Constructing Self-Dual Automorphic Representations on
General Linear Groups

Thesis by

Brian Hwang

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Caltech

California Institute of Technology

Pasadena, California

2016

(Defended May 9, 2016)



ii

(© 2016
Brian Hwang

All Rights Reserved



iii

To my family, within and without

...TL motel(te mdvta el d6Eav TNeol molelte



Acknowledgments

This work could not have been completed without the help of many people along the way. First and
foremost, I would like to thank my advisor Dinakar Ramakrishnan for his unwavering support and
patient encouragement at every stage of this project. Thanks for the countless lessons on anything
and everything, and for telling me that the way to do the best mathematics is to follow your instincts
and to forge your own path; to inherit the ideas of the past, while shaking off any prejudices.

Each member of my committee—Matthias Flach, Tom Graber, Elena Mantovan, and Xinwen
Zhu—has given me insightful criticism and made me appreciate the plethora of perspectives in
mathematics as well as in life. Thank you all for your time, for answering my many naive questions,
and for showing me such wonderfully different perspectives. You all helped me to realize that
mathematics lives not in the silent pages of a published manuscript, but in the hearts and minds of
those that practice and love it.

Other teachers at Caltech have played key roles in my development. Matilde Marcolli has sup-
ported me from the very beginning and continues to do so in new and ingenious ways. Thanks for
demonstrating inner strengthm for showing me how to fight the good fight, and for emphasizing
the importance of art and taste and inspiration in everything. Thanks are also due to Eric Rains,
for your endless curiosity, great questions, and unique view of how mathematics connects and inter-
acts with everything else. I'd also like to thank Alekos Kechris for his expert guidance, impeccable
professionalism, and showing by example how to be a member of the mathematics community.

In a perfect world, mathematicians could focus all of their time on doing mathematics; in reality,
they need a lot of help to get by. Thanks to Kathy, Kristy, and Stacey in the math office for helping

me deftly navigate any monster of administration and always being there for a cup of tea or a laugh.



v

Thanks to Cherie for some key chats early on in grad school, when I was feeling most lost. Thanks
to Pam for her patience and technical wizardry, and for always reminding me to look at the big
picture. Thanks to Seraj for the many miracles in the background, keeping Sloan a stable place for
work for packs of half-crazed mathematicians coming and going at all hours.

Thanks to Anton Geraschenko, Andrei Jorza, Zhiyu Tian, Hadi Hedayatzadeh, Pei-Yu Tsai,
Pablo Solis, and Majid Hadian. Most of the mathematics I learned in graduate school was from
talking to you and taking the ambitious courses you all taught. I owe more to you guys than you
know. A special thanks to Farzad Fathizadeh, Adam Sheffer, and Helge Kriiger. You guys are the
coolest. Thank you for making the math department a fun and interesting place.

The student here made graduate school an unforgettable experience. Thanks to Brian, Alden,
Lawrence, Laura, Michel, Branimir, Ed, Jay, Foo Yee, Liubomir, Maria/Monica, Gaurav, Serin,
Seunghee, Emad, Will, Peter, Dan, Corina, Gahye, Andrei, Nathan, and all the people who I've
undoubtedly forgotten and will only realize upon submitting the final version of this dissertation.

Of course, my family has provided constant support, and my extended family of friends have
always been there for me. Even though you’ll probably never see this, the big and small of it wouldn’t

have been possible without you all.

BwWH

Pasadena, 2016.



vi

Abstract

We prove a globalization theorem for self-dual representations of GLy over a totally real number
field F', which gives a positive existence criterion for self-dual cuspidal automorphic representations
of GLy(AF) with prescribed local components at a finite set of finite places. A byproduct of our
argument is that the automorphic representations that we construct are cohomological (equivalently,
regular algebraic) and so fall into the class of automorphic representations on GLy for which there
is a well-established theory for how to attach Galois representations, using the étale cohomology of
certain Shimura varieties. The primary motivation is to give a sort of “bare-handed” or “low tech”
proof of a result that is implied by the philosophy of twisted endoscopy in the Langlands program.
While we are guided by this overarching picture, in the argument itself, we obtain all our results
by working directly on GLy and the group obtained by twisting it under the “inverse-transpose”
involution. In particular, we do not appeal to any general results on twisted endoscopic transfer or
assume any big “black box” results like the (conjectured) stabilization of the twisted trace formula.
Hence, such results are unconditional as stated, and we remark throughout on why the particular
assumptions that we impose turn out to be necessary, indicating the (often substantial amount of)
additional work required to generalize the stated results.

In an appendix, in stark contrast to our approach above, we give an abridged argument for
proving a globalization theorem on GLy in great generality, assuming a couple of major technical
hypotheses (albeit, ones that are widely believed to be true) and yielding to Arthur’s endoscopic
classification of representations of symplectic and special orthogonal groups. Our hope is for such
an argument to provide an outline for how we might ultimately prove results like generalizations of

the globalization criterion above in the future.
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Chapter 1

My Thesis

Bare-handed proofs of concrete arithmetic results are feasible and useful for applications of the
Langlands program.

In some arithmetic applications of the Langlands program using the trace formula, it is enough
to directly analyze the terms that arise, without having to assume any results “on faith” that rely

on thousands of pages of technical proof.

1.1 Goal of this Work

This work is a systematic study of the self-dual automorphic representations on GLy over a totally
real number field F' through the lens of twisted endoscopy in the Langlands program.

We summarize and interpret the general results known about the local components of such
representations—the self-dual smooth admissible representations of GLy (F,) for completions of F’
at a place v—and use this to determine which components can simultaneously arise as the local

components of a single irreducible cuspidal automorphic representation.

1.2 What is Twisted Endoscopy?

One pillar of the Langlands program is Langlands functoriality, which predicts that if H and G

are two reductive groups over number fields, any homomorphism between their L-groups (an L-



homomorphism for short)

o:'H L@

leads to a corresponding transfer of automorphic representations on H to those on G. Many of
the known correspondences between automorphic representations can be summarized according to
this philosophy, including solvable base change, automorphic induction, symmetric square lifting,
the Jacquet—Langlands correspondence, etc. While this provides an elegant unifying framework for
the plethora of relations between automorphic representations on different groups, this philosophy
has yet to materialize into a general theorem or proof technique. Instead, given the current state
of knowledge, we can only use this to guide our investigations and establish conjectural statements
that we prove using more concrete and familiar methods.

Endoscopy refers to some of the more accessible cases of Langlands functoriality; roughly speak-
ing, it applies when the L-homomorphism ® : “H — G is an inclusion. Endoscopic transfer results
encompass all of the correspondences mentioned in the previous paragraph, but there are a number
of correspondences that do not fall under this paradigm, such as symmetric nth power liftings for
large enough n, but knowledge of non-endoscopic correspondences are scarce and hold challenges
that currently seem out of reach in all but the most specialized of cases. Morally speaking, when such
a ® exists, we say that H is an endoscopic group of G. In practice, there is a precise mathematical
definition that applies. Note that an endoscoipc group H is not generally a subgroup of G; the two
groups are only weakly linked via a relation between their respective Langlands duals.

Twisted endoscopy essentially concerns cases where at least one of the reductive groups in the
case of Langlands functoriality is a “connected reductive group that is twisted by a finite-order au-
tomorphism;” this yields a disconnected reductive group that allows for more interesting phenomena
than if the L-homomorphisms were restricted to maps between connected groups. A particularly
interesting simple case of twisted endoscopy applies to the functorial transfer of automorphic rep-
resentations from symplectic or special orthogonal groups to general linear groups. While general
linear groups do not have nontrivial endoscopic groups, their twists by certain involutions realize

these classical groups as endoscopic groups, and this has led to a number of results being established
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in this vein; one of the most striking realizations of this idea is Arthur’s recent work on the endo-
scopic classification of representations of classical groups [ ]. The image of Arthur’s transfer
map is the set of self-dual automorphic representations on a general linear group, and it is this

perspective that forms the starting point of our investigations.

1.3 Why Self-Dual Automorphic Representations?

Self-dual (a.k.a. self-contragredient) representations are objects of interest in the theory of group
representations (especially Lie groups) that play a distinguished role in the theory of automorphic
representations and their local components: namely, the smooth admissible representation theory
of real, complex, and p-adic reductive groups. For example, the Langlands philosophy predicts that
every self-dual automorphic representation on a general linear group is the transfer of an automorphic
representation on a special orthogonal or symplectic group.

Another reason for studying self-dual representations is that the Galois representations that
naturally arise in arithmetic questions are often self-dual. For example, every 2-dimensional Ga-
lois representation—such as those attached to a modular form or an elliptic curve over a number
field—is self-dual up to a twist by a character. More generally, Galois representations that occur
in the middle-dimensional étale cohomology of Shimura varieties are all self-dual in a certain strong
sense with respect to the intersection pairing, so in particular, automorphic representations asso-
ciated with such geometric Galois representations must necessary be self-dual. Indeed, a folklore
conjecture predicts the converse: the only Galois representations realizable in the cohomology of
Shimura varieties are those attached to self-dual automorphic representations; that is, geometric
Galois representations attached to non-self-dual automorphic representations arise naturally from
some currently unknown source. These phenomena are encapsulated in the fact that the local and
global Langlands correspondences commute with taking duals, so self-dual representations on one
side of the automorphic side of the correspondence correspond to self-dual representations on the
Galois side of the correspondence, and vice versa. Indeed, most known cases of the global Lang-

lands correspondence for GL(n) (e.g. the special case for GL(2) used by Wiles and Taylor to prove



7

Fermat’s Last Theorem) are for self-dual (up to twist) Galois and automorphic representations.

The global Langlands correspondence for GL(n)!

{Automorphic Representations of GL(n)} <> {n-dimensional Galois Representations}

{Self-Dual Aut. Rep. of GL(n)} {Self-Dual n-dimensional Gal. Rep.}

Despite their importance, however, constructing self-dual automorphic representations even on
GL(n) usually requires appealing to some major results, such as the existence of Langlands functo-
rial transfers from classical groups to GL(n), which often requires assuming some strong technical
hypotheses, some of which are currently unproven. And even after admitting such hypotheses, the
proofs of such results often rely on lengthy specialized technical arguments, which are rarely read or
understood by practitioners, who largely take such results as a “black box” and thus rarely adapt
such arguments or techniques to other problems. While results for general reductive groups over
general number fields must necessarily involve such hypotheses, it is desirable to obtain a “bare-
handed” result in the case of GL(n) over Q (or a totally real number field), which is often the case
of interest for many concrete arithmetic applications. Aside from the obvious benefit of having an
alternate proof of a useful result, following this methodology also highlights some interesting ana-
lytic, arithmetic, or representation-theoretic phenomena that occur and indicate arguments that at
least have some hope of being able to be applied outside of the specific context of the proof.

Thus, throughout this work, we try to keep the techniques as “low tech” as possible, in particular,
taking care to not assume any unproven hypotheses or results whose proofs require thousands of
pages of specialized technical arguments. In doing so, we hope to not only give an alternate proofs,

but to exhibit the specific points at which the additional assumptions become necessary.

LOf course, a precise statement requires many more technical details; for instance only “algebraic” automorphic
representations are expected to have an associated Galois representation, one should probably work with Weil groups,
Weil-Deligne groups, or variants thereof on the Galois side, etc.



1.4 The Main Theorem

Our study of self-dual representations involved in the theory of automorphic representations on
GL(n) culminate in the following result: a criterion for “globalizing” a finite set of self-dual local
representations on G = GL(n) into an automorphic representation that “interpolates” these chosen

local representations and is itself self-dual (in the global sense).
Theorem 1.1. Let T be a finite set of pairs (v, m,) where

e v is a finite place of a totally real number field F', and

o 7, is an irreducible admissible self-dual essentially discrete representation of G(F,) (and if n

is even, are all of symplectic type).

Then there exists a cohomological self-dual cuspidal automorphic representation Il = Q.11 of G(AF)

such that for all (v,m,) € T, we have I, = 7, ® Xy, where x, s an unramified character of G(Fy).

If we only cared about constructing some automorphic representation that globalizes some set
of discrete local representations, such a result has been within reach for some time, using the stan-
dard theory of pseudocoefficients. What makes the problem difficult in our setting is to ensure
that you produce an automorphic representation that is self-dual. To ensure that the automorphic
representations we construct have this property, we work with the disconnected reductive group
GT =2 GL(n) xZ/2.

Even establishing a property as basic as self-duality for automorphic representations involves a
number of subtleties. For example, the condition that all the chosen self-dual representations at
finite places have matching parity (i.e. that their Langlands parameters all preserve Galois-invariant
symmetric bilinear forms, or all preserve Galois-invariant alternating bilinear forms) turns out to
be necessary. This phenomenon was observed, for instance, in the case where all the local self-
dual representations are supercuspidal, by Prasad and Ramakrishnan [ ]. This agrees with
the aforementioned expectation that all self-dual automorphic representations on GL(n) “come
from” those of orthogonal or symplectic groups, and was one of the principles underlying Arthur’s

endoscopic classification of representations of these classical groups [ ]
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There are a number of ways to realize such a self-dual globalization result. In spirit, all the meth-
ods boil down to different ways of realizing the philosophy of self-dual automorphic representations
coming from classical groups. For example, in the aforementioned work of Prasad and Ramakrish-
nan [ ], they approach the problem in a different way, applying a number of correspondences
between automorphic representations and their local components, such as the theta correspondence.
Perhaps the shortest way to prove a globalization result—and undoubtedly the way to approach
such a question once certain foundational results are established in the near future—is to construct
the “preimage” of the desired representation on the desired endoscopic group and use results on
twisted endoscopic transfer. Indeed, we have outlined such a method in the appendix (§8). How-
ever, the method that we follow in the main part of the work will use the trace formula on GLy
and its twisted counterpart on twisted G Ly, and will boil down to an explicit analysis of the orbital

” and allows us to avoid results

integrals that appear. Doing so allows us to work “entirely on GLy’
on endoscopic transfer, which are still conditional in our setting. But as we will see, even in this
deliberately simplified setting, the endoscopic groups still make their presence known, due to the
way that they control the harmonic analytic properties of the twisted GLy.

