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To John

"Deep into that darkness peering, long I stood there wondering, fearing,

Doubting, dreaming dreams no mortal ever dared to dream before”
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Abstract

We demonstrate the utility of superfluid helium-4 as an extremely low loss optomechanical
element. We form an optomechanical system with a cylindrical niobium superconducting

% inner cylindrical cavity is filled with *He. [1] Coupling is

TEg1; resonator whose 40 cm
realized via the variations in permittivity resulting from the density profile of the acoustic
modes. Acoustic losses in helium-4 below 500 mK are governed by the intrinsic nonlinearity
of sound, leading to an attenuation which drops as T, indicating the possibility of quality
factors (Q) over 10'° at 10 mK. In our lowest loss mode, we demonstrate this 7* law down to
50 mK, realizing an acoustic Q of 1.35-10% at 8.1 kHz. When coupled with a low phase noise
microwave source, we expect this system to be utilized as a probe of macroscopic quantized
motion, for precision measurements to search for fundamental physical length scales, and as
a continuous gravitational wave detector. Our estimates suggest that a resonant superfluid

acoustic system could exceed the sensitivity of current broad-band detectors for narrow-band

sources such as pulsars [2].
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Chapter 1

Helium-4

1.1 Historic Background

Helium is an element of superlatives: along with neon, it is the only element for which no
known compounds exist; additionally, it is the lone element which does not freeze without
pressurization. After hydrogen, helium is both the second lightest and second most abundant
element, comprising 24% of the universe’s elemental mass [4]. Because of its unique proper-
ties, helium played a central role in refrigeration techniques and in low temperature physics,
enabling such monumental discoveries as superconductivity and superfluidity [5]. Today lig-
uid “He has widespread use as a coolant for superconducting magnets with applications from
MRI machines to the Large Hadron Collider. Further, the invention of the dilution refrig-
erator, a continuously running cryostat which relies on the dilution of the lighter isotope
3He with the significantly more common *He, eventually led to a commercial product which
reliably reaches temperatures in the tens of millikelvin range. The dilution refrigerator has
become an indispensable tool in physics, in fields as varied as quantum information and
fundamental studies of condensed matter. Since the existence of helium was confirmed in
1895, few elements have had the the same tremendous impact on physics.

The first hints of helium’s discovery came in August of 1868, when French astronomer
Pierre-Jules-César Janssen observed a new spectral line in the sun’s prominence during a
solar eclipse in India [6]. Because of its proximity to the sodium doublet, this line was

dubbed Dj3. Unbeknownst to Janssen, British astronomer Joseph Norman Lockyer found



the same 587.49 nm yellow line in October of 1868, while observing the prominence in
London [4]. At the time, neither man accorded D3 much significance, other than to report
its existence. Both Janssen and Lockyer were recognized instead for independently arriving
at a new spectroscopic method, which allowed viewing of the prominence of the sun in the
absence of an eclipse [6].

Lockyer did however continue to study the sun, teaming with noted British chemist
Edward Frankland to outline the composition of the prominences by reproducing spectral
observations with known gases in a laboratory setting. While it was only a small piece of their
work, Lockyer and Frankland tried recreating D3 with hydrogen at various temperatures and
pressures [6]. After failing to do so, they began informally referring to the line as ”helium,”
without any public claim of discovery. The name derives from the Greek word ”helios,” for
sun, and the ending "ium” reflected their belief that a metallic element was responsible for
Ds [4]. The word "helium” does not appear in literature until 1871, when president of the
British Association for the Advancement of Science, William Thomson, noted that Frankland
and Lockyer proposed that an as yet unknown substance produced the D3 spectral line [6].
The claim was met critically by the scientific community at the time, as a mere spectral
observation failed to meet the standard of elemental discovery. Notably, Mendeleev, who
was responsible for creating the periodic table of the elements, publicly noted that such an
assumption was unjustified in 1889 [6].

While there was no consensus of ”helium’s” existence, it was known widely in literature,
though often referred to simply as the ”Dj3 spectral line.” It was at first thought to occur
only in the sun but was later found in many other stars throughout the universe. In fact,
helium is one of the most common elements in stars, where it is formed from nuclear fusion
of hydrogen atoms [4]. In 1882, Italian geologist Luigi Palmieri claimed to find the D3 line
in gases escaping from a volcanic eruption at Mt. Vesuvius [6]. However he failed to collect
any of the gas and his claim remained unsubstantiated. Helium was also mentioned by many
scientists who thought it was a constituent form of matter. For example, British chemist
William Crookes theorized that due to its light weight, as evidenced by its presence in the

sun’s corona, helium was a unit composing all other forms of matter [6].
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In 1889 American geochemist William Francis Hillebrand was studying samples of the
mineral uraninite (UO3) when he noted bubbling from the material after exposure to sul-
phuric acid. He collected and analyzed the gas, determining it to be nitrogen [6]. On a hunch
informed by Hillebrand’s work, in 1895 William Ramsay obtained a sample of clevite (urani-
nite with about 10% other rare minerals), to look for compounds of the newly discovered
gas argon. He quickly realized he had discovered a new gas that was neither nitrogen nor
argon, and upon observation of the telltale D3 spectral line, he concluded that this at last
was the elusive helium [6]. Working independently, Per Theodor Cleve and his student Nils
Abraham Langlet also discovered helium in samples of clevite in Uppsala, Sweden. Langlet
was further able to measure helium’s density to be twice that of hydrogen [6].

Interestingly, in April of 1895, Ramsay wrote to Lockyer suggesting a name change to
"helion” in keeping with the other noble gases, but nothing came of his request [4].

Even after helium’s discovery in uranium minerals, it was thought to be extraordinarily
rare on Earth. Because of the helium atom’s small mass, it moves with velocities fast
enough to escape the Earth’s gravitational pull. While helium would have been a dominant
component of Earth’s early atmosphere, today it comprises only 0.00052%. Though helium
was discovered in uranium minerals, it exists there only in trace amounts.

The assumption of helium’s scarcity changed in 1903, when a company drilling for natural
gas near Dexter, Kansas struck a geyser of gas, escaping at a rate of 9 million cubic feet
per day [7]. To celebrate their find and the expectant economic boom for the town, the
people of Dexter planned to light the gas on fire using a burning bale of hay. After a day
of jubilation, the hay bale failed to light the geyser. In fact, the flame was extinguished on
repeated trials [7]. Intrigued, geologist Erasmus Howard collected samples of the gas and
analyzed them at the University of Kansas. With the help of colleagues Hamily Cady and
David McFarland, the mysterious gas was determined to be only 15 % methane and 72%
nitrogen. Most interestingly, after using charcoal immersed in liquid air to remove the other
components, they found the signature D3 spectral line and determined the gas was almost
2% helium [7]. To this day, natural gas fields, where it is a product of radioactive alpha

decay, are the largest suppliers of helium worldwide.
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Soon after helium’s discovery on Earth, there was a race to liquefy the newfound ele-
ment. Heike Kamerlingh Onnes of Leiden became the first to do so in 1908, using Joules
Thompson cooling. He found that helium-4 liquified at 4.2 Kelvin. Onnes’ work opened up
new frontiers in cryogenic physics, paving the way for important discoveries. Most notably,
superconductivity was discovered only three years later, in 1911; today Onnes is known as

"the father of low-temperature physics [5].”

1.2 Basic Properties

The most common isotope of helium is helium-4, which is composed of two protons and two
neutrons. Having no nuclear spin, “He behaves as a boson. The only other stable isotope
is helium-3, which has a fractional abundance of about 1 part in 10° [8]. With only one
neutron, He is a fermion and thus behaves very differently from helium-4. Though neither
are stable, two other helium isotopes have been observed: helium-6, which has a half life
T1/2 = 0.82 s and helium-8, with a half life of 7/, = 0.12 s [4].

With two electrons, helium has a filled s shell, resulting in a highly symmetric structure.
The sole permanent dipole exists in the isotope *He, which has a small nuclear magnetic mo-
ment. For helium-4, the only interatomic binding force is the attractive interaction between
momentarily induced dipoles known as the van der Waals force. Further, the van der Waals
force between helium atoms is the weakest of any substance. The weak interatomic forces
coupled with the small atomic masses lead to low boiling temperatures of 4.21 K (helium-4)
and 3.19 K (helium-3); these are the lowest boiling points of all known substances.

As mentioned above, solidifying helium cannot be done with temperature alone; it re-
quires 25 bar of pressure. Imagine that each atom occupies a volume of space, roughly a
sphere of radius R = Vj/ ® where Vj is the atomic volume. From quantum mechanics we

expect an uncertainty in momentum dp ~ h/R, where h is the Planck constant. Therefore



each atom has an energy of localization given by [9]:

h2
W7 (1'1)

Eo ~ (6p)® /2my =
m4VA

where my, is the mass of a helium-4 atom. Because of helium’s small mass, the zero point
energy is comparable in magnitude to the potential energy of the liquid state. Therefore
the total energy of the liquid state reaches a minimum at a high atomic volume. While at
low enough temperatures (T < 4.2 K), the interatomic potentials become strong enough to
form a liquid, the liquid state remains low density, and the solid state does not form with

temperature alone.

1.3 Two Fluid Model

As liquid helium is cooled beyond 4.2 K it undergoes a second order phase transition at a
critical temperature T) = 2.17 K. This temperature is known as the lambda point because of
the shape of the specific heat versus temperature through transition (see Fig. (1.1)). Below

T, we refer to the fluid as Hell.
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Figure 1.1: The heat capacity of helium versus temperature. The transition point at 2.17 K is known as T}
because of the shape of the heat capacity through transition.

One of the interesting and initially unexplained results from early experiments on Hell
was the measurement dependent viscosity of the fluid. Measurements of rotating viscometers
showed a resistance not much different from that of *He gas. Meanwhile, measurements
of viscosity based on flow rates through small capillaries demonstrated flow rates nearly
independent of the pressure differential, indicating virtually zero resistance to flow.

Tisza [10] was able to reconcile these results with the two fluid model of helium-4: below
T, helium behaves as if it were composed of two non interacting fluids, which are called
the superfluid and the normal fluid. The total density of helium (p) can be written as the
combination [11]:

p = PN+ Ps; (1.2)

where py and pg are the densities of the normal fluid and superfluid, respectively. The



relative values of the densities depend on temperature; At absolute zero, py = 0 and pg = p
while at T, py = p and pg = 0.

The superfluid component moves without viscosity and carries no entropy. It is the
superfluid component which can flow without friction through a small capillary. The normal
fluid component behaves like an ordinary viscous liquid and carries the total entropy of the
fluid. Andronikashvili’s experiment, where he measured the fluid’s viscosity with a rotating
wire viscometer, famously produced a curve of normal fluid density versus temperature [12];
see Fig. (1.2b).

While the two fluid model has been very successful in explaining the experimental be-
havior of helium-4, it is important to remember that all helium atoms are identical. It is not
possible to pick an individual atom and claim that it is part of the superfluid or the normal

fluid component.

1.4 Equations of Motion

We will now enumerate the equations of motion for Hell. Each fluid moves with its own local

velocity so the total momentum per unit volume can be written as [11]:

J = pNVN + psvs, (1.3)

where vy and vg denote the velocities of the normal fluid and superfluid components. The
momentum is related to the density (p) through the equation of continuity:

dp

L= —2F 1.4
V-j 5 (1.4)

Euler’s equation of motion in the absence of viscosity and for small velocities, where quadratic
terms in the velocity can be discarded, gives [11]:

Jj

5 =—VP (1.5)



where P is the pressure. When viscosity can be ignored, the fluid motions are reversible and

entropy is conserved. In this limit [11]:

9 (pS)
ot

= -V - (pSuy), (1.6)

where S is the entropy per gram of helium-4. The change in internal energy U of a fluid is
given by [11]:
dU =TdS — PdV + GdM, (1.7)

where G is the Gibbs free energy. T' is temperature, and dM is a change in the mass. If
the mass of the fluid is increased by adding particles to the superfluid, while maintaining
a constant volume, then dV = dS = 0 such that dU = GdM. Therefore the work (W) of
moving a mass AM of superfluid from point A to point B (dz) is given by:

AW = VG - dx - AM. (1.8)

From this we can write an equation for the motion of the superfluid [11]:

dUs 1
— =5SVT' — -VP. 1.
=8V v (1.9)

1.5 Thermomechanical Effect

A classic superfluid helium experiment is the illustration of the fountain effect [13]. A
superleak, formed by packing a tube with emery powder, connects a bath of He II to a small
capillary which emerges from the helium bath. When the capillary side of the superleak is
heated, superfluid flows quickly into the tube and shoots out the end of the capillary like a
fountain.

This simple experiment illustrates the inseparability of mass flow and heat flow in He
IT. When the capillary is heated, both its temperature and normal fluid fraction increase

in comparison to the bath. Only the normal fluid component can carry heat, but it cannot



travel away from the heat source through the superleak; instead, when the capillary is heated,
ps rushes through the superleak to diminish the superfluid gradient. The superfluid from
the bath flows toward the heat source with enough velocity to form a fountain.

The fountain effect is also known as the thermomechanical effect and we can estimate its
size from the equations of motion. In equilibrium the fluid is not accelerated: dvg/dt = 0.

From Eqn. (1.9) it follows that:
AP

AT = pS. (1.10)
When helium II is heated, normal fluid flows away from the source of heat, and in order to
retain equal density everywhere, the superfluid flows in the opposite direction; this is known
as counterflow. An important implication of this effect is that the fluid emerging from the
capillary is expected to be colder than the bath because its superfluid fraction is greater.

Because *He moves with the normal fluid component, this connection between heat flow and

mass flow can be exploited to isotopically purify *He as will be discussed in Section 4.2.2.

1.6 Elementary Excitations

Below T, the thermal de Broglie wavelength of the helium atoms becomes comparable to
their interatomic spacing. As noted by Landau [14], at this point the behavior of super-
fluid helium must be described in terms of elementary excitations. These excitations have
energy € = c4q, given by the dispersion curve. Here ¢ is momentum and ¢4 is the speed
of sound. Impressively, Landau deduced a form of the dispersion curve in 1941, which was
not confirmed experimentally until the late 1950s with neutron scattering experiments [11].
It is important to note that in his treatment of helium II, Landau ignored the interactions
between excitations. This is a good approximation at low temperatures where the density
of excitations is small (T" < 1.5 K), but as the temperature approaches T this assumption
breaks down and the dispersion curve and helium II properties will be different.

The shape of the helium II dispersion curve is shown in Fig. (1.2a); exact numeric values

along the curve depend on the helium temperature. At low momenta, close to the origin,



the dispersion curve is linear: € = c4q. This region describes the low energy phonons which
move with the sound velocity ¢s. At higher momenta, the curve reaches a local minimum;

the region around the minimum is specified by:

(4= )" (1.11)

=A
€ + o

From neutron scattering experiments at 1.1 K, these constants are found to be [15]:

Alkp =8.65+ / —0.04 K,
go/h =191+ /—0.01 A",

n = 0.16 - my,

where my is the mass of a helium atom, kg = 1.38 - 10723 J/K is the Boltzmann constant,
and i = h/2m = 1.05-1073* J-s is the reduced Planck constant. The excitations described

by this high energy minimum are known as rotons.
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Figure 1.2: a) The dispersion curve of helium IT showing the linear phonon contribution (blue) and the roton
minimum (red). b) The superfluid (red) and normal fluid (blue) fractions of helium below T

The phonon and roton contributions to the normal fluid density are given by [11]

2m2ky 4
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1/2

22 g5 CAJkpT
exp B 1.13
3(2m)%? (kpT)"* 13 (1.13)

Pnyr =
where A, qp, and p are defined as above, by neutron scattering experiments. These two
contributions are equal at ~ 570 mK; below this temperature the rotons rapidly become
irrelevant. When we consider acoustic loss in *He at dilution refrigerator temperatures, we
need only consider phonon-phonon collisions because while phonon-roton and roton-roton
collisions will also lead to acoustic loss, the roton population is so small as to make their
contributions irrelevant. At temperatures below about 450 mK, where p,, << pypn, We
can write: p,/p ~ 1.2-1074T*. We note that helium-4 is unique among the condensates in
that, at experimentally achieved temperatures of T' < 10 mK, the fraction of temperature
to transistion temperature is T/Ty < 0.005. In comparison, in *He, the lowest achieved
temperatures are approximately 200 pK, leading to T/T¢ < 0.08 [16]. In atomic Bose-
Einstein condensates, the fractional temperature is often T/T¢ = 0.5 [17]. For helium-4,
this small 7'/T) ratio leads to the incredible conclusion that at 10 mK the non-condensate
fraction is expected to be only p,/p ~ 10712,

Finally, we point out that because phonons are the dominant excitation below 570 mK,
we can calculate the specific heat of helium from the Debye theory for solids. One finds that
the specific heat is given by [11]:
2m2k},

Oy = B
VT 15p4h3¢3

T3 ~20.7-T° J/kg - K. (1.14)

Note that Cy has the 7% dependence that is expected when phonons are responsible for heat
conduction. When we consider the difficulty of cooling our sample to low temperatures, it

will be important that the heat capacity drops rapidly with decreasing temperature.

1.7 Second Sound

Below T), where the two fluid model applies, we expect to find multiple solutions for sound

propagation because each fluid has its own velocity field. From the equations of motion
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above, one can solve for the ordinary longitudinal pressure modes, modulations of density at
constant temperature, which in helium II are known as first sound. Additionally one finds

the relation [11]:
*S _pn C 0°S
0x2  pg T'S? Ot

(1.15)

where C' is the heat capacity. (In helium, the heat capacity at constant pressure is nearly
equal to the heat capacity at constant volume.) Notice that Eqn. (1.15) is also an equation
for the propagation of sound, but in this case, the waves are variations in entropy S or equiv-
alently, temperature T'. Because the superfluid component cannot carry entropy, movement
of temperature and mass is linked. The normal fluid component carries the entropy while
the superfluid component moves in the opposite direction. These temperature waves are

known as second sound and their velocities can be given by [11]:

[ psTS?
= . 1.1
Ca onC (1.16)

Like first sound, the absorption of second sound in helium II is well studied both theoretically

and experimentally. We introduce second sound because there may be some conversion of
first sound to second sound; given the higher attenuation of second sound this may become

a relevant loss process in very high QQ superfluid acoustic resonators.

1.8 Vortices

Finally, we mention that the superfluid can be described by a macroscopic wave function [11]:
P = e 2isBidg (1.17)

where s (R;) is a function of position and ¢ corresponds to the ground state at rest. In this

description, the velocity of the fluid depends on the gradient of the phase:

vs (R) = %Vs (R). (1.18)
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Consider what happens to a body of liquid helium-4 set into rotation. An ordinary viscous
fluid will rotate as a solid body, but the viscous interactions between atoms are absent in a
superfluid. The condition that V x vg = 0, which is required for the condition of no viscosity
in the superfluid, cannot be universally valid as experiments have shown that helium can be
set into rotation. As suggested by London and Onsager [18] and later found experimentally,
the liquid is permeated by an array of vortex lines which increase the energy but maintain
V x vg = 0 over most of the volume. A vortex line is defined by its circulation K = ¢ v - dl.

Vortices can be envisaged as holes in the superfluid helium. Imagine a cylinder submerged
in the fluid; as one moves away from the cylinder a distance r the velocity grows as v = A/r
where A represents a constant. If the cylinder is made small enough, the centrifugal force
of the fluid rotation will be strong enough to maintain the hole. The size of the vortex (ag)

can be estimated by balancing the surface tension Ty, s with the Bernoulli force [11]:

pK?

=" ~03A. 1.19
1672 T sy f (1.19)

Qo

The vortex is a small region of size ag where the macroscopic wavefunction tends to zero.

Because “He are bosonic particles, any rotation of the fluid where each atom replaces its
neighbor produces a state which is indistinguishable from the initial state. Such a rotation
produces a phase change of the macroscopic wave function equal either to zero or an integral
multiple of 7. This condition leads to the quantization of circulation: § v -dl = 2xhn/m
where n is an integer value and m is the mass of a helium atom.

It is not well known how many vortices will be present in a 50 cm?® sample of helium such
as those which we use. There are ways to limit the vortex population, such as by cooling
slowly through the lambda point or by filling a vessel slowly through a sinter. It is also not
known how vortices will interact with first sound and what limitations they may ultimately
place on the mechanical (). The presence of vortices is something we acknowledge and will

address if and when it becomes a limiting factor.
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Chapter 2

Optomechanics

2.1 Introduction

Optomechanics is the study of systems with a mechanical mode parametrically coupled to
either a microwave or an optical mode (or both). There are several excellent review papers
outlining both the underlying physics and the experimental results to date; for a recent
review, see Aspelmeyer et al. [19].

The canonical example of a microwave optomechanical system is a parallel RLC circuit
where one of the capacitor plates is free to vibrate; for an illustration, see Fig. (2.1). The
capacitance of a parallel plate capacitor is C' = egA/d, where A is the area of the plates and
d the distance between them. As the capacitor plate vibrates, the distance d is modulated,
changing both the capacitance of the cavity and its frequency w = 1/ VLC. Exciting a
mechanical mode with frequency wj; in the capacitor plate produces sidebands at we + way
on the microwave cavity resonance.

The optomechanical Hamiltonian is written as [20]:

1 1 1
H = hwe (a*a + 5) + hwar (b*b + 5) + goh (b' + b) (aT& + 5) : (2.1)

where we and wy; are the frequencies of the microwave and mechanical modes and a' (a)
and b' (b) are the raising (lowering) operators for the microwave and mechanical modes,

respectively. gq is the single photon optomechanical coupling rate which describes how much
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the frequency of the microwave cavity is pulled by the motion of the mechanics:

Jdo = %AZ‘ZP. (22)

go depends on the zero point motion Axyp which describes the magnitude of the motion of
the mechanical mode in its ground state, where it has a phonon occupation of less than one.

Axzp depends on the mechanical resonator’s mass m and frequency as:

h

2mwy

A.’I?ZP = (23)

From this definition we note that smaller masses and larger mechanical resonance frequencies
increase the optomechanical coupling rate. As will be elaborated in more detail in Chapter
3, the parametric coupling between the optical and mechanical modes allows one to either
"damp” or "drive” the mechanics. With high enough coupling rates, the mechanical mode

can be cooled to its ground state, where one expects it may behave quantum mechanically.

b)

Figure 2.1: a) An SEM of a nanomechanical resonator used in our lab, showing a capacitor with the top
plate suspended surrounded by a spiral inductor (courtesy Chan U Lei). b) The canonical example of a
microwave optomechanical system: an RLC circuit with a capacitor plate that is free to vibrate.

The field of optomechanics spans a wide range in both frequency and mass, from atomic

systems all the way up to LIGO [21]. While the physics of these systems has been well
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understood for decades, recent progress in nanofabrication techniques has permitted the
manufacture of mechanical oscillators with the parameters necessary to achieve ground states
of the mechanics. Ground state cooling was first achieved in 2010 by Andrew Cleland’s lab
at UCSB [22]; this was result was quickly repeated in Konrad Lehnert’s group at JILA [23]
and Oskar Painter’s lab at Caltech [24].

In the last five years, several experiments have confirmed the quantum nature of these
ground state macroscopic oscillators. The following is not a complete compendium of such
results but meant to highlight some of the interesting physics that can now be achieved in
such systems. In Cleland’s original ground state cooling experiment, a single quantum of
energy was exchanged between the GHz mechanical oscillator and a qubit [22]. In 2013, Palo-
maki et al [25] demonstrated entanglement between the microwave and mechanical modes
in a nanomechanical microwave drum resonator. In our lab, Weinstein et al. [26] observed
the sideband asymmetry of the mechanical drum resonator shown in Fig. (2.1a). Sideband
asymmetry describes the behavior of an oscillator in its ground state where it is able to absorb
energy from the environment but no longer able to emit energy. By putting a mode of the
drum resonator into its quantum ground state and measuring both sidebands, Weinstein et
al. [26] confirmed this physics. Following this result, sideband asymmetry was also measured
in an optical system [27]. In another result from our lab, Wollman et al. [28] demonstrated
quantum squeezing of the mechanics of a microwave drum resonator. This result has since
been replicated in other systems [29,30]. Finally, in 2016 Reidinger et al. [31] demonstrated
non-classical correlations between single photons and phonons in a photonic crystal cavity
by measuring violations of the Cauchy-Schwarz inequality in the state of the mechanics.

Of future interest to the field of optomechanics are systems which allow the preparation
and transfer of quantum states [32]. There is increasing investment in superconducting
qubits as scalable building blocks for quantum processing. Qubits operate at microwave
frequencies, but microwave cabling is lossy and cannot be used to transfer information over
long distances. In contrast optical fibers provide very low loss communication over long
length scales. A device that can efficiently and with high fidelity transfer a state between

microwave and optical photons is of great importance. Optomechanical systems with low
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loss mechanical resonators may also be useful in the storage of quantum states.

2.2 QOur System
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Figure 2.2: Diagrams of our superfluid optomechanical systems: a) the cylindrical niobium cell with an inner
diameter of 3.56 cm and height of 3.95 cm. Two hermetically sealed dielectric probes are used to couple
microwaves into and out of the cavity. A capillary allows the cell to be filled at low temperatures. b) A
vertical slice through the center of the sapphire cavity setup, showing the ring of *He and the fill line. The
top cylinder, which supports the whispering gallery modes, is 5 cm in diameter and 3.1 cm in height. The
helium annulus has an inner diameter of 2.2 cm, an outer diameter of 4 cm, and a height of 0.64 cm. The
sapphire and the microwave couplers are mounted to an aluminum cavity which reduces the microwave loss
from the evanescent fields.

While the nanomechanical drumhead resonators provide a platform for an intuitive under-
standing of optomechanical coupling, the results of optomechanics extend to any system
where a low frequency acoustic vibration is parametrically coupled to a high frequency mi-
crowave mode. In our experiment, we observe acoustic modes in a superfluid filled cavity
coupled to microwave modes of the surrounding resonator. Here the density modulation pro-

duced by the acoustic modes results in a proportional modulation of helium’s permittivity,
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which couples to the microwave modes.

We had several reasons for choosing to work with superfluid *He. The first is that we
expected to achieve extremely high mechanical ()s as will be outlined in Chapter 4. High
mechanical ) acoustic modes allow for extremely sensitive force detection with potential
applications to gravitational waves (see Section 6.2 and Singh et al. [2]). High @ modes also
have extraordinary number state lifetimes: 7y = hQ/(kgT) [33]; for @ = 10" at T = 10
mk, we expect 7y = 8 seconds. Additionally, the optomechanical systems which have so
far reached the quantum ground state have extremely small masses (order 100 pg), and we
were interested to extend these results to a more massive system. Recall that gg oc 1/4/m so
that less massive resonators have a higher gg. As will be discussed in Chapter 3, in practice
the optomechanical coupling rate is enhanced by the microwave pump power. Because
of helium’s very low dielectric loss tangent, we believe the high pump powers required to
overcome a small gy are achievable (see Section 6.1).

We designed two systems for studying superfluid optomechanics, shown in Fig. (2.2).
The first uses a cylindrical superconducting niobium resonator and the second a cylindrical
sapphire whispering gallery mode resonator. While both resonators were fabricated, this
thesis will focus primarily on the niobium design because the initial results with the niobium
cavity were more promising.

We first briefly describe the sapphire cavity setup shown in Fig. (2.2b). It is made from
two pieces of sapphire bonded together. The microwave whispering gallery modes reside
in the top cylinder which has a diameter of 5 cm and a height of 3.1 cm. The notched
post extending from this cylinder is used only to secure the sapphire inside an aluminum
cavity. The aluminum cavity serves two purposes: it holds the microwave couplers and it
diminishes the losses from the evanescent fields leaking from the sapphire cavity; it has an
inner diameter of 8.9 cm and a height of 7 cm. The helium annulus has an inner diameter
of 2.2 cm, an outer diameter of 4 cm, and a height of 0.64 cm. It is connected to the base
of the cavity with a drilled hole which serves as a fill line. The sapphire design was not
immediately successful because both the bond line and the unpolished annular cavity are

located in a high field region of the whispering gallery mode, significantly deteriorating its
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microwave Q).

In contrast to the sapphire setup, we made significant experimental progress with the
niobium cylinder design shown in Fig. (2.2a). The niobium cavity is made from two pieces:
a U shaped body and a lid, which are sealed together with indium wire. The inner cylindrical
cavity is approximately 4 cm in length and 3.6 cm in diameter. We use the TEy;; mode
of the microwave cavity, which is typically the highest (2 mode in these systems and has
a frequency we = 27 - 10.6 GHz when the resonator is filled with *He. Coupling to the
microwave mode is achieved via two loops of wire recessed into the cavity lid. The intrinsic
loss rate of the TEy;; mode is ki, = 27 - 31 Hz but we have overcoupled the cavity such
that ki, = Kouwt = 27 - 230 Hz for the optomechanics experiments. With the niobium cell full
of helium, we apply a red detuned microwave pump tone at wp = we — wyy while driving
the acoustic mode at wy,; with a piezo transducer attached to the niobium cavity, to produce
an upconverted sideband at the microwave cavity resonance [34]; see Section 5.4. We detect
acoustic modes in the superfluid at frequencies within 1% of their expected values, and we
determine their quality factors by recording the free decay of the acoustic oscillations. Our
single photon optomechanical coupling rate is gy = 27 - 107° Hz.

It is worth nothing that while we developed the first optomechanical system using super-
fluid helium-4 [1], since then the field has expanded to include other such systems, though
they are in significantly different parameter regimes. The Harris lab at Yale has developed
a helium filled cavity between two optical fibers, held in alignment by a glass ferrule [35].
They observe first sound modes optomechanically coupled to an optical mode. Both modes
are at significantly higher frequency than the modes of our design: (we = 27 - 195 THz,
wy = 27 - 318 MHz, go = 27 - 3 kHz). The Bowen lab at the University of Western Aus-
tralia is working with silica microtoroid whispering gallery mode resonators covered in a film
of helium-4 [36]. They observe third sound modes coupled to optical modes of the toroid
(A = 1551 nm, wy; ~ 27 - 10 kHz to 27 -5 MHz, gy =~ 27 - 10 Hz). Both systems have higher
optomechanical coupling rates (listed in parentheses above) than we expect for our niobium
cell because of their smaller mode masses and higher mechanical frequencies. However, our

measured acoustic (s are significantly higher than in either of these systems.
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2.3 Microwave Modes

2.3.1 TE Modes of a Cylinder

------
- S~

Figure 2.3: Cylinder of height L and radius a in cylindrical coordinates.

