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Abstract

We prove a globalization theorem for self-dual representations of GLN over a totally real number

field F , which gives a positive existence criterion for self-dual cuspidal automorphic representations

of GLN (AF ) with prescribed local components at a finite set of finite places. A byproduct of our

argument is that the automorphic representations that we construct are cohomological (equivalently,

regular algebraic) and so fall into the class of automorphic representations on GLN for which there

is a well-established theory for how to attach Galois representations, using the étale cohomology of

certain Shimura varieties. The primary motivation is to give a sort of “bare-handed” or “low tech”

proof of a result that is implied by the philosophy of twisted endoscopy in the Langlands program.

While we are guided by this overarching picture, in the argument itself, we obtain all our results

by working directly on GLN and the group obtained by twisting it under the “inverse-transpose”

involution. In particular, we do not appeal to any general results on twisted endoscopic transfer or

assume any big “black box” results like the (conjectured) stabilization of the twisted trace formula.

Hence, such results are unconditional as stated, and we remark throughout on why the particular

assumptions that we impose turn out to be necessary, indicating the (often substantial amount of)

additional work required to generalize the stated results.

In an appendix, in stark contrast to our approach above, we give an abridged argument for

proving a globalization theorem on GLN in great generality, assuming a couple of major technical

hypotheses (albeit, ones that are widely believed to be true) and yielding to Arthur’s endoscopic

classification of representations of symplectic and special orthogonal groups. Our hope is for such

an argument to provide an outline for how we might ultimately prove results like generalizations of

the globalization criterion above in the future.
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Chapter 1

My Thesis

Bare-handed proofs of concrete arithmetic results are feasible and useful for applications of the

Langlands program.

In some arithmetic applications of the Langlands program using the trace formula, it is enough

to directly analyze the terms that arise, without having to assume any results “on faith” that rely

on thousands of pages of technical proof.

1.1 Goal of this Work

This work is a systematic study of the self-dual automorphic representations on GLN over a totally

real number field F through the lens of twisted endoscopy in the Langlands program.

We summarize and interpret the general results known about the local components of such

representations—the self-dual smooth admissible representations of GLN (Fv) for completions of F

at a place v—and use this to determine which components can simultaneously arise as the local

components of a single irreducible cuspidal automorphic representation.

1.2 What is Twisted Endoscopy?

One pillar of the Langlands program is Langlands functoriality, which predicts that if H and G

are two reductive groups over number fields, any homomorphism between their L-groups (an L-
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homomorphism for short)

Φ : LH → LG

leads to a corresponding transfer of automorphic representations on H to those on G. Many of

the known correspondences between automorphic representations can be summarized according to

this philosophy, including solvable base change, automorphic induction, symmetric square lifting,

the Jacquet–Langlands correspondence, etc. While this provides an elegant unifying framework for

the plethora of relations between automorphic representations on different groups, this philosophy

has yet to materialize into a general theorem or proof technique. Instead, given the current state

of knowledge, we can only use this to guide our investigations and establish conjectural statements

that we prove using more concrete and familiar methods.

Endoscopy refers to some of the more accessible cases of Langlands functoriality; roughly speak-

ing, it applies when the L-homomorphism Φ : LH → LG is an inclusion. Endoscopic transfer results

encompass all of the correspondences mentioned in the previous paragraph, but there are a number

of correspondences that do not fall under this paradigm, such as symmetric nth power liftings for

large enough n, but knowledge of non-endoscopic correspondences are scarce and hold challenges

that currently seem out of reach in all but the most specialized of cases. Morally speaking, when such

a Φ exists, we say that H is an endoscopic group of G. In practice, there is a precise mathematical

definition that applies. Note that an endoscoipc group H is not generally a subgroup of G; the two

groups are only weakly linked via a relation between their respective Langlands duals.

Twisted endoscopy essentially concerns cases where at least one of the reductive groups in the

case of Langlands functoriality is a “connected reductive group that is twisted by a finite-order au-

tomorphism;” this yields a disconnected reductive group that allows for more interesting phenomena

than if the L-homomorphisms were restricted to maps between connected groups. A particularly

interesting simple case of twisted endoscopy applies to the functorial transfer of automorphic rep-

resentations from symplectic or special orthogonal groups to general linear groups. While general

linear groups do not have nontrivial endoscopic groups, their twists by certain involutions realize

these classical groups as endoscopic groups, and this has led to a number of results being established
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in this vein; one of the most striking realizations of this idea is Arthur’s recent work on the endo-

scopic classification of representations of classical groups [Art13]. The image of Arthur’s transfer

map is the set of self-dual automorphic representations on a general linear group, and it is this

perspective that forms the starting point of our investigations.

1.3 Why Self-Dual Automorphic Representations?

Self-dual (a.k.a. self-contragredient) representations are objects of interest in the theory of group

representations (especially Lie groups) that play a distinguished role in the theory of automorphic

representations and their local components: namely, the smooth admissible representation theory

of real, complex, and p-adic reductive groups. For example, the Langlands philosophy predicts that

every self-dual automorphic representation on a general linear group is the transfer of an automorphic

representation on a special orthogonal or symplectic group.

Another reason for studying self-dual representations is that the Galois representations that

naturally arise in arithmetic questions are often self-dual. For example, every 2-dimensional Ga-

lois representation—such as those attached to a modular form or an elliptic curve over a number

field—is self-dual up to a twist by a character. More generally, Galois representations that occur

in the middle-dimensional étale cohomology of Shimura varieties are all self-dual in a certain strong

sense with respect to the intersection pairing, so in particular, automorphic representations asso-

ciated with such geometric Galois representations must necessary be self-dual. Indeed, a folklore

conjecture predicts the converse: the only Galois representations realizable in the cohomology of

Shimura varieties are those attached to self-dual automorphic representations; that is, geometric

Galois representations attached to non-self-dual automorphic representations arise naturally from

some currently unknown source. These phenomena are encapsulated in the fact that the local and

global Langlands correspondences commute with taking duals, so self-dual representations on one

side of the automorphic side of the correspondence correspond to self-dual representations on the

Galois side of the correspondence, and vice versa. Indeed, most known cases of the global Lang-

lands correspondence for GL(n) (e.g. the special case for GL(2) used by Wiles and Taylor to prove
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Fermat’s Last Theorem) are for self-dual (up to twist) Galois and automorphic representations.

The global Langlands correspondence for GL(n)1

{Automorphic Representations of GL(n)} // {n-dimensional Galois Representations}oo

{Self-Dual Aut. Rep. of GL(n)} //
?�

OO

{Self-Dual n-dimensional Gal. Rep.}oo
?�

OO

Despite their importance, however, constructing self-dual automorphic representations even on

GL(n) usually requires appealing to some major results, such as the existence of Langlands functo-

rial transfers from classical groups to GL(n), which often requires assuming some strong technical

hypotheses, some of which are currently unproven. And even after admitting such hypotheses, the

proofs of such results often rely on lengthy specialized technical arguments, which are rarely read or

understood by practitioners, who largely take such results as a “black box” and thus rarely adapt

such arguments or techniques to other problems. While results for general reductive groups over

general number fields must necessarily involve such hypotheses, it is desirable to obtain a “bare-

handed” result in the case of GL(n) over Q (or a totally real number field), which is often the case

of interest for many concrete arithmetic applications. Aside from the obvious benefit of having an

alternate proof of a useful result, following this methodology also highlights some interesting ana-

lytic, arithmetic, or representation-theoretic phenomena that occur and indicate arguments that at

least have some hope of being able to be applied outside of the specific context of the proof.

Thus, throughout this work, we try to keep the techniques as “low tech” as possible, in particular,

taking care to not assume any unproven hypotheses or results whose proofs require thousands of

pages of specialized technical arguments. In doing so, we hope to not only give an alternate proofs,

but to exhibit the specific points at which the additional assumptions become necessary.

1Of course, a precise statement requires many more technical details; for instance only “algebraic” automorphic
representations are expected to have an associated Galois representation, one should probably work with Weil groups,
Weil–Deligne groups, or variants thereof on the Galois side, etc.
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1.4 The Main Theorem

Our study of self-dual representations involved in the theory of automorphic representations on

GL(n) culminate in the following result: a criterion for “globalizing” a finite set of self-dual local

representations on G = GL(n) into an automorphic representation that “interpolates” these chosen

local representations and is itself self-dual (in the global sense).

Theorem 1.1. Let T be a finite set of pairs (v, πv) where

• v is a finite place of a totally real number field F , and

• πv is an irreducible admissible self-dual essentially discrete representation of G(Fv) (and if n

is even, are all of symplectic type).

Then there exists a cohomological self-dual cuspidal automorphic representation Π = ⊗′
vΠv of G(AF )

such that for all (v, πv) ∈ T , we have Πv
∼= πv ⊗ χv, where χv is an unramified character of G(Fv).

If we only cared about constructing some automorphic representation that globalizes some set

of discrete local representations, such a result has been within reach for some time, using the stan-

dard theory of pseudocoefficients. What makes the problem difficult in our setting is to ensure

that you produce an automorphic representation that is self-dual. To ensure that the automorphic

representations we construct have this property, we work with the disconnected reductive group

G+ ∼= GL(n) ⋊ Z/2.

Even establishing a property as basic as self-duality for automorphic representations involves a

number of subtleties. For example, the condition that all the chosen self-dual representations at

finite places have matching parity (i.e. that their Langlands parameters all preserve Galois-invariant

symmetric bilinear forms, or all preserve Galois-invariant alternating bilinear forms) turns out to

be necessary. This phenomenon was observed, for instance, in the case where all the local self-

dual representations are supercuspidal, by Prasad and Ramakrishnan [PR12]. This agrees with

the aforementioned expectation that all self-dual automorphic representations on GL(n) “come

from” those of orthogonal or symplectic groups, and was one of the principles underlying Arthur’s

endoscopic classification of representations of these classical groups [Art13].
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There are a number of ways to realize such a self-dual globalization result. In spirit, all the meth-

ods boil down to different ways of realizing the philosophy of self-dual automorphic representations

coming from classical groups. For example, in the aforementioned work of Prasad and Ramakrish-

nan [PR12], they approach the problem in a different way, applying a number of correspondences

between automorphic representations and their local components, such as the theta correspondence.

Perhaps the shortest way to prove a globalization result—and undoubtedly the way to approach

such a question once certain foundational results are established in the near future—is to construct

the “preimage” of the desired representation on the desired endoscopic group and use results on

twisted endoscopic transfer. Indeed, we have outlined such a method in the appendix (§8). How-

ever, the method that we follow in the main part of the work will use the trace formula on GLN

and its twisted counterpart on twisted GLN , and will boil down to an explicit analysis of the orbital

integrals that appear. Doing so allows us to work “entirely on GLN” and allows us to avoid results

on endoscopic transfer, which are still conditional in our setting. But as we will see, even in this

deliberately simplified setting, the endoscopic groups still make their presence known, due to the

way that they control the harmonic analytic properties of the twisted GLN .

A result along these lines for G = GL(2n) was obtained by Chenevier and Clozel, who were

motivated by an application to a specific question in Galois theory [CC09]. We strengthen their

result in the GL(2n) case, but the main work is in proving the analogous result in the case of

GL(2n + 1). While the overall approach remains the same—we use techniques inspired by the

theory of twisted endoscopy to apply the Arthur–Selberg trace formula to a carefully chosen family

of pseudocoefficients and use harmonic analysis techniques to show that orbital integrals on the

geometric side of the resulting trace formula is nonzero—the details in extending the results to the

GL(2n + 1) case can be intricate and involve modifications at almost every step of the argument.

One of the primary goals for our treatment of the problem is to extend this kind of strategy

for constructing automorphic representations to its “naturally general” framework, and to precisely

indicate what technical lemmas need to be improved in order to obtain the desired generalizations

using this approach.
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1.5 Strategy of Proof

The (global) self-duality of an automorphic representation is a delicate condition: self-dual automor-

phic representations must have self-dual local components, but self-duality of local components does

not guarantee the self-duality of the automorphic representation. This issue and related analytic

difficulties are the primary reasons why constructing such automorphic representations is a subtle

and tricky procedure, and why relatively explicit methods like Poincaré series cannot be applied

in this setting. Instead, to construct such self-dual automorphic representations, we compare the

Arthur–Selberg trace formula on G = GL(n) with a twisted version on the disconnected reductive

group G+ = G⨿Gθ, where θ is the order-2 automorphism of G given by

θ(g) = tg−1,

that is, by taking the inverse transpose2. This gives us a distribution

Jspec(·) = Jgeom(·)

on the space of smooth, compactly supported C-valued functions C∞
c (G(A)), where the former

denotes the “spectral side,” which will consist of (traces of) certain self-dual automorphic repre-

sentations, and the latter denotes the “geometric side,” consisting of certain (twisted) orbital inte-

grals. We choose an appropriate test function f = ⊗vfv ∈ C∞
c (G(AF )) based on our initial data

{(v, πv)}v∈T , choosing the corresponding pseudocoefficients of the chosen representations, trying

when possible to find ones with the most well-behaved nonvanishing properties. Note that since

most pseudocoefficients are defined in the context of connected reductive groups, which excludes

the case of G+, it is necessary to develop twisted analogues of such functions in the context of our

problem.

To show that our desired self-dual cuspidal automorphic representation exists, we need to show

2For technical reasons, we actually use a variant of this map, composing the θ above with the conjugate of a certain
antidiagonal matrix.
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that the spectral side of the trace formula is nonzero, and to do so, it is enough to show that the

geometric side of the trace formula is nonzero:

Jspec(f) = Jgeom(f) ̸= 0.

Away from the chosen places v ∈ T , the local components fv of the test function f are just

the characteristic functions of G(OFv ), where OFv denotes the ring of integers of Fv. At places

v ∈ T , the test functions are pseudocoefficients that are chosen to have simple θ-twisted orbital

integrals, and much of our work is in finding such functions and establishing such properties. At ∞,

we essentially take coefficients of discrete series representations. Now, the group GLN (R) does not

have discrete series for N > 2, but it does have θ-discrete series (a twisted analogue of the discrete

series), and it is these representations that we prescribe at the archimedean place. Eventually, for

the test functions f = ⊗vfv that we construct, we will be able to apply a simplified version of the

trace formula [Art88b], and reduce the analysis of the geometric side to twisted orbital integrals

that correspond to conjugacy classes of a highly restricted sets of elements: the elliptic θ-semisimple

elements.

However, producing nonvanishing results for such a test function f even with the simple version

of the trace formula used here is still too difficult to tackle in general, but here we can exploit a key

observation that was successfully developed and applied by Chenevier and Clozel: the asymptotic

simplification of the geometric side of the trace formula “as the weight goes to infinity.” Indications of

such an idea can be found in the case of (untwisted) GL(2) in the work of Serre on equidistribution

results for Hecke eigenvalues [Ser97], and this Chenevier–Clozel observation itself can be seen as

indicative of general equidistribution phenomena for automorphic representations, namely those of

“Plancherel” type (i.e. equidistribution with respect to the Plancherel measure) that occur as we

vary “in the weight aspect” (since we fix the behavior at the local places but vary the weight).