A result along these lines for G = GL(2n) was obtained by Chenevier and Clozel, who were
motivated by an application to a specific question in Galois theory | ]. We strengthen their
result in the GL(2n) case, but the main work is in proving the analogous result in the case of
GL(2n 4+ 1). While the overall approach remains the same—we use techniques inspired by the
theory of twisted endoscopy to apply the Arthur—Selberg trace formula to a carefully chosen family
of pseudocoefficients and use harmonic analysis techniques to show that orbital integrals on the
geometric side of the resulting trace formula is nonzero—the details in extending the results to the
GL(2n 4 1) case can be intricate and involve modifications at almost every step of the argument.

One of the primary goals for our treatment of the problem is to extend this kind of strategy
for constructing automorphic representations to its “naturally general” framework, and to precisely

indicate what technical lemmas need to be improved in order to obtain the desired generalizations

using this approach.
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1.5 Strategy of Proof

The (global) self-duality of an automorphic representation is a delicate condition: self-dual automor-
phic representations must have self-dual local components, but self-duality of local components does
not guarantee the self-duality of the automorphic representation. This issue and related analytic
difficulties are the primary reasons why constructing such automorphic representations is a subtle
and tricky procedure, and why relatively explicit methods like Poincaré series cannot be applied
in this setting. Instead, to construct such self-dual automorphic representations, we compare the
Arthur—Selberg trace formula on G = GL(n) with a twisted version on the disconnected reductive

group Gt = G II GO, where 0 is the order-2 automorphism of G given by

that is, by taking the inverse transpose®. This gives us a distribution

Jspec(') = Jgeom(')

on the space of smooth, compactly supported C-valued functions CS°(G(A)), where the former
denotes the “spectral side,” which will consist of (traces of) certain self-dual automorphic repre-
sentations, and the latter denotes the “geometric side,” consisting of certain (twisted) orbital inte-
grals. We choose an appropriate test function f = ®,f, € C(G(AF)) based on our initial data
{(v, ) }ver, choosing the corresponding pseudocoefficients of the chosen representations, trying
when possible to find ones with the most well-behaved nonvanishing properties. Note that since
most pseudocoefficients are defined in the context of connected reductive groups, which excludes
the case of G, it is necessary to develop twisted analogues of such functions in the context of our
problem.

To show that our desired self-dual cuspidal automorphic representation exists, we need to show

2For technical reasons, we actually use a variant of this map, composing the 6 above with the conjugate of a certain
antidiagonal matrix.
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that the spectral side of the trace formula is nonzero, and to do so, it is enough to show that the

geometric side of the trace formula is nonzero:

Jspec(f) = Jgeom(f) 7é 0.

Away from the chosen places v € T, the local components f, of the test function f are just
the characteristic functions of G(Op,), where Op, denotes the ring of integers of F,. At places
v € T, the test functions are pseudocoefficients that are chosen to have simple #-twisted orbital
integrals, and much of our work is in finding such functions and establishing such properties. At oo,
we essentially take coefficients of discrete series representations. Now, the group GLy(R) does not
have discrete series for N > 2, but it does have §-discrete series (a twisted analogue of the discrete
series), and it is these representations that we prescribe at the archimedean place. Eventually, for
the test functions f = ®, f, that we construct, we will be able to apply a simplified version of the
trace formula | ], and reduce the analysis of the geometric side to twisted orbital integrals
that correspond to conjugacy classes of a highly restricted sets of elements: the elliptic #-semisimple
elements.

However, producing nonvanishing results for such a test function f even with the simple version
of the trace formula used here is still too difficult to tackle in general, but here we can exploit a key
observation that was successfully developed and applied by Chenevier and Clozel: the asymptotic
simplification of the geometric side of the trace formula “as the weight goes to infinity.” Indications of
such an idea can be found in the case of (untwisted) GL(2) in the work of Serre on equidistribution
results for Hecke eigenvalues | ], and this Chenevier—Clozel observation itself can be seen as
indicative of general equidistribution phenomena for automorphic representations, namely those of
“Plancherel” type (i.e. equidistribution with respect to the Plancherel measure) that occur as we
vary “in the weight aspect” (since we fix the behavior at the local places but vary the weight).

We briefly describe this observation and the subsequent technique. Given the rigidity of our

problem, the only freedom that we have in choosing our test function f is to vary the component at
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infinity f.o among the pseudocoefficients of cohomological #-discrete series representations. These
representations are naturally parametrized by the highest weight A of an irreducible representation
Vi of a compact group H(R) (a compact form of the real points of an endoscopic group of the
f-twisted G). The insight is noticing that as the weight A goes to infinity away from the walls of
the Weyl chamber, the geometric side of the trace formula becomes asymptotically equivalent to (in
other words, all the remaining terms are dominated by) a single orbital integral, called the “principal
term.” Up to a positive scalar, this is the twisted orbital integral TO.,(f) of f attached to a certain
elliptic #-semisimple element vy € G(F') (the “principal element”) whose twisted centralizer is an
F-group whose C-points yield the dual group of the endoscopic group H. If we can show that the
principal term does not vanish, then the geometric side of the trace formula does not vanish.

In symbols, as A\ — oo away from the walls,

Tspec(f) = Jgeom(f) ~ TOx(f) = C - dim(V),

where C' is an explicit nonzero constant that only depends on the components of f away from co and
foo = foo,a- Since the nonvanishing of T'O,,(f) is reduced to the simultaneous nonvanishing of its
local components 7O, (f,), we then only need to prove nonvanishing results for these local orbital
integrals applied to our twisted pseudocoefficients at a single element ~y. Once these analytic results
are established, we conclude that the geometric side of the trace formula is nonzero, completing the

proof.

1.6 Summary of the Contents

In §2, we introduce self-dual representations and present some general definitions and results.

In §3, we define the non-connected reductive group G+. This is the fundamental object that we
“work on” in order to prove our main theorem, and we recall the key structural results, culminating
in a description of the twisted endoscopy “norm map,” which is one major ingredient of our proof.

Even guided by overarching theory of twisted endoscopy, translating this into concrete mathe-
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matical results is an involved process. In §4, we describe some of the simplifications and reductions
that we exploit in the course of the proof of the theorem.

In §5 and §6, we establish the analytic results upon which the theorem ultimately rests. This is
the technical heart of the work.

In §7, we put all of the results together to give a proof of our main theorem. On an initial
reading, we advise the reader to begin with this section and refer back to the previous sections as
needed.

Finally in the Appendix (§8), we give a sort of “dream proof” of a general globalization result

like that of our main theorem, assuming certain technical hypotheses.



14

Chapter 2

Self-Dual Representations

Self-dual representations are easy to define and naturally arise in the representation theory of various
groups, but it is less common to study them exclusively as a central characteristic rather than as an
auxiliary property of a specific representation. Many representation-theoretic results are exclusive
to self-dual representations, so in this chapter we recall some of these results, oriented towards those
that will be useful in the course of our proof.

While the definitions are crucial and stated carefully, we do not include complete proofs of results

that are not used our main argument.

2.1 General Self-Dual Representations

We collect some basic results on general self-dual group representations. In this section, G denotes

a general group.

Definition 2.1. Let 7 : G — GL(V) be a smooth representation over the complex numbers. The
dual (or contragredient) representation is defined to be (7V, V"), where V" is the complex vector

space of all linear functionals £ : V' — C such that

for all k in some open compact subgroup K C G and v € V; and where the G-action of 7V is given
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by

forall e VV,veV,and g € G.

We have a canonical bilinear form V' x VV — C defined by

for £ € VY and v € V. It is G-invariant in the sense that

<7T(g).1),7‘rv(g),€> = <1},€>,

and if (w,V) is irreducible, then any other representation (7/,V’) inducing a non-zero invariant

bilinear form V' x V’ — C is isomorphic to (7¥,V").

Proposition 2.2. Let (7,V) and (7', V') be two admissible representations of GLy(F) for a local

nonarchimedean field F'. Suppose that there exists a nondegenerate bilinear form

<,>ZV1><V2—>C

that is G-invariant in the sense that

forveV,v € V' and g € G. Here, nondegenerate means that for any fixzed v/ € V, we have

(v,v") # 0 for some v € V and vice versa. Then (7',V) = (xV,VV).



16

Proof. Define a map

L:V VY

v by = (—,0") .

This is an intertwining map. If a nonzero v € Ker(L), then (v,v’) = 0 for all v € V and (,) is
degenerate. Similarly, if Im(L) is a proper subspace of V'V, then by admissibility of V' and V' there
exists v € V such that (v,v") = 0 for all o' € V', and so (,) is degenerate. Thus, the intertwining

map L must be an isomorphism. O

Let (m, V) be an irreducible admissible self-dual (complex) representation of a p-adic group G,
then there exists a nondegenerate G-invariant bilinear form (,) : V' x V' — C. This form is unique
up to scalars by Schur’s lemma. Such a form is either symmetric or skew-symmetric, and it is useful

to distinguish between these two cases.

Definition 2.3. An irreducible admissible self-dual representation (m, V) is orthogonal if (,) is

symmetric and symplectic if () is skew-symmetric.

For the case we will eventually consider, we can deduce this property by looking at poles of the

appropriate L-functions, which relies on the following fact.

Lemma 2.4. If 7 is an irreducible representation, then the self-dual representation m@mY is reducible

and contains exactly one copy of the trivial representation 1 as a factor.
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Proof. For any two irreducible representations 7, 7’ of G, we have

Hom(1,7" ® ') = Hom(1, Hom(, 7))

~ Hom(l ® m, ")

= Hom(7, )
C, mxq
0, otherwise
by the tensor-hom adjunction and Schur’s lemma. O

For a representation (m, V), we have 7 @ ¥ = Sym(V) @ A(V) and so the trivial representation
must either lie in Sym(V') in which case # ® 7V is orthogonal, or in A(V) in which case 7 @ 7V is

symplectic.

2.2 Self-Dual Representations of Orthogonal and Symplectic

Type

Under the Langlands classification of (complex) representations of a (connected) reductive group G
over a local field F', every smooth admissible representation m of G(F') corresponds to a Langlands
parameter (a.k.a. L-parameter)

o Lp =Y G,

where “G is the Langlands dual group of G over F and L is, say, a Weil group, a Galois group,
a Weil-Deligne group, or some variant thereof (there is usually a bijective correspondence between
the isomorphism classes of representations of each such group). For a general group, multiple
representations of G' can correspond to the same Langlands parameter (such representations are
said to be in the same “L-packet,” corresponding to o), but for GLy, it is known that there is

a one-to-one correspondence between irreducible, smooth, admissible representations of GLy(F)
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and Langlands parameters (that is, the L-packets for GLy are singletons). Such a correspondence
between irreeducible smooth, admissible representations and Langlands parameters is called a (local)
Langlands correspondence.

The Langlands correspondence respects certain natural operations on representations. For one,
it respects the taking of duals, in that the L-parameter of the dual representation 7 is the dual of
the L-parameter of 7. In particular, it maps self-dual irreducible smooth admissible representations
of G(F) to self-dual representations of L on *G.

Self-dual representations of reductive groups over local fields come in two (non-mutually exclu-

sive) flavors, according to properties of their Langlands parameters.

Definition 2.5. A smooth, admissible representation of 7 of G(F) is said to be of orthogonal
type if its Langlands parameter is orthogonal as in Definition 2.3. Similarly, = is said to be of

symplectic type if its Langlands parameter is symplectic as in Definition 2.3.

Note that this notion is different from the representation = itself being orthogonal or symplectic.
It is possible that these two notions of being “orthogonal” or being “symplectic” coincide, but there
are cases in which they differ. A particularly striking case occurs for inner forms of GLy: if 7 is an
irreducible self-dual representation of D* for a division algebra D of invariant 1/n for n even, then
7 is orthogonal if and only if its Langlands parameter (associated to 7 under the Jacquet—Langlands
and local Langlands correspondences) is symplectic; in other words, 7 is orthogonal if and only if it
is of symplectic type [ , Cor. BJ.
Warning 2.6. It is important to be aware that a self-dual smooth admissible local representation
can be both of orthogonal type and of symplectic type (or neither!). For example, certain Eisenstein
series fall into this category, as well as some reducible representations that we can construct relatively
explicitly (e.g. the direct sum of two irreducible representations of orthogonal type). One concrete
example is if w is a self-dual supercuspidal representation such that no unramified twist yields
its dual representation w", then the representation of G = GLs,(F) obtained by the induction
Ind%(w ® w") (where P is the usual (n,n) parabolic in G) is a self-dual local representation that is

of both orthogonal and symplectic type. This representation plays an important role in the solution
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to the Galois theory problem that was the initial motivation for the work of Chenevier—Clozel |

85].
However, the situation is not completely hopeless. By Lemma 2.4, we see that every irreducible
self-dual smooth, admissible representation of G(F') must be either of orthogonal type of or sym-

plectic type.

2.3 Self-Dual Automorphic Representations

We recall some basic properties of self-dual automorphic representations of GLy.

The following result can be summarized as “global self-duality implies local self-duality.”

Proposition 2.7. Let 7 = ®,7m, be a self-dual automorphic representation of GLy(A). For all

places v, the local component m, is self-dual.

Proof. We can prove this, say, by looking at the local and global L-functions corresponding to such

a representation and its properties, in particular, its functional equation. O

But to show that an automorphic representation with local components that are all self-dual is
itself self-dual (as an automorphic representation) is subtle, and it is this for this reason that we
work with the twisted group G in the first place, to ensure the global self-duality.

In general, “most” self-dual automorphic representations of GLy are not self-dual. There are
many ways to see this and in which this property manifests itself, but here is one particular realization

that has the quality of being relatively quantitative.

