deposition, and thus it is reasonable to assume that, in
general, the concentration of wall-deposited particles is less than
the suspended particle concentration. Further, most modern
experiments limit the observed Coa to < 0.1 mg m™, and thus
the effective C, in this alternative case will be substantially
smaller than when vapors are assumed to partition into the
chamber walls.

It is therefore useful to examine the dependence of the cal-
culated Ry, on the assumed C,, where an assumed C,, < ~0.1
mg m~> corresponds approximately to the wall-deposited particle
alternative scenario (22, 23). This has been done for the low-NOy
experiments where the SOM was fit to the observations for dif-
ferent assumed C,, with good fits obtained for all C. Above
C,=02mg m™ (=200 pg m_3) the calculated R, is constant.
Below 0.2 mg m~ the calculated Ry, falls off, reaching a second
plateau at small Cy, that is still above unity (Fig. 4). The plateaus
at high and low C,, result from the best-fit SOM parameters
varying with C,, to compensate for the differing amounts of loss
of vapors to the walls and still maintaining the same suspended
Coa time profile (SI Appendix, Fig. S7). Because measurements
demonstrate that vapors are lost directly to Teflon walls (11), this
indicates that when vapor wall loss is accounted for assuming
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that the vapors interact only with wall-deposited particles, the
extent of the vapor loss is underestimated. That Ry, is constant
above C,, = 0.2 mg m~> demonstrates that our conclusions are
robust with respect to the assumption regarding the exact value
of C,,.

Consideration of Historical Experiments

To estimate the potential influence of vapor wall losses for sys-
tems other than toluene, we calculated SOA yield biases for
a variety of other VOCs (16, 20, 21, 23, 24) (SI Appendix, Fitting
of Historical Chamber Data). It should be noted that the exper-
imental conditions in the historical experiments are not identical
to those for the toluene experiments, especially for high-NO,
conditions (SI Appendix, Historical Experiments). Although k,, for
a given chamber is reasonably independent of the precursor
compound, a may depend on the precursor identity. The results
for the toluene experiments indicate that smaller o values gen-
erally correspond to larger Ry.,y. Therefore, a conservative, likely
lower-bound estimate of Ry, has been obtained for each precursor
assuming that « = 1 during fitting and using k,, = 1 x 107~ 57!
(instead of 2.5 x 10™*) to account for potential differences in the
chamber used for these historical experiments (SI Appendix, Figs.
S8-S10). The use of a smaller ky, will decrease Ry, all other
factors being equal. Calculated R,y values range from as small
as 1.1 to as large as 4.1 (Table 1 and SI Appendix, Fig. S11). The
typically smaller values for the high-NOy vs. low-NOy experi-
ments reflect the much shorter reaction timescales and higher
oxidant and NOy concentrations in the historical high-NOy ex-
periments, compared with the current experiments with toluene.
Evidently, the extent to which vapor wall loss will have influenced
historical experiments is variable, yet potentially substantial and
deserving of further investigation through new experiments and
consideration of other datasets. Importantly, the results here
indicate that quantitative analysis of SOA formation in chambers
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Fig. 4. Calculated vapor wall loss bias, Ry, as a function of the effective wall mass concentration, C,, for the low-NO, toluene photooxidation experiments
at varying initial seed surface area. For each C,, the SOM was fit to the experiment with seed surface area = 5.5 x 10° pm? cm™3 using k,, = 2.5 x 10™*s™" and
« =2 x 1073, The determined best-fit SOM parameters were then used to simulate SOA formation for the experiments performed at other seed concen-

trations but assuming the same C,,.
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Table 1. Average biases in SOA yields due to vapor wall losses
for various VOCs under low- and high-NO, conditions

Low-NO, High-NO,
voc* Rua" Ruatl "
Toluene* (this study) 2.1-3.6 2.1-4.2
n-dodecane (16) 4.1 +0387 1.16 + 0.08
2-methylundecane (16) 3.7+05 1.4 +0.2
Cyclododecane (16) 3.0+ 0.3 1.10 + 0.05
Hexylcyclohexane (16) 24 +0.3 1.16 = 0.07
Toluene (21) 19+04 1.13 + 0.06
Benzene (21) 1.8+ 0.4 1.25 + 0.1
M-xylene (21) 1.8+ 0.4 1.2+ 0.1
M-xylene (23) 1.6 +0.3
Naphthalene (24) 1.2+ 0.1 1.2+ 0.1
a-pinene + OH (20) 1.6 +0.3 1.3+ 0.1
Isoprene + OH (20) 3.1+ 1.3 22+ 05

*For all VOC's except toluene (this study), k, = 1 x 107 s~ and « = 1. For
toluene (this study), k,, = 2.5 x 107* s™" and « = 0.002 (low NO,) or 0.001
(high NO,).

*Calculated for the period when Cson > 0.5 pg m~3 through the end of
a given experiment.

*For toluene, the reported Ry indicate the range of values determined at
different initial seed SA.

YUncertainties are 1o over the averaging period.

requires use of an explicitly time-dependent model that accounts
for the simultaneous and competing condensation of vapors onto
particles versus onto the chamber walls, representing a major
shift from most historical analyses, which did not take time ex-
plicitly into account.

Implications

Our results show that the effect of vapor wall loss on SOA yields
can be substantial. If reported SOA yields are low by factors of
~1.1-4.2, as our results suggest they may be, then SOA con-
centrations simulated in 3D models will be correspondingly low.
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Although the analysis presented here for the toluene SOA system
needs to be comprehensively expanded to other main classes of
SOA precursors, beyond the assessment above, it is likely that a lack
of proper accounting for vapor wall losses that suppress chamber-
derived SOA yields contribute substantially to the underpre-
diction of ambient SOA concentrations in atmospheric models.

Materials and Methods

Chamber Experiments. Toluene photooxidation experiments were carried out
in the new 24-m> Teflon environmental reaction chambers at Caltech. Liquid
toluene was evaporated into the chamber to achieve a concentration of ~38
ppb gas-phase mixing ratio (= 143 pg m~3). Hydroxyl radicals were gener-
ated from photolysis of H,0, either with (high NOy) or without (low NO,)
addition of NO to the chamber. Dried ammonium sulfate seed particles were
added via atomization of an aqueous solution of ammonium sulfate solu-
tion until the desired seed concentration was obtained. The toluene, seed
particles, H,O, and NO, were allowed to mix in the chamber for 1 h, after
which time the black lights were turned on to initiate H,O, photolysis.
Particle number size distributions were measured using a cylindrical differ-
ential mobility analyzer coupled to a condensation particle counter. More
details are available in the S/ Appendix.

SOA Modeling. The statistical oxidation model (15) was used to analyze the
experimental observations. The SOM simulates the multigenerational gas-
phase oxidation of a precursor VOC that has Nc¢ carbon atoms and Ng oxy-
gen atoms as reactions cause the precursor and product species to func-
tionalize, increasing No, and/or fragment, decreasing Nc. Addition of oxygen
atoms leads to a decrease in vapor pressure, which drives condensation of
the gas-phase species. Mass transfer between the gas and particle phases is
treated dynamically. The parameters that describe functionalization, frag-
mentation, and the decrease in vapor pressure upon oxygen addition are
adjusted by fitting to the experimental observations of time-dependent SOA
formation. More details are provided in the S/ Appendix.
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Section 1. Materials and Methods

The Supplementary information contains an overview of the new and historical chamber
experiments (S1.1), optimization of k, and a (S1.2), the statistical oxidation model (S1.3), the
treatment of vapor wall loss within the SOM and a discussion of vapor-particle equilibrium

timescales (S1.4), and the fitting of historical chamber data (S1.5).

S1.1. Experiments

S1.1.1. Toluene Photooxidation Experiments

Toluene SOA formation experiments were conducted in the new Caltech dual 24-m’
Environmental Chambers, in which the temperature (T) and relative humidity (RH) are
automatically controlled. Prior to each experiment, the Teflon chambers were flushed with
clean, dry air for 24 h until the particle number concentration < 10 cm™ and volume
concentration < 0.01 um3 cm”. Ammonium sulfate (AS) seed aerosol was injected into the
chamber by atomizing 0.015 or 0.1 M aqueous (NH4),SO4 solution into the chamber for 30 to
120 min. The resulting total AS seed surface area ranged from ~ 1 x 10> um” cm™ up to ~ 1 x
10* um® cm™, and the corresponding particle-to-wall surface area ratio ranged from ~ 1 x 107
to 7 x 10™. Hydrogen peroxide (H,0,) was used for the OH source by evaporating 120 pL of
50% wt aqueous solution into the chamber with 5 L min™ of purified air for ~ 100 min,
resulting in an approximate starting H,O, concentration of 2.0 ppm. 3 pL toluene (Sigma-
Aldrich, 99.8% purity) was injected into a glass bulb, which was connected into the Teflon
chamber. 5 L min™ of purified air flowed through the glass bulb into the chamber for ~ 15
min, introducing ~ 40 ppb toluene into the chamber. For experiments at elevated NOy (i.e.
high-NOy conditions) NO and NO;, were added to the chamber at the start of a given
experiment until the concentrations were ~17 ppb and 30 ppb, respectively. The initial
[VOC]/[NOy] in the high-NOy experiments ranged from 4.8-6.0 ppbC/ppb. After ~ 90 min
mixing, photooxidation was initiated by irradiating the chamber with black lights with output
wavelength ranging from 300 to 400 nm. The irradiation leads to photolysis of H,O, to
produce OH radicals with an approximately constant concentration throughout the entire

experiment. Temperature and relative humidity of all experiments were ~298 K and ~3%,
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respectively. The initial O3 concentration was below detection limit in all experiments. H,O,
exerts an interference on the O3 detection, increasing the O3 monitor readout by ~ 2-3 ppb in
the current study. NO was continuously injected into the chamber over the course of each
experiment at 80 ppb h' for the first 2.5 h of reaction, then 50 ppb h™ for the next 4.5 h of
reaction, and then 30 ppb h™' for the remainder of the reaction. Experimental conditions (e.g.

[VOC], seed surface area, [NOy]) for each experiment are reported in Table S1.

A suite of instruments was used to monitor toluene SOA formation and evolution. T, RH, NO,
NOy and O3 were continuously monitored. Toluene concentration was monitored using a gas
chromatograph with flame ionization detector (GC/FID, Agilent 6890N), equipped with a HP-
5 column (15 m x 0.53 mm ID x 1.5 um thickness, Hewlett-Packard). Particle size
distribution and number concentration were measured by a cylindrical differential mobility
analyzer (DMA; TSI Model 3081) coupled to a condensation particle counter (TSI Model
3010). The DMA was operated in a closed system with a recirculating sheath and excess flow
of 2.67 L min" and a 5.4 : 1 ratio of sheath to aerosol flow rate. The column voltage was

scanned from 15 to 9850 V over 45 s.

S1.1.2. Historical Experiments

All the other SOA formation experiments used in SOM optimal fitting were carried out in the
Caltech dual 28-m® Environmental Chamber. Details of experimental protocols can be found
in (1-6). Experimental conditions are reported in Tables S2 and S3 and differences in
methodology from the above toluene photooxidation experiments are highlighted below. An
identical suite of instrumentation was used as in the toluene photooxidation experiments. The
historical experiments typically had seed S4 around 1-2 x 10° cm™, corresponding to the
lowest seeded experiments in the toluene photooxidation experiments. The majority of the
historical low-NOy experiments examined in this study used similar methods and conditions
as the new toluene experiments, i.e. used H,O, as the OH source. The experimental
procedures associated with the high-NOx experiments differed from the new toluene
experiments. Specifically, for the historical high-NOy experiments the primary OH source
was HONO photolysis, as opposed to H,O, photolysis. This has the practical implication of
leading to reaction conditions where (i) the OH concentration is initially ~O(10” molecules
cm™) and decays rapidly over a period of ~1-3 hours and (ii) the initial [VOC]/[NO,] ratio

tends to be much smaller compared to the current experiments. Thus, the timescales of SOA
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formation during the historical high-NOy experiments were, in general, very different than for
the toluene photooxidation experiments: rapid formation over approximately 1-2 hours vs.
continuous formation over 18 hours. For high-NOy experiments, NOy was added prior to the
lights being turned on both from the HONO injection, which introduces some NO>, and from
addition of NO. Additional NO was produced upon photolysis of HONO. Typical initial NOy
concentrations were on the order of 500 ppb, corresponding to initial [VOC]/[NOy] of ~0.5
ppbC/ppb (Table S3).

S$1.1.3. Particle Wall-Loss Correction

Particle wall losses during an experiment must be accounted for. Two limiting assumptions
have been made for the interactions between those particles that have deposited on the wall
and suspended vapors in determining the corrected suspended SOA concentrations (5, 7, 8).
In one case, particles deposited on the wall are assumed to cease interaction with the
suspended vapors and no loss of vapors to the walls is accounted for. This case gives the
lower bound of the total organic mass concentration, since particles remain the same size as at
the moment they deposited on the wall for the remainder of the experiment. SOA
concentrations determined from this case are used for the primary analysis in the manuscript,
which is appropriate because vapor loss to the walls is treated separately. In the second
limiting case, particles deposited on the wall are assumed to continue to interact with the
suspended vapors as if they had remained suspended, with the wall-bound particles assumed
to grow at the same rate as suspended particles in the chamber. The corrected SOA
concentrations in this case are larger than in the first case because of the additional uptake of
vapors to wall-bound particles. This case provides an upper-bound on the actual SOA formed
under the assumption that the vapors interact with wall-bound particles, but not the Teflon
walls (5, 7, 8). However, traditional application of this second case does not account for the
substantially differing timescales of gas-particle vs. gas-wall transport, nor does it account for
loss of vapors to the chamber walls and the substantially larger amount of effective absorbing
mass of the walls (Cy) compared to the deposited particles. Compared with Cy, (10 mg m™),
which is assumed as a constant from the onset of the experiment, the total organic mass
deposited on the chamber wall over the course of 18 h photooxidation is ~ 3 orders of

magnitude lower. As such, this “upper bound” can underestimate the actual SOA formation,
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as it accounts for only a subset of the overall vapor wall-loss correction. Nonetheless, the

“upper bound” corrected results are provided for reference to previous experiments.

For either case, the Aerosol Parameter Estimation (APE) model (9), derived on the basis of
the aerosol general dynamic equation (10), is employed to calculate these two limits. The
suspended particle population evolves as a result of three processes: coagulation,
condensation, and wall-loss. The change of suspended particle number-size distribution due to
coagulation is well constrained. The size-dependent wall loss rate is determined by
experimentally monitoring the decay of dry inert (NH4),SO4 particles assuming first-order
kinetics. The condensation rate is the only free parameter in the model, which can be obtained
by optimal fitting of the APE model predictions to the DMA measured particle size
distribution at each time step. Once the condensation rate values are estimated, they can be
applied to parameterize the growth of particles on the walls due to condensation of gaseous
vapor and deposition of suspended particles. A factor that describes the extent of interactions
between deposited particles and suspended vapors is applied when summing aerosol masses
in the chamber core and on the walls. A value of 0 for this factor corresponds to no
condensation to deposited particles. A value of 1 for this factor corresponds to the case where
the condensation rate of gaseous vapors to deposited particles is the same as those suspended.
The primary analysis in this work utilizes the corrected particle mass under the assumption of
no condensation to deposited particles because vapor wall loss is treated separately. The
evolution of the wall-loss corrected particle size distributions is shown for each experiment in
Fig. S1 for the lower limit case. The time-dependent aerosol growth, from which the aerosol

yield can be calculated, is shown for each experiment in Fig. S2 for both limiting cases.

$1.2. Optimizing k,, and a

The optimal values of k, and o were determined using the general procedure as outlined
below. There were a total of 6 experiments conducted for each NOy condition, 5 with seed
aerosol and 1 without. Only the seeded experiments are considered in the optimization
method because of difficulties associated with specification of nucleation. The SOM was fit to
one of these 5 seeded experiments for a variety of &, and a values. For each ky/a pair a set of

best-fit SOM parameters (i.e. ALVP, ms,, and the Prye array) were determined. Specifically,
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the experiments with seed S4 = 5.5 x 10°> um?* em™ (low-NOy) and S4 = 3.5 x 10° pm? cm™
(high-NOy) were used for fitting. These best-fit SOM parameters and the associated ky/o pair
were then used to simulate SOA formation for the other 4 seeded experiments. Reduced

goodness of fit metric (*.q) values were calculated for each experiment as:

Xzed - n_z_l Z (COA,obs(t)_COA,model(t)>2 (Sl)

004,0bs ®

where n is the number of data points per experiment, 6 is the number of model degrees of
freedom and Goa obs is the uncertainty in the observations. For each experiment, the minimum
xzred across all &y/o pairs was determined, and the set of ered values for each experiment was
normalized by the minimum in that set. Normalization ensures that the different experiments
carry equal weight in the next step. The composite s across all seeded experiments was

then determined as:
szed,composite (kw' C() = Z?zl X?ged,norm,i(kw' a) (SZ)

where the sum is over the normalized ¥ for all seeded experiments. Smaller values of the
composite y’rq indicate overall better agreement across all of the seeded experiments for a
given set of best-fit SOM parameters, k, and a. A contour diagram of the calculated
composite y’req as a function of &y and a (Fig. S3) illustrates that only certain combinations of
kw and a provide for good agreement across all experiments. There is almost no seed effect
when o > 0.1, and therefore the overall agreement is poor no matter what k,, is used. As a is
lowered, a seed effect becomes evident. However, only when a is O(10~) and &, is O(10%)
can overall good agreement with all experiments be obtained. Since the &, and a values were
not determined from a specific fitting algorithm, we refer to the values that provide for best
agreement as the “optimal” values rather than “best fit” values. These are: ky = 2.5 x 10 5™
and oo =2 x 107 for low-NOy experiments and &y, = 2.5 x 10* st and o = 1 x 107 for high-

NOy experiments.
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S1.3. The Statistical Oxidation Model

The SOM simulates the oxidation of a given hydrocarbon as a trajectory through a 2-D grid of
carbon and oxygen atoms in which “species” are considered particular carbon/oxygen
combinations (e.g. C;,04). Specific rules define the movement through this space, describing
the probability that a reaction leads to functionalization or fragmentation, how many oxygen
atoms are added per reaction, and the decrease in vapor pressure that occurs upon addition of
a single oxygen atom. SOM effectively simulates the multi-generational chemistry that
characterizes photooxidation experiments. Full details are provided in (6, 11). The
fragmentation probability (Pf,e) depends on the oxygen content of the reacting species and is

parameterized as:

o= (9 ©

where my,g is an adjustable parameter, and No and Nc are the number of oxygen and carbon
atoms comprising an SOM species, respectively. The Pg,, is always constrained to be < 1.
(Recently, a “bug” in the SOM code was found related to how the fragmentation was being
treated. Rather than the probability of fragmentation depending on the oxygen content of the
reacting species, it was being determined based on the oxygen content of the product species.
This has now been fixed. The SOM was originally written in the IGOR programming
language. The SOM has now been independently implemented in Fortan using the framework
outlined in (11) and the IGOR and Fortan versions produce equivalent results, suggesting that
no further “bugs” of this sort exist. The best-fit SOM parameters for the alkanes differ from

those reported in (6) as a result of this update and because vapor wall-loss has been included.)

The functionalization probability (Psnc) describes the likelihood of adding 1, 2, 3 or 4 oxygen
atoms per reaction, and each can be adjusted independently, subject to the constraint that they
are positive and must sum to 1. The decrease in vapor pressure (or more specifically, in the
log of the saturation concentration, C', in ug m™) per oxygen added is referred to as ALVP,

and ranges from ~0.7 to 2.5, depending on the type of functional group added. Thus, there are
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6 total adjustable (tunable) parameters in the base model: (i) fragmentation, (ii) volatility
decrease per oxygen added and (iii-vi) oxygen addition probability. For this study,

heterogeneous OH reactions are not simulated.

The reaction rate coefficient matrix associated with reactions of product species with OH
radicals has been updated from the original SOM on the basis of comparison with output from
the GECKO-A model for simulations of the outflow from Mexico City (12). The reaction rate
coefficient of the parent hydrocarbon with OH, kon (cm3 molecules™ s'l), is specified to be
consistent with literature results, e.g. for toluene koy = 5.2 x 102 ¢m® molecules™ s, For all
other species within the SOM grid, the kon are determined referenced to the reaction rate

coefficient for species with the same number of carbon atoms but zero oxygen atoms as:

log(kOH,base) =A; + 4, X N543 (S4)

and where A4, = -15.103, A, =-3.9481, and 43 = -0.79796. For a given Nc, the kou is

temperature dependent and varies with N as

E b 1(In(No+0.01)—In(by))?
kou(T) = ko pase X T* X exp (_1 X 8.31ZXT) x [1 + J\/;_nexp (_ — 252 — )]

(S5)
and where the variables b1, b,, and o are functions of N¢, with
0(N; < 15) =0.0214 X N, + 0.5238; a(N; > 15) = —0.115 X N + 2.695, (S6)

b, = —0.2583 x N + 5.8944 , (S7)

And
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b,(N¢ < 15) = 0.0314 X N + 0.9871; b,(N; > 15) = 0.25 X N; — 2.183.  (S8)

Within the SOM gas-particle partitioning is treated through the framework of absorptive
partitioning theory (13), in which compounds partition between the gas and particle phases
according to their Raoult’s Law adjusted vapour pressures. Unlike in previous usages of the
SOM, which assumed instantaneous gas-particle equilibrium, the SOM here treats gas-particle
mass transfer dynamically. The net flux of molecules to/from the particle is calculated at each

timestep as:

9Cou,

ar 47TDgas,iRprFFS(CgO?15,i - XiCi*) (S9)

where Dg,s; is the gas-phase diffusivity, R, is particle radius, N, is particle number
concentration, Frs is the Fuchs-Sutugin correction for noncontinuum mass transfer, Cgo; is
the gas-phase concentration, y; is the mass fraction and C;" is the saturation concentration of
species i. The entire SOA mass is considered absorbing in the calculation of y;. It is assumed
that Dy, varies with molecular weight (M) and is equal to Dco2(MWco2/MW;), with Dco

=1.38 x 10° m’? s™". The Fuchs-Sutugin correction is equal to:

0.75a(1+Kn)

Fooc =
FS ™ KknZ2+Kkn+0.283-Kn-a+0.75a

(S10)

where a is the mass accommodation coefficient onto particles and K» is the Knudsen number,

defined as:

Kn = 1/R, (S11)

and A is the gas mean free path, which is equal to:
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A, = 3. 29ast (S12)

Ci

with ¢; equal to the root mean square speed of the gas, which is equal to:

1

G = (8NAkT)E (S13)

TMW

with Ny = Avagadro’s number, k£ = the Boltzmann constant and 7 = temperature. The results
obtained with the dynamic partitioning SOM are equivalent to those obtained using the
instantaneous equilibrium assumption when o > 0.1 and with seed aerosols present. It should
be noted that o as used in Eqn. S8 represents the net mass transfer and can include resistances
both in the gas-phase and at the particles surface. Full accommodation of vapors into the bulk
particle can be limited by diffusion within the particles when particles are highly viscous (14).
The dynamic SOM utilized here uses monodisperse particles with a size equal to the number
mean diameter and the number concentration adjusted to give the desired initial seed surface
area (S4). Although the ideal model would use the actual seed size distribution as input, we
have established that for particle diameters larger than ~ 50 nm the model results are
sufficiently insensitive to the selected particle diameter for a fixed seed SA. As such, the
results here are not limited by the simplification of using monodisperse particles. Nucleation
is not explicitly simulated by the SOM. Therefore, dynamic SOM -calculations for the
nucleation experiments have been carried out assuming an initial seed size of 5 nm and a seed
concentration equal to that observed at the end of the experiment. Given that there is
substantial uncertainty associated with this assumption the nucleation experiments have not

been quantitatively assessed.

10
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S$1.4. Vapor Wall-Loss
Loss of vapors to the chamber walls is simulated as a first-order process, characterized by the
first-order wall-loss coefficient k, (s"). Vapor wall-losses are assumed to be reversible,
characterized by the gas-wall partitioning coefficient, K, which is dependent upon compound

vapor pressure,

K, =—2 (S14)

MyYwPsat

where R is the ideal gas constant, 7' is temperature (assumed 298 K), M, is the effective
molecular weight of the wall material, y,, is the activity coefficient, and Pgy is the saturation
concentration of the species of interest. It is convenient to use the saturation concentration, C"

(ug m™), instead of the saturation vapor pressure, where

C* =+ = el (S15)
Kp RT

with K, the gas-particle partitioning coefficient, M, the average molecular weight of the
organic species comprising the particles and y,, is the activity coefficient. The rate coefficient
for transfer of gas-phase species onto the walls is given as ky o, While that for evaporation
from the walls is given as kyo. The kwon is specified as a model input parameter (and is

equivalent to the £, in the main text). The ky of is obtained from detailed balance as:

_ Kw,on _ C*MwYw
Kuors = 1222 = oy on (S2022) (S16)

and where C,, is the equivalent wall OA concentration (g m™). If one makes the simple
assumption that M,, = M, and v, = v, then Cy can be viewed as an effective concentration

that accounts for differences in molecular weight and activity between the particles and walls.

11
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The Cy, must therefore be estimated from experiments. Matsunaga and Ziemann (15) report a
range of C,, values that are constant within a given class of molecules (e.g. ketones vs.
alkanes), with Cy, = 2, 4, 10 and 24 mg m™ for alkanes, alkenes, alcohols and ketones. For all
reported simulations here it has been assumed that C,, = 10 mg m™. Results are reasonably
insensitive to the choice of C,, over the previously determined range because Cy >> Coa. The

sensitivity of our results to the assumed Cy, is discussed further below in Section S1.4.3.

It is assumed that ky on is not dependent on compound identity. Consequently, the ky of terms

vary with compound identity, specifically with C".

The value of kyon can be estimated from consideration of just the gas-phase transport terms

within a chamber. McMurry and Grosjean (16) report an expression for &y on,

foan = (9 )f—) |

1.0+ = )| —————5=
(2 4(keDgas)”®

(S17)

where A/V is the surface to volume ratio of the chamber (equal to 6/L for a square chamber,
and where L is the length of one side), a., is the mass accommodation coefficient of vapors
onto the chamber walls, ¢ is the mean thermal speed of the molecules, k. is the coefficient of
eddy diffusion, and Dy, is the molecular diffusivity. It should be noted that o is not
necessarily equal to o for uptake onto particles. For the type of molecules here, Dy, is ~3 x
10°m? s and ¢ ~ 200 m s™'. This leaves k. and o, as the two key unknowns. Values of ky on
have been calculated as a function of k. for o, ranging from 107 to 1, where 1 is perfect
accommodation. k. values from 10~ s™ to 1 s have been used, which corresponds to mixing
timescales of 17 min to 1 s (Fig. S4). McMurry and Grosjean (16) reported values for their
actively mixed chambers of 0.02 s™ (60 m® chamber) and 0.12 s™ (4 m™ chamber). Since the
Caltech chamber is not actively mixed it is expected that the characteristic k. value is

considerably smaller.

The value of k. for the Caltech chamber is estimated based on observed size-dependent
deposition rates of particles in the chamber. The minimum in the k., for particles as a function

of size is dependent upon k.. This minimum occurs at a diameter of ~350 nm for the 24 m™

12
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Caltech chamber and at ~250 nm for the 28 m™ chamber (5). For particles in a cubic chamber

the k, is related to the eddy diffusion coefficient through the equation (17):

k, == [@ + v coth (g)] (S18)

L T

where v is the particle terminal settling velocity (m s) and x is defined as:

(S19)

From Eqn. S5, &y, has been calculated as a function of particle diameter and the k. value
adjusted until the minimum occurs at 250 nm or 350 nm. The required k. in the 24 m’
chamber is 0.075 s and in the 28 m® chamber is 0.015 s, similar to the values reported by
McMurry and Grosjean for 60 m’ (ke = 0.12 s) and 4 m® (k. = 0.02 s™) chambers (16).
Therefore, it is expected that the maximum ky, ~ 6.0 x 10 s! for the 24 m® chamber and ~ 3 x
10* for the 28 m’ chamber from consideration of Fig. S4. Since the accommodation
coefficient for the condensing species on the Teflon chamber walls is not known, it is not
possible to definitively put a lower bound on the k. However, the experimental results of
Matsunaga and Ziemann (15) clearly demonstrate that vapors are taken up to their chamber
walls quite rapidly, and they estimate that o, ~ 10°, which suggests that &y, ~ 3 x 10 s (24
m’) or ~ 2 x 10™ s (28 m?). This theoretical estimate is in very good agreement with the

optimal ky (=2 x 10 s™") for the 24 m® chamber.

Loza et al. (18) report observations of vapor wall-loss rates for two compounds: 2,3-epoxy-
1,4-butanediol (BEPOX) and glyoxal. BEPOX is the butadiene derivative of an epoxydiol of
isoprene. The uptake of both compounds to the chamber walls was observed to depend
strongly on RH and whether a “new” or “old” chamber was used, with the measured values
ranging from ~2-7 x 10° s (18). Such new vs. old dependence was not observed by
Matsunaga and Ziemann (15), who investigated wall-losses of alkanes, alkenes, 2-ketones and

2-alcohols. This suggests that the mechanism involved in the uptake of BEPOX and glyoxal

13



353
354
355
356
357
358
359
360
361
362
363

364
365
366

367

368

369

370
371
372
373
374
375
376
377
378
379
380
381

197
was somewhat different than that for the hydrocarbons considered by Matsunaga and
Ziemann (15), or may alternatively indicate complications associated with capturing fast
initial decay during the fill period in the much larger Caltech chamber. Such fill and mixing
complications likely also explain the strong differences between the wall-loss rate coefficients
for 2-dodecanol determined by Loza et al. (19) and Matsunaga and Ziemann (15). Since the
vapor uptake to the Teflon chamber walls is reversible, care must be taken in the
interpretation of observed wall-loss rates. Only measurements made in the very early stages of
uptake will correspond directly to the first-order wall-loss rate coefficient, since as the system
approaches equilibrium net vapor uptake will slow. As such, we suggest that the estimates of
kv using the o from Matsunaga and Ziemann (15) may be more relevant to the current study

given the nature of the compounds involved.