We briefly describe this observation and the subsequent technique. Given the rigidity of our

problem, the only freedom that we have in choosing our test function f is to vary the component at
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infinity f∞ among the pseudocoefficients of cohomological θ-discrete series representations. These

representations are naturally parametrized by the highest weight λ of an irreducible representation

Vλ of a compact group H(R) (a compact form of the real points of an endoscopic group of the

θ-twisted G). The insight is noticing that as the weight λ goes to infinity away from the walls of

the Weyl chamber, the geometric side of the trace formula becomes asymptotically equivalent to (in

other words, all the remaining terms are dominated by) a single orbital integral, called the “principal

term.” Up to a positive scalar, this is the twisted orbital integral TOγ0(f) of f attached to a certain

elliptic θ-semisimple element γ0 ∈ G(F ) (the “principal element”) whose twisted centralizer is an

F -group whose C-points yield the dual group of the endoscopic group H. If we can show that the

principal term does not vanish, then the geometric side of the trace formula does not vanish.

In symbols, as λ → ∞ away from the walls,

Jspec(f) = Jgeom(f) ∼ TOγ0(f) = C · dim(Vλ),

where C is an explicit nonzero constant that only depends on the components of f away from ∞ and

f∞ = f∞,λ. Since the nonvanishing of TOγ0(f) is reduced to the simultaneous nonvanishing of its

local components TOγ0(fv), we then only need to prove nonvanishing results for these local orbital

integrals applied to our twisted pseudocoefficients at a single element γ0. Once these analytic results

are established, we conclude that the geometric side of the trace formula is nonzero, completing the

proof.

1.6 Summary of the Contents

In §2, we introduce self-dual representations and present some general definitions and results.

In §3, we define the non-connected reductive group G+. This is the fundamental object that we

“work on” in order to prove our main theorem, and we recall the key structural results, culminating

in a description of the twisted endoscopy “norm map,” which is one major ingredient of our proof.

Even guided by overarching theory of twisted endoscopy, translating this into concrete mathe-
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matical results is an involved process. In §4, we describe some of the simplifications and reductions

that we exploit in the course of the proof of the theorem.

In §5 and §6, we establish the analytic results upon which the theorem ultimately rests. This is

the technical heart of the work.

In §7, we put all of the results together to give a proof of our main theorem. On an initial

reading, we advise the reader to begin with this section and refer back to the previous sections as

needed.

Finally in the Appendix (§8), we give a sort of “dream proof” of a general globalization result

like that of our main theorem, assuming certain technical hypotheses.
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Chapter 2

Self-Dual Representations

Self-dual representations are easy to define and naturally arise in the representation theory of various

groups, but it is less common to study them exclusively as a central characteristic rather than as an

auxiliary property of a specific representation. Many representation-theoretic results are exclusive

to self-dual representations, so in this chapter we recall some of these results, oriented towards those

that will be useful in the course of our proof.

While the definitions are crucial and stated carefully, we do not include complete proofs of results

that are not used our main argument.

2.1 General Self-Dual Representations

We collect some basic results on general self-dual group representations. In this section, G denotes

a general group.

Definition 2.1. Let π : G → GL(V ) be a smooth representation over the complex numbers. The

dual (or contragredient) representation is defined to be (π∨, V ∨), where V ∨ is the complex vector

space of all linear functionals ℓ : V → C such that

ℓ(π(k).v) = ℓ(v)

for all k in some open compact subgroup K ⊂ G and v ∈ V ; and where the G-action of π∨ is given
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by

π∨(g).ℓ(v) := ℓ(π(g−1).v)

for all ℓ ∈ V ∨, v ∈ V , and g ∈ G.

We have a canonical bilinear form V × V ∨ → C defined by

⟨v, ℓ⟩ := ℓ(v)

for ℓ ∈ V ∨ and v ∈ V . It is G-invariant in the sense that

⟨π(g).v, π∨(g), ℓ⟩ = ⟨v, ℓ⟩ ,

and if (π, V ) is irreducible, then any other representation (π′, V ′) inducing a non-zero invariant

bilinear form V × V ′ → C is isomorphic to (π∨, V ∨).

Proposition 2.2. Let (π, V ) and (π′, V ′) be two admissible representations of GLn(F ) for a local

nonarchimedean field F . Suppose that there exists a nondegenerate bilinear form

⟨, ⟩ : V1 × V2 → C

that is G-invariant in the sense that

⟨π(g).v, π′(g).v′⟩ = ⟨v, v′⟩

for v ∈ V , v′ ∈ V ′, and g ∈ G. Here, nondegenerate means that for any fixed v′ ∈ V , we have

⟨v, v′⟩ ̸= 0 for some v ∈ V and vice versa. Then (π′, V ) ∼= (π∨, V ∨).
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Proof. Define a map

L : V ′ → V ∨

v′ 7→ ℓv′ = ⟨−, v′⟩ .

This is an intertwining map. If a nonzero v′ ∈ Ker(L), then ⟨v, v′⟩ = 0 for all v ∈ V and ⟨, ⟩ is

degenerate. Similarly, if Im(L) is a proper subspace of V ∨, then by admissibility of V and V ′ there

exists v ∈ V such that ⟨v, v′⟩ = 0 for all v′ ∈ V ′, and so ⟨, ⟩ is degenerate. Thus, the intertwining

map L must be an isomorphism.

Let (π, V ) be an irreducible admissible self-dual (complex) representation of a p-adic group G,

then there exists a nondegenerate G-invariant bilinear form ⟨, ⟩ : V × V → C. This form is unique

up to scalars by Schur’s lemma. Such a form is either symmetric or skew-symmetric, and it is useful

to distinguish between these two cases.

Definition 2.3. An irreducible admissible self-dual representation (π, V ) is orthogonal if ⟨, ⟩ is

symmetric and symplectic if ⟨, ⟩ is skew-symmetric.

For the case we will eventually consider, we can deduce this property by looking at poles of the

appropriate L-functions, which relies on the following fact.

Lemma 2.4. If π is an irreducible representation, then the self-dual representation π⊗π∨ is reducible

and contains exactly one copy of the trivial representation 1 as a factor.
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Proof. For any two irreducible representations π, π′ of G, we have

Hom(1, π∨ ⊗ π′) ∼= Hom(1,Hom(π, π′))

∼= Hom(1 ⊗ π, π′)

∼= Hom(π, π′)

∼=


C, π ∼= π′

0, otherwise

by the tensor-hom adjunction and Schur’s lemma.

For a representation (π, V ), we have π ⊗ π∨ ∼= Sym(V ) ⊕ Λ(V ) and so the trivial representation

must either lie in Sym(V ) in which case π ⊗ π∨ is orthogonal, or in Λ(V ) in which case π ⊗ π∨ is

symplectic.

2.2 Self-Dual Representations of Orthogonal and Symplectic

Type

Under the Langlands classification of (complex) representations of a (connected) reductive group G

over a local field F , every smooth admissible representation π of G(F ) corresponds to a Langlands

parameter (a.k.a. L-parameter)

σπ : LF →L G,

where LG is the Langlands dual group of G over F and LF is, say, a Weil group, a Galois group,

a Weil–Deligne group, or some variant thereof (there is usually a bijective correspondence between

the isomorphism classes of representations of each such group). For a general group, multiple

representations of G can correspond to the same Langlands parameter (such representations are

said to be in the same “L-packet,” corresponding to σπ), but for GLN , it is known that there is

a one-to-one correspondence between irreducible, smooth, admissible representations of GLN (F )
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and Langlands parameters (that is, the L-packets for GLN are singletons). Such a correspondence

between irreeducible smooth, admissible representations and Langlands parameters is called a (local)

Langlands correspondence.

The Langlands correspondence respects certain natural operations on representations. For one,

it respects the taking of duals, in that the L-parameter of the dual representation π∨ is the dual of

the L-parameter of π. In particular, it maps self-dual irreducible smooth admissible representations

of G(F ) to self-dual representations of LF on LG.

Self-dual representations of reductive groups over local fields come in two (non-mutually exclu-

sive) flavors, according to properties of their Langlands parameters.

Definition 2.5. A smooth, admissible representation of π of G(F ) is said to be of orthogonal

type if its Langlands parameter is orthogonal as in Definition 2.3. Similarly, π is said to be of

symplectic type if its Langlands parameter is symplectic as in Definition 2.3.

Note that this notion is different from the representation π itself being orthogonal or symplectic.

It is possible that these two notions of being “orthogonal” or being “symplectic” coincide, but there

are cases in which they differ. A particularly striking case occurs for inner forms of GLN : if π is an

irreducible self-dual representation of D× for a division algebra D of invariant 1/n for n even, then

π is orthogonal if and only if its Langlands parameter (associated to π under the Jacquet–Langlands

and local Langlands correspondences) is symplectic; in other words, π is orthogonal if and only if it

is of symplectic type [PR12, Cor. B].

Warning 2.6. It is important to be aware that a self-dual smooth admissible local representation

can be both of orthogonal type and of symplectic type (or neither!). For example, certain Eisenstein

series fall into this category, as well as some reducible representations that we can construct relatively

explicitly (e.g. the direct sum of two irreducible representations of orthogonal type). One concrete

example is if ω is a self-dual supercuspidal representation such that no unramified twist yields

its dual representation ω∨, then the representation of G = GL2n(F ) obtained by the induction

IndG
P (ω ⊗ ω∨) (where P is the usual (n, n) parabolic in G) is a self-dual local representation that is

of both orthogonal and symplectic type. This representation plays an important role in the solution
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to the Galois theory problem that was the initial motivation for the work of Chenevier–Clozel [CC09,

§5].

However, the situation is not completely hopeless. By Lemma 2.4, we see that every irreducible

self-dual smooth, admissible representation of G(F ) must be either of orthogonal type of or sym-

plectic type.

2.3 Self-Dual Automorphic Representations

We recall some basic properties of self-dual automorphic representations of GLN .

The following result can be summarized as “global self-duality implies local self-duality.”

Proposition 2.7. Let π = ⊗vπv be a self-dual automorphic representation of GLN (A). For all

places v, the local component πv is self-dual.

Proof. We can prove this, say, by looking at the local and global L-functions corresponding to such

a representation and its properties, in particular, its functional equation.

But to show that an automorphic representation with local components that are all self-dual is

itself self-dual (as an automorphic representation) is subtle, and it is this for this reason that we

work with the twisted group G+ in the first place, to ensure the global self-duality.

In general, “most” self-dual automorphic representations of GLN are not self-dual. There are

many ways to see this and in which this property manifests itself, but here is one particular realization

that has the quality of being relatively quantitative.

Proposition 2.8. Let N be a natural number and assume that N ̸= 2. Given a real number λ > 0,

let Ncusp(λ) denote the number of cuspidal automorphic representations of GLN (A) whose Laplacian

eigenvalues are at most λ. As λ → ∞, we have

Ncusp(λ) ∼ cλ(N2+N−2)/2.

Proof. Weyl’s law.
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However, there is a single setting where there are proportionally more self-dual cusp forms than

others.

Proposition 2.9. Self-dual cusp forms have positive density among the cusp forms of GL2.

Proof. Due to the accidental isomorphism SO3
∼= PGL2, transfers from SO3 to GL2 give us a

positive proportion of self-dual representations.

This leads to some phenomena that occur for self-dual automorphic representations in the GL(2)

case that make it dramatically different from the other cases. We refer to §?? for a more in-depth

discussion.
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Chapter 3

The Twisted Group
G+ = GL(n)⋊ Z/2.

We recall some facts about the non-connected reductive group G+ = GL(n) ⋊ ⟨θ⟩ ∼= GL(n) ⋊ Z/2

where θ is an involution that acts on G = GL(n) via g 7→ t(g−1).

3.1 Definition of G+

Let G = GLN for a positive integer N and G = G(F ) the set of F -points for a field F . We have an

automorphism

θ : G → G

g 7→ tg−1,

sending an element of g to its inverse transpose, noting that the inverse and transpose operations

commute with each other, so it does not matter in which order they are taken. The map θ2 is the

identity homomorphism, so θ is of order 2; that is, it is an involution.

We consider the group G+ = G ⋊ ⟨θ⟩, which we call G twisted by θ or the θ-twisted G,

characterized by the relations

θ2 = 1, θgθ−1 = θ(g)

for all g ∈ G. It is a non-connected reductive group whose identity connected component is G and
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its component group is G+/G ≃ ⟨θ⟩ ≃ Z/2Z.

We denote the non-neutral connected component of G+ by G̃ = Gθ. Note that G̃ is an algebraic

variety that is isomorphic to G under the map

δθ : g 7→ gθ

and admits a transitive G-action on both the left and the right. We have a decomposition

G+ = G⨿ G̃.

On F -points, we write G+ := G+(F ) = G⨿ G̃.

3.2 Realizing G+ Inside a General Linear Group

The twisted group G+ is linear algebraic and so we should be able to realize it in a linear group

GLk for a certain k ∈ N. In this section, we describe such a realization.

Consider the embedding i : G+ → GL2N given by

i(g) =

g 0

0 θ(g)

 for g ∈ G, and i(θ) =

 0 IN

IN 0

 .

We can then describe the non-neutral component as

i(G̃) =


 0 g

θ(g) 0

 , g ∈ G

 .

Using this linear realization, it is easy to prove the following elementary proposition.

Proposition 3.1. Let g ∈ G. Then gθ ∈ G̃ is semisimple if and only if gθ(g) ∈ G is semisimple.

Furthermore, gθ is strongly regular semisimple if and only if gθ(g) is strongly regular semisimple.

Proof. First, we note that g ∈ G is semisimple (respectively, nilpotent) if and only if θ(g) is.
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Consequently, g ∈ G is semisimple if and only if i(g) is. Since (gθ)2 = gθ(g), it follows that if

gθ is semisimple, then gθ(g) is as well.

Conversely, suppose that gθ(g) is semisimple. We have the Jordan decomposition

gθ = gssgu

such that the elements gss, gu ∈ G+ commute, where i(gss) is semisimple and i(gu) is unipotent.

Then

gθ(g) = g2ssg
2
u.

But by the uniqueness of the Jordan decomposition, we must have g2u = 1 and so gu = 1.

It remains to prove the statement about strong regularity. The characteristic polynomials P (X)

of gθ(g) and i(gθ) are related through the equality

Pi(gθ)(X) = Pgθ(g)(X
2)

(to see this, calculate the determinant in blocks). In particular, Pgθ(g) splits into a product of simple

roots if and only if Pi(gθ) does (note that 0 is not a root). This concludes the proof.

This result indicates that the natural notion of semisimplicity for elements of the form gθ ∈ G̃ ⊂

G+ is to check whether gθ(g) is semisimple in the usual sense. We say that g ∈ G is θ-semisimple

if gθ(g) is semisimple.

