
ENGINEERING THE MECHANICAL 
PROPERTIES OF OCULAR TISSUES 

 

 

Thesis by 

Charles Sellers Nickerson 

 

In Partial Fulfillment of the Requirements for the 

degree of 

Doctor of Philosophy 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2005 

(Defended  November 1, 2005)



 ii
 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2006 

Charles S. Nickerson 

All Rights Reserved



 iii
ACKNOWLEDGEMENTS 

I wish that I had space to thank everyone who has supported me and contributed to this 

work directly and indirectly, but I will have to limit this to just a few of the people who 

have done the most. It would be unjust to thank anyone before my wife, Pamela, for her 

love, support, and patience. She and my children, Rosemary and Samuel, have kept me on 

the narrow path between high productivity and work-a-holism. I would also like to 

acknowledge the contribution of my parents for encouraging my creativity, feeding my 

ravenous appetite for new challenges, and teaching me how to work. My siblings, James, 

Dawn, Kenny, Lee, and Suzie have also made numerous indirect contributions. My late 

grandmother has also been a very important influence in all of my accomplishments 

because she always expected a superior performance and taught me the value thereof. My 

achievements are the product of divine providence, the sacrifice of my parents, and the 

influence of my family, and I hope that they recognize the significance of their 

contributions.  Additionally, I wish to thank Pam’s family for all of their support while we 

have been here. Our many friends have also provided much-needed moral support through 

the ups and downs along the way. 

On a professional level, I would first like to acknowledge my advisor, Professor Julie 

Kornfield, for her tremendous intellectual contributions to this work, for giving me room to 

think and create, and for her kindness. I don’t know which of those things has been most 

important but they combined to create a wonderful graduate experience for which I will 

forever be grateful. I must also thank Anne Hormann in the same breath. Anne keeps the 

group on track, which is no minor task, and does it with a fantastic attitude. 



 iv
I would also like to express deep gratitude to Dr. John Park of Vitreoretinal Technologies, 

Inc. He made tremendous scientific contributions to this work and was a mentor for me 

throughout. Mr. Hampar Karageozian and Dr. Vicken Karageozian at Vitreoretinal 

Technologies provided key ideas that inspired this research; Vitreoretinal Technologies 

funded most of this work. Professor Vincent Monnier of Case Western Reserve University 

has also been a key collaborator in our cornea work and provided ongoing academic and 

financial support. I would also like to thank the Achievement Rewards for College 

Scientists (ARCS) Foundation for providing me with the additional financial support 

necessary to attend graduate school while raising a family. 

Former Kornfield group members, Dr. Frederic Tessier and Dr. Giyoong Tae, laid the 

foundation for the cornea work and spent a great deal of time teaching me about analytical 

biochemistry, tissue handling, and rheology. Dr. Maria Lujan Auad and Dr. Mike Kempe 

gave me further guidance in the techniques of rheometry and interpretation of rheological 

data. Ame DeLeon also contributed to the vitreous work during her summer research 

program. 

I wish to thank everyone involved with our collaborative work in Mexico. I enjoyed and 

benefited immensely from working with Prof. Hugo Quiroz-Mercado directly and with his 

students, Dra. Nayeli Ibarra, Dr. Daniel Moreno, and Dra. Griselda Alvarez-Rivera, at the 

Hospital “Dr. Luis Sánchez Bulnes” de la Asociación Para Evitar la Ceguera (APEC) en 

México. Dr. Jorge Rivera and Dr. Jose Luis Garrero also contributed to those studies. Their 

willingness to share their clinical expertise and teach me their techniques allowed me to 

gain an understanding of the practical aspects of ophthalmic research. Professor Alberto 



 v
Tecante at the National Autonomous University of Mexico (UNAM) graciously opened 

his rheology lab to me while in Mexico. His student, Dra. Mariana Ramirez, was also very 

kind to help me in every aspect of my visit. 