S$1.4.1. Gas-Particle Partitioning Timescales

The timescale associated with reaching gas-particle equilibrium varies with seed S4, and for a

distribution is approximately:

— — -1
Ty—p~(2mN,D,DygsFrs) (S20)

where N, is the particle number concentration, D_p is the number mean diameter, Dy, is the
gas-phase diffusivity and Fg is the correction to the mass transfer flux due to noncontinuum
effects and imperfect accommodation given in Eqn. S8. Values for 1,., have been calculated
for the low-NOy experiments based on the initial seed number concentration and mean
diameter as a function of a (Fig. S5), using Dgas = 1 X 10° m? s and A = 150 nm. The Top
vary approximately inversely with a. The optimal o was determined to be o ~ 0.002,
corresponding to an optimal &y, = 2 x 10™ s™', or a lifetime with respect to wall loss of Ty, =
1/kw = 83 min. The 1., for the experiment with the smallest seed concentration (1.4 x 10° um®
cm'3) when o = 0.001 is 230 min, very similar to t,. As seed S4 increases, the 14., decrease to
~30 min for the highest seed SA4. This difference in the relative values of 14, vs. Ty, explains
why the seed effect is seen most strongly when seed S4 is less than ~ 3 x 10* pm? cm™,

because this is the point at which the two timescales become highly competitive. Similarly, it

14
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helps to explain why larger values of o do not lead to a noticeable seed S4 dependence; when

o> 0.1 the 4., = 2 min for the experiment with the smallest seed S4.

S$1.4.2. Dependence on VOC and OH concentrations

Calculations were performed to determine the magnitude of the wall-loss bias (Rya) as a
function of the initial [toluene] and [OH] based on the best-fit of the SOM to the low-NOy set
of experiments. Fig. S6 shows the variation in the end of experiment SOA concentration as a
function of initial toluene and OH, and corresponds to the results shown in Fig. 3 in the main

text.

S$1.4.3. Sensitivity to C,,

As discussed in the main text, the sensitivity of our results to the assumed C,, is has been
established by performing fits to the observations for varying values of Cy, from 0.01 to 10
mg m™ for the suite of low-NOj toluene photooxidation experiments (c.f. Fig. 4). Here, it was
assumed that k&, = 2 x 10* s and o = 2 x 107, consistent with the optimized values
determined in the main text. Good fits are obtained over the entire range of C,. Above Cy, =
0.2 mg m? (=200 pg m'3) the calculated wall-loss bias, Ry, is constant. Below 0.2 mg m>
the calculated Ry falls off, reaching a second plateau at small Cy, that is still above unity.
The best-fit SOM parameters vary systematically with Cy, (Fig. S7), apparently compensating

for the varying levels of vapor wall-loss.

$1.5. Fitting of Historical Chamber Data

Beyond the toluene experiments, which are the focus of the manuscript, best-fit SOM
parameters have been determined for a suite of historical photooxidation experiments
conducted using a variety of other precursor compounds, both under low- and high-NOy
conditions. The historical experiments were all carried out in the prior 28 m’ Caltech
chamber. Experimental conditions are given in Tables S2 and S3. Fitting of the SOM to the
observations is performed for these experiments assuming that &y = 1 x 10* s, 0 =2 x 107
and Cy, = 10 mg m™. The results are relatively insensitive to Cy, when varied over the range 2-
24 mg m”, as discussed above. The value of k, for the historical chamber is estimated to be

slightly smaller than the optimal value determined for the new 24 m® chamber based on

15
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consideration of the size-dependent particle wall-loss rates, as discussed in Section S1.4. Best

fit SOM parameters for low-NOy and high-NOy conditions are given in Table S4. Wall-loss

bias values were calculated in the same manner as for the toluene experiments. Experimental

data and simulation results are shown in Fig. S8-9.
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470  Fig. S1: Time-dependent volume distributions (dV/dlogD,) of AS seed and organic aerosols
471  after 0 - 18 h of photoxidation of toluene under (top panels) high-NOy and (bottom panels)
472  low-NOy conditions. Distributions are colored according to the time after lights were turned
473 on. The lower bound wall-loss correction is used here. For the experiments at higher seed S4,
474  the influence of coagulation on the particle evolution is evident.
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Fig. S2: Time-dependent SOA growth curves for toluene photooxidation under high-NOy
(HNOy) and low-NOy (LNOy) conditions. Error bars come from the 95% confidence interval
associated with determining the size-dependent first-order wall-loss rate for dry inert
ammonium sulfate ((NH4),SO,) particles.
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21



497

498
499
500
501
502
503
504

Gas-Particle Equilibration Time (minutes)

| IIIIII

k,=25x10"s"

i
2 -3 LI i
E |Seed Surface Area (um” cm ") KPR
F | = Nucleation 1.4e3 TR
C 3.1e3 5.5e3 AR
== 8.0e3 s 9,463 gy
E {.H"'nr' =
1 1 IIIIIII I‘ L IIIIIII 1 [ IIIIIII 1 1 L1l
0.001 0.01 0.1 1

Accommodation Coefficient

Fig. S5: Calculated gas-particle equilibration time as a function of the gas-particle mass
accommodation coefficient, o, for different seed surface areas corresponding to the low-NOy
experiments. The horizontal gray line indicates the timescale associated with vapour wall-loss
for ky = 2.5 x 10 s'. The vertical dashed gray lines indicate the optimal values of o
determined here for the high- and low-NOy toluene systems. For the nucleation experiments,
it is assumed that the particles are 10 nm diameter.
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507  Fig. S6: Calculated end-of-experiment SOA mass concentrations corresponding to the results
508 shown in Figure 3. The SOA concentration is shown as a function of initial toluene
509  concentration and OH concentration when &, = 2.5 x 10* s and Cy =10 mg m>. The SOA
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521  Fig. S8: Results from historical low (left panels) and high (right panels) NOy SOA formation
522 experiments for alkane photooxidation (open circles). The solid red lines are best-fit SOM
523 results when wall losses are accounted for assuming that &y, = 1 x 10*, =1 and C,, = 10 ug
524  m™. The blue dashed lines are the simulated SOA concentrations when wall-loss is turned off,
525  but the SOM parameters determined from the best-fit with wall-loss on are retained.
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Fig. S9: Same as Fig. S3, but for aromatics. Importantly, the toluene experimental results are
from Ng et al. (3), not from the current set of experiments. For each experiment, data
collected over the full experiment time is shown. However, the SOM fitting has been
restricted to the periods shown as colors other than gray (orange or blue). The gray points are
data that were collected, but not used in fitting. These data have been excluded to be
consistent with the range of data considered in Ng et al. (3) and Chan et al. (1), where 2-
product fits have been performed. For m-xylene, low-NOy, fits to data from Ng et al. (3) and
Loza et al. (5) are shown separately.
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Table S1. Experimental conditions for toluene SOA photooxidation experiments in the 24 m* Caltech chamber.

Initial .. Initial seed Initial surface
E(’;]; [(I;pcb];) [(I;;)b])o [ggé%o [VOCY/[NO,] NA(‘)didIg:;??Oln surfazce arca area ratio
(ppbC/ppb) (um” cm™)  (Aerosol/Wall)
1 ~368 ~19.0 ~344 48 yes ~0 ~0
2 ~387 ~19.6 ~322 52 yes 1.69 x 10° 8.57 x 10™*
) 3 ~379 ~155 ~349 53 yes 3.51 x 10° 1.88 x 107
HighNOx 379 175 ~317 5.4 yes 6.70x10°  3.32x10°
5 ~382 ~13.1 ~315 6.0 yes 8.51x10° 483 x 107
6 ~387 ~168 ~353 5.2 yes 1.15 x 10* 572 % 107
1 ~339 <DL° <DL - - ~0 ~0
2 ~376 <DL <DL -- - 1.41 x 10° 1.03 x 107
3 ~373 <DL <DL - - 3.10 x 10° 2.13x 107
Low NOx 4 ~368 <DL <DL - - 5.47 x 10° 4.07 x 107
5 ~387 <DL <DL -- - 7.95 x 10° 5.17%x 107
6 ~379 <DL <DL -- - 9.41 x 10° 6.70 x 107

* Detection limits (DL) for O3, NO, and NO, are 0.5 ppb, 0.4 ppb, and 0.4 ppb, respectively.
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Table S2. Conditions for low-NOy experiments in the 28 m°> Caltech chamber.

213

Initial

" o
voc Ref [mrrllj/?lt‘le/yy] [Yp(;))g)]o [g\;])f))t;%o [\(/pOpEC]Z//gi)(g)X] (mole[((:i}l_[e]s/cm3 ) Cof =Yllglflga tm'3 (cm® mofzoé{lles" s
n-dodecane (6) 03/16/11 34.0 <2 - 2.5x10° 6.1 1.34x10™"
methylundecane (6) 02/25/11 28.1 <2 - 2.4x10° 7.2 1.34x10™"
cyclododecane 6) 02/23/11 9.8 <2 - 2.7x10° 17.2 1.34x10™"
hexylcyclohexane 6) 03/21/11 15.6 <2 - 3.0x10° 15.4 1.34x10™""
benzene (3) 11/04/06 414 <2 - 3x10° 23.8 1.22x10™"
toluene® (3) 10/24/06 52.7 <2 - 3.3x10° 26.7 5.63x10™"
m-xylene* (3) 10/27/06 19.3 <2 - 3x10° 28.2 2.31x10™"
m-xylene’ 5) 10/11/10 29.2 <2 - 2.5x10° 21.4 2.31x10™"
naphthalene 1,2) 08/13/08 31.5 2 - 2x10° 19.0 2.44x10™"
a-pinene 4) 06/02/10 66.2 <2 - 3x10° 36.8 5.3x10™"°
isoprene 4) 02/25/09 49 <2 - 2x10° 43" 1x107°

* Average over the experiment

® Maximum yield, since maximum Co, < 10 pg m™.
¢ From historical experiments by Ng et al. (2007), not the current set of experiments.

4 m-xylene data are available from two independent sets of experiments.
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Table S3. Conditions for high-NO, experiments in the 28 m® Caltech chamber.

[NOJ, & Tnitial

voc Ref. [mrrl;(aitde/yy] [X)?)g)]o [(I;I)(;;;O [\(/pOpEC]Z//gi)(g)X] (mo1(3[((:?1}1_[e]sd/(:m3 ) CO:A)=Yllglflga tm'3 (cm® mof’eoc?ules'I s
n-dodecane (6) 05/12/11 322 343/-- 1.13 4.5x107 6.2 1.34x10™"
methylundecane (6) 03/01/11 72.4 366/-- 2.37 3.3x107 5.1 1.34x10™"
cyclododecane (6) 05/23/11 13.8 362/-- 0.46 2.7x107 383 1.34x10™"!
hexylcyclohexane (6) 03/22/11 22.1 320/-- 0.83 4.1x107 12.3 1.34x10™"
benzene 3) 01/15/07 336 83/86 11.9 3.2x107 15.6 1.22x10™
toluene® (3) 10/14/06 138 373/568 1.03 3.6x10’ 8.3 5.63x107™"
m-xylene 3) 10/05/06 89.8 469/474 0.76 4.2x107 3.9 2.31x10™"
naphthalene 1,2) 08/14/08 48.6 404/171 0.85 2.5x107 11.2 2.44x10™"
a-pinene @) 06/03/10 44.9 446/398 0.53 1.4x10’ 9.5 5.3x10™"
isoprene 4) 04/04/09 268 535/402 1.43 6.6x10° 1.0° 1x10™

* For all high-NOx experiments HONO was used as the OH source. The [OH] was not constant in time, but decreased rapidly from the start of the
experiment by at least an order of magnitude. The [OH] derived from the first [VOC] measurement after the lights were turned on is given here.

® Maximum yield, since maximum Cox < 10 pg m™.

¢ From historical experiments by Ng et al. (2007), not the current set of experiments.
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Table S4. Derived SOM parameters for the experiments when vapor wall-loss is accounted

for (assuming C,, = 10 pg m?).

vocC?! Fragmentation ALVP P1 P2 P3 P4 X2 e
Low NO;
toluene (this study) 5 1.83 0.123  0.001 0.002 0.875 1.74
n-dodecane (6) 0.671 1.58 0977  0.016 0.003 0.004 1.47
methylundecane (6) 0.433 1.92 0.997  0.000 0.001 0.002 1.33
cyclododecane (6) 1.56 1.90 0.994  0.000 0.001 0.005 1.73
hexylcyclohexane (6) 0.78 1.84 0.885  0.106 0.001 0.008 0.56
benzene® (3) 0.01 2.29 0.284  0.000 0.644 0.072 042
toluene® (3) 0.01 1.88 0.001  0.001 0.727 0.271 1.36
m-xylene® (3) 0.245 1.96 0.000  0.085 0.836 0.079  0.57
m-xylene® (5) 0.069 1.88 0.285  0.000 0.613 0.101 0.20
naphthalene (1, 2) 0.072 1.76 0.382  0.027 0.431 0.161 0.04
o-pinene (4) 0.151 1.91 0.262  0.619 0.075 0.044  0.19
isoprene (4) 0.01 2.23 0.000  0.146 0.826 0.028 1.61
High NO,
toluene (this study) 1.02 1.42 0.000  0.000 1.000 0.000 1.10
n-dodecane (6) 0.188 1.45 0.963  0.000 0.001 0.036  0.07
methylundecane (6) 0.188 1.12 0.263  0.277 0.455 0.005  0.61
cyclododecane (6) 0.01 1.69 0.664  0.002 0.004 0.33 0.64
hexylcyclohexane (6) 0.153 1.75 0.832  0.086 0.055 0.028 0.14
benzene® (3) 0.912 1.47 0.105  0.001 0.893 0.001 1.15
m-xylene® (3) 0.18 1.54 0.000  0.000 1.000 0.000  0.64
toluene® (3) 0.039 1.46 0.001  0.001 0.906 0.094 1.13
naphthalene® (1, 2) 0.64 1.41 0.835  0.001 0.002 0.162  0.17
o-pinene (4) 0.080 1.81 0.193  0.694 0.101 0.012  0.04
isoprene (4) 0.322 2.23 0.679  0.321 0.000 0.000  0.79

* The toluene experiments from this study were conducted in the 24 m’ Caltech chamber (i.e. “new”
experiments) and simulated using k,, = 2.5 x 10 s and the experimentally-determined optimal o (~2 x
107). All other experiments, including the toluene experiments from (3) were conducted in the 28 m’
Caltech chamber (i.e. “historical” experiments”) and simulated using &, =1x 10*s" and o = 1.

® The reduced x” associated with the best fit.

“Fits were performed over the ranges shown in Fig. S9.
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Appendix E

Vapor Wall Deposition in Teflon
Chambers *

*Reproduced with permission from “Vapor wall deposition in Teflon chambers” by Zhang, X., Schwantes, R. H.,
McVay, R. C., Lignell, H., Coggon, M. M., Flagan, R. C., and Seinfeld, J. H., Atmospheric Chemistry and Physics,
15, 4197-4214, doi:10.5194/acp-15-4197-2015, 2015. Copyright 2015 by the Authors. CC Attribution 3.0 License.
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Abstract. Teflon chambers are ubiquitous in studies of at-
mospheric chemistry. Secondary organic aerosol (SOA) for-
mation can be underestimated, owing to deposition of SOA-
forming vapors to the chamber wall. We present here an ex-
perimental protocol and a model framework to constrain the
vapor-wall interactions in Teflon chambers. We measured
the wall deposition rates of 25 oxidized organic compounds
generated from the photooxidation of isoprene, toluene, a-
pinene, and dodecane in two chambers that had been exten-
sively used and in two new unused chambers. We found that
the extent of prior use of the chamber did not significantly
affect the sorption behavior of the Teflon films. Among the
25 compounds studied, the maximum wall deposition rate is
exhibited by the most highly oxygenated and least volatile
compounds. By optimizing the model output to the observed
vapor decay profiles, we identified that the dominant param-
eter governing the extent of wall deposition of a compound
is its wall accommodation coefficient (aw ;), which can be
correlated through its volatility with the number of carbons
and oxygens in the molecule. By doing so, the wall-induced
deposition rate of intermediate/semi-volatile organic vapors
can be reasonably predicted based on their molecular con-
stituency. The extent to which vapor wall deposition im-
pacts measured SOA yields depends on the competition be-
tween uptake of organic vapors by suspended particles and
the chamber wall. The timescale associated with vapor wall
deposition can vary from minutes to hours depending on the
value of ayy ;. For volatile and intermediate volatility organic
compounds (small .y ;), gas-particle partitioning will dom-
inate wall deposition for typical particle number concentra-
tions in chamber experiments. For compounds characterized
by relatively large i, vapor transport to particles is sup-
pressed by competition with the chamber wall even with per-
fect particle accommodation.

1 Introduction

Understanding of the mechanism and extent of secondary
organic aerosol (SOA) formation from oxidation of volatile
organic compounds (VOCs) has been derived largely from
experiments in Teflon chambers. Chamber-measured SOA
yields (mass of SOA formed per mass of VOC reacted) have
been widely parameterized into regional/global atmospheric
models, and chemical mechanisms leading to SOA forma-
tion and aging have been derived based on the gas/particle-
phase identification of intermediate/semi/low-volatility com-
pounds generated in controlled chamber experiments. An un-
avoidable consequence of the use of an environmental cham-
ber is interaction of vapors and particles with the chamber
wall. It has been recently established that SOA formation can
be substantially underestimated due to deposition of SOA-
forming vapors to the chamber wall rather than growing par-
ticles (Zhang et al., 2014a).

Chamber-wall-induced decay of organic vapors was re-
ported 30 years ago. Grosjean (1985) and McMurry and
Grosjean (1985) measured wall deposition rates of sev-
eral volatile organic compounds in a chamber constructed
from Fluorinated ethylene propylene (FEP) Teflon film.
The lifetime of the VOCs, with respect to wall deposition,
was found generally to exceed ~ 15h. Loza et al. (2010)
found that deposition of the isoprene oxidation product
surrogate, 2,3-epoxy-1,4-butanediol (BEPOX), and glyoxal
to the FEP Teflon chamber wall is reversible on suffi-
ciently long timescales. On the contrary, rapid reversible
gas—wall partitioning of n-alkanes, 1-alkenes, 2-alcohols, 2-
ketones, monoacids, and 1,2-diols was universally observed
by Matsunaga and Ziemann (2010) and Yeh and Ziemann
(2014). Following the same experimental protocol, Kokkola
et al. (2014) measured that the equilibrium fractions of

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Figure 1. Theoretical framework representing the vapor-wall inter-
actions. Concentrations of organic vapor i in the well-mixed core, in
the boundary layer, over the surface of the chamber wall, and in the
chamber wall are denoted by Cy ;, Cy.;, Co.;, Cw,i, respectively.
Vapor fluxes at the gas—wall interface are denoted by Jy ; and Jyy ;.

nopinone and pinanediol on the wall of a 4m3 FEP Teflon
chamber are on average 0.4 and 0.8, respectively.

The extent to which vapors and the chamber wall inter-
act is reflected by properties such as the gas-phase transport
rate of organic molecules, affinity of the wall for various or-
ganic molecules, the degree of reversibility of the vapor—wall
partitioning, and the equilibrium solubility of organic vapors
in the wall. Organic materials generated in chamber experi-
ments can deposit on the chamber wall to form a coating that
can act as the primary absorbing medium, or the Teflon film
itself could act as the absorbing medium, in a process akin to
the sorption of small molecules by organic polymers. While
measurement of vapor wall deposition rates for the thousands
of organic molecules that are produced from the oxidation of
SOA precursor VOC:s is not presently possible, empirical ex-
pressions that represent the deposition rates of organic vapors
as a function of general molecular properties would be highly
useful.

A prime goal of characterizing vapor wall deposition in a
chamber is to understand its impact on SOA formation and
evolution. We present here an experimental protocol to con-
strain the nature of organic vapor wall deposition in Teflon
chambers. We measured wall-induced dark decay rates of
25 intermediate/semi-volatility organic vapors, which span
a range of volatilities and oxidation states, in both unused
and previously used chambers constructed with FEP Teflon
film. A temperature ramping program (298-318 K) was im-
plemented to study the reversibility of vapor-wall partition-
ing. A model framework is developed to describe interactions
between organic vapors and the chamber wall following the
theories for particle wall deposition and gas-particle parti-
tioning. We address the following questions in the present
study. (1) What is the physicochemical nature of the cham-
ber wall? (2) What are the key parameters that characterize
the vapor—wall interactions and how can these values be de-
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termined? (3) How can one predict the wall deposition rate
of a specific compound based on its molecular properties?

2 Vapor wall deposition — theory

Figure 1 depicts the steady-state concentration profiles of an
organic compound i in the well-mixed core of the chamber
(Cv.;), in the boundary layer adjacent to the wall (Cy;), at
the wall surface (Co;), and in the chamber wall (Cy, ;). Va-
por molecules in the well-mixed core of a chamber are trans-
ported through a boundary layer adjacent to the wall by a
combination of molecular and turbulent diffusion. The trans-
port rate depends on both the molecular properties of the in-
dividual organic compound (as characterized by the molecu-
lar diffusion coefficient, D;), as well as the extent of turbu-
lent mixing in the chamber (as characterized by the coeffi-
cient of eddy diffusion, K¢). As vapor molecules encounter
the chamber wall, the fraction of those encounters that lead
to uptake is represented by the accommodation coefficient
(ew,i), and molecules rebound with a probability of 1 — o, ;.
The accommaodation coefficient depends, in principle, on the
nature of the wall surface as well as the compound chem-
ical composition. It is worth emphasizing that «,; charac-
terizes imperfect wall accommodation of the gas—wall inter-
face. Molecules deposited on the wall may re-evaporate at a
rate that depends on their concentration in the wall. In or-
der to represent this process, we note that, at equilibrium, the
flux arriving from the gas phase (Jy,;) and the evaporation
flux from the wall (Jw,;) are equal. Thus, the evaporative flux
from the wall (Jw,;) can be expressed as a function of the ac-
commodation coefficient (aw ;), as described in Egs. (7)—(9)
later.

A conservation balance on @\,, i, the concentration of vapor
i in the well-mixed core of a chamber that is subject only to
the deposition process, is given by

dévﬂ[

dr = _kw,depo,iév.i "ka.evap,iéw,i, (1)

where kw, depo,i (s~1) is the deposition rate coefficient to the
wall, kw evap,i (s71) is the evaporation rate coefficient from
the wall, and @W,i is the concentration of vapor i that has
accumulated on the chamber wall. The dynamic behavior of
Cw.; is described by a corresponding balance:

déw,i
dr

= —kw,evap,iéw.i + kw.depo,iév,i . 2

Note that Cy,; is assumed to be zero at the onset of vapor i
generation, ultimately reaching equilibrium with Cy ;.

2.1 Vapor flux arriving from the gas phase (Jv,;)

For a chamber that is relatively well mixed, transport to the
wall occurs by molecular and turbulent diffusion across a thin
boundary layer, of thickness 8, adjacent to the chamber wall.

www.atmos-chem-phys.net/15/4197/2015/
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The flux due to molecular diffusion is given by —D;VCy ;,
where Cy ; is the local vapor i concentration in the boundary
layer and D; is its molecular diffusivity. The turbulent diffu-
sion flux is expressed as —DeVCy,;, Where D is the eddy
diffusivity. One can invoke the Prandtl mixing length expres-
sion near a wall, Do = K¢x2, where x is the distance from
the wall, and K is the coefficient of eddy diffusion (Corner
and Pendlebury, 1951; Crump and Seinfeld, 1981). Owing to
the small value of §, a quasi-steady state condition exists in
the boundary layer, and the concentration of vapor i within
the boundary layer, 0 < x < §, is governed by

AL Kex? 4+ D 2% | o, ®)
dx dx

Introducing the dimensionless variable z by setting x =
(D;/Ke)'/?z, Eq. (3) becomes

d?’Cy; dcy,;
2 V.1 V,i
1 2 =0, 4
(z + ) 02 +2z & (4)

subject to the boundary conditions,
X = O(Z = 0) — Cv,i = CO,i’

x =8(z=(Ke/D)*?8) — Cyi = Cy,

where Co; and Cy; are concentrations of vapor i over the
wall surface and in the well-mixed core of the chamber, re-
spectively. Note that the accommodation coefficient for par-
ticles on the wall was assumed to be unity in previous the-
oretical studies (e.g., Crump and Seinfeld, 1981; McMurry
and Grosjean, 1985), meaning that particles that encounter
the wall will lead to 100 % uptake. This assumption is rea-
sonable, especially if particles are in a quasi-liquid state. On
the other hand, the accommaodation coefficient for vapors on
the wall (aw,;) is likely less than unity, and the steady-state
concentration is then nonzero at the chamber wall surface.
The solution of Eq. (4) expressed in the original variables is

tan~! [(Ke/Dj)Y/?x]

tan—1 [(Ke/D;)Y/25]

tan~! [(Ke/D;)Y/?x]
/2 '

Cv,i = Co,; + (Cyv,; — Co,)

~ Co,i + (Cy,; — Co;) )

Physically, turbulent diffusion dominates molecular diffu-
sion at the outer edge of the boundary layer, so that
(Ke/D)Y/%8 > 1.

The vapor flux arriving from the gas phase to the wall sur-
face (Jy,;) is derived from the kinetic theory of gases:

J aw,i0; Co,i
V= T
! 4

(6)

where ©; is the species mean thermal speed.
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2.2 Vapor flux leaving from the wall due to
evaporation (Jw,:)

Without loss of generality, vapor wall deposition can be as-
sumed to be reversible. The flux of molecules i that evapo-
rate from the wall back to the gas phase (Jw ;) depends on the
concentration of i in the wall (C_‘W,,»). So we can write Jy ; as
a function of Cy;:

Jw,i X éW,i or Jw,; = )»éw,iy O]

where A is simply a quantity that reflects the positive corre-
lation between Jy, ; and Cy ;. If the gas and wall phases are
at equilibrium, then

Jvi,eq) = Jw,i,(eq)- (8)
Therefore,

3= Olw,i?ico,i,eq _ Olw,il_)i ’ (9)
4CWyj’eq 4Hl

where H; is the Henry’s law constant of organic species i.
Substitution of Eqg. (9) into Eq. (7) gives

aw,; Ui Cw,i

4H; (10)

Jw,i =
If applying vapor—particle partitioning theory here, Eq. (10)
can be rewritten as

_ow,iViCw,

i= o 11
Wi = K iCo (11)

where Ky ; is vapor-wall partition coefficient (Matsunaga
and Ziemann, 2010):

RT

KW’,' = —1 ),
P viMw

(12)

and where pE.i is the vapor pressure of compound i as a lig-

uid. We calculate pEY ; by the average of two group contribu-
tion methods, “SIMPOL.1” developed by Pankow and Asher
(2008) and “EVAPORATION” developed by Compernolle et
al. (2011). y;, the activity coefficient in the wall layer on a
mole fraction basis, is assumed to be unity here, R is the gas
constant, 7' is temperature, and M,y is the average molecular
weight of the absorbing organic material on the wall, which,
following Matsunaga and Ziemann (2010), is assumed to be
250gmol~L. Cy (gm2) is an assumed equivalent mass of
absorbing organic material on the chamber wall (Matsunaga
and Ziemann, 2010). It can be regarded as characterizing the
equilibrium solubility of individual organic molecules in FEP
Teflon polymer and, possibly, in other organic materials de-
posited on the wall. When C,, — oo, the wall presents es-
sentially an absorbing medium of infinite extent, and vapor
wall deposition is ultimately an irreversible process. Note,

Atmos. Chem. Phys., 15, 4197-4214, 2015



4200

however, that the concept of an “equivalent absorbing or-
ganic mass” does not necessarily imply that an actual layer
of organic material exists on the chamber wall. Cy, might
well represent the accumulation of deposited organic mate-
rial from previous chamber experiments, or it could reflect
the absorption properties of FEP film itself. We will return to
the nature of Cy shortly.

Since the gas—wall interface is presumed to have no thick-
ness, the net flux across the interface results from the con-
centration gradient,

) dC\/’[
" odx

Note that when equilibrium is established, the net flux be-
comes zero and the concentration gradient no longer exists
at the gas—wall interface. The LHS of Eq. (13) is based on
Fick’s law of diffusion and leads to Eq. (5). In this way, the
quantity Co; is expressed as a function of Cy; and Cy ;.
Therefore, the conservation equation for the change in the
concentration of vapor i in the well-mixed core of the cham-
ber owing to wall deposition is given by

Cv,i)

(14)

ow,iViCoi  otw,i Vi Cw,i
4 4Kw,iCw

. (13)

= Jv,i _Jw,i =
x=0

dév,i_ é ( Olw,il_)i/4 ) CW,[ _
dt ~ \V ) \maw,5;/8(D;Ke)t/24+1 ) \ Ky.;Cw

where A and V are the surface area and volume of the cham-
ber, respectively. A rewrite of Eq. (14) gives

A ow,ivi /4
k i=—= — . s 15a
depo. (V) (naw,,»v,-/s(Di Ke)tZ+1 (152)
kw.depo.i
kw,evap,i = I;v,i?pco,z' (15b)
w,i Cw

3 Vapor wall deposition — experiment

Experiments were conducted in the Caltech dual 24 m® Flu-
orinated ethylene propylene (FEP) Teflon chambers that are
suitable for pristine (low-NO) and polluted (high-NO) con-
ditions (Zhang and Seinfeld, 2013; Fahnestock et al., 2014;
Loza et al., 2014). Figure 2 shows a schematic of the experi-
mental protocol used to measure deposition of organic vapors
to the chamber wall. Oxidized organic vapors were generated
via photooxidation of four parent VOCs, isoprene, toluene,
a-pinene, and dodecane, in the absence of seed aerosol. Once
a sufficient amount of oxidized products is formed with none
or limited aerosol formation via nucleation, irradiation is
ceased, and the ensuing wall-induced dark decay of the array
of oxidation products is monitored by chemical ionization
mass spectrometry (CIMS). Following this period, the cham-
bers were heated to investigate the extent to which vapor—
wall partitioning is reversible. These experiments were car-
ried out in two chambers that had been used in past SOA

Atmos. Chem. Phys., 15, 4197-4214, 2015
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Figure 2. Example of the experimental procedure to assess vapor
wall deposition using 3-nitrooxy-6-dodecanol (m/z = (—)332): pe-
riod (1) organic oxidation product generation; period (2) vapor wall
deposition at 298 K in the dark; period (3) chamber temperature
ramp from 298 to 318 K; and Period (4) temperature held at 318 K
in the dark.

studies. Two control experiments were also conducted in two
unused 24 m? Teflon chambers using identical experimental
protocols, see Table 1.