Proposition 2.8. Let N be a natural number and assume that N # 2. Given a real number \ > 0,
let Newsp(X) denote the number of cuspidal automorphic representations of GLy(A) whose Laplacian

eigenvalues are at most A. As A — oo, we have

Nosp(N) ~ AN =272,

Proof. Weyl’s law. O
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However, there is a single setting where there are proportionally more self-dual cusp forms than

others.

Proposition 2.9. Self-dual cusp forms have positive density among the cusp forms of GLs.

Proof. Due to the accidental isomorphism SOs; = PGLs, transfers from SOs3 to GLg give us a

positive proportion of self-dual representations. O

This leads to some phenomena that occur for self-dual automorphic representations in the GL(2)
case that make it dramatically different from the other cases. We refer to §77 for a more in-depth

discussion.
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Chapter 3

The Twisted Group
G =GL(n) x Z/2.

We recall some facts about the non-connected reductive group G+ = GL(n) x () = GL(n) x Z/2

where 6 is an involution that acts on G = GL(n) via g — ‘(g7 1).

3.1 Definition of G*

Let G = GLy for a positive integer N and G = G(F') the set of F-points for a field F. We have an

automorphism

0:G—>G

gt
sending an element of ¢ to its inverse transpose, noting that the inverse and transpose operations
commute with each other, so it does not matter in which order they are taken. The map 62 is the
identity homomorphism, so 6 is of order 2; that is, it is an involution.
We consider the group G = G x (f), which we call G twisted by 6 or the f-twisted G,
characterized by the relations

62 =1, 6g6~' =40(g)

for all g € G. It is a non-connected reductive group whose identity connected component is G and
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its component group is G/G ~ (0) ~ Z/2Z.
We denote the non-neutral connected component of G* by G = G#. Note that G is an algebraic

variety that is isomorphic to G under the map

dg:g+— gb

and admits a transitive G-action on both the left and the right. We have a decomposition

Gt =GIIG.

On F-points, we write Gt := GT(F) = GIIG.

3.2 Realizing G' Inside a General Linear Group

The twisted group GV is linear algebraic and so we should be able to realize it in a linear group
GLy, for a certain k£ € N. In this section, we describe such a realization.

Consider the embedding i : GT — GLyy given by

Using this linear realization, it is easy to prove the following elementary proposition.

Proposition 3.1. Let g € G. Then g0 € G is semisimple if and only if g6(g) € G is semisimple.

Furthermore, g0 is strongly reqular semisimple if and only if g0(g) is strongly regular semisimple.

Proof. First, we note that ¢ € G is semisimple (respectively, nilpotent) if and only if 6(g) is.
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Consequently, g € G is semisimple if and only if i(g) is. Since (g0)?> = gf(g), it follows that if
g0 is semisimple, then gf(g) is as well.

Conversely, suppose that gf(g) is semisimple. We have the Jordan decomposition

90 = gssGu

such that the elements gss, g, € G commute, where i(gss) is semisimple and i(g,) is unipotent.

Then

90(9) = 92,92

But by the uniqueness of the Jordan decomposition, we must have g = 1 and so g, = 1.
It remains to prove the statement about strong regularity. The characteristic polynomials P(X)

of gf(g) and i(gh) are related through the equality
Pi(g0)(X) = Pyo(g)(X?)
(to see this, calculate the determinant in blocks). In particular, P, splits into a product of simple

roots if and only if P;(49) does (note that 0 is not a root). This concludes the proof. O

This result indicates that the natural notion of semisimplicity for elements of the form g6 € GC
G is to check whether gf(g) is semisimple in the usual sense. We say that g € G is f-semisimple

if g6(g) is semisimple.

3.3 Smooth Representations of G™ and f#-stable Representa-

tions of (¢

Let F be a p-adic field (i.e. a nonarchimedean local field of characteristic zero) and let G = G(F)
and G = GT(F) be the sets of F-points of the respective groups. The groups G* and G are totally

discontinuous and locally compact.
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We write Rep(G™) and Rep(G) for the categories of smooth complex representations of the p-adic
groups GT and G respectively. Similarly, we write H(G) and H(G) for the corresponding Hecke
algebras and H(CNT') for the subspace of functions with support in the non-neutral component G of

G*. We have a natural injection

H(G) = H(GT),

which equips H(G™) with the structure of an H(G)-module on the left and right and under which

we can view H(é) as a submodule. Thus, as a H(G)-bimodule, we have the decomposition

The map f +— f*dp gives a bijection between H(G) and H(G) that shows that H(G) is isomorphic
to H(G) as a right module, and the action on the right of a function f is given on H(G) by the
multiplication by (that is, convolution product with) f o 6.

We say that a representation (w,V) € Rep(G) is f-stable if there exists a G*-isomorphism
between (m,V) and (70 6,V). We write Rep(G)? for the full subcategory of Rep(G) that consists
of #-stable representations.

For (m,V) € Rep(G™), consider the restrictions

T = 7la

o = 7| g

(Note that the latter is not a representation per se, because G is not a group.) Note that the data
encoded by 7y can be extracted if we know how G acts on V' and how 6 acts on V. Let’s state this
result formally and give a proof. This result seems to be well-known, but we were unable to find an

appropriate reference, and so we give details.
Theorem 3.2. A smooth representation (m,V) of G is entirely determined by the triplet (V, w|q,7(0)).

We break this down into a couple of simple lemmas.
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Lemma 3.3. A smooth representation of G is given by a 0-stable representation of G and a choice

of an isomorphism A € Homg (7, o 0), which is of order 2 and is also an automorphism of V.

Proof of Lemma. If (w, V) is a smooth representation of GT, then 7(#) is an automorphism of order
2 on V that intertwines m and 7 o 0, so the representation 7| is -stable.

Conversely, suppose that we have a triple (V, 7, A) where (7,V) is a smooth -stable represen-
tation of G and A is an automorphism of order 2 of V that intertwines m and m o 6, then we can

construct a smooth representation of G by setting () = A. O
Lemma 3.4. Up to GT-isomorphism, the choice of operator A is unique up to sign.

Proof of Lemma. Given any two representations m, 7’ € Rep(G™), their restrictions to G are iso-
morphic if and only if 7/ ~ 7 ® x for x a character of (#); that is, if we realize 7 and 7’ in the same

vector space, we must have 7/(0) = £ (0). O

In particular, the previous result implies that if (7, V) € Rep(G) and nT is an extension to G,

then the restriction Tr§(7r+) to G of the character of 7T is determined by 7 up to sign.
Lemma 3.5. All irreducible §-stable representations of G are extendable to a representation of GT.

Proof of Lemma. Suppose that (7, V') is an irreducible -stable representation of G and A € Homg (7, 7o
) an arbitrary isomorphism. Since A? € Homg(m,7), Schur’s lemma implies that there exists

a nonzero A € C such that A2 = X -Idy. Thus, given a square root u of ), it follows that

€ Homg(m, 7 o 6) is of order 2, which allows us to extend m to G™T. O

We combine these results to give a proof of our theorem.

Proof of Theorem. A smooth representation (7, V') of GT certainly determines a triple (V, |g, 7(6)).
It remains to show that we can recover the representation of G from this data.

Let (V,m|g,m(0)) be such a triple. Then (w,V) is a f-stable representation of G and () €
Homg (7,7 0 0) is an order-two automorphism of V. By the previous lemmas, these determine a

unique representation of G. O
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3.4 Twisting G by a Conjugate of 6

For technical reasons, it is sometimes useful to consider G when it is twisted by another involution
instead of 6. For example, at a crucial part of their argument | , §4], Chenevier and Clozel have
to use an automorphism 6y that is a conjugate of the involution they use in the remainder of their
paper. In this section, we will show that the choice of conjugate of 6 that we twist G by in the
construction of GV is of little consequence, and indicate precisely what minor adjustments need to

be made.

3.4.1 The involution 6, of Chenevier—Clozel

For the moment, assume that we are working with G = GLy where N is even, and explain the

~! and the y that Chenevier and Clozel apply at

relation between our “bare” involution 6 : g +— g
certain points of their argument.

Consider the matrix

Jo = € G.

-1

Note that JZ = —Iy and §(.Jy) = Jo. We define an automorphism

902G—>G

g Jotg T Iyt =0(JogJy ),

given by applying 6 and then applying conjugation by Jy. The automorphisms 6 and 6y are both
involutions, that is, they are both of order 2.
We defined the twisted group GT above in terms of the involution #. But what if we considered

a different involution, such as 63?7 We will show in this section that we can replace the involution 6
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by any conjugate and in particular, 8y. For example, since 6 and 6y are congruent modulo the inner
automorphisms of G, we have

G x (0p) =G % (0).

For the embedding ¢ giving the realization in the general linear group (cf. §3.2), we define

' 0 Jo
i(6o) =
Jo O
The same reasoning of §3.3 applies when we replace 8 by 6y, since we did not use any property of
0 other than the fact that it is an involution. Furthermore, as the two automorphisms are conjugate,
a representation is #-stable if and only if it is fg-stable. To see this, just note if (7, V) € Rep(G),
then 7 o 6 and 7 o 6y are always isomorphic via the map 7(Jp) : V — V.

Finally, note that for 7 € Rep(G) is irreducible, we always have mofy ~ 7V, and so an irreducible

representation is fy-stable if and only if it is self-dual, just like the case of 6.

3.4.2 The involution # of Waldspurger

We return to the case of G = GLy for N an arbitrary positive integer. In his work on twisted G

over p-adic fields | ], Waldspurger uses an involution 6 of G the form
0(9) =J"'g7"J,
where
1
J =
1

The same arguments that we delineated in the last section for the involution 8y also apply to the

above involution 6.

Remark 3.6. In case the notational abuse has not made this clear, this isomorphism “a la Wald-
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spurger” will be the involution that we ourselves use most of the time in the proofs of our results—at
least, outside of this preliminary section (§3) where we talk about general context in which we can

prove such results—so we can apply the results of | ] directly.

3.5 Conjugacy and Stable Conjugacy in G*

We return to letting 6 denote the “raw” inverse-transpose (g) = tg~'.
We write Ad : GT — Aut(G™) for the action of G on itself by conjugation. The components
of G are stable under this action.

If g € G, then G is stable by Ad(g), and we write
Adg(g) =g 0 Ad(g)lg 0 65"
for the action on G deduced via dg : g — g, that is,
Ady(g)(h) = hgf(h)~" = hg .

This action is called f-twisted conjugation. We define the 6y-twisted conjugation Ady, in an
analogous manner by replacing 6 with 6y, and same for the # “of Waldspurger.”
Two semisimple elements =,y € G+ = G+(F) are said to be stably conjugate if there exists a

g € GT(F) such that

T =9yg ",

and for all o € Gal(F/F), we have

9 'a(g) € Z(G)'Gy,

where Gg denotes the neutral component of the centralizer of y in G.

Remark 3.7. This additional latter Galois condition for stable conjugacy is required since G is not
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a connected reductive group with simply connected derived group.
Note that conjugation in G(F') implies stable conjugation, which itself implies conjugation in

G(F).

3.5.1 Semisimple conjugacy classes of G

For our calculations later involving the twisted endoscopy norm map, it is useful to know what
the semisimple conjugacy classes of the non-neutral connected component G of GT are. Given the
realization of G* and thus G in a general linear group (cf. §3.2), this boils down to some elementary
linear algebra calculations. We refer the reader to | , §1.3] for further details. In this section,
the 0 denotes the involution “a la Waldspurger” (cf. §3.4.2).

The goal of this section is to produce explicit representatives of each #-semisimple conjugacy class
in G. While it does involve establishing a somewhat intimidating amount of notation, the ideas and
the deductions are simple and elementary.

Let F denote an algebraic closure of a field F' and Gal(F/F) the absolute Galois group of F.

For any finite set I and a subset I* C I, we pick the following series of objects:
e Foric I, pickana;, € F |

— if ¢ € I, we set F! = F|[a;], and denote the degree of its extension by f; = [F] : F]; we
assume that a; is not conjugate to ai_1 by the Galois group Gal(F}/F);
— ifi € I'*, we set F; = F[a;], we assume that F; is the quadratic extension of a subextension

F! of F, and we set f; = [F : F], we assume that a;7;(a;) = 1 where 7; is the unique

nontrivial element of Gal(F;/F});
e For i € I, pick an integer d; > 1;

e For ¢ € I*, let V; be a vector space of dimension d; over F;, equipped with a nondegenerate

sesquilinear form ¢; : V; x V; — F;, where

qi(2v,2'v") = 7;(2)2' g (v,v")
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for z, 2 € F; and satisfying the relation

qi(vlvv) = aiTi(Qi(Uav,))~

Remark 3.8. For i € I, fix b; € F/* such that a;b;T(b;)~! = 1. The symmetry condition imposed on
g; is equivalent to b;q; being Hermitian. It implies that the group of isometries U(g;) of the form g;

is the usual unitary group.

We also define two other vector spaces:

e V. is a vector space over F' equipped with a nondegenerate quadratic form ¢y; we write d

for its dimension;

e V_ is a vector space over F' equipped with a nondegenerate symplectic form q_; we write d_

for its dimension.

We will eventually be able to take V. or V_ to be zero-dimensional.

We assume that:

N=d,+d_+2) difi,
iel
and that for ¢,j € I with ¢ # j, there is no F-linear isomorphism Fla;] — F/[a;] that sends a; to a;
-1

or (lj

The above choices of data:

(I, I" {aiYier, {di}icr, {Vi}ier+, V4, VZ),

determines a conjugacy class in G. We write V.;* for the dual of V; when we consider it as a space over
F and denote by Isom(V;, V;*) the set of F-linear isomorphisms of V; in V;*. We establish analogous

notation for V+* and V*.
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For i € I\I*, we set

v/ = F}%

V" = Homp, (V/, F)

and so define

‘/'i:‘/i/@‘/i//-

For such an ¢ € I'*, we define o; € Isom(V;, V;*) by the equality:

(@ +a" 0y +17)) = Trryp((@,y") + ai (v, 2"))

for #’,y" € V/ and 2", y" € V.