3.3 Smooth Representations of G+ and θ-stable Representa-

tions of G

Let F be a p-adic field (i.e. a nonarchimedean local field of characteristic zero) and let G = G(F )

and G+ = G+(F ) be the sets of F -points of the respective groups. The groups G+ and G are totally

discontinuous and locally compact.
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We write Rep(G+) and Rep(G) for the categories of smooth complex representations of the p-adic

groups G+ and G respectively. Similarly, we write H(G+) and H(G) for the corresponding Hecke

algebras and H(G̃) for the subspace of functions with support in the non-neutral component G̃ of

G+. We have a natural injection

H(G) ↪→ H(G+),

which equips H(G+) with the structure of an H(G)-module on the left and right and under which

we can view H(G̃) as a submodule. Thus, as a H(G)-bimodule, we have the decomposition

H(G+) = H(G) ⊕H(G̃).

The map f 7→ f∗δθ gives a bijection between H(G̃) and H(G) that shows that H(G̃) is isomorphic

to H(G) as a right module, and the action on the right of a function f is given on H(G) by the

multiplication by (that is, convolution product with) f ◦ θ.

We say that a representation (π, V ) ∈ Rep(G) is θ-stable if there exists a G+-isomorphism

between (π, V ) and (π ◦ θ, V ). We write Rep(G)θ for the full subcategory of Rep(G) that consists

of θ-stable representations.

For (π, V ) ∈ Rep(G+), consider the restrictions

π0 = π|G

π̃0 = π|G̃.

(Note that the latter is not a representation per se, because G̃ is not a group.) Note that the data

encoded by π̃0 can be extracted if we know how G acts on V and how θ acts on V . Let’s state this

result formally and give a proof. This result seems to be well-known, but we were unable to find an

appropriate reference, and so we give details.

Theorem 3.2. A smooth representation (π, V ) of G+ is entirely determined by the triplet (V, π|G, π(θ)).

We break this down into a couple of simple lemmas.
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Lemma 3.3. A smooth representation of G+ is given by a θ-stable representation of G and a choice

of an isomorphism A ∈ HomG(π, π ◦ θ), which is of order 2 and is also an automorphism of V .

Proof of Lemma. If (π, V ) is a smooth representation of G+, then π(θ) is an automorphism of order

2 on V that intertwines π and π ◦ θ, so the representation π|G is θ-stable.

Conversely, suppose that we have a triple (V, π,A) where (π, V ) is a smooth θ-stable represen-

tation of G and A is an automorphism of order 2 of V that intertwines π and π ◦ θ, then we can

construct a smooth representation of G+ by setting π(θ) = A.

Lemma 3.4. Up to G+-isomorphism, the choice of operator A is unique up to sign.

Proof of Lemma. Given any two representations π, π′ ∈ Rep(G+), their restrictions to G are iso-

morphic if and only if π′ ≃ π⊗ χ for χ a character of ⟨θ⟩; that is, if we realize π and π′ in the same

vector space, we must have π′(θ) = ±π(θ).

In particular, the previous result implies that if (π, V ) ∈ Rep(G) and π+ is an extension to G+,

then the restriction TrG̃(π+) to G̃ of the character of π+ is determined by π up to sign.

Lemma 3.5. All irreducible θ-stable representations of G are extendable to a representation of G+.

Proof of Lemma. Suppose that (π, V ) is an irreducible θ-stable representation of G and A ∈ HomG(π, π◦

θ) an arbitrary isomorphism. Since A2 ∈ HomG(π, π), Schur’s lemma implies that there exists

a nonzero λ ∈ C such that A2 = λ · IdV . Thus, given a square root µ of λ, it follows that

A
µ ∈ HomG(π, π ◦ θ) is of order 2, which allows us to extend π to G+.

We combine these results to give a proof of our theorem.

Proof of Theorem. A smooth representation (π, V ) of G+ certainly determines a triple (V, π|G, π(θ)).

It remains to show that we can recover the representation of G+ from this data.

Let (V, π|G, π(θ)) be such a triple. Then (π, V ) is a θ-stable representation of G and π(θ) ∈

HomG(π, π ◦ θ) is an order-two automorphism of V . By the previous lemmas, these determine a

unique representation of G+.
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3.4 Twisting G by a Conjugate of θ

For technical reasons, it is sometimes useful to consider G when it is twisted by another involution

instead of θ. For example, at a crucial part of their argument [CC09, §4], Chenevier and Clozel have

to use an automorphism θ0 that is a conjugate of the involution they use in the remainder of their

paper. In this section, we will show that the choice of conjugate of θ that we twist G by in the

construction of G+ is of little consequence, and indicate precisely what minor adjustments need to

be made.

3.4.1 The involution θ0 of Chenevier–Clozel

For the moment, assume that we are working with G = GLN where N is even, and explain the

relation between our “bare” involution θ : g 7→ tg−1 and the θ0 that Chenevier and Clozel apply at

certain points of their argument.

Consider the matrix

J0 =



1

−1

· · ·

1

−1


∈ G.

Note that J2
0 = −IN and θ(J0) = J0. We define an automorphism

θ0 : G → G

g 7→ J0
tg−1J−1

0 = θ(J0gJ
−1
0 ),

given by applying θ and then applying conjugation by J0. The automorphisms θ and θ0 are both

involutions, that is, they are both of order 2.

We defined the twisted group G+ above in terms of the involution θ. But what if we considered

a different involution, such as θ0? We will show in this section that we can replace the involution θ
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by any conjugate and in particular, θ0. For example, since θ and θ0 are congruent modulo the inner

automorphisms of G, we have

G⋊ ⟨θ0⟩ = G⋊ ⟨θ⟩ .

For the embedding i giving the realization in the general linear group (cf. §3.2), we define

i(θ0) =

 0 J0

J0 0

 .

The same reasoning of §3.3 applies when we replace θ by θ0, since we did not use any property of

θ other than the fact that it is an involution. Furthermore, as the two automorphisms are conjugate,

a representation is θ-stable if and only if it is θ0-stable. To see this, just note if (π, V ) ∈ Rep(G),

then π ◦ θ and π ◦ θ0 are always isomorphic via the map π(J0) : V → V .

Finally, note that for π ∈ Rep(G) is irreducible, we always have π◦θ0 ≃ π∨, and so an irreducible

representation is θ0-stable if and only if it is self-dual, just like the case of θ.

3.4.2 The involution θ of Waldspurger

We return to the case of G = GLN for N an arbitrary positive integer. In his work on twisted G

over p-adic fields [Wal07], Waldspurger uses an involution θ of G the form

θ(g) = J tg−1J,

where

J =


1

· · ·

1

 .

The same arguments that we delineated in the last section for the involution θ0 also apply to the

above involution θ.

Remark 3.6. In case the notational abuse has not made this clear, this isomorphism “à la Wald-
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spurger” will be the involution that we ourselves use most of the time in the proofs of our results—at

least, outside of this preliminary section (§3) where we talk about general context in which we can

prove such results—so we can apply the results of [Wal07] directly.

3.5 Conjugacy and Stable Conjugacy in G+

We return to letting θ denote the “raw” inverse-transpose θ(g) = tg−1.

We write Ad : G+ → Aut(G+) for the action of G+ on itself by conjugation. The components

of G+ are stable under this action.

If g ∈ G, then G̃ is stable by Ad(g), and we write

Adθ(g) := δθ ◦ Ad(g)|G̃ ◦ δ−1
θ

for the action on G deduced via δθ : g 7→ gθ, that is,

Adθ(g)(h) = hgθ(h)−1 = hg th0.

This action is called θ-twisted conjugation. We define the θ0-twisted conjugation Adθ0 in an

analogous manner by replacing θ with θ0, and same for the θ “of Waldspurger.”

Two semisimple elements x, y ∈ G+ = G+(F ) are said to be stably conjugate if there exists a

g ∈ G+(F ) such that

x = gyg−1,

and for all σ ∈ Gal(F/F ), we have

g−1σ(g) ∈ Z(G)θGy,

where G0
y denotes the neutral component of the centralizer of y in G.

Remark 3.7. This additional latter Galois condition for stable conjugacy is required since G+ is not
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a connected reductive group with simply connected derived group.

Note that conjugation in G(F ) implies stable conjugation, which itself implies conjugation in

G(F ).

3.5.1 Semisimple conjugacy classes of G̃

For our calculations later involving the twisted endoscopy norm map, it is useful to know what

the semisimple conjugacy classes of the non-neutral connected component G̃ of G+ are. Given the

realization of G+ and thus G̃ in a general linear group (cf. §3.2), this boils down to some elementary

linear algebra calculations. We refer the reader to [Wal07, §I.3] for further details. In this section,

the θ denotes the involution “à la Waldspurger” (cf. §3.4.2).

The goal of this section is to produce explicit representatives of each θ-semisimple conjugacy class

in G̃. While it does involve establishing a somewhat intimidating amount of notation, the ideas and

the deductions are simple and elementary.

Let F denote an algebraic closure of a field F and Gal(F/F ) the absolute Galois group of F .

For any finite set I and a subset I∗ ⊂ I, we pick the following series of objects:

• For i ∈ I, pick an ai ∈ F
×

;

– if i ̸∈ I∗, we set F ′
i = F [ai], and denote the degree of its extension by fi = [F ′

i : F ]; we

assume that ai is not conjugate to a−1
i by the Galois group Gal(F ′

i/F );

– if i ∈ I∗, we set Fi = F [ai], we assume that Fi is the quadratic extension of a subextension

F ′
i of F , and we set fi = [F ′

i : F ], we assume that aiτi(ai) = 1 where τi is the unique

nontrivial element of Gal(Fi/F
′
i );

• For i ∈ I, pick an integer di ≥ 1;

• For i ∈ I∗, let Vi be a vector space of dimension di over Fi, equipped with a nondegenerate

sesquilinear form qi : Vi × Vi → Fi, where

qi(zv, z
′v′) = τi(z)z′qi(v, v

′)
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for z, z′ ∈ Fi and satisfying the relation

qi(v
′, v) = aiτi(qi(v, v

′)).

Remark 3.8. For i ∈ I, fix bi ∈ F×
i such that aibiτ(bi)

−1 = 1. The symmetry condition imposed on

qi is equivalent to biqi being Hermitian. It implies that the group of isometries U(qi) of the form qi

is the usual unitary group.

We also define two other vector spaces:

• V+ is a vector space over F equipped with a nondegenerate quadratic form q+; we write d+

for its dimension;

• V− is a vector space over F equipped with a nondegenerate symplectic form q−; we write d−

for its dimension.

We will eventually be able to take V+ or V− to be zero-dimensional.

We assume that:

N = d+ + d− + 2
∑
i∈I

difi,

and that for i, j ∈ I with i ̸= j, there is no F -linear isomorphism F [ai] → F [aj ] that sends ai to aj

or a−1
j .

The above choices of data:

(I, I∗, {ai}i∈I , {di}i∈I , {Vi}i∈I∗ , V+, V−),

determines a conjugacy class in G̃. We write V ∗
i for the dual of Vi when we consider it as a space over

F and denote by Isom(Vi, V
∗
i ) the set of F -linear isomorphisms of Vi in V ∗

i . We establish analogous

notation for V ∗
+ and V ∗

−.
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For i ∈ I\I∗, we set

V ′
i = F ′di

i

V ′′
i = HomF ′

i
(V ′

i , F
′
i )

and so define

Vi = V ′
i ⊕ V ′′

i .

For such an i ̸∈ I∗, we define σi ∈ Isom(Vi, V
∗
i ) by the equality:

⟨x′ + x′′, σi(y
′ + t′′)⟩ = TrF ′

i/F
(⟨x′, y′′⟩ + ai ⟨y′, x′′⟩)

for x′, y′ ∈ V ′
i and x′′, y′′ ∈ V ′′

i .

For i ∈ I∗, we define σi ∈ Isom(Vi, V
∗
i ) by the equality:

⟨x, σi(y)⟩ = TrFi/F (qi(x, y)).

For ζ = ±1, we define σζ ∈ Isom(Vζ , V
∗
ζ ) by the equality:

⟨x, σζ(y)⟩ = qζ(x, y).

We identify an N -dimensional F -vector space V with

V = V+ ⊕ V− ⊕ (⊕i∈IVi),

and the collection (σ+, σ−, (σi)i∈I) defines an element σ ∈ Isom(V, V ∗). From this we obtain an

element

s = σ̃ ∈ G̃.
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It’s a semisimple element with a well-defined conjugacy class. Every semisimple conjugacy class of

G̃ can be realized in this way. (Consider a realization as in §3.2 to make this obvious.)

Note that the following elementary modifications do not change the conjugacy class of s ∈ G̃:

• changing I and I∗ to other sets with the same number of elements;

• replacing ai with its conjugation under an element of Gal(F/F );

• replacing ai with a−1
i ;

• replacing the forms qi, q+ or q− by equivalent forms.

Up to these elementary modifications, we thus obtain a classification of conjugacy classes of semisim-

ple elements of G̃.

The commutant ZG(s) in G (that is, the connected component, not G+!) of the element s ∈ G̃

constructed above is equal to:

O(q+) × Sp(q−) ×

 ∏
i∈I\I∗

GLdi/F ′
i

×

(∏
i∈I∗

U(qi)/F ′
i

)
,

where O(q+) is the orthogonal group of q+, Sp(q−) is the symplectic group of q−, and for example,

for i ∈ I∗, U(qi)/F ′
i

is the restriction of F ′
i to F of the group of automorphisms of F ′

i of the form qi.

3.5.2 θ-twisted conjugacy classes of a skew-symmetric matrix (N even)

A result that we need to use at one point of the proof is that the set of γθ ∈ G̃ such that γ is

skew-symmetric forms a stable conjugacy class.

Let us return to letting θ denote the involution g 7→ tg−1, and G = GL2n. A key property of

the principal element γ0 (c.f. §4.3) in the proof of the theorem is that the twisted centralizer of γ0

is a symplectic group. We will show here that this property is not affected by replacing θ with a

conjugate (i.e. applying a subsequent inner automorphism).

Let Skew2n(F ) be the set of 2n×2n matrices with coefficients in a field F that are skew-symmetric
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and invertible:

Skew2n(F ) = {γ = [γij ] ∈ GL2n(F ) | tγ = −γ}.

From the definition, we can see that Skew2n(F ) is closed in G = G(F ). Moreover, G acts on

Skew2n(F ) by θ-conjugation, that is

Adθ(g).γ = gγ tg

for γ ∈ Skew2n(F ) and g ∈ G.

Define a matrix J2n ∈ Skew2n(F ) by

Jn =

 0 In

−In 0

 ,

where In denotes the identity matrix of size n.

The symplectic group can be defined as the stabilizer of Jn under the θ-conjugacy action:

StabAdθ
(Jn) = {g ∈ G | gJn tg = Jn} = Sp2n(F ).