Vapor molecules representing SOA products were gen-
erated directly via VOC photooxidation, as opposed to the
external injection of commercially available chemical stan-
dards. In this manner, uncertainty in the initial vapor con-
centration due to filling and mixing is avoided. In order to
generate a spectrum of oxidized compounds characterized
by a combination of different carbon numbers and types of
functional groups, isoprene, toluene, «-pinene, and dodecane
were chosen as the parent VOCs. Prior to each experiment,
the Teflon chambers were flushed with purified dry air for
12 h at 45°C, then “conditioned” by UV irradiation for 24 h
in the presence of 2 ppm H205, followed by purging with
purified dry air for ~ 4 days at 25°C. Experiments were
carried out under conditions in which the peroxy radicals
formed from the initial OH reaction with the parent hydro-
carbon react either primarily with NO (so-called high-NO)
or HO, and RO, (so-called low-NO). For low-NO condi-
tions, hydrogen peroxide (H202) was used as the OH source
by evaporating 120 uL of 50 % wt aqueous solution into the
chamber with 5 L min~? of purified air for ~ 110 min, result-
ing in an approximate starting H,O2 mixing ratio of 2.0 ppm.
For high-NO conditions, nitrous acid (HONO) was used as
the OH source by dropwise addition of 15mL of 1wt%
NaNO; into 30 mL of 10wt% H2SO4 in a glass bulb and
introduced into the chambers with 5 L min~" of purified air

www.atmos-chem-phys.net/15/4197/2015/
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Table 1. Experimental conditions for production of oxidized organic vapors.
Exp.# Lights Lights T program? OH VOC HCy (NO)g (NO2)o Maximum FEP Bag
on(h) off (h) (K [h-h]) source (ppb)  (ppb) (ppb) Particle conc.  condition
(mgm~3)
1 ~1 ~242 298[0-17.6] HONO a-pinene ~30 242 458 ~0.4 used
318[19.9-25.2]
2 ~1 ~24.2 298 [0-17.6] HONO  «-pinene  ~30 229 371 ~0.3 unused
high-NO 318[19.9-25.2]
g 3 ~1 ~23.8 298 [0-17.3] HONO dodecane  ~50 275 556 ~21 used
318 [20.9-24.8]
4 ~2 ~23 298 [0-17.3] HONO isoprene  ~ 200 243 460 ~0.2 used
318 [20.8-25]
5 ~1 ~242  298[0-17.8] HyO,  a-pinene ~30 <DL <DL ~12 used
318 [20.3-25.2]
6 ~1 ~24.2 298 [0-17.8] HoOp  w«-pinene  ~30 <DL <DL ~11 unused
low-NO 318 [20.3-25.2]
7 ~7 ~21.6 298 [0-20.6] HoOo,  dodecane ~50 <DL <DL ~0.0 used
318 [22-28.6]
8 ~5 ~247 298 [0-21.3] Ho 09 toluene  ~100 <DL <DL ~0.1 used

318 [24.7-29.7]

@ The temperature is controlled at 298 K for the first ~ 20 h of the experiment, including ~ 1-7 h irradiation and ~ 13-16 h darkness, and then ramped up to 318 K within ~ 3 h and

held for ~ 4-6 h.

for ~ 40 min. Ozone formation is substantially limited in the
presence of a high concentration of HONO, and NOg3 for-
mation is negligible. A measured volume of hydrocarbon
(isoprene/toluene/a-pinene/dodecane) was injected via a sy-
ringe into a glass bulb, which was connected to the Teflon
chamber. Heated 5L min~' of purified air flowed through
the glass bulb into the chamber for 20 min, introducing 25—
200 ppb of hydrocarbon into the chamber. After ~ 60 min
mixing, photooxidation was initiated by irradiating the cham-
ber with black lights with output wavelength ranging from
300 to 400 nm. Over the course of the irradiation period, the
maximum particle mass concentration formed via nucleation
ranged from 0.3 to 2 ugm—3, corresponding to a particle sur-
face area to chamber wall area ratio of < 107°. Under these
conditions, the surface area of particles present in the cham-
ber is sufficiently low that partitioning of organic vapors onto
particles is negligible. After ~ 1-7 h of reaction, UV lights
were turned off and the decay of oxidation products due to
wall deposition was monitored for ~ 13-16h at 25°C. The
chamber temperature was then ramped up to 45 °C during the
remaining ~ 4-6 h of the experiment with other conditions
held constant.

Gas-phase organic compounds were monitored using
a custom-modified Varian 1200 triple-quadrupole CIMS
(Crounse et al., 2006; Paulot et al., 2009). In negative-mode
operation, CF30~ was used as the reagent ion to cluster
with analytes [R] with strong fluorine affinity such as hy-
droperoxide, producing [R-CF30]~ or m/z = [M +85],
where M is the molecular weight of the analyte. For more
strongly acidic species [X], the transfer product, [X[z;-HF]~
orm/z = [M+19]~, is formed during ionization. Carboxylic

www.atmos-chem-phys.net/15/4197/2015/

acids tend to have contributions to both the transfer and clus-
ter products, in which case the trace with higher signal-to-
noise ratio is considered. Prior to each experiment, the puri-
fied air in the chamber was sampled, and this is subtracted
off as the CIMS background signal. The background signal
is fairly consistent between the masses and over time. How-
ever, this background subtraction does not guarantee that the
background for every m/z signal is absolutely zero, as noted
in Fig. 3 that the CIMS background for certain ions is hov-
ering around zero. Identification of products by CIMS from
the photooxidation of isoprene, «-pinene, and dodecane in
our laboratory has been previously reported (Paulot et al.,
2009; Eddingsaas et al., 2012; Yee et al., 2012; Zhang et al.,
2014b).

4 Absorbing organic mass on the chamber wall (Cy,)

Figure 3 shows the continuous dark decay of the 25 or-
ganic vapors generated from the photooxidation of isoprene,
toluene, a-pinene, and dodecane under high/low-NO condi-
tions. In contrast to the behavior in Fig. 3, Matsunaga and
Ziemann (2010) and Yeh and Ziemann (2014) observed rapid
equilibrium established within less than an hour for vapor
wall losses of n-alkanes, 1-alkenes, 2-alcohols, 2-ketones,
monoacids, and 1,2-diols in both 1.7 and 5.9 m3 Teflon cham-
bers. The organic vapor generation period in the present
study ranges from 1 to 7 h, thus precluding the possibility of
observing more rapid partitioning that may have occurred.
In view of this, we carried out one vapor wall deposition
experiment in the «-pinene+OH low-NO system, with the

Atmos. Chem. Phys., 15, 4197-4214, 2015
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Figure 3.

experimental procedures identical to those in Sect. 3, but with
lights on for only 10 min. We also increased the initial mixing
ratios of «-pinene and OH radical precursor H,0, to 1 and
4 ppm, respectively, in order to generate sufficient organic va-
por CIMS signals during the short irradiation period. Prompt
formation of two ions, m/z 269 (-) and m/z 285 (), was ob-
served on the CIMS after 10 min of photochemistry. These
are assigned to be two first-generation products, pinonic acid
(C10H1603) and pinonic peroxy acid (C10H1604), respec-
tively (see Table 2 for the proposed chemical structures). Ow-
ing to the short photochemical reaction timescale, the other
four possible products in Table 2 were not found in this ex-
periment. Figure 3 (bottom panel) shows the wall induced
dark decay of m/z 269 (-) and m/z 285 (-) at 298 K. The
best-fit first-order decay rates lie within the same order of
magnitude as those reported in Table 2, i.e., 7.61 x 1065t
vs. 8.95x 107851 for m/z 269 (-) and 1.67 x 10 651

Atmos. Chem. Phys., 15, 4197-4214, 2015

vs. 2.98 x 107651 for m/z 285 (). No rapid vapor wall
loss was found immediately after lights off, and the deposi-
tion rates for both ions were pretty consistent over the course
of ~ 15 h dark decay. Note that m /z 285 (=), although having
a higher molecular weight, decays more slowly than m /z 269
(-). We will demonstrate later that the wall-induced decay
rate depends inversely on the vapor pressure, which is a func-
tion of the molecule size and functionalities. The addition of
a carboxylic acid group, as in m/z 269 (=), leads to a greater
decrease in volatility than that resulting from the addition of
a peroxy carboxylic acid group, as in m/z 285 (-). Our obser-
vations for these two compounds are consistent with the ob-
served behavior of the other 23 compounds. There are three
considerations regarding equipment setup and experimen-
tal protocol that potentially contribute to the differences be-
tween the present study and Ziemann and co-worker’s work:
(1) chamber size and depletion rate; (2) mixing status, i.e.,

www.atmos-chem-phys.net/15/4197/2015/
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Figure 3. CIMS traces of oxidized organic vapors generated from the photooxidation of isoprene, toluene, a-pinene and dodecane under
high/low-NO conditions over the four chamber periods in Fig. 2. Colored circles represent CIMS measured normalized signals during
background (blue), vapor generation (magenta), vapor wall deposition at 298 K (green), temperature ramp (yellow), and vapor re-evaporation
at 318 K (red). Black dashed lines and gray solid lines represent the simulated deposition rates generated from SIM.1 and SIM.2, respectively.
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Figure 4. Comparison of vapor-wall interactions for «-pinene + OH products under controlled experimental conditions in used (triangle)
vs. unused (circle) Teflon chambers. 30-min averaged data are shown here for clarity. Colored bands denote successive experimental periods:
vapor generation (magenta), vapor wall deposition at 298 K (green), temperature ramp (yellow), and vapor re-evaporation at 318 K (red).

actively mixed vs. static; and (3) definition of the starting
point of the gas-phase vapor concentration.

When the chamber temperature was increased from 25 to
45°C, with all the other experimental conditions held con-
stant, the concentrations of most compounds in the chamber
increased to a minor degree relative to the initial peak sig-
nal, reflecting modest desorption of vapors from the chamber
wall. As noted earlier, the chamber wall (in the used cham-
bers) might actually be coated with organic materials from
previous experiments, or the FEP Teflon film itself may act
as an absorbing medium. In view of the uncertain nature of
the wall itself, two control experiments were also conducted
in the unused dual 24 m3 FEP Teflon chambers with identical
protocols: see Table 1. Organic vapor deposition and evapo-

Atmos. Chem. Phys., 15, 4197-4214, 2015

ration rates between unused and used chambers are compared
in Fig. 4. For all the «-pinene photooxidation products stud-
ied here, their interaction with the wall in the unused cham-
bers is in general agreement with that in the used chambers,
except for a few oxidation products generated under high-NO
conditions. The fact that these particular compounds exhibit
slightly higher deposition rates in used chambers might be
due to the heterogeneous chemistry on the wall catalyzed by
nitric acid, a product from the NO,-O3 photochemical cycle.
Overall, we conclude that the extent to which chambers have
been previously used is not a significant factor in the sorption
behavior of the FEP Teflon films.

The equivalent absorbing organic mass parameter
(Cwlgm~3) is estimated using equilibrium partitioning

www.atmos-chem-phys.net/15/4197/2015/
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Table 2. Best-fit values of vapor-wall accommodation coefficient (v ;) and calculated equivalent absorbing organic mass (Cw) on the
chamber wall for vapors with structure proposed based on the CIMS measurement.

Observed  Molecular Chemical Proposed Vapor pressure  Vapor wall deposition rate ol ; Cw (gm~3)d Formation
m/z weight formula structure (atm @ 298 K)2 k. i (s~hyP mechanism
o
)KQ/YO
269 (<) 184 C10H1603 oH 9.64 x 1078 (8.95+2.55) x 1076 (9.154+2.63) x 1078  (6.59+3.43) x 104 )
° a-pinene  +
)KQ/\?U OH
285 () 200 C10H1604 ooH 1.05 x 106 (2.98+1.14) x 106 (3.24+1.20)x 1078 (5.90+3.65) x 1073  (Iow-NOx)
OoH Eddingsaas
é etal. (2012)
253 () 168 C10H1602 6.79 x 1076 (4.4040.70) x 106 (4.314+0.68) x 108 (4.57+2.45) x 103
o
257 (<) 172 CgH1603 )K%“" 2.65x 1076 (3.19+£3.13) x 1076 (3.12+£3.07) x 1078 (6.314+4.98) x 1073
ogH
271 (9 186 Cy0H1803 5.14 x 1078 (1.0940.06) x 1075 (1.154+0.07) x 107 (5.56+3.86) x 1075
J£°°i3n
303 () 218 C10H180s 00H 1.56 x 10710 (1.32+£0.19) x 105 (1.49+0.22) x 1077 (1.124+1.19) x 1076
i ;0
227 () 142 C7H1003 OOH 1.24 x 1075 (1.63+£0.50) x 105 (1.52+0.15) x 1077 (1.0140.91) x 10~2 a-pinene +
/é;% OH
n -9 -5 —7 -5 (high-NOy)
269 (-) 184 C1oH1603 "io 3.48 x 10 (1.9440.30) x 10 (1.97+0.32) x 10 (2.8041.02) x 10 Eddingsass et
;OH al. (2012)
OH
285 (-) 200 C10H1604 o 6.32 x 10711 (1.51+0.15) x 1073 (1.62+0.16) x 1077 (3.8343.11) x 1077
J)E"",%’H
300 (-) 215 C10H1704N 1.53 x 1077 (1.19+0.13) x 105 (1.34+0.14) x 1077 (1.7940.06) x 104
o ONO,
314 () 229 C1gH1505N 1.52 x 10~/ (2.31£0.21) x 105 (2.94+0.26) x 1077 (1.1440.10) x 1073
<
316 () 231 C10H1705N oo 9.03 x 10710 (1.8540.14) x 1075 (2.1940.17) x 107 (5.36+9.85) x 1076
o
215 (-) 130 C7H1407 s~ 1.98 x 1075 (5.27+£1.74) x 1076 (4.50+£1.49) x 1078  (3.104+0.55) x 1072 Dodecane +
2 OH
/Y\)l\/\/\/ . . - s (low-NOy)
285 (<) 200 C12H240 oH . 3.58 x 10 (1.32+0.44) x 10 (1.4240.46) x 10 (3.5040.81) x 10 Yee ot
287 () 202 CpHply A 121x10°0 825£067)x10°0 (879£0.73)x 1078 (281192 x 1078 A (2012
o OOH
301 (-) 216 CigHps03 A~~~ AAA~ 1.30 x 107 (1.19+40.13) x 105 (1.35+0.15) x 1077 (8.3947.24) x 1074
/\/\)oj\)ok/\/
315 () 230 C12H2204 ooH  156x 1078 (2.6840.49) x 1075 (3.174+0.61) x 107 (1.79+2.15) x 104
/\/\/Ioi/\/\/
332 (- 247 C12H2504N ono, 2.17x 1078 (1.5540.07) x 1075 (1.86+0.09) x 107 (3.93+0.46) x 1074  Dodecane + OH
oNo_ 0. (high-NO,)
\>§_>\/\/\/ Zhang et
346 () 261 C12H2305N HO' 4.46 x 1079 (2.3340.25) x 1073 (2.9140.33) x 1077 (1.87+0.21) x 1075 al. (2014b)
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Observed ~ Molecular Chemical Proposed Vapor pressure  Vapor wall deposition rate a‘j” Cw (gm—3)d Formation
m/z weight formula structure (atm @ 298 K)? kw.i 71)P mechanism
HO. 0
141 (- 122 C7Hg02 5 5.30 x 1076 (2.0441.88) x 1076 (1.684+1.35)x 1078 (1.13+0.07) x 1072 toluene  +
OOH OH
é (low-NOy)
209 () 124 C7HgO, 4.89 x 1075 (5.784+1.93) x 1076 (4.82+£1.62)x 1078 (7.03+1.42) x 10-2 MCMv32
OH
241 () 156 C7HgO4 ‘ o 4.00 x 1076 (2.0440.40) x 105 (1.954+0.39) x 10~/ (2.66+£0.71) x 1072
o{o
175 () 90 C3HgO3 oH 2.21x 1074 (9.68+1.51) x 1078 (6.90+1.08) x 108 (3.03+1.10) x 10~1
Ho—~ isoprene  +
185 (<) 100 CsHgO, ¥< 1.73x 1074 (6.58£0.30) x 106 (4.93£0.22) x 1078 (7.70£2.01) x 1072 OH
ol o (high-NO,)
199 () 114 CsHgO3 J«_{_ 8.17 x 106 (2.464+0.81) x 1076 (1.96£0.64) x 1078 (1.23+0.31) x 102 :f”('z"(;og) et
uo»_z ‘
217 () 132 CsHgOy4 Sho 2.70 x 107 (1.40+0.11) x 1075 (1.22+0.10) x 1077 (1.1540.60) x 1074
\{
232 (9 147 CsHgO4N o0’ N—on 2.34x107° (5.2440.24) x 1076 (4.764+0.22) x 108 (1.78+0.42) x 103
0\7£
234 () 149 C4H705N o0 N—on 3.93x 106 (3.234+1.30) x 10~ (2.97+0.28) x 1078 (5.16+1.36) x 10~
02N0\60H£
311 () 226 CsH100gNp oMo N—on  1.15x 1079 (3.10£0.45) x 10~5 (3.66£0.54) x 1077 (8.27+1.24) x 1076

a \apor pressures are estimated from the average of predictions from the two group contribution methods, “SIMPOL.1” (Pankow and Asher, 2008) and “EVAPORATION”

(Compernolle et al., 2011).
b The vapor wall deposition rate (ky ;) is calculated by Eq. (22b).

€ The accommodation coefficient (e ;) is calculated via optimal fitting of Eq. (22b) to the CIMS measured vapor decay rate assuming first-order kinetics and irreversible

gas-wall partitioning.
d ¢y, is calculated from the combination of Eqs. (16) and (17) as an equation set.
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Figure 5. Inferred total amount of (a) equivalent absorbing organic mass on the chamber wall, Cy (gm™—3), and (b) dimensionless Henry’s
law constants, H;, as a function of saturation concentration, C* (g m~3). Estimated vapor pressures of organic compounds studied here are
obtained from the average of predictions from the two group contribution methods, “SIMPOL.1” (Pankow and Asher, 2008) and “EVAP-
ORATION” (Compernolle et al., 2011). The uncertainty bars give the upper and lower limits of Cy values derived from Eq. (12), together
with Egs. (16) and (17), when either “EVAPORATION” or “SIMPOL.1" is used to estimate vapor pressures.

theory. We show in the Supplementary Materials that this
theory is suitable for Cy, estimation after ~ 18h of wall-
induced vapor decay. The ratio of the concentration of vapor
i in the wall phase (Cy ;) to that in the gas phase (Cy,;) is
expressed as a function of the corresponding gas—wall parti-
tioning coefficient (Kw ;) and the total amount of equivalent
absorbing organic mass on the chamber wall (Cy). Ideally,
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C\ can be obtained if the initial total concentration (C_tot,i)
and equilibrium gas-phase concentration (Cy ;) of vapor i
can be measured by CIMS. However, since the fraction of
organic compound ¢ in the chamber wall at the onset of
vapor wall deposition is unknown, we estimate Cyy via the
combination of equilibrium partitioning expressions at two
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different temperatures, e.g., 298 and 318 K:

Cw,i@298K _ Cot,i — Cv,i@298K

= Kw,i @98kCw,  (16)

Cv,i@298K Cv,i@298K

Cw,i@318K _ Crot,i — Cv,i@318K

= Kw,i @18kCw,  (17)

Cv,i@318K Cv,i@318K

where Ciot; is the total initial concentration of vapor i,
C‘V,[@zgg/gng is the gas-phase concentration (as indicated
by the normalized CIMS signal with unit “a.u.”) of vapor i
at 298/318 K, and Kw,; @r is the corresponding partitioning
coefficient at temperature 7, see Eq. (12). In this manner,
both C‘tot,,- and Cy can be calculated by solving the equa-
tion set (16) and (17). Note that the product Ky ;@rCw
is dimensionless, so that the normalized CIMS signal can
be directly substituted into Eqgs. (16) and (17) as the actual
gas-phase concentration of organic vapor i. In the calcula-
tion, Cy @208k and Cy ;@318 Were obtained by taking a
30 min average of the first-order extrapolation of the normal-
ized CIMS signals at 298 and 318 K, respectively, during the
temperature ramping period. The estimated Cy, values vary
by approximately 5 orders of magnitude and exhibit a strong
dependence on the volatility of the organics, as shown in Ta-
ble 2 and Fig. 5a. We will address subsequently why the Cy,
values span such a wide range.

5 Vapor sorption into FEP Teflon films

It is instructive to consider possible mechanisms of organic
vapor interactions with Teflon films. Dual sorption mecha-
nisms in glassy polymers have been identified: ordinary dis-
solution and microvoid-filling (Meares, 1954; Paul, 1979;
Paterson et al., 1999; Tsujita, 2003; Kanehashi and Nagai,
2005). From the point of view of solubility behavior, or-
ganic polymers such as FEP Teflon may be idealized as high
molecular weight organic liquids (Vieth et al., 1966). The
polymer rubbery state is hypothesized to represent a thermo-
dynamic equilibrium liquid state within which gas solubility
obeys Henry’s law. The glassy state, on the other hand, is
considered to comprise two components: a hypothetical lig-
uid state and a solid state, the latter containing a distribu-
tion of microvoids/holes that act to immobilize a portion of
the penetrant molecules when the polymer is below its glass
transition temperature (7g = 339 K for FEP, Kim and Smith,
1990). The overall solubility of a gas molecule in a glassy
polymer has been expressed by (Barrer et al., 1958; Michaels
et al., 1963; Vieth et al., 1966; Kanehashi and Nagai, 2005):

Clbp

C=Cu+CL=Kk ,
H+CL Hp+1+bp

(18)

where C is the total vapor concentration in the glassy poly-
mer, Cy is the concentration based on Henry’s law dissolu-
tion, CL is the concentration based on Langmuir sorption, ky
is the Henry’s law constant, p is the partial pressure in the
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gas phase, C| is the hole saturation constant, and & is the
hole affinity constant. If bp <« 1, Eq. (18) reduces to

C = (kn+Cb)p. (19)

The condition of bp « 1 holds in the present situation be-
cause the partial pressures of organic vapors generated in the
chamber are < 107 atm, and the derived hole affinity con-
stants for small organic molecules are < 1atm~1 in glassy
polymers (Vieth et al., 1966; Sada et al., 1988; Kanehashi
and Nagai, 2005). If Eq. (18) holds for the equilibrium sorp-
tion behavior of organic vapors by FEP films, then the di-
mensionless form of the effective Henry’s law constant (H;)
can be expressed as a function of the partitioning coefficient
of vapor i (Kw,;) and total absorbing organic mass on the
chamber wall (Cy):

W, i
H = —

= Kw,iCw  (kn + C| b). (20)
V,i

As shown in Fig. 5b, the derived Henry’s law constants
(H;) for the organic oxidation products span approximately
2 orders of magnitude and depend inversely on saturation
concentrations (C;/ug m~3). This behavior suggests that or-
ganic vapor solubility in FEP films increases with decreasing
volatility, i.e., increasing carbon number and functionaliza-
tion. This behavior provides a qualitative explanation for the
wide range of Cy values calculated for the 25 organic va-
pors studied here. Although the solubility of low volatility
vapors in the FEP Teflon film is relatively high (large H;),
the total equivalent absorbing organic mass on the wall re-
quired for gas—wall partitioning can still be low (small Cy)
because low volatility compounds tend to partition preferen-
tially in the wall phase (large Kw ;). As illustrated in Fig. 5D,
the dimensionless Henry’s law constant of m/z = (—)303,
a product from «-pinene low-NO photochemistry, is ~ 20
times larger than that of m/z = (—)185, a product from iso-
prene + OH under high-NO conditions. The vapor pressure
of m/z = (—)303, however, is ~ 6 orders of magnitude lower
than that of m/z = (—)185. As a result, the Cy value for
m/z = (—)303 is ~5 orders of magnitude smaller than that
for m/z = (—)185. One infers that the equivalent absorbing
organic mass on the chamber wall derived earlier is not con-
stant but specific to individual organic compounds, i.e., a
function of volatility and solubility in FEP Teflon polymer.
We will show that Cy, is not the most dominant parameter, so
the assumption of a single value for Cy, does not invalidate
the usefulness of the theory.

6 Accommodation coefficient on the chamber wall
(aw,i)

One key parameter that emerges from the theory of vapor
wall deposition, the total equivalent absorbing organic mass
(Cw), can be calculated based on equilibrium gas—wall parti-
tioning at two different temperatures. From this information,
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we can estimate the other key parameter, the accommoda-
tion coefficient (aw,;), by optimal fitting of the solution of
Eqg. (14) to CIMS measured organic vapor decay at 298 K:

dCyv; (A o, Ui /4
dt ~ \v /) \rawiv;/8(D;Ke)t/2+1

CIOt i CV i =
( Fowren ) (21)

Note that Eq. (21) is simply Eq. (14) in which Cy; has been
replaced with (Cyot,; — Cv.;). Thus, Eq. (21) constitutes a lin-
ear ODE system with the one unknown (estimable) param-
eter, aw ;. The Levenberg—Marquardt method implemented
in MATLAB’s “System Identification Toolbox” was used for
the nonlinear minimization at each time step of its solution.
The best-fit oy, ; value obtained was then substituted into
Eq. (21) to give the simulated temporal profile of the organic
vapor i. Simulation results (SIM.1) are shown in Fig. 3.

The other limit of wall behavior is that of irreversible
gas—-wall partitioning (Cy, — o0). In this case, the accommo-
dation coefficient ayy; is the sole governing parameter and
Eq. (14) can be simplified as

dCy,; A ow,i Ui /4 ~
—=—= . Cyi. (22a
dt (V) (”aw,iﬁi/S(DiKe)l/z'f‘l v (222)
The overall wall loss rate of organic vapor i (kw ;) is therefore
A o,V /4
kwi=\— : . 22b
" (V) (mw,,-ﬁi/aw,- Ke)l/2+1 (220)

Results for irreversible gas—wall partitioning (SIM.2) are
shown in Fig.. 3.

Simulations using both reversible (SIM.1) and irreversible
(SIM.2) vapor wall deposition expressions match the exper-
imental data. Outputs from SIM.1 tend to level off, whereas
those from SIM.2 exhibit a continuous decreasing trend at
the end of ~ 18 h of vapor decay. The extent of agreement
between observations and simulations depends on the nature
of vapor wall deposition: most organic vapors in the Cal-
tech Teflon chambers exhibit a continuous decay. The agree-
ment between SIM.1 and SIM.2 indicates that the estimated
Cw Vvalues are sufficiently large so that the wall-induced va-
por deposition in the Caltech chamber can be treated as
an irreversible process (Cw — oo) within a relatively long
timescale (< 18h).

Overall, results from the two simulations indicate that oy ;
is the more influential parameter than C\ in describing the
wall-induced deposition of semi-volatile organic vapors. The
significance of ay,; is 2-fold: first, the accommodation coef-
ficient for the desorption of organic molecules from the gas—
wall interface equals that for the adsorption/uptake process,
which together influence the time needed to establish equilib-
rium; and second, diffusion in the chamber wall is not con-
sidered in the theoretical framework; consequently, the best-
fit aw,; will reflect the mass transfer resistance in both the
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Figure 6. Inferred accommodation coefficients of organic oxidation
products on the chamber wall (log1o (e, ;)) as a function of satura-
tion concentrations (log1o(C;")) and average carbon oxidation state
(OSc). Colored filled circles represent the best-fit oy ; assuming ir-
reversible gas—wall partitioning. The black solid line represents the
linear regression of logg(aw,;) Vs. 10g10(C;) for all compounds.

gas-wall interface and the chamber wall layer. We suggest
that the vapor wall deposition of individual compounds can
be adequately parameterized through the accommodation co-
efficient a; as the single dominant variable. As shown in
Table 2 and Fig. 6, for the compounds studied here, esti-
mated values of «yy; Span approximately 2 orders of mag-
nitude (10~8-10-%) and depend inversely on volatility, im-
plying that more highly functionalized compounds dissolve
more easily in FEP Teflon film. The correlation of o, ; with
the average carbon oxidation state (OSc), however, is not
strong due to the fact that vapor pressures of molecules, al-
though highly oxidized, are not necessarily low.

7 Characterizing chamber vapor wall deposition rate

The wall-induced deposition of the 25 organic compounds
investigated in the present study can be sufficiently repre-
sented by a single parameter, the wall accommodation coef-
ficient (cw,;), which is observed to exhibit a strong inverse
dependence on C}* (Fig. 6). It is possible to formulate an em-
pirical expression for ay,; as a function of C}, a parameter
that can be estimated by vapor pressure prediction models.

Linear regression was performed on logioon,; vs. 10g10C}*
for the 25 organic vapors studied:

logygemw,; = —0.1919 x logy,CF — 6.32. (23)
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We employ a group-contribution expression for logioC;* as
a function of carbon number (nic) and oxygen number (nio)
developed by Donahue et al. (2011):
i 0
w_ (0 _ i _ i 5 co
logyoC} = (nc nc) be—ngbo 272" boo,  (24)

C O

where n2 is the carbon number of 1pgm=2 alkane (n =
28.0483), bc is the carbon—carbon interaction term (bc =
0.4015), bo is the oxygen—oxygen interaction term (bo =
2.3335), and bco is the carbon-oxygen nonideality term
(bco = —0.4709). Best-fit values of noc, bc, bo, and bco are
obtained by optimal fitting Eq. (24) to the saturation concen-
trations of 110 species, including C5-C14 n-alkanes, C5-C14
carbonyls, Cs-C14 di-carbonyls, Cs5-C14 alcohols, Cs-Cy4 di-
ols, Cs-Cy4 carboxylic acids, Cs-C14 di-carboxylic acids,
Cs-C14 peroxides, Cs-Ci4 di-peroxides, Cs-C14 nitrates, and
Cs-Cy4 di-nitrates. Vapor pressures of these species are es-
timated by taking the average of predictions from the two
group contribution methods, “SIMPOL.1” and “EVAPORA-
TION”.

Combining Egs. (22), (23), and (24), the vapor wall depo-
sition rate of any intermediate/semi/low-volatility compound
(kw.i/s~1) can be ultimately related to its carbon and oxygen
numbers. This vapor wall loss rate estimation approach, al-
though simplified, proves to be quite useful considering the
limited knowledge of the chemical structures of the thou-
sands of ions detected by mass spectrometry during an ex-
periment. The proper guess of a molecular formula would be
able to constrain the wall-induced decay rate of each ion, and
thus provide information to better understand its formation
and removal dynamics. In this way, one can reasonably con-
strain the wall-induced organic vapor deposition rate based
on only two measurable or predictable properties, volatility
and the extent of oxygenation.