For i € I'*, we define o; € Isom(V;, V;*) by the equality:

<$702(y)> = TrF7/F(qz(x7y))

For ¢ = +1, we define o¢ € Isom(V¢, V") by the equality:

(z,0¢(y)) = 9c(2,9).

We identify an N-dimensional F-vector space V with

V=V, oV @ (@iciVi),

and the collection (04,0_,(0;)icr) defines an element o € Isom(V,V*). From this we obtain an

element
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It’s a semisimple element with a well-defined conjugacy class. Every semisimple conjugacy class of
G can be realized in this way. (Consider a realization as in §3.2 to make this obvious.)

Note that the following elementary modifications do not change the conjugacy class of s € G:

changing I and I* to other sets with the same number of elements;

e replacing a; with its conjugation under an element of Gal(F/F);

replacing a; with ai_l;

replacing the forms g;, g+ or ¢g_ by equivalent forms.

Up to these elementary modifications, we thus obtain a classification of conjugacy classes of semisim-
ple elements of G.
The commutant Zg(s) in G (that is, the connected component, not G*!) of the element s € G

constructed above is equal to:

O(q+) xSp(q-) x | [] GLar | x <H U(Qi)/p;) ;

1€I\I* €I

where O(q4) is the orthogonal group of ¢, Sp(g_) is the symplectic group of ¢g_, and for example,

for i € I, U(qi)/pi/ is the restriction of F! to F of the group of automorphisms of F} of the form g;.

3.5.2 0O-twisted conjugacy classes of a skew-symmetric matrix (N even)

A result that we need to use at one point of the proof is that the set of v € G such that v is
skew-symmetric forms a stable conjugacy class.

Let us return to letting 6 denote the involution g — fg~!

,and G = GLg,. A key property of
the principal element v (c.f. §4.3) in the proof of the theorem is that the twisted centralizer of
is a symplectic group. We will show here that this property is not affected by replacing 6 with a

conjugate (i.e. applying a subsequent inner automorphism).

Let Skews, (F') be the set of 2n x 2n matrices with coefficients in a field F' that are skew-symmetric
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and invertible:

Skewan (F) = {7 = [vi] € GLan(F) | 'y = =7}

From the definition, we can see that Skews,(F) is closed in G = G(F). Moreover, G acts on
Skewa, (F) by 6-conjugation, that is

Adg(9)y=97"yg

for v € Skews, (F) and g € G.

Define a matrix Jo,, € Skews, (F') by

where I,, denotes the identity matrix of size n.

The symplectic group can be defined as the stabilizer of .J,, under the #-conjugacy action:

Stabad, (Jn) = {9 € G | gJn ‘g = Jn} = Span(F).

For all v € Skews, (F) and g € G, we have

Stabad, (Adg(9)-7) = {h € G | h(Adg(g).7) 'h = Ade(g)-7}
={heG|hgy'g'h=g7'g}
={heG|g thgy'ghtg™ =1}
=glzeGlay'z =7}

= g Stabad, (7)g

so this action is transitive. This property is holds over arbitrary fields (at least those of charac-
teristic zero, which we are only ones we're interested in), and so Skew,, (F') is precisely the stable

f-twisted conjugacy class of any invertible skew-symmetric matrix. Moreover, all the stabilizers of
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such matrices are thus conjugate with each other, and in particular conjugate to Spa, (F).

In addition, for all v € Skews,, (F'), we thus have a surjection

-~y : G — Skewa, (F)

g +— Adg(g).y

which induces a bijection

G/ StabAde (’y) = SkeWQH(F).

In particular, for v = J,,, this gives a bijection

G Loy (F)/Span(F) = Skewan (F).

To summarize the above deductions, we have (1) shown in this part that the §-twisted centralizer
of a matrix of Skews, (F') is conjugate to a symplectic group, and (2) that the quotient of GLs, by

this group (and in particular, G Lo, /Sps,) is in bijection with Skews,, (F).

3.5.3 Twisted orbits and twisted orbital integrals

The goal of this section is to relate the twisted orbits and twisted orbital integrals for different
conjugates of the involution 6.

On the quotient G L, (F')/ Stabaq, (), choose a measure on it that is invariant under left trans-
lation; this exists and is unique up to constant. Equip Skews, (F') with the measure induced from
that of GLa,(F)/ Stabag, () under the bijection above, this measure is thus invariant by the action
of G under f-conjugation, and up to constant is the only possible one with this property.

First, we want to show that fyp-twisted orbits can be obtained from the f-twisted orbits. Let

G.[gof] and G.[gfy] denote the O-twisted orbits and p-twisted orbits, respectively, of an element
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g € G. These two orbits are related as follows:

G.[v0o) = G.[(vJo)0]. Ty -

Similarly, the 6-twisted centralizer of v is the fy-twisted centralizer of v.Jy. Moreover, the 0yp-twisted

orbital integrals can be deduced from the f-twisted orbital integrals via

JGGO (77 f) == JGQ(’YJ(M )\(Jo)f),

where Jgog, (7, f) denotes the orbital integral of f on the fy-twisted conjugacy class of v (similarly
with 0), and A\(Jp).f is the function A(Jo).f : g+ f(gJy ).

Thus, up to some minor adaptations, we can thus easily pass from results twisting by 6 to results
twisting by 6y or any other conjugate involution. In particular, we can reinterpret the results of

papers like | ] and | | which use 0 (§3.4.2), with those of | ] which uses 6p.

3.6 The Twisted Endoscopy Norm Map

In this section, following the conventions of Waldspurger [ , 8I11.2] (namely, we use his choice
of involution 6, see §3.4.2), we recall the properties of the twisted endoscopy norm map (or more
precisely, one direction of the norm correspondence) between twisted conjugacy classes in G=0Go
(the non-neutral connected component of the twisted group Gt = GLx x (0)) and conjugacy classes

in an endoscopic group H(R) of GT, which is defined to be

Spon, if N=2n+1 (odd case)
H =

SOgp+y1, if N =2n (even case).

General results on twisted endoscopy can be found in the monograph of Kottwitz and Shelstad

[ |; we specialize the results to our setting: namely, twisted endoscopy corresponding to the

triple (G = GLy,0: g+ J'g~1J,w =id).
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A priori, the existence of such a miraculous correspondence seems unlikely to have come out
of nowhere, so let us provide some context for the result. Through the lens of the Langlands
program and Arthur’s conjectures, if H is an endoscopic group of G, it means, roughly speaking,
that H is the group that controls the stably invariant distributions on the non-identity connected
component G. One consequence of this property is that if II¥ is an L-packet of tempered irreducible
admissible representations of H, then it should be possible to attach to II a tempered irreducible
admissible representation m of G that is invariant under the automorphism 6, so that for a suitable
extension 7t of 7 to a representation of G, the distribution Trs(7) is “a transfer of” the distribution
Tr(I17) =3 yw Tru(7) on H, in a precise sense.

The use of the norm map is fundamental to our approach. It allows us to reduce the study of
the representations we impose at the archimedean places to the corresponding representations on (a
compact form of) the endoscopic group, which are parametrized by their highest weight and which
we can vary to obtain a number of important simplifications “asymptotically.” We will explain this
in more detail in §4.

Since this is probably the most important section of the chapter, we recall the important notions
again in an attempt to clarify at the expense of possible repetition.

Let G be the semidirect product of {1,0} ~ Z/2Z by G, where 6 operates by g — J g~ 1J. We

have Gt = G[] 6G.

Definition 3.9. If g, h € G, we say that g and h are f-conjugate if

g=x tha?

for an € G. This is equivalent to saying that fg and #h are conjugate under G C GT.

The group G is a non-connected reductive group and such groups admit a natural notion of
semisimplicity: § = fg for g € G is semisimple if and only if g2 = (¢?)g is semisimple (cf. Prop.
3.1). We say such elements g € G are f-semisimple.

If g € 0G is semisimple, its centralizer Z¢(g) in G is reductive. We say that g is strongly
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regular if Z(g) is a torus. If g and h are strongly regular, we say that they are stably conjugate
if there exists € G(C) such that

zhz™' = h.

All these notions can be naturally defined over global fields and their completions (see, e.g.
[ ] for such a description over the p-adics), but we will only apply them over the reals. In
particular, we can define “stable f-conjugate” and “strongly 6-regular” on G(R). We can define
notions of strongly regular elements, and thus stable conjugacy, on H(R) as well.

Let g € G(R) be a strongly #-regular element, and let A(g) be the set of (complex) eigenvalues
of g% - g; they are necessarily distinct because of the strong regularity property. Note that if N is
odd, then A(g) contains 1. Let h € H(R) be a strongly regular element, and let A(h) be its set of
eigenvalues (all which are distinct by strong regularity). If N is even, then A(h) contains 1. Then

the norm of the stable conjugacy class of g is equal to the stable conjugacy class of h if and only if:
e If NV is even, then

A(h) = {-z [z € Mg)} U{1}.

e If NV is odd, then

A(h) U {1} = A(g).

Remark 3.10. The reason that we need to take the negatives of the eigenvalues in the case of even

N is because, in this case, our automorphism 6 does not fix the pinning.

This gives us a bijection called the twisted endoscopy norm correspondence.

Proposition 3.11. (/ , Thm 3.3A] in general, [ L §I11.2] for our GT and H.) The above

correspondence defines a bijection between

e stable 0-conjugacy classes of strongly 0-regular elements in G (that is, “strongly regular (semisim-

ple)” elements of G), and

e stable conjugacy classes of strongly regular elements in H.
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For g € G(R) that is strongly #-regular and h € H(R) that is strongly regular, we denote (one

direction of) the correspondence above by

Ng=h

and say that h is the norm of g, and call the induced map the twisted endoscopy norm map.
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Chapter 4

Key Notions

Here we describe the ideas and techniques that allow us simplify our proof of the theorem in §7.

4.1 The Asymptotic Simplification of the Geometric Side of

the Trace Formula

The principal observation that simplifies the analysis of the non-vanishing of the geometric side of
the trace formula is the asymptotic simplification of the geometric side of the trace formula. This
phenomenon can be viewed as a sort of Plancherel equidistribution result and falls into the realm
of general “Sato—Tate type” phenomena that we observe for automorphic representations that vary
“in families” in different ways.

The result is described and proven for reductive groups over Q that satisfy certain hypotheses
by Chenevier and Clozel | , 81]. In the proof of our theorem, we only need the result for the
compact forms of the endoscopic groups over R, so we specialize to that setting. We emphasize that
unlike results in, say, the theory of semisimple conjugacy classes, passing from the semisimple case
to the reductive case (e.g., from a group to an isogenous group with a given center) involves dealing
with some nontrivial issues with respect to the results that we describe here.

Let G = G(R) be a connected compact Lie group and T a maximal torus. Assume that G(R)
has discrete series, so G has a real inner form G* that is anisotropic mod center. We can parametrize

discrete series representations § by their highest weight A € X*(T'). If an element -~ lies in the center
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Z(@Q) of G, the character of § is given by

O5(7) = deg(0)w (),

where w is the central character of 4.
Write §(A) for the representation associated with A € X*(T'). Then degd()) is given by the Weyl

polynomial

Py =250

where the product runs over a set of positive roots of which p is the half-sum.

For a dominant A € X*(T'), let ©, be the character of the representation V) of G with highest

weight A.

Proposition 4.1. Let v €T C G. For a dominant A,

0:(1) = 3 Eilr. VROV,

where:
e The sum is finite.

o The E;(y,\) are rational functions on the vX’s, where x runs over a basis of X*(T). The
degrees of such functions depend on X. The denominators of E;(7y,\) are nonzero on v and

independent of \.
o Ei(v,\) is uniformly bounded as A varies.

Furthermore, if v is not central, then P;(\) is a polynomial such that
deg P;(\) < deg P(A).

Proof. If ~ is regular or central, the proposition follows from the Weyl character formula and the
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Weyl degree formula. If the centralizer of «y is a Levi subgroup, then we can use Kostant’s formula

[ |. For the general case, we can imitate the proofs of the above, see , 81] for details. O
Proposition 4.2. [ , Cor. 1.12] If v € G is not central, then
SNGD
— =0
dim(VA)

as A € X*(T) ® R goes to infinity away from the walls of the Weyl chambers.

Proof. We can assume without loss of generality that v € G has connected centralizer (this follows
when the derived group of G is simply connected). Let M = Zg(7), and let RT(G,T) and Rt (M, T)
denote a sets of positive roots for G and M respectively. Up to taking a cover, we can assume that
Ry (M, T)=Ry(G, T)NR(M,T), where R(M,T) is the set of roots.

Let W be the Weyl group of (G,T) and let Wy, the Weyl group of (M, T). Define

WM ={weW|w'lac R (G,T) for all a« € Ay}

for a choice of basis Ay C Ry (M,T). Any w € W admits a unique decomposition

W = WsWy

where w, € Wy and w,, € WM.

An easy consequence of the definition of W™ is that if A € X*(T) is dominant for G and
w, € WM then w, (A +p)—pas is dominant for M. Then by applying the previous proposition, using
the generalization of the Weyl character formula or Kostant’s formula if necessary, and rearranging

the terms, we arrive at the expression

PM—P
Ox(y) = 1

— e(wy )y AT Py ()
Moer+@rnreaend =7 wu;:VM

where € is the sign character on W and Py, is the Weyl polynomial for M.
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We can assume that v € T. Since we have

Prr(Au) [acr+cm (P ) H

Atpa)|
P()) HaeRJr(M,T) (P, @)

a€RT (G, T)\wyg ' R+ (M,T)

the term vanishes as A — oo if v is not central. O

4.2 6O-discrete Series Representations

One way to simplify the analysis of terms appearing in the trace formula when constructing au-
tomorphic representations is to impose discrete series representations at the archimedean places.
However, not all real groups have such representations. In particular, GLy(R) only has discrete
series representations for NV =1 or N = 2, so we cannot use this technique to solve our problem in
general.

But it turns out that our involution € can bring us into a situation where we can find a
workaround. Namely, it turns out that G(R) always has certain “f-discrete” representations; roughly
speaking, these are representations that are isolated among the tempered #-invariant representations
of G(R). It turns out that some of the techniques that can be applied to discrete series can be adapted
to f-discrete representations.