For all γ ∈ Skew2n(F ) and g ∈ G, we have

StabAdθ
(Adθ(g).γ) = {h ∈ G | h(Adθ(g).γ) th = Adθ(g).γ}

= {h ∈ G | hgγ tg th = gγ tg}

= {h ∈ G | g−1hgγ tg th tg−1 = γ}

= g{x ∈ G | xγ tx = γ}g−1

= g StabAdθ
(γ)g−1

so this action is transitive. This property is holds over arbitrary fields (at least those of charac-

teristic zero, which we are only ones we’re interested in), and so Skewn(F ) is precisely the stable

θ-twisted conjugacy class of any invertible skew-symmetric matrix. Moreover, all the stabilizers of



34

such matrices are thus conjugate with each other, and in particular conjugate to Sp2n(F ).

In addition, for all γ ∈ Skew2n(F ), we thus have a surjection

·γ : G → Skew2n(F )

g 7→ Adθ(g).γ

which induces a bijection

G/StabAdθ
(γ) = Skew2n(F ).

In particular, for γ = Jn, this gives a bijection

GL2n(F )/Sp2n(F ) = Skew2n(F ).

To summarize the above deductions, we have (1) shown in this part that the θ-twisted centralizer

of a matrix of Skew2n(F ) is conjugate to a symplectic group, and (2) that the quotient of GL2n by

this group (and in particular, GL2n/Sp2n) is in bijection with Skew2n(F ).

3.5.3 Twisted orbits and twisted orbital integrals

The goal of this section is to relate the twisted orbits and twisted orbital integrals for different

conjugates of the involution θ.

On the quotient GL2n(F )/StabAdθ
(γ), choose a measure on it that is invariant under left trans-

lation; this exists and is unique up to constant. Equip Skew2n(F ) with the measure induced from

that of GL2n(F )/StabAdθ
(γ) under the bijection above, this measure is thus invariant by the action

of G under θ-conjugation, and up to constant is the only possible one with this property.

First, we want to show that θ0-twisted orbits can be obtained from the θ-twisted orbits. Let

G.[g0θ] and G.[gθ0] denote the θ-twisted orbits and θ0-twisted orbits, respectively, of an element
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g ∈ G. These two orbits are related as follows:

G.[γθ0] = G.[(γJ0)θ].J−1
0 .

Similarly, the θ-twisted centralizer of γ is the θ0-twisted centralizer of γJ0. Moreover, the θ0-twisted

orbital integrals can be deduced from the θ-twisted orbital integrals via

JGθ0(γ, f) = JGθ(γJ0, λ(J0).f),

where JG0θ0(γ, f) denotes the orbital integral of f on the θ0-twisted conjugacy class of γ (similarly

with θ), and λ(J0).f is the function λ(J0).f : g 7→ f(gJ−1
0 ).

Thus, up to some minor adaptations, we can thus easily pass from results twisting by θ to results

twisting by θ0 or any other conjugate involution. In particular, we can reinterpret the results of

papers like [Sha92] and [Wal07] which use θ (§3.4.2), with those of [CC09] which uses θ0.

3.6 The Twisted Endoscopy Norm Map

In this section, following the conventions of Waldspurger [Wal07, §III.2] (namely, we use his choice

of involution θ, see §3.4.2), we recall the properties of the twisted endoscopy norm map (or more

precisely, one direction of the norm correspondence) between twisted conjugacy classes in G̃ = Gθ

(the non-neutral connected component of the twisted group G+ = GLN ⋊ ⟨θ⟩) and conjugacy classes

in an endoscopic group H(R) of G+, which is defined to be

H =


Sp2n, if N = 2n + 1 (odd case)

SO2n+1, if N = 2n (even case).

General results on twisted endoscopy can be found in the monograph of Kottwitz and Shelstad

[KS99]; we specialize the results to our setting: namely, twisted endoscopy corresponding to the

triple (G = GLN , θ : g 7→ J tg−1J, ω = id).
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A priori, the existence of such a miraculous correspondence seems unlikely to have come out

of nowhere, so let us provide some context for the result. Through the lens of the Langlands

program and Arthur’s conjectures, if H is an endoscopic group of G+, it means, roughly speaking,

that H is the group that controls the stably invariant distributions on the non-identity connected

component G̃. One consequence of this property is that if ΠH is an L-packet of tempered irreducible

admissible representations of H, then it should be possible to attach to ΠH a tempered irreducible

admissible representation π of G that is invariant under the automorphism θ, so that for a suitable

extension π+ of π to a representation of G+, the distribution TrG̃(π) is “a transfer of” the distribution

Tr(ΠH) =
∑

τ∈ΠH TrH(τ) on H, in a precise sense.

The use of the norm map is fundamental to our approach. It allows us to reduce the study of

the representations we impose at the archimedean places to the corresponding representations on (a

compact form of) the endoscopic group, which are parametrized by their highest weight and which

we can vary to obtain a number of important simplifications “asymptotically.” We will explain this

in more detail in §4.

Since this is probably the most important section of the chapter, we recall the important notions

again in an attempt to clarify at the expense of possible repetition.

Let G+ be the semidirect product of {1, θ} ≃ Z/2Z by G, where θ operates by g 7→ J tg−1J . We

have G+ = G
⨿

θG.

Definition 3.9. If g, h ∈ G, we say that g and h are θ-conjugate if

g = x−1hxθ

for an x ∈ G. This is equivalent to saying that θg and θh are conjugate under G ⊂ G+.

The group G+ is a non-connected reductive group and such groups admit a natural notion of

semisimplicity: g̃ = θg for g ∈ G is semisimple if and only if g̃2 = (gθ)g is semisimple (cf. Prop.

3.1). We say such elements g ∈ G are θ-semisimple.

If g ∈ θG is semisimple, its centralizer ZG(g) in G is reductive. We say that g is strongly
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regular if ZG(g) is a torus. If g and h are strongly regular, we say that they are stably conjugate

if there exists x ∈ G(C) such that

xhx−1 = h.

All these notions can be naturally defined over global fields and their completions (see, e.g.

[Wal07] for such a description over the p-adics), but we will only apply them over the reals. In

particular, we can define “stable θ-conjugate” and “strongly θ-regular” on G(R). We can define

notions of strongly regular elements, and thus stable conjugacy, on H(R) as well.

Let g ∈ G(R) be a strongly θ-regular element, and let Λ(g) be the set of (complex) eigenvalues

of gθ · g; they are necessarily distinct because of the strong regularity property. Note that if N is

odd, then Λ(g) contains 1. Let h ∈ H(R) be a strongly regular element, and let Λ(h) be its set of

eigenvalues (all which are distinct by strong regularity). If N is even, then Λ(h) contains 1. Then

the norm of the stable conjugacy class of g is equal to the stable conjugacy class of h if and only if:

• If N is even, then

Λ(h) = {−x | x ∈ Λ(g)} ∪ {1}.

• If N is odd, then

Λ(h) ∪ {1} = Λ(g).

Remark 3.10. The reason that we need to take the negatives of the eigenvalues in the case of even

N is because, in this case, our automorphism θ does not fix the pinning.

This gives us a bijection called the twisted endoscopy norm correspondence.

Proposition 3.11. ([KS99, Thm 3.3A] in general, [Wal07, §III.2] for our G+ and H.) The above

correspondence defines a bijection between

• stable θ-conjugacy classes of strongly θ-regular elements in G (that is, “strongly regular (semisim-

ple)” elements of G̃), and

• stable conjugacy classes of strongly regular elements in H.
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For g ∈ G(R) that is strongly θ-regular and h ∈ H(R) that is strongly regular, we denote (one

direction of) the correspondence above by

N g = h

and say that h is the norm of g, and call the induced map the twisted endoscopy norm map.
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Chapter 4

Key Notions

Here we describe the ideas and techniques that allow us simplify our proof of the theorem in §7.

4.1 The Asymptotic Simplification of the Geometric Side of

the Trace Formula

The principal observation that simplifies the analysis of the non-vanishing of the geometric side of

the trace formula is the asymptotic simplification of the geometric side of the trace formula. This

phenomenon can be viewed as a sort of Plancherel equidistribution result and falls into the realm

of general “Sato–Tate type” phenomena that we observe for automorphic representations that vary

“in families” in different ways.

The result is described and proven for reductive groups over Q that satisfy certain hypotheses

by Chenevier and Clozel [CC09, §1]. In the proof of our theorem, we only need the result for the

compact forms of the endoscopic groups over R, so we specialize to that setting. We emphasize that

unlike results in, say, the theory of semisimple conjugacy classes, passing from the semisimple case

to the reductive case (e.g., from a group to an isogenous group with a given center) involves dealing

with some nontrivial issues with respect to the results that we describe here.

Let G = G(R) be a connected compact Lie group and T a maximal torus. Assume that G(R)

has discrete series, so G has a real inner form G∗ that is anisotropic mod center. We can parametrize

discrete series representations δ by their highest weight λ ∈ X∗(T ). If an element γ lies in the center
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Z(G) of G, the character of δ is given by

Θδ(γ) = deg(δ)ω(γ),

where ω is the central character of δ.

Write δ(λ) for the representation associated with λ ∈ X∗(T ). Then deg δ(λ) is given by the Weyl

polynomial

P (λ) =
∏
α

⟨α, λ + ρ⟩
⟨α, ρ⟩

,

where the product runs over a set of positive roots of which ρ is the half-sum.

For a dominant λ ∈ X∗(T ), let Θλ be the character of the representation Vλ of G with highest

weight λ.

Proposition 4.1. Let γ ∈ T ⊂ G. For a dominant λ,

Θλ(γ) =
∑
i

Ei(γ, λ)Pi(λ),

where:

• The sum is finite.

• The Ei(γ, λ) are rational functions on the γχ’s, where χ runs over a basis of X∗(T ). The

degrees of such functions depend on λ. The denominators of Ei(γ, λ) are nonzero on γ and

independent of λ.

• Ei(γ, λ) is uniformly bounded as λ varies.

Furthermore, if γ is not central, then Pi(λ) is a polynomial such that

degPi(λ) < degP (λ).

Proof. If γ is regular or central, the proposition follows from the Weyl character formula and the
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Weyl degree formula. If the centralizer of γ is a Levi subgroup, then we can use Kostant’s formula

[Kos59]. For the general case, we can imitate the proofs of the above, see [CC09, §1] for details.

Proposition 4.2. [CC09, Cor. 1.12] If γ ∈ G is not central, then

Θλ(γ)

dim(Vλ)
→ 0

as λ ∈ X∗(T ) ⊗R goes to infinity away from the walls of the Weyl chambers.

Proof. We can assume without loss of generality that γ ∈ G has connected centralizer (this follows

when the derived group of G is simply connected). Let M = ZG(γ), and let R+(G,T ) and R+(M,T )

denote a sets of positive roots for G and M respectively. Up to taking a cover, we can assume that

R+(M,T ) = R+(G,T ) ∩R(M,T ), where R(M,T ) is the set of roots.

Let W be the Weyl group of (G,T ) and let WM the Weyl group of (M,T ). Define

WM = {w ∈ W | w−1α ∈ R+(G,T ) for all α ∈ ∆M}

for a choice of basis ∆M ⊂ R+(M,T ). Any w ∈ W admits a unique decomposition

w = wswu

where ws ∈ WM and wu ∈ WM .

An easy consequence of the definition of WM is that if λ ∈ X∗(T ) is dominant for G and

wu ∈ WM , then wu(λ+ρ)−ρM is dominant for M . Then by applying the previous proposition, using

the generalization of the Weyl character formula or Kostant’s formula if necessary, and rearranging

the terms, we arrive at the expression

Θλ(γ) =
γρM−ρ∏

α∈R+(G,T )\R+(M,T )(1 − γ−α

∑
wu∈WM

ϵ(wu)γwu(λ+ρ)−ρMPM (λ)

where ϵ is the sign character on W and PM is the Weyl polynomial for M .
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We can assume that γ ∈ T . Since we have

PM (λu)

P (λ)
=

∏
α∈R+(G,T ) ⟨ρ, α⟩∏

α∈R+(M,T ) ⟨ρM , α⟩

 ∏
α∈R+(G,T )\w−1

u R+(M,T )

⟨λ + ρ, α⟩

−1

,

the term vanishes as λ → ∞ if γ is not central.

4.2 θ-discrete Series Representations

One way to simplify the analysis of terms appearing in the trace formula when constructing au-

tomorphic representations is to impose discrete series representations at the archimedean places.

However, not all real groups have such representations. In particular, GLN (R) only has discrete

series representations for N = 1 or N = 2, so we cannot use this technique to solve our problem in

general.

But it turns out that our involution θ can bring us into a situation where we can find a

workaround. Namely, it turns out that G(R) always has certain “θ-discrete” representations; roughly

speaking, these are representations that are isolated among the tempered θ-invariant representations

of G(R). It turns out that some of the techniques that can be applied to discrete series can be adapted

to θ-discrete representations.

In this section, we describe the representations in question. These are the representations that we

will put in at the archimedean places of our desired self-dual cuspidal automorphic representation.

4.2.1 GL(2n+ 1) case

In case of G = GLN where N = 2n + 1 is odd, the representations at the archimedean places that

are suitable for our approach are cohomological representations of a particular form that come from

the endoscopic group Sp2n. We describe their construction and verify their key properties.

Consider a pure weight µ with purity 0 given by

µ = (µ1 > µ2 > · · · > µn > 0 > −µn > · · · > −µ2 > −µ1).
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Let H = Sp2n, defined so that the upper-triangular subgroup BH of H is a Borel subgroup. The

connected component of the L-group of H is LH◦ = SO2n+1(C). The maximal compact subgroup

KH of H(R) = Sp2n(R) is isomorphic to U(n). Define a dominant integral weight µH for H, which

is given by

µH := (µ1, µ2, . . . , µn) =
n∑

i=1

µiei,

where ei gives the i-th coordinate of a diagonal matrix. Let ρH be the half-sum of positive roots for

H, written as

ρH =
n∑

j=1

(n + 1 − j)ej = (n, n− 1, . . . , 1).

Define

wH := µH + ρH = (µ1 + n, µ2 + n− 1, . . . , µn−1 + 1, µn).

Then wH is a regular weight and by Harish-Chandra’s classification of discrete series representations

(cf. [Kna01]), there exists a discrete series representation πH = πwH of H(R) whose infinitesimal

character is χwH . Let VµH be the irreducible algebraic representation H(C). By some standard

results on the cohomology of discrete series representations ([BW80, Theorem II.5.3]), we know

that πH is cohomological with respect to the coefficient system VµH of H, that is, the relative Lie

algebra cohomology H•(h∞,KH ;πH ⊗ VµH ) ̸= 0; indeed, it is nonzero only in the middle degree

• = 1
2 dim(H(R))/dim(KH).