As shown in Fig. 7, within a certain volatility range, kw.;
increases with decreasing C, implying that highly function-
alized compounds tend to deposit on the chamber wall more
efficiently. The maximum value of vapor wall deposition
rate is eventually approached for highly oxygenated and ex-
tremely low-volatility compounds (which, of course, are pre-
cisely those compounds that are most prone to form SOA).
Revisiting Eq. (22) reveals that the deposition rate of organic
vapors is limited either by gas phase transport (molecular dif-
fusion and turbulent mixing) or wall surface accommodation.
For extremely small a,; (large C}), ky,; becomes

()

In this case, the organic vapor wall deposition rate is gov-
erned by the chamber wall accommodation process. On the
other hand, if a ; is sufficiently large (small C}), kw,; is ap-
proximately given by

A
i = % (V) (DiKe)Y/2. (26)
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Figure 7. Predicted vapor wall deposition rate (kw,i/s—l) of organic
compounds in a Teflon chamber as a function of carbon number
(nc) and oxygen number (ng).

In this case, the vapor wall deposition rate is ultimately con-
trolled by the mixing state in the chamber. Equation (26) pro-
vides an expression for the upper limit of vapor wall deposi-
tion rate in a chamber, which is a manifestation of the extent
of turbulent mixing in the chamber. One can determine which
process is the limiting step in governing the overall wall de-
position rate by referring to Egs. (25) and (26). The threshold
value of ayy ;, at which gas phase transport (molecular diffu-
sion and turbulence mixing) and wall surface accommoda-
tion contribute equally to the vapor wall deposition rate, is
6.8 x 1078 in the Caltech chamber.

8 Impact of vapor wall deposition on SOA yields

The extent to which vapor wall deposition impacts measured
SOA vyields depends on the competition between uptake of
organic vapors by suspended particles and the chamber wall.
The timescale (zg/p,;) associated with establishing equilib-
rium gas-particle partitioning is governed by three transport
processes: diffusion of vapor molecules from the bulk gas
phase to the surface of the particle, uptake of vapor molecules
by the particle surface, and diffusion of molecules in the bulk
particle phase. Depending on a given situation, any of these
three transport processes can be the limiting step in determin-
ing the overall equilibrium partitioning timescale. Here we
represent the diffusional transport processes across the gas-
particle interface and in the particle phase itself by a single
parameter, the accommodation coefficient of organic vapors
on the particle («p,;). In doing so, the mass transfer resis-
tances at the gas-particle interface and in the particle phase
are reflected by the single parameter oy ;, and the timescale
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Figure 8. Comparison of estimated gas-particle equilibration
timescale (zg,p,;) as a function of the gas-particle mass accommo-
dation coefficient (ap ;, lower x axis) and the ratio of total particle
surface area to the chamber wall area (R3, color bar), and vapor wall
deposition timescale (zg,w,;) as a function of gas-wall mass accom-
modation coefficient (ayy ;, upper x axis). The red solid line repre-
sents the gas-particle equilibration time for a typical chamber exper-
iment with seed surface area of ~ 1 x 10~3 um? cm—3. White solid
and dashed lines define the region where zq/p ; = 7g,w,; . FOr exam-
ple, the top dashed white line is a collection of data points for which
the equality 7q/p,; = tg/w,i = 1.3 x 103 min holds. Tg/w,i 1S calcu-
lated by substituting oy ; = 107 into Egs. (22), (23), and (24).
Tq/p.i is calculated from Eq. (27) by varying e ; (10~4-10~3) and
Ra (0.01-0.02).

to achieve gas-particle partitioning following a small pertur-
bation of the condensing species in the gas phase is given by
(Seinfeld and Pandis, 2006):

Tg/p.i = (2T NpDpD; f (Kn,ap,)) 2, @7)

where Np is the total number concentration of suspended
particles, Dp is the number mean particle diameter, Kn(=
2)/Dp) is the Knudsen number, and f (Kn, ap ;) is the cor-
rection factor for noncontinuum diffusion and imperfect ac-
commodation (Seinfeld and Pandis, 2006).

Figure 8 shows the predicted 7y, ; as a function of:
(1) the ratio of total particle surface area to chamber wall
area (Ry) and (2) ap;. The red solid line represents zg/p ;
for a typical chamber experiment with seed surface area of
~ 1000 umZem=3. In this case, equilibrium vapor—particle
partitioning is established within a few minutes in the pres-
ence of perfect accommodation of organic vapors onto parti-
cles (ap,; = 1) or when a sufficiently large concentration of
suspended particles is present (e.g., Coa > 10° pgm=3 when
ap; <107%).
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By analogy with the treatment of gas-particle partitioning,
the time scale associated with vapor-wall interactions is pre-
sumably governed by gas-phase diffusion of vapor molecules
to the wall through a boundary layer adjacent to the wall, up-
take of vapor molecules at the wall surface, and, potentially,
diffusion of molecules in the wall. Again, a single parame-
ter, the accommaodation coefficient on the wall (o ;), is em-
ployed to represent the latter two processes. Thus, the vapor
wall deposition timescale is given by

fg/w,l‘ = kV_V,]; . (28)

The white solid line in Fig. 8 represents the predicted gw,;,
covering a range of several minutes to several hours, as
a function of the vapor accommodation coefficient on the
chamber wall (cw,;). The region to the left of the white solid
line is that in which tgw,; and tg,p ; are competitive. For low
aw,i (8.9, <1078), 79w, is comparable to zgp ; only if the
vapor has a low accommodation coefficient on the particles
(op,i < 10~%) or if a relatively small concentration of parti-
cles is present in the chamber (R, < 107%). For auy; > 1074,
Tg/w,i 1S estimated to be of the order of several minutes
and, as a result, vapor transport to particles is suppressed by
competition with the chamber wall, even with perfect parti-
cle accommodation (ap,; = 1) or high particle concentrations
(Ra > 1072).

Overall, in the region (confined by the white solid and dash
lines in Fig. 8) where gas—wall partitioning is competitive
with gas-particle partitioning, it is necessary to account for
vapor wall deposition when deriving SOA yields from cham-
ber experiments. The theoretical framework developed in this
study suggests that the area of this region is ultimately con-
trolled by the accommodation coefficient of organic vapors
on particles (ap, ;) vs. the chamber wall (o).

9 Conclusions

The wall-induced decay of organic vapors is the result of cou-
pled physical processes involving transport of organic vapors
from the well-mixed core of a chamber to its wall by molec-
ular and turbulent diffusion, uptake of organic molecules
by the Teflon film, and re-evaporation from the wall. The
wall-induced dark decay of 25 intermediate/semi-volatility
organic compounds generated from the photochemistry of
four parent hydrocarbons was monitored in the Caltech dual
24 m? FEP Teflon chambers. The extent to which organic va-
pors and the chamber wall interact was found to be similar
in used vs. unused Teflon chambers. Based on this observa-
tion, one concludes that the Teflon film itself acts as an effec-
tive sorption medium, and organic materials deposited from
past chamber experiments, if they indeed exist, do not sig-
nificantly impact the sorption behavior of organic molecules.
Reversibility in gas—wall partitioning was observed: evapo-
ration of all 25 compounds that had deposited on the wall
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during an 18 h deposition period occurred when the chamber
temperature was increased from 25 to 45 °C.

Based on a derived model that describes the dynamics
of vapor deposition on the chamber wall, a single parame-
ter, the accommodation coefficient (ay,;), emerges to govern
the extent of the vapor—wall mass transfer process. More-
over, ay,; exhibits a strong dependence on the molecular
properties, such as vapor pressure and oxidation state, of
the 25 organics studied. We present an empirical expression
for aw,; as a function of the compound vapor pressure, thus
affording the possibility to predict the wall deposition rate
of intermediate/semi/non-volatility compounds in a Teflon
chamber based on their molecular constituency.

Previous studies have observed the chemical transforma-
tion of §-hydroxycarbonyls to substituted dihydrofurans on
the chamber wall (Lim and Ziemann, 2005, 2009; Zhang et
al., 2014b), suggesting the potential occurrence of heteroge-
neous reactions on the chamber wall surface. While the ex-
tent to which heterogeneous transformations proceed can be
potentially represented through the accommodation coeffi-
cient, the occurrence of wall-induced chemistry adds another
dimension of complexity in predicting vapor wall deposition
rates.
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Quantifying the impact of vapor wall deposition on the
chamber-derived SOA vyield is the next step in assessing the
effect of vapor wall deposition of SOA formation and evo-
lution. Future studies will be directed at (1) experiments to
determine the accommodation coefficients of organic vapors
on particles for a variety of SOA systems, and (2) state-of-art
SOA predictive models that describe the dynamics of vapor—
wall and vapor—particle interactions to estimate the fraction
of organic vapor fluxes transported to the suspended particles
vs. the chamber wall.
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Appendix A

A (m?):

ap,; (dimensionless):
ay,; (dimensionless):

Co,i (gm~3):
Cr(gm3):
Ctot.i (M)
Cv,i (@m~3):
Cv.i (gm~3):
Cw,i (9 m=3):
Cw (9 m=3):
Dp (m):

De (M2s1y:
D; (m?s~1y:
8 (m):

H; (dimensionless):

Jui (@m=2s7h):
Jw,i (@m=2s71):
Ke (s71):

Ky,; (m3g™L):
kw,depo, i (571):
kw,evap, i (Gt
My (gmol=1y:
Np (m~3):

py.; (atm):

y; (dimensionless):
; (ms™1y:

v (m3):
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Total surface area of the chamber wall

Accommaodation coefficient of organic vapor i on particles
Accommodation coefficient of organic vapor i on the chamber wall
Concentration of organic vapor i over the gas—wall interface

Saturation concentration of organic vapor i

Total concentration of organic vapor i in the chamber

Concentration of organic vapor i in the well-mixed core of the chamber
Local concentration of organic vapor i in the boundary layer adjacent to the wall
Concentration of organic vapor i that has accumulated on the chamber wall
Equivalent mass of absorbing organic material on the chamber wall
Number mean particle diameter

Eddy diffusivity

Molecular diffusivity of organic vapor i

Thickness of the boundary layer adjacent to the wall

Henry’s law constant of organic compound i

Vapor flux arriving at the gas—wall interface

Vapor flux evaporating from the wall

Eddy diffusion coefficient

Gas—wall partitioning coefficient

Deposition rate coefficient to the wall

Evaporation rate coefficient from the wall

Average molecular weight of the absorbing organic material on the wall
Total number concentration of suspended particles

Vapor pressure of organic compound i as a liquid

Activity coefficient in the wall layer on a mole fraction basis

Mean thermal speed

Total volume of the chamber
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Formation and Evolution of
Molecular Products in a-pinene
Secondary Organic Aerosol *

*Reproduced with permission from “Formation and evolution of molecular products in a-pinene secondary organic
aerosol” by Zhang, X., McVay, R.C., Huang, D. D., Dalleska, N., Aumont, B., Flagan, R. C., and Seinfeld J. H.,
Proceedings of the National Academy of Sciences, 112, 14168-14173, doi:10.1073/pnas.1517742112, 2015.
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Much of our understanding of atmospheric secondary organic
aerosol (SOA) formation from volatile organic compounds derives
from laboratory chamber measurements, including mass yield and
elemental composition. These measurements alone are insuffi-
cient to identify the chemical mechanisms of SOA production. We
present here a comprehensive dataset on the molecular identity,
abundance, and kinetics of a-pinene SOA, a canonical system that
has received much attention owing to its importance as an organic
aerosol source in the pristine atmosphere. Identified organic spe-
cies account for ~58-72% of the a-pinene SOA mass, and are char-
acterized as semivolatile/low-volatility monomers and extremely
low volatility dimers, which exhibit comparable oxidation states
yet different functionalities. Features of the a-pinene SOA forma-
tion process are revealed for the first time, to our knowledge, from
the dynamics of individual particle-phase components. Although
monomeric products dominate the overall aerosol mass, rapid pro-
duction of dimers plays a key role in initiating particle growth. Con-
tinuous production of monomers is observed after the parent
a-pinene is consumed, which cannot be explained solely by gas-
phase photochemical production. Additionally, distinct responses
of monomers and dimers to a-pinene oxidation by ozone vs. hy-
droxyl radicals, temperature, and relative humidity are observed.
Gas-phase radical combination reactions together with condensed
phase rearrangement of labile molecules potentially explain the
newly characterized SOA features, thereby opening up further av-
enues for understanding formation and evolution mechanisms of
a-pinene SOA.

secondary organic aerosol | particulate matter | air quality | climate

Secondary organic aerosol (SOA), comprising a large number
of structurally different organic oxygenates, is a dominant
constituent of submicrometer atmospheric particulate matter
(1). Molecular characterization of SOA has been a major re-
search goal in atmospheric chemistry for several decades (2),
owing to the importance of organic aerosol in air quality and
Earth’s energy budget. Both biogenic (e.g., isoprene, monoter-
penes) and anthropogenic (e.g., aromatics, large alkanes)
organic compounds are well-established precursors to SOA.
Knowledge of the SOA molecular composition is crucial for
elucidation of its underlying formation mechanisms.

The most abundant monoterpene in the troposphere is a-pinene
(3). The oxidation of a-pinene by ozone has become a canonical
SOA system (4-12). Identification of multifunctional particle-
phase products has been reported, including monomers with car-
boxylic acid moieties (4, 6) and high-molecular-weight compounds
(7, 8, 12), although molecular structures and formation pathways
of oligomers remain uncertain (5). Recently, a class of extremely
low-volatility gas-phase organic compounds (ELVOCs) has been
identified as an important component in the a-pinene ozonolysis
chemistry (13). Identification of the ELVOC:s in the particle phase
and elucidation of the mechanism of their formation remain key
missing pieces in closing the a-pinene SOA system (14).

www.pnas.org/cgi/doi/10.1073/pnas. 1517742112

We report here, for the first time, to our knowledge, time-
resolved molecular characterization of the abundance, forma-
tion, and evolution of organic species in a-pinene-derived SOA.
Identified classes of species account for (~58-72) + (~34-39)%
of the overall a-pinene SOA mass, with volatilities spanning from
the semivolatile to extremely low-volatility range and molecular
structures characterized as multifunctionalized monomers and
dimers. These organic species exhibit distinct characteristics in
terms of oxidation states, chemical structures, initial growth rates,
evolution patterns, and responses to variations in temperature (T),
relative humidity (RH), and oxidant type.

Results and Discussion

Distribution of a-pinene SOA Constituents. The o-pinene-derived
SOA was generated in the Caltech Environmental Chamber; see
Materials and Methods. The Particle-into-Liquid Sampler (PILS)
integrated with Ultra Performance Liquid Chromatography/
Electrospray Ionization Quadrupole Time-of-Flight Mass Spec-
trometry (UPLC/ESI-Q-ToFMS) is used to characterize tem-
poral profiles of particulate molecular constituents (15). A
spectrum of monomers and dimers, with molecular formulas
C8—10H12—1603—6 and C14_19H24_2805_9, respectively, is observed
in a-pinene SOA. Chemical structure elucidation of these or-
ganic molecules is based on the interpretation of chromato-
graphic and spectrometric behaviors of the corresponding ions
upon electrospray ionization (SI Appendix, Molecular Structure
Elucidation). Based on the fragmentation pattern of the relevant
parent ions upon collision-induced dissociation in MS/MS spectra,
monomers are generally (di)-carboxylic acids. Ester-containing

Significance

Secondary organic aerosol (SOA) plays a pivotal role in climate
and air quality. Characterizing the molecular makeup of SOA
has been a major research goal for several decades, yet the
chemical dynamics of most anthropogenic and biogenic SOA
systems remain poorly resolved. We report here the time-
resolved molecular characterization of SOA derived from the
canonical a-pinene system, one of the most abundant bio-
genic emissions in the troposphere. We reveal distinct fea-
tures of SOA components in terms of molecular structure,
abundance, growth rates, evolution patterns, and responses
to variations in temperature, relative humidity, and oxidant
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cesses governing a-pinene SOA formation and aging.
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structures are prevalent in dimers, with CsH;104 (m/z 171) and
CoH ;304 (m/z 185) as primary building blocks.

Fig. 1 summarizes identified gas- and particle-phase products
mapped onto the carbon number versus oxidation state (n¢ — OSc)
space at the point when >99% a-pinene is consumed during ozo-
nolysis in the absence of an OH scavenger at 298 K and <5%
relative humidity. Products with mass saturation concentration
(C*) in the range of <3 x 107, 3 x 10~ to 0.3, 0.3-300, and 300 to
3 % 10° pg m™ are designated as extremely low-volatility, low-volatility,
semivolatile, and intermediate-volatility organic compounds
(ELVOCs, LVOCs, SVOCs, and IVOCs), respectively. A number
of monomers in the SVOC category (CgH;,04, CgH;40s, CoH;405,
CoH1404, C0H1603, and CjgH;604) are detected both in gas and
particle phases. Two monomers (C;oH;405 and C;oH;505) fall
in the LVOC range, whereas all of the dimers are categorized as
ELVOCs. At the completion of the oxidation of a-pinene, mass
concentrations of individual oxidation products, represented by
the size of the circular symbols in Fig. 1, range from ~0.1 pg m™
to ~26 pg m~ and account for 58 + 34% of the total organic
particulate mass. The mean carbon oxidation state of the iden-
tified SOA molecular constituents (—0.68 + 0.27) agrees essen-
tially identically with the average level derived from the Aerosol
Mass Spectrometer (AMS) measurement (—0.72 + 0.43). Note that
the monomer and dimer units have comparable O:C ratios.

Fig. 2 shows the temporal profiles of the three volatility cat-
egories, characterized as the mass loading and fraction (Fig. 2 A
and C), as well as the growth dynamics of individual species
(Fig. 2 B and D). At first glance, SVOC products dominate the
a-pinene SOA, whereas the LVOC and ELVOC products in total
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account for less than 45% of the overall organic mass. The growth
rates of ELVOCs are comparable to or even exceed those for
SVOCs and LVOCs. As a-pinene oxidation proceeds, ELVOC
production is inhibited, whereas SVOC and LVOC accumulation is
favored. By examining the growth dynamics of individual oxidation
products, key processes that significantly contribute to a-pinene
SOA formation and evolution can be deduced. Prompt formation
of ELVOCs at the beginning of the ozonolysis of a-pinene is
crucial to initiate organic particle growth. The observation that
most ELVOC dimers grow faster than SVOCs and LVOCs indi-
cates that there is no intrinsic kinetic barrier to the ELVOC dimer
formation (16). The role of aging in the a-pinene SOA evolution is
reflected, to a certain degree, by the slow but continuous growth of
LVOCG:s over the 4-h course of an experiment.

Effect of Temperature, Relative Humidity, and Oxidant. Current
understanding regarding the effect of temperature on SOA yield
is that lower temperature favors partitioning into the particle
phase and hence enhances organic aerosol production owing to
decreasing compound vapor pressure. For instance, mass fractions
of terpenylic acid (CsH;,0,), pinalic acid (CoH403), pinic acid
(CoH;40,), oxopinonic acid (C;oH;40,), and hydroxy-pinonic acid
(C10H;604), increase by 33%, 119%, 10%, 59%, and 111%, re-
spectively, after 3 h of reaction (>99% of a-pinene is consumed) when
the chamber temperature is decreased from 25 °C to 12 °C; see Fig. 3
and SI Appendix, Fig. S6. The particle-phase mass fractions of most
dimers, on the other hand, decrease at lower temperature, indi-
cating that additional pathways that are temperature-sensitive
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Fig. 1. Distribution of gas/particle-phase products from the ozonolysis of a-pinene in the absence of an OH scavenger in the oxidation state versus carbon
number (OS¢ — n¢) space. The gray circles represent all possible combinations of OS¢ and nc for stable organic molecules. Experimental details are given in S/
Appendix, Table S1. Chemical structures of particle-phase species, as denoted by filled circles, are given in SI Appendix, Table S2. Here, structures are shown
only for compounds that have been reported in the literature. Particle-phase mass concentration of each compound (micrograms per cubic meter), as denoted
by the marker size, is a 5-min average quantification at the point when >99% of a-pinene is consumed via reaction with O3 and, to a lesser extent, OH radicals.
Molecular formulas and potential structures of gas-phase species, as denoted by filled triangles, are given in SI Appendix, Table S3. The average carbon
oxidation state (OS¢) derived from AMS measurement is represented by the horizontal gray line. The saturation mass concentration of each species (log C*) is

estimated via an empirical model developed by Donahue et al. (34).
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Fig. 2. Temporal profiles of identified organic molecules lumped as SVOCs (blue hues), LVOCs (green hues), and ELVOCs (red hues) in a-pinene SOA.
(A) Particle-phase mass concentration of three volatility categories as a function of reaction time. (B) A 2D pie chart representing the mass fraction of 23
molecules in the particle phase after 10 min and 180 min of a-pinene reaction with Os. Note that molecular formulas are shown for compounds with mass
fractions exceeding 5%. (C) Mass fraction of three volatility categories in the particle phase as a function of reaction time. (D) Growth rates of individual
species in the particle phase, defined as the ratio of the mass of each species normalized by its highest mass value to the reacted mass of a-pinene normalized

by its highest mass value after ~83 min of reaction.

govern dimer production other than purely gas—particle partitioning.
We discuss this observation in more detail subsequently.

The impact of RH on the growth and evolution of individual
oxidation products is shown in Fig. 3 and SI Appendix, Fig. S7. As
RH increases, SOA yield increases slightly, potentially as a result
of decreasing the particle-phase diffusion timescale and the
mean molecular weight of the organic particulate matter. Prompt
and significant increase in the mass concentration of certain
compounds in the aerosol is also observed, potentially a result of
enhanced reactive uptake of hydrophilic compounds and/or re-
actions involving water. However, the presence of liquid water
can lead to a decrease in the mass yield of certain products. As
shown in SI Appendix, Fig. S7, the continuous dynamics observed
for species C;oH60¢ (m/z 231) and C;9H,909 (m/z 399) over the
course of SOA formation reflects the competition between

production and removal pathways governing the accumulation of
these two compounds in the particle phase.

Significant differences in the product distribution and abun-
dances are observed in the SOA generated from the Ogs-initiated
vs. OH-initiated oxidation of a-pinene. The identities of car-
boxylic acid monomers in both systems are quite similar; see S/
Appendix, Fig. S1. Gas-phase products with peroxide func-
tionalities are prevalent in the OH system (S Appendix, Table
S3), which is expected because the RO, + HO, pathway is
dominant under the current experimental conditions. Impor-
tantly, none of the covalent ester dimers is observed in the OH
system, although the major building blocks, i.e., CsHy104 (m/z 171)
and CoH,304 (m/z 185), are still present. This provides strong
evidence that these dimers are not a product of particle-phase
esterification (17).

B 150 ppb a-pinene + 200 ppb ozone, T = 298 K, RH < 5%

074 M 150 ppb a-pinene + 200 ppb ozone, T = 285 K, RH < 5%
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Fig. 3. Effect of temperature and relative humidity on the mass fraction of particle-phase components (defined as the ratio of PILS + UPLC/ESI-Q-ToFMS
characterized mass concentration of individual species to the SMPS measured total particulate organic mass) when >99% o-pinene is reacted (predominantly
with O3). Corresponding temporal profiles of these compounds are given in S/ Appendix, Figs. S6 and S7.
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Mechanism of Extremely Low-Volatility Dimer Formation. We pro-
pose that a combination of two well-established mechanisms,
that is, combination of acetylperoxy radicals yielding diacyl
peroxides and their subsequent decomposition in the condensed
phase after partitioning, is an important pathway for the pro-
duction of ELVOC dimers. This mechanism is illustrated for the
product, C;7;H,6O0¢ (m/z 325), in Fig. 44. Addition of ozone to
the double bond of a-pinene produces two carbonyl-substituted
Criegee biradicals, which either are collisionally stabilized or
isomerize via 1,4-H-shift, yielding an alkenoxy radical (C;o0H;504:).
The C;oH 50,4 radical reacts further with an RO, radical and
undergoes subsequent 1,7-H shift, due to the presence of a labile H
atom at the aldehydic carbon, producing an acetylperoxy radical
(CoH;305°). The homogeneous recombination of two CoH;30s:
radicals via elimination of O, produces a covalently bound diacyl
peroxide. Note that this reaction pathway was proposed as a radical
chain termination step from oxidation of aldehydes in both gas
and liquid phases (18, 19). The covalent dimer homologs have
been observed in the gas phase from the ozonolysis of a-pinene
ranging from ~500 parts per trillion (ppt) to ~30 parts per
billion (ppb) (13, 20). Alternatively, the CoH;30s5- radical reacts
with RO,/HO,, yielding pinic acid.

The decomposition of diacyl peroxides in the condensed phase
generally proceeds through the formation of ion/radical pair
intermediates, which undergo decarboxylation, with an ester as a
primary product, as well as carboxylic acids and alcohols (21-27).
The ester yield could be increased markedly by increasing the
solvent polarity and the addition of common ions (25-27). The
e-folding lifetime of diacyl peroxides with respect to the first-order
decomposition ranges from essentially instantaneous to several
hours at room temperature (23, 24, 27), and the decomposition
rate is accelerated with increasing solvent polarity and temperature
(22-24, 27). Based on measurement of decomposition rates of
secondary/tertiary alkyl and phenyl diacyl peroxides in pure organic
solvents (e.g., acetone), we expect that the decomposition of diacyl
peroxide homologs produced in the a-pinene+Oj system pro-
ceeds rapidly (shorter than the SOA formation timescale) in the
organic, water, and ammonium sulfate aerosol mixture.
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Processes Altering the a-pinene SOA Nature. The gas-phase pro-
duction of diacyl peroxides via acetylperoxy radical self/cross-
combination and its subsequent decomposition upon solvation
can rationalize a series of important experimental observations.
First, it has been suggested that the highly functionalized and
extremely low-volatility vapors (O:C > 0.7) produced via the gas-
phase autooxidation of peroxy radicals contribute, on average,
>10% of the total a-pinene SOA and dominate the organic mass
at the onset of the SOA growth (13). However, the AMS mea-
sured average O:C ratio ranges from ~0.45 to ~0.55 over the
entire course of a-pinene SOA formation; see SI Appendix, Fig.
S5. This indicates that processes involving the loss of oxygen sig-
nificantly alter the oxygenated nature of compounds contributing
to a-pinene SOA. Here the RO, + RO, - ROOR reaction and
decomposition of diacyl peroxides result in a net loss of four ox-
ygen atoms, substantially decreasing the O:C ratio of the ELVOC
dimer produced in the particle phase. Second, as shown in Fig. 3
and SI Appendix, Figs. S6 and S7, the yield of ester dimers in-
creases as the aerosol water content and temperature increase,
providing further evidence that the decomposition of diacyl per-
oxide is temperature and solvent polarity sensitive, consistent with
previous observations (24-27). Third, none of the ELVOC dimers
is observed from the OH-initiated oxidation of a-pinene, although
the monomeric building blocks, such as pinic acid, are present in
the OH system. This demonstrates that traditionally cited particle-
phase esterification is not important in dimer production. It is also
consistent with the general a-pinene degradation chemistry in the
gas phase, where the diacyl peroxide precursors, acetylperoxy
radicals, are one of the major products from the ozonolysis
vinylhydroperoxide channel, but rather limited from the OH oxi-
dation pathway (6). Additionally, the mass fraction of the ELVOC
dimers decreases significantly as the ozonolysis reaction proceeds
(Fig. 2 B and C), because the continuous production of free
radicals enhances their collision probability, thus decreasing the
lifetime of free radicals and inhibiting the isomerization channel.
Fourth, gas-phase production coupled with gas—particle parti-
tioning cannot completely explain the observed behavior of
pinic acid, which is the dominant monomeric product and
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accounts for up to ~23% of the overall a-pinene SOA mass. As
shown in Fig. 4B and SI Appendix, Fig. S8, a continuous growth
of pinic acid is observed after >99% of a-pinene is consumed,
indicating an additional production pathway, which will be
discussed in SOA Formation Kinetics in the a-pinene System.

SOA Formation Kinetics in the a-pinene System. Successive chemical
reactions yielding one covalent ester dimer (C;7H¢0¢), as listed
in S Appendix, Table S4, are incorporated into the Vapor—Particle
Dynamics Model, which accounts for a series of comprehensive
processes during SOA formation in chamber experiments (S/
Appendix, Vapor-Particle Dynamics Model). By adjusting free pa-
rameters in the model framework, simulation of the temporal
profile of the C17H,604 ester dimer agrees well with the experi-
mental observation (see Fig. 4C), confirming that the mechanism
involving diacyl peroxide as an intermediate is a plausible expla-
nation for the formation of the identified ELVOC dimers in
a-pinene SOA. Optimal molar yield of the C;gH,4Og diacyl per-
oxide from CyHy305- radical combination is 2%. Despite a small
yield, the irreversible partitioning of diacyl peroxides onto aerosols
makes these species an important contributor to a-pinene SOA.
The best-fit first-order decomposition rate of the C;sH,cOg diacyl
peroxide in the condense phase is 107 s~%. This timescale needs to
be rather short to match the rapid growth of the C7H604 ester
dimer in the particle phase.

Although our model framework captures the observed rapid
growth of the C;7H¢Og ester dimer in the particle phase, the
predicted pinic acid concentration is up to ~50% lower than that
measured; see Fig. 4B. This is expected because, in the current
mechanism, only one diacyl peroxide decomposition reaction is
considered, whereas 14 structurally different ELVOC dimers are
identified. Note that the model captures the initial growth trend
of pinic acid, reflecting the role of gas-phase production coupled
with gas—particle partitioning. The later gap between simulations
and observations potentially represents an upper bound of the
contribution of diacyl peroxide decomposition to pinic acid for-
mation. Although other potential reaction channels for the
continuous production of pinic acid may exist, the fact that the
pinic acid concentration continues to increase after a-pinene is
consumed strongly suggests an additional particle-phase pro-
duction pathway.

Optimal fitting of model simulations to the observed temporal
profiles of individual particulate species yields the effective vapor—
particle accommodation coefficient (o ;). Here “effective” indi-
cates that o, ; represents gas—particle interfacial mass transfer as
well as particle bulk phase diffusion. The best-fit value of o
ranges from 0.01 to 0.1, indicative of rather slow diffusion in the
particle phase, which is consistent with recent observations
reporting a semisolid phase state of a-pinene SOA (28). This
provides insights into the limiting timescale that ultimately
controls the aerosol growth.