In this section, we describe the representations in question. These are the representations that we

will put in at the archimedean places of our desired self-dual cuspidal automorphic representation.

4.2.1 GL(2n+1) case

In case of G = GLy where N = 2n + 1 is odd, the representations at the archimedean places that
are suitable for our approach are cohomological representations of a particular form that come from
the endoscopic group Spa,. We describe their construction and verify their key properties.

Consider a pure weight p with purity 0 given by

= (1 > pa > o>y > 0> —py >0 > —pg > —p).
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Let H = Sps,, defined so that the upper-triangular subgroup By of H is a Borel subgroup. The
connected component of the L-group of H is “H°® = S0,, ,1(C). The maximal compact subgroup
Ky of H(R) = Spapn(R) is isomorphic to U(n). Define a dominant integral weight pp for H, which
is given by

n
pa = (2, fin) = > i,
i=1

where e; gives the i-th coordinate of a diagonal matrix. Let py be the half-sum of positive roots for

H, written as

Define

WH = ,UH"‘PH: (/141 +n7/1'2+n_17"‘7/1'n71+17/1'n)~

Then wy is a regular weight and by Harish-Chandra’s classification of discrete series representations
(cf. | ]), there exists a discrete series representation wp = 7y, of H(R) whose infinitesimal
character is X, . Let V,, be the irreducible algebraic representation H(C). By some standard
results on the cohomology of discrete series representations ([ , Theorem I1.5.3]), we know
that mg is cohomological with respect to the coefficient system V,,,, of H, that is, the relative Lie
algebra cohomology H*®(Hoo, Ky ® Vi, ) # 0; indeed, it is nonzero only in the middle degree
e = 1ldim(H(R))/dim(Kp).

We can deduce the shape of the Langlands parameter o, attached to my,, | , Example

10.5]:

Owy = Indg/ﬁ(xgl) @ IndVCVf‘(ng) O D IndVCV§ (xe, ) @ sgn”,

where /1, ..., ¢, are positive integers and the first n summands are irreducible 2-dimensional repre-
sentations of the Weil group Wr of R induced from characters of C* with the character X¢; sending
z € C* to (z/z)%/? where each summand being of orthogonal type forces £; to be even. Since the

determinant of the parameter must be 1 (to land in SOaq,41(C)), this forces the last summand to
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be sgn™. The relation between the integers ¢; and the weight wy is given through

Owylox = 2¥1zZ7"",
where we have implicitly used the fact that wy, a character of a maximal torus Ty of H is also a

cocharacter of the dual £7° C LH®. Thus, writing £ = ({1,...,£,), we have { = 2wy, that is,

(613 s 7€n) = (Q,Llfl + 2”72“2 +2n — 27 . '32:U'n—1 + 232Nn)

Let 7, be the Langlands transfer of g to an irreducible representation of G'La,+1(R), noting that
the Langlands parameter of mg is that of 7, via the standard embedding Lhge = S02,+1(C) C
LG° = GL3,41(C). By the local Langlands correspondence (cf. for example, | ), we can
deduce that

T = Indg(2,2,...,2,1)(D€1 ® D¢, ® -+ ® Dy, ® sgn”™), (4.1)

where Dy denotes the discrete series representation of GLs(R) whose lowest non-negative K-type is
the character
cosf —sinf

y ei(+1)0

sinf  cos@

with central character a +— sgn(a)‘*! (e.g. so the representation at oo of a holomorphic elliptic
modular cusp form of weight & is Dy_1). Let V, be the irreducible algebraic representation of G(C)
with highest weight p. Noting that V), is self-dual, a result of Clozel | , Lemme 3.14] implies
that

H.(g, RiSOQn+1; T & VM) # 0.

The 7, of the form (4.1) will be the representations that we put at the archimedean places of our

automorphic representation.
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4.2.2 GL(2n) case

We argue just like in the case above. Since the arguments are nearly identical, we are a little briefer
in our remarks. Here, we take H = SO2,,41,F to be the split orthogonal group in 2n + 1 variables.
We have H(R) = SO(n,n + 1). The maximal compact subgroup Ky C H(R) is isomorphic to
S(O(n) x O(n+1)). The connected component of the L-group is “H° = Sp(2n, C). Fix a real place
v of F'. The constructions below will depend on all depend on this choice of v, but we will omit this
dependence from the notation.

Consider the dominant integral weight

=1 > e > >y >~y > > — e > — 1),

which is pure of weight 0. By arguing as in the odd case above, set

/1‘/ = (/’“7“27"'7“77,)

A/:M/+pl: M1+N—1M2+n—§~~ Mnfl‘f'%,un'i'l .
2’ 27 2’ 2

Consider the discrete series representation 7' = ma, with infinitesimal character given by A’. The

Langlands parameter ops of mu+ is of the form
on =IndG® (xe,) ® IndGE (xe,) @ -+ & Ind R (xe,),

where all the ¢; are odd positive integers. The infinitesimal character of the discrete series, seen in

terms of the exponents of the parameter restricted to C*, gives us £ = 2A’, that is,

(b1, ) =21 +2n—1,2u0+2n — 3, ..., 2051 + 3, 2up + 1).



46

Via the local Langlands correspondence for GLa,(R), we see that 7" transfers to m,, given by

Ty = Indg(z,z,...z)(D& ® Dy, @ -+ ® Dy,,),

which has the property that

H*(gly,RISO(N); 7@ V,) #0.

4.2.3 Twisted characters at infinity and their stability

Let 7 be a regular algebraic, tempered, self-dual representation of G(R)). The choice of an involutive
intertwining operator A between (the associated infinite-dimensional vector spaces of) 7 and 7 o 6
allows us to extend 7 to a representation 7 of GT(R). We write O, ¢ for the character of 7% on
G =0GR):

Or0(9) = O,+(09) (g€ GR)).

A priori, this is just a distribution, but a twisted generalization of a theorem of Harish-Chandra

implies that it is in fact an analytic function on strongly #-regular elements | , Thm. 2.1.1].

Theorem 4.3. For suitable choice of A, we have

@77,9(9) = @TI'H (Ng)

for all g € G(R) whose norm (3.11) is strongly reqular and elliptic.

In particular, O g is invariant under stable (twisted) conjugation on elements of elliptic norm.

Proof. The original proof is in | ], but it was developed in a context that is very different from
that of our present problem. This proof is reinterpreted in language compatible with our presentation

in | , §2.5. O
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4.3 The Principal Element ~,

Let f = ®,fy € C(G(A)) be a test function that we plug into the trace formula. Recall that
we have phrased our problem so that we are only prescribing local representations of our desired
automorphic representations at finite places. Suppose that we let the components f, at finite places
v correspond to (twisted) pseudocoefficients that trace out our chosen representations in the main
theorem. We then have the freedom to choose any function f., at the archimedean places.

A key observation of the work of Chenevier and Clozel is that if we choose f., = f2 to be
the twisted pseudocoefficient of a cohomological #-discrete series representation—each of which is
parametrized by the highest weight A of an irreducible representation V) of the compact real form
of the endoscopic group H(R)—then as the weight A goes to infinity away from the walls of the
Weyl chamber, the geometric side of the trace formula becomes asymptotically equivalent to a single
orbital integral called the principal term. Up to a positive scalar, this is the twisted orbital integral
TO.,(f) of our test function f attached to a certain elliptic 6-semisimple element vy € G(F') (the
principal element) whose twisted centralizer is a group whose C-points yield the dual group H of

the endoscopic group H. In symbols, as A — oo away from the walls,

Jspee(f) = Jgeom (f) ~ TOx, (f) = C - dim(V3),

where C'is an explicit nonzero constant that only depends on the components of f away from oco. In
other words, we reduce our problem of showing Jypec(f) # 0 to showing that a single orbital integral
TO.,(f) does not vanish.

In this section, we analyze this principal element. Its importance is due to the special role the

element plays under the twisted endoscopy norm correspondence.
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4.3.1 GL(2n) case

Let I,, denote the identity element of GL,,. In the case of even N = 2n, the principal element is

I,

Yo € GL(2n).

-1,
We will see that Theorem 4.2 will imply that in order to that our desired automorphic representation
exists, it is enough to prove nonvanishing results for orbital integrals on the particular element ~q.

While it seems innocent at first glance, v is quite special and satisfies a number of critical
properties. For any positive integer m, we write the “identity” antidiagonal matrix (a.k.a. exchange

matrix) of size m as

Im = € GLyy,,

1

and follow the convention that J = Js,.

Proposition 4.4.

(i) The element ~yo is, up to 0-conjugation, the unique elliptic -semisimple element of G( Q) such

that v00(o) = —1. This corresponds to having central (i.e. trivial) norm.

(i) Its twisted centralizer is the symplectic subgroup of G with respect to voJ.

(i4i) The stable 0-conjugacy class of vo coincides with its 0-conjugacy class.

Proof. We have vp0(vy) = —In by an easy matrix multiplication calculation, and applying the norm

correspondence (cf. §3.11) gives us the desired result.
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The twisted centralizer of -y is the group

Ly, ={9€G|g "0(g) =}
={9€eG|g I 'g7"J =}
={geG|g g =vJ}

={9€ G| g1 'g=07},

and since

Yo =
—J,

is a 2n x 2n nonsingular skew-symmetric matrix, I, is the set of symplectic matrices Sps, with
respect to the form corresponding to ~yJ. Thus, vq is elliptic f-semisimple.

The invertible antisymmetric matrices are all congruent to voJ in GLa,(F) (§3.5.2). The 6-
conjugacy class of g coincides exactly with the set of elements v such that v0(y) = —1.

For the same reason, the stable §-conjugacy class of 7 consists solely of its f-conjugacy class (or

directly, H(F, Spa,) = 0, by | , Thm. 1.8], for example). O

4.3.2 GL(2n+1) case

We now establish the analogous results in the odd case. Here the principal element is

Yo ==+ 0 I,| €GL2n+1), (4.2)
I, O
where the sign in the front is taken so that det(yo) = 1, and I,, denotes the n x n identity matrix.
Proposition 4.5.

(i) The element ~yq is, up to 0-conjugation, the unique elliptic 6-semisimple element of G(F) such

that v0(vo) = 1.
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(#) Its twisted centralizer is the orthogonal subgroup of G.
(i4i) The stable 0-conjugacy class of vo coincides with its 0-conjugacy class.

Proof. We have vo0(79) = In, and applying the norm correspondence (cf. §3.11) gives us the desired
result.

The twisted centralizer of -y is the group

L, ={9€ G |9 "00(9) =0}
={9€Glg "I '9g"T =}
={geGlg S 'g " =/}
={9€G|gwJ'g=0J},

={geGlg'g=In}.

Thus, 7y is elliptic #-semisimple.
The 6-conjugacy class of 7y coincides exactly with the set of elements « such that y6(y) = 1.
For the same reason, the stable 8-conjugacy class of v is reduced to its 6-conjugacy class (or

directly, H*(Q, SO2,,+1) = 0). O
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Chapter 5

Twisted Pseudocoefficients and
their Properties at Archimedean
Places

5.1 Existence of the Twisted Pseudocoefficient f;

For this section, let G = G(R). The representation 7 (4.1) of G remains fixed. This representation

m is f-discrete, that is, isolated among the tempered -invariant representations of G.

Proposition 5.1. For 7 as in (4.1), there exists a function f, € C°(G) that is Koo -finite for a

maximal compact subgroup Ko, C G such that
Tr(w(fr)A) =1 (5.1)

and

Tr(p(fr)A,) =0 (5.2)

for all irreducible tempered O-invariant p # © of G, where A is the intertwining operator between
m and 7 o 0, normalized with respect to Theorem 4.3, and A, is a nonzero intertwining operator

between p and po 6.

Proof. Such an f, exists by the twisted trace Paley—~Wiener theorem of Mezo | ]. O
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5.2 Twisted Orbits and Twisted Orbital Integrals

Let v € G be a 6-semisimple element (cf. Prop. 3.1). Its twisted centralizer I = I, is the neutral
component of

I'=I,={9geG:g"9’ =}

and is thus reductive. We consider the twisted orbital integral (for arbitrary Haar measures dg and

di)

for f € C(G). If v is strongly regular, then I = I’ is a torus.
Let P= MN C G be a #-stable parabolic and let v € M be a strongly 8-regular element. Then
~ has a similar property relative to M, and its twisted centralizer is a torus of M. If f € C°(G),

let

T = [ rtar?) ar

(for the normalized Haar measure). Then

If he C(P)and me M,

/Nh(n—lmn"m—l)dn:D(m)—l/Nh(n) dn,

where D(m) = |det(1 — Ad(m) o 0)|, and n = Lie(N); D(m) is nonzero if m is f-regular. Thus

(P)

ﬂMﬂ=Dm*zwfmm*wﬁ.=Mw*ﬂWU ) (5.3)
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where the twisted orbital integral is taken in M and f*) is defined according to Harish-Chandra by

£ m) = [ fam) dn

The following lemma is a twisted analogue of the fact that any regular semisimple element is an

elliptic element of some Levi subgroup.

Lemma 5.2. Let v be a non-elliptic strongly 0-reqular element of G(R). Then v is 0-conjugate to
a (strongly 0-regular) element in the Levi component M of a 6-stable proper parabolic subgroup of

G(R).

Proof. In the even case, this lemma is proven in [ , Lem. 2.8]. It remains to establish it in the
odd case.

If G = GL1(R), there is nothing to prove, so assume that G = GLa,+1(R) where n > 0.