We will first describe the microwave properties of the niobium cavity design shown in Fig.
(2.2a). The electromagnetic eigenmodes of a right cylinder are found by enforcing the ap-
propriate boundary conditions to Maxwell’s equations. The details of these calculations are
explicitly worked out in many microwave engineering textbooks (see for example Pozar [37]),
so only the results are summarized here. The cavity of interest is a cylinder of height L and
radius a, which is most easily represented in a cylindrical coordinate system (r, 6, z) as shown
in Fig. (2.3). Electric and magnetic field components are represent by F and H, respectively.

Transverse electric (TE) modes are defined such that F, = 0 and H, is a solution to
the wave equation: V2H, + k?H, = 0, where k is the wave vector. Enforcing the boundary
condition that tangential components of E must equal zero at the walls (7 x E = 0, where
7 is a normal unit vector pointing out of the wall) leads to Fy (r,0,2) = 0|,—4, Ep (1,60, 2) =
0|.—0.z, and E, (1,0, 2) = 0|,=0.1.

One can use these conditions to solve for the explicit form of the TE modes of a right
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cylinder, which are given by [38]:

E, (r,0,z2) = Zl:—an (kyr) sin (nf) sin (k32) ,

1r

Ey (r,0,2) =inJ) (kir) cos (nf) sin (k3z),

E.(r,6,z) =0,

H,(r,0,z) = %Jé (kyr) cos (nf) cos (ksz) ,

Hy(r,0,2) = — ks Iy (k1r) sin (n@) cos (ksz) ,
kkﬂ“

k
H,(r,0,z)= Eljn (kyr) cos (nf) sin (k3z) ,

where 1 = \/u_/e is the wave impedance and p = pugpo is the permeability, where pug is the
relative material dependent value and pg = 47 - 1077 N/A? is the permeability of free space.
Similarly, € = egeq is the permittivity, where €g is the relative material dependent value and
€0 = 8.85- 1072 F/m is the permittivity of free space. In helium, pur ~ 1 and ez ~ 1.05.

The wavenumber, k = w,/ué€, is given by:

2!

ky = $7 (2.4)
7l

kS = f)

where 27, is the mth extrema of the nth Bessel function of the first kind (J} (z},,) = 0).
A table of Bessel function extrema can be found in Appendix B.2. The integers n, m, and
[ are used to label the modes; they indicate the number of variations azimuthally, radially,
and longitudinally, respectively.

Equating k = w,/u€ with the relation given in Eqn. (2.4), we can solve for the frequencies
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of the TE,,,; modes [37]:

c ., 2 I\ ”

where we have used the relation ¢ = 1/,/1ig€o for the speed of light in vacuum.

2.3.2 TM Modes of a Cylinder

For the transverse magnetic (TM) modes, H, = 0 and E, is a solution to the wave equation.
As in the TE case, we enforce the boundary condition that tangential components of E must
equal zero at the walls, leading to the conditions: FEy (1,0, 2) = 0|,=a, E. (r,0,2) = 0],—,
Ey(r,0,2) = 0|20z, and E, (1,60,2) = 0|,—0,1-

One obtains the following explicit formulas for the TM modes [38]:

E.(r,0,2) = —%J;L (k17) cos (nf) sin (k3z) ,

k
Ey(r,0,z) = ;k_;J" (kq7) sin (nf) sin (k32) ,
E.(r0,z) = %Jn (ky7) cos (nB) cos (ksz) ,
m
H,(r,0,z) = — Iy (ky7) sin (nd ksz),
(r,0,2) pr (kq7) sin (n) cos (k3z)

Hy (r,0,2) = ——J (kyr) cos (nf) cos (ksz) |
n

H,(r,0,z) =0,

where the definitions are identical to the TE case with the exception of the constant ky:

2% m,

klz d 9

where ., is the mth zero of the nth Bessel function of the first kind (J,, (€,) = 0). Bessel

function zeros are shown in Appendix B.1.
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Similarly, the frequencies of the TM,,,,; modes are given by:

b= e 22+ (), =

where again the only difference from the case of TE modes is the replacement of z/ = with

Tnm-

2.3.3 Quality Factor of Cylindrical Microwave Resonators

In a cylindrical microwave cavity resonator, the highest ) mode is generally the TEg;
because no current flows between the walls of the cylinder and the lid. For practical purposes,
this means that using a two piece cavity where the lid must be attached to the cylinder with
indium has a less detrimental effect on the @). In a right cylinder, the high ) TEy;; mode is
degenerate with the lower () TM;;; mode. This degeneracy can be explicitly broken with a
stub in the cavity lid [39], but we found that the asymmetry of our cavity as machined was
enough and made no additional modifications.

Microwave quality factors are limited by resistive losses in the walls; the highest () values
are achieved in superconducting cavities with cleaned and polished inner walls. We consid-
ered various materials for our cell before settling on niobium. A common choice is copper,
which does not superconduct at any temperature. In copper, microwave quality factors of
up to 3-10° have been achieved with an electrolytically polished cavity at 4.2 K [40]. Signif-
icantly higher microwave ()s have been measured with superconducting metals; the highest
superconducting microwave Qs of which I am aware are: @ ~ 10° in aluminum (T¢ = 1.2
K) [41], Q@ > 10'% in lead (Tp = 7.2K) [42], and @ > 10" in niobium (T¢ = 9.4 K) [43,44].
To achieve the highest (s in a cylindrical cavity, the body of the cylinder should be U shaped,
and the single lid required should be welded in place, reducing the losses associated with
seals. Heat treatments in a vacuum furnace remove impurities and further increase @ [43].

We chose to work with niobium not only because it has the highest microwave () but

also because it has the highest T among elemental superconducters. Because the transition
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temperature is T > 9 K, the microwave properties can be tested in a helium bath at 4.2 K|
which is much simpler than using a helium-3 or dilution refrigerator. Even with a lid attached
by an indium seal, we found that a simple procedure of polishing the cavity and chemically
etching away =~ 100 microns of material was enough to remove the surface layer damaged by
machining and produce @ > 108 [1]. Importantly for our optomechanical system, which has
microwave frequencies of order 10 GHz and acoustic frequencies of order 10 kHz, achieving

sideband resolution requires a microwave @ ~ 107, which is not difficult with niobium.

2.3.4 Brief Introduction to Superconductivity

Superconductivity was first observed in 1911 by Onnes, who found that the resistance of a
sample of mercury abruptly dropped to zero at cryogenic temperatures [5]. For his studies,
he was awarded the Nobel Prize in 1913. In 1957, the first theory of superconductivity was
presented by Bardeen, Cooper, and Schrieffer [45], who won the Nobel Prize in 1972 for what
is commonly known as the BCS theory.

According to the microscopic theory of superconductivity there is a small attractive
interaction between the electrons in a metal, which at low enough temperatures will cause the
electrons to condense into Cooper pairs. For conventional low temperature superconductors,
this attractive interaction is mediated by phonons of the crystal lattice. One can imagine that
as an electron moves through the lattice, it will attract ions of positive charge. The resultant
deformed lattice then preferentially attracts another electron of opposite spin. Interestingly,
strong electron-phonon interaction results in higher resistivity in the normal state; high T¢
elemental superconductors such as niobium and lead are more resistive in the normal state
then the excellent conductors gold and copper, which have weak electron-phonon interactions
and show no evidence of superconductivity.

Electrons in a metal obey Fermi-Dirac statistics; the probability that a state with energy
¢ is occupied by an electron is given by [46]:

1
IO = et 1

(2.7)
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where ep is the Fermi energy. As a consequence, only electrons within kgT of the Fermi
energy contribute to the macroscopic properties of the metal. Because of the weak attractive
interaction between electrons in a superconductor, as the temperature falls, the electron
states near the Fermi level get redistributed. Eventually a temperature dependent energy
gap, 2A (T'), opens up producing a new lower energy ground state, the superconducting

state. BCS theory predicts that the pairing energy (or energy gap) will be given by [46]:

2A (0) = 2 1.76kpTe = 3.12 meV, (2.8)

where T is the transition temperature. Below T, it will be energetically favorable for two
electrons near the Fermi surface to form a pair, which will have lower energy because of the
attractive potential. These new particles are known as Cooper pairs, and they have twice
the mass and twice the charge of an electron. Pairs form between electrons of opposite spin
and momentum, as this pairing produces the minimum energy state. Because Cooper pairs
are bosons, the Pauli exclusion principle no longer applies and all pairs can be in the same
quantum state.

As noted above, when electrons condense into Cooper pairs, it is only those within kg7
of the Fermi surface that participate. One finds that the range of momenta of the relevant
electrons is dp = kT /vr where vp is the Fermi velocity. Using the Heisenberg uncertainty
relation for position (we define 0z = &) and momentum, &, - p ~ h, one finds that the

spatial extent of a Cooper pair, known as the coherence length, is given by [46]:

hUF

b= 29)

Much like superfluid, a superconductor can be described in terms of a two fluid model.
The "superfluid” component consists of Cooper pairs of electrons while the "normal” com-

ponent consists of the remaining unpaired free electrons. The number of unpaired electrons
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(Nnormat) is related to the Boltzmann factor e=2/F57"

Nnormar ¢ €2/ FBT (2.10)

At zero temperature, all electrons are paired; as T increases, pairs will be broken up creating
unpaired electrons and unoccupied states. Therefore increasing T' decreases the size of the

energy gap. A good approximation for the temperature dependence of the gap is [47]:

Notice that this function increases slowly at low T, so that at T = T/2 the energy gap is
still 96% of its value at zero. For this reason, achieving temperatures 7' < T /2 is considered
a good benchmark for observing the expected superconducting properties of a material.

The DC resistance of a superconductor is zero because the Cooper pairs carry current
without resistance while the normal electrons remain inert. One way to understand the
state of zero resistance is in terms of the de Broglie wavelength (A = h/muv, where m is the
mass and v is the drift velocity) of the current carrying Cooper pairs. In a normal metal,
the electrons have large drift velocities, and therefore small de Broglie wavelengths, on the
order of the crystal lattice. Electrons scatter from imperfections in the crystal lattice, such
as impurity atoms, leading to resistance. In a superconductor, the current (j = —n2eAuw,
where n is the number of charge carriers and e is the charge of an electron) is carried by all
the Cooper pairs, so that the drift velocity is very small. Therefore the de Broglie wavelength
is much larger than the size of the crystal lattice, so there is no scattering from imperfections
and therefore no resistance.

In contrast to the DC case, RF current in a superconductor still experiences finite resis-
tance. Cooper pairs can move without friction but they do have inertia, so in the presence
of an RF field, they do not perfectly screen the normal electrons from the applied field. The

time varying magnetic field on the surface creates (H) an electric field (E;,;) in the skin
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depth [46]:

dH
Eint X % X CL)H, (212)

where w is the frequency of the applied RF field. The electric field in the skin depth acts on

the normal electrons and creates a current [46]:

Jint X Nnormat Eint X Mnormarw H. (2.13)
The movement of the normal electrons leads to a dissipation [46]:

Piiss X EintJint X Nnopmars” H?. (2.14)

The power dissipated in a microwave cavity can also be written in terms of the surface
resistance Rg [37]:

1
Pdiss = §RSH2- (215)

Using Eqns. (2.14, 2.15) we can find for the surface resistance:
Rg X Npormaiw? o< Agw?e ™ 2O0/ksT (2.16)

where Ag is a material dependent constant depending on the Fermi velocity vg, the London
penetration depth Ay, the coherence length &, and the mean free path of the electrons. This
equation is valid for T' < T¢ /2, where, as shown above, the energy gap A (7)) is relatively
constant. Eqn. (2.16) includes two important results of superconductivity: the exponential
decrease of resistance with temperature and the dependence of the surface resistance on the

RF frequency squared.
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2.3.5 Microwave Quality Factor of Niobium

In general the quality factor @) of a microwave resonator is given by [46] :

Q (2.17)

B Pdiss ’
where w¢ is the resonance frequency, W is the energy stored in the electric field and Py, is
the dissipated power. Eqn. (2.17) can be written in the more convenient form @) = G/Rg

where GG is a mode dependent geometric factor:

[y AV

G =yl T
M THP2dS”

(2.18)

and Rg is the surface resistance. For a superconductor, we expect a temperature dependent
resistance Rg (T') = Rpes (T) + Ry, where Rpeog is the contribution from the BCS theory
and Ry is the residual resistance from all other sources.

As we have noted earlier, at temperatures below half of the transition temperature the
energy gap changes little, and we expect the BCS theory to apply very well. The expected
BCS losses for temperatures T' < T /2 and for frequencies f << 2A/h ~ 10? are given by:

Lexp~ A/ ksT

Rpcs = Af — 7 (2.19)

where A is a constant which depends on the material properties [48]. The exponential can be
simplified using measurements of the energy gap in niobium which give A (0) /kgTc = 1.9,
where T = 9.3 K. There are no general expressions for the constant A; however a simplified
expression for the BCS resistance in niobium, which is in good agreement with both theory

and experiments, is given by [49]:

2 —17.67/T
/ ) D . (2.20)

Rpes~2-107*
Bes (1.5 - 109 T
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2.3.6 Microwave Modes in Sapphire

As will be discussed in Chapter 4, at low enough temperatures, the acoustic ) of the TEq,
cavity design will ultimately be limited by the container losses rather than the losses in *He.
(We expect a maximum superfluid acoustic @ ~ 10! for a niobium container.) One can
instead use a cell material with lower acoustic dissipation than niobium; the acoustic @Js
of many materials have been well established in gravitational wave literature in the context
of high @ resonant bar detectors (See Table 4.1). The lowest acoustic loss factors have
been measured in sapphire monocrystals [50,51]. Therefore we also designed a superfluid
optomechanical setup using sapphire, as shown in Fig. (2.2b).

Like niobium, sapphire is also an excellent microwave resonator. It has very large di-
electric constants (¢ = 11.34 and e, = 9.27 at 15 K [52]) leading to well contained, high
quality factor whispering gallery modes. Because of its extremely low dielectric loss tangent,
sapphire is a good candidate for ultra-stable microwave sources, and has been thoroughly
studied in this context. See for instance the review articles by Locke et al. [53] and Mec-
Neilage et al. [54]. @ values as high as 8-10° (measured at 1.6 K) have been achieved in the
whispering gallery modes of cylindrical disks of sapphire [55,56].

The whispering gallery modes are labeled by whether they have predominantly electric
(quasi-TM) or magnetic (quasi-TE) fields along the longitudinal direction in the sapphire
disk. The "z” direction field equations and frequencies of these modes have been calculated
[57,58], and the radial and azimuthal components can be solved for using Maxwell’s equations
[59]. The quasi-TM modes are labeled WGH,;, , p+o and the quasi-TE modes are labeled
WGE,, ,, p+o Where m, n, and p are the number of variations in the azimuthal, radial, and
axial directions, respectively!.

Quality factors of dielectric cavity resonators are limited by radiation losses. The highest
Q factors have been obtained in modes of high azimuthal number because the fields of such
modes are well contained within the sapphire. Surface polishing also limits these losses. The

radiative losses can be reduced further by enclosing the resonator within a superconducting

!'Note that this mode numbering convention is different from the convention used for cylindrical cavity
resonators.
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cavity shield as first suggested by Blair and Jones [60]. The highest quality sapphire is
HEMEX (Crystal Systems [61]), which is grown by the heat exchanger method and has
extremely low impurity concentrations. The c-axis of HEMEX is aligned parallel to the
boule to within 1 degree.

The quality factor for the unloaded @ of a two port dielectric resonator inside a cavity
resonator is [62]:

Qil = sizpphzre + Qcavzty FC tan(5) + RST?I? (221>

where F, is a factor defined by the confinement of the EM fields within the dielectric, tan(J)
is the dielectric loss tangent of sapphire, R, is the surface resistance of the surrounding
cavity, and 7 is a mode dependent geometric factor of the surrounding cavity. In the best

sapphire resonators, the losses are limited by tan().

2.4 Acoustic Modes

In either design of Fig. (2.2), the expected superfluid acoustic modes can be found by solving
for the standing waves of the inner cavity. Solutions for acoustic modes are given by solving
the Helmholtz equation, V?p + k?p = 0, where k is the wavenumber and p = Pe™M! is the

pressure of a mode with frequency wy,. Working in cylindrical coordinates (r, 6, z) we find:

o?P 19P 19°P O°P
EEl +T8r+r2602+ﬁ+kp 0. (2.22)

The boundary conditions come from assuming that the walls of the cavity are rigid. For the

niobium setup, which is a right cylindrical cavity of radius a and length L:

OP
— |0 =0,
0z =0,z

or

——|r=a = 0.
87°|
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Assuming a solution of the form P (r,0,2) = R(r)© (0) Z (z) and using separation of vari-

ables, we solve for the pressure [63]:
Pimn = Atmndm (Kmnt) €08 (M0 + Ypmn ) cos (ko2) emnt, (2.23)

where k,; = Ir/L and k,,, = j,../a. Here j/ —is the nth extremum of the mth Bessel
function of the first kind (J/, (/,,,) = 0). A table of Bessel function extrema for the acoustic
modes is shown in Appendix B.3. Notice the difference between this table and the table used
for the microwave modes: the first value (for n = m = 0) is 0, so the first row is displaced by
a single column. The integers [, m, and n represent the number of nodes in the longitudinal,
azimuthal, and radial directions?.

From the wavenumber k = wy;/cy we solve for the frequencies of the acoustic modes:

) 2 I 2
= ey 1 = (22) 4 (1)’ 221

where ¢4 is the speed of sound in helium-4.

The profiles of the acoustic modes for the niobium setup (a = 1.8 cm and L = 4 cm) are
shown in Fig. (2.4). Every mode is shown up to the [ = 3, m = 0, n = 1 mode at 12 kHz,

which is the highest frequency mode that we were able to detect experimentally.

2Note that this convention for the integers {,m, and n is different than the convention used for the
microwave modes of a right cylinder.
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Figure 2.4: The profiles of every superfluid acoustic mode for the niobium cavity design up to a frequency of
12 kHz. Below each mode is its frequency and mode number (I, m,n), where [, m, and n indicate the number

of nodes in the longitudinal, azimuthal, and radial directions. The white areas of the profiles indicate node
locations.
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In the sapphire design, the helium cavity is not a cylinder but an annulus. The acoustic
eigenmodes of an annulus can be solved for using the Helmholtz equation as above with rigid
boundary conditions at each wall. For an annulus with inner radius a, outer radius b and

height h: OP/0z|,—0, = 0 and OP/0r|,—a.» = 0. The solutions for pressure are given by [64]:

Jrln (kmna)

Pimn (1,0, 2) = (Jm (kmnr) + m

Yo (k:mnr)) - cos(mf) cos(kyz)eimnt, (2.25)

where Y is a Bessel function of the second kind. The frequencies are given by:

l 2
Wimn = | K2 + (%) , (2.26)

where ky,, is the nth value of k, satisfying the boundary condition J), (k,a)Y, (k.b) —
J (kb)Y (k.a) = 0. As above J is a Bessel function of the first kind. Again [, m, and n

are the number of nodes in the longitudinal, azimuthal, and radial directions, respectively.

2.4.1 Acoustic to Microwave Coupling Strength

In both the sapphire and the niobium designs, the acoustic helium mode couples capacitively
to the microwave container resonance. We first consider the niobium cylinder design of Fig.
(2.2a) because the microwave mode equations are simpler.

A standing wave is nothing more than a spatial pressure variation in the cylinder. Regions
of higher pressure will have higher density and higher permittivity, altering the energy stored
in the electromagnetic mode of the cavity. Assuming that the electric and magnetic fields
are not seriously perturbed, one can approximate the frequency shift caused by the acoustic
mode as [37]:

Aw  [Au[H| + Ae|Eo[" av

w [u|Ho|* +€[Eo|* av (2.27)

where p and € are the permeability and permittivity, respectively, and Hy and Ej represent
the unperturbed magnetic and electric fields.

To proceed, we first address whether the acoustic coupling to the magnetic or electric
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field is larger. On a TM or TE resonance, the energy stored in the electric field equals the
energy stored in the magnetic field or half the total stored energy W:

W2 = /u\ﬁof dV = /e]EDF dv. (2.28)

The largest frequency shift will occur if the perturbations in ¢ and € are not spatially depen-
dent and can be removed from the integrals. We will compare the coupling to the magnetic
field, Cyr = Ap [ [Ho|* dV, to the coupling to the electric field, Cy = Ae [ |Eo|” dV. Di-
viding both by W/2 one finds Cyy = Au/po and Crp = A€/eg. Under the assumption of a
linear dependence between density and permeability and between density and permittivity,
one finds Au/pg = xpuAp/p and Ae/eg = xplAp/p where xy and x g are the magnetic and
electric susceptibilities, respectively. Therefore the relative frequency shift caused by the
coupling to the magnetic and electric fields is given by the ratio Cy;/Cg = xan/xE- Bruch
and Weinhold [65] calculate that the magnetic susceptiblity of liquid helium will differ by
no more than 0.5 % from the theoretical value for gaseous helium, —8.6 - 10~7; the electric
susceptibility of helium at millikelvin temperatures is 0.057, giving Cy//Cg ~ 107° [66].
Therefore we will neglect the term Ap |H0‘2 in Eqn. (2.27) and consider only how the
acoustic mode couples to the electric field through Aeg.

The change in dielectric constant (eg) due to a change in density (p) is given by the

Clausius-Mosotti equation:
er— 1 dmwayp
er+2  3M

(2.29)

where M is the molar mass (4.00 g/mole in *He) and ayy is the molar polarizability (0.123

cm?®/mole in *He) [67]. Solving for €g, and differentiating with respect to density, one finds:

8ER _ SX _ (GR + 2) (ER - 1) (2 30)
o (1—xp)’ 3p ’

where y = 4mway/3M. We can relate the density to the pressure P through the compress-
ibility K = —1/V - OV/OP, where V is volume. Differentiating p = m/V with respect to
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volume, and using the definition of x, one finds:
Op = prOP. (2.31)

Finally we will write the pressure of the acoustic mode as P - f (7,0, z) where P is the
amplitude of the mode and f (7,0, z) is a spatially dependent function which is different for
each eigenfrequency. Combining Eqns. (2.27), (2.31), and (2.30) and using the fact that
equal energy is stored in the magnetic and electric fields, one finds a relation for the change
in frequency relative to the amplitude of the pressure wave:

dwe 1 f f(r.0,z yEO\ dv

= ——wek (er +2) (eg —

2.32

Ultimately we would like to solve for the optomechanical coupling rate gy as defined in
the Hamiltonian (Eqn. 2.1). Since we are working with pressure instead of displacement, we

write: go = Owe/OP - APzp. The energy stored in an acoustic mode is given by [63]:

E=7 / (Pf(r,0,z2)) dV. (2.33)

We solve for the zero point pressure APzp by equating Eqn. (2.33) with fw,,/2. Letting

€= [(f(r,0,2))*dV, we find:

huw
APyp = H—g (2.34)

Using Eqns. (2.32) and (2.34) one can calculate the single photon coupling rate (go) for an
array of acoustic and microwave modes.

We can solve for the coupling constants for the sapphire setup using a similar approach.
Because of the difficulty of calculating the EM fields of the whispering gallery modes analyt-
ically, we instead use a successful 2D simulation technique for axisymmetric resonators (see
reference [68]) to calculate the eigenfrequencies of the resonator. To estimate the coupling,

we can calculate the eigenfrequency of a specific mode for a range of dielectric constants in
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the helium ring, which gives a value for dwe/0€g. This method of calculating dwe/Jer will
overestimate the coupling constant because it does not include the overlap integral between
the electromagnetic mode and the acoustic mode; including the profiles of both modes in
the simulation would yield an exact result. Using Eqns. (2.30) and (2.31) above, one finds
a relation for the coupling constant: dwe/OP = 0w /Oeg - k/3 - (g — 1) (g + 2). Note that
the highest quality factor microwave modes have high azimuthal order but no longitudinal or
radial variation, and therefore do not couple to the purely azimuthal acoustic modes. Also
note that gy for the sapphire setup is limited because the whispering gallery modes primarily
reside in the sapphire where they do not interact with the superfluid acoustic mode; in this

respect, the niobium setup is superior.

2.5 Cavity Heating

2.5.1 Thermal Model

In the ideal case where acoustic loss is limited by the three phonon process, the () will have
a T* dependence, and measuring high Qs will require long periods of temperature stability.
In addition, as we will outline in Chapter 3, achieving optomechanical sideband cooling in
our system requires large microwave pump powers. In both cases cavity heating may become
important; here we consider the effects of heating on the helium temperature.

To estimate the effect of heating in *He, we will compare the heating from dielectric
losses to the cooling through thermal phonon exchange with the cell. We will justify why
this model is appropriate. We focus here on our niobium setup shown in Fig (2.2a), although
the results can be generalized to other systems. A thermal model of the helium, niobium
cell and mixing chamber is shown in Fig. (2.5). The helium and niobium are represented
as capacitances with C' = ¢;,n, where ¢, is the molar specific heat in J/mol K and n is

the number of moles. *He cools through phonon scattering at the cell boundary, which is
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mediated by the Kapitza resistance (Ry) [5]:

_ 15R%pcd
2m2kh Apacy T3

Ry (2.35)

where A is the surface area of contact, p; = 145 kg/m® and ¢, = 238 m/s are the density
and speed of sound in *He, and p, and ¢, are the density and speed of sound in the boundary
material. In our case, A = 0.0064 m?, p, = pyp, = 8570 kg/m3, and ¢, = cnp = 3480 m/s.
Notice one of the reasons that *He is notoriously difficult to cool to low temperatures is that
Ry is proportional to the acoustic impedance mismatch between helium and the boundary
material (Z = pscs/pscy); for a metal boundary this impedance mismatch is high because of
helium’s low density and speed of sound. For our niobium cell, the impedance mismatch is
Z = 860 and the Kapitza resistance is Rx = 40/T°

In turn the niobium cell cools through the suspension system, which in our most successful

experiments has been a copper wire. It’s resistance will be given by:

LSusp
susp — s 2.36
P )\ASusp ( )

where Lg,s, is the length, Ag,s, is the cross-sectional area, and A is the thermal conductivity
in W/m K. Note that both resistances Ry and Rgys, have units of K/W. One can understand
the conductance, 1/R, as follows: one Watt across a conductance of one W/K produces a
one Kelvin temperature drop.

The suspension system is easily modified from run to run and Rg,s, will depend on the
specific design that we use. First we consider material choice. For the excellent and readily
available conductors copper and silver, the low temperature thermal conductivity calculated

from Wiedemann Franz is given by [5]:

Acw = (RRR/0.76) - T,
Aay = (RRR/0.55) - T,
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where RRR is the ratio of the electrical conductivity at low temperature to the conduc-
tivity at room temperature: RRR = o049k /0300x; RRR is a measure of the limit placed
on conductivity by defect scattering, and it can be improved in a given sample by vacuum
annealing. Notice that in theory silver is the superior conductor; however in practice the low
temperature values of thermal conductivity for silver may be ~ 30 times smaller then the
predictions from Wiedemann-Franz [69]. In our final planned run, we made an annealed 5N
silver suspension wire with length 6.5 cm and diameter 0.1 cm. If we achieved RRR = 5000
through annealing and we use the experimental values from [69], we can expect A = 300 - T
or Rgysp ~ 280/T. Note that this resistance may be reduced by as much as an order of
magnitude if the conductivity is in line with Weidemann Franz or if a copper wire is used.

Finally we compare the resistances Rx and Rg,s. Notice the different temperature
dependencies between low temperature phonon (Rx o< T°) and electron (Rgysy o T') con-
ductivity mean that at low enough temperatures, Rx > Rgysp. For our niobium cell and the
silver suspension system assumed above, R = Rgysp at 7'~ 380 mK, and Rx = 10 - Rgysp
at 120 mK. At temperatures below 100 mK where we will operate our experiment, Rgys,
can be neglected. Note that these temperatures will be higher if Rg,s, is made smaller.

We also note that we have assumed that resistance between the niobium cell and the
suspension wire is small compared to other thermal resistances. This assumption may not
be obvious given that in niobium far below T¢, thermal conduction will be dominated by
phonons as the electrons are frozen out in Cooper pairs. The boundary resistance between
the niobium cell and the suspension wire will be given by the Kapitza boundary resistance
where although the impedance mismatch is now ~ 1, the surface area of contact is also much
smaller. If we use a silver suspension with a circular contact area of radius 0.2 cm, we find
R susp = 3 /T3, which is an order of magnitude smaller than Ry between the helium and
the cell; we need not consider the contact resistance between the cell and the suspension
system here.

Further we can justify ignoring the heat capacity of the niobium cell (Cyy) because it will
be much smaller than the heat capacity of the helium itself (Cy.). At very low temperatures

(T < T¢/10), niobium will behave like an insulator because the electrons have frozen into
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Cooper pairs and phonons are responsible for heat conduction. In niobium 7 = 9.3 K so our
experiments will operate entirely in this temperature range. When the phonon conductivity
dominates, the specific heat is given by the Debye approximation, which for niobium is
C ~ 1944 x T3/0% J/mol- K where ©p = 275 K is the Debye temperature [70,71]. The
cell is approximately 14 moles of niobium, so the total heat capacity is 10737% J/K. “He is
also an inuslator with a Debye law heat capacity proportional to 7%. However in helium the
specific heat per mole is significantly higher than in niobium, primarily because the sound
velocity in helium is &~ 1/10 as high. The molar heat capacity of helium has been thoroughly
studied experimentally and a good compilation of values can be found on Russell Donnelly’s
website [72]. At one Kelvin, the heat capacity of the 1.4 moles of helium in the cell will be
0.6 J/K, almost three orders of magnitude higher than the heat capacity of the niobium cell
(1073 J/K). Since we expect a T? dependence for both, we can ignore the heat capacity of
the niobium cell for our experiments at all lower temperatures as well.