To assess the effect of the relatively high experimental a-pi-
nene mixing ratio of 150 ppb, we simulated the C;7H¢O¢ ester
dimer formation under more atmospherically relevant mixing
ratios of 10 ppb a-pinene and 20 ppb Os. The predicted dimer
yield increases by ~6 times at ~30 pg m™ total SOA mass
loadings (SI Appendix, Fig. S9). Although the timescale with re-
spect to the decomposition of diacyl peroxide depends on ambi-
ent conditions (e.g., RH and T), changes in initial reactant
concentrations impact the lifetime of free radicals. At low a-pinene
levels, the longer lifetime of radicals favors the isomerization
pathway and consequently leads to enhanced ELVOC dimer
production.

Atmospheric Implications

The identified SVOC/LVOC monomers and ELVOC dimers,
with carboxylic acids and esters as the prevalent functionalities,
are found to account for a significant fraction of total a-pinene
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SOA mass (~58-72%). The remaining carbon mass likely
comprises highly oxidized multifunctional organic compounds
(HOMs) that have been successfully characterized in the gas
phase, with an O:C ratio of >0.7 and a molar yield of 7% (13).
HOMs production is ultimately controlled by two competing
processes, i.e., RO, autooxidation via H shift vs. reaction with
RO,/HO,. The initial a-pinene mixing ratio in the present
chamber experiment was ~150 ppb, which favors RO, radical
combination rather than self-isomerization, compared with more
atmospherically relevant conditions (a few parts per billion). This
increase in a-pinene level is estimated to lead to a negligible to
moderate decrease in HOMs yield (S Appendix, Fig. S10). The
PILS+UPLC/ESI-Q-ToFMS technique used here is sensitive to
relatively polar compounds, whereas the HOMs are mostly
carbonyl-/peroxide-containing compounds. That these HOMs
might undergo rapid chemical transformation after partitioning
into particles is supported by the AMS measured average O:C
ratio of a-pinene SOA, ranging from 0.45 to 0.55 over the
course of 4-h ozonolysis.

Prompt and significant production of the covalent ester dimers
accounts for up to 40% of the a-pinene SOA mass at the early
stage of particle growth. We propose these dimers are produced
from the particle-phase decomposition of diacyl peroxide, which
has been suggested as an important nucleating agent of aerosol
formed from reactions of cyclic alkenes and ozone (29). Although
the role of organic peroxides in SOA production in pristine at-
mospheres has been recognized, their actual characterization in
aerosols is attended by substantial difficulties due to their ther-
mally labile nature. We provide here indirect evidence for the
abundance of organic peroxides and their rapid transformation to
covalent esters upon solvation in organic aerosol mixtures. Sig-
nificant and continuous production of SVOC monomers under-
scores the importance of gas-phase photochemistry coupled with
gas—particle partitioning, as well as particle-phase reaction path-
ways, e.g., diacyl peroxide decomposition. Although the importance
of accretion reactions in oligomer formation has been widely
acknowledged, the role of rapid rearrangement/decomposition
of large labile molecules in SOA growth and evolution is
established here.

Materials and Methods

Experiments were carried out in the 24-m? Teflon reactor in the Caltech
Environmental Chamber. The a-pinene (~150 ppb) was oxidized by O3
(~200 ppb) or OH radicals (~2 x 10° molecules cm™3) in the presence of
ammonium sulfate seed particles at concentrations of NO, typical of
pristine conditions. The ozonolysis experiments were conducted in the
absence of an OH scavenger, resulting in an initial OH molar yield of 0.74
(30). As a consequence, ~20% of the a-pinene mass is expected to react
with OH, and first-generation ozonolysis products are subject to oxida-
tion by OH as well; see SI Appendix, Chamber Experiments. The gas-phase
composition of oxidation products was monitored by a Chemical loniza-
tion Mass Spectrometer. The particle size distribution and number con-
centration were characterized using a custom-built Scanning Mobility
Particle Sizer (SMPS). The particle-phase elemental composition was
measured by an Aerodyne High Resolution Time-of-Flight AMS; see S/
Appendix, Instrument Operation and Data Analysis Protocols.

Temporal profiles of a-pinene SOA components were characterized by
using the PILS+UPLC/ESI-Q-ToFMS technique (15). The overall PILS collection
efficiency toward a-pinene-derived SOA is estimated to be >85%, based on
an empirical correlation of water solubility and average O:C ratio of the
aerosol ensemble (15). The time resolution of the PILS+UPLC/ESI-Q-ToFMS
technique is 5 min, thus providing information on the particle-phase dy-
namics during ~4 h of SOA formation experiments. Mass concentrations of
organic molecules in the particle phase (micrograms per cubic meter) are
calculated based on mass conservation balance upon phase transfer (S/ Ap-
pendix, Particle-Phase Components Mass Concentration Retrieval). The
negative ESI sensitivity of pinonic acid product in the PILS collected liquid
sample is calculated based on the counts/concentration calibration curve of a
commercially available standard (98% purity; Sigma-Aldrich). Owing to the
lack of authentic standards, the relative ionization efficiency of other
identified products toward that of cis-pinonic acid in the ESI negative mode
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is calculated using a linear model with the acid dissociation constant at
logarithmic scale (pK,) of individual compounds, pH of the mobile phase,
and weighted average positive sigma of different molecules as the input
(31). These three parameters are computed using the Conductor-like
Screening Model for Real Solvents (32) implemented into the Amster-
dam Density Functional (ADF 2014.07) molecular modeling suite (33).
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Computational details are given in SI Appendix, Electrospray lonization
Efficiency Estimation.
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S1. Chamber Experiments

a-pinene SOA formation experiments were conducted in the Caltech dual 24-m’
Environmental Chamber, in which the temperature (T) and relative humidity (RH) are
automatically controlled. Prior to each experiment, the Teflon chambers were flushed
with purified, dry air for 24 h until the particle number concentration < 10 ¢m™ and
volume concentration < (.01 um3 cm™. For humid experiments, the Teflon chamber was
humidified to ~50% by passing purified air through a Nafion membrane humidifier
(FC200, Permapure LLC) that is kept wet by recirculation of 27 °C ultra-pure water (18
MQ, Millipore Milli-Q). Seed aerosols were injected into the chamber by atomizing
0.015 M aqueous ammonium sulfate (AS) solution to provide sufficient surface area for
partition of products. For humid experiments, a custom-built wet-wall denuder was
employed to generate hydrated ammonium sulfate seed aerosol. 15 pL a-pinene (Sigma-
Aldrich, 98% purity) was injected into a glass bulb, which was connected into the Teflon
chamber via a 1/4” O.D. Teflon tubing. Heated 5 L min" of purified, dry air flowed
through the glass bulb into the chamber for 30 min, introducing ~150 ppb a-pinene into
the chamber. For dark ozonolysis experiments, O3 was introduced into the chamber by
flowing 5 L min™! dry, purified air through an ozone generator (EMMET). For
photooxidation experiments, hydrogen peroxide (H,O,) was used for the OH source by
evaporating 113 uL of 50 wt % aqueous solution into the chamber with 5 L min™ purified
air for ~110 min, resulting in an approximate starting H,O, mixing ratio of 2 ppm. After
~1 h mixing, photooxidation was initiated by irradiating the chamber with black lights

with output wavelength ranging from 300 to 400 nm.

Relative Humidity and temperature were monitored via a Vaisala HMM211 probe.
O; and NOy mixing ratios were measured by a Horiba O; analyzer (APOA-360) and a
Teledyne NOy analyzer (T200), respectively. a-pinene concentration was monitored by a
gas chromatograph equipped with a HP-5 column (15 m X 0.53 mm ID x 1.5 pm
thickness, Hewlett-Packard) coupled with flame ionization detector (GC/FID, Agilent
6890N). In addition, a suite of instruments was used to investigate gas- and particle-phase

chemistry, see Section S2.
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S2. Instrument Operation and Data Analysis Protocols
S2.1 Chemical Ionization Mass Spectrometer (CIMS)

The gas-phase products from a-pinene+O3;/OH reaction were monitored using a
custom-modified Varian 1200 triple-quadrupole Chemical lonization Mass Spectrometer
(CIMS). In negative mode operation, CF;0 was used as the reagent ion to cluster with
an analyte such as hydroperoxide or acid [R], producing [R-CF;0] or m/z [M+85],
where M is the molecular weight of the analyte. For more strongly acidic species [H-X],
the transfer product, [H- X F] or m/z [M+19] , is formed during ionization. Carboxylic
acids tend to have contributions to both the transfer and cluster product, in which case the

overall signal of a compound is considered as the sum of the two product signals.
S2.2 Scanning Mobility Particle Sizer (SMPS)

The size distribution and number concentration of seed particles and organic aerosols
were characterized using a custom-built Scanning Mobility Particle Sizer (SMPS)
consisting of a Differential Mobility Analyzer (DMA, TSI, 3081) coupled with a
Condensation Particle Counter (CPC, TSI, 3010). The DMA was operated in a closed
system with a recirculating sheath and excess flow of 2.67 L min™ and a 5.4 : 1 ratio of
sheath to aerosol flow rate. The column voltage was scanned from 15 to 9850 V over 45
s. More details on the SMPS operation are given by Loza et al. (1) and Zhang et al. (2).
Particle wall loss is not accounted for in the derivation of the overall SOA volume and
mass, in order to directly compare with the mass concentration of individual products
detected in the suspended particles in the chamber. For a typical ozonolysis experiment
conducted at 298 K and < 5% RH, the initial AS seed volume is ~70 um3 cm”, and the
initial AS seed number distribution spans from ~20 nm to ~600 nm, with a median
diameter of ~80 nm. Growth driven by gas-phase chemistry and gas-particle partitioning
occurs primarily on large particles and, as a result, the number median diameter shifts to

~200 nm after ~5 h of reaction.

S2.3 Aerosol Mass Spectrometer (AMS)

Real-time particle mass spectra were collected continuously by an Aerodyne High

Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS). All AMS data were
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processed with “Squirrel”, the ToF-AMS Unit Resolution Analysis Toolkit
(http://cires.colorado.edu/jimenez-group/ToF AMSResources /ToFSoftware/index. html),
in Igor Pro Version 6.36 (Wavemetrics, Lake Oswego, OR). The ToF-AMS High
Resolution Analysis software tool PIKA (Peak Integration by Key Analysis) was
employed for high-resolution analysis. Interference of chamber air on the particulate
spectrum was corrected by adjusting parameters in the fragmentation table based on the
“filter run” (AMS is collecting chamber air with a particle filter in-line) before each
experiment. The Improved-Ambient method has been updated in the elemental ratio
calculation algorithm (3). The derived average O:C ratios of SOA from a-pinene+O;
reaction at 298K and < 5% RH range from ~0.45 to ~0.50, which is ~50% higher than
that estimated by the traditional routine (4).

S2.4 Particle-into-Liquid Sampler (PILS)

Chamber generated a-pinene SOA was sampled through a 1 um cut size impactor
with a flow rate of 12.5 L min™, and passed successively through individual acid and
base gas denuders and an organic carbon denuder to remove inorganic and organic
vapors. A steam flow generated at 100 °C is adiabatically mixed with the cooler aerosol
flow in a condensation chamber, creating a high water supersaturation environment in
which particles grow sufficiently large (D, > 1 um) for collection by inertial impaction
onto a quartz plate. Impacted particles are transported to a debubbler by a washing flow
(0.15 mL min™) comprising 50% water and 50% isopropanol. The sampled liquid is
delivered into vials held on a rotating carousel. Under the current configuration, a 5-min
time resolution can be achieved for the characterization of particle-phase dynamics. In
this way, a total of 72 liquid samples were collected for an experiment with

approximately 6 h duration.

S2.5 Ultra Performance Liquid Chromatography / Electrospray lonization Quadrupole
Time-of-Flight Mass Spectrometry (UPLC/ESI-Q-ToFMS)

PILS collected liquid samples were analyzed by a WATERS ACQUITY UPLC I-
Class System, coupled with a Quadrupole Time-of-Flight Mass Spectrometer (Xevo G2-
S QToF) and equipped with an Electrospray lonization (ESI) source. Sample temperature
was kept at 4 °C. An ACUITY BEH C;g column (2.1 x 50 mm) was used to separate the
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particle-phase product generated from a-pinene reaction with OH/Os. The 12-min eluent
program is: (0 — 2.0 min) 100% A (0.1% v/v formic acid in 99% v/v water and 1% v/v
acetonitrile); (2.0 — 10.2 min) 10% A and 90% B (acetonitrile); and (10.2 — 12 min)
100% A. The total flow rate is 0.3 mL min" and the injection volume is 10 uL. The
column temperature was kept at 30 °C. Optimum electrospray conditions are: 2.0 kV
capillary voltage, 40 V sampling cone, 80 V source offset, 120 °C source temperature,
500 °C desolvation temperature, 30 L h™ cone gas, and 650 L h™' desolvation gas.
Negative ion mass spectra were acquired over a mass range of 40 — 1000 Da. MS/MS
spectra were obtained by applying a collision energy ramping program starting from 15
eV to 50 eV over one MS scan in the collision cell. Accurate masses were corrected by a
lock spray of leucine encephalin (m/z 556.2771 [M+H]"). Data were acquired and

processed using the MassLynx v4.1 software.
S3. Characterization of Monomers and Dimers in a-pinene SOA
S3.1 Molecular Structure Elucidation

SI Appendix, Figure SI (A—C) shows the UPLC/(-)ESI-Q-ToFMS base peak
chromatograms (BPCs) for the PILS collected SOA sample (5-min duration) when >
99% a-pinene is consumed via reaction with O3 at 298 K + 5% RH, 298 K + 50% RH,
and 285 K + 5% RH respectively. The dominant ions include m/z 213 (retention time, RT
3.81 min), m/z 197 (RT 3.86 min), m/z 171 (RT 3.96 min), m/z 199 (RT 4.07 min), m/z
185 (RT 4.35 min), m/z 357 (RT 5.32 min), m/z 299 (RT 5.78 min) and m/z 367 (RT 5.98
min). They are produced in the negative mode of electrospray ionization by the loss of a
hydrogen atom from the parent molecule ([M—H]"). The ions at m/z 171, m/z 185, m/z
197, and m/z 199 appear in the BPCs of SOA samples generated from the OH-initiated
oxidation of a-pinene as well, see SI Appendix, Figure S1 (D), whereas ions at higher
mass-to-charge ratio (m/z 213, m/z 299, m/z 357, and m/z 367) were not observed over the
course of the photooxidation experiment. In addition to the ions that are apparently
present on the BPCs, a series of less abundant ions with the mass-to-charge ratio ranging
from ~150 to ~400 were also characterized, as listed in SI Appendix, Table S2. 1t is worth

noting that each ion we present here has a distinct retention time due to its unique
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interactions with the LC column, thus confirming that they are actual a-pinene SOA

products instead of artifacts generated in the ESI process.

Molecular structure elucidation of each ion listed in SI Appendix, Table S2 is based
on the first-order (—) ESI mass spectra and fragmentation characteristics in the MS/MS
spectra. SI Appendix, Figure S2 shows the extracted ion chromatograph (EIC), as well as
(—) ESI MS and MS/MS spectra for each ion. The major peak on the m/z 183 (RT 4.96
min) EIC is assigned to pinonic acid based on comparison of its chromatographic and
mass spectrometric behavior with that of commercial available standard cis-pinonic acid
(Sigma-Aldrich, 98% purity). The MS/MS product spectrum of m/z 183 reveals a major
peak at m/z 139 due to the neutral loss of CO, (44 u), see SI Appendix, Figure S2 (H).
Similar fragmentation patterns were also observed for ions at m/z 169, 171, 185, 189,
197, and 199, as shown in S/ Appendix, Figure S2 (G3, C3, F3, A3, B3, and D3). They
are assigned to pinalic acid, terpenylic acid, pinic acid, diaterpenylic acid, oxopinonic
acid, and hydroxypinonic acid, respectively, consistent with previous studies (5-15). Note
that neutral loss of CO, has been demonstrated as an abundant dissociation pathway of
deprotonated carboxylic acid upon collision induced dissociation (16). The m/z 171 EIC
shows a dominant peak at retention time (RT) 3.96 min, which is assigned to terpenylic
acid, as well as a small shoulder peak at RT 4.07 min, which is assigned to norpinic acid,
based on comparison with LC/MS data reported in literature (12). The major peak in the
m/z 199 EIC is attributed to hydroxypinonic acid, based on the m/z 199 — m/z 182 (loss
of OH) — m/z 155 (loss of CO;) product ion MS/MS spectrum. The weak shoulder peak
in the m/z 199 EIC likely corresponds to an isobaric compound of hydroxypinonic acid
due to the presence of different product ions upon collision. The m/z 231 EIC contains
five peaks. Of these, the dominant peak (RT 4.12 min) is assigned to diaterpenylic acid
acetate based on its fragmentation pattern in the MS/MS spectrum: the two major ions
m/z 171 and m/z 153 result from the neutral loss of CH3COOH and H,O molecules,
respectively. The ion at m/z 247, which has been observed previously (17), is assigned to

a molecular formula C;oH;60sS. The MS/MS spectrum of the parent ion at m/z 247

reveals a major product peak at m/z 97 (HSO,), suggesting it contains a sulfate ester

structure.
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A number of dimers were observed in the mass range between m/z 300 and m/z 400.
Accurate mass measurement suggests they are the extremely low volatility organic
compounds (ELVOC) with molecular formula Cj4.19H24.280¢.9. Of these, covalent dimers
of the ester type, i.e., pinyl-diaterebyl ester, pinyl-diaterpenyl ester, and pinonyl-pinyl
ester, have been proposed for m/z 343 (RT 5.45 min), 357, and 367, respectively (8, 9,
12-15). As shown in SI Appendix, Figure S2 (J3—L3), the MS/MS spectra of these ions
are in good agreement with previously published results: the collision-induced
dissociation of m/z 343 (RT 5.45 min) results in m/z 157 and m/z 185; the collision-
induced dissociation of m/z 357 results in m/z 185 and m/z 171; and the collision-induced
dissociation of m/z 367 results in m/z 199 and m/z 185. These product ions are produced
via the scission of the C—O bond in the ester structure or the C—O bond between the
secondary/tertiary carbon and the alcoholic oxygen; see the fragmentation pattern
sketched in ST Appendix, Figure S3. Further fragmentation of m/z 185 produces the m/z
141 product ion by the loss of CO,, which is comparable to that observed for the
deprotonated pinic acid [M—H] . Similarly, further fragmentation of m/z 171 produces the
m/z 127 product ion, which is comparable to that observed for the deprotonated
diaterpenylic acid [M—H] . It is worth noting that there are four major peaks in the m/z
343 EIC in SI Appendix, Figure S2 (I). The first peak (RT 3.96) has been attributed to a
non-covalent dimer of terpenylic acid, which is produced in the electrospray process (9).
The second peak (RT 5.05) is most likely an ester of terpenylic acid and diaterpenylic
acid: collision-induced dissociation of this ion results in the formation of m/z 213, m/z
187, m/z 171, and m/z 127 ions, see SI Appendix, Figure S3 for the fragmentation
mechanism. The third peak (RT 5.32) co-elutes with the m/z 357 ion, indicating that this
peak might be formed in the electrospray process (loss of CH,) other than representing an

actual product from the reaction of a-pinene with ozone.

In addition to the dimers (m/z 343, m/z 357, and m/z 367) that have been previously
reported, a number of ions with mass to charge ratio of 300 — 400 (u) are newly identified
here, including m/z 271 (RT 6.45 min), m/z 299 (RT 5.78 min), m/z 309 (RT 5.70 min),
m/z 311 (RT 5.80 min), m/z 313 (RT 6.08 min), m/z 325 (RT 6.01 min), m/z 337 (RT 6.19
min), m/z 355 (RT 5.62 min), m/z 375 (RT 5.90 min), and m/z 399 (RT 5.88 min). They

are assigned to molecular formulas of C4H240s, C;sH406, Ci7H260s, Ci6H240s,
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Ci6H2606, C17H2606, CigH2606, CigH2307, C17H2809, and Ci9H2309, respectively, with
estimated errors less than = 10 ppm, as shown in S/ Appendix, Table S2. Close inspection
of their MS/MS spectra reveals that two ions, m/z 185 and m/z 171, are the major
fragments produced upon collision-induced dissociation of the parent ions, see S/
Appendix, Figure S3 (M3 — V3). Further, the m/z 185 — m/z 167 (loss of H,O) — m/z 141
(loss of CO,) and m/z 171 — m/z 127 (loss of CO,) fragmentation patterns, which are
typical for dicarboxylic acid monoanions, are commonly observed across all ions. This
indicates that pinic acid and diaterpenylic acid, or their isobaric isomers, are important

monomeric building blocks for these dimers.
S3.2 Quantification
S3.2.1 Particle-Phase Components Mass Concentration Retrieval

Chamber generated a-pinene SOA was collected by PILS, which operates with a
duty cycle of 5 min, and then analyzed off-line by UPLC/ESI-Q-ToFMS in the negative
mode. For each experiment with approximately 6 h duration (S Appendix, Table SI), a
total of 72 liquid samples were collected in order to capture the dynamics of individual
particle-phase components during the early stage of particle growth and SOA aging. It is
worth noting that the liquid column separation prior to the electrospray ionization process
precludes ionization suppression caused by potential interfering compounds mixed with
the analyte, thus facilitating molecular-level quantification of particle-phase components.
For any given species i, its particle-phase mass concentration, Cp,; (ug m™), in the
chamber is given by:

_ 1000 - R; - O, - DF - p,
> IE; - Qg " CEpis

(S1)

where 1000 is the unit conversion factor, R; is the ESI-Q-ToFMS response towards the
ion ([M — H]J.") produced via deprotonation of compound i in the negative mode, Q) is the
liquid sampling flow rate (1.5 mL min™), DF is the dilution factor that accounts for the
water vapor condensation on the PILS impactor wall, p, is the density of collected liquid,
which is assumed to be the density of the washing flow (0.893 g cm™), which is
composed of 50% Milli-Q water and 50% isopropyl alcohol, O, is the gas sampling flow
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rate (12.5 L min™), /E; is the electrospray ionization efficiency (sensitivity) of compound
i, and CEpyis is the collection efficiency of PILS for a-pinene+O; derived SOA. Here a
collection efficiency of 0.8—0.9 is used based on a linear relationship between CEp.s and

the particulate average O:C ratio developed in our recent studies (18).
S3.2.2 Electrospray lonization Efficiency Estimation

The ESI process proceeds via the ion evaporation mechanism in the case of low
molecular weight compounds (19, 20). The electrospray conditions and molecular
structures of analytes govern the ionization efficiency. Since the ESI-MS operation
parameters are controlled consistently in the present study, the ionization efficiency of
individual products identified here is expected to depend strongly on their
physicochemical properties, such as molecule size, pK, value, hydrophobicity, surface
activity, etc. (21). The ionization efficiency of pinonic acid is obtained directly from the
counts/concentration calibration curve of commercially available cis-pinonic acid
standard (Sigma-Aldrich, 98% purity). The ionization efficiency of other products
identified in SI Appendix, Table S2 is estimated based on a linear model developed by
Kruve et al. (22):

logRIE; = (1.04+0.34) + (2.23+0.34)-0; + (—0.510.04)-WAPS;-10° (S2)

where RIE; is the relative ionization efficiency of compound i relative to benzoic acid via
deprotonation in the negative mode, «; is the degree of ionization for compound i, which
is calculated based on its pK, and the pH of the aqueous phase, and WAPS; (weighted
average positive sigma) is a parameter defined as the weighted mean of positive sigma
(o) values divided by the ion surface area (23):

/| ZZ) 6 -p(o)-do

WAPS = ——;
A J_, p(o)-do

(83)

where o is the polarization charge density on the ion surface, p(0) is the probability

function of o (sigma profile), and A is the surface area of the anion.

COnductor-like Screening MOdel for Real Solvents (COSMO-RS) method (24)
implemented into the Amsterdam Density Functional (ADF 2014.07) molecular modeling

suite (25) was used for calculating pK, of individual compounds dissolved in

10
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water/acetonitrile mixture, as well as generating the sigma profiles needed for calculating
the WAPS parameter. First, 18 molecules were chosen from SI Appendix, Table S2 and
the proper structure and connectivity of each molecule was drawn in three dimensions in
the ADF tool. Different conformations were considered and the conformers with lowest
energy were adopted. Next, the molecular geometries were optimized at the TZP level
with the Becke-Perdew (BP) Generalized Gradient Approximation (GGA) density
functional. By doing so, the ideal-gas phase-equilibrium geometry for each molecule can
be obtained. Second, a COSMO calculation was carried out on all species using the ADF
input files to calculate the screening charges mapped on the cavity surface surrounding
the molecule in the condensed phase. Here, hydrogen bonding was taken into account,
which is particularly necessary for large molecules so that the monoanion adopts a
‘coiled’ conformation placing the ionized carboxyl group with a labile hydrogen atom in
close proximity. It is worth noting that the atomic radii for the four elements, i.e., carbon,
hydrogen, oxygen, and sulfur, have been included and optimized in the COSMO-RS
approach. Finally, using the calculated charge density distribution, we can calculate the

charge delocalization in the species, as represented by the parameter WAPS.

The aqueous pK, of each compound, denoted as sza, was calculated based on its

free energy of dissociation in water (AGZiSS). The cluster-continuum approach in the

COSMO-RS model was employed to compute the AG;SS values. It has been
recommended that the cluster-continuum approach can predict the aqueous pK, for strong
to moderately weak acids with reasonable accuracy (26). Molecules that have two or
more equivalent sites for deprotonation (e.g., dicarboxylic acids) were not taken into
account, so the predicted aqueous pK, values are only for the dissociation of the first
proton (pK,;). Here it is not necessary to predict pKa, since di-anions were not observed
during the electrospray ionization of dicarboxylic acids. It is important to note that when
an analyte elutes from the LC column, the solvent composition for this particular analyte
depends on the eluent program: the volume fraction of acetonitrile in the
water/acetonitrile solvent mixture increases linearly from ~20% to ~50% from retention
time 3.6 min to retention time 7.2 min. To account for the explicit solvent molecules, we

applied a linear model developed by Espinosa et al. (27). In this way, the pK, value of an

11



253

analyte in the water/acetonitrile mixture (sza) can be accurately predicted from its

corresponding pK, value in water (nga), with standard deviation less than 0.3 pK, unit:
K, = as x "pK, + by (S4)

where q; is related to difference between specific solvation interactions, which depend on
the solvent and family of compounds, and bsis related to the difference in basicities,
dielectric constants, and specific solvation interactions of the solute between the organic
solvent, which is acetonitrile here, and water. Specific values used for a5 and b; in this

study are referred to Table 2 in the original paper.

The pH of the LC solvent, i.e., acetonitrile/water mixture, was directly measured
using a digital pH meter (VWR Scientific Model 8010), with its electrode calibrated with
standard aqueous buffers. The pH obtained herein is denoted as ‘pH, namely, pH
measured in acetonitrile/water mixture and referred to water as standard state. The ‘0’
factor is applied to convert Vij to :pH, i.e., pH measured in acetonitrile/water mixture

and referred to the same acetonitrile/water mixture as standard state, with standard

deviation less than 0.02 pH unit (28):
‘pH= "pH—35 (S3)

Here the ‘0’ term represents the primary medium effect and the difference between the
liquid-junction potentials of the electrode system in solvent mixture and water. Specific

values used for 0 in this study are referred to Equation (10) in the original paper.

Finally, the degree of ionization for each analyte (o) in the LC mobile phase (v/v %
acetonitrile/water) can be calculated given the estimated ‘pK, value for each compound
and the ZpH of the mobile phase:

107Pka
o= W (S6)

SI Appendix, Figure S4 shows the COSMO-RS computed sigma profiles for 6
negative ions (m/z 171, 183, 231, 247, 357, and 367) identified in this study. The sigma
profile presents the probability distribution of a molecular surface segment that has a

specific charge density (29). For each ion, its sigma profile contains 90 segments, 0.0089

12
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e/A* wide, in the range of -0.04 ¢/A* to 0.04 e¢/A”. Given the sigma profiles, we can
calculate the weighted average positive sigma (WAPS) via Equation (S3). The smaller the
WAPS value, the more delocalized the charge in the anion. The effect of charge
delocalization on the electrospray ionization efficiency can be explained by the charge to
charge repulsion occurring on the ESI droplet (22). The more delocalized the charge in
the anion, the more charge to charge repulsion occurs between ions, the more likely ions
evaporates from the ESI droplet, and as a result, the higher ionization efficiency of the
parent molecule. It can be seen that the calculated relative ionization efficiency towards
cis-pinonic acid standard (RIE) strongly depends on the WAPS parameter. For example,
the RIE of m/z 367 is ~7 times higher than that for cis-pinonic acid, given the
corresponding WAPS values of 2.58x10” and 4.25x107, respectively. The effect of the
pK. parameter on the ionization efficiency lies in the abundance of ionizable components
in the droplets. A straightforward illustration would be that strong acids tend to
completely dissociate in the aqueous solution and present as the conjugate base (HA —
H' + A). As a result, compounds with relatively low pK, values tend to give a high
response in the ESI negative mode. For example, the RIE of m/z 247, which represents a

sulfate ester, is approximately two orders magnitude higher than that for cis-pinonic acid.
S3.2.3 Uncertainty Analysis

Uncertainties in the PILS particle sampling technique arise mainly from variation of
the collected liquid volume due to the existence of air bubbles. We have estimated in the
PILS+UPLC/ESI-Q-ToFMS methodology study that this uncertainty is less than +11%
(16). Next, we need to evaluate the uncertainties that arise from the electrospray
ionization efficiency calculation. Since we have used a linear model that is developed
based on optimal fitting of the predicted ionization efficiency to the corresponding
measurements, we focus on the resulting uncertainties by employing this linear model to
predict the RIE of the identified species. While we acknowledge uncertainties from the
prediction of thermodynamic properties of molecules using the COSMO-RS software, it
is important to note that these uncertainties have been incorporated in the linear model. S/
Appendix, Table S2 gives the predicted RIE of each product identified from the o-pinene

SOA system relative to that of the cis-pinonic acid standard as well as the corresponding

13
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uncertainties. It can be seen that the parameter, WAPS, contributes to most of the
simulation uncertainties, whereas uncertainty resulting from the pK, parameter is
insignificant. This is due to the LC conditions employed in this study: most products are
not dissociated at pH of 2—-3 and are present in molecular form in the mobile phase prior

to ESIL.
S4. Vapor-Particle Dynamics Model

A modified version of the Vapor-Particle Dynamics Model was used to simulate the
proposed mechanism for the C;7H»606 ester dimer formation during the ozonolysis of o.-
pinene. Details of the model can be found in the original paper (30), and only an
overview and the additional modifications are presented here. The model simulates
gas/condensed-phase reactions, condensation/evaporation of gas-phase compounds to
produce organic aerosol, particle-wall deposition, and vapor-wall interactions in a well-
mixed laboratory chamber. A moving-bin version of the model is used to represent the

single distribution of the chamber aerosol, and coagulation is neglected.