We can deduce the shape of the Langlands parameter σwH attached to πwH [Bor79, Example

10.5]:

σwH
= IndWR

C× (χℓ1) ⊕ IndWR

C× (χℓ2) ⊕ · · · ⊕ IndWR

C× (χℓn) ⊕ sgnn,

where ℓ1, . . . , ℓn are positive integers and the first n summands are irreducible 2-dimensional repre-

sentations of the Weil group WR of R induced from characters of C× with the character χℓj sending

z ∈ C× to (z/z)ℓj/2 where each summand being of orthogonal type forces ℓj to be even. Since the

determinant of the parameter must be 1 (to land in SO2n+1(C)), this forces the last summand to
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be sgnn. The relation between the integers ℓj and the weight wH is given through

σwH
|C× = zwHz−wH ,

where we have implicitly used the fact that wH , a character of a maximal torus TH of H is also a

cocharacter of the dual LT ◦ ⊂ LH◦. Thus, writing ℓ = (ℓ1, . . . , ℓn), we have ℓ = 2wH , that is,

(ℓ1, . . . , ℓn) = (2µ1 + 2n, 2µ2 + 2n− 2, . . . , 2µn−1 + 2, 2µn).

Let πµ be the Langlands transfer of πH to an irreducible representation of GL2n+1(R), noting that

the Langlands parameter of πH is that of πµ via the standard embedding LH◦ = SO2n+1(C) ⊂

LG◦ = GL2n+1(C). By the local Langlands correspondence (cf. for example, [Kna94]), we can

deduce that

πµ = IndG
P (2,2,...,2,1)(Dℓ1 ⊗Dℓ2 ⊗ · · · ⊗Dℓn ⊗ sgnn), (4.1)

where Dℓ denotes the discrete series representation of GL2(R) whose lowest non-negative K-type is

the character cos θ − sin θ

sin θ cos θ

 7→ ei(ℓ+1)θ

with central character a 7→ sgn(a)ℓ+1 (e.g. so the representation at ∞ of a holomorphic elliptic

modular cusp form of weight k is Dk−1). Let Vµ be the irreducible algebraic representation of G(C)

with highest weight µ. Noting that Vµ is self-dual, a result of Clozel [Clo90, Lemme 3.14] implies

that

H•(g,R×
+SO2n+1;πµ ⊗ Vµ) ̸= 0.

The πµ of the form (4.1) will be the representations that we put at the archimedean places of our

automorphic representation.
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4.2.2 GL(2n) case

We argue just like in the case above. Since the arguments are nearly identical, we are a little briefer

in our remarks. Here, we take H = SO2n+1,F to be the split orthogonal group in 2n + 1 variables.

We have H(R) = SO(n, n + 1). The maximal compact subgroup KH ⊂ H(R) is isomorphic to

S(O(n)×O(n+1)). The connected component of the L-group is LH◦ = Sp(2n,C). Fix a real place

v of F . The constructions below will depend on all depend on this choice of v, but we will omit this

dependence from the notation.

Consider the dominant integral weight

µ = (µ1 ≥ µ2 ≥ · · · ≥ µn ≥ −µn ≥ · · · ≥ −µ2 ≥ −µ1),

which is pure of weight 0. By arguing as in the odd case above, set

µ′ = (µ1, µ2, . . . , µn)

Λ′ = µ′ + ρ′ =

(
µ1 + n− 1

2
, µ2 + n− 3

2
, . . . , µn−1 +

3

2
, µn +

1

2

)
.

Consider the discrete series representation π′ = πΛ′ with infinitesimal character given by Λ′. The

Langlands parameter σΛ′ of πΛ′ is of the form

σΛ′ = IndWR

C× (χℓ1) ⊕ IndWR

C× (χℓ2) ⊕ · · · ⊕ IndWR

C× (χℓn),

where all the ℓj are odd positive integers. The infinitesimal character of the discrete series, seen in

terms of the exponents of the parameter restricted to C×, gives us ℓ = 2Λ′, that is,

(ℓ1, . . . , ℓn) = (2µ1 + 2n− 1, 2µ2 + 2n− 3, . . . , 2µn−1 + 3, 2µn + 1).
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Via the local Langlands correspondence for GL2n(R), we see that π′ transfers to πµ, given by

πµ = IndG
P (2,2,...,2)(Dℓ1 ⊗Dℓ2 ⊗ · · · ⊗Dℓn),

which has the property that

H•(glN ,R×
+SO(N);π ⊗ Vµ) ̸= 0.

4.2.3 Twisted characters at infinity and their stability

Let π be a regular algebraic, tempered, self-dual representation of G(R). The choice of an involutive

intertwining operator A between (the associated infinite-dimensional vector spaces of) π and π ◦ θ

allows us to extend π to a representation π+ of G+(R). We write Θπ,θ for the character of π+ on

G̃ = θG(R):

Θπ,θ(g) := Θπ+(θg) (g ∈ G(R)).

A priori, this is just a distribution, but a twisted generalization of a theorem of Harish-Chandra

implies that it is in fact an analytic function on strongly θ-regular elements [Bou87, Thm. 2.1.1].

Theorem 4.3. For suitable choice of A, we have

Θπ,θ(g) = ΘπH
(N g)

for all g ∈ G(R) whose norm (3.11) is strongly regular and elliptic.

In particular, Θπ,θ is invariant under stable (twisted) conjugation on elements of elliptic norm.

Proof. The original proof is in [Bou87], but it was developed in a context that is very different from

that of our present problem. This proof is reinterpreted in language compatible with our presentation

in [CC09, §2.5].
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4.3 The Principal Element γ0

Let f = ⊗vfv ∈ C∞
c (G(A)) be a test function that we plug into the trace formula. Recall that

we have phrased our problem so that we are only prescribing local representations of our desired

automorphic representations at finite places. Suppose that we let the components fv at finite places

v correspond to (twisted) pseudocoefficients that trace out our chosen representations in the main

theorem. We then have the freedom to choose any function f∞ at the archimedean places.

A key observation of the work of Chenevier and Clozel is that if we choose f∞ = fλ
∞ to be

the twisted pseudocoefficient of a cohomological θ-discrete series representation—each of which is

parametrized by the highest weight λ of an irreducible representation Vλ of the compact real form

of the endoscopic group H(R)—then as the weight λ goes to infinity away from the walls of the

Weyl chamber, the geometric side of the trace formula becomes asymptotically equivalent to a single

orbital integral called the principal term. Up to a positive scalar, this is the twisted orbital integral

TOγ0(f) of our test function f attached to a certain elliptic θ-semisimple element γ0 ∈ G(F ) (the

principal element) whose twisted centralizer is a group whose C-points yield the dual group Ĥ of

the endoscopic group H. In symbols, as λ → ∞ away from the walls,

Jspec(f) = Jgeom(f) ∼ TOγ0(f) = C · dim(Vλ),

where C is an explicit nonzero constant that only depends on the components of f away from ∞. In

other words, we reduce our problem of showing Jspec(f) ̸= 0 to showing that a single orbital integral

TOγ0(f) does not vanish.

In this section, we analyze this principal element. Its importance is due to the special role the

element plays under the twisted endoscopy norm correspondence.
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4.3.1 GL(2n) case

Let In denote the identity element of GLn. In the case of even N = 2n, the principal element is

γ0 =

In
−In

 ∈ GL(2n).

We will see that Theorem 4.2 will imply that in order to that our desired automorphic representation

exists, it is enough to prove nonvanishing results for orbital integrals on the particular element γ0.

While it seems innocent at first glance, γ0 is quite special and satisfies a number of critical

properties. For any positive integer m, we write the “identity” antidiagonal matrix (a.k.a. exchange

matrix) of size m as

Jm =



1

1

· · ·

1

1


∈ GLm,

and follow the convention that J = J2n.

Proposition 4.4.

(i) The element γ0 is, up to θ-conjugation, the unique elliptic θ-semisimple element of G(Q) such

that γ0θ(γ0) = −1. This corresponds to having central (i.e. trivial) norm.

(ii) Its twisted centralizer is the symplectic subgroup of G with respect to γ0J .

(iii) The stable θ-conjugacy class of γ0 coincides with its θ-conjugacy class.

Proof. We have γ0θ(γ0) = −IN by an easy matrix multiplication calculation, and applying the norm

correspondence (cf. §3.11) gives us the desired result.
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The twisted centralizer of γ0 is the group

Iγ0 = {g ∈ G | g−1γ0θ(g) = γ0}

= {g ∈ G | g−1γ0J
tg−1J = γ0}

= {g ∈ G | g−1γ0J
tg−1 = γ0J}

= {g ∈ G | gγ0J tg = γ0J},

and since

γ0J =

 Jn

−Jn


is a 2n × 2n nonsingular skew-symmetric matrix, Iγ0 is the set of symplectic matrices Sp2n with

respect to the form corresponding to γ0J . Thus, γ0 is elliptic θ-semisimple.

The invertible antisymmetric matrices are all congruent to γ0J in GL2n(F ) (§3.5.2). The θ-

conjugacy class of γ0 coincides exactly with the set of elements γ such that γθ(γ) = −1.

For the same reason, the stable θ-conjugacy class of γ0 consists solely of its θ-conjugacy class (or

directly, H1(F, Sp2n) = 0, by [Ste65, Thm. 1.8], for example).

4.3.2 GL(2n+ 1) case

We now establish the analogous results in the odd case. Here the principal element is

γ0 = ±


−1

0 In

In 0

 ∈ GL(2n + 1), (4.2)

where the sign in the front is taken so that det(γ0) = 1, and In denotes the n× n identity matrix.

Proposition 4.5.

(i) The element γ0 is, up to θ-conjugation, the unique elliptic θ-semisimple element of G(F ) such

that γ0θ(γ0) = 1.
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(ii) Its twisted centralizer is the orthogonal subgroup of G.

(iii) The stable θ-conjugacy class of γ0 coincides with its θ-conjugacy class.

Proof. We have γ0θ(γ0) = IN , and applying the norm correspondence (cf. §3.11) gives us the desired

result.

The twisted centralizer of γ0 is the group

Iγ0 = {g ∈ G | g−1γ0θ(g) = γ0}

= {g ∈ G | g−1γ0J
tg−1J = γ0}

= {g ∈ G | g−1γ0J
tg−1 = γ0J}

= {g ∈ G | gγ0J tg = γ0J},

= {g ∈ G | g tg = IN}.

Thus, γ0 is elliptic θ-semisimple.

The θ-conjugacy class of γ0 coincides exactly with the set of elements γ such that γθ(γ) = 1.

For the same reason, the stable θ-conjugacy class of γ0 is reduced to its θ-conjugacy class (or

directly, H1(Q, SO2n+1) = 0).



51

Chapter 5

Twisted Pseudocoefficients and
their Properties at Archimedean
Places

5.1 Existence of the Twisted Pseudocoefficient fπ

For this section, let G = G(R). The representation π (4.1) of G remains fixed. This representation

π is θ-discrete, that is, isolated among the tempered θ-invariant representations of G.

Proposition 5.1. For π as in (4.1), there exists a function fπ ∈ C∞
c (G) that is K∞-finite for a

maximal compact subgroup K∞ ⊂ G such that

Tr(π(fπ)A) = 1 (5.1)

and

Tr(ρ(fπ)Aρ) = 0 (5.2)

for all irreducible tempered θ-invariant ρ ̸= π of G, where A is the intertwining operator between

π and π ◦ θ, normalized with respect to Theorem 4.3, and Aρ is a nonzero intertwining operator

between ρ and ρ ◦ θ.

Proof. Such an fπ exists by the twisted trace Paley–Wiener theorem of Mezo [Mez04].
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5.2 Twisted Orbits and Twisted Orbital Integrals

Let γ ∈ G be a θ-semisimple element (cf. Prop. 3.1). Its twisted centralizer I = Iγ is the neutral

component of

I ′ = I ′γ = {g ∈ G : g−1γgθ = γ}

and is thus reductive. We consider the twisted orbital integral (for arbitrary Haar measures dg and

di)

TOγ(f) =

∫
I\G

f(g−1γgθ)
dg

di

for f ∈ C∞
c (G). If γ is strongly regular, then I = I ′ is a torus.

Let P = MN ⊂ G be a θ-stable parabolic and let γ ∈ M be a strongly θ-regular element. Then

γ has a similar property relative to M , and its twisted centralizer is a torus of M . If f ∈ C∞
c (G),

let

f(x) =

∫
K∞

f(k−1xkθ) dk

(for the normalized Haar measure). Then

TOγ(f) =

∫
I\MN

f(n−1m−1γmθnθ)
dm dn

di
.

If h ∈ C∞
c (P ) and m ∈ M ,

∫
N

h(n−1mnθm−1) dn = D(m)−1

∫
N

h(n) dn,

where D(m) = | det(1 − Ad(m) ◦ θ)|n and n = Lie(N); D(m) is nonzero if m is θ-regular. Thus

TOγ(f) = D(γ)−1

∫
I\M

f
(P )

(m−1γmθ)
dm

di
= D(γ)−1TOM

γ (f
(P )

) (5.3)
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where the twisted orbital integral is taken in M and f (P ) is defined according to Harish-Chandra by

f (P )(m) =

∫
N

f(nm) dn.

The following lemma is a twisted analogue of the fact that any regular semisimple element is an

elliptic element of some Levi subgroup.

Lemma 5.2. Let γ be a non-elliptic strongly θ-regular element of G(R). Then γ is θ-conjugate to

a (strongly θ-regular) element in the Levi component M of a θ-stable proper parabolic subgroup of

G(R).

Proof. In the even case, this lemma is proven in [CC09, Lem. 2.8]. It remains to establish it in the

odd case.

If G = GL1(R), there is nothing to prove, so assume that G = GL2n+1(R) where n > 0.

The element is δ = γθγ. By our hypothesis, this is a regular element of G(R) whose set of

(complex, distinct) eigenvalues is self-dual; one of the eigenvalues must be 1. There is at least one

eigenvalue λ ∈ C× that is not of modulus 1. Setting

i = i(λ) :=


1, λ ∈ R

2, otherwise,

consider the standard upper parabolic of type (i, 2n− 2i, i, 1) of G; it is θ-stable. Up to conjugacy

of δ (and thus up to θ-conjugacy of γ), we can assume that δ is an element of the standard Levi

subgroup M of this parabolic of the form

δ =



λ

∗

λ−1

1


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(where if λ ∈ C and thus i = 2, we choose an embedding C ↪→ M2(R)). Since δθ · γ = γδ and δ is

regular, we can assume that γ ∈ M .

5.3 Twisted Orbital Integrals of fπ

Lemma 5.3. If γ is strongly θ-regular and non-elliptic,

TOγ(fπ) = 0.

Proof. By (5.3), this orbital integral is calculated in M , where P = MN is a proper θ-stable parabolic

and γ ∈ M . By [KR00] and [Mez04], a function h on M has vanishing twisted orbital integrals if

Tr(πM (h)A) = 0 for all tempered θ-stable representations πM of M , where A ̸= 0 is an intertwining

operator between πM and πM ◦ θ. For h = f
(P )

, the (twisted) Harish-Chandra lemma gives

Tr(πM (h)A) = Tr(πG(f)AG),

where πG is induced from πM and AG is is the induced intertwining operator. However, the right

side of the equation vanishes by (5.2).