Now for low temperatures (7" < 120 mK) we can justify a simpler thermal model where
the dominant resistance is the thermal boundary resistance between helium and the niobium
cell (Rg) and the dominant capacitance is the heat capacity of the helium (Cp.). The

thermal time constant for cooling is given by 7 = Rk - C'y. =~ 10 seconds.
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Figure 2.5: A simplified representation of the thermal conduction from the superfluid helium to the mixing
chamber. The helium is treated as a capacitance Cp. connected to the cell Cpy; through the Kapitza
boundary resistance Ry, and the cell is connected to the mixing chamber through the resistance of the
suspension system Rgysp. Arrows represent heating due to dielectric loss in both the niobium (Q ~Nb) and
the helium (Qp.) and the cooling power of the dilution refrigerator (Qn¢)-

2.5.2 Dielectric Heating

In general, the power dissipated by dielectric heating is given by P = (A%w/2)- [ etan(8) |E[* dV
where w is the microwave frequency, A is the microwave amplitude € = ereq is the permit-
tivity, and tan(d) is the loss tangent of the material [37]. Using the energy stored in the
clectric field W, = npliw = (A%¢/4) - [ |E|* dV, we can write the dielectric heating expected
in the helium as:

Qe = nphwd tan (9) (2.37)

where np is the number of pump photons in the cavity and we is the eigenfrequency of
the cavity mode. Dielectric loss in helium was studied by Hartung, et. al [73] using high
quality factor microwave cavities. Based on their results, a maximum loss tangent value for

helium at 1.5 K is tan (§) < 107!, The results of Hartung, et. al [73] were limited by the
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@ of their microwave cavity; in fact tan (¢) in helium is anticipated to be much smaller and
we can consider this value to be a "worst case.” For the TEy;; mode in our niobium cell
we/2m = 10.6 GHz, and we can write Py, =5 - 10" %np.

There will also be dielectric heating at the surface of the niobium cell. If we assume that
the internal @) of the microwave mode is limited by dielectric loss, then @Q;,; = 1/ tan () [37]

and the power dissipated in the microwave mode will be:
Qnp = nphwcking. (2.38)

For the TEg;; mode in our cavity we measured Q;,; = 3.6 - 10® (See Chapter 5), so the
heating is Qup = 5 - 107 np.

Now that we have quantified the expected heating, we consider the rate of cooling. Our
Oxford Kelvinox 400H has a cooling power of 400 W at 100 mK. At low temperatures,
the cooling power of a dilution refrigerator is proportional to T2, so we estimate the cooling
power (Q mc) of our system as: Qe ~ 0.0472. The power from dielectric heating in both
the helium and the niobium cell will heat the mixing chamber until the dilution refrigerator
cooling power equals the heating. We can solve for the increased fridge temperature, Ty,
from QNb + QHe = 0'04T]\2/107 where we can write Ty,c = T; + AT, with T; the starting
temperature and AT the increase in temperature. Assuming the increase in temperature is

small (AT << TMC’):

(2.39)

. . 1/2
T Qnp + Qe + 0.04T7
Mo 0.04 ‘

Because of the high thermal resistance between helium and the mixing chamber, the final
temperature of the *He will be higher than the mixing chamber temperature by an amount:

AT = Rx Q. The final temperature of the helium will be

. 4 1/4
THe = (QRKQHE —|— TMC) s (240)

where ag, = 15h3p,c3/2n2k} Apycy is the Kapitza resistance without the temperature de-
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pendence.

2.6 Notes about Temperature Stability

The velocity of sound in helium-4 depends on temperature as [74]:

- 7 (G+1)* (ksT 4n 1+ (2wr)’
a(l) —al0) =5 pah? ( cy ) : (1+(37ﬁm)2)’ (2:41)

where G = (p/cq) Ocy/Op = 2.84 is the Griineisen’s parameter [74], kp is the Boltzmann
constant, p = 145 kg/m? is the density, h is the reduced Planck constant, c¢; = 238 m/s
is the speed of sound [74], w is the frequency of the acoustic wave, T" is the temperature,
7 =1/(0.9-1077%) is the thermal phonon lifetime [75], p = 3kgT/c,4 is the average thermal
momentum, and v ~ —10*® (s/kg-m)? is the dispersion constant defined in Eqn.(4.1), which
characterizes the weak non-linearity of the dispersion relation for low momentum phonons
[76,77].

In order to use the superfluid acoustic mode as a sensitive detector, for instance as a
gravitational wave detector, the source of interest must remain within the bandwidth of the
helium resonator, Af = wy; /27, which will place limits on the temperature stability. As
will be discussed in Chapter 4, in the ideal case, the superfluid acoustic () will be limited by
the three phonon process intrinsic to helium-4. If the three phonon process is the dominant
source of loss, shifts to lower temperature will be the limiting case, as the resonator will
become more narrowband as the temperature decreases. If the source frequency is originally
matched to the frequency of the superfluid acoustic oscillator, the maximum frequency shift
for which the source will remain in the oscillator’s bandwidth will be one half of the acoustic
bandwidth. The maximum frequency shift AT from a starting temperature of T} is given

by:
i War 1

f(To) = f(To + AT) EQgPP (To + AT)’

(2.42)

where Q3pp = wyr/2¢cqa3pp and agpp is given by Eqn. (4.2). The results of solving for AT
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as both an increase and a decrease in temperature are shown in Fig. (2.6)

o
)

—— Increase
- —— Decrease

—_ [ [\
(en] [9)] o

Maximum Temperature Shift (mK)
=
(o8

(]

Temperature (mK)

Figure 2.6: The maximum temperature increase (red) and decrease (blue) over which a source originally
centered in the superfluid acoustic resonator will remain within the bandwidth of the resonator, assuming
that at all temperatures the @ is limited by the three phonon process.
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Chapter 3

Circuit Equations

3.1 Inductively Coupled RLC Circuit

As introduced in Chapter 2, the niobium microwave cavity can be represented as an RLC
circuit, where the effect of the superfluid mechanical mode is a sinusoidally varying capaci-
tance. The basic circuit representation of this setup is shown in Fig. (3.1). The bare cavity
inductance, resistance and capacitance are denoted Lo, Re and Cg, respectively and the
varying capacitance from the superfluid acoustic mode is labeled Cj;. We couple to the
cavity inductively with two small loops recessed into the cavity lid, each with inductance L.
The inductance of a loop is given by: L = uR (In(8R/a) — 2) where R is the radius of the
loop and a the radius of the wire. For our coupling loops, a = 0.015 cm and R = 0.065 cm,
so we find L ~ 3 nH. The mutual inductance between these loops and the microwave cavity
is given by: M;, = kiv/LLc and M,y = ko/LLc. Here k; and ky are the input and output
coupling coefficients. We use the subscripts 1 and 2 to avoid confusion with x;, and Ky,
the cavity input and output coupling rates. We drive the cavity with a voltage source 2V}

through a 50 ohm transmission line and we detect the output signal on a HEMT amplifier.
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Figure 3.1: The equivalent circuit model for the inductively coupled niobium cavity (R¢, Le, Co) paramet-
rically coupled to the superfluid acoustic mode (Cy).

We can solve for the cavity currents and voltages using Kirchoft’s laws. For the input

circuit on the left of Fig. (3.1), we write:
Wo—Rp-I, —L-I, + My, - I, = 0. (3.1)

If we write the currents with their explicit time dependence: I = Ie™!, then we can rewrite

Eqn. (3.1) as:

2‘/0 = (RL + Z(UL) Il - inmlg,

I = 3.2
! Ry +iwlL ( )

Similarly the output circuit on the right of Fig. (3.1) is written:
— Ry -Is—L-Is+ My, - I, =0, (3.3)
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which becomes:

0= —RL : ]3 - ZWL]3 + iWMoutlg,
iCUMoutIQ

I3 = ———. 3.4
3 iwL—l— RL ( )

Finally the central circuit representing the cavity itself is described by:
— Lo dy+ My, - Iy = Iy - Zpe + Mow - I3 = 0, (3.5)

where Zgc is the combined impedance of the parallel resistor and capacitor elements:

1 1
- 4iwC
Zrc  Re wtes

Rc
Zpo = —————.
Ro 1+ iwCcRc
Eqn. (3.5) simplifies to:

. , R
1w (Minjl -+ Mout[3> = (’LCL)LC + m) [2. (37)

Substituting Eqn. (3.2) for I; and Eqn. (3.4) for I3 into Eqn. (3.7) we find:

. 2% + iWMinIQ iWMoutIQ . RC
Min+ | 57— | Mow | = | wwle + ———F=—F— | I
" <( Ry +iwL ) * (RL—l—zwL> t) (M ot 1+ZchRc) ?

wM; w2l Re
m o M2 M2 — . L I
R, +iwl” " R, +iwL (M + M) (M ct Iy iwC’cRC> 2
20M;, Vi 2(M? + M? R
Lew i _O:w ( m—i_' OUt)—i-’iWLC—'— : C ‘
Ry +iwlL I, Ry 4+ 1wl 1+ iwCecRe

(3.8)

We will return to this result later. In order to understand Eqn.(3.8) more fully it is helpful

to first convert the cavity circuit to its equivalent parallel model.
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3.2 Equivalent Parallel Circuit Model

Figure 3.2: a) The input circuit inductively coupled to the microwave cavity and b) its T circuit equivalent.

While we couple to the niobium cavity inductively, the identical circuit with capacitive cou-
pling has been well studied in the field of optomechanics. For instance, Jared Hertzberg’s
thesis [78] has a thorough treatment of the circuit model for a capacitively coupled trans-
mission line resonator. He begins by converting the circuit to its parallel equivalent, and it
will be instructive to do the same for the inductively coupled circuit used here.

We start by converting the coupled inductors into their equivalent T circuit [79]. Taking
just the input circuit and the cavity, we have the circuit shown in Fig. (3.2a), where we have
combined the cavity capacitors into a single capacitance C'r = C¢ + C);. The inductors L

and L¢ are coupled through the mutual inductance M. The equations for the voltage V4
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across the input inductor L and the voltage Vg across the cavity inductor L are:

VA = iwLIA + in]B,

VB = inIA + ichfB.

By adding zero, 0 = —M1Is+ MI, (0 =—MIp+ MIp), we can rewrite these equations as

follows:
VA:iw(L—M)IA+in([A+[B), ( )
3.9
VB = ZCUM(IA +IB) +w} (LC — M)IB
Eqns. (3.9) are the equations for the T-circuit shown in Fig. (3.2b) with three inductors

L — M, M and Lo — M, demonstrating that the circuits shown in Figs. (3.2a) and (3.2b)

are equivalent.

Figure 3.3: The Thevenin (series) and Norton (parallel) equivalent circuits. The impedance Zy, = Zy.
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Figure 3.4: Solving for the thevenin impedance (Zy,) of Fig. (3.2b). The intermediate impedances Z1 and
Z?2 are referenced in the text.

Ultimately we would like to use Norton-Thevenin equivalent circuits (Fig. (3.3)) to find
a parallel equivalent for the circuit shown in Fig. (3.2b). The first step in solving for the
Thevenin circuit is to deactivate the source and find the resultant equivalent impedance. As
shown in Fig. (3.4), we will treat the cavity resistor and capacitor Rc and Cr as a load
impedance Zj,,4 and solve for the impedance of the remaining circuit Zy,.

We now work through the calculation of Z;,. The first step is to combine the series
resistor Ry, and inductor L — M into their equivalent impedance Z; = Ry +iw (L — M). Z;
is in parallel with the inductor M; we write the combined impedance of these two elements

as Z, and solve:

11 1

Z 7w

1 1 1
7o Ritiw(L—2) i

7. (in—i—RL—I—iw(L—M))_l
>~ \iwM (Rp +iw(L—M)) )
22:( Ry +iwL )1
iwMR, —w*M (L—M))
w*M (M — L)+ iwMRy,
Ry +iwL ’

Ly =

The final Thevenin impedance (Z;,) will be given by the series impedance of Z, and the last
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inductor Lo — M. We solve for Z;;, as follows:

WM (M —L)+iwMRy

AR w (Lo — M
th RL+ZWL +ZW( © )’
M? — WML +iwM —iwl
2 — (w w + iw B;L) (R, —iwlL) tiw(Le — M),
R? + (wL)
M?R; — w?MLR MLR (WMR? — w3M?L SML?
Zth_w L— W L+w L+z(<;) I —w +w )—H'w(LC—M),
R? + (wL)
WwrM?R o (MR2 — W?M?L + w*ML?
h=—— ( L= - + Lo — M) :
R} + (wl) R} + (wl)
*M?R MR? — w*M?*L ML? — MR? —w?*MIL?
Zth:—('; L2+iw(Lc+ Lo +;} 2 LY )7
R3 + (wl) R? 4+ (wl)
WM?R , WML
th:2—L2+ ( C—ﬁ) : (3.10)
Ri + (wL) R} + (wL)

Looking at Eqn. (3.10), we see that the total impedance has the form of a resistor and
an inductor in series: Z;, = Rgeries + iwlgeries Where the values are given by Rgeries =
w?M?R;/ (R2 + (wL)?) and Lyeies = Lo — w?M?L/ (R2 + (wL)?).

Finally we solve for the voltage V;; using the voltage divider between Z; and M:

wM
Vi = 2Vp——
th 0 Z oM’
wwM
Vi = 2V,
SR Fiw (L — M) + iwM
qwM
Vip =2V
th ORL+iwL

In the above calculation we solved for the impedance of an RLC circuit inductively
coupled to an input circuit. In reality our cavity has two coupling ports, one each for input

and output. If we had included the output circuit, we would have an additional term for the
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output coupling M,,; such that the series circuit impedance is:

/= Rseries + isteriesa
_ W R (M§ + M)

Rseries -
R? + (wL)?
w2L (Man + Mgut)
Leries = Lo — p)
R? + (wL)

(3.11)

(3.12)

Finally we use Norton-Thevenin equivalents as shown in Fig. (3.3) to find the equivalent

parallel elements: a resistor [} and inductor Lj. The impedance of our desired circuit, is

given by Zy as follows:

L1 1
ZN N RH Z.WLH7
1 B iwLH L RH
ZN N Z'CURHLH iOJR||L||7
inHLH
N — =+ 5
ZwLH —i—RH
whi Ly
Iy = —1
N wL” —Z'RH

From the Norton-Thevenin equivalent, Z;;, — Zy = 0, allowing us to solve for R and L,

in terms of Rgerjes and Lgeres. This calculation gives:

Rseries 2
Ly = Lsem’es 1 - )
: ( * (WLseries) >
Whaorios \ 2
R = Rseries 1 series '
i ( * ( Rseries ) )

Substituting for Rgeries (Eqn. (3.11)) and Lgeries (Eqn. (3.12)) and using the definition of
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mutual inductance, M = k+v/LL¢, we find:

(,UZLLC RL 2
~o O (2L 1
B~ ey, ((m) )

L” ~ Lc,

where the only approximations we have made are k? << 1 and k3 << 1. Now that we have
a parallel representation of the input resistor and coupling inductors of Fig. (3.4), we have a
full parallel representation of our original circuit in Fig. (3.1). We can write the impedance
of this circuit as Z;y:

1 1 1 (ki +k3) Ry, 1

= — 4+ wCc + -
Ziow  Re “TiwLe WLLc  (E)® 11

, (3.13)

where the first three terms represent the impedances internal to the cavity and the final term
represents the impedance that arises from coupling to external circuits. Because the final

term is real, we write it as a resistance, 1/ R, denoting the loss that arises from external

WL Le Ri\?
= — 1]. .14
feo <k%+k§>RL<(wL) i (314

We can relate the circuit model to the experimental cavity coupling rates « through the

cavity quality factor Q. In a parallel RLC circuit, Q@ = R\/Cr/Lc = R/weL. The linewidth

coupling:

of the cavity, or its total loss rate, is kyy = we /@, and the cavity frequency is defined by its

inductance Lo and capacitance Cr: w = 1/4/LeCr. We write the total cavity Q (Qor) as:

1 1 1 1 1
= wcL = wcL + + ) : 3.15
Qtot ¢ Riot ¢ ( Rint R| [,in R| [,out ( )
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We can solve for the internal (k;,;) and external (k) coupling rates:

Qint - U.)C_L’
oy = W0 _wole
Qint RC
Q o Remt
ext — wCLa

L wo wi Lo
ext — - 5 -
Qezt Rezt

Now we can write the external coupling rate k., in terms of the external resistance solved

for above in Eqn. (3.14):

2L k? + k2 1
Regt = Yo~c = ( 1 i 2) RL . (316)

He Eoo(@E) )

Finally, the Norton equivalent current of the parallel circuit is given by Iy = Vi /Zy:

o i)
Io = 2( 02 2 T 2( M2 2 ’ (317)
w (Min+Mout)RL + Z(,u <LC o w (Min+Mout)L)

R? +w?2L? R? +w?L?

Using only the simplifications that k%, k3 << 1, we find that

[O == B) 2 N\
iLoR, — LLow +w (M2, + M2,
o 2k, LV,
*" VILc(iRp+ (K2 + k2 —1)wL)’
2%y LV,
Iy =

VILc (R, +iwL)

We now have expressions for every element of the full parallel circuit model shown in

Fig. (3.5).
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Figure 3.5: The parallel equivalent to Fig. (3.1). On the right the simplified version where the resistors Re,;
and R¢ are combined into Rr and the capacitors Co and Cj; are combined into Cr.

3.3 Circulating Cavity Voltage

Using the definitions from the parallel model, we would like to define the experimentally
relevant currents and voltages of the system. We return to Eqn. (3.8) describing the full

cavity system and rewrite it as follows:

iwMi, 2Vo _ Re(1—iwCoRe) | W (M + Mo Ry () W*L(M} + M3,)
_— = w — .
R +iwLl I 1+ w2R%CE Rp +iwL R4 (wl)

(3.18)

Given the complexity of this equation, we will simplify the right hand side term by term.
At the outset we note that Cy; << Cg, so we will approximate the total capacitance as
Cr =~ C¢ where convenient. To simplify the first term, we remind the reader that the ) of
an RLC circuit can be written: Q;,; = wcCcRc. Because we work with high @) cavities, as

long as w ~ we, wCoRe >> 1. Therefore we can simplify the first term as follows:

Rc (1 — iwCCRc) ~ RC (1 — iwCCRc)
1+w?R%C2  ~ W?RLCE
1 i
N w2C%RC B (A}CC.
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The second term can be re-written in terms of Key:
w? (M2 + M?,) R, W?LLcRy (k3 + k32)
R; +iwL Ry + (wL)®
Ry K2 + k3

CI(E)

= LC’K'ext~

The third term can also be rewritten in terms of Key:

2L (M2 + M? L (K?LL k2LL
iw (Lc—w (2 in T 2out)) —iw <LC+W (12 c+ g C))
R? 4+ (wl) R? 4+ (wl)
k2 + k2
— iwLc 1+%
(5F) +1

. "ieth
=qwlco (1 .
w c( + R, >

Combining the simplifications for all three terms, the right hand side of the circuit equa-
tion (Eqn. (3.18)) becomes:
1 i

. /{e:vtL
= — LoKes Lo (1
(,UQC%RC WCC + LOHKest T WO < * RL )

1 . 1 Hea:tL
=L nt, o . - 9 exr L 1—
“ (FG t(chC’ch)Z T t) + ke ( w?LcCo * Ry, )

4 2
w . w Kezt L
= L¢ </€mt—i + /im) +iwLc ( - —fj + = )
w w Ry

. w? — w2 KeztL
= chftot + ZCL)LC ( 5 ¢ + : ) 5
w RL

where we assume in the last step that w ~ we. With this approximation, we can make one
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further simplification as follows:

w' —wg (Wt we) (w—we)

w? w2
2(,UCA

~

w2

Here we define A = w — we, where w is the frequency of the signal applied to the cavity.

Finally we can write:

RZLW—I——%ZI_‘:O = Lok + twlc <QC:C;A + R;?f) )

%2[—‘? = Lc (Ktot +1 (2W(SA + ’iemt%)) ;

%QI_‘? s (f%t +i <2A n nm%» ,

R’L“+—MZ;L2]_‘§ ~ L (Koy + 120\ . (3.19)

In the last step we have used the approximation that 2A >> k,wL/Ry, which can be
justified by our system parameters: A ~ 10* and knwL/R;, = w?L/QR; ~ 10 using
wawe 10" L1077 Q ~ 108 and Ry = 50. Finally we can rearrange Eqn. (3.19) to

explicitly write the current in the cavity I as:

|15

(3.20)

; 1
| = 2Vp, /R“’Z .
Lre \/ "iz%ot + (ZA)Q

With an expression for I5, we can now solve for the voltage in the cavity, V.4, = chg =
’iWLC]QI

Veaw = : —. 3.21
R +iwL Ko + 12A ( )
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Now if we use the definition of x;,, we can write:

wM;, _ whkivVLLcVR,

R? + (wL)’ - VR
Lo kiV/Er
BV ()

—
E|§a —
SN—
(V)
_I_
[u—

LC’fin
= . 3.22
o (3.22)

Similarly, using the definition of k.., we write:

MOU L ou
o out Clout (3.23)
\/ R2 + (wL)’
Eqn. (3.22) allows us to rewrite Eqn. (3.21) for V,,, as:

(3.24)

Vol = 2020
b \/ Ry + (ZA)2
where we recognize the Lorentzian line shape in the term 1/4/ k2, + (2A)2. As expected for
an off resonant drive, most of the power is reflected from the cavity.

The energy in a parallel RLC circuit is given by E = 1CV3y s + sLclhys = Lol
where Vzyrs and Irprs are root mean square time average values. The peak value is related
to the RMS value through Vg = V,,/v/2. Therefore we can solve for the energy stored in
the cavity using £ = §Lc|L|*:

Kin 1
R tot + (2A)

Eeaw = 2|Vy|? (3.25)

The input power is W = Vo rurs|?/ R = |Vo|?/2R1, so we can rewrite Eqn. (3.25) as

Rin

Eeaww = 4Wm—27
li?ot + <2A)

(3.26)
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where W, is the power incident on the cavity. Finally we can solve for the number of cavity

photons (n¢) using E.w = nchwe:

. 4W7J Rin
th K“%ot + (2A)2 ‘

nc (327)

We would also like an expression for the output voltage at the amplifier, V,,,,. With an
expression for the current I3, we can solve for V,,,, = RpI5. The current I3 is related to the

current I, in the cavity inductor Lo through the output coupling M,,;:

0= Moyl — RpIs — LI,

0= ’iWMoutIQ — RL[3 — 7;(,(.1[1[3,

7;(J~-]]\4out
Iy = ———1,
Ry +iwlL
Kout L
13| = ];:L €I, (3.28)

where we have used Eqn. (3.23) for k,: to simplify the expression. Substituting (3.20) for

I, we find:
KvoutLC Kin
I;| = 2|V,
|51 =2 °|\/ Ry VRile [

1
tot + (2A)2
|] | o 2“/0‘ V RoutRin
3| =

Ro\Jiz, + 20)?

The amplifier voltage becomes:

RoutRin
Vamp| = 2|Vo| =22 (3.29)

K%ot + (2A)2

It will be more convenient to have an expression for the amplifier voltage in terms of the
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cavity voltage. Using Vg, = Rpl3 and Eqn. (3.28) for I3 we find:

Vienp = Rpl,. (3.30)

The cavity voltage is related to Iy by V.., = Lcjg = wLl¢ls, allowing us to write:

’ioutLC RL
Vol = 1/ Z22C 1,

’foutRL
Lc

‘Vamp‘ = “/cav| (331)

3.4 Sideband Voltages

Using the parallel circuit model, we can easily solve for the sideband voltages that will
arise due to the fluctuating capacitance C);. Here we work with the simplified parallel
circuit of Fig. (3.5), where we write the combined resistance as Ry, which is defined by
1/Rr = 1/Rc + 1/Rey, and we write the total capacitance as: Cp = Cg + Cy. The
following will be identical to the treatment for the capacitively coupled circuit.

The total current in the circuit, Ip, can be written as the sum of the currents through
each element:

Ip = Ipp + e + Iy (3.32)

Given the definitions for the current in an inductor: I, = fot V/Ledt and the current through

a capacitor: I, = 0/0t (CrV'), we can write the derivative of the current Ip as:

. o?
I = — —_— —_—
P RTV * V * ot? (CrV).
: aCM . 0Oy
Ip = —V —V CrV + V V. .
P R + To + Cr BN + o (3.33)

In order to find the time derivatives of C'j; we require an explicit time dependence. Recall
that C'; represents the fluctuating capacitance contributed by the superfluid acoustic mode.

To make a circuit model analogy, we use the equation for the capacitance of a parallel plate
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capacitor: C' = eA/x, where A is the area of the plates and z the distance between them.
The fluctuating capacitance due to the superfluid acoustic mode is analagous to the distance
x fluctuating with sinusoidal time dependence x = xq cos (wyt + ¢ar) where wyy and ¢y are
the frequency and phase of the mechanical mode and z( is the amplitude of the motion.
From the Taylor expansion, we can approximate C); as:

|x:0$- (334)

For simplicity we will drop the |.—¢ on the first derivative. The time derivatives of C); are

as follows:
0C 10Cy . ,
Chy = ) == i(whrt+dnr) —i(wnpt+oar)
M p xq cos (wprt) 5 9y L0 (e +e ),
} oC . .
Cy = %WM (%ch 0 (el(wMt+¢>M) _ e*Z(WMt+¢>M)) 7
Cy = —§w]2\/[a_;:\/[xo (el(wMt+¢M) + e*?(wMt+¢>M)) )

Now we let Ip = Ipcos (wpt + ¢p) = %[p (ei(“’P”‘f’P) + e‘i(“Pt+¢P)); this represents the
drive coming from the source, and as such it oscillates at the "pump” frequency wp with
phase ¢p. Note that it is acceptable to drop the 1/2 and the second exponential as long as
only linear operations are performed; for non-linear operations, such as multiplication, both
terms must be retained.

With the input current oscillating at wp and the varying capacitance oscillating at wy,

we anticipate a solution of the form:

1 ) ) 1 ) )
V :§VP (ez(wpt—i-qbp) + e—l(wpt—i-(bp)) + §VD (GZ(th+<Z>D) + e_'L(WDt+¢D))

+ EVU (e(wUt+¢U) + e—i(wUt+¢U))
2

I

where D and U denote the down- and up- converted sidebands, ie. wp = wp — wys and
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Wy =wp + wWy.

The derivatives will be given by:

V — %iWPVP (ei(th+¢P) _ e—i(wpt-i-(bP)) + %iWDVD (ei(th+¢D)t _ e—i(th+¢D)>
+ %iWUVU (ei(wUt-i-(i?U) _ e—i(wUt-Hi’U)) 7
V= _%W?DVP (ei(th+¢P) + e*i(th+¢P)) _ %WQDVD (ei(ther)D) + e*i(ththbD))

. lw?]VU (67;(wUt+¢U) + e—i(wut+¢u)) )
2

In the following we will simplify our notation with the shorthand c.c., which will always
denote the complex conjugate of the first exponential term inside the same parenthesis.
For instance, we will write (e/Mttoum) — emilwmton)) a5 (eilwrt+or) — ¢ c ). Substituting
the equations for Ip and C); into Eqn. (3.33), and making the simplification that because
Cy << C¢g, Cr = Cc we find:

11,90
Le 2°M oz

. 1 .
+V (R—T + wpr 3§;M 0 (ez(‘*’MtJ“‘z’M) — c.c.))

3} 1 .
+V (Cg + —acM Zo (e’(”MH“bM) + c.c.)) .

%IP (ei(th+¢P) _ C.C.) =V < To <6i(wMt+¢M) + C.C))

2 Oz

Multiplying by 1/L¢/C and using the definitions we = 1/ LcCo and ki = we/Q =
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wéLc/ Ry, we can write:

1 /L , lw?, 1 0C ;
gV et (€7 ) sy (1 g T () e
N Ktot 1 0Cy

VI1+iw xg (e wmtton) _ ¢ o
we ( M:‘itotoc ox O( )

1 . 11 0Cyy :
1 - i(wart+oar) . )
( —|—2CC o o (e +c.c.)

Because wy; << we (in our system, wy; ~ 10 kHz compared to we =~ 10 GHz) we drop the

term that goes as w3, /w2

1 [Le

I i(wpt+op)
2V et (e

— c.c.) ~weV

1 0Cy

Zo (ei(wklt+¢]\4) _ C.C.)>

1 - 11 0C :
-V (1 + §O_C_$Mm0 (ez(wMt‘HbIM) + C.C.)) '

Finally substituting for V' we find that the right hand side becomes:

1

%§wc (Vp (ei(“”’twp) + c.c.) + Vb (ei(th+¢D) + c.c.) + Vir (ei(wUth) + c.c.))

+ (wPVp (ei(“’Pt+¢P> — c.c.) +wpVp (e“wDHqﬁD) — c.c.) + wu Vi (ei(“Ut+¢U) — c.c.))

' ilitot aCM 0 (ei(wMt+¢M) _ c.c.))

kiotCo Ox
_ (W%Vp (ei(wpt+¢P) + C.C.) + WQDVD (ei(th+¢D) + C.C.) + W[QJVU (ei(wUt+¢U) + C.C.))

1 11 0C ,
(1 Mxo (e“”MH(ﬁM) + c.c.)) .

"9e \' T 200 o

144
R (—l—sz

Now to solve for the voltage at the upper sideband, collect terms that oscillate at wy =

wp + Wy
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2
0 =Vywe (1 — w—g) (e“wUtMU) + c.c.)
we

w .
+ iVihgo—2 (e'vttov) —cc.)
w
o0 ¢ (3.35)
wp M wWm wp ;
Ve M [ 2 ) (pilwutténtop) +ce).
PCC ox 0 <wc 2&)0) ( )
Because wy,wp & we we can make the simplifications that wy/we ~ 1 and wp/we =~ 1,
giving:
2
o (2)(2)(2)
wC’ wWe we wWe

. (3.36)
Finally, the last term in Eqn. (3.35) will go as &~ (wa/we + 1/2). Because wy << we, we
can drop the first term in the parenthesis. We find that Eqn. (3.35) simplifies to:

Vi (2 (W(J _ WU) (e’(wUt—HﬁU) + C.C.) + iKor (6’(wut+¢U) _ C.C.))

—Vﬂ—aCMx e’
~ P0q o

( i(wuttér+op) + C.C.).
Returning to trigonometric notation, we have:

Vi (2 (we — wy) cos (wyt + du) — Ko sin (wyt + ép))

wp OC
= Vpﬁ (%M:cg cos (wyt + dp + dar).
Using the addition formula: A cos (zt) + Bsin (zt) = v/ A% + B2 cos (¢t — arctan (B/A)), we
find:

Vo) (2A0)° + k2, cos | wyt + ¢y — arctan ot
N

_ Vpﬂ ICu

2Co On xg cos (wyt + ¢p + o),

where we have used the definition: Ay = wy — we. Finally, we can write the voltage and
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phase of the upconverted sideband:

oC 1
Vo = VP;CP o 0 ) (3.37)
« (200)° + Ky
¢u = ¢p + ¢u + arctan (;Xt ) - (3.38)
U
Similarly, solving for the voltage and phase of the downconverted sideband, we find:
oC 1
Vo = Ve -ty , (3.39)
« (28p)" + iy
¢p = ¢p — ¢u + arctan (Q'X’t ) : (3.40)
D

where Ap = wp — wc.