I would like to thank the current members of the Kornfield group, Eric Pape, Derek 

Thurman, Lucia Fernandez-Ballester, Rafael Verduzco, Neal Scruggs, Mike Mackel, 

Ameri David, Ryan Turner, Zulie Kurji, Dr. Shuichi Kimata, and particularly Matthew 

Mattson. Matthew has been an invaluable sounding board for ideas and source of 

suggestions. I would also like to thank former group members not mentioned above, 

including Wei Shen, Rob Lammertink, and Erica Thompson. 

There are several other members of the Caltech community who deserve thanks: Professor 

Zhen-Gang Wang and Jennifer Whitman for fruitful discussions regarding network tension, 

Dr. Scott Ross for help with the difficult problem of conducting nuclear magnetic 

resonance (NMR) analyses of cornea lysates, and Professor John Brady for discussions 

regarding flows near permeable boundaries and surface features. I also wish to thank my 

committee members, Professors Robert Grubbs, David Tirrell, and Linda Hsieh-Wilson, for 

their help throughout this process. Graduate school has been a wonderful experience and I 

wish to thank the Institute for admitting me and providing this nurturing and stimulating 

academic environment. Finally, I would like to thank my first Chemistry teacher, Mr. Bill 

McKinney. He was the first to explain to me what I consider to be the most universal truth 

of chemistry—that structure yields function. 

   



 vi
 

 

 

 

 

 

 

 

 

 

 

 

 



 vii
ABSTRACT 

The mechanical properties of the structural tissues of the eye (cornea, sclera, and vitreous) 

are critical for vision. Age and disease can cause changes in their physical properties and 

compromise visual acuity; in the extreme, such changes can lead to blindness. Thus, there 

is great interest in understanding the mechanical properties of ocular tissues and in 

developing appropriate therapeutic strategies. 

The goal of this thesis is to discover and manipulate the molecular mechanisms that 

determine the bulk physical properties of the vitreous and the cornea. These tissues are both 

ordered biocomposites of fibrous collagen embedded in soft matrices of proteoglycans 

(PGs) and glycosaminoglycans (GAGs). The hydration state, mole fraction, and 

particularly the organization of these components determine the mechanical properties of 

the respective tissues. Whereas the mechanical strength of these tissues has traditionally 

been attributed to their collagenous components, we present evidence that the PGs and 

GAGs also make significant contributions. We also suggest hypotheses regarding the 

mechanisms by which the carbohydrate components contribute and how they can be 

utilized for therapeutic purposes.  

In order to study the unique physical properties of the vitreous, novel instrumentation was 

developed. We describe the use of cleated surfaces on parallel disk tools to quantitatively 

measure the rheological properties of diverse slip-prone fluids and soft materials. Densely-

packed protrusions (0.45mm x 0.45mm cross section x 0.6mm length, 0.9mm apart) 

penetrate the slip layer, preventing significant flow between cleats. This creates a no-slip 

boundary ~ 0.16mm below their tips, which serves as the sample gap boundary, in direct 

analogy to the parallel plate geometry. This “cleat” geometry suppresses slip without 

application of significant normal force, it imposes well-defined shear to enable absolute 

measurements, and is compatible with small sample volumes. The geometry was validated 

in steady and oscillatory shear using a series of materials not prone to slip (Newtonian oils 

and an entangled polymer melt). The advantage of cleated tools over other slip-prevention 
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methods was demonstrated using slip-prone materials, including an emulsion, a 

suspension, and porcine vitreous humor. 

The vitreous humor is a transparent gel comprised of a delicate, swollen double network of 

10 – 20 nm collagen type II fibrils and charged GAG chains (hyaluronic acid). While 

extensive progress has been made in identifying the components and biochemistry of the 

vitreous, prior to the “cleat geometry” experimental limitations hampered quantitative 

determination of its mechanical properties. With cleated tools we overcame wall slip and 

avoided tissue compression during measurements of the dynamic moduli of fresh porcine 

and bovine vitreous. Shear moduli decreased five-fold from initial to steady-state values in 

the first hour after dissection. Steady-state values (Porcine: G′ = 2.6 ± 0.9 Pa and G″ = 0.6 