Definition 5.4. We say that a θ-semisimple element γ ∈ G is θ-elliptic if the split component of

its twisted centralizer is just the neutral component.

In the odd case, the element δ = γθγ of G(R) is conjugate to a diagonal element of G(C) of the

form

(x1, . . . , xn, , x
−1
n , . . . , x−1

1 , 1).

Therefore, it defines a conjugacy class N (γ) in Sp(2n,C) by its spectrum

Λ(Nγ) = {x1, . . . , xn, x
−1
n , . . . , x−1

1 }.

In the even case, the element δ = γθγ of G(R) is conjugate to a diagonal element of G(C) of the
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form

(x1, . . . , xn, x
−1
n , . . . , x−1

1 ).

Therefore, it defines a conjugacy class Nγ in SO(2n + 1,C) by its spectrum

Λ(Nγ) = {−x1, . . . ,−x−1} ∪ {1}.

Lemma 5.5. The element Nγ (always conjugate to an element of the H(R)) is conjugate to an

element (which is unique up to conjugation) in the compact Hc(R) if and only if γ is θ-elliptic.

Proof. Set δ = γθγ. Conjugation by θγ induces an involution on Gδ (a Levi subgroup of G) such

that the subgroup of fixed points is the twisted centralizer Gγ of γ. The structure theorem for

anti-involutions of complex semisimple algebras implies that the center Z of Gγ coincides with the

subgroup of θγ-invariants of the center Z ′ of Gδ. Otherwise, Z ′ = GmD, where D is the Zariski-

closure of a subgroup generated by δ that is central and fixed by θγ. Since Z = Z ′γθ = Gθγ
mD =

{±1}D, we obtain our result.

The following is the θ-twisted analogue of the fact that orbital integrals of pseudocoefficients of

square-integrable representations of general linear groups vanish at non-elliptic semisimple elements

(e.g. [HT01, Lem. I.3.1]). The standard proof of this appeals to the Shalika germ expansion, Harish-

Chandra homogeneity, and knowledge that the germ is nonzero at the trivial unipotent conjugacy

class. That is the spirit of the argument behind the following proof, which is slightly more elementary.

Lemma 5.6. If γ ∈ G(R) is θ-semisimple but not θ-elliptic, then TOγ(fπ) = 0.

Proof. Let I denote the twisted centralizer of γ. For any function f ∈ C∞
c (G), we can find a function

h ∈ C∞
c (I) such that in a neighborhood of 1,

TOxγ(f) = OI
h(h),

for all x ∈ I, where the right element is an ordinary orbital integral in I. If xγ is strongly regular,
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then x is regular in I; for x very close to 1, the neutral component of the centralizer of x and the

twisted centralizer of xγ coincide [Lab99, Cor 3.1.5.]. Since the split component of the center of I is

nontrivial, the orbital integrals OI
x(h) are thus zero (in a neighborhood of 0) on the regular elements,

and so, under a suitable normalization of measures, we have h(1) = TOγ(f), which vanishes.

For γ ∈ G that are θ-semisimple, the stable twisted orbital integral STOγ(f) of f at γ is defined

by Labesse [Lab99, §2.7].

We can now prove the main result of this chapter.

Theorem 5.7. Let γ be a θ-semisimple element of G(R).

(i) If γ is not θ-elliptic, then TOγ(fπ) = STOγ(fπ) = 0.

(ii) Let γ be θ-elliptic and I = Iγ . For a suitable choice of positive measures on G and Iγ , we have

TOγ(fπ) = e(γ)ΘπH (Nγ),

where πH is the finite-dimensional representation of Hc(R) associated with π, and e(γ) = ±1

is a sign independent of π. In particular, the orbital integrals are stable.

Proof. For the normalization of measures, we follow the conventions of [Lab99, §A.1]. We note in

particular that once γ is fixed, such a normalization doesn’t depend on π.

Part (i) follows from Lemma 5.6. We devote the rest of our efforts in this section to proving (ii).

First, consider the case where π0 is the unique tempered representation of G(R) lying in the

cohomology with trivial coefficients. For this, Labesse has given a construction of fπ0 using co-

homology, and he uses this to calculate the twisted orbital integrals [Lab99, Thm. A.1.1], which

implies the theorem in this case. Here, the corresponding representation π0,H of H is just the trivial

representation.

We now proceed with the general case. Given such a representation π, let (ρ, V ) be the algebraic

(θ-stable) representation such that the cohomology of π with coefficients in V is nonzero; we similarly

define (ρH , VH) for the corresponding representation on H, noting that ρH is identified with πH in
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this case. By the Borel–Weil theorem (e.g. [Kna01, Thm. 5.29]), we can realize V in the cohomology

of G(C)/B(C) with coefficients in the line bundles  Lm where m = m(π). Note that m is invariant

under θ, and so we can thus obtain a natural extension to a representation of G+(C). For a θ-regular

element g ∈ G(C), we can calculate Tr(g×θ | V ) using the Atiyah–Bott fixed point theorem [AB67]:

the fixed points are parametrized by the centralizer of θ in the Weyl group W (G(C)) ∼= S2n+1,

which is isomorphic to WH . Therefore,

Tr(g × θ | V ) = Tr(N g | VH). (5.4)

Let Θρ,θ be the twisted character of ρ (for the choice of intertwining operator), and let

gπ = Θρ,θf0,

where f0 = fπ0 .

We want to show that gπ has the same twisted orbital integrals as fπ. To do this, it is enough

to show that for all θ-stable tempered representations τ (and associated intertwining operators Aθ)

Tr(τ(fπ)Aθ) = Tr(τ(gπ)Aθ) (5.5)

by the density theorem of Kottwitz and Rogawski [KR00].

Recall that such a representation τ is θ-discrete if it is not induced from a θ-stable representation

from a θ-stable proper parabolic. In this case, the twisted character is supported on the non-θ-elliptic

elements. Thus, if τ is θ-discrete, (5.5) implies that the corresponding twisted orbital integrals vanish.

Lemma 5.8. The θ-discrete representations are either of the form

τ = Ind(δ1, . . . , δn, ϵ), (5.6)

where δi is a representation of GL(2,R) in the discrete series associated to the representation of
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WR induced from a character z 7→ zpi(z)−pi of WC = C×, with pi ∈ 1
2Z and the pi’s being distinct;

or else of the form

τ = Ind(δ1, . . . , δn−1, δn) (5.7)

with the δi’s as before, and ϵ a character of order 2 of R×.

If the pi’s belong to 1
2 + Z (and thus τ is cohomological), we have

Tr(τ(fπ)Aτ
θ ) = δ(τ, π),

where δ is the Kronecker delta and fπ is normalized by Aπ
0 . Furthermore

Tr(τ(gπ)Aτ
θ ) =

∫
G

Θτ,θ(g)Θρ,θ(g)f0(g) dg. (5.8)

However, the twisted orbital integrals of f0 are killed for g that are not θ-elliptic. If g is θ-elliptic

regular (and thus has twisted centralizer U(1)n = T ) and if the measure on T is suitably normalized,

we have [Lab99, Thm. A. 1.1.]

TOg(f0) = 1

(f0 is, of course, the pseudocoefficient associated to a measure dg that is defining the orbital integral).

By (5.8), we have

∫
G

Θτ,θ(g)Θρ,θ(g)f0(g) dg =
1

|W |

∫
T

 ∑
Nδ=γ

Θτ,θ(δ)Θρ,θ(δ)∆(γ)

 dγ,

where ∆(γ) is a Weyl denominator (for the Weyl integration formula relative to twisted conjugation)

that we check is equal up to a factor 2n (the number δ of norm γ) to the Weyl denominator for H.

Then Theorem 4.3 together with the identity (5.4) imply that

Tr(τ(gπ)Aτ
θ ) = δ(τ, π)
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by the orthogonality relations on Ĥ.

Finally, consider the other representation τ of type (5.6) or (5.7). We have

Tr(τ(gπ)Aτ
θ ) = Tr

(∫
G

τ(x)gπ(x)Aτ
θ dx

)
= Tr

(∫
G

τ(x)f0(x) Tr(ρ(x)Aρ
θ)Aτ

θ dx

)
= Tr

(∫
G

f0(x)(τ(x) ⊗ ρ(x))Aτ
θ ⊗Aρ

θ dx

)
.

If τ is of the types above and non-cohomological, its infinitesimal character λ (that is, the sum

of the pi’s and −pi’s with p = 0 for the characters 1 and ϵ) does not belong to ( 1
2 + Z)2n+1. Then

the infinitesimal characters of subquotients of τ ⊗ ρ are of the form λ + µ where µ is an (integral)

weight of ρ. It thus has the same property; the trace of f0 in τ ⊗ ρ is thus zero, which completes

our proof.
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Chapter 6

Twisted Pseudocoefficients and
their Properties at Finite Places

In this chapter, we explain the analytic results about the existence of the twisted pseudocoefficients

in question and the vanishing and nonvanishing of their orbital integrals at the principal element

(§4.3).

For p-adic groups, a primary tool for establishing the existence of twisted pseudocoefficients

is Rogawski’s twisted trace Paley–Wiener theorem [Rog88]. While this abstract result holds in

great generality, since pseudocoefficients are highly non-unique, it is usually desirable to find such a

function via certain “geometric” constructions, since the analytic properties of functions constructed

in such a way are often “good,” or at least more amenable to study. The ideas that come to mind

should be analogues of results like the Borel–Weil theorem that we used in the archimedean setting

or the Borel–Weil–Bott theorem for constructing holomorphic representations of a given complex

semisimple group. Fortunately for us, for the discrete representations that we aim to prescribe at

finite places, such geometric constructions exist.

However, a natural generalization of the theorem would be to not prescribe a specific (inertia

class of) a discrete representation, but to, say, only allow the the local representation to lie in a

specified Bernstein component or ideally to trace out a specific unitary representation without any

restrictions, but for this, it seems as if one cannot yield to these geometric methods and must instead

deal specifically with the analytic difficulties that arise.
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Remark 6.1. Many of proofs in the general theory of pseudocoefficients at finite places can be simpli-

fied by assuming that we are only concerned with tracing out the desired representation among the

class of tempered representations at each place. Indeed, the general convention for pseudocoefficients

is to assume they trace out the representation in the tempered spectrum, due to the concomitant

analytic complications that arise in non-tempered contexts and the belief in the validity of the Ra-

manujan conjecture for GL(n). Since we are ultimately concerned with constructing cohomological

self-dual automorphic representations on GLn over a totally real field, purity for these representa-

tions is known (by looking at the corresponding Galois representations), so at the finite places of

any such automorphic representations over totally real field, the local components are all tempered

(the result is due to a number of people, but the general statement of the theorem in our setting can

be found in, e.g. [Clo13] for unramified places, and [Car12] at ramified places). So strictly speaking,

in the context of the proof of our theorem, we could assume this and remove the hypothesis of being

“essentially tempered” in the statements of some of the results. However, to ensure that our results

here are useful by themselves and to avoid possible confusion or imprecision caused by making such

a large implicit assumption throughout this section, we do not wish to do this and state the results

in full.

6.1 For Steinberg Representations in the θ-twisted Setting.

The existence of pseudocoefficients for Steinberg representations in the untwisted case is due to

Kottwitz [Kot88, §2], using the theory of Bruhat–Tits buildings. The construction was extended to

general connected reductive groups that are twisted by an F -rational automorphism of finite order

by Chenevier and Clozel [CC09, §3.4], which, of course, includes the case of our θ-twisted group G+.

We summarize the properties needed for our proof.

Let F be a non-archimedean field of characteristic zero. Fix a Haar measure on G+(F ). Let B be

a minimal parabolic of G defined over F . Let IB be the space of smooth complex-valued functions

on B(F )\G(F ). It is a space of a representation of G(F ) under right translation and its unique

irreducible quotient is the Steinberg representation of G(F ), which we denote by St.
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The main result on the existence of twisted pseudocoefficients for the Steinberg representation

is the following statement.

Proposition 6.2.

(i) There exists a function fEP ∈ C∞
c (G(F )) that is a pseudo-coefficient of the Steinberg repre-

sentation St, that is,

Tr(St(fEP )) = 1

and if π is irreducible and essentially tempered such that π|G(F ) ̸= St, then Tr(π(fEP )) = 0.

(ii) Let γ ∈ θG(F ) be a semisimple element and let Iγ be the neutral component of the centralizer

of γ in G. Choose a G(F )-invariant measure µ on Iγ(F )\G(F ). Then the “twisted” orbital

integral

Oγ(fEP ) :=

∫
Iγ(F )\G(F )

fEP (g−1γg) µ

is nonzero if and only if Iγ(F ) has compact center.

Proof. This is a consequence of the general result in [CC09, Prop. 3.8].

Note that (ii) is an extremely strong vanishing condition for orbital integrals of the pseudocoeffi-

cient. It is hard to emphasize how dramatically this simplifies the ultimate analysis of the geometric

side of the trace formula. It it all the more surprising, because it is due to the Steinberg represen-

tations not being integrable that causes the standard method of using Poincaré series to construct

automorphic representations to fail for our specific problem.

Remark 6.3. In the untwisted case, the functions fEP were introduced by Kottwitz [Kot88, §2],

under the name of “Euler–Poincaré” functions, whence the notation. Some of the results above (in

the twisted setting) can also be deduced from the work Borel, Labesse, and Schwermer [BLS96].

While we could have used Rogawski’s Paley–Wiener theorem to prove Prop. 6.2 (i), the advantage

of using the (generalized) Euler–Poincaré functions is that they provide an explicit function fEP in

terms of the Bruhat–Tits building of G, which allows for an simpler proof of Prop. 6.2 (ii).



63

Remark 6.4. Another advantage of using Euler–Poincaré functions for when π is Steinberg is that

in that case, the pseudocoefficient fπ = fEP is “very cuspidal” (in the sense of Laumon) and in

particular, the orbital integral of is nonzero only on elliptic semisimple elements. A priori, orbital

integrals of the pseudocoefficients of discrete representations can be nonzero outside of the regular

semisimple elements.

6.2 For other Discrete Representations in the θ-twisted Set-

ting

We now show that similar nonvanishing results hold for functions fv that trace out other discrete

representations. Let F be a p-adic field.

The most important case is that of supercuspidal representations. Recall that in the untwisted

setting, if πv is a supercuspidal representation, we can simply take fv to be a matrix coefficient of πv

such that fv(1) ̸= 0. Such a function is also very cuspidal, in the sense of Laumon, and in particular,

satisfies strong vanishing properties for its orbital integrals on non-elliptic orbits. More precisely,

it satisfies the the following condition: for any proper parabolic P = MN and a special maximal

compact subgroup K in good relative position with respect to P ,

fP
v (m) =:= δP (m)1/2

∫
N(F )

∫
K

fv(k−1mnk) dk dn = 0

as a function on M(F ). Essentially the idea of this section is just finding results that establish

this exact procedure in this case of twisted groups, so if we believe in the existence of the twisted

analogue of this result, we can safely proceed with the proof. But so that we nail down all the details

and have results that apply to general discrete representations, we carefully extract the necessary

results from the literature.