3.4.1 Upconverted Signal Power

We would like to write the upconverted sideband voltage (Eqn. (3.37)) in terms of the
optomechanical coupling constant go = gAzzp where g = Owc/dz. Using the circuit model
analogy, the optomechnical coupling results from a change in the position of a capacitor
plate, which modulates the cavity frequency we = 1/v/LcCe ~ 1/y/LcCr. Therefore we

can solve for ¢ = Owe/0z using the capacitance of a parallel plate capacitor C' = €A/x:

U
9= 9r /L (Cot )
gL 1 dC
1 190y
9= 2\/LCT OT 895 ’
N wWe 60]\/[

64



Assume that our microwave drive is on the red sideband, wp = wc — wyy, such that the
upconverted sideband is located at the cavity frequency, wy = we and Ay = 0, as is the
case for all of the data taken in this thesis. For a frequency domain illustration, see the
Anti-Stokes drive in Fig. (3.6). Using the relation for ¢ from Eqn. (3.41), we can simplify
Eqn. (3.37) for the voltage in the upconverted sideband:

C
Vy = Vpb 22200
we Co Kot
VU ~ Vp xog, (342)
Rtot

where we have used the approximations that Cr/Ce ~ 1 and wp/we ~ 1.

‘Red’ . ‘Blue’
Anti-Stokes ! Stokes
," 1 ‘\
o' 1 \‘
- 1 ‘s~
—"' 1 ~.~
------- L Seee
A ‘Il -
wM (J.)C (DM
w w,

Figure 3.6: The scattering picture for a cavity drive tone (w,) applied on either the red or blue sideband. On
the red or Anti-Stokes sideband, the pump frequency is w, = wc — wps and the upper sideband is incident
with we; in this case the mechanics is preferentially damped. For a drive on the blue or Stokes sideband the
pump frequency is w, = wc + war, the lower sideband is incident with we, and the mechanics is driven to
higher occupations.

Using Eqn. (3.31) for the voltage at the amplifier in terms of a cavity voltage, Eqn. (3.42)
for the voltage in the upconverted sideband in terms of the pump voltage in the cavity, and

Eqn. (3.24) for the voltage in the cavity in terms of the source voltage, we can write the
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upconverted sideband voltage at the amplifier in terms of the source voltage:

gZo RinKout
Vo = 2V _ . 3.43
v  Ktot \ K2, + (24)° (3:43)

The power of this upconverted sideband will be given by:

2,.2
g x() RinKout

Wam U — 4Wz . 3.44
" Kiot ot + (QA)Q ( )
Using 2%,,¢ = (2%) = 22/2 where z is a peak amplitude, we can write:
2 2 g? invou
Wamp,U - 4VV1 <:E >g Rinltout (345)

’%%ot ’f%ot + (ZA)Z‘

It is most convenient to have a relation for the signal power in terms of the mechanical
and cavity occupations. We can find a relation between the motion of the mechanics and
its phonon occupation ny;. The energy stored in the mechanical mode is K (x%,,4) where
K = mw?, is the spring constant and z is the RMS position. Now if we equate this with the

total energy from phonon occupation of the mode n hAwy,, we find:

o Tk
<I’ > - m(JJM7
(x?) = 2np Az p, (3.46)

where we have used the definition for zero point motion Az zp = /hi/2mwyy;.
For convenience we would like to write the upconverted signal in terms of the optome-

hcanical coupling rate I',,; which is given by [19]:

roo_ 4(gAzzp)?  4g
opt =~ nNp =
Rtot Rtot

np, (3.47)

where np is the number of pump photons in the niobium cavity, and, as above, go = dw/0x -
Axzp is the single photon optomechanical coupling rate which defines the cavity frequency

shift resulting from a single pump photon.
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Using Eqns. (3.27), (3.46), and (3.47) we can rewrite Eqn. (3.45) in its most convenient

form:

Rout

Wamp,U = thnMFOpt . (348)

Rtot

We will also need an equation for the occupation of the microwave cavity from phase noise
of the source. We have already solved for the occupation ne from a single tone microwave
drive (Eqn. (3.27)); however, in reality the microwave source is not a delta function. Every
source will also have power at frequencies off the carrier tone, known as phase noise. We
will define this power as S,.:se. The phase noise is defined at each offset frequency from the
carrier tone in units of dBc/Hz, meaning the power in dB at the offset frequency relative to
the carrier power in a one Hz bandwidth. Because the phase noise is broadband, it will not
be filtered by the Lorentzian shape of the cavity. We can find the total occupation of the

cavity due to phase noise by integrating nc (Eqn. (3.27)) over all frequencies:

4Snoise o 1
Neay = Kin ——dw. 3.49
fiwe /_OO K2, + (2A)° (3.49)

Using [1/(a* +2?) = (1/a) - tan~! (z/a), we find that the integral is equal to /2%
Because phonon number ne must be unitless, for a phase noise in its typical units of dBc/Hz,

we divide by 27:

Snoise Rin
Neav = . 3.50
h(.UC Rtot ( )

67



3.5 Sideband Cooling

thermal bath acoustic mode ®,, optical bath
kBT kBT,

kBT
opt

Figure 3.7: The phonon occupation of the mechanical mode is determined by its coupling both to the thermal
bath through its intrinsic dissipation 7y,; and to the optical bath through the optomechanical coupling rate
Lope.

With the results from the circuit model, we have all the necessary understanding to calculate
the minimum phonon occupation that can be achieved through sideband cooling of the
mechanics. As mentioned above, a tone applied on the red sideband preferentially upconverts
phonons from the mechanical mode, lowering its occupation. The final number of phonons
in the mechanical mode is determined by its coupling to both the thermal bath (through
its intrinsic dissipation vy = wa/Qu) and the optical bath (through I',,). This final

occupation is neatly summarized in the detailed balance equation [20]:

th opt
Myt Lopinyy

M + 1—‘opt

: (3.51)

U

where nf is the thermal motion of the mode and can be approximated as n%y = kgT'/hw, for
ny >> 1. Similarly nﬁt is the occupation of the microwave mode. Because the microwave
cavity is high frequency, its thermal occupation will be minimal and instead its occupation
will be dominated by phase noise from the microwave source as derived in Eqn. (3.50).
One instructive way of writing the detailed balance equation is in terms of the coopera-

tivity, which is the ratio of the optomechanical and intrinsic damping rates (C' = Iyp/var):

= M. (3.52)

i 1+C
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Now one can clearly see that as C' — oo, the occupation of the the mechanics nj; asymptotes
to the occupation of the microwave cavity n?@t. Therefore the phase noise of the source will
ultimately limit the minimum achievable value of n;.

Because v,, will be fixed in a given system at a given temperature, achieving C' > 1
requires large T,y Recall that Typ = 4g3n, /Ko wWhere go = 0w /0 - Azzp. go is a fixed
parameter and can only be made larger by modifying the mechanical system, for instance by
decreasing the mass of the resonator or increasing its frequency. Increases in gqg of optome-
chanical devices have been largely responsible for the achievement of ground state cooling,
as outlined in Chapter 2. While the nanomechanical resonators shown in Fig. (2.1a) can
now achieve gg ~ 27 - 30 Hz or more, our superfluid resonator has a gy ~ 27 - 1078 Hz. To
reach large I';,¢ in our system we need to achieve much larger pump powers np. With high
microwave power, the dielectric heating discussed in Section 2.5 must be considered quanti-
tatively. Heating will elevate the helium bath temperature, increasing n%* and decreasing
and may ultimately limit the minimum phonon occupation. Prospects for sideband cooling

in our system are described in Chapter 6.

3.6 Detection Temperature

Finally, we address the noise temperature of our detection, which we define as the tempera-
ture at which the added noise of our detection scheme is equal to the thermal noise amplitude
of the superfluid acoustic mode. There are multiple sources of noise in the system, including
detection noise of the cryogenic amplifier, phase noise of the microwave source, and heating
in the mechanical mode. The final noise detection temperature will include contributions
from each of these sources. Given the small dielectric loss tangent of helium and a high @)
microwave resonator, we anticipate that contributions from heating will be negligible, except
at very high pump powers.

The noise of the cryogenic amplifier is given by 4kgTy gyr; for a typical HEMT amplifier
Tueur =~ 5 K. We will define the phase noise of the source as S,ise, which we can write

conveniently as Sppise = Wi - 1077, where x is the phase noise at a given offset frequency in
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dBc/Hz and W;,, is the pump power incident on the cavity. We divide these noise sources
by the power density of the signal we wish to detect, namely the upconverted mechanical
sideband due to the superfluid acoustic mode: 4Wpnp v /Tiot. Wampw is the power in the
upconverted sideband (Eqn. (3.48)) and 4/ is the total bandwidth of the mechanics,
where I'yor = yar + Iope. We would like to solve for the temperature of the acoustic mode
(Tn) required to make the signal power density equal to the noise power density. Because

Woampw < nyr o< Ty, we can write the noise temperature of our detection scheme as:

4ksTHEMmT + Shoise
TN - )
4Wamp,U/Ptot

(3.53)

where we divide W, v by Tv by using a temperature of 1 Kelvin in Eqn. (3.48) for W
We can interpret Ty as follows: when Ty = 50 mK, the added noise of our measurement
scheme equals the noise amplitude of the superfluid acoustic mode thermalized to 50 mK.

Finally, we discuss the additional noise that will be added by dielectric heating. Sources of
heating and their effect on the helium temperature are addressed in Section 2.5. In the ideal
case where the acoustic dissipation (7y,) is limited by the three phonon process, s o< T%,
and small temperature changes can have a significant effect. In this case T will need to be
recalculated to include the effects of the elevated helium temperature. However, in the case
where I'ope >> a7, changes in vy, will have little effect on I'y,y or Thy.

The total temperature for detection includes the thermal contribution from the helium

resonator as well as the added noise of the measurement scheme:

Total Noise Temperature = Ty, + T . (3.54)

At high pump powers, Ty, may be elevated by dielectric heating, increasing the thermal

noise and the overall noise temperature.
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Chapter 4

Acoustic Loss Mechanisms

4.1 Attenuation in Pure ‘He

From the 1950s through the 1970s, there was a significant amount of work, both theoretical
and experimental, toward finding a description for the absorption coefficient of first sound in
liquid *He at low temperatures. At temperatures below Ty ~ 2.17 K, *He can be described
by the two fluid model, where helium is treated as a composition of two separate and weakly
interacting fluids, termed superfluid and normal fluid. As reviewed in Chapter 1, the su-
perfluid component is dissipationless and has no entropy, while the normal fluid acts like an
ordinary viscous liquid. The excitations in helium below T are rotons and phonons with
normal fluid densities falling proportionally to e*%/T (Eqn. (1.13)) and 7% (Eqn. (1.12)),
respectively [11]. The phonon and roton populations are equal at approximately 0.57 K; at
temperatures we consider here (7" < 100 mK) only the phonon component of the normal
fluid will be relevant.

At very low temperatures in pure *He the only intrinsic mechanism available for absorp-
tion of acoustic phonons is phonon-phonon interactions. In early work, there was a question
of whether the leading order process was three phonon (leading to a 7% dependence in the
absorption coefficient) or four phonon (leading to a T° dependence in the absorption coef-
ficient). For an illustration of the three phonon and four phonon processes, see Fig. (4.1).
Elementary arguments show that for the three phonon process (3PP) energy and momentum

conservation cannot be satisfied if the dispersion relationship has a negative curvature [77].
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The dispersion curve is given by:

elg) =caqll =v- ¢ —6-¢".., (4.1)

where € and ¢ are the energy and momentum of an excitation of the condensate, c4 is the
speed of sound in *He, and v and § are constants. Because of the roton minimum, it was
presumed that v > 0 giving the dispersion curve a negative curvature and preventing the
3PP. However, experimental data of first sound absorption suggested that the 3PP [80-82]
was in fact the dominant process. In 1970, Maris suggested that 7 is negative [83], so that the

three phonon process is allowed; this hypothesis was later confirmed experimentally [84,85].

a
) kl \Sl(Sﬁ kl k3
K, K, k Kk,
bk, K,
k. v Jﬁ
AR vvw,LL)
k2 k3

Figure 4.1: Possible a)four phonon and b)three phonon scattering processes.

Many equations are given in the literature for the attenuation coefficient of first sound.
While they agree on the 7% dependence, the constant term varies slightly, agreeing with
experiment to within an order of magnitude. The amplitude attenuation coefficient for the

3PP is given by Abraham et al. [86] as:

72 (G + 1)

4
120 paticd (kpT)” w (arctan (2wt) — arctan (AET)), (4.2)

Qzpp =
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where G = (p/cq) Jcy/Op = 2.84 is the Grineisen’s parameter [74], kp is the Boltzmann
constant, p = 145 kg/m? is the density, & is the Planck constant, ¢y = 238 m/s is the speed
of sound [74], w is the frequency of the acoustic wave, T is the temperature, 7 = 1/(0.9-1077")
is the thermal phonon lifetime [75], AE = 3yp°w is the energy discrepancy between the initial
and final states in the 3PP, p = 3kgT/c, is the average thermal momentum, and v ~ —10%
(s/kg-m)? is the dispersion constant defined in Eqn.(4.1), which characterizes the weak non-
linearity of the dispersion relation for low momentum phonons [76,77]'. Note that Abraham
et al. [86] give the absorption coefficient in terms of energy; the amplitude attenuation
coefficient, which we quote here, is smaller by a factor of two. In the low temperature limit,
wt > 1, and the absorption is analogous to the Landau-Rumer regime in solids [87, 88].
Here the arctan functions simplify to a factor of /2 and the quality factor Q = w/2¢c4cx is
frequency independent. For a 6 kHz mode, we will realize this limit for temperatures below
350 mK. At very low temperatures, 7' < 40 mK, we may reach the limit where |AET| >> 1.
In this case the second term in Eqn. (4.2) contributes to the attenuation, at most increasing
a by a factor of 2 [89]. This limit could prove difficult to reach, however, as the thermal
phonon lifetimes may be limited by boundary scattering. In the high temperature limit of
Eqn. (4.2), wr < 1, and absorption is in the Akheiser regime [88,90]. However, this limit is
complicated by the effects of roton scattering, which are not included in the above equation
and which become important at temperatures above ~ 0.6 K.

Because aspp is linearly dependent on w, the quality factor of an acoustic resonator
with dissipation dominated by the 3PP will be independent of frequency. Therefore one
may consider high frequency resonators, confined in microfluidic channels, which have the
advantage of small size and lower thermal occupation. Given the speed of sound in helium of
238 m/s, a resonator with a fundamental mode at 10 (100) MHz would have a dimension of
25 pum (2.5 pm), easily within the reach of microfabrication techniques [91], and consistent
with dimensions typically found in microfabricated superconducting resonators which could
be used for detection. However, at high frequencies the container will offer a continuum of

modes, making it difficult to isolate the superfluid acoustic mode from the environment and

e (q) = caq (1 — y¢?...). With this form, < 0 is known as anomalous dispersion.
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ultimately limiting the acoustic quality factor, a subject we will discuss at greater length in
Section 4.4. One could imagine a carefully engineered resonator in which the coupling to
the continuum is negligible due to interference of the acoustic radiation, as is the case with
two-dimensional membranes [92]. In this thesis, we consider only audio frequency acoustic
modes which couple weakly to environmental container modes.

Interestingly, Roach, et. al. [93], studying acoustic modes between 15 and 256 MHz,
found that the acoustic attenuation decreases as the pressure within the helium cell in-
creases. Jéckle and Kehr [75] have explained this effect as a suppression of the 3PP. Ul-
trasonic phonons can be absorbed only by thermal phonons of momentum ¢ < ¢¢, where
gc is the cutoff momentum, at which the group velocity of thermal phonons is equal to the
velocity of the acoustic phonons. The phonon spectrum is pressure dependent, such that at
high pressures g¢ is lowered into the range of thermal phonon momentum and the 3PP is
suppressed. This process may provide a way to reach lower attenuations at higher temper-
atures. At low temperatures, where kT << c4qc, the 3PP is allowed and the attenuation
will be unaffected by the increased pressure. The high pressure limit is 25 bar, where *He

solidifies.
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Figure 4.2: shows the expected absorption coefficient for an 8.1 kHz mode from the 3PP (green) and the
3He impurity for concentrations z =: 107 (red), 1072 (blue), 1071° (black), and 10712 (grey), assuming
the mean free path of 3He atoms becomes limited by the cell diameter of 3.6 cm.

4.2 Attenuation from Impurities

In addition to intrinsic loss processes in “He, we consider the effects of impurities on acoustic
absorption. Using cryogenic cold traps, one can freeze all impurities except for He, which
is the only other stable isotope of helium and has a natural abundance of 1.34 ppm (z =
ns/ (ng +nz) = 1.34 - 107%, where n is the number of atoms per unit volume) [8]. We note

that the main source of helium is natural gas wells, which tend to have a lower isotopic
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impurity, on the order of 0.1 ppm (z = 1-1077) [94].

While the acoustic loss in dilute mixtures of *He in “He has been studied both theo-
retically and experimentally, the bulk of the work has been concerned with mixtures that
are in the 0.0001 < z < 0.1 *He molar impurity range, well above the concentrations we
consider [86,95-103]. Much of the work is based upon a theoretical outline of *He-*He in-
teractions developed by Bardeen, Baym, and Pines (BBP) [104]. They calculate an effective
interaction potential for *He atoms using measurements of the spin-diffusion coefficient. Us-
ing this interaction, one is able to calculate scattering rates, which allow for the calculation of
transport coefficients. Building on this theory, Baym [96] derived an absorption coefficient for
first sound in 3He-*He mixtures at low temperatures (where 3He-*He interactions dominate
damping) which was later extended to higher temperatures by the inclusion of *He-phonon
scattering by Baym, Saam, and Ebner [99]. In the low temperature limit (7" < 100 mK),
they argue the dominant absorptive processes are 3He viscosity and the three phonon process
in *He, which we have already considered. This theory has reasonable agreement with the
absorption data of Abraham, et al. [86,99] for 5% solutions. The viscosity of dilute *He-*He
solutions, calculated by Baym and Saam [98] from the same interaction potentials, is also in
good agreement with the data of Kuehnold, et al. [101] for solutions with 0.005 < x < 0.07.
However Fu and Pethick [105] argue that the BBP theory is too simple for quantitative
agreement with data due to their assumption of a *He-3He interaction which is independent
of He concentration. In light of their arguments, Baym’s absorption coefficient cannot be
extrapolated to concentrations several orders of magnitude below the data it was developed
to explain.

Instead our approach here will be to treat the 3He impurities as a very dilute, weakly
interacting classical gas. This approach will be valid for temperatures much greater than
the Fermi temperature (Tx), which for 3He atoms at natural isotopic impurity (z = 1077) is

2/3
/ , where

Tr ~ 0.06 mK. For isotopically purified samples of helium, T decreases as (n3)
ns is the number of 3He atoms per unit volume. Therefore in the millikelvin temperature
range addressed in this paper, the assumption of T' >> Ty will always be valid.

The coefficient of absorption for a plane wave traveling in a gas was calculated by Stokes
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(viscous contribution) and Kirchoff (thermal conductivity contribution). The combined re-
sult is given in standard acoustics texts [106] as o = d@Q/2I where I = pc|uo|” is the intensity

of the wave and d() is the energy lost per unit volume per unit time:

Q= | (nm+ 5n) + (=10 = ol (13)

Here np is the coefficient of bulk viscosity, 7 is the coefficient of shear viscosity, v = cp/cy is
the ratio of specific heats (v = 5/3 for a monatomic gas), k = w/c = 27/ is the wave vector,
k is the thermal conductivity, and g is the RMS amplitude of the wave. The first two terms
(including np and 7) represent the viscous loss, while the third term represents the thermal
loss. At low temperatures (T < 100 mK) where the 3He impurity dominates the normal
fluid component of “He, one may ignore the viscous and thermal losses from *He. Since the
wave energy will be carried predominantly in the “He we make the simplification that the
acoustic intensiy, I, uses only *He parameters. One can make the additional simplification
that ng = 0, which is true for monatomic gases because they have no vibrational or rotational
states [106]. Therefore we find for the amplitude attenuation coefficient:

4 K
51+ . )& w?, (4.4)
2pacy

Q3He =

where the subscript fours have been added as a reminder to use *He parameters. Based on
work by Chapman and Enskog, the viscosity and thermal conductivity of a rarefied gas of
hard elastic spheres are given by [107] n = 0.4991pT and s = 2.525ncy where | = 1/v/2nd?ns
is the mean free path and v = \/m is the mean molecular velocity, d is the molecular
diameter and m is the molecular mass. Note that the definition of [ given here is valid
only in the viscous flow regime where [ >> d but much smaller than the smallest container
dimension. Substituting for £ we find that the viscous contribution to damping is ~ 4/3 the

thermal contribution. Simplfication of Eqn. (4.4) leads to:

oo (3252 () (7). 4
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where we have introduced the scattering cross section o = 7d* and mj = 2.34mj is the
effective mass of a 3He atom at zero concentration [104]. Note that the first term is constant,
the second term varies slowly enough to be treated as a constant at temperatures below
about 1 K, and the third term shows the dependencies of a. Because « is proportional to
w?, thermal and viscous losses become larger at high frequencies, and may limit the @ of

microfabricated acoustic oscillators.
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Figure 4.3: shows the expected quality factor versus temperature for an 8.1 kHz mode including effects of
both the 3PP and the *He impurity for concentrations z =: 10~7 (red), 10=2 (blue), 1071° (black), and
10~'2 (grey), assuming the mean free path of 3He atoms becomes limited by the cell diameter of 3.6 cm.
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4.2.1 Lowering Impurity Concentration

For the 8.1 kHz mode of the niobium resonator design shown in Fig. (2.2a), the acoustic loss
from the 3PP is approximately equal to the acoustic loss from the *He impurity at 50 mK.
For microfabricated resonators of 10 MHz, this transition occurs at 373 mK. To improve
the acoustic Q below these temperatures, the loss from the *He impurity must be lowered.
According to Eqn. (4.5), the dissipation from *He is density independent as long as the mean
free path is much smaller than the container size. As the density of *He atoms decreases,
their mean free path increases as 1/ns. For instance, when *He/*He = 5 - 1078, the mean
free path is already 1 cm, comparable to the dimensions of a 24 kHz resonator.

We modify Eqn. (4.5) by considering what will happen to the mean free path of *He
in the limit where classical gas theory gives a result exceeding container size. If reflection
from the walls is diffuse, the mean free path will be limited by the container, while if it
is specular, it will not. In a study of pure 3He, Tholen and Parpia [108] found that the
reflection is mostly specular when there are several monolayers of *He coating the container
walls. They propose that the monolayers of He form a superfluid barrier which prevents
momentum transfer between *He and the surface. “He preferentially coats the walls of a
container because of its larger mass and smaller zero point fluctuations. Based on Tholen
and Parpia’s results, a reasonable ”worst case” scenario would be that only 1 in 100 reflections
is diffuse.

Kerscher et al. [109] studied the viscosity of dilute (5-1075 <z < 5-1077) solutions of
3He in “He by utilizing the Meissner effect to trap a spherical permanent magnet (SmCos)
in the potential of a superconducting parallel plate capacitor. The drag force is determined
by measuring the time constant of the oscillator’s decay. They achieve good agreement with
their data by assuming the mean free path to be limited to the size of the sphere for the
lowest 3He ratios. This assumption leads to a viscosity proportional to *He concentration.
However, in the case of drag force on a sphere, the difference between specular and diffuse
reflection amounts to less than an order of magnitude. Therefore, the results of Kerscher

et al. may not indicate that viscosity will become concentration dependent when mean free
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path exceeds container size.
If, as a first approximation, one assumes that viscosity becomes concentration dependent
when mean free path exceeds container size, the absorption coefficient becomes:
7 [2kpmi 1
A3 = = B 3xLC\/Tw2, (4.6)

6 T Mycy

where L¢ is the constant mean free path. The results of the absorption coefficient calculations
for the 3PP and ®*He impurity are shown in Fig. (4.2). We calculate the *He absorption
coefficient curves for # =3He/*He concentrations of 107, 107, 107!° and 107!2. The
total quality factor @ is calculated for the same concentrations using Q = w/2c;a and

Qrotar = Qapp '+ Qaue - The @ versus temperature curves are shown in Fig. (4.3).

4.2.2 Isotopic Purification

3He exists in sources of “He with a concentration of about 1 in 107 atoms; however, the unique
properites of superfliud *He can be leveraged to isotopically purify the fluid. *He is also a
superfluid, but its transition occurs at much lower temperatures: T ~ 2.5 mK. Therefore,
in a sample of “He below T}, the *He atoms move with the normal fluid component.

Superleaks and the heat flush technique can be used to isolate “He from 3He. A superleak
is a tube through which only superfluid can flow; it can be made with Vycor glass or packed
rouge powder. A resistor is placed in front of the superleak as shown in Fig. (4.4), and when
the helium bath is heated, the normal component flows away from the heat source carrying
impurities such as *He along with it. Because of the counterflow associated with heat transfer
in helium I, the superfluid component flows toward the resistor to maintain equal pressures.
The superleak does not contribute to the isotopic purification; it only defines the direction
in which the normal and superfluid components will low. Because the superfluid component
flows toward the superleak, the helium bath on the opposite side of the superleak will have
a lower 3He impurity.

Several works have addressed the isotopic purification of “He, and the technique which has
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produced the purest product is heat flush. Hendry and McClintock [110] built a continuous
flow apparatus preparing purified *He gas with x3 < 107! at a rate of 3.3 STP m?/h (or
~ 3.8 L/h of liquid). Moss et al. [111] discuss a heat flush apparatus of simpler design
which produces 0.01 L/h of purity x5 < 107!, A different method of purification, known as
differential distillation, utilizes the higher concentration of *He in the vapor as compared to
the liquid mixture. Tully [112] used differential distillation to achieve x3 ~ 10~ in samples

ranging from 1 to 25 L.

superleak
helium of RO, :
) : Ps —» RO isotopically
natural isotopic R

concentration <— Py purified helium

Figure 4.4: A simplified diagram of how helium-4 can be isotopically purified via heat flush. The helium-3
atoms move with the normal fluid component. In the counterflow that is set up when helium II is heated,
the normal fluid flows away from the heat source while the superfluid flows toward it. The superleak serves
to define the direction with which the normal fluid moves away from the resistor.

4.3 Other Acoustic Dissipation Mechanisms in ‘He

There are a number of mechanisms not considered above. One possibility is the Rayleigh
like scattering of phonons from *He quasiparticles. Because *He quasiparticle velocities are
much smaller than the speed of sound in liquid *He, quasiparticle-phonon collisions are
approximately elastic. The scattering coefficient for this process has been calculated by

Baym and Saam [98] (and revised by Baym and Pethick), for phonons of momentum ¢ (
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qg=hw/c) as
_ 2.45rmy (hw)*

81 pacy

TR (W) (4.7)

where = ng/ny is the 3He molar density and my is the *“He mass. The absorption coefficient

4 so that even in the case of unpurified *He and acoustic modes

ap = Tr/2cs = 10717 . qw
in the GHz range, this attenuation will be negligible.

We have also not considered what effect vortices in superfluid *He may have on the
attenuation. Quantized vortex lines and rings can absorb energy from superflow, an effect
clearly observed in flow through small apertures [113]. Although the densities of vortices
in thermal equilibrium should be negligible (due to the large energy of the normal core

and kinetic energy of the flow) vortices are inevitably produced in macroscopic samples of

superfluid as the sample is cooled through the lambda point [114].

4.4 Container Loss

While helium itself can be an ultra-low loss medium, difficulties arise in trying to simulta-
neously isolate superfluid acoustic modes from the environment while also cooling the bulk
helium to millikelvin temperatures. One way to avoid losses from coupling to container
modes is to levitate a helium droplet. Levitation can be achieved magnetically [115,116]
electrostatically [117], or with a laser trap [118]. Although suspension through electric or
magnetic fields avoids direct contact with the fluid, there is contact through the fields which
can result in dissipation through the finite losses in the electrical circuit (e.g. in the mag-
net [119] and electromagnetic environment) in the same way various position detectors, when
tightly coupled, can produce damping [120].

Cooling the drop to the lowest temperatures achievable in a dilution fridge may also
prove difficult. A levitating drop self cools due to evaporation of vapor, but the heat flow
away from the drop is proportional to vapor pressure, which decreases as e/, The lowest
achievable temperature depends on drop size, but large helium clusters (/= 4000 atoms) have

been cooled to a terminal temperature of 0.37 4+ .05K [121], which is in good agreement with
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theoretical predictions [122] and well above the base temperature of a standard dilution
refrigerator.

If instead a bulk sample of *He is held in a container, the liquid is cooled by the exchange
of high frequency thermal phonons between “He and the container. The full thermal model is
described in Section 2.5.1, but we summarize the results here. In the low temperature limit
where phonon processes dominate, we expect the cell to cool with a thermal time constant
7T = RgCye, where Ry is the Kapitza resistance and Cy. is the total heat capacity of the
helium in J/K. For the niobium cavity setup shown in Fig. 2.2, we calculate 7 = 10 seconds.

Although the acoustic coupling between the helium and the container is essential for
cooling the sample, it can provide an acoustic loss channel. If the container walls can be
approximated as infinitely thick, they will provide a continuum of environmental acoustic
modes where the transmitted energy does not return and is lost. For an acoustic plane wave
of first sound normally incident on a planar boundary, the energy transmisson coefficient
is T =42175) (71 + ZQ)Z, where Z = pc is the acoustic impedance. For a wave in helium
incident on a boundary with copper, T' =~ 0.004, and the quality factor of the acoustic mode
in helium will be limited to @) = 250.

This analysis is not appropriate for a container with thin walls (where the wall thickness
is less than the wavelength of the frequency of interest in the container) held in vacuum.
In this case, standing waves in the container will result in flexure with the internal pressure
field. If well designed, the superfluid acoustic mode will not be coincident with any of the
container modes, and the container losses can be found from the acoustic loss angle of the
material. It is not difficult to choose an acoustic mode well seperated in frequency from the
container modes, because the speed of sound in metals is ~10 times higher than the speed
of sound in *He; as a result, the mechanical eigenfrequencies tend to be high, e.g. 10 kHz for
a hollow cylinder 7 cm long and 6 cm in diameter. Because of work on gravitational wave
detectors, loss angles have been measured for a variety of materials at low temperature. For
a summary of the best values, see Table 4.1.