± 0.4 Pa, n = 9; Bovine: G′ = 6.5 ± 2.0 Pa and G″ = 2.0 ± 0.6 Pa, n = 17) are significantly 

greater than previously reported. The decrease in modulus after removal from the eye 

correlates with a decrease in mass: porcine vitreous expels ~5% of its mass within 5 

minutes and continues to decay to a steady-state mass ~10% lower than its initial mass in 

the absence of external driving forces. The expelled fluid has a substantial hyaluronan 

concentration but a very low protein content. These results indicate that the vitreous 

network is under tension at its native volume, and its high initial modulus results from this 

state of tension. We hypothesize that hyaluronan plays a role in sustaining the “internal 

tension” by Donnan swelling. 

The therapeutic goal in vitreous engineering is liquefaction: we seek pharmacological 

agents capable of gently separating the vitreous from the retina and destabilizing the 

network without damaging the adjacent tissues (retina and lens). We measured the stability 

of the vitreous against agents designed to target covalent bonds, hydrogen bonds, 

electrostatic attractions, and hydrophobic interactions using a simple weighing procedure. 

We found that in addition to covalent bonds, hydrogen bonds appear to play a particularly 

important role in stabilizing the vitreous network. This is in agreement with clinical 

observations that treating eyes with urea prior to vitrectomy provided a significant 

therapeutic benefit. We found that treating porcine vitreous with therapeutic doses of urea 

in vitro reduced the shear modulus by ~ 30%. Limited in vivo animal studies measured no 



 ix
softening effect and indicated that the therapeutic benefit of urea may be a reduction of 

vitreoretinal adhesion. 

The cornea is also composed of collagen fibrils embedded in a PG/GAG matrix. The 

cornea, however, contains far more collagen, PG, and GAG than vitreous, and its 

components are also more ordered: the collagen (type I) is in the form of 30 nm fibrils, 

precisely arranged lamellae and evenly spaced in a keratin sulfate-rich matrix. Our 

therapeutic goal in the cornea is to stabilize its nanostructure and mechanical properties 

against keratoconus, a degenerative disease in which the cornea softens and bows outward 

under the force of intraocular pressure.  

We present coordinated biomechanical and biochemical analyses of corneal tissue that has 

been crosslinked using glycation. Non-enzymatic crosslinking alters the viscoelastic 

properties of protein-rich tissues, but a quantitative correlation between the formation of 

specific advanced glycation end products (AGEs) and physiologically relevant mechanical 

property changes has not previously been established. We report that corneas treated with 

1% and 2% glyceraldehyde solutions produce a 300% and 600% rise in shear modulus, 

respectively, which strongly and linearly correlates with increased fluorescence and the 

formation of the AGEs argpyrimidine, lys-hydroxy-triosidine, and arg-hydroxy-triosidine 

(R2= 0.999, 0.970, and 0.890 respectively). NMR studies are used to demonstrate that 

enzymatic digestion does not alter AGEs and has some advantages over acid hydrolysis. 

The level of mechanical reinforcement observed in these studies is probably sufficient to 

stabilize keratoconus corneas, based upon successful treatments with other crosslinking 

strategies.  

Comparing quantitative correlations between modulus and AGE accumulation in corneas 

with analyses of collagen fibers isolated from mouse tail tendons suggests that glycation-

induced corneal stiffening cannot be attributed solely to changes in collagen. We present a 

novel hypothesis that the mechanically-relevant AGE crosslinks are those that change the 

properties of the soft PG/GAG matrix and its coupling to the collagen fibrils, rather than 

the much more numerous AGEs that crosslink amino acids within fibrils. 
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1.1 Background 

The ability to create and maintain fixed spatial relationships between cells and organs is 

vitally important for higher organisms. Residing in fixed locations allows cells and tissues 

to work cooperatively through specialization and division of labor.1 One illustration of the 

importance of precise physical properties and arrangements is mammalian vision, which 

relies on the precise geometry of the cornea, the mechanical strength of the sclera to 

support the retina, and the orbital ligaments to control the line of sight. 