The element is 6 = 7%y. By our hypothesis, this is a regular element of G(R) whose set of
(complex, distinct) eigenvalues is self-dual; one of the eigenvalues must be 1. There is at least one

eigenvalue A € C* that is not of modulus 1. Setting

1, XeR

i=14(X\) =

2, otherwise,

consider the standard upper parabolic of type (i,2n — 2i,4,1) of G; it is #-stable. Up to conjugacy
of ¢ (and thus up to #-conjugacy of 7), we can assume that J is an element of the standard Levi

subgroup M of this parabolic of the form
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(where if A € C and thus i = 2, we choose an embedding C «— M»(R)). Since §% - v = 4§ and § is

regular, we can assume that v € M. O

5.3 Twisted Orbital Integrals of f;

Lemma 5.3. If v is strongly 6-regular and non-elliptic,

TO,(fr) =0.

Proof. By (5.3), this orbital integral is calculated in M, where P = M N is a proper 6-stable parabolic
and v € M. By | ] and | ], a function h on M has vanishing twisted orbital integrals if
Tr(mar(h)A) = 0 for all tempered 6-stable representations s of M, where A # 0 is an intertwining

—(P)

operator between 7y and 7y 0 6. For h = f 7, the (twisted) Harish-Chandra lemma gives

Tr(ma (h)A) = Tr(ra (f)Ac),

where 7 is induced from 7,; and Ag is is the induced intertwining operator. However, the right

side of the equation vanishes by (5.2). O

Definition 5.4. We say that a #-semisimple element v € G is f-elliptic if the split component of

its twisted centralizer is just the neutral component.

In the odd case, the element § = 7%y of G(R) is conjugate to a diagonal element of G(C) of the
form

1 1
(X1, s,y ey xy 0, 1),

Therefore, it defines a conjugacy class A (y) in Sp(2n, C) by its spectrum

ANY) ={x1, ..., xp,x; b 2t

In the even case, the element § = 4%y of G(R) is conjugate to a diagonal element of G(C) of the
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form

(T1,. Tyt ).

Therefore, it defines a conjugacy class Ay in SO(2n + 1, C) by its spectrum

AN7Y) = {~z1,...,—2 1 JU{1}.

Lemma 5.5. The element Nvy (always conjugate to an element of the H(R)) is conjugate to an

element (which is unique up to conjugation) in the compact H.(R) if and only if v is 0-elliptic.

Proof. Set § = 7%~. Conjugation by 6v induces an involution on G5 (a Levi subgroup of G) such
that the subgroup of fixed points is the twisted centralizer G, of 7. The structure theorem for
anti-involutions of complex semisimple algebras implies that the center Z of G, coincides with the
subgroup of fv-invariants of the center Z’ of Gs. Otherwise, Z' = G,,, D, where D is the Zariski-
closure of a subgroup generated by ¢ that is central and fixed by #v. Since Z = 2" = Gg]D =

{£1}D, we obtain our result. O

The following is the 6-twisted analogue of the fact that orbital integrals of pseudocoefficients of
square-integrable representations of general linear groups vanish at non-elliptic semisimple elements
(e.g. | , Lem. 1.3.1]). The standard proof of this appeals to the Shalika germ expansion, Harish-
Chandra homogeneity, and knowledge that the germ is nonzero at the trivial unipotent conjugacy

class. That is the spirit of the argument behind the following proof, which is slightly more elementary.
Lemma 5.6. If v € G(R) is 0-semisimple but not 0-elliptic, then TO,(fr) = 0.

Proof. Let I denote the twisted centralizer of . For any function f € C2°(G), we can find a function

h € C°(I) such that in a neighborhood of 1,

for all x € I, where the right element is an ordinary orbital integral in I. If z+y is strongly regular,
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then z is regular in I; for x very close to 1, the neutral component of the centralizer of x and the
twisted centralizer of xy coincide | , Cor 3.1.5.]. Since the split component of the center of T is
nontrivial, the orbital integrals OL(h) are thus zero (in a neighborhood of 0) on the regular elements,

and so, under a suitable normalization of measures, we have h(1) = TO,(f), which vanishes. O

For v € G that are f-semisimple, the stable twisted orbital integral STO.,(f) of f at ~y is defined
by Labesse | , §2.7).

We can now prove the main result of this chapter.
Theorem 5.7. Let v be a 0-semisimple element of G(R).
(1) If v is not -elliptic, then TO,(fr) = STO~(fr) = 0.

(i1) Let ~y be 0-elliptic and I = I,. For a suitable choice of positive measures on G and I.,, we have

TO,(fr) = e(7)Ony (N7),

where g is the finite-dimensional representation of H.(R) associated with w, and e(y) = 1

s a sign independent of w. In particular, the orbital integrals are stable.

Proof. For the normalization of measures, we follow the conventions of | , §A.1]. We note in
particular that once + is fixed, such a normalization doesn’t depend on 7.

Part (i) follows from Lemma 5.6. We devote the rest of our efforts in this section to proving (ii).

First, consider the case where 7y is the unique tempered representation of G(R) lying in the
cohomology with trivial coefficients. For this, Labesse has given a construction of fr, using co-
homology, and he uses this to calculate the twisted orbital integrals | , Thm. A.1.1], which
implies the theorem in this case. Here, the corresponding representation mg g of H is just the trivial
representation.

We now proceed with the general case. Given such a representation 7, let (p, V') be the algebraic
(6-stable) representation such that the cohomology of m with coefficients in V' is nonzero; we similarly

define (pg, Vi) for the corresponding representation on H, noting that py is identified with 7 in
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this case. By the Borel-Weil theorem (e.g. | , Thm. 5.29]), we can realize V in the cohomology
of G(C)/B(C) with coefficients in the line bundles L,,, where m = m(n). Note that m is invariant
under 6, and so we can thus obtain a natural extension to a representation of G*(C). For a #-regular
element g € G(C), we can calculate Tr(g x 6 | V') using the Atiyah-Bott fixed point theorem | ]:
the fixed points are parametrized by the centralizer of 6 in the Weyl group W(G(C)) & Gapt1,

which is isomorphic to Wy. Therefore,

Tr(gx 0| V) =Tr(Ng | V). (5.4)

Let ©,,9 be the twisted character of p (for the choice of intertwining operator), and let

9r = ep,ef()a

where fo = fr,.
We want to show that g, has the same twisted orbital integrals as f;. To do this, it is enough

to show that for all #-stable tempered representations 7 (and associated intertwining operators Ayp)

Tr(r(fx)Ag) = Tr(7(gr) Ap) (5.5)

by the density theorem of Kottwitz and Rogawski | ]
Recall that such a representation 7 is f-discrete if it is not induced from a #-stable representation
from a #-stable proper parabolic. In this case, the twisted character is supported on the non-6-elliptic

elements. Thus, if 7 is f-discrete, (5.5) implies that the corresponding twisted orbital integrals vanish.

Lemma 5.8. The 0-discrete representations are either of the form

7 =1Ind(d1,...,0n,€), (5.6)

where &; s a representation of GL(2, R) in the discrete series associated to the representation of
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Wg induced from a character z v+ 2Pi1(Z)"Pi of We = C*, with p; € %Z and the p;’s being distinct;
or else of the form

T = Ind(él, NN 7(571,17 (Sn) (57)

with the §;’s as before, and € a character of order 2 of R™.

If the p;’s belong to % + Z (and thus T is cohomological), we have
Tr(r(fx)Ag) = 6(7, ™),
where § is the Kronecker delta and fr is normalized by Af. Furthermore

Tr(r(gr) A7) = /G 0,.6(9)9,.6(9) folg) dg. (5.8)

However, the twisted orbital integrals of f; are killed for g that are not 6-elliptic. If g is 6-elliptic
regular (and thus has twisted centralizer U(1)™ = T') and if the measure on T is suitably normalized,
we have | , Thm. A. 1.1]

TO4(fo) =1

(fo is, of course, the pseudocoefficient associated to a measure dg that is defining the orbital integral).

By (5.8), we have

/G 0.0(9)0,.6(9) fol9) dg:ﬁ /T MZW@Tﬂ(a)@,,,e(a)Am d,

where A(7) is a Weyl denominator (for the Weyl integration formula relative to twisted conjugation)
that we check is equal up to a factor 2" (the number § of norm ~) to the Weyl denominator for H.

Then Theorem 4.3 together with the identity (5.4) imply that

TI“(T(g.,JAé) = 5<7_7 7T)
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by the orthogonality relations on H.

Finally, consider the other representation 7 of type (5.6) or (5.7). We have

T (90)45) = T ([ @)ant) a5 o)
=11 (| ) folo) Te(p(0) 4545 o

=10 ([ le)rta) @ a7 © 43 ds ).

If 7 is of the types above and non-cohomological, its infinitesimal character A (that is, the sum
of the p;’s and —p;’s with p = 0 for the characters 1 and €) does not belong to (3 + Z)?"*. Then
the infinitesimal characters of subquotients of 7 ® p are of the form A 4+ p where p is an (integral)
weight of p. It thus has the same property; the trace of fy in 7 ® p is thus zero, which completes

our proof. O



60

Chapter 6

Twisted Pseudocoefficients and
their Properties at Finite Places

In this chapter, we explain the analytic results about the existence of the twisted pseudocoefficients
in question and the vanishing and nonvanishing of their orbital integrals at the principal element
(§4.3).

For p-adic groups, a primary tool for establishing the existence of twisted pseudocoefficients
is Rogawski’s twisted trace Paley-Wiener theorem | ].  While this abstract result holds in
great generality, since pseudocoefficients are highly non-unique, it is usually desirable to find such a
function via certain “geometric” constructions, since the analytic properties of functions constructed
in such a way are often “good,” or at least more amenable to study. The ideas that come to mind
should be analogues of results like the Borel-Weil theorem that we used in the archimedean setting
or the Borel-Weil-Bott theorem for constructing holomorphic representations of a given complex
semisimple group. Fortunately for us, for the discrete representations that we aim to prescribe at
finite places, such geometric constructions exist.

However, a natural generalization of the theorem would be to not prescribe a specific (inertia
class of) a discrete representation, but to, say, only allow the the local representation to lie in a
specified Bernstein component or ideally to trace out a specific unitary representation without any
restrictions, but for this, it seems as if one cannot yield to these geometric methods and must instead

deal specifically with the analytic difficulties that arise.
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Remark 6.1. Many of proofs in the general theory of pseudocoefficients at finite places can be simpli-
fied by assuming that we are only concerned with tracing out the desired representation among the
class of tempered representations at each place. Indeed, the general convention for pseudocoefficients
is to assume they trace out the representation in the tempered spectrum, due to the concomitant
analytic complications that arise in non-tempered contexts and the belief in the validity of the Ra-
manujan conjecture for GL(n). Since we are ultimately concerned with constructing cohomological
self-dual automorphic representations on GL,, over a totally real field, purity for these representa-
tions is known (by looking at the corresponding Galois representations), so at the finite places of
any such automorphic representations over totally real field, the local components are all tempered
(the result is due to a number of people, but the general statement of the theorem in our setting can
be found in, e.g. | ] for unramified places, and | | at ramified places). So strictly speaking,
in the context of the proof of our theorem, we could assume this and remove the hypothesis of being
“essentially tempered” in the statements of some of the results. However, to ensure that our results
here are useful by themselves and to avoid possible confusion or imprecision caused by making such
a large implicit assumption throughout this section, we do not wish to do this and state the results

in full.

6.1 For Steinberg Representations in the f-twisted Setting.

The existence of pseudocoefficients for Steinberg representations in the untwisted case is due to
Kottwitz [ , §2], using the theory of Bruhat—Tits buildings. The construction was extended to
general connected reductive groups that are twisted by an F-rational automorphism of finite order
by Chenevier and Clozel | , §3.4], which, of course, includes the case of our 6-twisted group G*.
We summarize the properties needed for our proof.

Let F be a non-archimedean field of characteristic zero. Fix a Haar measure on G (F'). Let B be
a minimal parabolic of G defined over F. Let I be the space of smooth complex-valued functions
on B(F)\G(F). It is a space of a representation of G(F') under right translation and its unique

irreducible quotient is the Steinberg representation of G(F'), which we denote by St.
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The main result on the existence of twisted pseudocoefficients for the Steinberg representation

is the following statement.
Proposition 6.2.

(i) There exists a function fpp € C(G(F)) that is a pseudo-coefficient of the Steinberg repre-

sentation St, that is,

Tl"(St(pr)) =1

and if 7 is irreducible and essentially tempered such that 7|g(py # St, then Tr(w(fep)) = 0.

(i1) Let v € 0G(F) be a semisimple element and let I, be the neutral component of the centralizer
of v in G. Choose a G(F')-invariant measure @ on L,(F)\G(F). Then the “twisted” orbital
integral

O,(fep) = /1 fep(g ' 9) I

~(ENG(F)

is nonzero if and only if I,(F) has compact center.
Proof. This is a consequence of the general result in | , Prop. 3.8]. O

Note that (ii) is an extremely strong vanishing condition for orbital integrals of the pseudocoeffi-
cient. It is hard to emphasize how dramatically this simplifies the ultimate analysis of the geometric
side of the trace formula. It it all the more surprising, because it is due to the Steinberg represen-
tations not being integrable that causes the standard method of using Poincaré series to construct

automorphic representations to fail for our specific problem.

Remark 6.3. In the untwisted case, the functions fgpp were introduced by Kottwitz [ , §2],
under the name of “Euler—Poincaré” functions, whence the notation. Some of the results above (in

the twisted setting) can also be deduced from the work Borel, Labesse, and Schwermer | ].

While we could have used Rogawski’s Paley~Wiener theorem to prove Prop. 6.2 (i), the advantage
of using the (generalized) Euler—Poincaré functions is that they provide an explicit function fgp in

terms of the Bruhat—Tits building of G, which allows for an simpler proof of Prop. 6.2 (ii).
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Remark 6.4. Another advantage of using Euler—Poincaré functions for when 7 is Steinberg is that
in that case, the pseudocoeflicient f, = fgp is “very cuspidal” (in the sense of Laumon) and in
particular, the orbital integral of is nonzero only on elliptic semisimple elements. A priori, orbital
integrals of the pseudocoefficients of discrete representations can be nonzero outside of the regular

semisimple elements.

6.2 For other Discrete Representations in the f/-twisted Set-
ting

We now show that similar nonvanishing results hold for functions f, that trace out other discrete
representations. Let F' be a p-adic field.