Our approach is to treat the entire system (helium and cell), as a harmonic oscillator.

We estimate and compare the energy stored in the helium to the energy stored in the metal
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cell. The total energy lost per acoustic cycle is then Erosr = Fye/Que + Ecen/Qceu- If the
system is to be limited by the intrinsic losses in helium, then Ey./FEcey - Qcen > Qne-

The acoustic energy stored in the helium is given by [63]:

K

Buno = [ (Pfomn (:0.2))" av. (4.9

where V is the cavity volume, P is the amplitude of the pressure wave, and fi,,,, (1,0, z) is a
spatially dependent function of the mode. We have solved for the acoustic mode profiles in
Section 2.4. For a right cylinder see Eqn. (2.23) and for an annulus see Eqn. (2.25).

To calculate the energy stored in finite distortions of the cell, one begins with the elastic

energy density in a crystal [70]:

6 6
Ec = % Z Z C)\,uez\e,u,; (49)

A=1 p=1

where (), are components of the material dependent stiffness matrix and ey and e, are
strain components. While single crystal pieces of copper or niobium are cubic, designs for
kHz frequency acoustic modes will employ large pieces of polycrystalline material, which are

isotropic. For an isotropic material the energy storage is given by [123]:

Fo= SN (&6, + )
+ tu(ed, +el +e2,) (4.10)
+ A (xnbyy + €12€zz + Eyy€sz)

where e,, = 0u/0x, ey, = 0v/0y, e,, = Ow/0z, ey, = Ou/0+ dv/0x, e,, = Ov/0z+ dw/dy,
and e,, = Ou/0z + Ov/O0x. Here u, v, and w represent position dependent deformations
in the Z, ¢, and 2 directions respectively. Finally, the constants p = Y/2(1+v) = G
and A = Yv/(1+v) (1l —2v) are Lamé parameters, where Y is the Young’s modulus, G
is the shear modulus, and v is Poisson’s ratio. For polycrystalline copper at 4 K: Y =
1.386 - 10 N/m? G = 0.517 - 10' N/m? and v = 0.340 [124]. For polycrystalline niobium
at room temperature: Y = 1.049 - 10'* N/m?, G = 0.375- 10" N/m?, and v = 0.397 [125].
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Note that stiffness constants are not strongly temperature dependent.
Sapphire is an anisotropic crystal with trigonal symmetry belonging to point group 3m.
For trigonal symmetry the energy density simplifies to [126]:

_ 1 2 2 1.2 1.2
EC = 5011 (Gmc + ny + 56 ) + 012 (emeyy — Zexy)

ry

+ Ci3(ess (€zp + €yy)) + Csz€2,
13( ( yy)) 33 (4‘11)
+ Cra (eyz (€zz — €yy) + €2x€ay)

+ 044 632/2 + sz) .

For sapphire at room temperature, the stiffness constants are: Cy; = 4.975, Co = 1.627,

and 013 = 1155, 014 = 0225, C33 = 5033, and 044 = 1.474 in units of 1011N/m2 [127]

Material Quality Factor | Frequency (kHz) | Temperature (K)
Sapphire [128] 5107 35 4.3
Silicon [129] 2.10° 20 3.5
Quartz [130] 2.107 1560 0.018
Niobium [131] 2.3-108 0.7 5
Helium-4 1.35- 108 8.1 0.044
Silicon Nitride [132] 1.27-10% 242 0.014
Aluminum 5056 [133] 6.7-107 1 0.05
Vanadium [134] 3.9-107 1 0.05
Berrylium Copper [135] 7.8-10° 1 0.144
Aluminum 6061 [136] 7.4-10° 1 0.05
Fused Silica [137] 5-10° 14 0.01
OFHC Copper [135] 1.1-10° 1 0.1

Table 4.1: The highest measured mechanical quality factors of several high () materials. Also shown are the
frequency of the measure mode and the temperature at which the measurement was taken.

To make quantitative estimates of container loss, the helium cells were modeled in COM-

SOL (See Fig. (4.5)). The pressure wave is simulated as a sinusoidally time dependent force
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applied to the inner walls of the cylinder. The energy density (Eqn. (4.11)) is integrated
over the deformed container shape to find the total energy stored in the cell. For the cylin-
drical design, using the [ = 0, m = 0, n = 1 acoustic mode, COMSOL simulations suggest
that Ey./FEcey ~ 103, which would limit the quality factor of a copper resonator to ~ 108,
assuming we can achieve the mechanical @) listed in Table 4.1. For niobium, the maximum
achievable () given by acoustic losses in the cell improves to 10!, For the sapphire design,

using the first azimuthal mode, we find an expected maximum Q =~ 10,

Figure 4.5: COMSOL simulation showing distortions of the niobium cell due to the I =1, m =0, n =0
superfluid acoustic mode with a frequency of 5984 Hz.

For a given cell material, we believe it is not possible to substantially lower the rate of
acoustic losses. One can arrive approximately at this conclusion from the equations of motion
for a driving force on a plate. Take, for instance, the acoustic mode (I =2, m = 0, n = 0)
which will fit one full wavelength in the cylinder, so that the two end caps will experience a
—iwt

driving sinusoidal force. A harmonic driving force of the form Fe acting transversely on

a circular plate leads to a displacement [106]:

_F §Li{ya)(Jo(yr) — Jo (va)) + 1 (va) (Io (v7) — Lo (7a))
T pw? I (ya) Jo (ya) + Ji (va) Io (va) ’

Y (r) (4.12)

where J represents Bessel functions of the first kind, I represents hyperbolic Bessel functions

and p, T, and a are the density, thickness, and radius of the plate. Therefore a linear

86



increase in plate thickness leads to a linear decrease in displacement. From Eqn. (4.11),
one finds that energy density is approximately proportional to the deformation squared and
therefore inversely proportional to the thickness squared. However, volume is proportional
to thickness, so ultimately the energy stored in the plate decreases linearly with increased
plate thickness. This result leads one to consider a container design with thick walls, but
the walls must remain thin enough that the acoustic resonances of the container are well
above the helium mode frequency. These results were validated in our simulations. Modeling
different acoustic modes did not change the energy storage substantially. In order to build
a resonator with an acoustic quality factor limited by intrinsic losses in helium, one must
choose a low loss material for the cell.

Losses from the suspension system must also be considered, but this topic has been
studied extensively in gravitational wave literature with several works focusing on the best
methods to hold cylindrical objects. Impressively, Braginsky et al. [50] achieved @ > 10°
in a sapphire cylinder with a wire loop suspension. It is also true that the frequency of the
phonons that are responsible for cooling the sample (~200 MHz phonons at 5mK) can be far
different from the acoustic mode which one wishes to isolate (kilohertz in the designs in this
thesis). One may be able to exploit this large separation of frequencies to allow transmission
of high frequencies for cooling and thermal contact, while limiting the coupling at lower
frequencies to achieve isolation and low dissipation. An acoustic band-gap structure may be
useful for achieving this effect [138,139]

In addition to the suspension system, one has the additional constraint of filling the cell
with liquid *He. Having a continuous fill line from the cell to the fridge will add another
channel for energy in the acoustic mode to couple into the environment. This problem may
be solvable be pre-filling the cell or by adding a superfluid leak tight valve [140-142] allowing
the fill line to be disconnected from the fridge after filling. For the cell to be filled with liquid
“He at 4.2 K requires a pressure of 2.3-107 Pa (230 bar) at 77 K which is a pressure of 9-107
Pa (900 bar) at room temperature.

The coaxial cable connections for the microwave mode will also provide an acoustic loss

channel, as they are directly connected to the cell. One advantage of using a dielectric
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resonator is that these connections will be rigidly attached to the superconducting shielding
can instead of the dielectric. It is also possible to capacitively couple the microwaves into

the TEgy; resonator with no rigid mechanical connections [143].
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Chapter 5

Experimental Details and Results

5.1 Niobium Cavity Description

The microwave cavity is machined from two pieces of high grade niobium. The cylindrical
body is made from RRR grade material purchased from ATI Wah Chang in Albany, Oregon
[144]. The material used for the lid is from Fine Metals Corporation in Ashland, Virginia
[145] and has a minimum purity specification of 99.8%. The inside of the cavity is a hollow
cylinder, 3.556 c¢m in diameter and 3.955 cm in length. Detailed CAD drawings of the body
and the lid are shown in Appendices C.1 and C.2, respectively. The lid is sealed to the body
with an indium wire seal.

The lid of the cavity has three ports, one for the helium fill line and two for microwave
couplers. In the initial design, the fill line is located at a radius of 1.397 ¢cm and the microwave
ports are located at a radius of 1.143 cm, which is equal to 0.64a (a is the cavity radius), the
location of the maximum of the magnetic field. In the second design, used beginning with
Run 3, all three ports are located at the position of the radial node (for all acoustic modes
with a single radial node), which is a radius of 0.63a or 1.12 cm.

The inner surfaces of both the lid and the body are mechanically polished on a lathe,
first with a Scotch Brite abrasive pad to remove machining tool marks, and then with
successively finer grades of abrasive paste, to give the inner surface a mirror finish. Following
the mechanical polish, 100 gm of the inner cavity surface is chemically removed with a BCP

etch. The BCP etch is 25% HF (using the bottle concentration of 50%), 25% HNOj (using
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the bottle concentration of 69.5%), and 50% HPO, (using the bottle concentration of 85%).
At room temperature, the BCP etch removes 2.5 pym of material per minute. During the
etch, the niobium pieces are secured in Teflon holders because Teflon is resistant to the acids.
The cavity’s larger tapped holes (#4-40) are filled with Teflon screws; however, nylon screws
are used in the smaller tapped holes (#2-56) because Teflon is unavailable. Nylon is slowly
melted by the BCP etch so one must be careful not to ruin the (#2-56) tapped holes in the
lid.

Figure 5.1: Pictures of the niobium microwave cavity after etching, showing a mirror finish: (a) the cell body
and (b) the cell lid.

The caps to attach the microwave couplers to the niobium lid are made from OFHC
copper and sealed to the lid with indium. The final design of the SMA caps is shown in
Appendix C.3. The SMA cap is designed to be used with microwave components purchased
from Southwest Microwave [146]: hermetic seals (part number: 290-02G) and 2 hole SMA
connectors (part number: 214-522SF). The hermetic seals have a glass (7070) to metal
(Kovar) connection which is leak tight from room temperature to cryogenic temperatures
because the thermal contractions of the two materials are reasonably well matched. In
assembling the microwave ports, the first step was to solder a piece of 305 pym diameter

phosphor bronze 5% wire (California Fine Wire Company) to the end of the hermetic seal
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launch pin with a high temperature solder (60/40 tin/lead). The wire is covered with a
Teflon tube (560 pm ID) to prevent contact between the wire and the SMA cap or niobium
lid. Finally, the hermetic seal is soldered to the copper SMA cap with a low temperature
solder to produce a seal leak tight to superfluid helium. After assembly is complete, the
305 pm wire is bent to form a coupling loop and its length is adjusted by trial and error
to achieve the desired coupling to the TEy;; cavity. The bends in the two coupling loops
are made such that the loops are oriented parallel to one another and perpendicular to the
magnetic field of the TEg;; mode. It is easiest to assemble the microwave couplers with the
cavity lid unattached to the body so that the positioning of the loops can be confirmed and
adjusted as necessary. After the microwave couplers are mounted properly, the lid and body
of the niobium cell are joined by an indium seal.

The fill line is attached to the cavity with an additional OFHC copper cap, which is also
sealed to the lid with indium wire. A stainless steel capillary (125 pm ID) is soldered into
the through hole, forming a seal leak tight to superfluids. The small diameter of the capillary
limits acoustic losses from the cell to the fridge.

The cell is assembled and the microwave coupling is adjusted at room temperature.
Even though a leak tight seal is not required for tests of the microwave coupling loops, it
is imperative that indium be used for the connections between the copper SMA mounts
and the cell’s lid and between the cell’s lid and body. The indium seals ensure consistent
transmission through the cavity on repeated trials. On initial assembly, it is difficult to
perfectly adjust the microwave couplers at 300 K. Ideally the cavity is coupled such that it
reaches () =~ Q;,: at low temperatures with minimal transmission loss. In our case the cavity
consistently reaches Q;,; ~ 100-10° at temperatures below two Kelvin, so to be conservative
we try to overcouple to achieve ) ~ 50 - 10°. From repeated low temperature tests of the
cavity, we find that at 300 K the cavity should be undercoupled so that the transmission
loss is of order 80 dB.

Once the coupling is approximately right, an initial 300 K leak check is performed. When
the room temperature leak check is successful, the cell is attached to a vacuum probe and

dipped into a liquid helium bath at 4.2 K. The superconducting temperature of niobium
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is Tc = 9.3 K, so a helium bath is sufficient to reach T < T/2. At 4.2 K, the intrinsic
microwave Q is about 15 — 20 - 10°, and the amount of under or over coupling is more clear.
If the one K pot is used to achieve T' < 2 K, Q;n: will exceed 100 - 10%, and the Q should
be limited by our microwave couplers. Once the microwave measurements are finished, a 4
K leak check is performed by pressurizing the cavity with helium while the leak detector is
attached to the probe vacuum space.

After warming up from the initial cool down, the cavity often shrinks a small amount, so
the mode frequencies are slightly lower. This process of adjusting the microwave couplers and
leak checking is repeated until the coupling is satisfactory and the leak checks are negative;

at this point, the cell can be mounted to the dilution refrigerator.

5.1.1 Niobium Cavity Results

Following the procedure outlined above, we assembled the niobium cavity and measured
the microwave spectrum at room temperature. Initially stub couplers were used for the
microwave connections, but the stubs did not couple to the desired high ) TEq;; mode, so
we switched to using loop couplers. The microwave spectra measured with each coupling
setup are shown in Fig. (5.2); it is evident that the loops couple to a greater number of
modes. The frequencies of the microwave modes of a cylindrical cavity are given in Chapter

2 but repeated here for convenience [37]:

B c x;mQ I\ ° 51
fnml—2ﬂ_\/m (a)+(f)a ()

Frant = zw\/iLR—eR\/<me>2 * (%)2 (5:2)

for the TE and TM modes, respectively. pugr and eg are the relative permeability and per-

mittivity of the medium inside the cavity, a and L are the radius and diameter of the cavity,
.. is the mth root of the nth Bessel function of the first kind (J}, (z},,,) = 0), and @, is

nm n

the mth zero of the nth Bessel function of the first kind (J,, () = 0). The frequencies we
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measure in our niobium cavity are shown in Table (5.1) and are in close agreement with our
expectations from these equations.

As elaborated in Chapter 2, niobium is a type II superconductor and at temperatures
T < Te/2 we expect the microwave losses to be explained by the BCS theory as given in
Eqn. (2.20). We measured the superconducting quality factor of the microwave modes on the
temperature controlled stage of a 1 K probe. At the probe’s lowest temperature, about 1.6
K, the highest () mode was the TEq;1; this result is expected because the TEq;; mode has no
currents between the cylinder body and lid, minimizing the losses from the indium seal. The
low temperature frequency of the TEq;; is 10.894 GHz, and the highest measured ) = 3.6-108
is shown in Fig. (5.3a). We measured @) versus temperature for the TEy;; mode by warming
the probe in stages and using a vector network analyzer to find the cavity spectral linewidth
at each step. The resulting curve is shown in Fig. (5.3b) along with the expected loss from
BCS theory. The data fit reasonably well to a total resistance R = Rpcgs + Ry where Ry = 2
1§82 is the residual resistance calculated from the lowest temperature data point, where BCS
losses should be negligible. The deviation from the curve at higher temperatures is probably
due to inadequate thermalization time at each temperature step.

Finally we note that indium, which is used to seal the cavity lid to the body, is also a
superconductor with T¢ = 3.4 K. It is possible that being at temperatures below 7" < T /2

for indium further improves the microwave Q).
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Figure 5.2: Transmission spectrum of the niobium cavity at 300K for stub couplers (blue) and loop couplers
(red). In both the loop and stub coupled cavities, the couplers are located on the lid at a radius r = 0.64a
(a is the cavity radius), where the TEp;; magnetic mode is maximum. Modes are labeled by TE or TM
and the mode number (n,m,1). There are three sets of degenerate modes: TEqp19/TMi10, TEg11/TMi11 and
TEo12/TMi12.
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Mode Numbers | Expected Frequency | Frequency at 300 K | Percent Difference
(n,m,]) (GHz) (GHz)
TE119 4.91 - -
TE14 6.19 6.20 0.11
TMp10 6.42 6.42 0.05
TMo 7.44 7.47 0.37
TMa1g 8.15 - -
TE214 8.98 8.98 0.00
TEq12 9.00 9.03 0.32
TMo1o 9.90 9.96 0.58
TEo10/TM110 10.22 10.21 -0.14
TEo11/TM111 10.90 10.92 0.21
TE212 11.10 11.13 0.24
TE310 11.21 - -
TE311 11.83 11.81 -0.14
TEq13 12.33 12.37 0.30
TEo12/TM112 12.70 12.76 0.43
TMo13 13.01 13.07 0.49

Table 5.1: The TE and TM mode frequencies up to 13.5 GHz for the niobium cavity. The expected frequencies
are calculated from Eqns. (5.1) and (5.2) for a cavity with a diameter of 3.556 ¢cm and length of 3.955 cm.
The frequencies were measured with a vector network analyzer at 300 K and the spectrum is given by the red
line shown in Fig. (5.2). The final column shows the difference between expected and measured frequencies:

(fewp — fmeas) [ fexp - 100. The only experimentally missing modes are the TEq19, TE219, and TE31.
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Figure 5.3: (a) S21 measurement of the TEg;; mode at 1.6 K, demonstrating a microwave @ of 3.60 - 108
or a cavity linewidth of 30 Hz. (b) @ of the TEg;; mode versus temperature. Data is represented by blue
circles and the connecting line is a guide to the eye only. The red line is the expected quality factor from
the BCS losses of Eqn. (2.20). The purple line is the expected quality factor including both the BCS loss
and the residual resistance Ry, where Ry is calculated from the highest Q data point and found to be 2 uQ.

5.2 Description of Experimental Setup

As outlined in Chapter 2, our superfluid optomechanical system consists of a hollow niobium
cell which is held from the mixing chamber of a dilution refrigerator and filled with liquid
“He. A fill line is required to transfer helium from a room temperature cylinder to the cell
on the mixing chamber. To this end, we have constructed a room temperature plumbing
panel to convey helium from gas cylinders through a liquid nitrogen (LN2) cold trap to
the fridge. A picture of this panel is shown in Fig. (5.4). The panel has three gauges
for different pressure ranges, one rough compound gauge (30 in Hg vacuum to 1 bar), one
convection gauge (1.3-107% to 1333 mbar), and one ion gauge (1.3-107% to 6.7- 1072 mbar).
A relief valve protects the ion gauge from exposure to high pressures. The panel has two
ports which can be used to evacuate it to vacuum. It is also connected to two helium
cylinders, one research grade “He (99.9999% helium) [147] and one sample of isotopically
purified helium (*He concentration = 2-10719) [148]. After the panel is adequately pumped

to vacuum, helium from one of these cylinders is flowed through the LN2 cold trap and
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into the fridge. The LN2 trap consists of a copper cylinder filled with activated charcoal,
immersed in liquid nitrogen. The large surface area of the charcoal is sufficient to freeze
most impurities. However, if other gases with low freezing points, such as hydrogen or neon,
are present in the helium gas, these will continue through the LN2 trap and freeze on the

fill line walls inside the fridge.

G

Research

Grade ‘He ‘ I LN2 Trap

"~ &

Figure 5.4: The plumping panel used to fill the niobium cavity with helium.

After the helium exits the LN2 trap, it is conducted to the top of the dilution refrigerator,

where there is an additional valve on the fill line. Oxford provides experimental lines from
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this valve down to the 1 K plate, terminated with an indium seal. From there, we add a
custom fill line which is thermally anchored to each stage of the fridge with sintered-silver
heat exchangers. This fill line is designed to be long enough and small enough in diameter to
limit thermal conductivity through the helium between stages. When the fill line reaches the
mixing chamber, it first passes through a cryogenic valve, then a blow off valve, and finally
two heat exchangers. Ideally the cryogenic valve is leak tight to superfluid, allowing the
helium filled cell and heat exchangers to be thermally isolated from the higher temperature

stages. A picture of the experimental setup on the dilution refrigerator is shown in Fig.

(5.5).
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Figure 5.5: The helium fill line from the 1 K plate to the niobium cell. The line is thermally anchored at
each stage with sintered-silver heat exchangers.
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The sintered-silver heat exchangers used on the fill line are designed to overcome the poor
Kapitza boundary conductance between helium and metals (see Eqn. (2.35)) by providing
a large surface area for thermal contact. They are custom made following recipes from
literature [149-151]. They consist of two gold plated copper pieces: a lid and a body, which
is a hollowed out cylinder with a central cylindrical post. Detailed drawings are shown in
Appendix E. Silver powder from Inframat Advanced Materials [152] is packed around the
central post. Two powder sizes are used, either particles with an average size of 100-500
nm or particles with an average size of 300-1000 nm. The silver powder is first cleaned in
acetone, IPA,| and methanol and then dried. The desired amount of powder is weighed and
then sifted into the heat exchanger body in 5-6 batches. Each batch of powder is compressed
into the copper body with a brass mating piece, and the entire assembly is squeezed in a vice.
A packing fraction of 50% is used, meaning the total density of the packed powder is 50% of
the density of solid silver. When the sinters are packed, each has about 6.6 grams or 1.2 cm?
of powder. Following packing, the sinters are heat treated in a helium atmosphere at 100°C
for an hour. The heat treatment fuses the separate silver particles together like a sponge
and compresses the silver so that it squeezes onto the central post. After heat treatment,
the pieces are cleaned in an IPA bath with sonication to remove any loose powder. Finally
a piece of filter paper is placed over top of the sintered silver to prevent loose powder from
plugging the fill line. The heat exchanger lid is then fixed to the body with Stycast 2850,
and the final assembly is leak checked at room temperature and 77 K. The BET adsorption
isotherm technique [153] can be used to measure the final surface area of the sintered-silver
powder. We did not measure the surface area, but from similar work by Busch, et. al. [150]
and Keith and Ward [151], we estimate it would be about 0.5 m?/g, giving each of our heat
exchangers a total surface area of about 3.3 m?.

The blow off valve, which is located on the mixing chamber, serves two purposes. For one,
a blow off is necessary because helium expands upon heating and vaporization, potentially
creating a "bomb” which will burst if the fridge warms up unexpectedly. In this case, the
blow off is made to burst first, at low pressures, preventing damage to the niobium cell. In

our setup, this blow off valve also doubles as a ballast volume. After the cell line is completely
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filled, we allow the fridge to cool from 4 K; as the helium cools, it contracts, placing the fill
level inside this ballast volume. We make the ballast from a hollowed out piece of copper,
with an inner volume of about 7.4 cm?®. A copper foil is soldered over the hole, which has a
surface area of 5.4 cm?. On multiple trials, this solder joint failed at ~ 7 bar. Ideally this
bursting pressure should be lower to prevent potential damage to the niobium cavity.

Also located on the mixing chamber is the cryogenic valve, which requires its own fill
line because it is actuated by pressure. We built a second plumbing panel to transfer helium
from a cylinder to the fridge for the valve. It is very similar to the panel for filling the cell
except that it is made to withstand high pressure because the valve actuation pressures can
be above 100 PSI (6.9 bar). The panel has both a vacuum and a high pressure side, isolated
from one another with a valve. The vacuum side of the panel has two gauges, which are
further protected by a 10 PSI blow off valve: a rough compound gauge (30 in Hg vacuum to
1 bar) and a convection gauge (1.3-107* to 1333 mbar). These gauges are used to determine
if the plumbing panel and valve actuation line have been adequately evacuated to vacuum
through the pump out port. The high pressure side of the panel has a gauge which ranges
from 0 to 500 PSI (0 to 34.5 bar) and an LN2 cold trap. When in use, research grade helium
(99.9999%) [147] is fed through the LN2 trap and toward the fridge. As with the fill line
used for the cell, at the top of the fridge there is an additional valve, and inside the fridge the
Oxford experimental line is used down to the 1 K plate. From there, the line is composed
of stainless steel capillaries anchored at each stage with sintered-silver heat exchangers. On
the mixing chamber, the line passes through two heat exchangers before being attached to
the actuation port of the valve. All fill line joints are made with solder or with Stycast 2850
so they can withstand high pressure. The heat exchangers on the valve line were leak tested

at 77 K with minimum pressures of 150 PSI (10.3 bar) to ensure they would not burst.
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Figure 5.6: The plumbing panel used to actuate the cryogenic valve.
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5.3 Experimental Run Procedure

Once the niobium cell is prepared and mounted to the dilution refrigerator, the first step in
cooling down is to flow dry nitrogen (Ny) gas through the fridge fill line. At this point, the
fill line is not yet attached to the cell, and one should check that the line is not plugged by
inserting the final capillary into a beaker of IPA and looking for bubbles. If a cryogenic valve
is being used, the valve line can be checked for plugs in the same manner. If both the valve
and cell lines are clear, dry Ny gas should be flowed through the lines overnight, to ensure
that they are free of moisture. Water vapor can be trapped in the large surface areas of the
heat exchangers in each line.

After an overnight flush of the fill lines, the final solder joint to the valve actuation port
can be made. One can check that the valve is actuating by applying a very small amount of
pressure (< 15 PSI or < 1 bar) to the valve and seeing that the bubbling from the cell line
slows. However, one must be very careful during this process because if too much pressure is
applied, the valve tip will deform and the valve will not seat properly at low temperatures.
With a valve known to be leak tight at cryogenic temperatures, it may be best to avoid this
step.

The last step in the plumbing is to make the final indium joint to the cell. Before closing
the IVC, we ensure that the fill line to the cell is clear by watching the resonance frequency
of the cell shift as it is pumped to vacuum and filled with helium. All *He entering the cell
is first flowed through an LN2 cold trap to remove impurities.

The frequency shift expected from filling the cell with helium gas can be found from the
dielectric constant (eg) of helium because the cell’s frequency varies as f o< 1/,/er (Eqn.
(5.1)). For liquid helium, the dielectric constant is well known and at 4 K, eg = 1.05. From

the Clausius Mosotti relation,
€ER — 1 . 47T04Mp
er+2  3M

(5.3)

we can relate the dielectric constant at one density to the dielectric constant at a second
(primed) density: (eg —1) /(€ —1) =~ p/p’. Helium expands 866 times from liquid at

1 K to gas at 300 K [5], so we find an expected dielectric constant of gaseous helium of
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er ~ 1.000058, which would result in a frequency shift from vacuum of about 300 kHz for
our TEg;; mode at 10.87 GHz. Fig. (5.7a), which was taken prior to Run 4, shows the
frequency shifts as we fill the cell with one bar of helium. The total shift is about 350 kHz,
in line with our expectations. Notice, with the high impedance of our fill line, it takes ~ 30
minutes to fill our cell to one bar with *He gas.

Fig. (5.7b) shows how much pumping time is required to again evacuate the cell to
vacuum. It was common, as in Fig. (5.7b) that the final frequency of the cell in vacuum
would not agree perfectly with the previous vacuum frequency of the cell. There are two
potential explanations for this; one is that after a single pump and flush cycle, a smaller
fraction of the residual gas left in the cell is air, which is composed mainly of nitrogen and
has a higher dielectric constant than helium. This removal of air will result in an overall
lower dielectric constant, leaving the cell at a higher frequency. Another possibility is that the
temperature of the cell fluctuates over the couple of hours required to complete a pump and
flush cycle. For example, at higher temperatures, the gas inside the cell expands, lowering

the dielectric constant, and increasing the cell’s frequency.
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Figure 5.7: From Run 4, January 2015: a) With the cell on the fridge and initially under vacuum, frequency
shifts of the TEg;; mode while filling the cell with “He gas. The cell is filled by applying ~ 1.2 bar of
pressure from the helium cylinder attached to the plumbing panel. Notice the impedance of the fill line is
such that filling requires ~ 30 minutes. b) With the cell on the fridge and initially filled with about one bar
of 4He gas, frequency shifts of the cell while evacuating to vacuum. After 90 minutes of pumping, the cell’s
frequency has returned approximately to the starting vacuum frequency from a). An additional 30 minutes
or even 130 minutes of pumping do not appear to shift the frequency any further.

Checking the frequency shifts of the cell also provides a test of the microwave circuit and
HEMT amplifier inside the dilution refrigerator. The total transmission loss through the
circuit should be consistent with expectations from the measured cable and cavity transmis-
sion loss and the gain of the HEMT. Because most of the circuit remains unchanged from
run to run, it is helpful to compare the total loss to that measured in previous runs.

Once it is clear that the fill line is unblocked and the microwave circuit is functioning as
expected, the IVC is closed and both the cell and IVC are evacuated to vacuum. The cell line
is continuously pumped out and flushed with “He gas for about two days, or 10-12 cycles.
Figs. (5.7a) and (5.7b) are used to determine appropriate amounts of time for pumping and
flushing the cell. To ensure adequate time is allotted, the cell is filled for 45 minutes and
evacuated for about 90 minutes. If a cryogenic valve is used, the valve is filled to < 1 bar and
emptied again, all while the cell is filled with helium gas, to ensure that the Torlon needle
is not damaged. The valve line is easier to evacuate to a clean vacuum because the total

volume of gas is only ~ 7 cm?, including the volume of the heat exchangers.
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During one of these pump and flush cycles, a room temperature leak check is performed
on both the cell and the valve. Leak detector background rates on the IVC of ~ 10~® mbar
litre~! s~! are routinely achieved. Assuming no leaks are found in the experimental circuit,
a leak check and throughput test of the dilution circuit are also performed.

After the setup is thoroughly tested at 300 K, the fridge is cooled to 77 K (the boiling
temperature of liquid nitrogen), and low temperature leak checks of the cell line, the valve
actuation line, and the dilution circuit are performed. It is common for the low temperature
mode spectrum of the cell to look different from the room temperature spectrum (see Fig.
(5.8)). When the TEq; appears as a dip in the S21 spectrum, it is easier to check that the

cell line is not plugged using a different microwave mode. We use the TM;;; mode which is

nominally degenerate with the TEy;; and in practice is within 50 MHz in frequency.
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Figure 5.8: From Run 4, January 2015: The TEy1; and TM717; modes at 77 K. Notice that the TE(;; appears
as a dip rather than a peak. Checking the frequency shifts is easier using the TM;1; mode in this case.