The mechanical properties of structural tissues such as these are derived from the nanoscale 

architecture and properties of their constituent molecules. Most structural tissues are 

biocomposites of fibrous proteins embedded in soft carbohydrate matrices. Collagen is the 

primary fibrous component; proteoglycans and glycosaminoglycans act as the matrix. The 

hydration state, mole fraction, and organization of these components vary between tissues 

and species, but the basic structure—high tensile-strength fibrils organized in soft 

matrices—is highly preserved. Rare genetic mutations that weaken collagen fibrils or 
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disrupt other aspects of this molecular pattern lead to devastating systemic diseases.2-6 A 

number of more common diseases, such as arthritis and diabetes, are also associated with 

degeneration of collagenous tissues.  

The debilitating nature and prevalence of heritable and degenerative disorders that affect 

connective-tissues has stimulated considerable biochemical and biomechanical research. 

Unfortunately, the molecular (biochemical) and biomechanical aspects of this important 

field have been investigated independently rather than in concert. We will present 

significant advancements that have come as a result of combining biochemical analyses 

with novel bulk characterization techniques. 

Broadly stated, the goal of the present research is to discover and manipulate the molecular 

mechanisms that determine the bulk physical properties of the cornea and vitreous humor 

(Figure 1). This goal can be divided into three specific objectives: 

1) To quantitatively determine the mechanical properties of connective tissues 

2) To understand the molecular basis of these mechanical properties and their 

implications for disease and tissue engineering  

3) To create therapeutic changes in the mechanical properties of the cornea and 

vitreous 
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Figure 1. Diagram of the eye illustrating normal eye anatomy, 
including the vitreous humor (gel) and cornea. This figure 
reproduced by permission from the National Eye Institute, National 
Institutes of Health. 

Our approach to these objectives is to combine analytical chemistry, rheology, and polymer 

physics with in vivo animal studies and the clinical experience of collaborators from 

industry and medicine. Biochemical and biomechanical investigations were conducted in 

parallel with drug discovery and clinical research, providing feedback between clinical and 

laboratory work. Clinical research identified potential therapeutics and evaluations of 

efficacy, while laboratory research addressed fundamental questions regarding the basis of 

the mechanical properties of collagenous tissues and how they can be engineered. The 

success of this approach in exploring potential therapeutics for the vitreous humor and 

cornea demonstrates the utility of an integrated approach to understanding and engineering 

connective tissues in general.  
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1.2 The Vitreous Humor 

The vitreous is a transparent, collagenous gel that fills the posterior chamber of the eye. It 

is more than 98% water, avascular, and nearly acellular; thus, the vitreous was historically 

considered an inert space-filler.7 However, over the past few decades it has become clear 

that the vitreous plays an essential structural role in the development, maintenance, and 

pathologies of vision. Sebag has summarized the functions of the vitreous as 

developmental—mediating proper growth of the eye; optical—maintaining a clear path to 

the retina; mechanical—supporting the various ocular tissues during physical activity; and 

metabolic—providing a repository of various small molecules for the retina.8 Proper 

performance of these functions depends upon the unique physical properties of the vitreous. 

The vitreous is thought to derive its physical properties from its hydrated double network of 

collagen type II fibrils and high molecular-weight, polyanionic hyaluronan macromolecules 

(Figure 2).8-10 Heterotypic collagen fibrils (10 – 20 nm diameter) are composed of a small, 

collagen type V/XI core surrounded by collagen type II. Human vitreous hyaluronan (HA) 

is polydisperse with an average molecular weight that is estimated to be ~ 5,000,000.9 Prior 

literature indicates that the vitreous completely liquefies when digested with collagenase 

enzyme, whereas it only shrinks when digested with hyaluronidase.8, 9, 11 On this basis it 

has been presumed that the network of collagen fibrils provides mechanical strength, and 

the swollen HA macromolecules simply fill the space between fibrils to prevent 

aggregation. In Chapter 3 we will discuss the collagen-HA double network in greater depth 

and present rheological and biochemical evidence that hyaluronan does contribute 
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profoundly to the elastic character of the vitreous. This realization changes the way we 

view the network, particularly in the context of vitreous degeneration and engineering. 