The gas- and particle-phase reactions simulated are given in S/ Appendix, Table S4.
These reactions are not intended to represent the full mechanism for the ozonolysis of a-
pinene but rather involve species only contributing to the formation of the C;7H»60¢ ester
dimer. The particle-phase decomposition of the diacyl peroxide to form the ester is added
to the mechanism, which did not originally include particle-phase reactions. Reactions
GO1 through G10 are taken from MCMv3.2 (http://mcm.leeds.ac.uk/MCM). The rate
constants for GO7 and G10 were changed to 5 x 107 cm® molec™ s based on the mean
of primary, secondary, and tertiary RO, reaction rate constants (31). The rate constants
and molar product yields for reactions G11, P01, and P02 were optimized in order to
match the observed particle-phase concentration of the C;7H»¢O¢ ester dimer. Because the
model does not simulate inorganic chemistry or the full a-pinene ozonolysis mechanism,
03, OH, HO,, and RO; concentrations are needed as inputs (no OH scavenger was used
during the experiment, and thus the ozonolysis of a-pinene generates OH as a coproduct).
The O3 concentration was measured experimentally. This experimental curve was fit to a
fourth-order Gaussian function and used in the model to determine the O3 concentration

at each moment in time. OH, HO,, and RO, concentrations were not measured

14
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experimentally. Therefore, concentrations for these species were predicted using the
Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-
A) (32) using the corresponding experimental conditions (154 ppb a-pinene, 200 ppb Os,
zero NOy, 298 K, and < 5% RH) as the input. The OH, HO,, and RO, curves generated
by GECKO-A were also fit to fourth-order Gaussian functions which were then
implemented in the model. For simulations with initial mixing ratios of 10 ppb a-pinene
+ 20 ppb Os, concentrations of reactants and free radicals were predicted by GECKO-A

as well.

The two stable gas-phase species, pinic acid (CoH1404) and the diacyl peroxide
(CisH2603), condense onto both seed particles and the chamber walls. The rate of
condensation onto particles is controlled by the wvapor-particle accommodation
coefficient. The optimal vapor-particle accommodation coefficient was determined
separately for each of the two compounds in order to match the observed particle-phase
concentration. An accommodation coefficient of 0.01 was determined for pinic acid, and
an accommodation coefficient of 0.1 was determined for the diacyl peroxide. The vapor
pressures of pinic acid and the diacyl peroxide are listed in SI Appendix, Table S4. The
organic aerosol concentration was measured experimentally using the SMPS. The 2-
Product model was fit to the observed AM, (the total organic aerosol mass produced) vs.
AHC (the mass of hydrocarbon reacted) curve and was then used to predict the SOA yield

at low organic mass loadings.

Condensation onto the chamber walls is treated as an equilibration process,
characterized by an effective organic concentration in the walls (Cy,), which is set to 10
mg m” (33). The vapor wall loss rates for the two condensable species, pinic acid and the
diacyl peroxide, were predicted using the empirical expression derived by Zhang et al.
(34) relating the vapor-wall accommodation to the species vapor pressure. The predicted
wall loss rates are listed in S/ Appendix, Table S4. The initial size distribution of the
inorganic seed particles is lognormal with a standard deviation of 1.5 and a number
concentration determined experimentally using the SMPS. Particle wall losses were
implemented using the diameter-dependent wall loss rates measured experimentally in

the Caltech chamber. The quantities of pinic acid and diacyl peroxide that condensed on

15
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particles that subsequently deposited on the chamber walls are considered lost from the

simulation.
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Figure S1. UPLC/(-)ESI-Q-ToFMS base peak chromatographs (BPCs) of particle-phase
constituents produced from (A) dark ozonolysis of a-pinene at 298 K and 5% RH; (B) dark
ozonolysis of a-pinene at 298 K and 50% RH; (C) dark ozonolysis of a-pinene at 285 K and 5%
RH; and (D) OH-initiated oxidation of a-pinene at 298 K and 5% RH. The numbers listed next
to each peak correspond to the respective [M—H] ions generated in the ESI negative mode. lons
at m/z 171, 199, and 185 correspond to terpenylic acid, OH-pinonic acid, and pinic acid,
respectively. These three monomers are detected in SOA from both OH-initiated and Os-initiated

oxidation of a-pinene.
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Figure S2. UPLC/(-)ESI-Q-ToFMS chromatographs and mass spectra of

particle-phase constituents produced from the dark reaction of ~150 ppb o-

pinene with ~200 ppb O; at 298 K and 5% RH. Corresponding molecular

formula and chemical structures are proposed in SI Appendix, Table S2. Subplot

(A1-V1): The extracted ion chromatograph (EIC) for each product identified

with distinct retention time; Subplot (A2—V2): Corresponding mass spectra for

the chromatographic peaks shown in A1-V1. Ions are detected in the negative

mode by the loss of one hydrogen atom ([M—H]); and Subplot (A3-V3):

Corresponding MS/MS spectra for the product ions generated from the collision-

induced dissociation of the parent ions in A2—-V2.
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Figure S3. Fragmentation pathways of negative ions at m/z 343, m/z 357, and m/z 367 examined

by collision induced dissociation (CID).
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Figure S4. Sigma profiles of negative ions ((M-H]") at m/z 171, 183, 231, 247, 357, and 367. The structure of each ion is shown in the
format of the COSMO charge density on a COSMO surface visualized with ADFview. Note that the red color represents positive
COSMO charge density (the underlying molecular charge is negative), and the blue color represents negative COSMO charge density

(the underlying molecular charge is positive). The calculated WAPS (x10°), :pKa, degree of ionization (o), and relative ionization

efficiency (RIE;) to pinonic acid are also shown for each ion.
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Figure S5. Organic mass concentration and molecular composition of a-pinene SOA.
Experimental conditions are listed in S7 Appendix, Table SI. The gray dashed lines denote the 5-
min average time period at which the SOA chemical composition measured by PILS+UPLC/(—
)ESI-Q-ToFMS is shown in Figure 1 and Figure 2. (A) GC-FID measured decay of a-pinene due
to reaction with O3 and OH. (B) DMA measured overall organic mass growth. Note that particle
wall loss is not applied here in order to directly compare with the total mass of PILS collected
suspended particle via the sum of individual compounds. (C) AMS measured average O:C and
H:C ratios of a-pinene SOA in the van Krevelen diagram. (D) Progression of the derived

oxidation state (OS¢ = 2 x O/C — H/C) of a-pinene SOA.
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Figure S6. Temporal profiles of a-pinene+Oj; products in the particle phase: temperature effect.
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Figure S7. Temporal profiles of a-pinene+Os products in the particle phase: relative humidity effect.

28



. 3
Concentration (ug m °)

o

0.8

0.6

0.4

0.2

0.0

40

30

20

270

-H:* 1.6 4 _H#* 20 ; 07 6
‘o
+ . + I E 5 _pi
-FFl_ 1.2 3 -F'_ 15 -ﬁ_-i_ 30 n 4 +H-+
+++ 0.8 ++ 10 H 20 + 3 +
+ ’ ++ _FI- +++-H- - =+
+ -+ F - o
_FF" 0.4 1 5 + 10
|.+ .FH_ +++ +_F" 1 +
m/z 171 oo . - m/z169 e m/z185 m/z183 +_+'H+ m/z 197
40 80 120 4 80 120 ' 80 120 40 80 120 40 80 120
16 0.16 87 o 05
_-F +$ ‘o
+ = =
_Fr."" 12 012 # 6 +F|:I+++-|+ * 0.4 -FHF]# -H“'F’
++ 0.8 0.08 +ﬁ+ 4 ‘-+ o3 -F"+ +-FF'-
+++ ' ' ++-H_ 0.2 +++ e g
+t 0.4 0.04 ++-F" 2 o1 NES +-FF'-
T m/z199 i m/z 231 mz247 L mzent m/z 299
0.0 0.00 0 0.0
40 80 120 4 80 120 80 120 40 80 120 4 80 120
05 1007 o + 607 o 407 o
.H:i-ﬂ* 0.4 80 E -|-|'1'+ sof % -I-‘f# 30 z ; -FHF*
.Fl' -+ 40 + =+ _FH'
+ 0.3 60 -+
HF o x # 5 A o
+ 0.2 40 +++ 2 " _H_-H- -FF'_
+-FF|- 01 20 +_|:F"+ 10l 4 or s
il m/z311 R m/z343 m/z309 |+ m/z 325 m/z 357
40 80 120 ’ 40 80 120 80 120 T 40 80 120 40 80 120
o 0.4 0.16 0.4 f 0.30 %
= ! ! 4= ] &+
L 0.3 0.12 ‘|¢ 0.3 .|:FH' 020 +-|=|-
+ 4F ++ i+
-I:|_+++ 0.2 0.08 4+ 02 F ++"+
o 0.1 0.04 -Frj- i 0.1 = o0 =
. 041 )
m/z 375 m/z337 T m/z 355 1—+*’F|- m/z367 T m/z 399
0.0 0.00 0.0 0.00
40 80 120 40 80 120 80 120 40 80 120
AMo (ug m™)

Figure S8. Temporal profiles of a-pinene+O3 products in the particle phase as a function of total SOA mass.
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Figure S9. Simulated growth of the C;7H2cOs ester dimer in the particle phase under different
initial conditions: (A) 150 ppb a-pinene + 200 ppb O3 and (B) 10 ppb a-pinene + 20 ppb Os.
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Figure S10. (Upper panel) GECKO-A simulated concentration profiles of RO, and HO, radicals
under initial conditions of 150 ppb a-pinene + 200 ppb Oz and 10 ppb a-pinene + 20 ppb O3,
respectively. (Lower panel) Estimated lifetimes of RO, radical with respect to self/cross
combination with RO,, reaction with HO,, and H-shift isomerization. The RO,+RO; and
RO,+HO, reaction rate constants are obtained from SI Appendix, Table S4. The isomerization
reaction rate constants are from Crounse et al. (35) and Rissanen et al. (36). It can be seen that by

increasing the initial o-pinene mixing ratio from 10 ppb to 150 ppb, the peak RO, and HO,
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concentrations are ~9.6 and 5.5 times higher, respectively. The corresponding lifetime of RO,
with respect to reactions with RO,/HO, decrease by less than an order of magnitude. This change
is not sufficient to perturb the dynamics of overall RO, chemistry. In other words, the RO,

isomerization channel is not completely shut down when a-pinene increases from 10 ppb to 150

ppb.
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Table S1. Summary of experimental conditions.

Initial Maximum
Exp. To RH, [HC]o  [NOxJo [Oslo Oxidants Seed Seed vol. SOA
# ) () (ppb)  (ppb)  (ppb) Aerosol P em?)  yield"
, NH,),SO
1 298+2 <5 154  <DL* ~200 0, Ifleut;‘ﬁ /Dr“y 73 0.16
NH,),SO
2 2852 <5 154 <DL  ~200 0, Ifleut;‘?j /Dr“y 69 0.28
H4),S0
3 298+2  55+2 157 <DL  ~200 0, I\(Izlut:ﬁ /W;‘t 129 0.21
4 298+2 <5 133 <DL ~3 OH gﬂ;‘ﬁ/ssr“y 106 0.29
H
5 298+  46x1 139 <DL ~3 OH I\(II: t;‘ﬁ/svegt 107 0.31
181

* Detection limits (DL) for O3, NO, and NO, are 0.5 ppb, 0.4 ppb, and 0.4 ppb, respectively. H,O, has an
interference on the O3 detection, increasing the O3 monitor readout by ~ 2-3 ppb in the current study.
® Yield is defined as the mass of organic aerosols produced divided by the mass of hydrocarbon reacted.
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Table S2. a-pinene SOA constituents measured by PILS + UPLC/ESI-Q-ToFMS.

Chemical standards are available for pinonic acid (C;oH;603). Note that symbols ‘#’ and

‘#’ denote products generated solely from a-pinene+O; and a-pinene+OH reactions,

respectively.
Molecular
Compound Observed RT RIE formul Proposed structure from
(Reference) m/z (<) (min)  (Uncertainties) ormuia literatures and this study
(error / ppm)
Diaterpenylic acid 189.0745 341 0.65 CgH 1405 :8:?/\50”
@121 197 [M-HT ‘ (+40.29%) (-9.5 ppm) I
Oxopinonic acid 197.0793 386 0.99 CioH 1404 't oH
©# [M-H] : (£45.79%)  (-10.7 ppm) m
Terpenylic acid 171.0652 396 1.32 CsH 1,04 O:S/\KOH
© 121319 [M-H] ‘ (+ 65.93%) (-2.9 ppm) g °
OH-pinonic acid 199.0949 4.07 2.49 CioH 604 HO 0 OH
G-6710.1.19 [M-H] ‘ (£78.04%)  (-10.5 ppm) M
Diat lic acid 2
1 elifzt: act 231.0907 s 432 C1oH 1606 Ao oH
©.12) [M-H] ' (£ 131.99%) (-10.4 ppm) HO 9
(0]

Pinic acid 185.0814 435 0.73 CoH404 2 on
6.6710,13,19 [M-H] ‘ (= 41.90%) (0 ppm) oY
Pinalic acid 169.0855 . 0.54 CoH 405 o o

6.6710# [M-HT : (+ 38.62%) (-5.9 ppm) “OJ\?/V
Pinonic acid 183.1023 496 1.00 CioH1603 2 OH
G0 710,119 [M-H] ’ ' (1.1 ppm) m

(@]
Pinyl-diaterebyl ester 343.1364 545 5.81 C16H24Og o OH
33, 14, 15) # [M-HJ : (+ 133.49%) (-8.5 ppm) Ho*%/yo oK

(0] (0]

o
Pinyl-diaterpenyl ester 357.1547 532 4.19 Ci7H2603 6 O%OH
(11,12, 13,14, 15) # [M-H] . (:I: 9440%) (-06 ppm) (0] OH (¢]
(0]
Pinonyl-pinyl ester 367.1761 5.08 6.88 C9H,507 o o OH
(813,14, 15)# [M-HT : (£ 162.94%) (1.1 ppm) ”Om m
[¢]
o 213.0758 . 1.38 C1oH 1405 HC’W\NOH
[M-HT (+51.30%) (-2.3 ppm) ) I
R 2470633 375.47 C1oH ;6058 0 e
[M-HT : (+ 56.10%) (-2.8 ppm) )\%/V 9
O
Terpenyl-diaterpenyl 343.1364 5.05 5.07 C¢H240g Hg;?\/?\
ester * [M-H] : (+116.51%)  (-8.5 ppm) m OH
(o]
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(@]
4 355.1740 6.69 C1sHp50, /‘mo o)
— 5.62 S? ~
[M-HJ (+ 155.94%) (-4.8 ppm) A
C17Hx0 't
# 17411265 (0] (0]
— 309.1708 570 Asm/z325 HOJ\%/\,( s
(1.9 ppm) o
299.14 H
— 99 8_6 5.78 As m/z 357 C1sH240s —
[M-H] (-3.0 ppm)
311.1489 C16H40
# 161124V6
— : 5.80 As m/z 313 —
[M-H] (-1.9 ppm)
399.1628 C1oH,50
# 191128V9
— - 5.88 As m/z 343 —
[M-H] (-6.8 ppm)
OOH
o 375.1654 5.00 7.05 C17H2500 2 o -
[M-HJ ‘ ( 169.00%) (0.3 ppm) )m
OOH
(0]
o 325.164_6 601 5.58 C17H5605 o %O%OH
[M-H] (+ 129.54%) (-1.5 ppm) ) )
OH
o 313.1622 6.08 51.64 C16H,605 o Oj:ﬁ
[M-HT ’ (£ 106.93%) (-9.3 ppm) Hokgg/\g So
337.1634 C1sHy0
# 181126V 6
— ) 6.19 As m/z 367 —
[M-H] (-5.0 ppm)
271.1564 H
— 7 56_ 6.45 As m/z 325 C1sH2:05 —
[M-H] (7.0 ppm)

References: (5) Jenkin et al., 2000; (6) Jaoui and Kamens, 2001; (7) Ma et al., 2008; (8) Miiller et al., 2008; (9) Claeys et
al., 2009; (10) Camredon et al., 2010; (11) Gao et al., 2010; (12) Yasmeen et al., 2010; (13) Kristensen et al., 2013; (14)
Kristensen et al., 2014; (15) Witkowski and Gierczak, 2014.
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Table S3. CIMS ions that represent gas-phase products generated from ozonolysis and
OH-initiated oxidation of a-pinene. Note that symbols ‘#’ and ‘*’ denote products

generated solely from a-pinene+Os and a-pinene+OH reactions, respectively.

Molecular Molecular Observed m/z
. Proposed structure
weight formula (=)
(0]
116 CaH,04 135 & 201 O~ Mon
(0]
20
142 CsH 1,0, 227 HOS%/\/
O OH
146 CeH004 231 YJ\/&OH
(0]
(0]
156 C8H1203 175 & 241 HO ~o
)J\%/\ #
(0]
CoH 60, 241 )K%/\OH
(0]
158 C7H 404 243 ANy~°
O OH
CsH 4.0 243 HOO _0
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Table S4. Gas- and particle-phase reactions incorporated in simulations. ‘G’ and ‘P’

denotes gas-phase and particle-phase reactions, respectively. Acronyms of each species

are consistent with those used in MCMv3.2. Concentrations of OH, HO,, and RO,

radicals are predicted by GECKO-A using the corresponding experimental conditions

(154 ppb a-pinene, 200 ppb O3, zero NOy, 298 K, and < 5% RH) as the input.

Products .
No Reactants Reaction rate constant
. Name Structure Vapor pressure (em” molec” 5™
Vapor wall loss rate
GOl APINENE+03 0.6 x APINOOA 00 R 6.3 x 107'% x exp (-580/Temp)
G02 APINENE +OH  Products 1.2 x 10" x exp (440/Temp)
O .
G03 APINOOA 0.45 x C10902 7@ 109
o o
G04 Cl10902+RO2 0.9 x C1090 7620 2x 1012
O
G05 C1090 0.8 x C89CO3 00- o 10°
(o]
G06 (C89CO3 +HO2  0.44 x C89CO2 76510 5.2 x 107 x exp (980/Temp)
(o]
G07 C89CO3+R0O2 0.7 x C89CO2 E 0 o 5% 10712
(0]
OH 6
G08 C89CO2 0.8 x C811CO3 . 10
00-
, 9.92 x 10" atm o
G09 C811CO3+HO2 0.15 x PINIC see Fig. 4 1,88 x 10° & 5.2 x 107" x exp (980/Temp)
. X S
, 9.92 x 10" atm -
G10 C811CO3+R0O2 0.3 x PINIC see Fig. 4 s 5% 10
5 -1
1.88x 107 s
. 8.13 x 107 atm "
Gl1 2xC811CO3 0.02 x DIACYLPER see Fig. 4 e 5% 10
4 -1
436x 10" s
G12 PINIC + OH Products 73 x 10"
. 2.62 x 10'? atm o
POl DIACYLPER 0.5 x ESTER see Fig. 4 o 1x107" (s
222x10%s
, 9.92 x 10" atm oo
P02 DIACYLPER 0.5 x PINIC see Fig. 4 5 1x107 (s7)
1.88 x 107 57!
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Appendix G

Isoprene Mechanism
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A semi-explicit mechanism for isoprene was developed in a collaborative effort as part of the
Environmental Science and Engineering 172 class. The mechanism, given in the following pages,
is in a format suitable for use with the Kinetic Preprocessor (KPP) tool. The accompanying table
gives the names of the species in the mechanism according to our naming convention along with the
corresponding MCM name (where available). Terminal species with no subsequent chemistry are

shown in the table with bolded italics.

G.1 Naming Scheme

Names of most species are based on precursor names (ISOP for isoprene, MVK for methyl vinyl
ketone, MACR for methacrolein, etc.) that have the same carbon structure. Attached to the
precursor name are any additional functional groups, each functional group immediately preceded
by the carbon number that the functional group is attached to, in order of ascending location (i.e.,
functional groups attached to carbon 1 precede functional groups attached to carbon 2). Carbon
numbers are those assigned to isoprene. E or Z or ¢ (cis) or t (trans) are attached to the end of
the name when appropriate to designate stereoisomers. A Stabilized Criegee Intermediate (SCI)

[APN-))

is designated by “ci” before the precursor name and “O0” following. An energetically hot radical
is designated by a lowercase “x” at the end of the name. Any functional groups included within

the precursor molecule (e.g., ISOP) are not included within the name. Abbreviations for different

functional groups are shown in the following table:

Carbonyl CcO
Nitrate N
Hydroxy OH
Hydroperoxy OOH
Epoxide #4#0 (where ## are the two carbon numbers that the epoxide is attached to)
Alkoxy (0]
Peroxy 00

Double bond — ##_ (where ## are the two carbon numbers that the double bond is attached to)

Abbreviations for common species that do not follow this naming convention (such as GLYOX for

glyoxal) are also given in the table following the mechanism.
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As an example of the naming scheme, an isoprene hydroxyhydroperoxide with the peroxy group
attached to carbon #3 and the alcohol group attached to carbon #4 would be named ISOP3O0OH40H.
The double bond is not included in the name because this double bond is present in isoprene (the

precursor molecule).

G.2 Photolysis Rates

Photolysis rates for photolytic reactions included in the mechanism are the rates calculated when
the sun is directly overhead. When input into a box model, this rate can then be scaled with the
sunlight intensity at a particular time of day. These rates are multiplied in the mechanism by the

variable “SUN” to denote this.

G.3 Lumping of Isomers

In some cases, isomers are lumped to reduce the number of species required. For example, in the
NOj3 oxidation section, in some cases the peroxy radicals formed from OH oxidation of the first

generation nitrates are lumped together as explained in Schwantes et al. (2015).

G.4 Ozone Chemistry

Ozone chemistry is not included (other than an overview of the ozonolysis of isoprene), but will be

important for internal hydrogens.

G.5 Simulations

Simulations were carried out using the enclosed mechanism while holding the OH, HOg, and NO
concentrations constant. Maximum sunlight intensity was assumed (i.e., SUN = 1). The tempera-
ture was set to 298 K and the relative humidity to 30%. The initial isoprene concentration was set

to 30 ppb, and the constant OH concentration was set to 1 x 106 molec em™3. NO and HO9 concen-



283

trations were varied separately in order to investigate the product distributions at different relative
concentrations. Product distributions were examined at 6.4 h, when 90% of the initial isoprene had
reacted. Figures G.1-G.3 show the distribution of carbon among the most abundant products as a
function of NO for three different fixed HO9 concentrations. Figure G.4 shows distribution of carbon
among the most abundant products as a function of HO9 for a fixed NO concentration. Figure G.5
shows the fractional amount of MVK, MACR, and two 5-carbon hydroxyl carbonyl isomers as a

function of NO for a fixed HO9 concentration.



284

//OH Oxidation of Isoprene*************************************************

ISOP + OH = ISOP10Hc : 2.7e-11*exp(390/TEMP)*0.64*0.5;

ISOP + OH = ISOP10Ht : 2.7e-11*exp(390,/ TEMP)*0.64*0.5;

ISOP + OH = ISOP40Hc : 2.7e-11*exp(390/ TEMP)*0.36*0.7;

ISOP + OH = ISOP40Ht : 2.7e-11%exp(390/ TEMP)*0.36%0.3;
//Reversible Addition of 02

ISOP40Ht + 02 = ISOP1OO40H : 0.357e-12/1.5/1.3;

ISOP40Ht 4+ 02 = ISOP300O40H : 0.741e-12;

ISOP40OHc + O2 = ISOP10040Hc : 0.23e-12;

ISOP40Hc + 02 = ISOP30040H : 0.741e-12;

ISOP10Hc + 02 = ISOP10H400c¢ : 0.244e-12/1.3;

ISOP10Hc + 02 = ISOP10H200 : 0.724e-12;

ISOP10Ht + O2 = ISOP10OH400¢t : 0.298e-12;

ISOP10Ht + 02 = ISOP10H200 : 0.724e-12;

ISOP10040Ht = ISOP40OH :

0.357¢-12/1.5/1.3/ (exp(-((-53.1+34.8)-(416.5-(571.1)) /1000* TEMP*0.239006)
/0.0019872/ TEMP) /2.6867¢19%2.0188/2./1.5*1.3%10);

ISOP30040H = ISOP40OHt :
0.741e-12/(exp(-((-57.1434.8)-(401.3-(571.1)) /1000* TEMP*0.239006) /0.0019872
JTEMP)/2.6867¢19%2.3967 /2*1.3);

ISOP10040OHc = ISOP40Hc :
0.230e-12/(exp(-((-54.7+34.5)-(392.2-(565.8)) /1000.* TEMP*0.239006)
/0.0019872/TEMP) /2.6867¢19%0.8951%1.3/2.%1.3);

ISOP30040H = ISOP40OHc :

0.741e-12/ (exp(-((-57.1+34.5)-(401.3-(565.8)) /1000. *TEMP*0.239006)
/0.0019872/ TEMP) /2.6867¢19%10.1089/10/2.%1.3);

ISOP10H400c¢ = ISOP10OHc :
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0.244e-12/1.3/ (exp(-((-55.5435.7)-(394.7-(564.0)) /1000* TEMP*0.239006)
/0.0019872/ TEMP) /2.6867¢19%0.5696/1.5):

ISOP10H200 = ISOP10Hc :

0.724e-12/ (exp(-((-57.1+35.7)-(388.9-(564.0)) /1000.*TEMP*0.239006)
/0.0019872/ TEMP) /2.6867¢19%20.3636 /7*3/3.%3*3);

ISOP10H400t = ISOP10Ht :

0.208¢-12/ (exp(~((-53.3+35.8)-(420.8-(567.4)) /1000. *TEMP*0.239006)
/0.0019872/ TEMP) /2.6867¢19%1.5540%1.3*3/1.15/1.5,/1.2);

ISOP10H200 = ISOP10OHt :

0.724e-12/ (exp(~((-57.1+35.8)-(388.9-(567.4)) /1000. *TEMP*0.239006)
/0.0019872/ TEMP) /2.6867e19%2.9040*3);

// RO2 + NO

// 1 OH Addition Channels

//Beta isomer

ISOP10H200 4+ NO = NO2 + MVK + HO2 + HCHO : 8.8e-12*0.87;
ISOP10H200 4 NO = ISOP10OH2N : 8.8e-12*0.13;

//Delta isomers

ISOP10H400c¢ + NO = NO2 + HO2 + ISOP1CO40H : 8.8e-12*0.87*0.4;
ISOP10H400c¢ + NO = NO2 + ISOP1CO200300H40H : 8.8e-12*0.87*0.6;
ISOP10H400c¢ + NO = ISOP10H4Nc : 8.8¢-12*%0.13;

ISOP10H400t + NO = NO2 + HO2 + ISOP1CO40H : 8.8¢-12*0.87*0.4;
ISOP10H400t + NO = NO2 + ISOP1CO200300H40H : 8.8¢-12*0.87*0.6;
ISOP10H400t + NO = ISOP10H4N¢t : 8.8e-12*0.13;
ISOP1CO200300H40H + NO = NO2 + MGLYOX + HOCH2CHO + OH : 8.8e-12*0.87;
ISOP1CO200300H40H + NO = ISOP1CO2N300OH40H : 8.8¢-12*%0.13;
ISOP1CO200300H40H = MVK300OH40H + CO + OH : 0.5;

ISOP1C0O200300H40H + HO2 = ISOP1CO200H300H40H : 2.91e-13*exp(1300/ TEMP)*0.706;
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// 4 OH Addition Channels

//Beta isomer

ISOP30040H + NO = NO2 + MACR + HO2 + HCHO : 8.8e-12*0.87;

ISOP30040H + NO = ISOP3N40H : 8.8¢-12*0.13;

//Delta isomers

ISOP10040Hc + NO = NO2 + HO2 + ISOP10H4CO : 8.8e-12*0.87*0.4;

ISOP10040Hc + NO = NO2 4 ISOP10H200H3004CO : 8.8e-12*0.87*0.6;

ISOP10040Hc + NO = ISOP1N4OHc : 8.8e-12*0.13;

ISOP10040Ht + NO = NO2 + HO2 + ISOP10H4CO : 8.8¢-12*0.87*0.4;

ISOP10040Ht + NO = NO2 + ISOP10H200H3004CO : 8.8¢-12*0.87*0.6;

ISOP10040Ht + NO = ISOP1N40OH?t : 8.8e-12*0.13;

ISOP10H200H3004CO + NO = NO2 + GLYOX + CH3COCH20H + OH : 8.8e-12*0.87;
ISOP1OH200H3004CO + NO = ISOP10H200H3N4CO : 8.8e-12%0.13;
ISOP10H200H3004CO = MACR10H200H + CO + OH : 0.5;

ISOP10H200H3004CO + HO2 = ISOP10H200H300H4CO : 2.91e-13*exp(1300/ TEMP)*0.706;
//RO2 + Peroxy Radical

//Self Reactions

ISOP10H200 + ISOP10H200 = MVK + MVK + HO2 + HO2 + HCHO + HCHO : 6.92e-14;
ISOP30040H + ISOP30040H = MACR + MACR + HO2 + HO2 + HCHO + HCHO :
5.74e-12%0.8;

ISOP30040H + ISOP30040H = ISOP3CO40H + ISOP30H40H : 5.74e-12%0.2;

//Cross Reactions

ISOP10H200 + ISOP30040H = MVK + MACR + HO2 + HO2 + HCHO + HCHO : 3.08e-12
*0.9;

ISOP10H200 + ISOP30040H = ISOP10H20H + ISOP3CO40H : 3.08¢-12*0.1;
ISOP10H200 + ISOP10040Hc = MVK + HO2 + HCHO + ISOP1040Hc : 2.49¢-12*0.805;