Typical cell frequency shifts at 77 K are shown in Figs. (5.9a) and (5.9¢). The frequency
shifts are larger than at room temperature because the helium gas is denser. As above
we can estimate the expected frequency shift from: (eg —1) /(e —1) =~ p/p’. The low
temperature (77 K) density of helium is higher than the room temperature (300 K) value by
approximately the ratio of the temperatures. At 77 K we find e = 1.00022. For a mode at
10.94 GHz, we expect a frequency shift of 1.2 MHz for one bar of helium gas or 1.6 MHz for
1.35 bar of helium gas, which was the pressure typically used at the room temperature gas
cylinder. In Fig. (5.9a) we see a shift of ~ 1.5 MHz, consistent with these expectations.

If the cryogenic valve is being used, it can safely be closed at 77 K, where the Torlon
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needle is stiff and will not be deformed by contact with the stainless steel seat. While the
leak detector is attached to the inner vacuum can (IVC) of the dilution refrigerator, the cell
is filled with about one bar of helium gas. The valve is then actuated by applying pressurized
“He gas in small increments up to 158 PSI (10.9 bar). After the final pressure is reached,
we wait for 30 minutes to ensure that the pressure is stable. Fig. (5.9b) shows the result
of pumping on the cell fill line while the valve is closed. As expected the frequency remains
constant as helium is trapped in the cell. The valve is opened by evacuating the actuation
line, and then the cell is evacuated before cool down to 4 K (the boiling temperature of
liquid helium).

At 77 K, the most common problem is to find that the cell line is plugged from frozen
residual water vapor. The last capillary to the cell is only 125 pm in inner diameter and
can be blocked by as little as 107% cm?® of ice. In the case of a blocked capillary, the only
solution is to drop the dewar and warm the IVC to 300 K, so that additional pumping and
flushing of the cell line can be performed. After one is confident that the fill line is clear of

impurities, the process of cooling to 77 K and leak checking can be repeated.
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Figure 5.9: From Run 4, January 2015: a) Frequency shifts of the TM;1; mode as the cell is filled with
4He gas, starting with the cell in vacuum and thermalized to ~ 77 K. Notice that the total frequency shift
is greater than at 300 K because helium is denser at lower temperatures. Also note that the frequency
shifts more quickly because the conductance of capillaries improves at lower temperatures as the background
pressure drops. b) Pumping on the cell at 77K with the cryogenic valve closed. The TM;1; mode frequency
remains constant as expected if no helium is exiting the cell. ¢) Pumping on the cell at 77K with the
cryogenic valve open. The frequency shifts back to the vacuum value within about an hour.

Once the 77 K leak checks are complete, the fridge is cooled to liquid helium temperatures,
4 K. Final leak checks of the cell, valve and dilution circuit are performed before proceeding
with the experiment.

Assuming no leaks, the next step is to run the dilution refrigerator with the cell empty

so that the base temperature and cooling power can be checked. With our Oxford Kelvinox
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400H, we expect base temperatures < 10 mK and a cooling power of 400 W at 100 mK.
Once these numbers are confirmed, most of the mix can be removed to the keg. To provide
the cooling power necessary to fill the cell, the fridge is run with only about 20% of the mix,
so that it behaves much like a 1 K pot. The cell is then filled using the plumbing panel until
the pressure at 300 K is just over one bar. Below T), helium flows into the cell with the
superfluid critical velocity of ~ 1 cm/s for a ~ 100 pm capillary [11], and the cell fills in
under 4 hours.

With a working cryogenic valve, the procedure from here is straightforward. One can
heat the fridge to T\ = 2.2 K, where superfluid *He is at its densest, and close the cryogenic
valve. The fill line from the mixing chamber up can then be evacuated overnight. After the
line is empty, one can circulate the mix and run the fridge to its base temperature. As the
helium expands on cooling, it is assured that the cell will be completely full.

If one does not have a cryogenic valve, one can take advantage of the expansion of
liquid helium at temperatures above T\ to achieve a helium level on the mixing chamber.
As shown in Fig. (5.10b), the density of helium above the lambda point decreases with
increasing temperature. If one fills the cell line to the top of the fridge near the boiling
point, then closes the room temperature valve and cools the fridge, the helium inside the
line will contract such that the fill level sits in the ballast volume on the mixing chamber.
In this way, it is ensured that the cell will be filled but the fill line connecting the mixing
chamber to higher temperature stages will be empty, except for superfluid film flow.

In our system, the cell volume is 39.3 cm?, the ballast volume is 7.4 cm? and the total
volume of the cell, mixing chamber heat exchangers, and ballast combined is about 50 cm?.
The remaining fill line above the mixing chamber has a total volume of < 3 cm3. If this
volume is completely full at a temperature of 3.50 K (4.10 K) and then cooled to < 1 K, it will
contract by 6% (12%) or about 3.3 cm? (6.5 cm?). This contraction will be sufficient to bring
the helium in the fill line down into the ballast volume. In practice, this is accomplished by
stopping the 1 K pot and slowly warming the fridge to ~ 4.1 K, while *He is evacuated from
the fill line as necessary to maintain a pressure just above one bar on the plumbing panel.

It is important not to increase the temperature beyond 4.2 K where helium boils in case
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the expansion creates too much pressure and causes a leak in the fill line. While the cell is
heated, its temperature can be inferred from its frequency and the pressure on the plumbing
panel. If the starting low temperature frequency is 10.593 GHz, the frequency at 4.1 K will
be 10.629 GHz. The helium temperature can be confirmed from its vapor pressure, which
increases with temperature as shown in Fig. (5.10a). The vapor pressure is measured with
a rough vacuum gauge on the cell plumbing panel. Once the desired temperature has been
reached, the valve at the top of the fridge is closed. At this point, the 1 K pot is started,

the mix condensed, and the fridge is cooled to its base temperature.
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Figure 5.10: a) The vapor pressure of helium versus temperature and b) the density of helium versus
temperature.
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Figure 5.11: Pictures of the cell for each run of the fridge with complete descriptions given in the text: a)
Run 1, b) Run 2, ¢) Run 3, d) Run 4, and e) Run 5.
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5.4 Measurement Procedure

Once the cell is full and the fridge has reached a stable temperature, we can begin to look for
acoustic modes. We know the approximate acoustic mode frequencies from Eqn. (2.24) for
a right cylinder, where we use the density (ps = 145 kg/m?) and speed of sound (cy = 238
m/s) in helium-4. We search for the acoustic modes by pumping the cavity with a microwave
source, red-detuned from resonance (w, = we—wjyy) and looking for an up-converted sideband
appearing at the cavity frequency [34]. We drive the acoustic motion with a piezoelectric
transducer attached near the cavity. We scan the piezo drive frequency near an expected
acoustic frequency in increments of ~ 10 Hz until we see a peak appearing, indicating that
we are driving the acoustic mode on resonance. The resonances we detect agree within 1%
to the expected frequencies (see Table (5.2)). Once a mode is located, we use a ring down
measurement to determine its @, as shown in Fig. (5.12). While pumping the microwave
cavity, we first excite an acoustic mode with the piezo, then turn off the piezo drive and
record the free decay, obtaining a curve like Fig. (5.18). We can fit the decaying voltage
to an exponential V' (t) = Agexp (—t/7) + Vi with three fit parameters: Ay, which is the
amplitude, Vp, which is an offset voltage that is very close to zero, and 7 = 2Q) /w), which is

the ring down time constant. Knowing the frequency wy;, we can directly solve for ¢) from

T.
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Figure 5.12: A schematic of the microwave measurement circuit. OS2 is a microwave signal generator used
to pump the niobium cavity on the red sideband (w, = wc —war). OS1 is an audio frequency generator used
to drive the piezoelectric actuator (PZT) which excites the acoustic mode. The upconverted signal from the
superfluid acoustic mode is mixed down to an audio signal and measured on a lock-in amplifier.
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Mode (1,m,n) | Frequency (Hz) | Degenerate | (Hz, Run 4) | Percent | Highest Q (/10°)
(1,0,0) 2094 no 2090 0.12 0.015
(0,1,0) 3900 yes 3908 -0.20 0.31
(1,1,0) 4917 yes 4998 -1.65 0.04
(2,0,0) 2987 no 5984 0.05 13
(0,2,0) 6470 yes 6461,6469 | 0.14, 0.01 0.047,0.14
(1,2,0) 7129 yes 7144 7 -0.21 0.4
(2,1,0) 7146 yes 7144 7 0.02 0.4
(0,0,1) 8117 no 8115 0.02 135
(1,0,1) 8651 no 8669 -0.21 25.5
(2,2,0) 8815 yes 8803 0.14 0.02
(0,3,0) 8899 yes 8951 -0.58 0.293
(3,0,0) 8981 no 9030 -0.55 0.17
(1,3,0) 9389 yes - ; -
(3,1,0) 9791 yes - - -
(2,0,1) 10086 no 10113 -0.27 27.5
(2,3,0) 10726 yes ; ; ;
(3,2,0) 11069 yes - - -
(0,4,0) 11264 yes - - -
(0,1,1) 11294 yes ; ; ;
(1,4,0) 11655 yes - - -
(1,1,1) 11684 yes ; ; :
(4,0,0) 11975 1no - - -
(3,0,1) 12105 no 12167 -0.51 6.9

Table 5.2: A table of the superfluid acoustic modes up to and including the highest frequency mode found
experimentally. The first column gives the mode numbers, the second the expected frequency from Eqn.
(2.24). The third column indicates whether or not the mode is degenerate. The fourth column is the
experimentally measured frequency of the mode from Run 4 at the base temperature of fridge; for most of
the degenerate modes, only one peak could be found, and many modes were altogether not detectable. The
fifth column is the highest Q measured in any run for the given mode.
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5.5 Notes on Each Run

5.5.1 General Notes

For convenience, notable changes to the setup are summarized in Table (5.4) and pictures
illustrating each run are shown in Fig. (5.11).

While the acoustic mode frequencies are in close agreement with Eqn. (2.24), they do
vary with temperature (Eqn. (2.41)) and pressure in the fill line. Therefore in each run of
the experiment, and even at different times throughout an experimental run, the frequencies
of the acoustic modes are slightly different. For ease of reference, the modes are referred to
by the frequency which was experimentally measured at the base temperature during Run
4. These frequency values are summarized in Table (5.2).

In each experimental run, the cell was mounted from its center, lengthwise. As shown in
Fig. (2.4), of the acoustic modes that we measure experimentally, the 2990, 8669, 9030, and
12167 Hz modes have a longitudinal node at the midline of the cavity. We expected that
mounting at a node would decrease suspension loss for these acoustic modes, but often the
highest ) for a given run was measured in a different mode.

The intrinsic loss rate of the TEq; mode is k;,; = 27 - 31 Hz as shown in Fig. (5.3a), but
for the following experiments, we overcoupled the cavity such that k;, = Kow =~ 27 - 230 Hz.

Because the experiment is operated without a cyrogenic valve, the superfluid film flow
up the fill line provides a significant heat leak, which can have two effects: heating the fridge
stages above their base temperature values and preventing thermalization of the cell to the
mixing chamber. While the size of the the heat leak is difficult to quantify, it will be a
function of both the length and diameter of the fill line. If we take as an approximation
a capillary completely filled with *He, we can estimate the heat flow using the thermal
conductivity of *He below 400 mK: Ay, ~ 2 - 10°dT?® W/K-m, where d is the diameter
of the capillary in meters [5]. We can estimate the thermal resistance of the fill line as
R = L/ \g.A = AL/\g.nd?, where L and A are the length and cross-sectional area of the

capillary. Therefore, at low temperatures we expect R = 2L/710°d*T3. The heat conducted
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through the line can be estimated from Q= AT/R, where AT is the temperature difference
across the section of fill line in question. If we assume the helium in the fill line is thermalized
to a temperature midway between the stage temperatures, and use d = 0.02 cm and L = 1 m,
we calculate Q ~ 0.6 yW arriving at the cold plate from the still and Q ~ 4 nW arriving at
the mixing chamber from the cold plate. Given the cooling power of our dilution refrigerator
(400 pW at 100 mK), we do not expect 4 nW to have any effect on the temperature of the
mixing chamber. However, the cold plate operated above base temperature for all of our
experimental runs, so we believe the heat leak from the still is significant.

As mentioned above, during our experiments, the fill line capillary is not completely
filled with helium-4. Instead the helium fill level is located in a ballast volume on the
mixing chamber, and the heat leak arises from superfluid film flow. The heat conduction
of a superfluid film is more complicated because the film conducts heat as it flows; the
superfluid film can flow with critical velocities up to 0.3 m/s [11], and the heat conduction
is not well quantified. For instance, we cannot expect the heating from higher stages to
decrease linearly with the length of the fill line, as is the case for phonon or electron heat
conduction. We do expect the total conduction to depend on the film’s volume, which will
depend on the circumference of the capillary 7d. However the film thickness is only a weak
function of the length as it depends on the gravitational potential, mgh, where g = 9.8 m/s?
is the gravitational acceleration and h is the height of the film above the helium bath. For
thin films, the thickness is a weak function of height: h'/? [5]. This height is fixed by the
construction of the dilution refrigerator, so we can only decrease the heat load by making
the capillaries thinner. Since we could not accurately quantify the heat leak, we adjusted
the diameter and the length of the fill line by trial and error. For very thin, long capillaries,
the experimental limitation is the ability to remove all residual water vapor from the cell at
room temperature.

While the diameter and lengths of the fill line are enumerated in the following text, for

ease of comparison, they are summarized in Table (5.3).
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Run 1 Run 2
d(gm) | L(m) | d(um) L (m)

1 K to still 500 0.15 250 0.3

still to CP 500 0.15 250 0.3

CP to MC 500 0.2 250 0.4

MC to cell 500 0.2 ]0.13,0.17, 0.05 | 250, 900, 125

Run 3 Run 4 Run 5
d (pm) L (m) d (gm) | L (m) | d (um) | L (m)

1 K to still 250 0.30 200 1 200 1
still to CP 250 0.3 200 1 150 1
CP to MC 250 0.5 200 1 200 1
MC to cell | 250 to 125 | 0.2 to 0.02 | 200 to 125 | 0.3 125 0.3

Table 5.3: Table describing the approximate diameter (d) in gm and length (L) in m of the fill line between
the 1 K plate, still, cold plate (CP), mixing chamber (MC), and cell for each run of the experiment. Not
shown is the capillary connecting the room temperature valve at the top of the fridge to the 1 K stage, which
is 300 pm in diameter and ~ 1.3 m in length; this line was provided by Oxford and has remained unaltered.
Over time, the capillaries below 1 K have been increased in length and decreased in diameter in order to

limit thermal conduction and acoustic losses.

Run

Suspension

Final Microwave Connection

Other Notes

Run 1
Run 2
Run 3

Run 4

Run 5

Copper L brackets
Copper square
Copper wire

Copper wire

Silver rod

Nb-Nb coax, 2.2 mm OD
BeCu-BeCu coax, 0.9 mm OD
BeCu-BeCu coax, 0.9 mm OD

NbTi-NbTi coax, 0.9 mm OD

NbTi-NbTi coax, 0.9 mm OD

Sintered-silver heat

exchangers, New cell lid

Fixed continuous heat

exchanger

Table 5.4: Table summarizing the changes in the experimental setup for all fridge runs, including the choice

of cavity suspension, the final coaxial cabling to the cell, and other important notes.
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5.5.2 Runl

In the initial run of the experiment, the cell was bolted rigidly to the mixing chamber with
copper L brackets (drawings shown in Appendix F.1). As pictured in Fig. (5.11a), the
brackets were secured to the cell halfway along its length, with one on each side. The
midpoint of the cell is a good choice for mounting the suspension system because several
acoustic modes have a longitudinal node at this location, including the modes at 2990, 8669,
9030, and 12167 Hz (see Fig. (2.4)). The final microwave connections to the cell were made
with 50 €2, niobium-niobium, 2.2 mm diameter semi rigid coax (Coax Co., SC-219/50-Nb-
Nb) [154]. The fill line, from the 1 K stage to the mixing chamber, was a continuous piece of
500 pm ID nickel capillary with length approximately equal to the length of the fridge, 0.5 m
(see Table (5.3)). The line was secured at each stage by soldering the outside of the capillary
into a 0.32 c¢m thick copper piece which was bolted to fridge. On the mixing chamber the
fill line was soldered into the ballast volume. The final connection from the ballast volume
to the cell was about 0.2 m long and was made with the same 500 gm ID nickel capillary.

Data from Run 1 is shown in Fig. (5.13). For the higher @) modes, at temperatures
between ~ 150 and 300 mK, we note that the @ is T* dependent, as expected from the
three phonon process (see Eqn. (4.2)). However the @s saturate around 100 mK and the
highest measured @ is only 6.9-10° in the 12 kHz mode. It is also worth noting that at " base”
temperature, the mixing chamber was above 30 mK and the cold plate and still temperatures
were 230 mK and 1.04 K, respectively. These temperatures are far above those measured
in the fridge installation run, where no experimental cabling or capillaries were present. At
base temperature during the installation run, the mixing chamber temperature was 5.5 mK
(measured with a Co-60 nuclear orientation thermometer), the cold plate temperature was
52 mK, and the still temperature was 915 mK. The higher temperatures during Run 1 were
attributed to the heat load of the helium fill line.
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Figure 5.13: Superfliud acoustic @) versus mixing chamber temperature for the first run (circles) and second
run (triangles) of the experiment. Each color denotes a different mode, as shown in the legend. The red
line shows the expected loss from the 3PP (Eqn. (4.2)) and the blue line shows the expected loss from the
helium-3 impurity (Eqn. (4.5)), assuming wys /27 = 8115 Hz.

5.5.3 Run 2

In the second run of the experiment, we focused on improving the suspension losses of the
acoustic mode. Instead of copper L brackets, the cell was attached to the mixing chamber
with a square copper bracket bolted to the center of the niobium cell (see Fig. (5.11b)). A
drawing of this bracket is shown in Appendix F.2. In addition, the 2.2 mm diameter niobium
coaxial cables used to make the final microwave connection to the cell were replaced with

beryllium copper-beryllium copper coaxial cables, with a diameter of 0.9 mm. Beryllium
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copper is significantly more flexible than niobium; we thought that the increased flexibility
of the cables, coupled with their thinner diameter, would reduce the acoustic losses from the
cell to the mixing chamber.

To decrease the heat load from the helium fill line, the nickel capillary was replaced with
stainless steel (SS) capillaries of half the diameter (250 pm ID) and twice the length between
stages (see Table (5.3)). At each stage the capillaries were again soldered into a copper piece
bolted to the dilution refrigerator. The final connection, from the mixing chamber ballast
volume to the cell, was made with three sections of capillary: 12 cm of SS with a 250 pum
ID, followed by 17 c¢m of brass with a 900 um ID, followed by 5 cm of SS with a 125 pm ID.
As one can see from the mode profiles (Fig. (2.4)), the superfluid acoustic modes will force
helium in and out of the cell through the fill line connection. The final 125 pm ID capillary
was used in order to limit acoustic losses from this process.

Data from Run 2 is shown as triangles in Fig. (5.13); because there was no significant
improvement in (), only low temperature points were taken for each mode. The highest @)
improved by about a factor of 2, to 14 - 10° in the 10113 Hz mode. In Run 2, the mixing
chamber, cold plate, and still reached temperatures of 30, 140, and 955 mK; as in Run 1,

these temperatures are above base for the dilution refrigerator and suggest a heat leak.

5.54 Run 3

Multiple changes aimed at reducing acoustic loss were made to the setup in Run 3. First, a
new niobium cell lid was fabricated, where the helium fill line and microwave couplers were
moved to the location of the single radial node in the acoustic modes at 8115, 8669, and
10113 Hz, thereby reducing loss from acoustic radiation into the fill line (see Fig. (2.4)).
As with the original cell lid, the new lid was polished and etched following the procedure
described in Section 5.1. Microwave Qs of over 10® were again measured in the TEy;; mode
at T'< 2 K.

Additionally, the suspension loss was reduced by replacing the rigid copper mounting

block with a copper wire, 0.13 cm in diameter and 6.7 cm long. At each end, the wire
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was wrapped around a copper cylinder and brazed in place with silver solder. The copper
cylinders were machined with through holes, allowing them to be bolted to the fridge or
cell. As with the square bracket, the copper mounting wire was attached to the midpoint
of the cell, as shown in Fig. (5.1c). We note here that the use of a wire for mounting also
decreases the thermal conductance between the niobium cell and the base plate, making
it more difficult to cool the cell (see Section 2.5.1). The thermal resistance of a wire is
given by R = L/AA where )\ is the thermal conductivity and L and A are the length and
cross-sectional area of the wire. For our mounting wire, which was not high purity copper
and was given no heat treatment, we expect modest RRR values; a reasonable estimate is
RRR =~ 50. Therefore we find a low temperature thermal conductivity of A = 65-7 W/m- K
and a resistance of R = 770/7 K/W. From our thermal model in Section 2.5.1, the resistance
of the suspension wire will equal the Kapitza resistance (Rg) between the helium and the
cell at T = 228 mK and the resistance of the suspension wire will equal Ry /10 at 72 mK.
At 1 K, the conductance of the suspension wire will be 1/R = 0.0013 W /K, meaning that
0.0013 Watts across the wire produces a 1 K temperature drop.

Our final improvement was to add sintered-silver heat exchangers to the fill line at three
stages: the still, cold plate, and mixing chamber. The heat exchangers lower the Kapitza
boundary resistance between the helium in the fill line and the dilution refrigerator. As
discussed in Section 2.5.1, because the acoustic impedance mismatch between helium and
metals is high, large surface areas are required to achieve small values of Rg; we added
~ 6.6 m? of surface area to the base plate, and an additional ~ 3.3 m? at 100 mK and 975
mK. By thermally anchoring the fill line at each stage, heat leaks through the helium from
higher stages of the fridge are limited. We also increased the thermal resistance of the fill
line between stages of the DR by using capillaries of smaller diameter (250 pm), and longer
length (1 m between each stage).

Fig. (5.15) shows the data from Run 3 as circles. The high temperature data points
were extended from 450 mK to 1000 mK showing a turn around in dissipation for both the
8115 and 10113 Hz modes. At temperatures above 1 K, the ) was not measured because

the acoustic modes became too difficult to find. At low temperatures, where the arctan
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functions of Eqn. (4.2) simplify to a factor of 7/2, we see the expected frequency independent
Q, increasing as 1/T%. In this regime wr > 1, and the absorption is analogous to the
Landau-Rumer regime in solids [87,88]. Here w is the acoustic mode frequency and 7 =
1/(0.9-1077%) is the thermal phonon lifetime.

As temperature increases, the thermal phonon lifetime decreases and wr will eventually
pass through one. For the 8115 Hz and 10113 Hz modes, the temperature where wr =1 is
355 or 371 mK, respectively. At this temperature we may expect an increase in dissipation
due to the resonance with the acoustic mode frequency. From our data, we see a clear dip in
@ at = 600 mK; this is within a factor of two of our expectations. Considering the phonon-
phonon collisions only, as in Eqn. (4.2), we expect a turn around in dissipation after wr
crosses one. In Fig. (5.15) we see the dissipation in the 8115 and 10113 Hz modes starts
to decrease above 600 mK. In this high temperature limit, wr < 1, and absorption is in the
Akheiser regime [88,90]. However, we note that Eqn. (4.2) is derived assuming phonons are
the only relevant excitation. The roton population increases exponentially with temperature,
and at about 570 mK, the density of rotons is equal to the density of phonons. Once the
roton population becomes relevant, roton-phonon and roton-roton collisions also contribute
to the dissipation and we no longer expect Eqn. (4.2) to be valid.

During Run 3, we noticed an interesting effect at the higher temperature data points:
the piezo modified the frequency of the TEy;; mode. It became apparent around 450 mK
as the amplitude peaks of the ring down measurements decreased over the data set, and
the effect was more pronounced as temperature increased. Looking at the frequency of the
TEp1; mode showed that the piezo was responsible for driving the frequency shift; see data
from 550 mK in Fig. (5.14). Before the piezo is turned on, the microwave cavity is stable.
After the drive starts (3 V}, is applied to the piezo), it takes about 50 minutes for the cavity
to stabilize to a new frequency, and when the drive is removed, it takes about 55 minutes
for the cavity to return to the original frequency. The cause of this effect is not clear, but
a higher frequency indicates an effectively smaller cavity or a lower density of helium in the
cell. We note that, at higher temperatures, the density of helium changes more quickly with

temperature, and a larger amplitude drive is required on the piezo because of the lower () of
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the acoustic mode. At 550 mK, a 1 kHz shift in the microwave cavity frequency is a relative
change of about 107°% which corresponds to a change in dielectric constant of ~ 2 - 107°%
or a change in helium density of ~ 4 - 107%%. This would be consistent with an increase in
temperature of about 20 mK. In the future, it would be interesting to measure frequency

shift versus piezo power and temperature.
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Figure 5.14: The frequency of the TEy;; mode at 550 mK before and after the 3 V}, piezo drive for the 10
kHz mode is turned on. Notice that, before the drive, the frequency is stable (the 10 and 20 minute plots
are on top of each other), but after the drive is turned on, the mode shifts up in frequency until it reaches
a new stable value (the 50 and 60 min plots are on top of each other). The new value is about 1 kHz above
the original frequency, or ~ 3 cavity linewidths.
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As in Run 2, the highest acoustic () improved; this time to 30 - 10 in the 8115 Hz mode.

In all three high () modes, the acoustic quality factors between 100 and 300 mK improved to
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fit the expected values from the three phonon process (3PP); compare the data in Fig. (5.15)
to the data in Fig. (5.13). We attribute this improvement to better thermalization of the
superfluid helium to the mixing chamber, probably due to the addition of sintered-silver heat
exchangers. Note that the three highest ) modes (8115, 8669, and 10113 Hz) are the three
modes with a radial node. Because of the similarity of their maximum () values (ranging
from 23 —30-10°), and because we expect a frequency independent @ from the 3PP, we were
hopeful that temperature was limiting the acoustic (). Again the fridge temperatures were
well above their expected base values, with the mixing chamber at 40 mK, the cold plate at

290 mK, and the still at 1050 mK.
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Figure 5.15: Superfliud acoustic Q versus mixing chamber temperature for the third run (circles) and fourth
run (triangles) of the experiment. Each color denotes a different mode, as shown in the legend. The red
line shows the expected loss from the 3PP (Eqn. (4.2)), while the navy blue and light blue lines show the
dissipation expected from *He impurities at concentrations of 1076 (Eqn. (4.5)) and 2- 10710 (Eqn. (4.6)),
respectively, assuming in all cases a mode frequency of 8115 Hz.

5.5.5 Run 4

The experimental setup for Run 4 was very similar to the setup used in Run 3. However,
the final microwave connections were made with 50 €2, niobium titanium-niobium titanium
coaxial cables with a diameter of 0.86 mm (SC-086/50-NbTi-NbTi) [154]. Niobium titanium
(NbTi) has a superconducting transition temperature of 9.3 K; at temperatures below 1 K

we expected these cables to have no dielectric loss, and therefore we hoped to reduce heating
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in the microwave connections.

In Run 4, we also added a cryogenic valve to the mixing chamber. The valve is described
more fully in Section 5.6.1, but its operation is summarized here. To close the valve, a bellows
is expanded by pressurization with *He gas to force a Torlon needle into a stainless steel seat.
This actuation requires a separate helium line be added to the dilution refrigerator. Because
the volume in the valve is small (= 3 cm?), the fill line can be made narrow and long to
limit heat leaks without concerns about the difficulty of removing residual water vapor.
The actuation line was made with 1 meter of 150 um ID stainless steel capillary between
each stage. It was thermally anchored with sintered-silver heat exchangers with a surface

2 on the mixing chamber and 3.3 m? each on the cold plate and still. The

area of 6.6 m
heat exchangers were tested to 150 PSI (10.3 bar) to ensure they would survive the valve
actuation pressure.

During Run 4, the cell was first filled at low temperatures and then heated to around T},
where liquid helium is densest. The cryogenic valve was closed, the fill line was evacuated,
and the fridge was allowed to run to base. Unfortunately, upon following this procedure, we
found that the valve was not leak tight to superfluid helium. As illustrated in Fig. (5.16),
the TEg; frequency continued to shift over time as long as the fill line was being pumped on.
We waited for three days with the experiment in this configuration to see if the cell frequency
would stabilize. The frequency continued to shift until the room temperature valve on the
fill line was closed. However, the cryogenic valve serves little purpose in this configuration
because one of the major advantages of such a valve is the ability to evacuate the fill line
above the mixing chamber, thus eliminating the thermal conduction from superfluid film
flow. Consequently, while a cryogenic valve was added in Run 4, because it was not leak

tight to superfluid, it did nothing to improve the base temperature of the fridge or the

superfluid acoustic Q).
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Figure 5.16: The frequency of the TEg1; mode with the cell full of helium, cryogenic valve closed, and fridge
at its base temperature while the fill line from the cryogenic valve to room temperature was evacuated with
a rough pump. Notice that the cell frequency continued to shift upward indicating that the cell was slowly
emptying and the cryogenic valve was not leak tight to superfluid *He.

The most important modification for Run 4 was to improve the cooling power of the
dilution refrigerator. We found that the tubes of the continuous heat exchanger (located
between the 1 K plate and the still) had been inadvertently pressed together creating a
thermal short. This problem was solved by putting thin Teflon shims between tubes of the
exchanger; see Fig. (5.17). The shims effectively eliminated the thermal short and increased
the cooling power at 100 mK (with the cell empty) from 250 yW at the end of Run 3 to 450
uW at the beginning of Run 4.
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Figure 5.17: The continuous heat exchanger of our Kelvinox 400H dilution refrigerator with Teflon shims
inserted between each coil at 90 degree increments.

The final improvement was to replace the standard purity helium (z3 ~ 107%) with an
isotopically purified sample (73 ~ 2-107'%). The switch was made only after initially filling
the cell with standard helium and measuring acoustic Qs approaching 10%. When we realized
that the @ might be limited by the *He impurity, the cell was emptied and warmed to above
4 K to ensure all liquid was removed. The cell was then refilled with the isotopically purified
sample of “He.

The result of these changes on the superfluid acoustic Qs is shown as triangles in Fig.
(5.15). With Run 3 and Run 4 together, the 7" trend in acoustic attenuation is extended
from temperatures of about 400 mK down to 50 mK. In Run 4, the fridge temperatures were
notably improved, with the mixing chamber, cold plate, and still measured at < 20, 108,
and 991 mK, respectively. The quality factor of the 8115 Hz mode increased from 30 - 10°
to 135 - 105, If the acoustic Q was limited by the three phonon process in each case, the
helium temperature dropped from 65 to 44 mK. The highest quality factor ring down was
taken with the fridge temperature at 30 mK and is shown in Fig. (5.18).
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Figure 5.18: A ring down of the 8115 Hz mode, showing the highest quality factor we have measured:
1.35-108. The mixing chamber temperature was 30 mK, but if the @ is limited by the 3PP as given in Eqn.
(4.2), the helium temperature is 44 mK.