~ 100 nm

Collagen 
type II fibrils

Hyaluronic 
Acid

~ 100 nm~ 100 nm

Collagen 
type II fibrils

Hyaluronic 
Acid

 

Figure 2. Schematic depiction of the network structure of the 
vitreous. The vitreous is composed of a highly-swollen double 
network of collagen type II fibrils (~ 15 nm in diameter) and 
hyaluronic acid (~ 5M MW). 
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With age the collagen-HA network degrades and loses mechanical integrity: pockets of 

fluid (lacunae) form near the retina as the components of the vitreous network aggregate 

and pull away from the retina.8 Posterior vitreous detachment (PVD) is normally 

inhomogeneous, leaving points of adhesion that cause localized traction on the retina. 

Incomplete PVD and the resultant vitreoretinal traction are thought to play a role in a 

number of diseases, including macular holes, macular edema, vitreous hemorrhage, retinal 

tears, and retinal detachment.8 The only treatment currently available for alleviating 

vitreoretinal traction is surgical removal of the vitreous (vitrectomy).12 Motivated by the 

need for a less invasive and traumatic treatment, efforts have been made to find 

“pharmacological vitrectomy agents” capable of inducing PVD and liquefying or 

significantly softening the vitreous, thereby alleviating traction without surgery.13 Proposed 

therapeutics from the literature will be discussed in detail in Chapter 4, but they generally 

consist of enzymes designed to cleave the proteins responsible for the mechanical integrity 

of the vitreous. Little attention has been given to the possibility of targeting noncovalent 

intermolecular interactions. We present results that indicate that disruption of hydrogen 

bonds strongly destabilizes the vitreous network, whereas disruption of electrostatic or 

hydrophobic interactions has a much weaker effect.  

In addition to collagen type II and HA, 15 “minor” proteins and proteoglycans have been 

identified in the vitreous (Table 1). These components are minor in terms of mass, but may 

be crucial for the structure and stability of the vitreous, much as nails are a “minor” 

component of a wood-framed house. A number of these components, including link 

protein, fibronectin, and vitronectin, are known to connect proteins with polysaccharides in 
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other tissues. They may perform a similar function in the vitreous, stabilizing the 

collagen-HA network and linking it to other structures in the eye; however, little is known 

about the role of minor components in the molecular architecture of the vitreous network. 

Given the importance of the viscoelastic properties of the vitreous to its function and to 

pathology, it is striking that there is no consensus on the value of its modulus in the prior 

literature. This is due in part to a lack of sufficient experimental methods for quantitatively 

measuring the mechanical properties of the vitreous and how they change as a result of 

various treatments.14 To address this need we developed a novel rheological tool that 

enabled us to make the first quantitative measurements of the mechanical properties of the 

vitreous. We discovered that the modulus of the vitreous is significantly higher in situ than 

after removal from the eye. Further exploration of this discovery led us to a novel 

hypothesis regarding the mechanical properties of the vitreous: that HA increases the 

modulus of the vitreous by swelling the collagen network to a state of tension. 

The novel tool also allowed us to measure modulus changes that resulted from treating the 

vitreous with a particular proposed pharmacological vitrectomy agent—urea. Clinical 

observations that urea may facilitate vitreous removal15, 16 led us to investigate its influence 

on the mechanical properties of the vitreous in vitro and in vivo. Slit lamp observations of 

urea-treated vitreous, together with reduced surgical time during vitrectomy, suggested to 

the clinicians that urea “liquefied” the vitreous. By quantitatively characterizing the 

modulus of the vitreous, our work showed that treatment did not liquefy vitreous in vitro or 

in vivo. By working side-by-side with a team of eye surgeons working under the direction 
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of Professor Hugo Quiroz-Mercado at the Hospital “Dr. Luis Sánchez Bulnes” de la 

APEC in Mexico, we were able to reconcile clinical observations with rheological 

measurements. The clinical benefit was more likely the result of reduced vitreoretinal 

adhesion and phase separation as the collagen network contracted away from the retina to 

relieve tension. We also explored the effects of other agents on vitreous and found that 

hydrogen bonding plays a more significant role in stabilizing the vitreous network than 

electrostatic or hydrophobic effects. Taken together, these results provide a basis for 

rational design of future pharmacological vitrectomy agents. 