ISOP10H200 + ISOP10040Hc = ISOP10OH20H + ISOP1CO40H : 2.49¢-12*(1-0.805);
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ISOP10H200 + ISOP10040Ht = MVK + HO2 + HCHO + ISOP1040Ht : 2.49¢-12*0.805;

ISOP10H200 + ISOP10040Ht = ISOP1OH20H + ISOP1CO40H : 2.49e-12*(1-0.805);
ISOP10H200 + ISOP10H400c¢ = MVK + HO2 + HCHO + ISOP10H4Oc : 2.49e-12*0.805;
ISOP10H200 + ISOP10H400c¢ = ISOP10OH20H + ISOP10H4CO : 2.49¢-12*(1-0.805);
ISOP10H200 + ISOP10H400t = MVK + HO2 + HCHO + ISOP10H40t : 2.49e-12*0.805;
ISOP10H200 + ISOP10H400t = ISOP10H20H + ISOP10H4CO : 2.49e-12*(1-0.805);
ISOP30040H + ISOP10040Hc = MACR + HO2 + HCHO + ISOP1040Hc : 3.94e-12*0.705;
ISOP30040H + ISOP10040Hc = ISOP30H40H + ISOP1CO40H : 3.94e-12%(1-0.705)*0.5;
ISOP30040H + ISOP10040Hc = ISOP1OH40H + ISOP3CO40H : 3.94e-12%(1-0.705)*0.5;
ISOP30040H + ISOP10040Ht = MACR + HO2 + HCHO + ISOP1040Ht : 3.94e-12*0.705;
ISOP30040H + ISOP10040Ht = ISOP30H40H + ISOP1CO40H : 3.94e-12*(1-0.705)*0.5;
ISOP30040H + ISOP10040Ht = ISOP10H40H + ISOP3CO40H : 3.94e-12*(1-0.705)*0.5;
ISOP30040H + ISOP10H400¢ = MACR + HO2 + HCHO + ISOP10H4Oc : 3.94e-12%0.705;
ISOP30040H + ISOP10H400c¢ = ISOP30H40H + ISOP10H4CO : 3.94e-12*(1-0.705)*0.5;
ISOP30040H + ISOP10H400c¢ = ISOP1OH40H + ISOP3CO40H : 3.94e-12%(1-0.705)*0.5;
ISOP30040H + ISOP10H400t = MACR + HO2 + HCHO + ISOP10H4O0¢t : 3.94e-12*0.705;
ISOP30040H + ISOP10H400t = ISOP30H40H + ISOP10H4CO : 3.94e-12*(1-0.705)*0.5;
ISOP30040H + ISOP10H400t = ISOP10OH40H + ISOP3CO40H : 3.94e-12*(1-0.705)*0.5;
ISOP10H200 + CH300 = MVK + CH30 + HO2 + HCHO : 2.00e-12*0.5;

ISOP10H200 + CH300 = ISOP10H20H + HCHO : 2.00e-12*0.5;

ISOP30040H + CH300 = MACR + CH30 + HO2 + HCHO : 2.00e-12*0.5;

ISOP30040H + CH300 = ISOP30H40H + HCHO : 2.00e-12*0.25;

ISOP30040H + CH300 = ISOP3CO40H + CH3O0H : 2.00e-12*0.25;

//Alkoxy decomposition

ISOP10H40c¢ = HO2 + ISOP1CO40H : 1e6*0.4;

ISOP10H40c¢ = ISOP1CO200300H40H : 1e6*0.6;

ISOP10H40t = HO2 + ISOP1CO40H : 1e6*0.4;
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ISOP10H40t = ISOP1CO200300H40H : 1e6*0.6;

ISOP1040Hc = HO2 + ISOP10OH4CO : 1e6*0.4;

ISOP1040Hc = ISOP10H200H3004CO : 1e6*0.6;

ISOP1040Ht = HO2 + ISOP10H4CO : 1e6*0.4;

ISOP1040Ht = ISOP10H200H3004CO : 1e6*0.6;

ISOP1CO40H + OH = MVK30OH40H + CO + OH : 1e-10;

ISOP10H4CO + OH = MACR10H200H + HO2 + CO : 1le-10;

//RO2 + HO2 Radical

HO2 + ISOP10H200 = ISOP1IOH200H + 02 : 2.22¢-13%exp(1300/TEMP)*(1-0.063);
HO2 + ISOP10H200 = MVK + OH + HO2 + HCHO : 2.22e-13*exp(1300/ TEMP)*0.063;
HO2 + ISOP30040H = ISOP30OH40H + 02 : 2.22e-13%exp(1300/ TEMP)*(1-0.063);
HO?2 + ISOP30040H = MACR + OH + HO2 + HCHO : 2.22¢-13*exp(1300/TEMP)*0.063;
HO2 + ISOP10040Hc = ISOP1OOH40H + 02 : 2.22e-13*exp(1300/TEMP);

HO2 + ISOP10040Ht = ISOPIOOHAOH + 02 : 2.22e-13%exp(1300/ TEMP);

HO2 + ISOP10H400¢ = ISOP1OH400H + 02 : 2.22¢-13*exp(1300/ TEMP);

HO2 + ISOP10H400t = ISOP1OH400H + 02 : 2.22e-13*exp(1300/ TEMP);

/ /Peroxy Isomerization

//1,6-H shift

ISOP10H400c¢ = ISOP1CO400Hc + HO2 : 0.6*0.333;

ISOP10H400c¢ = CHOCH200H + MGLYOX + OH : 0.6%0.333;

ISOP10H400c¢ = MVK30OH400H + CO + OH : 0.6%0.333;

ISOP10040Hce = ISOP1O0OH4COc + HO2 : 2.5*0.333;

ISOP10040Hc = HPAC + GLYOX + OH : 2.5%0.333;

ISOP10040Hc = MACR100OH200H + CO + OH : 2.5%0.333;

//1,5-H shift

ISOP10H200 = HCHO + OH + MVK : 8.94e10%exp(-9746/ TEMP);

ISOP30040H = MACR + OH + HCHO : 1.31el1%*exp(-9752/TEMP);
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//MVK

MVK + OH = MVK30040H : 2.6e-12*exp(610/TEMP)*0.76;

MVK + OH = MVK30H400 : 2.6e-12*exp(610/TEMP)*0.24;

//HO2 Chemistry

MVK30040H + HO2 = CH3CO3 + HOCH2CHO + OH: 1.8178e-13*exp(1300/TEMP)*0.48;
MVK30040H + HO2 = MVK3CO40H + OH + HO2: 1.8178e-13*exp(1300/ TEMP)*0.34;
MVK30040H + HO2 = MVK30OOH40H: 1.8178e-13*exp(1300/TEMP)*0.18;
MVK30H400 + HO2 = MVK30H40O0H: 1.8178e-13*exp(1300/ TEMP)*0.83;
MVK30H400 + HO2 = MGLYOX + HCHO: 1.8178e-13*exp(1300/TEMP)*0.17;
MVK300OH40H = CH3CO3 + HOCH2CHO + OH : SUN*3e-5;

//NO Chemistry

MVK30040H + NO = CH3CO3 + HOCH2CHO + OH + NO2: 2.7e-12*exp(360/ TEMP)*0.97;
MVK30040H + NO = MVK3N4OH : 2.7e-12%exp(360/ TEMP)*0.03;

MVK30H400 + NO = MGLYOX + HCHO + HOZ2: 2.7e-12%exp(360/ TEMP)*0.93;
MVK30H400 + NO = MVK30H4N: 2.7e-12*exp(360/TEMP)*0.07;

MVK3N40H = CH3CO3 + HOCH2CHO + NO2 : SUN*6.46e-5;

MVK30OH4N = CH3CO3 + ETHLN + HO2 : SUN*4.21e-5;

//MACR

MACR + OH = MACR10H200 : 8.0e-12*exp(380/TEMP)*0.53;

MACR + OH = MACRI0020H : 8.0e-12*exp(380/ TEMP)*0.02;

MACR + OH = MACR3O0O : 8.0e-12%exp(380/ TEMP)*0.45;

//HO2 Chemistry

MACR10H200 + HO2 = MACR10H20O0H : 1.5e-11*0.41;

MACR10H200 + HO2 = CH3COCH20H + CO + HO2 + OH + 02 : 1.5e-11*0.59*0.86;
MACR10H200 + HO2 = MGLYOX + HCHO + OH + 02 : 1.5e-11*0.59*0.14;
MACR10020H + HO2 = MACR10OOH20H : 2.0e-11*0.83;

MACR10020H + HO2 = MGLYOX + HCHO + HO2 + OH + 02 : 2.0e-11*0.17;
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MACR300 + HO2 = MACR3OOH : 5.2e-13*exp(980/ TEMP)*0.40;

MACR300 + HO2 = CH3CHCH2 + 02 + CO2 + OH + OH + 02 : 5.2¢-13%exp(980/TEMP)
*0.40;

MACR300 + HO2 = MACR3O0OH + O3 : 5.2e-13%exp(980/TEMP)*0.20;

//NO Chemistry

MACR10H200 + NO = CH3COCH20H + CO + HO2 + NOZ2 : 2.7e-12%exp(360/ TEMP)*0.94
*0.86;

MACR10OH200 + NO = MGLYOX + HCHO + NO2 : 2.7e-12%exp(360/ TEMP)*0.94*0.14;
MACR10H200 + NO = MACR1OH2N : 2.7e-12*exp(360/ TEMP)*0.06;

MACR10020H + NO = MGLYOX + HCHO + HO2 + NO2 : 2.7e-12*exp(360/TEMP)*0.94;
MACR10020H + NO = MACRIN20H : 2.7e-12*exp(360/ TEMP)*0.06;

MACR300 + NO = CH3CHCH2 + OH + 02 + CO2 + NO2 : 8.7e-12*exp(290/ TEMP);
MACR300 + NO2 + M = MPAN + M : KCO*KC1*FC/(KC0+KC1) ;

MPAN + M = MACR300 + NO2 + M : KPO*KP1*FP/(KP0+KP1) ;

/ /Isomerization Chemistry

MACR10H200 = CH3COCH20H + CO + OH : 2.9e7T*exp(-5297/TEMP);

MACR10020H = HPAC + CO + HO2 : 20;

//MPAN

MPAN + OH = MPAN1OHx : 3e-11;

MPAN1OHx = MPAN1OH20O0 : 1e7;

MPAN1OHx = HMMLx : 4e9;

MPAN1OHx = MPAN1OH: 8.18e7;

MPANI1OH = HMMLx: 1e3;

MPAN1OH = MPAN1OH20O0 : leT;

HMMLx = HMML + NO3 : 1E8*0.75;

HMMLx = CH3COCH20H + CO + NO3 : 1E8*0.25;

HMPPN + OH = MPAN1OH : 5E-12;
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MPAN1OH200 + NO = MPAN1OH20 + NO2: 9.E-12*0.75;

MPAN1OH200 + NO = MPAN1OH2N : 9.E-12*0.25;

MPAN1OH200 + HO2 = MPAN1OH200H : 1.4E-11*0.1;

MPAN1OH200 + HO2 = MPAN1OH20 + OH : 1.4E-11%*0.9;

MPAN1OH20 = CH3COCH20H + CO2 + NO3 : 1E8*0.4;

MPAN1OH20 = HO2 + HCHO + CH3COCOON : 1E8*0.6;

//ISOPOOH

//OH Addition

ISOP10H200H + OH = ISOP10H23040Ht: 1.7e-11*exp(390/ TEMP)*0.85%0.67;
ISOP10H200H + OH = ISOP10H23040Hc: 1.7e-11*exp(390/TEMP)*0.85%0.33;
ISOP30OOH40H + OH = ISOP10H23040H% : 3.0e-11*exp(390/ TEMP)*0.85*0.68;
ISOP30OH40H + OH = ISOP10H23040Hc : 3.0e-11*exp(390/ TEMP)*0.85%0.32;
ISOP100OH40H + OH = ISOP12030H40H + OH : 2e-10;

ISOP10H400H + OH = ISOP10H200OH30H4CO + OH : 2e-10;

ISOP10H200H + OH = ISOP10H200H30H400: 1.7e-11*exp(390/ TEMP)*0.05;
ISOP10H200H30H400 + NO = HOCH2CHO + CH3COCH20H: 2.7e-12*exp(360/ TEMP);
ISOP10H200H30H400 + HO2 = ISOP10H200H30H40OO0H: 2.9e-13*exp(1300/ TEMP);
ISOP30O0OH40H + OH = ISOP10020H300H40H : 3.0e-11*exp(390/ TEMP)*0.10;
ISOP100O20H300H40H + NO = CH3COCH20H + HOCH2CHO : 2.7e-12*exp(360/ TEMP)*0.7;
ISOP10020H300H40H + NO = CH3COCH20H + CHOCH20OH : 2.7e-12*exp(360/ TEMP)*0.3;
ISOP10020H300H40H + HO2 = ISOP10OH20H300H40H: 2.9¢-13*exp(1300/ TEMP);
ISOP10H200H + OH = ISOP10H200H30040H: 1.7e-11*exp(390/ TEMP)*0.10;
ISOP10H200H30040H + NO = HOCH2CHO + CH3COCH20H: 2.7e-12*exp(360/ TEMP);
ISOP10H200H30040H + HO2 = ISOP10H200H300OH40H: 2.9e-13*exp(1300/ TEMP);
ISOP30OOH40H + OH = ISOP10H200300H40H: 3.0e-11*exp(390/ TEMP)*0.05;
ISOP10H200300H40H + NO = CH3COCH20H + HOCH2CHO: 2.7e-12*exp(360/ TEMP);

ISOP10H200300H40H + HO2 = ISOP10H200H300H40H: 2.9¢-13*exp(1300/TEMP);
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//OH Abstraction

ISOP10H200H + OH = ISOP10H200 : 4.6e-12*exp(200/ TEMP);
ISOP10H200H + OH = ISOP1CO200H : 1.5¢-12*exp(200/ TEMP)*0.5;
ISOP10H200H + OH = ISO10H120 : 1.5e-12*exp(200/TEMP)*0.5;
ISOP30OOH40H + OH = ISOP30040H : 2.1e-12*exp(200/ TEMP);
ISOP30OOH40H + OH = ISOP3CO40H : 2.0e-12*exp(200/TEMP)*0.32;
ISOP300H40H + OH = ISOP300HACO : 2.0e-12*exp(200/ TEMP)*0.68;
//Photolysis

ISOP10H200H = MVK + HCHO + HO2 + OH : SUN*6.5e-6; //Photolysis rate for MHP with
sun directly overhead

ISOP300OH40H = MACR + HCHO + HO2 + OH : SUN*6.5e-6; //Photolysis rate for MHP with
sun directly overhead

//IEPOX

//cis

ISOP10H23040Hc + OH = CH3COCH20H + GLYOX + OH: 0.08*1.52¢-11;
ISOP10H23040Hc + OH = HOCH2CHO + MGLYOX + OH: 0.17*1.52e-11;
ISOP10H23040Hce + OH = ISOP10H2304CO + H20 + HO2: 0.21*1.52¢-11;
ISOP10H23040Hce + OH = MVK30H40H + OH + CO: 0.41*1.52e-11;
ISOP10H23040Hc + OH = MACR20H30H + OH + CO: 0.05%1.52e-11;
ISOP10H23040Hc + OH = CH3COCOCH20H + OH + HCHO: 0.08*1.52e-11;
//trans

ISOP10H23040Ht + OH = CH3COCH20H + GLYOX + OH: 0.16*0.98¢-11;
ISOP10H23040Ht + OH = HOCH2CHO + MGLYOX + OH: 0.14*0.98¢-11;
ISOP10H23040Ht + OH = ISOP10H2304CO + H20 + HO2: 0.18%0.98¢-11;
ISOP10H23040Ht + OH = MVK30OH40H + OH + CO: 0.36*0.98¢-11;
ISOP10H23040Ht + OH = MACR20H30H + OH + CO: 0.09*0.98e-11;

ISOP10H23040Ht + OH = CH3COCOCH20H + OH + HCHO: 0.07*0.98e-11;
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//MVK30H40H

MVK30H40H + OH = CH3COCHOHCHO + HO2 : 0.4*1.10e-11;

MVK30H40H + OH = CH3COCOCH20H + HO2 : 0.6*1.10e-11;

//MACR20H30H

MACR20H30H + OH = MACR20H3CO + HO2 : 0.16*3.0e-11;

MACR20H30H + OH = CH3COCH20H + OH + CO2 : 0.84*3.0e-11;

//HPALD

//OH Chemistry

ISOP1CO400Hc + OH = OH + CO + MVK30H40O0H : 5e-11;

ISOP100OH4COc + OH = HO2 + CO + MACR100OH200H : 5e-11;

//Photolysis

ISOP1CO400Hc = OH + OH + CO + MVKENOL : SUN*4.3e-4; //Photolysis rate with sun
directly overhead

ISOP1I00H4COc = OH + OH + CO + MACRENOL : SUN*4.3e-4; //Photolysis rate with sun
directly overhead

//Hydroxynitrates

//OH addition to 1,2 ISOPN

ISOP10OH2N + OH = ISOP10H2N30040H: 0.7*3e-12;

ISOP10OH2N + OH = ISOP10H2N30H40O0: 0.3*3e-12;

//NO channel for 1,2ISOPN-OH-OO adduct

ISOP10H2N30H400 + NO = ISOP10OH2N30H4N: 0.3*8.5e-11;

ISOP10H2N30H400 + NO = MACR10H2N + HO2 + HCHO + NO2: 0.7*8.5¢-11;
ISOP10H2N30040H + NO = MACR10OH2N + HO2 + HCHO + NO2: 0.75*8.5e-11;
ISOP10H2N30040H + NO = ISOP10OH2N3N40H: 0.15*8.5e-11;

ISOP10H2N30040H + NO = GLYOX + NO2 + NO2 4+ HO2 + CH3COCH20H : 0.1*8.5e-11;
ISOP10OH2N30040H = ISOP1CO2N300OH40H + HO2 : 0.1;

//HO2 channel for 1,2 ISOPN-OH-OO adduct
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ISOP10H2N30H400 + HO2 = ISOP10H2N30H40OO0H: 0.5*1.6e-11;

ISOP10H2N30H400 + HO2 = MACR10H2N + HO2 + OH + 02 + HCHO : 0.5*1.6e-11;
ISOP10OH2N30040H + HO2 = MACR10H2N + HO2 + OH + 02 + HCHO : 0.45*1.6e-11;
ISOP10H2N30040H + HO2 = ISOP1OH2N30OH40H: 0.45*1.6e-11;

ISOP10OH2N30040H + HO2 = GLYOX + CH3COCH20H + HO2 + OH + 02 + NO2: 0.1
*1.6e-11;

//OH addition to 3,4, ISOPN

ISOP3N40OH + OH = ISOP10OH2003N40H: 0.9*4e-12;

ISOP3N40OH + OH = ISOP10020H3N40H: 0.1*4e-12;

//NO channel

ISOP10H2003N40H + NO = MVK3N40H + HO2 + NO2 + HCHO: 0.74*8.5e-11;
ISOP10H2003N40H + NO = ISOP10H2N3N40H: 0.15*8.5e-11;

ISOP10H2003N40H + NO = GLYOX + HO2 + NO2 + NO2 + CH3COCH20H: 0.11*8.5¢-11;
ISOP10020H3N40H = ISOP100OH20H3N4CO + HO2: 0.01;

ISOP10020H3N40H + NO = ISOP1N20H3N40H: 0.35*8.5¢e-11;

ISOP100O20H3N40H + NO = MVK3N40OH + HO2 + NO2 + HCHO: 0.65*8.5¢-11;

//HO2 Channel

ISOP10H2003N40H + HO2 = MVK3N40H + HO2 + OH + 02 + HCHO: 0.74*1.6e-11;
ISOP10H2003N40H + HO2 = ISOP1OH200H3N40OH: 0.15*1.6e-11;

ISOP10H2003N40H + HO2 = GLYOX + CH3COCH20H + HO2 + OH + NO2 + 02: 0.11
*1.6e-11;

ISOP10020H3N40H + HO2 = ISOP10OH20H3N40H: 0.35*1.6e-11;

ISOP100O20H3N40H + HO2 = MVK3N40H + HO2 + OH + 02 + HCHO: 0.65*1.6e-11;
//Ozonolysis of Isoprene** itttk otttk kot
ISOP + 03 = MACR + ciCH200 : 1.3e-17*(0.41);

ISOP + 03 = MVK + ciCH200 : 1.3e-17*(0.17);

ISOP + O3 = OH : 1.3e-17%(0.28);
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ISOP + 03 = ¢ciMVKOO : 1.3e-17*(0.007);

ISOP + 03 = ciMACROO : 1.3e-17*%(0.006);

ISOP + 03 = HO2 : 1.3¢-17*(0.16);

ISOP + 03 = HCHO + CO2 + HCHO + CO + CH30O0 : 1.3e-17*0.407;
//Reactions of SCI

ciCH200 + SO2 = H2S04 : 2e-11;

ciCH200 + HCOOH = HPMF : 5.6e-11;

ciCH200 + H20 = HMHP : 0.9e-15%(0.73);

ciCH200 + H20 = HCOOH : 0.9e-15*%(0.21);

ciCH200 + H20 = HCHO : 0.9e-15*(0.06);

CiCH200 + H20 = H202 : 0.9¢-15%(0.06);

ciCH200 + H20d = HMHP : 0.8e-12*(0.4);

ciCH200 + H20d = HCOOH : 0.8e-12%(0.54);

ciCH200 + H20d = HCHO : 0.8¢-12*(0.06);

GiCH200 + H20d = H202 : 0.8¢-12%(0.06);

ciCH200 + 03 = HCHO : 1.0e-12*(0.7);

ciMACROO + H20 = MACR30OHOOH : le-15;

ciMVKOO + H20 = MVK20H200H : le-15;

//NO3 Oxidation of Isoprene* itttk itttk oot
//Isoprene + NO3

ISOP + NO3 = ISOPIN200 : 3.15E-12%exp(-450/ TEMP)*0.42;

ISOP + NO3 = ISOP3004N : 3.15E-12%exp(-450/ TEMP)*0.045;

ISOP + NO3 = ISOPIN400 : 3.15E-12%exp(-450/ TEMP)*0.45;

ISOP + NO3 = ISOP10O4N : 3.15E-12%exp(-450/ TEMP)*0.085;

//RO2 + HO2

ISOPIN200O + HO2 = ISOP1IN20OH : 2.91E-13*exp(1300/ TEMP)*0.706*0.47;

ISOP1IN200 + HO2 = MVK + OH + HCHO + NO2 : 2.91E-13*exp(1300/TEMP)
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*0.706*0.53;

ISOP1IN400 + HO2 = ISOP1N40OOH : 2.91E-13*exp(1300/ TEMP)*0.706;
ISOP3004N + HO2 = ISOP30OHAN : 2.91E-13*exp(1300/ TEMP)*0.706%0.735;
ISOP3004N + HO2 = MACR + OH + HCHO + NO2 : 2.91E-13*exp(1300/TEMP)
*0.706*0.265;

ISOP1004N + HO2 = ISOP10OOH4N : 2.91E-13*exp(1300/ TEMP)*0.706;

//RO2 + Dominant RO2

ISOP1N200O + ISOP1N400O = ISOP1N4CO + ISOP1N20H : 2.49E-12*0.77*0.5;
ISOP1IN200O + ISOP1IN400 = MVK + HCHO + NO2 + ISOP1N40 : 2.49E-12*0.77*0.5;
ISOP1IN200O + ISOP1N400 = ISOP1N20 + ISOP1N4O0 : 2.49E-12*0.195;
ISOP1N200O + ISOP1N400O = ISOP1N20OISOP1N4 : 2.49E-12*0.035;
ISOP1N400O + ISOP1N400 = ISOP1N4CO + ISOP1N4OHc : 3.9E-12*0.77*0.4;
ISOP1N400 + ISOP1N400O = ISOP1N4CO + ISOP1N4OH¢ : 3.9E-12*0.77*0.6;
ISOP1N400 + ISOP1N400 = ISOP1N40 + ISOP1N40 : 3.9E-12*0.195;
ISOP1N400 + ISOP1N400 = ISOP1N40OOISOP1N4 : 3.9E-12*0.035;

ISOP3004N + ISOP1N400O = ISOP30H4N + ISOP1IN4CO : 3.94E-12*0.77*0.5;
ISOP3004N + ISOP1IN400O = MACR + HCHO + NO2 + ISOP1N40 : 3.94E-12*0.77*0.5;
ISOP3004N + ISOP1N400 = ISOP304N + ISOP1N4O0 : 3.94E-12*0.195;
ISOP3004N + ISOP1IN400 = ISOP3004NISOP1N4 : 3.94E-12*0.035;
ISOP1004N + ISOP1N400 = ISOP1CO4N + ISOP1N4OHc : 3.29E-12*0.77*%0.5
*0.4;

ISOP1004N + ISOP1N400 = ISOP1CO4N + ISOP1N4OHY : 3.29E-12*0.77%0.5*
0.6;

ISOP1004N + ISOP1N400O = ISOP10H4Nc + ISOP1N4CO : 3.29E-12*0.77*0.5
*0.4;

ISOP1004N + ISOP1N400 = ISOP10H4Nt + ISOP1N4CO : 3.29E-12%0.77*0.5

*0.6;
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ISOP1004N + ISOP1N400 = ISOP104N + ISOP1N40 : 3.29E-12*0.195;

ISOP1004N + ISOP1N400 = ISOP1004NISOP1N4 : 3.29E-12*0.035;
//RO2 + CH300

ISOPIN200O + CH300= HCHO + ISOP1N20OH : 1.6E-13*0.71*0.5;
ISOP1IN200O + CH300= MVK + HCHO + NO2 + CH30 : 1.6E-13*0.71*0.5;
ISOP1IN200O + CH300= ISOP1N20 + CH3O : 1.6E-13*0.29;

ISOP1N400O + CH300 = ISOP1IN4CO + CH3OH : 1.2E-12*%0.71*0.5;
ISOP1N400 + CH300 = ISOP1N40OHc + HCHO : 1.2E-12*0.71*0.5%0.4;
ISOP1N400O + CH300 = ISOP1IN4OHt + HCHO : 1.2E-12*0.71*0.5*0.6;
ISOP1N400 + CH300 = ISOP1N40 + CH30 : 1.2E-12*0.29;

ISOP3004N + CH300 = ISOP30H4N + HCHO : 1.4E-12*0.71*0.5;
ISOP3004N + CH300 = MACR + HCHO + NO2 + CH30 : 1.4E-12*0.71*0.5;
ISOP3004N + CH300 = ISOP304N + CH3O0 : 1.4E-12*0.29;

ISOP1004N + CH300 = ISOP1CO4N + CH30H : 9.8E-13*0.71*0.5;
ISOP1004N + CH300 = ISOP10H4Nc + HCHO : 9.8E-13*0.71*0.5*%0.4;
ISOP1004N + CH300 = ISOP10H4Nt + HCHO : 9.8E-13*0.71*0.5*0.6;
ISOP1004N + CH300 = ISOP104N + CH3O0 : 9.8E-13*0.29;

//RO2 + CH3CO3

ISOP1IN200O + CH3CO3= MVK + HCHO + NO2 4+ CH3COO : 1.1E-12;
ISOP1N400 + CH3CO3= ISOP1N40 + CH3COO : 7.9E-12;

ISOP3004N + CH3CO3 = MACR + HCHO + NO2 4 CH3COO : 9.6E-12;
ISOP1004N + CH3CO3 = ISOP104N 4+ CH3COO : 6.7E-12;

//RO2 + NO

ISOPIN200O + NO = MVK + HCHO + NO2 4 NO2 : 2.7E-12*exp(360/ TEMP)*0.86;
ISOP1IN200 + NO = ISOPIN2N : 2.7E-12*exp(360/ TEMP)*0.14;
ISOPIN400O + NO = ISOP1N40 + NO2 : 2.7E-12*exp(360/ TEMP)*0.86;

ISOP1IN40O + NO = ISOPIN4N : 2.7E-12%exp(360/TEMP)*0.14;
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ISOP3004N + NO = MACR + HCHO + NO2 + NO2 : 2.7E-12%exp(360/ TEMP)*0.86;
ISOP3004N + NO = ISOP3N4N : 2.7E-12*exp(360/TEMP)*0.14;

ISOP1004N + NO = ISOP104N + NO2 : 2.7E-12*exp(360/ TEMP)*0.86;

ISOP10O4AN + NO = ISOP1NAN : 2.7E-12%exp(360/TEMP)*0.14;

//RO2 + NO3

ISOP1IN200O + NO3 = MVK + HCHO + NO2 4+ NO2 : 2.3E-12;

ISOP1IN400O + NO3 = ISOP1N40 + NO2 : 2.3E-12;

ISOP3004N + NO3 = MACR + HCHO + NO2 + NO2 : 2.3E-12;

ISOP1004N + NO3 = ISOP104N + NO2 : 2.3E-12;

//RO = decompose or react with 02

ISOP1IN40 + 02 = ISOP1IN4CO + HO2 : 2.5E-14*exp(-300/ TEMP);

ISOP104N + 02 = ISOP1CO4N + HO2 : 2.5E-14*exp(-300/ TEMP);

//1,5 H-shift

ISOPIN40 = ISOP1N25_30040H : 3E5;

ISOP1N25_30040H + NO3 = ISOP1N25_3040H + NO2 : 2.3E-12;
ISOP1IN25_.30040H + NO = ISOP1N25_.3040H + NO2 : 2.7E-12*exp(360

JTEMP);

ISOP1N25_3040H + 02 = ISOP1N25_3CO40H + HO2 : 2.5E-14*exp(-300

/TEMP);

ISOP1N25_30040H + HO2 = ISOP1N25_300H40H : 2.91E-13*exp(1300/ TEMP)
*0.706;

ISOP1IN25_.30040H + ISOP1IN400 = ISOP1N25_3CO40H + ISOP1N4OHc : 3.94E-12*
0.77*0.5%0.4;

ISOP1IN25_30040H + ISOP1IN400 = ISOP1N25_3CO40H + ISOP1N4OH¢ : 3.94E-12*
0.77%0.5%0.6;

ISOP1IN25_.30040H + ISOP1N400 = ISOP1N25_30H40H + ISOP1IN4CO : 3.94E-12*

0.77*0.5;
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ISOP1N25_30040H + ISOP1N400 = ISOP1N25_3040H + ISOP1N40 : 3.94E-12*