Even with the improvements to the fill line and the dilution refrigerator, we found that at
low temperatures, our helium sample had much longer thermalization times than expected
(From Section 2.5.1, we expect 7 = 10 seconds). At the lowest fridge temperature, the
superfluid ) continued to improve slowly day by day, suggesting a long term thermal re-
laxation. Quality factor versus temperature measurements were made by heating the fridge
from its lowest temperature, where the thermometry read < 20 mK and the helium was
thermalized to 44 mK according to the 3PP. As the fridge was warmed in stages, the @

was measured versus time. An exponential fit to these data gives a thermal time constant.
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Data for warming the mixing chamber from 40 to 50, 50 to 60, 60 to 80, and 141 to 200
mK are shown in Fig. (5.19) along with the exponential fits. It would have been ideal to
place a few more points on the higher temperature curves, but nonetheless it is obvious that
the time constants become an order of magnitude smaller between 50 and 200 mK; see Fig.

(5.20). These data suggest there is a problem with thermalizing the helium-4 sample at low

temperatures.
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Figure 5.19: Thermalization curves for the superfluid helium, extracted from the quality factor of the 8115
Hz mode by assuming @ is limited by the 3PP, upon heating the fridge to a) 50 mK, b) 60 mK, c¢) 80 mK,
and d) 200 mK. Data points are shown as red circles; the black line is an exponential fit to the data. The
final fridge temperature and the time constant of the exponential fit are shown on each figure. Notice that
the final temperature of the helium in some cases differs from the mixing chamber temperature.
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Figure 5.20: The thermal time constants calculated from the exponential fits in Fig. (5.19) plotted versus
the final fridge temperature for each data set. The connecting line serves as a guide to the eye only. Notice
that the time constants at low temperatures are extremely long.

Additionally, more work must be done to understand what mechanism limits the quality
factor in the different acoustic modes. Note that of the three modes with a node located
at the fill line, between Runs 3 and 4 the 8119 Hz mode increased in (), the 10113 Hz
mode remained about the same, and the 8669 Hz mode dropped in () by almost an order
of magnitude. Of the modes without a radial node, both the 9033 Hz and 12201 Hz mode
decreased in () while the mode at 5984 Hz saw an increase in () by almost three orders of
magnitude! All of this is surprising given that the only change in the suspension system

between Runs 3 and 4 was to modify the material (but not the diameter) of the final coaxial
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cables from beryllium copper to niobium titanium, which is mechanically stiffer.

Finally, in Run 4 we examined the acoustic frequency versus pressure applied to the
cell; this measurement would demonstrate the tunability of our superfluid oscillator. The
expected change in frequency can be estimated from the compressibility K = —1/V -9V /9P
and the Griineisen constant G = p/cy - dcy/Op = 2.84. Differentiating the density p = m/V
with respect to V' and using the definition of K, one finds that a change in the pressure
applied to the cell will change the density as: dp = pKdP. The Griineisen constant relates
this change in density to a change in the speed of sound from which one can estimate the
frequency shift of the superfluid modes: Af/f = Acy/cy = KGAP ~3.5-107"AP.

While trying to measure this relation experimentally, a difficulty arose because the mi-
crowave frequency (and hence also the acoustic frequency) was not stable over time with
pressure applied to the cell. While we have considered the modification to the acoustic fre-
quency, changes in pressure and helium density also modify the microwave frequency through
the dielectric constant. In our setup, the instability arises because, with the cell pressurized
above one atmosphere, the helium fill line is full of liquid helium up to and above the 4
K plate. From the 4 K stage, the fill line is contained in a thin vacuum tube that passes
through the helium bath up to 300 K. Therefore the thermal environment around the helium
liquid level in the fill line is constantly changing, introducing a significant instability into
the system. A working cryogenic valve would eliminate these issues and enable a frequency

versus temperature measurement.

5.5.6 Run 5

From Run 4, we learned that despite our improvements, the superfluid cell was still not
thermalized to the base temperature of the dilution refrigerator. In Run 5, we addressed
thermalization by replacing the copper wire used to suspend the cell with a 4N silver rod [155],
approximately 1.27 cm in diameter and 6.6 cm in length. A drawing of the rod is shown in
Appendix F.3. After the rod was machined, it was annealed in a helium atmosphere at 850

°C for four hours to increase its thermal conductivity. Assuming we achieved RRR = 1000,
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we expected a thermal conductivity of A = 61 -7 W/m-K and a resistance of R =9 K/W.
This thermal resistance is about a factor of 100 lower than the resistance of the copper wire
suspension used in Runs 3 and 4. The thermal resistance of the silver rod equals the Kapitza
resistance between the helium and the niobium cell (Rg) at 2 K and equals R /10 at 670
mK. Therefore we fully expected the final helium temperature to be limited by Rg.

To ensure good thermal connections in the suspension, the silver rod was cleaned, and
annealed 25 pm thick, 99.95% gold foil was pressed between the rod and the cell and the rod
and the fridge. The rod was attached on both ends with brass bolts and tungsten washers.
A brass bolt is used because its relative linear thermal expansion coefficient from 300 K to
0 K is appess = AL/L - 100 = 0.384%, very similar to that of silver, as, = 0.410%. In
tungsten, the value, ay = 0.086%, is much smaller, so as the system cools down, the brass
bolt contracts onto the tungsten washer, and the silver rod is pressed more tightly against
the cell and the fridge, ensuring good thermal contact.

The fill line was identical to Run 4 except the section between the still and the cold plate
was replaced with a 150 um ID capillary (see Table (5.3)). We made this change because,
even in Run 4, the cold plate was well above the temperature from the test run of the
dilution refrigerator (102 mK compared to 56 mK). As discussed in Section 5.5.1, because
the thermal conductivity of *He falls as T°, we expected the lower temperature sections of
the fill line to provide very little heat conduction, so we left them unchanged. The result
was that the mixing chamber, cold plate and still reached temperatures of < 20, 118, and
965 mK, respectively, which was very similar to Run 4.

The data from Run 5 are shown in Fig. (5.21). Notice that the highest ) was limited
to 1.3 - 107, in the 6 kHz mode, approximately one order of magnitude below the highest Q
measured in Run 4. In the 8115 Hz mode, which had the highest ) in Run 4, we measured
a () two orders of magnitude below that maximum value. Because the suspension was the
only change between Run 4 and Run 5, we infer that the drop in quality factors is due to

increased suspension loss from using a rigid connection as opposed to a copper wire.
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Figure 5.21: Superfliud acoustic Q versus mixing chamber temperature. Data from Run 5 are shown as
diamonds at 20 mK. For comparison the data from Runs 3 and 4 are shown as faded circles and triangles,
respectively. Each color denotes a different mode, as shown in the legend. The red line shows the expected
loss from the 3PP (Eqn. (4.2)), while the navy blue and light blue lines show the dissipation expected from
3He impurities at concentrations of 107% (Eqn. (4.5)) and 210719 (Eqn. (4.6)), respectively, assuming in
all cases a mode frequency of 8115 Hz.

In Runs 4 and 5, we also measured heating from dielectric loss by increasing the microwave
pump power and measuring the @) of the acoustic mode with the lowest acoustic loss. As the
helium heats up, the () decreases; the helium temperature can be inferred if it is assumed
that the @ is limited by the 3PP (Eqn. (4.2)). In Run 4, these measurements were done
with the 8115 Hz mode (minimum temperature of 44 mK); in Run 5, we used the 5984 Hz

mode (minimum temperature of 83 mK). Note that in Run 4, the cell was held from a copper
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wire, R ~ 770 K/W, whereas in Run 5 the cell was held from a silver rod, R ~ 9 K/W. The
results of this test are shown in Fig. (5.22). The silver rod used in Run 5 does appear to
limit the heating more effectively then the copper wire used in Run 4. In either case, heating
is evident at incident pump powers < 1uW, which is at least three orders of magnitude
below the powers required to achieve I',,; > I'ys and demonstrate sideband cooling with our
current parameters. These data indicate that we have much more dielectric heating then we
would expect from the high @) of our niobium cavity and the low dielectric loss tangent of
"He (see Section 2.5). For instance, at an incident pump power of 0.4 uW (np =~ 3 - 10'9),
we expect Qpe ~ 1072 W (from Eqn. (2.37)) using the maximum possible value of helium’s
dielectric loss tangent, tan(d) = 107'°. However, because in both runs the helium reached
a temperature of ~ 110 mK and the mixing chamber remained at base, the difference in
temperature between the helium and base stage is about 90 mK. Therefore the heating we
find experimentally is Q. ~ 1076 W, a difference of six orders of magnitude! We conclude
that more work must be done to limit the dielectric heating, and improving the thermal

connection through the suspension is not an adequate solution.
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Figure 5.22: Helium temperature inferred from the measured superfluid acoustic quality factor versus power
incident on the cavity. The blue and red lines indicate that the cell is attached to the mixing chamber with
a copper wire (Run 4) or a silver rod (Run 5), respectively. Note that while the heating is reduced with the
silver rod, the difference between the two setups is not substantial.

In Run 5, we also tested the Pound Drever Hall (PDH) technique as a way of following
changes in the frequency of the microwave oscillator due to pressure or temperature fluctu-
ations in the cell. The circuit we used is shown in Fig. (5.23a). We added 500 Hz sidebands
to the microwave drive with an AM modulator. If the frequency of the cell is constant, the
sidebands will be reflected equally, but as the cell frequency changes, it will move closer to
one of the sidebands and further from the other, and they will be reflected asymmetrically.
Therefore the power in the transmitted sidebands contains information about the detuning

between the source and the cavity. The output from the cavity is mixed down to the 500 Hz
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sideband frequency before it is measured on a lock-in amplifier. The lock-in is adjusted so
that all of the signal is placed into one quadrature to be used as the error signal. One can
check that as the source frequency passes through the cavity resonance, the error signal is
linear and passes through zero. The output of this signal from the lock-in is fed into a PID
controller and ultimately used to feedback on the microwave source frequency. The error
signal from our lock-in as we sweep the microwave generator through the cavity frequency
is shown in Fig. (5.23b). It is linear through zero, as expected. The PDH technique could
be useful for measurements of the acoustic () when the cell is pressurized and the frequency

is unstable.
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Figure 5.23: a) the Pound Drever Hall frequency stabilization circuit. AM modulation is used to add
sidebands to the source before it is incident on the cavity. The signal from the cavity is split in two: one
branch is measured on a spectrum analyzer (SA) and the second is mixed down to the sideband frequency
and measured on a lock-in. One quadrature of the signal from the transmitted sidebands is used as an error
signal, which is first fed into a PID controller and then input to the FM modulation on the source. The red
circuit is at acoustic frequencies and the blue circuit is the error signal. b) the PDH error signal from the

lock-in.
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5.5.7 Planned Runs

Figure 5.24: Pictures of the cell planned for future runs: a) is similar to the copper wire setup used in Runs
3 and 4, but with an annealed 5N silver wire with a diameter of 0.10 cm. The copper tubes to which the
wire is soldered are machined with a smaller diameter section at the top (0.635 cm) so that the wire exits
closer to the cell’s center keeping the cell level. b) shows a different approach to attaching the wire to the
the cell and fridge. One copper piece is bolted to cell (or fridge), and a second copper piece is used to clamp
onto the 0.23 cm diameter silver wire.

After run 5, a sixth run was planned to achieve higher () values and lower dielectric heating.
The cell was to be suspended with an annealed 5N silver wire rather than a copper wire,
improving the thermal conductivity of the suspension system. (For instance, a silver wire
with diameter 0.10 cm and length 6.6 cm with RRR = 5000 will have a thermal resistance of
only R = 280 K/W. See Section 2.5.1 for discussion.) The coupling loops in direct contact
with the helium, which were previously made from phosphor bronze, were to be replaced
with superconducting NbTi cable with the intention of reducing heating from dielectric loss
as discussed in Section 5.5.6. Finally, the fill line and cell were to be cleaned at room
temperature with an isotopically purified sample of helium, to ensure that 3He impurities
were adequately removed.

However, no further experiments were done because we ran into difficulty achieving leak
tight seals in the niobium cell after taking it apart. Niobium is a malleable metal, and over

time and repeated trials, the copper caps used for the microwave connections had formed
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depressions in the niobium lid as shown in Fig. (5.25). We believe this is the cause of
multiple low temperature leaks which prevented operation of the experiment. The lid was

sent for re-machining, and in the future leak tight indium seals should again be achievable.
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Figure 5.25: Damage to the niobium lid preventing leak tight operation of the cell

5.6 Future Improvements

5.6.1 Superfluid Valve

Ultimately, to limit the thermal conduction between dilution refrigerator stages caused by
superfluid film flow, a leak tight cryogenic valve will be required. The valve will allow the fill
line to be evacuated above the mixing chamber. An empty fill line will enable the dilution
refrigerator to reach lower temperatures and remove the heat leak to the cell from higher
temperature stages.

We worked on two valve designs during my PhD. The first design was assembled and
tested for Run 4, where it failed to create a seal leak tight to superfluid. Based on experience
with the first design, a second, improved design was conceived and machined; however, it

was never tested.
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The valve is comprised of six pieces: the needle, plunger, bellows, guide, seal, and housing.
The final design is shown in Fig. (5.26) and detailed drawings are in Appendix D. The valve
is actuated by pressure, which expands a bellows, forcing a Torlon needle into a stainless
steel seat and creating a leak tight seal. When the valve is fully assembled, the needle is
threaded into the stainless steel plunger which is inserted into the stainless steel guide for
alignment. The nickel bellows (Servometer FC-13-L [156]) are sealed to both the plunger
and the guide with a low temperature solder. A brass actuation tube is brazed into the
guide, and when gas flows into this tube, the bellows is filled. The housing is used to hold
the valve together; both the guide and the seal are secured to the housing with indium seals.
The brass tubes used for flowing gas into and out of the valve are brazed into holes in the
seal. When the valve is closed, the Torlon needle is forced into one of these ports, closing it
off from the other.

To assemble and test the valve one first cleans the guide, plunger, and bellows with
IPA and methanol. (Acetone can eat through metals and should be used only cautiously
with the thin metal bellows). These pieces should be cleaned well as the actuation volume
will not be accessible after the bellows are soldered in place. After cleaning, a fluxless low
temperature solder can be used to attach the bellows to both the plunger and the guide. The
solder joints must be leak checked both at room temperature and 77 K. If they are not leak
tight, the actuation gas will slowly leak into the interior of the valve, and the valve will not
close. When leak checking these joints, great care must be taken not to deform the bellows
by applying too much differential pressure to the interior. For instance, an atmosphere of
pressure difference will expand the bellows past its deformation point.

For the valve to be leak tight to superfluid, the Torlon tip must be machined very well,
with a clean, smooth finish. To ensure that the angle of the needle is correct, the lathe should
be the last tool ever to touch the Torlon. Additionally, the hole in the stainless steel seal
where the Torlon needle makes contact should be polished after the seal is machined. The
polishing can be done with a wooden toothpick and polishing paste. Start with coarser grits
of polish and move to finer grits until the surface is scratch free under an optical microscope.

The polishing process is a very time consuming but essential step.
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Next the valve must be checked for alignment. Proper alignment between the needle
and seal is essential for the valve to close and is one of the biggest difficulties in making a
mechanical valve. Slip fits are required between the guide and housing, plunger and needle,
and housing and seal to keep the seal parallel to the plunger. In design 2, the plunger is
fitted into the guide with 0.002” of clearance to allow the needle some play in making the
seal.

One way to check for alignment at room temperature is to ink the seal with a permanent
marker, assemble the valve, and close the needle with just enough pressure to make contact.
The ink from the seal will form a ring on the needle. If that ring is unbroken, the alignment
is satisfactory. On most trials, the ring will be an incomplete circle and either a different
orientation of the seal can be tried, or different needle and seal combinations can be exper-
imented with. The room temperature ink test requires great caution as the Torlon needle
can be deformed at room temperature if too much pressure is applied. Once the needle is
deformed it will never seat correctly again.

When the valve is aligned at room temperature, it should be re-assembled and leak
checked at 300K and 77K. If the valve is leak tight one can also check that it closes at 77 K
where Torlon is no longer deformable and will not be damaged by contact with the seal. All
leak tests were done on a probe with three fill lines. A line designed to handle high pressure
was connected to the actuation port of the valve, and the other two lines were connected to
the input and output of the valve. In this way, all three ports of the valve could be checked
for leaks into the probe and the closure of the valve could be checked separately. Helium gas
was flowed from the input to the output of the valve with the output capillary emerged into
IPA. Initially, we looked for a rough closure by observing the speed of the bubbling into the
IPA. When the bubbling stopped, the output was connected to a leak detector for a final
test of valve closure. To ensure the valve will be leak tight during our experiment, this test
must be repeated with superfluid helium on the input line; however we did not have an easy
way of doing that test without assembling the system on the dilution refrigerator.

The bellows acts like a spring; for the Servometer FC-13-L the spring rate is 40.33 1b/in.

With this spring rate, the surface area of our plunger (= 0.43 in?), and the distance between
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the needle tip and seal, we can estimate the pressure required to shut the valve. Assuming
a linear spring, the force F' is related to displacement x through the spring constant £ by
Hooke’s law, F' = kx. Pressure is defined as P = F//A, where A is the area, so eliminating
F we find that the total displacement of the plunger will be z = P - A/k.

In the first design, assuming the indium seals did not add height to the valve, the needle
traveled about 0.050” to make contact with the seal. Given the bellows spring rate of 40.33
Ib/in., this distance required about 5 PSI (0.3 bar) of actuation pressure. The circumference
of the needle at contact was 0.070”. During trial and error with the ink test, we found that
the needle could make a good seal only when the plunger had more play inside the guide,
so we modified the design from one with a slip fit to one with 0.002” of clearance. This
modification yielded a valve which appeared to close (no bubbling from the output capillary
immersed in IPA) at room temperature with 24 PSI (1.7 bar) applied to the actuation port.
At 77 K, 50 PSI (3.4 bar) of actuation pressure was required to see a significant decrease
in bubbling. At 85 PSI (5.9 bar) the valve was connected to the leak detector and the
leak rate was 8 - 107> mbar 17! s71. As the actuation pressure was increased, the leak rate
decreased, until a pressure of about 130 PSI (9 bar) where the leak rate was 4.2 - 107" mbar
17! s7!. The leak rate slowly dropped over time but further increases in pressure did not
lead to noticeable decreases in leak rate. The valve appeared to make a leak tight seal at
77 K; however, the pressure required was much higher then we expected. As the actuation
pressure was removed from the valve, at about 120 PSI (8.3 bar) the leak rate noticeably
increased again. The valve was cycled to room temperature and back to 77 K, the leak test
was repeated, and the valve again closed. This valve was mounted to the mixing chamber of
the dilution refrigerator for use in Run 4. While the valve was again leak tight at 77 K, it
was not leak tight to superfluid helium. Actuation pressures up to 185 PSI (12.8 bar) were
tried, but to no avail.

Because we found unexpectedly high pressures were necessary to close design 1 of the
valve, we reduced the circumference of the sealing contact area in design 2, from 0.070” to
0.020”. We also decreased the travel distance for the tip to only 0.005”, requiring a pressure
of < 1 PSI (< 0.07 bar). Finally we simplified the design of the Torlon needle tip, making it
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easier to machine a quality surface.

Housing

Needle

Figure 5.26: Pictures of machined valve pieces for design 2. The housing is brass, the guide, plunger, and
seal are stainless steel, the needle is Torlon, and the bellows are nickel. Here the bellows have already been
soldered to the plunger and guide.

5.6.2 Decreasing Suspension Loss

Improving the acoustic @ beyond 10® may also require limiting clamping losses. In our
current setup, there are four mechanical connections to the cell: one each for the suspension
and the fill line and two for microwave connections. A simple way to reduce suspension
loss is to replace the copper suspension wire with a higher QQ material (such as silver) [50].
Additionally, it is possible to eliminate one microwave connection by operating the niobium
cavity in reflection or to eliminate both microwave connections by using antenna coupling
[143]. The fill line can be removed by welding the cavity lid in place and pre-filling the cell
to a pressure of 2.3- 107 Pa (230 bar) at 77 K or 9- 107 Pa (900 bar) at 300 K. Alternatively,
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the fill line and suspension wire can be combined to a single connection.

5.6.3 Decreased Dielectric Heating

In order to limit the dielectric heating observed at high pump powers as described in Section
5.5.6 and shown in Fig. (5.22), we will eliminate all normal metals in the microwave lines. We
have a new design for coupling to the cell using only aluminum (superconducting T¢ = 1.2
K) and Stycast 1266, which has excellent machinability. In this design, a circular Stycast
piece with a center hole is sealed with Stycast to an aluminum cap which is sealed to the
niobium lid with indium. A superconducting coaxial cable (such as NbTi-NbTi) is stripped
down to its inner conductor and inserted through the Stycast piece. The cable is held in
place with a U shaped clamping piece while the microwave coupling is tested. The cable can
be moved further into the cavity or pulled further out until the desired microwave coupling
strength is obtained; Stycast is then used to make the final seal between the inner conductor
of the coax and the circular Stycast piece. The downside of this design is that three seals

(two Stycast and one indium) must be made leak tight for each microwave coupler.

5.7 Sapphire

As described in Section 2.3.6, we also investigated an optomechanical design using a sapphire
whispering gallery mode resonator as the microwave cavity. Inside the sapphire resonator is
a hollow annulus which is filled with superfluid He. The cavity was made from two separate
pieces of sapphire: a bottom piece, machined with the annular helium cavity and a fill line
(Fig. (5.27a)) and a top piece which is a simple cylinder (Fig. (5.27b)). Detailed CAD
drawings for the sapphire design are shown in Appendix G. The final sapphire resonator was
made by bonding together the top and bottom pieces; a van der Waals bond will form between
clean, polished pieces of sapphire that are pressed together and heated. This bonding process
is available commercially from Onyx Optics [157] under the trademarked name Adhesive Free

Bond. The final bonded and polished cavity is shown in Fig. (5.28).
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Fig. (5.27c) shows the test piece which was made with the same final dimensions as the
bonded cavity. The test piece was used to understand the microwave properties of the sap-
phire resonator. Transmission measurements of a whispering gallery mode (WGM) resonator
are made by coupling to the evanescent microwave fields. The sapphire resonator was held in
an aluminum cavity so that the microwave couplers could be conveniently mounted near the
sapphire and adjusted. The aluminum cavity also limits the microwave losses from leakage
of the evanescent fields of the WGM resonator. Microwave Qs of 2 — 4 - 105 were measured
with the test piece at 77K. Data from 300K (where the mode frequency is 10.97 GHz) and
77K (11.06 GHz) are shown in Fig. (5.29a). Each whispering gallery mode is degenerate,
comprised of modes propagating in the clockwise and counterclockwise directions. In the
case of Fig. (5.29a) the degeneracy is broken at 77K and the two modes are separated by
about 60 kHz.

Figure 5.27: The sapphire pieces after machining: a) the bottom piece of the cavity design, showing the
annular cavity that will be filled with helium, b) the top piece of the cavity design, c) the test piece of equal
size to the final bonded piece, before polishing.
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Figure 5.28: The bonded and polished sapphire cavity: a) side view. Note the discontinuity in the outer
edge at the location of the bond line, b) top view, ¢) view from the top edge with the cavity sitting in the
base of the aluminum shielding cavity. Notice the fill line connecting the annular cavity to the base of the
sapphire mushroom.

While the microwave modes of the test piece had reasonable () factors, measurements of
the microwave spectrum of the bonded cavity showed only very lossy modes. The modes
were so low ) that they were difficult to locate; an example is shown in Fig.(5.29b). One
explanation for the low @ is the discontinuity of the bond line, which is clearly noticeable
in Fig. (5.28a). One can also see the effect of the bond on incident light at the top and
bottom edges of the piece in Fig. (5.28b). In addition, the inner annular cavity surface is
not polished. These imperfections exist in regions where the microwave field amplitude is
high and must contribute significantly to the loss tangent.

Finally we note that a problem with the sapphire design is that the optomechanical
coupling is ~ 100 times smaller than in the niobium cavity design. The smaller coupling
arises because the WGM is mainly located within the sapphire, where it does not overlap
with the helium acoustic modes. Given that the optomechanical coupling rate is already
a difficulty in the niobium cavity setup, it would be best to alter the sapphire design to

improve this parameter.
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Figure 5.29: a) Transmission measurements of the highest @) mode of the test resonator (no annular cavity)
at both 300K (red, fo = 10.97 GHz) and 77K (blue, fo = 11.06 GHz). At 300 K, the Q is 66 - 103, and at
77 K the @Qs of the left and right peaks are 2.4 -10% and 2.8 - 10%, respectively. b) The highest quality factor
”"mode” that could be found at 77K in the spectrum of the bonded resonator, fy = 11.05 GHz.
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Chapter 6
Outlook

6.1 Ground State Cooling

As discussed in Chapter 2, one of the most interesting directions in the field of optomechanics
has been the ability to cool macroscopic oscillators to their quantum ground state and to
observe quantum limited behavior. Here we address the prospects for achieving ground state
cooling in our superfluid acoustic resonator.

As discussed in Chapter 3, in the absence of heating limitations, the final occupation of
the mechanical mode is given by:

th opt
g+ C-nfy

where nf is the thermal occupation of the mechanics, n?\ﬁt is the occupation of the optical
mode, C' = T,/ is the cooperativity, Top = 493 /Kot - np is the optomechanical coupling
rate, Ko is the microwave cavity linewidth, gy = dw/0x - Axzp is the single photon optome-
chanical coupling rate, np is the number of pump photons in the cavity, vy = wa/Qas is the
intrinsic loss rate of the mechanics, wy, is the mechanical frequency, and @), is the mechanical
quality factor. As the cooperativity increases, the occupation of the mechanics asymptotes
to the occupation of the optical mode. In our niobium cavity, the TEy; mode frequency is
10.6 GHz; from the Boltzmann relation, n'* = 1/ (ehw/kBT — 1), this mode is easily in its

ground state even at 700 mK. While our intrinsic gy is small, (currently go = —107% - 27
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Hz in the 8115 Hz mode), C' can be made large by increasing the number of pump photons
np. As discussed in Section 2.5, we expect to be able to achieve large pump powers without
heating the system.
The biggest difficulty we face is that the microwave cavity will be occupied far above
its thermal value, for instance by phase noise of the sideband cooling tone. As detailed in
opt __

Chapter 3, this occupation will be given by: n%; = Sheise/ e - Kin/Kior. Therefore increasing

np of the sideband cooling tone will eventually result in an increase in mechanical occupation.
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Figure 6.1: The phonon occupation of the superfluid acoustic mode versus the number of pump photons
(np) in the sideband cooling tone, ignoring the effects of dielectric heating, for three starting temperatures:
40 (blue), 20 (green) and 10 mK (red), assuming that @ is limited by temperature. In each case, the curve
that continues to drop with increasing photon number ignores the effect of source phase noise, while the
curve that reaches a local minimum includes the effect. The black curves denote sources of various phase
noise (—140, —160, —180, —200 dBc/Hz), as labeled on the figure.

The phonon occupations that can be achieved with our current system, assuming that
mechanical () is limited by temperature through the 3PP and that we can achieve an internal

microwave @ of 10° (where kj, = Kout = Kint), are shown in Fig. (6.1). Note that here we
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have ignored the effects of dielectric heating. The occupation resultant from the phase
noise of the microwave source is shown for sources with four different phase noise floors:
L (10 kHz) = —140,—160, —180, and — 200 dBc/Hz. For reference, with the parameters we
have assumed, the conversion between pump photon number (np) and power incident on the
cavity (W;,) is about W;, = 5-1071%np.

Finally, we address heating from dielectric loss in the system. The power dissipated in the
niobium cell will be given by Eqn. (2.38) where we assume Qy,; = 10°. Similarly, the dielec-
tric loss in the helium itself will be given by Eqn. (2.37) where we assume tan (§) = 1071°.
We note, however, that this is only the best limit which has been placed on the helium loss
tangent experimentally; in fact tan (J) is expected to be much lower, so we can consider this
a "worst case” value. In Section 2.5, we calculated the time constant of thermalization be-
tween the helium and the niobium and the cooling power of the fridge. With these relations,
plus the equations for dielectric heating, we can calculate how much the helium temperature
will increase using Eqn. (2.40). We use this increased helium temperature to calculate the
occupation of the acoustic mode (n%) and the mechanical damping rate (7). The phonon
occupations which are obtained including both the source phase noise and the effects of
dielectric heating are shown in Fig. (6.2) for initial temperatures of 10, 20, and 40 mK and
phase noise values of £ (10 kHz) = —140, —160, —180, and — 200 dBc/Hz. Notice that even
with a starting temperature of 10 mK, and a ”"worst case” assumption of tan(§) = 1071,
dielectric heating does not increase the acoustic mode occupation until np > 10*2. If we can
remove all sources of dielectric loss aside from the helium and the niobium cell, achieving
large pump powers in this system looks very promising.

Note that the lowest phase noise source available in the lab during the time-frame of this
work has a phase noise of £ (10 kHz) ~ —110 dBc/Hz. The best commercially available
source is the Agilent E8257D PSG with low phase noise options [158], which has a phase
noise on a 10 GHz carrier of £ (10 kHz) ~ —130 dBc/Hz. However, as we note from Fig.
(6.1), achieving sideband cooling in the superfluid acoustic resonator requires a source with
a phase noise lower than the best commercially available source can provide. Because of the

phase noise requirements, ground state cooling in our superfluid optomechanical system with
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its current parameters does not look promising. If we increase gy by building a less massive

oscillator, ground state cooling may be possible.
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Figure 6.2: The phonon occupation of the superfluid acoustic mode versus the number of pump photons
(np) in the sideband cooling tone, including the effects of dielectric heating, for three starting temperatures:
40 (blue), 20 (green) and 10 mK (red), assuming that @Q is limited by temperature. In each case, the curve
that continues to drop with increasing photon number ignores the effects of heating and source phase noise,
while the curve that reaches a local minimum includes both effects. The black curves denote sources of
various phase noise (—140, —160, —180, —200 dBc/Hz), as labeled on the figure.