 

Component Concentration   
Human/Pig 

[μg/ml] 

Location Proposed functions

Water >980,0009/ 
same Throughout 

Maintains vitreous mechanical 
properties and facilitates 

transport7 

Salts (NaCl, 
KCl, CaCl2, and 

MgCl2) 
~9,0009/same Throughout 

Global charge balance, Donnan 
swelling; vitreous is isotonic 
with blood and most other 

tissues7 

Total Protein 8007/70017 Throughout — 

Total 
polysaccharide 24018/~25017 Throughout — 

Collagen type II ~2259/15017 
Throughout as 

heterotypic 
fibrils 

Resist elongation of the eye and 
provide structural framework for 

the vitreous body7 

Hyaluronic acid 65-4009/16517 Throughout 
Resist compression of the eye, 
hydrate tissue, space collagen 

fibrils7 
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Albumin 29319/ Throughout Soluble protein, no known 
structural role 

Link protein 0.6(bovine)20 Unknown 1:1 with versican; it may be there 
to link versican to HA20 

Collagen V/XI ~309/ 
Unknown Throughout Form the core of heterotypic 

collagen II fibrils9 

Collagen IX <309/ Unknown Throughout 

Decorate surface of heterotypic 
collagen II fibrils, prevent fibril 
aggregation, possibly link fibrils 
to noncollagenous components9 

Collagen VI21 Unknown 
Concentrated 
on the zonular 

fibers 

Bind collagen fibrils to HA and 
other species (has been shown to 

bind von Willebrand factor, 
collagen II fibrils, decorin and 

HA)22, 23 

Collagen XVIII9 Unknown Vitreoretinal 
interface 

Vitreoretinal adhesion; has been 
co-localized  with opticin at 

vitreoretinal interface; contains 
endostatin as a non-collagenous 

domain9 
Cartilage 

oligomeric 
matrix protein 

(COMP)24 

Unknown Unknown 

Unknown, but also found in 
cartilage and tendon; contains 

von Willebrand factor domains 
(see collagen VI)25 

Microfibril-
associated 

glycoprotein-1 
(MAGP1)26 

Unknown Unknown Decorate exterior of zonular 
fibers26 

Opticin9 Unknown 
Vitreous  base 

and lamina 
cribrosa 

Acts in conjunction with 
collagen XVIII to mediate 

vitreoretinal adhesion9 

Fibrillin 
Minor but 
probably > 
[coll VI]9 

Attached to 
lens capsule 

Structural fibrils for lens capsule 
anchoring & articulation9 

Fibronectin 69/ 
>76(bovine)27 Throughout Mediate binding between 

collagen and polysaccharides25 
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Vitronectin 428/ Unknown Unknown 
Mediate collagen-polysaccharide 

binding; sensitive to 
denaturation25 

Versican 6029/ 
22(bovine)20 Unknown 

1 per 150 moles of HA; possible 
link between HA and collagen 

and has been show to dissociate 
(if it was associated) in 4M 

guanidinium HCL; HA binding 
has been demonstrated17, 25 

VIT130 Unknown Unknown May have structural role30 

Laminin/ 
Collagen type 

IV31 
Unknown 

Inner limiting 
membrane 

surrounding 
vitreous 

While not components of the 
vitreous proper, they may 

participate in peripheral vitreous 
adhesion 

Table 1. Known components of the vitreous humor listed with available 
information regarding concentration (μg / mL), distribution, and proposed function. 
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1.3 The Cornea 