It remains to find a corresponding twisted pseudocoefficient in the twisted setting. Once again,

the main result of [Rog88] applies to all θ-discrete representations, so we could appeal to that result
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to obtain a pseudocoefficient fp that corresponds to a supercuspidal representation πp. However, in

this setting, we also have an geometric realization of such a function. Namely, an alternative proof

of the existence of fp can be obtained using the Waldspurger’s θ-twisted generalization [Wal07]

of Schneider–Stuhler pseudocoefficients [SS97], with the additional benefit that they exhibit nice

vanishing properties, due to their method of construction.

Unfortunately, the language to do so is different from that of the Chenevier–Clozel result that

we use in the last section and also different from that which we used in the archimedean setting, so

we must establish a significant amount of notation that we do not use anywhere else.

Let G̃reg be the subset of strongly regular elements of G̃, so if g ∈ G̃reg, then the centralizer

ZG(g) is commutative and its neutral component is a torus. Let Ag be the maximal torus split in

such a ZG(g).

For any f ∈ C∞
c (G̃) and γ ∈ G̃reg, we have the orbital integral

OG
γ (f) = ∆(g)−1/2

∫
Ag\G

f(x−1γx) dx,

where we have a fixed a suitable Haar measure and the modulus ∆(g) denotes the absolute value of

the determinant of Ad(g) − 1 acting on g/zG(g).

Proposition 6.5. (i) For any irreducible θ-twisted supercuspidal representation π of G(F ), There

exists a function fv ∈ C∞
c (G(F )) that is a pseudocoefficient for π.

(ii) We have OG
γ (fv) = 0 for all non-elliptic g ∈ G̃reg.

(iii) For all γ ∈ G̃ell, we have

TrG̃ π+(γ) = ∆(g)−1/2OG
γ (f̃v).

Proof. These results correspond to the Corollary of [Wal07, §2.2].

We end our discussion of twisted pseudocoefficients at finite places with a general result that

says that the restriction to tempered representations is not too restrictive, as the following lemma

indicates.
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Lemma 6.6. Let π be a θ-discrete series representation of G with pseudocoefficient fπ. If σ is an

irreducible representation of G such that Trσ(fπ) ̸= 0, then σ and τ have the same supercuspidal

support.

Proof. If σ ̸∼= π, then σ is non-tempered and can be written as a finite Z-linear combination of

induced modules, all of whose irreducible subquotients have the same supercuspidal support. Since

the trace of fπ vanishes on any representation induced from a proper parabolic and on any tempered

representation different from π, one of these induced modules must be π. Thus, σ must have the

same supercuspidal support as π.
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Chapter 7

Proof of the Theorem

The proof of the theorem naturally divides into two cases for GLN , according to the parity of N ,

that is,

(i) where N = 2n + 1 is odd; or

(ii) where N = 2n is even and the self-dual representations are all of symplectic type.

The main distinction between the two cases is that the endoscopic groups involved are different, and

this necessitates a number of modifications at each step of the argument.

Note that if N is odd, all irreducible self-dual representations of GLN are of orthogonal type, so we

do not need to address the “odd, symplectic type” case. In the remaining case—where N = 2n is even

and the self-dual representations are all of orthogonal type—a globalizing automorphic representation

cannot be constructed using our method, because if an automorphic representation Π = ⊗vΠv of

GL2n over a totally real field F is (i) self-dual, (ii) essentially square-integrable in at least one place,

and (iii) cohomological at all archimedean places, then for all places v of F , the Langlands parameter

of Πv must preserve a nondegenerate symplectic bilinear form, that is, Πv must be of symplectic

type ([CC09, Thm. F], which was proven assuming a harmonic analysis result that was later proven

in [CR10]).



67

7.1 Statement of the Theorem and the Initial Setup

We finally collect the results and give a proof of our main result. We restate the theorem for our

convenience. Let G = GLN,F where N ≥ 1 and F is a totally real number field of degree d. Let S∞

denote the archimedean places of F . Write A = AF for its ring of adeles.

Theorem. Let T be a finite set of pairs (v, πv) where

• v is a finite place of a totally real number field F , and

• πv is an irreducible admissible self-dual essentially discrete representation of G(Fv) (and if n

is even, are all of symplectic type).

Then there exists a cohomological self-dual cuspidal automorphic representation Π = ⊗′
vΠv of G(AF )

such that for all (v, πv) ∈ T , we have Πv
∼= πv ⊗χv, where χv is an unramified character of G(Fv).

Let G+ = G ⋊ ⟨θ⟩ = G ⨿ Gθ denote the group G twisted by the involution θ (§3.4.2). Let

A = (R×
+) be the topological neutral component of the center of G(R), and equip the homogeneous

space A ·G(F )\G(A) with a (finite) Haar measure that is right G(A)-invariant. The unitary (right)

regular representation R of G(A) is given by right-translation on the space of cuspidal functions

L2
cusp(A ·G(F )\G(A)),

which extends to a unitary representation of G+(A), by letting θ act via the operator Iθ(ϕ)(x) =

ϕ(θ(x)). If we choose a test function f =
⊗

∞∈S∞
f∞ ⊗ fS∞ ∈ C∞

c (G(A)) such that each f∞ ∈

C∞
c (G(R)) is SON -finite, then R(f)Iθ is of trace class and

Tr(R(f)Iθ) =
∑
Π

Tr(R(f)Iθ,Π),

where the sum runs over the irreducible self-dual cuspidal automorphic representations of G(A).

The traces all depend on a choice of adelic Haar measure dgA on G(A) that we fix for the remainder

of the argument.



68

7.2 Choosing the Test Function

We want to choose our test function f = ⊗vfv ∈ C∞
c (G(A)) to simplify the analysis of the geo-

metric side of the trace formula as much as possible, while still tracing out our desired automorphic

representation. Indeed, we will eventually apply a simple version of the trace formula, by ensuring

that, under our hypotheses, local twisted orbital integrals of certain components fv of f have special

vanishing properties.

Let T be the set of pairs (v, πv) in the hypotheses of our theorem, so v is a finite place of F and

πv is an irreducible self-dual representation of G(Fv) that is (essentially) discrete. Let TSt ⊆ T be

the subset of Steinberg representations at the prescribed places and let T ′ ⊆ T be the other ones,

so T = TSt ⨿ T ′. We define the test function to be

f =
⊗

∞∈S∞

f∞ ⊗
⊗
v∈T

fv ⊗ f∞,T , (7.1)

where

• f∞ is the twisted pseudocoefficient of a cohomological θ-discrete series representation (cf. §4.2,

Prop. 5.1);

• if (v, πv) ∈ TSt, then fv is taken to be an Euler–Poincaré function fixed by the automorphism

θ of G(Fv) (cf. Prop. 6.2(i));

• if (v, πv) ∈ T ′, then fv is the twisted Schneider–Stuhler coefficient corresponding to πv (cf.

Prop. 6.5);

• f∞,T is the characteristic function of
∏

v ̸∈T∪S∞
GL2n((OF )v).

7.3 Analysis of the Geometric Side of the Trace Formula

Recall that a θ-semisimple element γ ∈ G(F ) is elliptic if the split component of the center of

the twisted centralizer is trivial. Write {G(F )}ell for the set of θ-conjugacy classes of θ-semisimple
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elliptic elements. For such an element γ ∈ G(F ), we choose an adelic Haar measure diA on the

twisted centralizer Iγ(A), denote the corresponding volume by

vγ = µ(Iγ(F )\Iγ(A)) > 0

and set

TOγ(f) :=

∫
Iγ(A)\G(A)

f(g−1γθ(g)) diA\dgA.

We will also consider the local versions of the above twisted orbital integrals, replacing the adeles

A with the local field Fv.

The Arthur–Selberg trace formula can be applied to any test function, but analyzing the terms

that arise is complicated in general. However, these are a number of “simple” trace formulas that

can be derived from the general form, by restricting the class of test functions to which one can

apply the trace formula. Since the orbital integrals of the pseudocoefficients we have chosen have

very specific and strong vanishing properties, we can apply one of these simple trace formulas, due

to Arthur.

Proposition 7.1. For f of the form (7.1), the geometric side of the trace formula is

Tr(R(f)Iθ) =
∑

γ∈{G(Q)}ell

vγTOγ(f),

noting that the sum runs over the finite subset of classes that only depend on the compact set of

G(A) that contain the support of f .

Proof. We apply the Arthur’s invariant trace formula to the connected component Gθ [Art88b].

These results rely on two hypotheses [Art88a, p.330] [Art88b, p.528] (a) a Galois cohomology argu-

ment and (b) the validity of a Paley–Wiener theorem for G(R)θ. These have since been resolved:

hypothesis (a) is now proven in full generality by Kottwitz and Rogawski [KR00] and hypothesis (b)

was proven in our setting by Mezo [Mez04].

Suppose that we have a given Steinberg representation at the place v. Since the twisted Euler–
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Poincaré function fv vanishes outside of the elliptic (semisimple) orbits (Prop. 6.2 (ii)), f is cuspidal

at v, in the sense of Arthur. The pseudocoefficients for the other discrete local representations at

finite places exhibit the same property (Prop. 6.5 (ii)). Since f∞ also vanishes outside of the elliptic

orbits, f is also cuspidal at ∞. Thus, since we have cuspidal functions in at least two places, the

formula of [Art88b, Cor. 7.4] applies. This corollary identifies the terms on the right-hand side of the

trace of R(g)Iθ (as a representation of G+(A) on L2
disc(AGG(F )\G(A)). There, Arthur considers

an expansion of this trace, where a sum runs over the possible norms t of the infinitesimal characters

of Π∞. Since f∞ only traces out representations with the same infinitesimal character, only one of

these terms in the sum is relevant.

Finally, it remains to show that if a discrete irreducible representation Π of G+(A) is not cuspidal,

then

Tr(Π(f)Iθ) = 0.

If we have a supercuspidal representation, then our desired automorphic representation (provided it

exists) must lie in the cuspidal spectrum and we are done. Otherwise, since we can assume that the

infinitesimal character of the θ-discrete series attached to f∞ is sufficiently regular, the statement

follows. Alternatively, if T does not contain any supercuspidal representations and we do not mind

losing control at one auxiliary finite place v (e.g. if we only cared about proving the stated result in

our main theorem, instead of having control of the ramification of our automorphic representation at

all places), we can simply impose a supercuspidal representation at v to ensure that the constructed

automorphic representation is cuspidal.

Recall that a function f∞ (5.1) depends on the choice of a cohomological θ-discrete series of

G(R) (4.1), which is indexed by an irreducible representation of the compact endoscopic group

H(R). Choose a maximal torus T ⊂ H(R) and let Vλ denote the irreducible representation of

highest weight λ ∈ X∗(T ). For all such λ, fix a pseudocoefficient f∞ = fλ of the associated θ-

discrete series πλ such that the support of all the f∞’s for varying λ are contained in the support of

a single compact set of G(R) (such a thing is possible by appealing to the work of [CD90, Thm. 1]



71

or [Lab91]).

For the |S∞|-tuple of highest weights λ⃗ = (λ1, . . . , λ|S∞|), let f λ⃗ denote the function of the form

(7.1) where ⊗
∞∈S∞

f∞ := fλ1 ⊗ fλ2 ⊗ · · · ⊗ fλ|S∞| .

Suppose that there exists a cuspidal representation Π such that

Tr(Π(f λ⃗)Iθ) ̸= 0.

Then for each ∞ ∈ S∞, the representation Π∞ is generic (in the sense that it has a Whittaker model)

and has the same infinitesimal character as πλi , so Π∞ ∼= πλi . To prove our theorem, it is enough

to show that we can choose a λ ∈ X∗(T ) for each archimedean place such that the corresponding

terms on the right-hand side (“geometric terms”) of Prop. 7.1 are nonzero.

These geometric terms are supported in a finite set

Σ ⊂ {G(Q)}ell

that is independent of λ. We want to show that as λ tends to infinity away from the walls of the

Weyl chambers, the geometric terms are only supported on the principal element γ0 (cf. §4.3).

We recall the key properties of the principal element γ0, proven in §4.3.

Lemma 7.2. Up to θ-conjugation, the element γ0 is the unique θ-semisimple elliptic element of

G(F ) such that γ0θ(γ0) corresponds to the central element of the endoscopic group H under the

twisted endoscopy norm map. The twisted centralizer of γ0 is (a form of) a group whose base change

to C is the dual group of H. The stable θ-conjugacy class of γ0 coincides with its θ-conjugacy class.

We first confirm the nonvanishing of the twisted orbital integral of the test function f , at least

for the components f λ⃗,∞ away from infinity that remain fixed as we vary the components fλ
∞ at the

archimedean places.

Lemma 7.3. The twisted orbital integral TOγ0(f λ⃗,∞) is a nonzero constant.
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Proof. We have the decomposition

TOγ0(fλ,∞) =
∏
v∈T

TOγ0(fv) · TOγ0(f∞,T ),

so it is enough to show that the local orbital integrals TOγ0(fv) do not vanish. Since f∞,T is the

characteristic function of
∏

v ̸∈T∪S∞
GL2k((OF )v), we have

∏
v ̸∈T∪S∞

TOγ0(fv) ̸= 0. It remains to

show that ∏
v∈T=TSt∪T ′

TOγ0(fv) =
∏

v∈TSt

TOγ0(fv)
∏
v∈T ′

TOγ0(fv) ̸= 0.

By Proposition 6.2, TOγ0
(fv) ̸= 0 for places v such that (v, πv) ∈ TSt. By Lemma 6.5, TOγ0

(fv) ̸= 0

for places v such that (v, πv) ∈ T ′. This concludes the proof.

Given a θ-semisimple element γ ∈ G(F ), we can view it as an element of G(R) and consider

its norm Nγ ∈ H(R) (§3.11). By definition, Nγ is an element whose conjugacy class in H(R)

only depends on the θ-conjugacy class of γ in G(R). By Theorem 5.7, we know that for a suitable

normalization of measures, we have for all λ,

TOγ(fλ) = ±Tr(Nγ, Vλ). (7.2)

Now, we have

|TOγ0(f λ⃗)| = c ·
∏
λ∈λ⃗

dim(Vλ) ̸= 0

for a certain constant c > 0 by (7.2) and Lemma 7.3. By Proposition 4.2, as a λ tends towards

infinity in X∗(T ) away from the walls, we have

TOγ(fλ)

dim(Vλ)
→ 0

for all γ ∈ Σ\{γ0}, because the twisted conjugacy class of γ0θ(γ0) is the unique one of central norm

in H(R) by Lemma 7.2.
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Hence,

|Tr(R(f λ⃗)Iθ)| ∼ vγ0 · c ·
∏
λ∈λ⃗

dim(Vλ) ̸= 0

as desired. This completes the proof.
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Chapter 8

Appendix: Constructing Self-Dual
Representations on GLn via
Arthur’s Endoscopic Classification

The chapter is independent from all of the previous chapters and is drastically different in scope.