The most important case is that of supercuspidal representations. Recall that in the untwisted
setting, if 7, is a supercuspidal representation, we can simply take f, to be a matrix coefficient of =,
such that f,(1) # 0. Such a function is also very cuspidal, in the sense of Laumon, and in particular,
satisfies strong vanishing properties for its orbital integrals on non-elliptic orbits. More precisely,
it satisfies the the following condition: for any proper parabolic P = M N and a special maximal

compact subgroup K in good relative position with respect to P,

Py 1/2 1 _
v (m) =:=dp(m) /N(F)/Kfv(k mnk) dk dn = 0

as a function on M(F). Essentially the idea of this section is just finding results that establish
this exact procedure in this case of twisted groups, so if we believe in the existence of the twisted
analogue of this result, we can safely proceed with the proof. But so that we nail down all the details
and have results that apply to general discrete representations, we carefully extract the necessary
results from the literature.

It remains to find a corresponding twisted pseudocoefficient in the twisted setting. Once again,

the main result of | ] applies to all #-discrete representations, so we could appeal to that result
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to obtain a pseudocoefficient f, that corresponds to a supercuspidal representation m,. However, in
this setting, we also have an geometric realization of such a function. Namely, an alternative proof
of the existence of f, can be obtained using the Waldspurger’s 6-twisted generalization | ]
of Schneider—Stuhler pseudocoefficients [ ], with the additional benefit that they exhibit nice
vanishing properties, due to their method of construction.

Unfortunately, the language to do so is different from that of the Chenevier—Clozel result that
we use in the last section and also different from that which we used in the archimedean setting, so
we must establish a significant amount of notation that we do not use anywhere else.

Let émg be the subset of strongly regular elements of é, so if g € C~¥T697 then the centralizer
Z¢(g) is commutative and its neutral component is a torus. Let A, be the maximal torus split in
such a Zg(g).

For any f € Cgo(é) and vy € éreg, we have the orbital integral

0S(f) = A(g)~ /2 / f(a ) d,

ANG
where we have a fixed a suitable Haar measure and the modulus A(g) denotes the absolute value of
the determinant of Ad(g) — 1 acting on g/3¢(9)-

Proposition 6.5. (i) For any irreducible O-twisted supercuspidal representation m of G(F'), There

exists a function f, € C°(G(F)) that is a pseudocoefficient for .
(ii) We have Og(fv) = 0 for all non-elliptic g € éreg.
(iii) For all v € ée”, we have
Trgnt(7) = Alg)" /205 (f.)-
Proof. These results correspond to the Corollary of | , 82.2]. O

We end our discussion of twisted pseudocoefficients at finite places with a general result that
says that the restriction to tempered representations is not too restrictive, as the following lemma

indicates.
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Lemma 6.6. Let w be a 0-discrete series representation of G with pseudocoefficient fr. If o is an
irreducible representation of G such that Tro(fr) # 0, then o and T have the same supercuspidal

support.

Proof. If ¢ % m, then o is non-tempered and can be written as a finite Z-linear combination of
induced modules, all of whose irreducible subquotients have the same supercuspidal support. Since
the trace of f, vanishes on any representation induced from a proper parabolic and on any tempered
representation different from 7, one of these induced modules must be 7. Thus, o must have the

same supercuspidal support as 7. O
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Chapter 7

Proof of the Theorem

The proof of the theorem naturally divides into two cases for GLy, according to the parity of N,

that is,
(i) where N =2n+1 is odd; or
(ii) where N = 2n is even and the self-dual representations are all of symplectic type.

The main distinction between the two cases is that the endoscopic groups involved are different, and
this necessitates a number of modifications at each step of the argument.

Note that if NV is odd, all irreducible self-dual representations of GL y are of orthogonal type, so we
do not need to address the “odd, symplectic type” case. In the remaining case—where N = 2n is even
and the self-dual representations are all of orthogonal type—a globalizing automorphic representation
cannot be constructed using our method, because if an automorphic representation II = ®,11, of
G L, over a totally real field F is (i) self-dual, (ii) essentially square-integrable in at least one place,
and (iii) cohomological at all archimedean places, then for all places v of F, the Langlands parameter
of II,, must preserve a nondegenerate symplectic bilinear form, that is, II, must be of symplectic

type ([ , Thm. F], which was proven assuming a harmonic analysis result that was later proven

in [ D-
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7.1 Statement of the Theorem and the Initial Setup

We finally collect the results and give a proof of our main result. We restate the theorem for our
convenience. Let G = GLy,r where N > 1 and F is a totally real number field of degree d. Let Sy

denote the archimedean places of F. Write A = A for its ring of adeles.

Theorem. Let T be a finite set of pairs (v, m,) where
e v is a finite place of a totally real number field F', and

e 7, is an irreducible admissible self-dual essentially discrete representation of G(F,) (and if n

is even, are all of symplectic type).

Then there ezists a cohomological self-dual cuspidal automorphic representation Il = @11, of G(AF)

such that for all (v,m,) € T, we have 1L, = 7, ® X, where X, is an unramified character of G(F,).
Let Gt = G x (#) = G II GO denote the group G twisted by the involution 6 (§3.4.2). Let
A = (RZ) be the topological neutral component of the center of G(R), and equip the homogeneous
space A-G(F)\G(A) with a (finite) Haar measure that is right G(A)-invariant. The unitary (right)
regular representation R of G(A) is given by right-translation on the space of cuspidal functions

Liusp(A- GF)\G(A)),

cusp

which extends to a unitary representation of GT(A), by letting 6 act via the operator Iy(¢)(z) =
¢(0(x)). If we choose a test function f = @ cg. foo @ f9= € C*(G(A)) such that each f., €

C*(G(R)) is SOn-finite, then R(f)Iy is of trace class and

Tr(R(f)Ip) = Y Tr(R(f)Iy, 1),

11

where the sum runs over the irreducible self-dual cuspidal automorphic representations of G(A).
The traces all depend on a choice of adelic Haar measure dga on G(A) that we fix for the remainder

of the argument.
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7.2 Choosing the Test Function

We want to choose our test function f = ®,f, € C°(G(A)) to simplify the analysis of the geo-
metric side of the trace formula as much as possible, while still tracing out our desired automorphic
representation. Indeed, we will eventually apply a simple version of the trace formula, by ensuring
that, under our hypotheses, local twisted orbital integrals of certain components f, of f have special
vanishing properties.

Let T be the set of pairs (v, 7,) in the hypotheses of our theorem, so v is a finite place of F and
7y is an irreducible self-dual representation of G(F,) that is (essentially) discrete. Let Ty C T be
the subset of Steinberg representations at the prescribed places and let 7/ C T be the other ones,

so T =Ts; IIT'. We define the test function to be

f=Q fo®@fo® =7, (7.1)

00ESso veT
where

o foo is the twisted pseudocoefficient of a cohomological §-discrete series representation (cf. §4.2,

Prop. 5.1);

o if (v,m,) € Tsy, then f, is taken to be an Euler—Poincaré function fixed by the automorphism

0 of G(Fy) (cf. Prop. 6.2(i));

o if (v,m,) € T', then f, is the twisted Schneider—Stuhler coefficient corresponding to m, (cf.

Prop. 6.5);

e °>T is the characteristic function of vazTqu GL2,((OF)y).

7.3 Analysis of the Geometric Side of the Trace Formula

Recall that a #-semisimple element v € G(F) is elliptic if the split component of the center of

the twisted centralizer is trivial. Write {G(F)}.y; for the set of f-conjugacy classes of §-semisimple
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elliptic elements. For such an element v € G(F'), we choose an adelic Haar measure dia on the

twisted centralizer I, (A), denote the corresponding volume by

v, = (L, (F)\L,(A)) > 0

and set

TO,(f) == / F(g"0()) dia\dga.
1 (ANG(A)

We will also consider the local versions of the above twisted orbital integrals, replacing the adeles
A with the local field F,.

The Arthur—Selberg trace formula can be applied to any test function, but analyzing the terms
that arise is complicated in general. However, these are a number of “simple” trace formulas that
can be derived from the general form, by restricting the class of test functions to which one can
apply the trace formula. Since the orbital integrals of the pseudocoefficients we have chosen have
very specific and strong vanishing properties, we can apply one of these simple trace formulas, due

to Arthur.

Proposition 7.1. For f of the form (7.1), the geometric side of the trace formula is

Tr(R(f)1Ie) = Z vy TOL(f),
YE{G(Q)}eu

noting that the sum runs over the finite subset of classes that only depend on the compact set of

G(A) that contain the support of f.

Proof. We apply the Arthur’s invariant trace formula to the connected component GO | ].
These results rely on two hypotheses | , p-330] [ , p-528] (a) a Galois cohomology argu-
ment and (b) the validity of a Paley—Wiener theorem for G(R)6. These have since been resolved:
hypothesis (a) is now proven in full generality by Kottwitz and Rogawski [ ] and hypothesis (b)
was proven in our setting by Mezo [ ].

Suppose that we have a given Steinberg representation at the place v. Since the twisted Euler—
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Poincaré function f, vanishes outside of the elliptic (semisimple) orbits (Prop. 6.2 (ii)), f is cuspidal
at v, in the sense of Arthur. The pseudocoefficients for the other discrete local representations at
finite places exhibit the same property (Prop. 6.5 (ii)). Since f, also vanishes outside of the elliptic
orbits, f is also cuspidal at oco. Thus, since we have cuspidal functions in at least two places, the
formula of | , Cor. 7.4] applies. This corollary identifies the terms on the right-hand side of the
trace of R(g)lp (as a representation of GT(A) on L3, (AcG(F)\G(A)). There, Arthur considers
an expansion of this trace, where a sum runs over the possible norms ¢ of the infinitesimal characters
of II.. Since f,, only traces out representations with the same infinitesimal character, only one of
these terms in the sum is relevant.

Finally, it remains to show that if a discrete irreducible representation II of GT(A) is not cuspidal,
then

Tr(II(f)1y) = 0.

If we have a supercuspidal representation, then our desired automorphic representation (provided it
exists) must lie in the cuspidal spectrum and we are done. Otherwise, since we can assume that the
infinitesimal character of the #-discrete series attached to f. is sufficiently regular, the statement
follows. Alternatively, if T' does not contain any supercuspidal representations and we do not mind
losing control at one auxiliary finite place v (e.g. if we only cared about proving the stated result in
our main theorem, instead of having control of the ramification of our automorphic representation at
all places), we can simply impose a supercuspidal representation at v to ensure that the constructed

automorphic representation is cuspidal. ]

Recall that a function fo, (5.1) depends on the choice of a cohomological #-discrete series of
G(R) (4.1), which is indexed by an irreducible representation of the compact endoscopic group
H(R). Choose a maximal torus 7' C H(R) and let V) denote the irreducible representation of
highest weight A € X*(T'). For all such A, fix a pseudocoefficient fo, = fx of the associated 6-
discrete series 7y such that the support of all the f.,’s for varying A are contained in the support of

a single compact set of G(R) (such a thing is possible by appealing to the work of [ , Thm. 1]



71
or | -

For the |Ss|-tuple of highest weights X = A1y As))s let fX denote the function of the form

(7.1) where

® foo = f)\1®f)\2®.'.®f)‘\soo‘.

00ESeo

Suppose that there exists a cuspidal representation II such that

Tr(II(f*)1p) # 0.

Then for each co € S, the representation Il is generic (in the sense that it has a Whittaker model)
and has the same infinitesimal character as my,, so Il = my,. To prove our theorem, it is enough
to show that we can choose a A € X*(T') for each archimedean place such that the corresponding
terms on the right-hand side (“geometric terms”) of Prop. 7.1 are nonzero.

These geometric terms are supported in a finite set

Y Cc{G(Q)}en

that is independent of A\. We want to show that as A tends to infinity away from the walls of the
Weyl chambers, the geometric terms are only supported on the principal element -y, (cf. §4.3).

We recall the key properties of the principal element ~yy, proven in §4.3.

Lemma 7.2. Up to 0-conjugation, the element ~yy is the unique 6-semisimple elliptic element of
G(F) such that v00(v0) corresponds to the central element of the endoscopic group H under the
twisted endoscopy norm map. The twisted centralizer of v is (a form of ) a group whose base change

to C is the dual group of H. The stable 0-conjugacy class of vo coincides with its 8-conjugacy class.

We first confirm the nonvanishing of the twisted orbital integral of the test function f, at least
for the components f Xy00 away from infinity that remain fixed as we vary the components f2 at the

archimedean places.

Lemma 7.3. The twisted orbital integral TO.,( fx’oo) s a monzero constant.
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Proof. We have the decomposition

TO, (1) = [] TOs(f0) - TO, (f7),

veT

so it is enough to show that the local orbital integrals TO., (f,) do not vanish. Since f>7 is the
characteristic function of [[,z7 s, GL2k((OF)s), we have [, or s TOy(fo) # 0. It remains to

show that

[T 7045 = ] 70 (f) ] 70 () #0.

vET=Tg,UT" veTs, veT!
By Proposition 6.2, TO.,(f,) # 0 for places v such that (v, 7,) € Ts;. By Lemma 6.5, TO~,(f,) # 0

for places v such that (v, 7,) € T’. This concludes the proof. O

Given a @-semisimple element v € G(F), we can view it as an element of G(R) and consider
its norm Ny € H(R) (§3.11). By definition, Ay is an element whose conjugacy class in H(R)
only depends on the #-conjugacy class of v in G(R). By Theorem 5.7, we know that for a suitable

normalization of measures, we have for all A,
TO,(fy) = £ Te(N7, VA). (7.2)

Now, we have

7O, (f)] = e ] dim(Va) # 0

AeXx

for a certain constant ¢ > 0 by (7.2) and Lemma 7.3. By Proposition 4.2, as a A tends towards

infinity in X*(7T) away from the walls, we have

T0,(f)

dim(Vy) =0

for all v € ¥\ {70}, because the twisted conjugacy class of yy8(7o) is the unique one of central norm

in H(R) by Lemma 7.2.
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Hence,

| Te(R(f)Ip)| ~ v - ¢+ [] dim(Va) # 0
AeXx

as desired. This completes the proof.
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Chapter 8

Appendix: Constructing Self-Dual
Representations on G L, via
Arthur’s Endoscopic Classification

The chapter is independent from all of the previous chapters and is drastically different in scope.
Here, we construct self-dual automorphic representations on GLy over a general number field F
with prescribed local components by ultimately appealing to Arthur’s endoscopic classification of
representations of classical (symplectic and special orthogonal) groups [ ]. In particular, we no
longer impose the condition that our base field F' be totally real, and do not restrict ourselves to
constructing automorphic representations that are cohomological (equivalently, regular algebraic).
However, as mentioned before, Arthur’s results are conditional on the stabilization of the twisted
trace formula. At a key point in the argument, we will also need to assume a certain globalization
theorem for semisimple groups that only seems to be currently known under additional hypotheses.
Our goal in this appendix is to give an outline for a sort of “ideal” way to construct self-dual

automorphic representations on GL,,, once certain technical hypotheses are resolved.