Like the vitreous, the cornea is composed of collagen fibrils embedded in a proteoglycan 

(PG) and glycosaminoglycan (GAG) matrix; however, unlike the vitreous, the cornea has a 

highly-ordered structure. The major structural element of the cornea (~ 90% of its 

thickness) is the stroma, which is composed of approximately 200 lamellae of oriented 

collagen type I fibrils embedded in a hydrated PG/GAG12 (Figure 3). The precise 

arrangement of collagen fibrils allows the cornea to retain optical clarity in spite of the 

relatively high density of collagen fibrils (30 nm diameter) required to retain the shape of 

the cornea.  

C
A

~ 20 nm
~ 2 nm

~ 6 μm

lamella

triple helix

fibril

B

C
A

~ 20 nm
~ 2 nm

~ 6 μm

lamella

triple helix

fibril

B

 

Figure 3. Stroma microstructure. [A] Represents the rigid collagen 
type I fibrils and smaller strands of proteoglycan that compose the 
lamellae of the corneal stroma. [B] Shows an enlargement of part of 
one of the fibrils, displaying the collagen triple helices aligned within 
a fibril. [C] Depicts the protein core of a proteoglycan non-
covalently associated with the surface of a collagen fibril and 
decorated with polysaccharide chains. Micrograph was used by 
permission from Prof. K. Kadler, U. Manchester. 
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Whereas a primary therapeutic objective in the vitreous is softening and inducing PVD to 

alleviate vitreoretinal traction, a major, unmet clinical need in the cornea is enhancing its 

mechanical stability to prevent the progression of keratoconus. Keratoconus (“cone-shaped 

cornea”) is a condition in which the cornea softens and slowly begins to protrude outward 

under the force of intraocular pressure.12 It affects roughly 1 in 2,000 people, normally 

beginning in the teens or early twenties, and causes progressive loss of visual acuity, 

eventually leading to blindness.32 In early stages, keratoconus is treated by application of 

hard contact lenses that correct vision and help maintain the shape of the cornea. If 

keratoconus progresses further, cornea transplantation is the only known treatment. The 

expense and difficulty of obtaining transplant tissue and the invasive nature of the surgery 

motivate our efforts to find a chemical treatment for keratoconus. 

Collaborators at ISTA Pharmaceuticals, Inc. (Irvine, CA) developed a non-toxic, glycation-

based crosslinking strategy to stabilize the cornea against keratoconus using glyceraldehyde 

(GA). Glyceraldehyde reacts with primary amines to form several known advanced 

glycation endproducts (AGEs), including two crosslinks and three AGEs that are also 

formed in reactions with methylglyoxal (MGO), another species investigated in this work 

(Figure 4). We have demonstrated that therapeutic (nontoxic) doses of glyceraldehyde are 

capable of significantly increasing the shear modulus of porcine corneas. Equivalent 

increases in modulus, achieved through alternative crosslinking strategies, have been 

shown to stabilize keratoconus eyes in clinical trials.33, 34 
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Figure 4. Glyceraldehyde, glyceraldehyde-3-phosphate (GA-3-
phosphate), and methylglyoxal (MGO) all lead to similar AGEs, 
including argpyrimidine, arg-OH-triosidine, lys-OH-triosidine, and 
carboxyethyl lysine. RNH2 indicates a primary amine on the side 
chain of an Arg or Lys residue within a peptide. 

Biochemical analyses of GA-treated corneas revealed an additional protective effect of GA 

treatment: they are far less susceptible to proteolytic degradation (Chapter 5). This is 

particularly significant in light of the current hypothesis that keratoconus-induced softening 

comes as a result of overactive proteases in the cornea.35 The enzyme protective effect also 

indicates that GA may be a suitable treatment for corneal ulcers, which have also been 
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linked to increased proteolytic activity and treated with crosslinking strategies.36 The 

effect of GA on corneal ulcers has not yet been addressed. 