6.1.1 Low Phase Noise Microwave Source

Low phase noise microwave sources have a broad range of applications, from time keep-
ing [159] to tests of fundamental physics [160]. There are many different implementations,
including sources based on microwave frequency sapphire whispering gallery modes [161-163],
sources based on optical frequency division of lasers [164], and sources based on multiplying

up a low phase noise low frequency microwave crystal [165].
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Figure 6.3: A schematic of our low phase noise microwave source as described in the text. The left circuit
is the self resonant loop of a sapphire whispering gallery mode resonator, with control loops for both phase
(red) and amplitude (blue). The right circuit consists of a microwave source and a divider and provides

tunability to the source.

Because we require lower phase noise than any commercially available source can provide

(see Fig. 6.1), we worked on a custom low phase noise source. It is based on the self resonant

loop of a sapphire whispering gallery mode oscillator; a diagram of our source is shown in Fig.
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(6.3). In the ideal case, the phase noise of such a source is governed by Leeson’s equation:

L (for5) = 10log ((ﬁ;]jff) <1 + (2fof;fQ>2> (1 + ffjf)> : (6.2)

where f,;r is the frequency from carrier, I is the noise figure of the amplifier, P, is the

power incident on the sapphire, fo is the flicker frequency of the amplifier, and fy and @
are the frequency and quality factor of the sapphire WGM resonator. To our knowledge,
Tobar [162] has built the lowest phase noise microwave source of this type. It displays a
phase noise of £ (10 kHz) = —170 dBc/Hz on a 10 GHz carrier. Assuming our current best
acoustic Qy; = 10® at a temperature of 44 mK, and assuming we can achieve a microwave
Qc = 10° with np = 10?, this source would lower our detection noise temperature from 370
K (with the best source in the lab) to 20 mK. A detection temperature of 20 mK would
enable us to measure the thermal motion of our superfluid acoustic modes.

A diagram of our source is shown in Fig. (6.3). The self resonant loop provides a low
phase noise source at a single frequency, one of the eigenfrequencies of the sapphire disk,
as chosen by a bandpass filter. To maintain a stable frequency and amplitude over time,
the sapphire disk is temperature regulated at 80 K while the room temperature electronics
are temperature regulated at about 291 K. The frequency is further stabilized with a Pound
Drever Hall (PDH) feedback loop. The PDH sidebands are applied using a voltage controlled
phase shifter. The sidebands reflect from the sapphire cavity and, if the phase of the loop has
changed, there will also be a reflected signal at the previous sapphire cavity eigenfrequency.
The reflected signals are detected with a power diode. From the power diode, the signal
is measured on a lock-in amplifier to produce an error signal which tunes a second voltage
controlled phase shifter through a PID controller. This phase shifter corrects for any change
in phase as given by the error signal. The amplitude is stabilized with a separate loop. the
first step is to measure a fraction of the power incident on the sapphire cavity. This measured
power is fed into a PID which adjusts a voltage controlled attenuator to maintain a constant
power.

The entire self resonant loop can provide a source only at a single frequency; in our setup
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that frequency is 10.583 GHz, which is about 20 MHz away from the frequency required for
the superfluid optomechanics experiment. To get to the final required frequency, the source
has a second arm which provides tunability; this tuning frequency is mixed with the sapphire
frequency to achieve the final frequency needed for the experiment: wsr = Wwan + Wiune-
This second arm is low phase noise because of its low frequency. We take a commercially
available low phase noise microwave source and divide it down until we achieve the ~ 20
MHz signal. Each division lowers the microwave phase noise by 6 dB. For example, if we
begin with a 1 GHz signal with a phase noise of —135 dBc/Hz, we can divide the frequency
five times and end with a 20 MHz signal with a phase noise —165 dBc/Hz.

While we expect this custom built source to have very low phase noise, it is still a work in
progress. During the timeframe of this thesis, it was not able to produce a frequency stable,
low phase noise signal that could be used for the optomechanical experiment.

It is also possible to filter the phase noise of the microwave source using a superconducting
filter cavity such as the niobium resonator used for the cell. The amount of filtering that can
be achieved will be determined by the linewidth of this cavity xr and the offset frequency
(for sideband cooling, A = w)y) at which the filtering is required. The filtered power (W tier)
will be related to the input power (W) as:

Wi

W’L er e
T =9 4 20 Jrp)?

(6.3)

A reasonable achievable microwave ) in niobium is @ = 10° and our mechanical mode

frequency is w = 27 - 8115 Hz.

6.2 Gravitational Wave Detector

Given the relatively large mass of our system (m = 6 g), the zero point motion at low
temperatures is quite small. For instance at 10 mK, zy, = /kgT/hwy ~ 10716 m. If we
imagine the helium as a mass on a spring within the niobium resonator, the motion of the

spring is described by the frequency and quality factor of the superfluid acoustic resonator.
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Because the motion of the cell is coupled to the motion of the helium through this spring,
we expect the amplitude of vibration to be @) times greater for the helium mass than for the
cell. Therefore if the amplitude of the helium’s motion is limited by temperature, and we
reach a superfluid acoustic ) ~ 10'°, we expect motion of the cell on the order of 10726 m,
or a strain on the order of 1072°. With displacement sensitivities on this scale, one naturally
considers using the system as a sensitive force detector.

One area of recent interest is gravitational wave astronomy, giving the exciting first
detection of gravitational waves by the LIGO collaboration [166]. Both LIGO interferometers
detected the signal of two black holes coalescing, separated by the 10 ms travel time between
them, in September 2015. While LIGO is a broadband detector, ideal for detecting short
term, high strain events, there are many astrophysical sources of gravitational waves.

Here we consider using the superfluid optomechanical system as a resonant bar detec-
tor, much like a Weber bar [167], for sources of continuous gravitational waves. We are
specifically interested in pulsars, which are stars with a misalignment between their spin
and electromagnetic axes. For an asymmetric distribution of mass around their spin axis,
pulsars are thought to emit gravitational radiation at frequencies fow = 2fs where fg is
the frequency at which they spin. Pulsars are an ideal source because their frequencies are
well known and stable. Additionally, their frequencies range above 1 kHz, where we could
feasibly build a helium resonant detector. The frequencies of pulsars will vary over time,
not only from Doppler shifts from the relative motion of the Earth and the pulsar but also
due to random glitches. The frequency stability is about df/f ~ 107 — 10~ but older
pulsars are more stable. [168] LIGO and VIRGO have searched unsuccessfully for over 100
pulsars [169], setting a maximum strain limit of h &~ 107%.

Pulsars emit gravitational waves because of their asymmetric mass distribution. The
power of the emitted waves is [170]

G...
P o<y, (6.4)

where Q;; = p fbo dy x;x;dV is the third time derivative of the quadrupole moment. Owing

to the small values of this power, gravitational strain fields at Earth are extremely small and

156



have proven difficult to detect.

In order to compare gravitational antennas, it is helpful to have a generalized treatment of
their sensitivity. Hirakawa et al. [171] developed such a framework and it is briefly described
here. They write the displacement field for the antenna, u(r,t), in terms of a generalized
coordinate ¢ (t) which satisfies u(r,t) = £(¢)w (r). Here we are assuming the antenna’s
motion is of a single eigenmode, so that w represents the spatial profile of that mode and &
represents the amplitude of displacement.

In terms of this displacement field u(r,t) the equation of motion for a gravitational

antenna is given by [172]:
H (f + —mf + wié) =1 Z hijgij, (6.5)
ij

where 11 = [ pw?dV, is the reduced mass of the mode. The term on the right hand side
represents the force acting on the mode from the passing gravitational field, where h;; is the
metric perturbation and g¢;; is the dynamic part of the quadrupole moment of the antenna

eigenmode:
2
%ij = /P (wi%’ + Tiw; — g%w : r) av'. (6.6)

The effective area of such an antenna, meaning the area which actively couples to a gravita-

tional wave, is given by:
2 Z 2
AG = ,LLM qz’j7 (67)

where M is the mass of the antenna. Notice A is independent of choice of . To incor-
porate both the polarization of the gravitational wave and the orientation of the antenna’s
quadruple, we write polarization matrices e (k)A where A defines the polarization of the GR
(A =+ or x). k(0,¢,1) incorporates the incident direction of the waves (6, ¢) and the

polarization of the antenna (1)), which is the rotation of its = — y plane along the source’s
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line of sight [173]. The directivity function is then defined as:

(X el (k)
>a

*0.6) = (6.8)

In keeping with our current niobium cavity design, we work with a cylindrical detector.
Since we search for sources of continuous waves, longer measurement times () lead to

lower strain sensitivities. For such an antenna, the minimum detectable strain field with 20

/Shh 320]433 T+T) 1
mzn ~ 2 .
Tint \/ng AGd Qm Tmt (6 9)

where T is the thermal bath temperature and 7, is the added noise temperature of the

certainty is [174]:

measurement system.

We will consider two cylindrical geometries (defined as G1 and G2), with radius a = 10.8
cm and lengths L1 = 50 cm or L2 = 3 m. This design and its sensitivity are described more
fully in Singh et al [2]. We focus on the [ = 0,m = 2,n = 0 acoustic mode because of its
large quadropole moment. In both considered geometries, the [ = 0,m = 2,n = 0 has a
frequency wy; = 1071 - 27 Hz. There are three pulsars within 15 Hz of this frequency, namely
pulsars J0034-0534, J1301+0833, and J1843-1113. The effective area Ag = 0.629772 in both
designs. The effective mass is u = 0.625M for G1 and p = 0.625M for G2. The minimum
strain sensitivities (thermal noise limited) that can be achieved with G1 and G2 are shown
in Fig. (6.4), along with the current strain limit set by LIGO and the strain limit expected
from advanced LIGO.

We now evaluate the experimental parameters required to achieve the strain sensitivities
shown in Fig. (6.4). Note that we are assuming for our minimum strain sensitivities that
all other noise sources (aside from thermal and detection noises) have been eliminated; most
importantly, we assume the difficult task of isolating the cell from environmental vibrations
has been achieved. In the following, we focus on the L1 = 50 cm design. The best optome-
chanical coupling is achieved to the T'M;;y mode, which has a frequency we = 1.6 - 10% - 27

Hz. The single photon coupling rate is go = Ow/dP - APzp = —8-107'* - 2 Hz. To achieve
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a Q = 10 requires temperatures 7'~ 4 mK and n3/ny < 3-107'1. At 4 mK the Q expected
from the three phonon process is Q > 10'2; with lower 3He impurities, Q ~ 10! could be
achieved at higher temperatures; with the best known sample nz/ns ~ 1072, Q = 10"
at T = 8 mK. Assuming a HEMT amplifier with Ty = 5 K, to limit the noise detection
temperature to 1 mK, meaning that the added noise of our detection scheme is equal to the
thermal noise of the helium oscillator at 1 mK, requires pump photon powers np ~ 7 - 10%°
and a source with phase noise £ (1kHz) ~ —145 dB./Hz. To achieve sideband cooling in this
system is quite difficult. For instance, one can begin to damp the oscillator when C' > 1;

here this requires np = 7- 10,

1023
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g ~25]|
= ,

10—26
-— LIGO=S6 spin-down limit
== Ad.LIGO design ' :

1000..1.1‘.04 105 106 1.07.. o
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Figure 6.4: The minimum detectable strain h,,;, versus integration time 7;,; for our superfliud acoustic
detectors [2], G1 (blue) and G2 (red) assuming mechanical Q of 10'° (dotted) and 10'* (solid). Also shown
is the achieved strain sensitivity of LIGO-S6 (solid, black) and the design sensitivity of advanced LIGO
(dotted black). The stars indicate the limit set by LIGO and the limit expected from advanced LIGO. The
spin down limit of the pulsar J1301+0833 is also shown as the dotted horizontal line.

10—27

Finally we note a couple of advantages of the helium detector as opposed to past Weber

bar realizations. The frequency of a helium resonant bar detector will be tunable by pressur-
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ization. Because 25 bar is required to solidify helium, frequencies can be tuned by up to 50%
with pressure [175]. For instance, if the pulsar frequency changes over time, the superfluid
acoustic mode could be tuned via pressurization to remain resonant. Additionally, optome-
chanical sideband cooling would broaden the resonator, increasing its bandwidth. Finally,
the /T values for a helium oscillator are significantly better than values for metal Weber

bars which have been used in the past [2].

6.3 Testing Minimum Length Scales

While general relativity and quantum theory are each highly successful at explaining phe-
nomena at their respective scales, there is as yet no accepted theory which unifies the two.
The search for a theory of quantum gravity is difficult in part because of the lack of exper-
imental results in a meaningful parameter regime. The phenomena that may inform such
a theory are expected to become important only at the Planck scale, either lengths on the
order of the Planck length, L, = /AG/c3 = 1.6 - 107 m or energies on the order of the
Planck energy E, = /hc®/G = 1.2- 10" GeV, where G = 6.67 - 107'! m?/kg-s® is the
gravitational constant.

In many theories of quantum gravity, quantization of space leads to a minimum length
scale equal to the Planck length, below which position can not be meaningfully defined. This
minimum length requires a modification of the canonical uncertainty relation from quantum
mechanics: AxAp > h/2, which constrains only the product of position and momentum.
One way of modifying the relation, which appears in several quantum gravity proposals, is

as follows [176,177]:

2
AxAp > g (1 + Bo (]@fe) ) , (6.10)

where M, = \/he/G ~ 22 ug is the Planck mass and f is a constant that quantifies the
amount of modification. The minimum length scale is then defined as Az,,;, = Lp+/So, S0

that if Sy = 1, the minimum length is constrained to the Planck length.
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Experimentally, the lowest limit that has so far been set is 8y < 103 [178] in the center
of mass mode of the AURIGA detector, an 1100 kg aluminum bar cooled to an occupation
of nyr = 2-10*. For comparison, LIGO’s postion measurements place a limit of 8, ~ 103
[179]. Other limits are set by the lack of any deviation measured at the electroweak scale
(8o &~ 1034 [180]) and the hydrogen 15-2S energy difference (3 < 4 - 103 [181]).

Because the modified commutator changes the minimum energy of a harmonic oscillator,
one way to place a limit on the minimum length scale is by measuring the energy of a
normal mode: E.,, = hwy (ny + 1), where n; is the phonon occupation of the mode and wy,
is its frequency. Thermal occupation is given by n; = 1/ (eh’“"M /ksT _ 1), which reduces to
ny &~ kT /hwys at high temperatures.

Defining the position and momentum operators as x = /h/mwy Xy and p = /himwy, Py,
where X); and P,; are dimensionless parameters, we can rewrite the commutation relation
as:

AX, APy > % (145 (APy)?), (6.11)

where 8 = Sohmwy/ (Mpc)®. Then the limitation given by measuring an energy FE,, will
be Enin < Eeyp Where E,,;, is the modified ground state energy:

hwn 82 B\ hwu
Enin = 2. <\/1+Z+§> ~ g, (6.12)

If our superfluid acoustic oscillator is in its ground state with its current parameters (m =
0.006 kg and wy; = 27 - 8115 Hz), the limitation placed by this constraint is 8y < 4 - 1033,
which is not an improvement on the current state of the art. Notice that more massive
objects cause larger deformations to the commutation relations.

Pikovski et al. [3] have proposed a tabletop optomechanical scheme whereby lower con-
straints can be placed on fy. They propose a measurement of the center of mass mode of
the oscillator via its optomechanical coupling with a cavity optical field. Optomechanical
systems are ideal because of their relatively large mass. In Pikovski et al.’s scheme [3], the

center of mass mode of the oscillator is displaced in phase space via a set of optical pulses.
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The phase of the optical field is changed by the resonator’s commutator such that a de-

formation in the commutator can be accessed by measuring the mean of the optical field

interferometrically.
Reference Signal Interferometric
Measurement
M4 N
Optomechanical
System

a7

Delay Line

Figure 6.5: The experimental scheme proposed by Pikovski et al. [3] to measure the commutator’s defor-
mation. An input signal is incident on a polarizing beam splitter, then an electro optic modulator and a
second beam splitter. The field reflects from the optical cavity and enters the delay line. The length of the
delay line is such that the mechanical oscillator evolves by one quarter of a mechanical period between each
interaction. After all four interactions, the signal is measured interforemetrically with the reference.

The optical field interacts with the mechanical resonator through the optomechanical
interaction of strength A\ = go/k = Ow/0x - Ax,,/rk where g is the single photon coupling
rate and k is the optical cavity linewidth. Pikovski et al. [3] suggest a series of pulses that

will produce four displacements in phase space, described by the operator:

é- — ei)\nLPmefi)\nLXm —idng, Py

e gL Xm, (6.13)

In a classical field, these operations would cancel out with no effect on the optical field or
the mechanical oscillator, but because X,; and P,; don’t commute, the optical field picks
up a phase difference which will depend on the deformation of the commutator.

If the commutator is described by Eqn. (6.10), then to first order 5 = Byhwym/ (Mpc)®.
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For large cavity occupations N, >> 1 and for phonon occupations n,, << AN, the mean of

the optical field is given by:

—iN2—N,, (14e*m2) o0

(ap) = e (6.14)
The additional phase given by the contribution of f is:
4 (a2 4 ﬁme ]
O (B) = BN\ = N3Nt 0N, 6.15
(/B) 3/8 p € 3/80(MPC)2 P € ( )

Notice that the change in phase is larger when A is large. In order to be able to resolve
©, the imprecision in the measurement of phase must obey d(©) < ©. For interferometric

measurements, the imprecision is given by:

Oout
d(©®) = ——, 6.16
O = (019
where N, is the number of experimental runs and o, is the quadrature width of the optical
state which is approximately equal to 1/2. Therefore one can solve for the limit on the

resolution of §3y, which in the case of measuring ”zero” ultimately limits the value [y:

1 4 .
580 < )4 e M NSNS 102 (6.17)
2 /NN’ 3 (Mpe)

In the case of our current device, m = 0.006 kg, wy = 27 - 8115 Hz, g9 = —27 - 1077
Hz, and we = 27 - 10.6 GHz. Assuming the niobium cavity has an internal @ of 10°, with
Kin = Kout = Kint, the total cavity linewidth x = 2730 Hz and \ = go/x = 5.2-1071°. With
these parameters, setting a bound of 65 & 1 requires N, = 10' and N, = 5-10°. However,
setting a bound below the current limit of 3y ~ 10® requires only N, = 5-10° and N, = 10°.
It is important to note that, as stated above, this scheme assumes n,, << AN,, which for
N, =5-10% requires ny << 3. However, achieving such low mechanical occupations in our
system requires high pump powers in the sideband cooling tone at wp = we — wyy. Given

the difficulty of achieving high pump powers without heating the system, it is of interest to
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minimize the total number of pump photons in the cavity: the combined occupation of n,
from the sideband cooling tone and Np for the phase space manipulations. Fig. (6.6) shows
the value of both pump fields required to achieve n,, << AN,. The total pump power (blue
line) will be minimum at =~ 3 - 1012

Finally, we note that the quoted level of imprecision in 63, can be achieved only if
other noise sources are eliminated. This requires [3] both low temperatures (7" < 100 mK),
which we achieve with our system on the dilution refrigerator, and low occupations of the

mechanical resonator ny; < 30, which, with the parameters stated above, requires a sideband

cooling tone with 3 - 10'3 photons.
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Figure 6.6: The minimum required pump power to achieve ny; << ANp. The red line shows n,; /A resulting
from the sideband cooling tone with pump photons np. np from the sideband cooling tone is shown with
the green line. The blue line shows the total of np from the sideband cooling tone plus Np = n,, /X - 10
(fulfilling Np >> n,,/A) for the phase space manipulations of Pikovski et al.’s [3] scheme.
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Appendix A
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Table of Variables

Symbol

Definition

general definitions

kg
h=h/2r

Boltzmann constant

reduced Planck constant

optomechanics variables

Wnp
Qum
v = war/Qum
Ny
we
Ktot, Kint, Rext

go = 0w/0x - Axzp

Al‘zp = \/h/QmwM

r opt

C = Fopt/’YM
np

€ = €REo

K= fRrHo

mechanical frequency

quality factor of the mechanical mode
intrinsic loss rate of the mechanics
occupation of the mechanics

microwave cavity frequency

cavity loss rates: total, internal, and external
the single photon optomechanical coupling rate
the zero point motion of the mechanics
optomechanical coupling rate

cooperativity

number of pump photons in the cavity
permittivity

permeability
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Symbol

Definition

helium variables

T

PS; PN

P4

Cy

G = py/cy0c/Op
-

v, 0

q

AFE

K =1/psc
msg, My

ms = 2.34ms3
o

x =ng/ (n3 +ny)

temperature at lambda point

superfluid density, normal fluid density

density of helium-4

speed of sound in helium-4

Gruneisen parameter for helium-4

thermal phonon lifetime in helium-4

constants in the dispersion relation for helium-4
momentum in dispersion relation

energy discrepancy between initial and final states in phonon process
compressibility

mass of *He atom, *He atom

effective mass of *He atom

scattering cross section of *He atom

3He impurity fraction

Table A.1: Table of variables
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Appendix B

Bessel Functions

B.1 Zeroes of Bessel Functions of the First Kind

The mth zero of the nth Bessel function is given by: J,, (2nm)

= 0.

n\m

1

2

3

4

5

6

7

N O Ot e W N

2.4048
3.8317
5.1356
6.3802
7.5883
8.7715
9.9361
11.0864

5.5201
7.0155
8.4172
9.7610
11.0647
12.3386
13.5893
14.8213

8.6537
10.1743
11.6198
13.0152
14.3725
15.7002
17.0038
18.2876

11.7915
13.3237
14.796
16.2235
17.6160
18.9801
20.3208
21.6415

14.9309
16.4706
17.9598
19.4094
20.8269
22.2178
23.5861
24.9349

18.0711
19.6159
21.117
22.5827
24.019
25.4303
26.8202
28.1912

21.2116
22.7601
24.2701
25.7482
27.1991
28.6266
30.0337
31.4228

Table B.1: Bessel function zeros.

168




B.2 Extrema of Bessel Functions of the First Kind

The mth extrema of the nth Bessel Function is given by: J! (2! ) = 0.

n

n\m 1 2 3 4 5 6 7
0 3.8317  7.0156 10.1735 13.3237 16.4706 19.6159 22.7601
1 1.8412  5.3314 8.5363 11.7060 14.8636 18.0155 21.1644
2 3.0542  6.7061  9.9695 13.1704 16.3475 19.5129 22.6716
3 42012  8.0152 11.3459 4.5858 17.7887 20.9725 24.1449
4 53175  9.2824  12.6819 15.9641 19.1960 22.401 25.5898
5 | 6.41562 10.5199 13.9872 17.3128 20.5755 23.8036 27.0103
6 7.50127 11.7349 15.2682 18.6374 21.9317 25.1839 28.4098
7 | 857784 12.9324 16.5294 19.9419 23.2681 26.545  9.7907

Table B.2: Bessel function extrema, microwave modes.
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B.3 Extrema of Bessel Functions of the First Kind,
Acoustic

The nth extrema of the mth Bessel function is given by: J! (j,..) = 0. Notice that in
comparison to the table of extrema for the microwave modes, for the acoustic mode the first

row is displaced.

m\n 1 2 3 4 5 6 7
0 0 3.8317  7.0156 10.1735 13.3237 16.4706 19.6159
1 1.8412  5.3314  8.5363 11.7060 14.8636 18.0155 21.1644
2 3.0642  6.7061  9.9695 13.1704 16.3475 19.5129 22.6716
3 42012  8.0152 11.3459 4.5858 17.7887 20.9725 24.1449
4 5.3175  9.2824  12.6819 15.9641 19.1960 22.401 25.5898
5 6.41562 10.5199 13.9872 17.3128 20.5755 23.8036 27.0103
6 7.50127 11.7349 15.2682 18.6374 21.9317 25.1839 28.4098
7| 857784 12.9324 16.5294 19.9419 23.2681 26.545  9.7907

Table B.3: Bessel function extrema, acoustic modes.
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Appendix C

Niobium Cylinder Drawings

4 3 ¥ 2 1
Quantiy: 1
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450 1.527 Niobium, provided
1. stock

groove for indium seal

—1.01—
1.270—

1.527

Dimensions: +/-
.003" except
noted

~groove for indium seal

r .035 .OFO

e T

DETAIL B
SCALE4 : 1

f T

12/20/2012

[TITiE

c -
@1.40
@2.10 16 hole bolt circle
#4-40 tapped, depth: .31"
.B
tapped #4-40
depth: .25"
B /B holes opposite each other are
T I A same height
gy ouou e Tl
1 2.0572.022 == ]
1 270T 1.270 1.527
. L
[ I F - 1.013 o
1013 Schwab Group
.50 \ GHECKED
A | x -

.125"+/- .02" radius

MG

[APPROVED

polish inner surface

SIZE

DWG NO

cylinder_u_shaped_v2

REV

‘ ‘SHEET OF

4

Figure C.1: Drawing of the cylinder body, machined from RRR grade niobium.
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4 PROBUCED BY AN AUTODESK EDUCATIONAL PROPUCT | 1
3.620 .035+/-.001
D . 6 hole bolt circle 2 D
#2-56 tapSenge?J?II:'CI;C?lg #4-40 tapped, depth: .31 020
5 _
?.370 A 4T -206
_— ™ .046
7 A S @t . q .146+/-.001 -
[~ these two patterns A4 1
are mirror images Ly
groove for
indium seal C
.110+/-.001
B
-030 groove for indium seal N e s
.035+/-.001 5

R A
.020 508 % /4 L

.170— 7
P1.605+/-.0014/ 0284/-001 DETAL E
SECTION A-A SCALE 4 : 1
DETAIL C
B SCALE4: 1 SCALE2: 1 5

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
¥
10NAdoydd TVNOILYONAI ¥S3AOLNY NV A9 d30NA0Hd

Niobium (provided stock)
1 piece
Dimensions: +/-.003, except noted |

@2.400

@2.100
16 hole bolt circle
thru for #4-40

GRAWN
Schwab Group 2/11/2014
GHECKED

e
o A

/G

A 31.605+/-.001

APPROVED

SIZE DWG NO

cylinder_top_design2
I

seer 1 or

REV

SCALE I

3 2 2
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure C.2: Drawing of the cylinder top, machined from niobium with a minimum purity of 99.8%. Shown
here is the final design with the fill line and microwave ports located at the position of the radial node in
helium modes with only one radial node.
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EN
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e
N
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27°— T —27°
181 /

D D
@.815 (maximum)

— #2-56 tapped -

@.620 depth: .175"

6 hole bolt circle
thru hole for #4-40

C C

See attached drawing "

Use provided tool Material: OFHC Copper
Quantity: 4
Dimensions: +/- .003" except noted
B B
See attached drawing
Use provided tool
.046
.250 RAWN
Schwab Group 4/28/2014
.028+/-.001 T T
A ‘ | B A
1 1 ’ MFG
1514/-.001—F——
C sma_cap_v6
FoE I leeer 1 or 1
4 I 3 £ 2 I

Figure C.3: Drawings of the cap for the microwave ports of niobium cavity. Shown is the final design with
cutouts to allow all the pieces to fit on the niobium cavity lid.
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Appendix D

Valve Drawings

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO%UCED BY AN AUTODE@K EDUCATIONAL PROEUCT
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-

| slip fit

| ——fit with .002" play

|~~slip fit
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SECTION A-A
SCALE 5: 1

GRAWN
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1/15/2015

[CHECKED
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[TITiE
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REV
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3 2 2
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure D.1: Drawing of the valve assembly.
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO%UCED BY AN AUTODE@K EDUCATIONAL PROEUCT
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4‘1?‘:7‘ %\ groove for indium O-ring

slip fit to 'Housing'
.015+/-.001

SECTION A-A
SCALES5: 1
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Dimensions: +/-.002, except noted

.002" bigger than 'Plunger’
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/

@.890* Slip fit to 'Housing'
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; @ =1, .300-+/-.003 flat
<\ J——=0.565
@.257
\ Exa’;b Group 1/15/2015
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SCALE I

3 2 2
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure D.2: Drawing of the guide, which is made from stainless steel.
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO%UCED BY AN AUTODE@K EDUCATIONAL PROEUCT

A
.300+/-.003 flat

A

7

T
I

— T —
L

\

y

/\v‘/

i

\’v/\“ LN

I
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©1.200 10 hole bolt circle, top and bottom

#2-56 tapped, depth: .180"
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.891* Slip fit to 'Guide' on top and 'Seal' on bottom

110 F—.891* slip fit to 'Guide'—
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Brass
.398 Quantity: 4
Dimensions: +/-.002, except noted
1.190+/-.001 tapped #2-56, depth: .160"
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38 N N~
140 -
-——.891* slip fit to 'Seal'—— “
SECTION A-A = e w
SCALE5: 1 C housing_v4
FoE I leeer 1 or 1
4 I I 1

3 2 2
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure D.3: Drawing of the housing, which is made from brass.
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO%UCED BY AN AUTODE@K EDUCATIONAL PROEUCT

.300+/-.003 flat
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Quantity: 4
Dimensions: +/-.002, except noted
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3 2 2
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure D.4: Drawing of the seal, which is made from stainless steel.
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PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO%UCED BY AN AUTODE@K EDUCATIONAL PROEUCT
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Figure D.5: Drawing of the plunger, which is made from stainless steel.
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4 PROBUCED BY AN AUTODESK EDUCATIONAL PRORUCT 1
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Figure D.6: Drawing of the needle, which is made from Torlon, a stiff plastic that does not easily deform at
low temperatures.
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Appendix E

Sinter Drawings

8 | 7 ¥ 2
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Figure E.1: Drawing of the top for the sintered-silver heat exchangers.
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8 I I 6 | 5 L 2 1
Sinter Bottom
OFHC Copper
*dimensions +/-.001"
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Figure E.2: Drawing of the bottom for the sintered-silver heat exchangers.
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Figure E.3: Drawing of the sintered-silver heat exchangers assembly.
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Figure E.4: Drawing of the pressing piece for the
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Appendix F

Suspension Drawings
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Figure F.1: Drawing of the copper L brackets used to mount the cell to the mixing chamber in Run 1.
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Figure F.2: Drawing of the square copper bracket used to mount the cell to the mixing chamber in Run 2.
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Figure F.3: Drawing of the silver rod used to mount the cell to the mixing chamber in Run 5.
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Appendix G

Sapphire Drawings
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Figure G.1: Drawing of the sapphire test resonator.
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Figure G.2: Drawing of the bottom sapphire piece for the two piece helium filled sapphire cavity.
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Figure G.3: Drawing of the top sapphire piece for the two piece helium filled sapphire cavity.
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