8.1 The General Strategy and Setup

We aim to prove a theorem of the following form. Let G = GLx over a number field F.

Theorem 8.1. Let S be a finite set of places of F'. For every v € S, choose an “allowable” subset

U} of the unitary dual of G(F,). Then there exists a self-dual cuspidal automorphic representation
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II = ®,11, of G(AF) such that each local component 1L, € U for allv € S.

This will turn out, for instance, to imply a precise version of our main globalization theorem
above for general number fields, where we can prescribe II,, to not just lie in an inertia class of
the prescribed essentially discrete local component (that is, be an unramified twist of the local
component), but to be precisely the prescribed component. It will be evident from the method
of proof that many more specific versions of the theorem will follow from slight variations of the
argument.

There are three main steps to the strategy.

0. Translate the local conditions on G L into those of the semisimple group from which we expect

a twisted endoscopic transfer.

1. Construct a corresponding automorphic representation on either H = Spsy,, or H = S02;,41

depending on whether N is or odd (N = 2n + 1) or even (N = 2n), respectively.

2. Transfer the automorphic representation to G = GLy.

Step 0 is fairly straightforward, but is guided by the expected instances of endoscopic transfer.

Since we are in the setting of semisimple groups, there are a number of ways to resolve Step 1.
For this step, we will use a variation of a theorem of Shin | ] to globalize the representations.
For the result over general number fields, it is here that we need to assume a stronger version of a
key globalization theorem that does not seem to be currently available in the literature.

For Step 2, we yield to the work of Arthur [ ], in particular, the existence of twisted endo-

scopic transfer from H to G.

8.2 Plancherel Measures and Prescribable Subsets

We begin by recalling some general facts about Plancherel measures on p-adic groups. Let G be a

reductive group over a nonarchimedean local field K of characteristic zero. Let G = G(K) be its
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set of K-points and let G" denote the unitary dual of the topological group G, that is, the set of all
irreducible unitary representations of GG, equipped with the Fell topology.

Let X(G) denote the set of all unitary, unramified characters of G. Harish-Chandra proved that
there is a natural Borel measure fi?’ on G”, called the Plancherel measure, such that for all

¢ € CX(Q), we have

where QAﬁ is defined to be

$(m) = Trm(9).

for m € G" (see, e.g. | D-
Let ©(G) denote the Bernstein variety, which is a (generally infinite) disjoint union of complex
affine algebraic varieties. Identify ©(G) with its C-points, and equip it with the analytic topology.

Then the map that assigns each irreducible representation to its supercuspidal support

v:GN = 0(G)

is continuous [ , Thm. 2.2].
Let L be a Levi subgroup of G and let o be a discrete series of L = L(K). Let P be a parabolic
associated with L. Consider the function on the unitary unramified characters X (L) of L defined

by

d,,:X(L) >R

X — #{irreducible subquotients of (normalized) Ind% (o ® x) lying in U”" (counted with multiplicity)}.

Following | ], we introduce a bit of non-standard terminology that encompasses the

kinds of local conditions that we wish to impose on our automorphic representations.

Definition 8.2. A subset U of the unitary dual G” is said to be prescribable if it satisfies all
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the following conditions:
e The subset U” is a Borel set that is fi”’-measurable of finite positive volume.
e The image of U” under the map v is contained in a compact subset of O(G).

e For each Levi subgroup L of G and each discrete series o of L = L(K), the set of points of

discontinuity of the map @, , is measure zero.

These conditions have been concocted so that the characteristic function of a prescribable subset
U” belongs to the class of functions for which we can apply the Sauvageot density principle | ,
Thm. 7.3.]. While this definition may seem technical and unmotivated given our presentation, it
turns out to encompass a number of common conditions that we might want to impose at local

places of our automorphic representation.
Example 8.3. The subset of unramified representations of G” is prescribable.

Example 8.4. The set of all 7 € G” in a fixed Bernstein component (that is, for 7 with the same

supercuspidal support, up to a twist by an unramified character) is prescribable.

Example 8.5. If 7 is a unitary discrete series representation (that is, an irreducible representation
whose matrix coefficients are square-integrable modulo center), the set {r ® x | x € X(G)} is
prescribable. In particular, note that if G is anisotropic over K (e.g. if G is semisimple), then X (G)

is trivial and so this set consists of a single element.

Note that this last example shows the difficulty in making our globalization theorem for GL,,
over a totally real number field more precise, that is, to get the prescribed local component “on the
nose” instead of just landing the prescribed inertia class. It means that such a refinement would not
follow by yielding to equidistribution results like Sauvageot’s density principle, and must instead be
tackled by itself, which is a much more involved procedure than that of the globalization theorem
(which in a sense, also appeals to equidistribution results at archimedean places).

Thus, it seems that to answer the globalization question for GLy in greater generality or to

obtain a more precise result, we must assume the results of some great body of work. Indeed, to
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construct the self-dual automorphic representations using the method given here, it is necessary work
to on the relevant semisimple group and then yield to Arthur’s results to transfer the representation

on the semisimple group to a self-dual automorphic representation on GLy.

8.3 A Globalization Theorem for Semisimple Groups

There are a number of ways to solve the globalization problem for cuspidal automorphic represen-
tations on semisimple groups. Here we give one such result, due to Shin, based on the principle
that the local components of automorphic representations at a fixed prime are equidistributed in
the unitary dual [ ]. The interested reader can look at the introduction of this paper for more
references and a general discussion of the approach.

Let G be a connected reductive group over a totally real number field F' such that
(i) G has trivial center and
(ii) G(F,) contains an R-elliptic maximal torus for every real place w of F.

Remark 8.6. If we fix the central character in the trace formula argument of | ], it would be
possible to relax condition (i). In general, trace formula arguments with fixed central character can
be derived from the non-fixed central character methods using some elementary Fourier analysis.
However, the author does not know where to find the results in the literature at the necessary level of
generality, so we simply impose the condition above, which is more or less harmless for our eventual

application.

We will first recall the unconditional results, but we will eventually need to make some assump-
tions to obtain a globalization theorem that is strong enough to apply to prove our general result.
Let S be a finite set of finite place of F. Let 2! denote the Plancherel measure on G(F,)" for

v € S. Let U} C G(F,)" be a prescribable subset for each v € S.

Proposition 8.7. [ , Thm 5.8.] There exists a cuspidal autormorphic representation T of G(A )

for F totally real such that:
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(i) v € U} forallveS;
(ii) T is unramified at all finite places away from S; and

(iii) T, is a discrete series whose infinitesimal character is sufficiently reqular for every infinte place

w.

The regularity condition needs to be explained. Fix a maximal torus 7" and a Borel subgroup B
containing 7' in G over C (the base change of G to C via w : F — C). Let W denote the Weyl
group of T in G. The infinitesimal character x,, of 7, can be viewed as a element of X*(T') ®z Q

and we say that it is sufficiently regular if there exists a ¢ € W such that

<0vaav> >C

for every B-positive coroot a¥ of T'in G, where C is a large constant that (only) depends on G, S,
and {U}'},es. Note that this condition is, in particular, independent of the choice of T' and B.

From this point on, we assume one of our main hypotheses.

Assumption. The analogue of Proposition 8.7 above is true over a general number field

F, even in the case where G(F,,) does not have discrete series for infinite places w.

While this is an assumption, it is not an absurd one, for it is not far from currently existing
results. A proof for this weaker unconditional result can be found in | , §4.3], if we allow
ourselves to impose extra conditions at two auxiliary finite places (in order to yield to an argument
that uses a simple trace formula). It is undoubtedly possible to remove these restrictions by using

the full trace formula, but such a result does not seem to exist in the literature yet.

8.4 Results from Arthur’s Endoscopic Classification

We recall the main results that we need from the monograph of Arthur | ]
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We recall some relevant facts for representations on odd orthogonal groups.
Let F' be a number field. Let SOs,+1 be the split special orthogonal group over F. The dual

group of SO, 11 is is Spa,(C). We have the standard embedding

and for a place v of F, set

Wpg, x SLy(C), v infinite
Lp, =

v

Wk, v finite

where W, is the Weil group of F),. A local Langlands parameter

¢p : L, = GL2,(C)

is said to be symplectic (equivalently, correspond to a local representation of symplectic type) if
it preserves a suitable symplectic form on the ambient 2n-dimensional vector space; this is equivalent

to the condition that ¢, factors through £ (after possibly conjugating by an element of GLs, (C)):

P

Lr

v

GL,,(C)

\ /
For a place v of F' and any positive integer r, we have the (unitarily normalized) local Langlands
correspondence for GL,,, that is, the bijection

rec, : {irreducible representations of GL,(F,)} — {L-parameters Lp, — GL,.(C)}.

When v is finite, we have a one-to-one correspondence between local L-parameters for GL, and
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r-dimensional Frobenius-semisimple Weil-Deligne representations of Wg, , in a bijective manner.
To each local L-parameter

¢v : EFv — San(C)»

or local L-parameter for GLs, of symplectic type, Arthur attaches an L-packet Il , which is a finite
set of irreducible representations of SOa,11(F,). Up to equivalence, every irreducible representation
of SOs,+1 belongs to a unique such L-packet. If ¢, has a finite centralizer group in Sps,(C) so
that it is a discrete parameter, then the L-packet Il only contains discrete series representations.
If v is an infinite place of F', a similar construction was known earlier by Langlands, based on
Harish-Chandra’s results on real reductive groups.

Let 7 be a discrete automorphic representation of SOs,11(AF), where A denotes the adeles of
the number field F'. Arthur shows that there exists a self-dual isobaric automorphic representation m
of GLy,(Ar) which is a functorial transfer of 7 along the standard embedding £. For representations
that are generic in the sense of Arthur (that is, when the SLo-factor in the global Arthur parameter

corresponding to the representation 7 has trivial image), this translates to the condition

rec, (m,) ~ & o ¢,

for the unique ¢, such that 7, € Il,, .

8.4.2 For Spy,

Analogous results hold for Sps, over a number field F. Here the dual group is SO2,+1(C), and we
have the standard embedding

€:802,41(C) = GLopi1(C).

A Langlands parameter

¢v : 'CFU — GLQnJrl(C)
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is of orthogonal type if it preserves a suitable orthogonal (i.e. symmetric bilinear) form on the
ambient 2n 4+ 1-dimensional vector space, and this is equivalent to the condition that ¢, factors

through £ (up to conjugation by an element of GLa,1(C)):

P

Lr

v

GL3,+1(C)

N ST

S02,41(C)

Note that all irreducible self-dual representations into GLa,11(C) must be of orthogonal type,
since the existence of a symplectic form on the space would imply that the ambient space is even-
dimensional.

To each local L-parameter

¢v : EFU — SOQn+1(C)

or local L-parameter for GLay 1 of symplectic type, Arthur attaches an L-packet Il , which consists
of finitely many irreducible representations of Spa, (F,); we have the analogous results on L-packets
and discrete parameters. For a discrete automorphic representation 7 of Sps,(Ar), Arthur shows
that there exists a self-dual isobaric automorphic representation 7 of GLa,1(Ap) which is a func-
torial transfer of 7 along the standard embedding &, with the analogous correspondence condition

for representations that are generic in the sense of Arthur.

8.5 Existence of Self-Dual Representations on GLy

We now construct the self-dual automorphic representations with prescribed local conditions using
the globalization theorem on the endoscopic group and using Arthur’s results on functorial transfer

from the endoscopic group to GLy.

Theorem 8.8. Let S be a finite set of places of a number field F. At each place v € S, impose a
condition that corresponds to a prescribable subset U, on the endoscopic group H (e.g. lying in a

specific Bernstein component of G(F,) for v finite, or being a specific essentially discrete represen-
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tation of G(Fy)). Then there exists a cuspidal automorphic representation of GLy(AF) satisfying

those local conditions such that:
(i) m is unramified away from v € S; and
(i1) =7V, that is, w is self-dual

Proof. Here, as in the proof of the globalization theorem above, our case divides into the even and
odd cases; if N = 2n is even let H = SOq,41 and if N =2n + 1 is odd, let H = Spay,.
Apply the generalized version of Proposition 8.7 with our S and where each U} is prescribable

for v € S. Thus, there exists a cuspidal automorphic representation 7 of H(A ) such that
1. 7, is unramified away from .S;
2. 7, €U} for all v € S
3. either 7, is a discrete series whose infinitesimal character is sufficiently regular, or

3’. Ty is any discrete series, but we lose control of the prescribed representation at two auxiliary

primes.

The functorial transfer 7 of 7 then has the desired properties. For example, to see that 7 is cuspidal,
by condition (3) or (3’), then 7 is generic in the sense of Arthur. To see that the condition on the
central character holds, note that the central character is trivial at almost all finite places. Indeed,
the central character corresponds to the determinant of the Langlands parameter for 7 at each place

via local class feld, but the determinant is trivial since the parameter factors through H. O
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