Glycation-induced changes in enzyme resistance and modulus also correlate with increased 

fluorescence and AGE accumulation. We were able to isolate and quantify specific AGEs 

from glycated corneas and demonstrate that modulus increases linearly with accumulation 

of each of them, including argpyrimidine, a pendent adduct. Thus, it appears that 

crosslinking and noncrosslinking AGEs rise together and that various individual AGEs 

could serve as a surrogate to track tissue stiffening, whether or not the individual surrogate 

AGE is a crosslink. It may be possible to use an equivalent empirical relation to 

noninvasively measure (e.g., by fluorescence) the degree of tissue stiffening in clinical 

practice. 

Quantitative correlations between the chemical and mechanical impact of glycation on 

corneal tissue also yield new insight into the molecular mechanisms of AGE-related tissue 

stiffening. The literature holds that glycation stiffens collagenous tissues by changing the 

properties of the constituent collagen fibrils;37, 38 however, our results demonstrate that 

glycation-induced corneal stiffening cannot be attributed solely to changes in the properties 

of the collagen fibrils. We present a novel hypothesis that the mechanically relevant AGE 

crosslinks are those that change the properties of the soft PG/GAG matrix and its coupling 

to the collagen fibrils, rather than the much more numerous AGEs that crosslink amino 

acids within fibrils. 
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New insights into the increase in modulus associated with AGEs may also be broadly 

relevant to aging, diabetes, and tissue engineering research. The mechanisms by which 

glycation stiffens tissues in vitro may be relevant to certain pathologies of aging and 

diabetes. When properly understood, glycation has the potential to be turned from a 

pathologic process to a therapeutic strategy. The cornea is a good example, but it is merely 

a case-in-point. This strategy can be applied to a number of areas, from wound healing to 

bioadhesion to improving the mechanical properties of protein-based and polyamide 

synthetic tissues. Imparting strength to weakened connective tissue through glycation may 

provide an alternative to tissue transplants in diseases such as keratoconus. 

1.4 Broader Implications 

A unifying theme that emerges from both the vitreous and cornea work is that collagenous 

tissues depend integrally on the contributions of their carbohydrate components for 

mechanical strength. We hope that future efforts to engineer the mechanical properties of 

collagenous tissues will recognize the important mechanical role of carbohydrate 

components and apply this knowledge in the design of therapeutics. 

The overarching goal of this thesis is to bridge the gap between the chemical, 

biomechanical, and clinical aspects of tissue engineering. Working closely with physicians 

to focus on these three aspects in parallel has allowed developments from the lab to rapidly 

influence therapeutic formulations for clinical trial (e.g., optimal pH of urea treatment), and 

feedback on the in vivo relevance of in vitro discoveries allowed us to rapidly verify the 

significance of new findings. We hope that the success we have had in elucidating the 
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molecular interactions that play a significant role in biomechanics will provide a model 

for productive cross-field collaborations.  

1.5 Organization of Thesis 

There were no rheological methods suitable for quantitative characterization of the vitreous 

prior to this work. Chapter 2 presents the novel “cleat geometry” developed specifically for 

this purpose. 

Chapters 3 and 4 address the properties and network structure of the vitreous. In Chapter 3 

the mechanical properties of the vitreous are defined. A novel hypothesis regarding a direct 

contribution of hyaluronic acid to the mechanical stiffness of the vitreous is also presented. 

In Chapter 4 the stability of the vitreous network in various chemical environments is 

examined as a basis for selecting potential pharmacological vitrectomy agents. Hydrogen 

bonding is shown to play a key role in stabilizing the vitreous network and urea is 

examined as a potential therapeutic for softening the vitreous. 

Chapters 5 and 6 address glycation in the cornea. In Chapter 5 the chemical and mechanical 

impact of glycating corneal tissue with glyceraldehyde is examined. In Chapter 6 

mechanical measurements of glycated collagen fibers from mouse tail tendons are used to 

demonstrate that the enhanced mechanical strength of glycated collagenous tissues cannot 

be attributed solely to the stiffening of collagen fibrils – the surrounding matrix 

(presumably proteoglycans) must also play a role. 
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