Here, we construct self-dual automorphic representations on GLN over a general number field F

with prescribed local components by ultimately appealing to Arthur’s endoscopic classification of

representations of classical (symplectic and special orthogonal) groups [Art13]. In particular, we no

longer impose the condition that our base field F be totally real, and do not restrict ourselves to

constructing automorphic representations that are cohomological (equivalently, regular algebraic).

However, as mentioned before, Arthur’s results are conditional on the stabilization of the twisted

trace formula. At a key point in the argument, we will also need to assume a certain globalization

theorem for semisimple groups that only seems to be currently known under additional hypotheses.

Our goal in this appendix is to give an outline for a sort of “ideal” way to construct self-dual

automorphic representations on GLn, once certain technical hypotheses are resolved.

8.1 The General Strategy and Setup

We aim to prove a theorem of the following form. Let G = GLN over a number field F .

Theorem 8.1. Let S be a finite set of places of F . For every v ∈ S, choose an “allowable” subset

U∧
v of the unitary dual of G(Fv). Then there exists a self-dual cuspidal automorphic representation
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Π = ⊗vΠv of G(AF ) such that each local component Πv ∈ U∧
v for all v ∈ S.

This will turn out, for instance, to imply a precise version of our main globalization theorem

above for general number fields, where we can prescribe Πv to not just lie in an inertia class of

the prescribed essentially discrete local component (that is, be an unramified twist of the local

component), but to be precisely the prescribed component. It will be evident from the method

of proof that many more specific versions of the theorem will follow from slight variations of the

argument.

There are three main steps to the strategy.

0. Translate the local conditions on GLN into those of the semisimple group from which we expect

a twisted endoscopic transfer.

1. Construct a corresponding automorphic representation on either H = Sp2n or H = SO2n+1

depending on whether N is or odd (N = 2n + 1) or even (N = 2n), respectively.

2. Transfer the automorphic representation to G = GLN .

Step 0 is fairly straightforward, but is guided by the expected instances of endoscopic transfer.

Since we are in the setting of semisimple groups, there are a number of ways to resolve Step 1.

For this step, we will use a variation of a theorem of Shin [Shi12] to globalize the representations.

For the result over general number fields, it is here that we need to assume a stronger version of a

key globalization theorem that does not seem to be currently available in the literature.

For Step 2, we yield to the work of Arthur [Art13], in particular, the existence of twisted endo-

scopic transfer from H to G.

8.2 Plancherel Measures and Prescribable Subsets

We begin by recalling some general facts about Plancherel measures on p-adic groups. Let G be a

reductive group over a nonarchimedean local field K of characteristic zero. Let G = G(K) be its
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set of K-points and let G∧ denote the unitary dual of the topological group G, that is, the set of all

irreducible unitary representations of G, equipped with the Fell topology.

Let X(G) denote the set of all unitary, unramified characters of G. Harish-Chandra proved that

there is a natural Borel measure µ̂pl on G∧, called the Plancherel measure, such that for all

ϕ ∈ C∞
c (G), we have

ϕ(1) =

∫
G∧

ϕ̂(π) µ̂pl(π),

where ϕ̂ is defined to be

ϕ̂(π) = Trπ(ϕ).

for π ∈ G∧ (see, e.g. [Wal03]).

Let Θ(G) denote the Bernstein variety, which is a (generally infinite) disjoint union of complex

affine algebraic varieties. Identify Θ(G) with its C-points, and equip it with the analytic topology.

Then the map that assigns each irreducible representation to its supercuspidal support

ν : G∧ → Θ(G)

is continuous [Tad88, Thm. 2.2].

Let L be a Levi subgroup of G and let σ be a discrete series of L = L(K). Let P be a parabolic

associated with L. Consider the function on the unitary unramified characters X(L) of L defined

by

ΦL,σ : X(L) → R

χ 7→ #{irreducible subquotients of (normalized) IndG
P (σ ⊗ χ) lying in U∧ (counted with multiplicity)}.

Following [AdRDSW15], we introduce a bit of non-standard terminology that encompasses the

kinds of local conditions that we wish to impose on our automorphic representations.

Definition 8.2. A subset U∧ of the unitary dual G∧ is said to be prescribable if it satisfies all
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the following conditions:

• The subset U∧ is a Borel set that is µ̂pl-measurable of finite positive volume.

• The image of U∧ under the map ν is contained in a compact subset of Θ(G).

• For each Levi subgroup L of G and each discrete series σ of L = L(K), the set of points of

discontinuity of the map ΦL,σ is measure zero.

These conditions have been concocted so that the characteristic function of a prescribable subset

U∧ belongs to the class of functions for which we can apply the Sauvageot density principle [Sau97,

Thm. 7.3.]. While this definition may seem technical and unmotivated given our presentation, it

turns out to encompass a number of common conditions that we might want to impose at local

places of our automorphic representation.

Example 8.3. The subset of unramified representations of G∧ is prescribable.

Example 8.4. The set of all τ ∈ G∧ in a fixed Bernstein component (that is, for τ with the same

supercuspidal support, up to a twist by an unramified character) is prescribable.

Example 8.5. If τ is a unitary discrete series representation (that is, an irreducible representation

whose matrix coefficients are square-integrable modulo center), the set {τ ⊗ χ | χ ∈ X(G)} is

prescribable. In particular, note that if G is anisotropic over K (e.g. if G is semisimple), then X(G)

is trivial and so this set consists of a single element.

Note that this last example shows the difficulty in making our globalization theorem for GLn

over a totally real number field more precise, that is, to get the prescribed local component “on the

nose” instead of just landing the prescribed inertia class. It means that such a refinement would not

follow by yielding to equidistribution results like Sauvageot’s density principle, and must instead be

tackled by itself, which is a much more involved procedure than that of the globalization theorem

(which in a sense, also appeals to equidistribution results at archimedean places).

Thus, it seems that to answer the globalization question for GLN in greater generality or to

obtain a more precise result, we must assume the results of some great body of work. Indeed, to
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construct the self-dual automorphic representations using the method given here, it is necessary work

to on the relevant semisimple group and then yield to Arthur’s results to transfer the representation

on the semisimple group to a self-dual automorphic representation on GLN .

8.3 A Globalization Theorem for Semisimple Groups

There are a number of ways to solve the globalization problem for cuspidal automorphic represen-

tations on semisimple groups. Here we give one such result, due to Shin, based on the principle

that the local components of automorphic representations at a fixed prime are equidistributed in

the unitary dual [Shi12]. The interested reader can look at the introduction of this paper for more

references and a general discussion of the approach.

Let G be a connected reductive group over a totally real number field F such that

(i) G has trivial center and

(ii) G(Fw) contains an R-elliptic maximal torus for every real place w of F .

Remark 8.6. If we fix the central character in the trace formula argument of [Shi12], it would be

possible to relax condition (i). In general, trace formula arguments with fixed central character can

be derived from the non-fixed central character methods using some elementary Fourier analysis.

However, the author does not know where to find the results in the literature at the necessary level of

generality, so we simply impose the condition above, which is more or less harmless for our eventual

application.

We will first recall the unconditional results, but we will eventually need to make some assump-

tions to obtain a globalization theorem that is strong enough to apply to prove our general result.

Let S be a finite set of finite place of F . Let µ̂pl
v denote the Plancherel measure on G(Fv)∧ for

v ∈ S. Let U∧
v ⊂ G(Fv)∧ be a prescribable subset for each v ∈ S.

Proposition 8.7. [Shi12, Thm 5.8.] There exists a cuspidal automorphic representation τ of G(AF )

for F totally real such that:
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(i) τV ∈ U∧
V for all v ∈ S;

(ii) τ is unramified at all finite places away from S; and

(iii) τw is a discrete series whose infinitesimal character is sufficiently regular for every infinte place

w.

The regularity condition needs to be explained. Fix a maximal torus T and a Borel subgroup B

containing T in G over C (the base change of G to C via w : F ↪→ C). Let W denote the Weyl

group of T in G. The infinitesimal character χw of τw can be viewed as a element of X∗(T ) ⊗Z Q

and we say that it is sufficiently regular if there exists a σ ∈ W such that

⟨σχw, α
∨⟩ ≥ C

for every B-positive coroot α∨ of T in G, where C is a large constant that (only) depends on G, S,

and {U∧
v }v∈S . Note that this condition is, in particular, independent of the choice of T and B.

From this point on, we assume one of our main hypotheses.

Assumption. The analogue of Proposition 8.7 above is true over a general number field

F , even in the case where G(Fw) does not have discrete series for infinite places w.

While this is an assumption, it is not an absurd one, for it is not far from currently existing

results. A proof for this weaker unconditional result can be found in [Shi12, §4.3], if we allow

ourselves to impose extra conditions at two auxiliary finite places (in order to yield to an argument

that uses a simple trace formula). It is undoubtedly possible to remove these restrictions by using

the full trace formula, but such a result does not seem to exist in the literature yet.

8.4 Results from Arthur’s Endoscopic Classification

We recall the main results that we need from the monograph of Arthur [Art13].
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8.4.1 For SO2n+1

We recall some relevant facts for representations on odd orthogonal groups.

Let F be a number field. Let SO2n+1 be the split special orthogonal group over F . The dual

group of SO2n+1 is is Sp2n(C). We have the standard embedding

ξ : Sp2n(C) ↪→ GL2n(C)

and for a place v of F , set

LFv =


WFv × SL2(C), v infinite

WFv , v finite

where WFv is the Weil group of Fv. A local Langlands parameter

ϕv : LFv → GL2n(C)

is said to be symplectic (equivalently, correspond to a local representation of symplectic type) if

it preserves a suitable symplectic form on the ambient 2n-dimensional vector space; this is equivalent

to the condition that ϕv factors through ξ (after possibly conjugating by an element of GL2n(C)):

LFv

ϕv //

$$I
II

II
II

II
GL2n(C)

Sp2n(C)

ξ
88rrrrrrrrrr

For a place v of F and any positive integer r, we have the (unitarily normalized) local Langlands

correspondence for GLn, that is, the bijection

recv : {irreducible representations of GLr(Fv)} → {L-parameters LFv → GLr(C)}.

When v is finite, we have a one-to-one correspondence between local L-parameters for GLr and
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r-dimensional Frobenius-semisimple Weil–Deligne representations of WFv , in a bijective manner.

To each local L-parameter

ϕv : LFv → Sp2n(C),

or local L-parameter for GL2n of symplectic type, Arthur attaches an L-packet Πϕv , which is a finite

set of irreducible representations of SO2n+1(Fv). Up to equivalence, every irreducible representation

of SO2n+1 belongs to a unique such L-packet. If ϕv has a finite centralizer group in Sp2n(C) so

that it is a discrete parameter, then the L-packet Πϕv only contains discrete series representations.

If v is an infinite place of F , a similar construction was known earlier by Langlands, based on

Harish-Chandra’s results on real reductive groups.

Let τ be a discrete automorphic representation of SO2n+1(AF ), where AF denotes the adeles of

the number field F . Arthur shows that there exists a self-dual isobaric automorphic representation π

of GL2n(AF ) which is a functorial transfer of τ along the standard embedding ξ. For representations

that are generic in the sense of Arthur (that is, when the SL2-factor in the global Arthur parameter

corresponding to the representation τ has trivial image), this translates to the condition

recv(πv) ≃ ξ ◦ ϕv

for the unique ϕv such that τv ∈ Πϕv .

8.4.2 For Sp2n

Analogous results hold for Sp2n over a number field F . Here the dual group is SO2n+1(C), and we

have the standard embedding

ξ : SO2n+1(C) ↪→ GL2n+1(C).

A Langlands parameter

ϕv : LFv → GL2n+1(C)
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is of orthogonal type if it preserves a suitable orthogonal (i.e. symmetric bilinear) form on the

ambient 2n + 1-dimensional vector space, and this is equivalent to the condition that ϕv factors

through ξ (up to conjugation by an element of GL2n+1(C)):

LFv

ϕv //

%%KK
KKK

KKK
KK

GL2n+1(C)

SO2n+1(C)

ξ
77ooooooooooo

Note that all irreducible self-dual representations into GL2n+1(C) must be of orthogonal type,

since the existence of a symplectic form on the space would imply that the ambient space is even-

dimensional.

To each local L-parameter

ϕv : LFv → SO2n+1(C)

or local L-parameter for GL2n+1 of symplectic type, Arthur attaches an L-packet Πϕv , which consists

of finitely many irreducible representations of Sp2n(Fv); we have the analogous results on L-packets

and discrete parameters. For a discrete automorphic representation τ of Sp2n(AF ), Arthur shows

that there exists a self-dual isobaric automorphic representation π of GL2n+1(AF ) which is a func-

torial transfer of τ along the standard embedding ξ, with the analogous correspondence condition

for representations that are generic in the sense of Arthur.

8.5 Existence of Self-Dual Representations on GLN

We now construct the self-dual automorphic representations with prescribed local conditions using

the globalization theorem on the endoscopic group and using Arthur’s results on functorial transfer

from the endoscopic group to GLN .

Theorem 8.8. Let S be a finite set of places of a number field F . At each place v ∈ S, impose a

condition that corresponds to a prescribable subset Uv on the endoscopic group H (e.g. lying in a

specific Bernstein component of G(Fv) for v finite, or being a specific essentially discrete represen-
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tation of G(Fv)). Then there exists a cuspidal automorphic representation of GLN (AF ) satisfying

those local conditions such that:

(i) π is unramified away from v ∈ S; and

(ii) π ≃ π∨, that is, π is self-dual

Proof. Here, as in the proof of the globalization theorem above, our case divides into the even and

odd cases; if N = 2n is even let H = SO2n+1 and if N = 2n + 1 is odd, let H = Sp2n.

Apply the generalized version of Proposition 8.7 with our S and where each U∧
v is prescribable

for v ∈ S. Thus, there exists a cuspidal automorphic representation τ of H(AF ) such that

1. τv is unramified away from S;

2. τv ∈ U∧
v for all v ∈ S;

3. either τ∞ is a discrete series whose infinitesimal character is sufficiently regular, or

3’. τ∞ is any discrete series, but we lose control of the prescribed representation at two auxiliary

primes.

The functorial transfer π of τ then has the desired properties. For example, to see that π is cuspidal,

by condition (3) or (3’), then π is generic in the sense of Arthur. To see that the condition on the

central character holds, note that the central character is trivial at almost all finite places. Indeed,

the central character corresponds to the determinant of the Langlands parameter for π at each place

via local class feld, but the determinant is trivial since the parameter factors through Ĥ.
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