0.195;
ISOP1N25_30040H + ISOPIN400 = ISOP1N25_30040HISOPIN4 : 3.94E-12*
0.035;

ISOP1N25_30040H + CH300 = ISOPIN25_30HAOH + HCHO : 1.4E-12%0.71%0.5;
ISOP1N25_.30040H + CH300 = ISOP1N25_3CO40H + CH3OH : 1.4E-12*0.71*0.5;
ISOPIN25_30040H + CH300 = ISOPIN25_3040H + CH30 : 1.4E-12*0.29;
ISOP1N25_30040H + CH3CO3 = ISOPIN25_3040H + CH3COO : 9.6E-12;
//INP + OH

ISOPIN20OH + OH = ISOP1N23040H : 4.2E-11*0.484;

ISOPIN20OH + OH = ISOPNOOHOHOO b1 : 4.2E-11%0.276;

ISOPIN200H + OH = ISOPNOOHOHOO b2 : 4.2E-11%0.24;

ISOP1N40OOH + OH = ISOP1N20H340 : 1.1E-10*0.201;

ISOPIN4OOH + OH = ISOPNOOHOHOO_d1 : 1.1E-10%0.109;

ISOPIN4OOH + OH = ISOPNOOHOHOO_d2 : 1.1E-10%0.6;

ISOPIN4OOH + OH = ISOP12030H400H + NO2 : 1.1E-10%0.09;

ISOP300OH4N + OH = ISOP10H2304N : 4.2E-11*0.615;

ISOP300OH4N + OH = ISOPNOOHOHOO_b1 : 4.2E-11*0.35;

ISOP300HAN + OH = ISOPNOOHOHOO b2 : 4.2E-11%0.035;

ISOP10OHAN + OH = ISOP12030H4N : 1.1E-10%0.447;

ISOP10OH4N + OH = ISOPNOOHOHOO_d1 : 1.1E-10%0.243;

ISOP10OH4N + OH = ISOPNOOHOHOO d2 : 1.1E-10%0.27;

ISOP100OH4N + OH = ISOP100OH20H340 + NO2 : 1.1E-10*0.04;

ISOP1IN20OH + OH = ISOP1N200O + HO2 : 6.9E-12;

ISOP1IN400OH + OH = ISOP1N400 + HO2 : 6.9E-12;

ISOP300HAN + OH = ISOP3004N + HO2 : 6.9E-12;

ISOP100OH4N + OH = ISOP1004N + HO2 : 6.9E-12;
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//ISOPNOOHOHOO_b1

ISOPNOOHOHOO_b1 + HO2 = ISOPNOOHOHOOH : 2.91E-13*exp(1300/ TEMP)
*0.706%0.27;

ISOPNOOHOHOO_b1 + HO2 = OH + MACRIN200OH + HCHO + HO2 : 2.91E-13%*exp(1300
JTEMP)*0.706*0.13;

ISOPNOOHOHOO_b1 + HO2 = OH + MVK30OH4N + HCHO + HO2 : 2.91E-13*exp(1300
JTEMP)*0.706*0.02;

ISOPNOOHOHOO_b1 + HO2 = OH + CH3COCH20H + ETHLN + OH : 2.91E-13*exp(1300
JTEMP)*0.706*0.09;

ISOPNOOHOHOO b1 + HO2 = OH + PROPNN + HOCH2CHO + OH : 2.91E-13*exp(1300
JTEMP)*0.706*0.49;

ISOPNOOHOHOO_b1 + NO = ISOPNOOHOHN : 2.7E-12%exp(360/ TEMP)*0.04;
ISOPNOOHOHOO_b1 + NO = NO2 + MACRIN20OH + HCHO + HO2 : 2.7E-12
*exp(360/ TEMP)*0.17;

ISOPNOOHOHOO_b1 + NO = NO2 + MVK30OH4N + HCHO + HO2 : 2.7E-12%exp(360
JTEMP)*0.03;

ISOPNOOHOHOO_b1 + NO = NO2 + CH3COCH20H + ETHLN + OH : 2.7E-12*exp(360
JTEMP)*0.11;

ISOPNOOHOHOO_b1 + NO = NO2 + PROPNN + HOCH2CHO + OH : 2.7E-12¥exp(360
/TEMP)*0.65;

//ISOPNOOHOHOO_b2

ISOPNOOHOHOO_b2 + HO2 = ISOPNOOHOHOOH : 2.91E-13*exp(1300/ TEMP)*
0.706%0.27;

ISOPNOOHOHOO_b2 + HO2 = OH + MACRIN200H + HCHO + HO2 : 2.91E-13*exp(1300
JTEMP)*0.706*0.72;

ISOPNOOHOHOO_b2 + HO2 = OH + MVK30OH4N + HCHO + HO2 : 2.91E-13*exp(1300

JTEMP)*0.706%0.01;
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ISOPNOOHOHOO b2 + NO = ISOPNOOHOHN : 2.7E-12*exp(360/ TEMP)*0.04;

ISOPNOOHOHOO_b2 + NO = NO2 + MACRIN200H + HCHO + HO2 : 2.7E-12%exp(360
JTEMP)*0.94;

ISOPNOOHOHOO_b2 + NO = NO2 + MVK30OH4N + HCHO + HOZ2 : 2.7E-12*exp(360
JTEMP)*0.02;

//ISOPNOOHOHOO _d1

ISOPNOOHOHOO_d1 + HO2 = ISOPNOOHOHOOH : 2.91E-13*exp(1300/ TEMP)*
0.706%0.27;

ISOPNOOHOHOO_d1 + HO2 = OH + MACRIN20H + HCHO + OH : 2.91E-13*exp(1300
JTEMP)*0.706*0.11;

ISOPNOOHOHOO_d1 + HO2 = OH + MVK30H4N + HCHO + OH : 2.91E-13*exp(1300
JTEMP)*0.706*0.04;

ISOPNOOHOHOO_d1 + HO2 = OH + HPAC + ETHLN + HO2 : 2.91E-13*exp(1300
JTEMP)*0.706%0.17;

ISOPNOOHOHOO_d1 + HO2 = OH + PROPNN + HPETHNL + HO2 : 2.91E-13%*exp(1300
JTEMP)*0.706*0.41;

ISOPNOOHOHOO_d1 + NO = ISOPNOOHOHN : 2.7E-12%exp(360/ TEMP)*0.04;
ISOPNOOHOHOO_d1 + NO = NO2 + MACRIN20H + HCHO + OH : 2.7E-12%exp(360
JTEMP)*0.14;

ISOPNOOHOHOO_d1 + NO = NO2 + MVK30H4N + HCHO + OH : 2.7E-12%exp(360
JTEMP)*0.06;

ISOPNOOHOHOO_d1 4+ NO = NO2 + HPAC + ETHLN + HO2 : 2.7E-12*exp(360
JTEMP)*0.23;

ISOPNOOHOHOO_d1 + NO = NO2 + PROPNN + HPETHNL + HO2 : 2.7E-12%exp(360
JTEMP)*0.53;

//ISOPNOOHOHOO _d2

ISOPNOOHOHOO_d2 + HO2 = ISOPNOOHOHOOH : 2.91E-13*exp(1300/ TEMP)*
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0.706%0.27;

ISOPNOOHOHOO_d2 + HO2 = OH + PROPNN + HPETHNL + HO2 : 2.91E-13%*exp(1300
JTEMP)*0.706%0.67;

ISOPNOOHOHOO_d2 + HO2 = OH + HPAC + ETHLN + HO2 : 2.91E-13*exp(1300
JTEMP)*0.706*0.06;

ISOPNOOHOHOO_d2 + NO = ISOPNOOHOHN : 2.7E-12%exp(360/ TEMP)*0.04;
ISOPNOOHOHOO_d2 + NO = NO2 + HPAC + ETHLN + HO2 : 2.7E-12%exp(360
JTEMP)*0.08;

ISOPNOOHOHOO_d2 + NO = NO2 + PROPNN + HPETHNL + HO2 : 2.7E-12%exp(360
JTEMP)*0.88;

//INHE + OH

ISOPIN23040H + OH = NO2 + ISOP10H2304CO : 1.25E-11*0.6;

ISOPIN23040H + OH = OH + CO + NO2 + CH3COCOCH20H : 1.25E-11%0.1;
ISOPIN23040H + OH = HO2 + ISOPIN2304CO : 1.25E-11%0.1;

ISOPIN23040H + OH = OH + CO + MACRIN20H : 1.25E-11%0.1;

ISOPIN23040H + OH = OH + GLYOX + PROPNN : 1.25E-11%0.1;

ISOP10H2304N + OH = OH + MGLYOX + ETHLN : 1.25E-11%0.2;

ISOP10H2304N + OH = OH + CO + MVK30HA4N : 1.25E-11%0.2;

ISOP10H2304N + OH = ISOP1C02304N + HO2 : 1.25E-11%0.2;

ISOP10H2304N + OH = OH + HCHO + CH3COCOCH2N : 1.25E-11%0.1;
ISOP10H2304N + OH = ISOP10H2304CO + NO2 : 1.25E-11%0.3;

ISOPIN20H340 + OH = NO2 + ISOP1CO20H340 : 8.4E-12;

ISOP12030H4N + OH = NO2 + ISOP12030H4CO : 8 4E-12%0.3;

ISOP12030H4N + OH = CH3COCH20H + CO2 + NO2 + OH + HCHO : 8.4E-12%0.7;
//ICN

ISOPIN4CO + OH = PROPNN + OH + CO + CO : 2E-11;

ISOP1CO4N + OH = MVK30OH4N + CO + OH : 2E-11;
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ISOP1N4CO + OH = ISOP12030H4CO + NO2 : 1.1E-10*0.09;

ISOP1N4CO + OH = ISOPCONOHOO_d1 : 1.1E-10*0.31;

ISOP1N4CO + OH = ISOPCONOHOO_d2 : 1.1E-10*0.6;

ISOP1CO4N + OH = ISOP1CO20H340 + NO2 : 1.1E-10*0.04;

ISOP1CO4N + OH = ISOPCONOHOO_d2 : 1.1E-10*0.27;

ISOP1CO4N + OH = ISOPCONOHOO_d1 : 1.1E-10*0.69;

ISOPCONOHOO_d2 = MACRIN20OOH + CO + HO2 : 20*0.86;

ISOPCONOHOO_d2 = MVK30OOH4N + CO + HO2 : 20*0.14;

ISOPCONOHOO_d1 = MACRIN20OH + CO + OH : 2.9e7*exp(-5297/TEMP)*0.56;
ISOPCONOHOO_d1 = MVK30OH4N + CO + OH : 2.9e7*exp(-5297/TEMP)*0.44;
ISOPCONOHOO_d1 + HO2 = ISOPCONOHOOH : 2.91E-13*exp(1300/ TEMP)*0.706*0.27;
ISOPCONOHOO_d1 + HO2 = MVK30OH4N + OH + HO2 + CO : 2.91E-13*exp(1300
/TEMP)*0.706*0.07;

ISOPCONOHOO_d1 + HO2 = MACRIN20H + OH + HO2 + CO : 2.91E-13*exp(1300
/TEMP)*0.706*0.08;

ISOPCONOHOO_d1 + HO2 = OH + HO2 + MGLYOX + ETHLN : 2.91E-13*exp(1300
JTEMP)*0.706*0.25;

ISOPCONOHOO_d1 + HO2 = OH + HO2 + PROPNN + GLYOX : 2.91E-13*exp(1300
/TEMP)*0.706*0.32;

ISOPCONOHOO_d1 + NO = ISOPCONOHN : 2.7E-12*exp(360/ TEMP)*0.04;
ISOPCONOHOO_d1 + NO = MVK30H4N + NO2 + HO2 + CO : 2.7E-12*exp(360
/TEMP)*0.09;

ISOPCONOHOO_d1 + NO = MACRIN20H + NO2 + HO2 + CO : 2.7TE-12*exp(360
JTEMP)*0.11;

ISOPCONOHOO.d1 + NO = NO2 + HO2 + MGLYOX + ETHLN : 2.7E-12*exp(360
JTEMP)*0.34;

ISOPCONOHOO_d1 + NO = NO2 + HO2 + PROPNN + GLYOX : 2.7E-12*exp(360
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JTEMP)*0.43;

//THN + OH

ISOPIN20H + OH = ISOPNOHOHOO b : 4.2E-11;

ISOPIN4OHc + OH = ISOP12030H40H : 1.1E-10%0.69%0.13;

ISOPIN4OHc + OH = ISOPIN20030H40H : 1.1E-10%0.69*0.87;

ISOPIN4OHc + OH = ISOPIN20H30040H : 1.1E-10%0.31;

ISOPIN4OHt + OH = ISOP12030H40H : 1.1E-10%0.69*0.13;

ISOPIN4OHt + OH = ISOPIN20030H40H : 1.1E-10%0.69%0.87;

ISOPIN4OHt + OH = ISOPIN20H30040H : 1.1E-10%0.31;

ISOP30H4N + OH = ISOPNOHOHOO b : 4.2E-11;

ISOP10H4Nc + OH = ISOP10H20H340 : 1.1E-10%0.31*0.13;

ISOP10OH4Nc + OH = ISOP10H20H3004N : 1.1E-10%0.31%0.87;

ISOP10OH4Nc + OH = ISOP10H20030H4N : 1.1E-10%0.69;

ISOP1OH4Nt + OH = ISOP1OH20H340 : 1.1E-10%0.31%0.13;

ISOP1OH4Nt + OH = ISOP1OH20H3004N : 1.1E-10%0.31%0.87;

ISOP1OH4Nt + OH = ISOP1OH20030H4N : 1.1E-10%0.69;

ISOPIN20030H40H + HO2 = ISOPIN20OH30H40H : 2.91E-13*exp(1300/ TEMP)
*0.706*0.27;

ISOPIN20030H40H + HO2 = OH + HO2 + PROPNN + HOCH2CHO : 2.91E-13%exp(1300
JTEMP)*0.706%0.73;

ISOP1IN20H30040H + HO2 = ISOPIN20H300H40H : 2.91E-13*exp(1300/ TEMP)
*0.706%0.27;

ISOPIN20H30040H + HO2 = MACRIN20H + HCHO + HO2 + OH : 2.91E-13*exp(1300
JTEMP)*0.706%0.73%0.21;

ISOP1N20H30040H + HO2 = OH + HO2 + PROPNN + HOCH2CHO : 2.91E-13*exp(1300
JTEMP)*0.706%0.73%0.79;

ISOP1OH20H3004N + HO2 = ISOP1IOH20H300HAN : 2.91E-13*exp(1300/ TEMP)
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%0.706%0.27;

ISOP10OH20H3004N + HO2 = OH + HO2 + CH3COCH20H + ETHLN : 2.91E-13*exp(1300
JTEMP)*0.706%0.73;

ISOP10H20030H4N + HO2 = ISOP10H200H30H4N : 2.91E-13*exp(1300/ TEMP)
*0.706*0.27;

ISOP10H20030H4N+ HO2 = MVK30OH4N + HCHO + HO2 + OH : 2.91E-13*exp(1300
JTEMP)*0.706%0.73*0.21;

ISOP10H20030H4N + HO2 = OH + HO2 + CH3COCH20H + ETHLN : 2.91E-13*
exp(1300/TEMP)*0.706*0.73*0.79;

ISOPIN20030H40H + NO = ISOP1N2N30OH40H : 2.91E-13*exp(1300/TEMP)*0.706*0.04;
ISOP1IN200O30H40H + NO = NO2 + HO2 + PROPNN + HOCH2CHO : 2.91E-13*exp(1300
JTEMP)*0.706%0.96:

ISOP1IN20H30040H + NO = ISOP1N20H3N40H : 2.91E-13*exp(1300/TEMP)*0.706*0.04;
ISOP1N20H30040H + NO = MACRIN20H + HCHO + HO2 + NO2 : 2.91E-13*exp(1300
JTEMP)*0.706%0.96%0.21;

ISOP1IN20H30040H + NO = NO2 + HO2 + PROPNN + HOCH2CHO : 2.91E-13*exp(1300
JTEMP)*0.706%0.96*0.79;

ISOP10H20H3004N + NO = ISOP1OH20H3N4N : 2.91E-13*exp(1300/TEMP)*0.706*0.04;
ISOP10H20H3004N + NO = NO2 + HO2 + CH3COCH20H + ETHLN : 2.91E-13*exp(1300
JTEMP)*0.706%0.96:;

ISOP10H20030H4N + NO = ISOP10OH2N30HA4N : 2.91E-13*exp(1300/TEMP)*0.706*0.04;
ISOP10H20030H4N+ NO = MVK30H4N + HCHO + HO2 + NO2 : 2.91E-13*exp(1300
JTEMP)*0.706%0.96%0.21;

ISOP10H20030H4N + NO = NO2 + HO2 + CH3COCH20H + ETHLN : 2.91E-13
*oxp(1300/ TEMP)*0.706%0.96%0.79;

ISOPNOHOHOO_b + HO2 = ISOPNOHOHOOH : 2.91E-13*exp(1300/TEMP)*0.706*0.27;

ISOPNOHOHOO_b + HO2 = MVK30H4N + HCHO + HO2 + OH : 2.91E-13*exp(1300
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JTEMP)*0.706*0.17;

ISOPNOHOHOO b + HO2 = OH + HO2 + CH3COCH20H + ETHLN : 2.91E-13*exp(1300
JTEMP)*0.706*0.56;

ISOPNOHOHOO b + NO = ISOPNOHOHN : 2.7E-12%exp(360/ TEMP)*0.04;
ISOPNOHOHOO b + NO = MVK30H4N + HCHO + HO2 + NO2 : 2.7E-12*exp(360
JTEMP)*0.23;

ISOPNOHOHOO b + NO = NO2 + HO2 + CH3COCH20H + ETHLN : 2.7E-12%exp(360

JTEMP)*0.74;
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Common name Our name MCM Name
Isoprene ISOP C5H8
cis-OH-isoprene-adduct 1 addition ISOP10Hc CISOPA
trans-OH- isoprene-adduct 1 addition | ISOP10Ht TISOPA
cis-OH- isoprene-adduct 4 addition ISOP40Hc CISOPC
trans-OH- isoprene-adduct 1 addition | ISOP40OHt TISOPC
trans-(4,1)-1ISOPOO ISOP10040Ht ISOPCO2
cis-(4,1)-ISOPOO ISOP10040Hc CISOPCO2
cis-(1,4)-ISOPOO ISOP10H400c CISOPAO2
trans-(1,4)-1ISOPOO ISOP10H400t ISOPAOQ2
(1,2)-1ISOPOOH ISOP10H200H ISOPBOOH
(4,3)-ISOPOOH ISOP300OH40H ISOPDOOH
trans-beta-IEPOX ISOP10H23040Ht IEPOXB
cis-beta-IEPOX ISOP10H23040Hc IEPOXB
ISOP12030H40H IEPOXC
(1,2)-1ISOPOO ISOP10H200 ISOPBO2
(4,3)-1ISOPOO ISOP30040H ISOPDO2
ISOP3CO40H HCOC5
ISO10H120
Dihydroperoxy diol ISOP10H200H30H400H
HPALD from (1,2)-ISOPOOH ISOP1CO200H
HPALD from (4,3)-ISOPOOH ISOP300H4CO
HPALD from cis-(1,4)-1ISOPOO ISOP1CO400HCc C5HPALD1
HPALD from cis-(4,1)-ISOPOO ISOP100H4COc C5HPALD2
Hydroperoxyacetone HPAC HYPERACET
MVK300OH400H
MACR100H200H
Methacrolein MACR MACR
Formaldehyde HCHO HCHO
Methyl vinyl ketone MVK MVK
MVK30040H HMVKBO2
MVK3OH400 HMVKAO2
MVK3OOH40H HMVKBOOH
MVK30H400H HMVKAOOH
Glycolaldehyde HOCH2CHO HOCH2CHO
Methylglyoxal MGLYOX MGLYOX
Peroxyacetyl (PA) CH3CO03 CH3CO03
MVK30H4N HMVKANO3
Hydroxyacetone (HAC) CH3COCH20H ACETOL
Glyoxal GLYOX GLYOX
MVK30H40H HO12C03C4
MACR20H30H MACROH
CH3COCOCH20H BIACETOH
MVKENOL HMVK
MACRENOL HMAC
(1,2) isoprene diol ISOP10OH20H ISOPBOH
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(3,4) isoprene diol ISOP30H40H ISOPDOH
ISOP1040Hc CISOPCO
ISOP1CO40H HC4CCHO
ISOP1040Ht CISOPCO
ISOP10H40c CISOPAO
ISOP10H40t ISOPAO
ISOP10H4CO HC4ACHO
ISOP10H40H ISOPAOH
ISOP100OH40H ISOPCOOH
ISOP10OH400H ISOPAOOH
ISOP10OH200H30H4CO
Methyl peroxy radical CH300 CH302
Methoxy radical CH30 CH30
Methanol CH30OH CH30H
MACR10H200 MACRO?2
MACR10020H MACROHO?2
MACR300 MACO3
MACR10H200H MACROOH
MACR100OH20H MACROHOOH
MACR30OO0OH MACO3H
CH3CHCH2
Methacrylic acid MACR3OH MACO2H
MACR10OH2N
MACR1N20OH
Methacryloyl MPAN MPAN
peroxynitrate
ISOP10H200H30H400
ISOP10020H300H40H
ISOP100H20H300H40H
MVK3CO40H
MVK3N40H MVKNO3
ISOP10H2304C0O
C1 Stabilized Criegee ciCH200 CH200E
C4 Stabilized Criegee, structure ciMACROO MACROOA
MACR
C4 Stabilized Criegee, structure MVK | ciMVKOO MVKOOA
Formic acid HCOOH HCOOH
Hydroxymethyl hydroperoxide HMHP
Hydroperoxy methyl formate HPMF CHOOCH200H
Water dimer H20d
ISOP1IN200O
ISOP1N40O0O NISOPO2
ISOP3004N
ISOP1004N
ISOP1IN20OOH
ISOP1N4OOH NISOPOOH
ISOP300H4N
ISOP100H4N
ISOP1N20OH

ISOP30H4N
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ISOP1IN20

ISOP1IN40O

NISOPO

ISOP304N

ISOP104N

ISOP1IN200OISOP1N4

ISOP1N400ISOP1N4

ISOP3004NISOP1N4

ISOP1004NISOP1N4

ISOP1N4CO

NC4CHO

ISOP1CO4N

ISOPIN2N

ISOPIN4N

NISOPNO3

ISOP3N4N

ISOP1N25_30040H

ISOP1IN25_300H40H

ISOP1N25_30H40H

ISOP1N25_3CO40H

ISOP1IN25_3040H

ISOP1IN23040H

ISOP10H2304N

ISOPIN20H340

ISOP12030H4N

ISOP12030H400H

ISOP100H20H340

Acetate anion

CH3COO

ISOP1IN25_30040HISOP1N4

Propanone nitrate

PROPNN

NOA

MACRIN20OH

Hydroperoxyethanal

HPETHNL

ISOPNOOHOHOO_b1

ISOPNOOHOHOO_b2

ISOPNOOHOHOO_d1

ISOPNOOHOHOO_d2

ISOPNOOHOHOOH

ISOPNOOHOHN

ISOP12030H4CO

ISOP1CO20H340

ISOPCONOHOO_d1

ISOPCONOHOO_d2

ISOPCONOHOOH

ISOPCONOHN

ISOP12030H40H

ISOPNOHOHOO_b

ISOPNOHOHOOH

ISOPNOHOHN

ISOP10H2N

ISOPBNO3
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ISOP3N40OH ISOPDNO3
ISOP10H2N30040H INB102
ISOP10H2N30H400 INB202
ISOP10H2N3N40OH INBINO3
ISOP1CO2N300OH40H C526N03
ISOP10H2N30H400H INB2OOH
ISOP10H20030H4N INAO2
ISOP100H20H3N40H
ISOP10H200H3N40H
ISOP10H4NCc ISOPANO3
ISOP10OH4Nt ISOPANO3
ISOP1N4OHc ISOPCNO3
ISOP1N4OHt ISOPCNO3
ISOP10H20H3004N
ISOP10H2N30OH4N INANO3
ISOP10H2N300OH40H INB1OOH
ISOP10H2003N40H INDO2
ISOP1IN20OH3N40H INCNO3
ISOP10020H3N40H
ISOP100H20H3N4CO

Energetically hot alkyl radical of

MPAN MPAN1OHx
MPAN10H200

Energetically hot HMML

(hydroxymethyl methyl-

a-lactone) HMMLx

Stabilized alkyl radical of MPAN MPAN1OH

Hydroxymethyl methyl- HMML

a-lactone HMML
MPAN10OH20
MPAN1OH2N
MPAN10OH200H

2-oxopropanoyl

peroxynitrate CH3COCOON

3-hydroxy-2-

methylpropanoyl peroxynitrate HMPPN
CHOCH200H HCOCH200H
ISOP10H200H30040H
ISOP10H200H300H40H
ISOP10H200300H40H
MVK30O0H4N

Ethanal nitrate ETHLN NO3CH2CHO
MACR20H3CO
CH3COCHOHCHO

1-Hydroperoxy-2-methyl-2-propen-1-

ol MACR30HOOH

2-Hydroperoxy-3-buten-2-ol MVK20H200H

ISOP1IN2304CO
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ISOP1CO2304N

CH3COCOCH2N

ISOP1IN200O30H40H

ISOP1IN20H30040H INCO2
ISOP10H20H340

ISOP1N20OOH30H40H
ISOP1N20OH300H40H INCOOH
ISOP10H20H300H4N
ISOP10H200H30H4N INAOOH
ISOP1N2N30OH40H

ISOP10H20H3N4N

ISOP1CO200300H40H C52602
ISOP1CO200H300H40H C52600H
ISOP10H200H3004C0O C52702
ISOP10H200H3N4CO C527NO3
ISOP10H200H300H4CO C52700H

Species in bolded italics have no subsequent chemistry in model.
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Figure G.1: The most abundant species as a function of fixed NO concentrations, with a fixed HO2
concentration of 0.001 ppb. Species concentrations are expressed as fractions of the total reacted
carbon (species concentrations in molec cm 3 are multiplied by the number of carbon atoms in
the species, and this quantity is divided by the concentration of isoprene reacted multiplied by 5).
Concentrations are shown at 6.4 h, when 90% of the initial isoprene has reacted. See text for initial
conditions of the simulations.
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Figure G.2: The most abundant species as a function of fixed NO concentrations, with a fixed
HO2 concentration of 0.01 ppb. Species concentrations are expressed as fractions of the total reacted
carbon (species concentrations in molec cm 3 are multiplied by the number of carbon atoms in the
species, and this quantity is divided by the concentration of isoprene reacted multiplied by 5).
Concentrations are shown at 6.4 h, when 90% of the initial isoprene has reacted. See text for initial
conditions of the simulations.
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Figure G.3: The most abundant species as a function of fixed NO concentrations, with a fixed
HO» concentration of 0.1 ppb. Species concentrations are expressed as fractions of the total reacted
carbon (species concentrations in molec cm 3 are multiplied by the number of carbon atoms in
the species, and this quantity is divided by the concentration of isoprene reacted multiplied by 5).
Concentrations are shown at 6.4 h, when 90% of the initial isoprene has reacted. See text for initial
conditions of the simulations.
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Figure G.4: The most abundant species as a function of fixed HO2 concentrations, with a fixed
NO concentration of 0.1 ppb. Species concentrations are expressed as fractions of the total reacted
carbon (species concentrations in molec cm 3 are multiplied by the number of carbon atoms in
the species, and this quantity is divided by the concentration of isoprene reacted multiplied by 5).
Concentrations are shown at 6.4 h, when 90% of the initial isoprene has reacted. See text for initial
conditions of the simulations.
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Figure G.5: The fractional amounts of MVK, MACR, and two 5-carbon hydroxyl carbonyl isomers
as a function of fixed NO concentrations with a fixed HO9 concentration of 0.001 ppb. Each con-
centration is shown as the fraction of the total MVK+MACR+HC5 concentration. Concentrations
are shown at 6.4 h, when 90% of the initial isoprene has reacted. See text for initial conditions of
the simulations.



	Acknowledgements
	Abstract
	Published Content and Contributions
	Introduction
	Vapor-Wall Deposition in Chambers: Theoretical Considerations
	Abstract
	Introduction
	Methods
	Gas-Phase VOC Oxidation
	Aerosol Dynamic Model
	Numerical Experiments

	Results and Discussion
	Increased Partitioning versus Wall Deposition Effect
	Influence of Volatility Distributions
	Influence of Reaction Time Scale
	Evolution of g,p
	Vapor–Wall Deposition Bias in SOA Yield
	Effect of Semi-solid SOA


	Influence of Seed Aerosol Surface Area and Oxidation Rate on Vapor-Wall Deposition and SOA Mass Yields: A Case Study with -pinene Ozonolysis
	Abstract
	Introduction
	Experimental
	Dark -pinene Ozonolysis Experiments
	Particle Wall Deposition Correction

	Vapor–Particle Dynamics Model
	Results
	Discussion
	Seed Aerosol Surface Area Effect
	Oxidation Rate Effect
	Interplay of the Seed Aerosol Surface Area Effect and the Oxidation Rate Effect

	Implications

	SOA Formation from the Photooxidation of -pinene: Systematic Exploration of the Simulation of Chamber Data
	Abstract
	Introduction
	-Pinene Photooxidation Mechanism
	Gas-phase Oxidation
	Condensed-phase Photolysis
	Particle-phase Dimerization

	Box Model for SOA Formation
	Vapor–Particle Transport
	Vapor–Wall Transport

	Experimental
	Results
	Negligible or Slow Vapor Wall Loss
	Overcontribution of Second- and Later-generation Species
	Condensed-phase Photolysis
	Autoxidation Chemistry
	Particle-phase Dimerization
	Enhanced Wall Loss at High UV

	Atmospheric Implications

	Conclusions and Future Work
	Supplemental Material for Chapter 2
	Comparison to Zhang2014

	Supplemental Material for Chapter 3
	Supplemental Material for Chapter 4
	Influence of Vapor Wall Loss in Laboratory Chambers on Yields of Secondary Organic Aerosol
	Vapor Wall Deposition in Teflon Chambers
	Formation and Evolution of Molecular Products in -pinene Secondary Organic Aerosol
	Isoprene Mechanism
	Naming Scheme
	Photolysis Rates
	Lumping of Isomers
	Ozone Chemistry
	Simulations


