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ABSTRACT

Many different behavioral phenomena that cannot be rationalized by standard mod-
els in economics have been well-documented both in the real world and in lab
experiments. Motivated by these behavioral phenomena, the purpose of this disser-
tation is three-fold. First, I develop axiomatic models of individual decision-making
to explain these well-documented phenomena. Second, I derive the implications
and predictions of these axiomatic models for intertemporal choice, asset pricing,
and other economic contexts. Third, I provide connections between these seem-
ingly separate behavioral phenomena and widely-used properties of preferences in
economics and psychology. This dissertation consists of five chapters. The first
chapter studies dynamic choice under uncertainty. The second and third chapters
study choice over multi-attribute alternatives. The fourth and fifth chapters study
stochastic choice.

The first chapter studies history-dependent risk aversion and focuses on a be-
havioral phenomenon called the reinforcement effect (RE), which states that people
become less risk-averse after a good history than after a bad history. The RE is
well-documented in consumer choices, financial markets, and lab experiments. I
show that this seemingly anomalous behavior occurs whenever risk preferences are
history-dependent (in a nontrivial way) and satisfy monotonicity with respect to
first-order stochastic dominance. To study history-dependent risk aversion and the
RE formally, I develop a behaviorally-founded model of dynamic choice under risk
that generalizes standard discounted expected utility. To illustrate the usefulness of
my model, I apply it to the Lucas tree model of asset pricing and draw implications
of the RE for asset price dynamics. I find that, compared to history-independent
models, assets are overpriced when the economy is in a good state and are under-
priced in a bad state. Moreover, my model generates high, volatile, and predictable
asset returns, and low and smooth bond returns, consistent with empirical evidence.

In the second chapter, I develop an axiomatic model of reference-dependent
preferences in which reference points are endogenous. In particular, I focus on
choices from menus of two-attribute alternatives, and the reference point for a given
menu is a vector that consists of the minimums of each dimension of the menu. I
characterize this model by two weakenings of the Weak Axiom of Revealed Prefer-
ence (WARP) in addition to standard axioms. My model is not just consistent with
the attraction effect and the compromise effect, well-known preference reversals, but
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it also provides a connection between these two effects and diminishing sensitivity,
a widely used behavioral property in economics. The model also provides bounds
on preference reversals. I apply the model to two different contexts, intertemporal
choice and risky choice, and diminishing sensitivity has interesting implications.
In intertemporal choice, the main implication of the model is that borrowing con-
straints produce a psychological pressure to move away from the constraints even if
they are not binding. In risky choice, the model allows conflicting risk behaviors.

In the third chapter, I study choice over multidimensional alternatives. Making
a choice between multidimensional alternatives is a difficult task. Therefore, a de-
cision maker may adopt some procedure (heuristic) to simplify this task. I provide
an axiomatic model of one such heuristic called the Intra-Dimensional Comparison
(IDC) heuristic. The IDC heuristic is well-documented in the experimental liter-
ature on choice under risk. The IDC heuristic is a procedure in which a decision
maker compares multidimensional alternatives dimension-by-dimension and makes
a decision based on those comparisons. The model of the IDC heuristic provides
a general framework applicable to many different contexts, including risky choice
and social choice.

The fourth chapter is joint work with Federico Echenique and Kota Saito. We
develop an axiomatic theory of random choice that builds on Luce’s (1959) model
to incorporate a role for perception. We capture the role of perception through
perception priorities; priorities that determine whether an object or alternative is
perceived sooner or later than other alternatives. We identify agents’ perception
priorities from their violations of Luce’s axiom of independence from irrelevant
alternatives (IIA). The direction of the violation of IIA implies an orientation of
agents’ priority rankings. We adjust choice probabilities to account for the effects
of perception, and impose that adjusted choice probabilities satisfy IIA. So all
violations of IIA are accounted for by the perception order. The theory can explain
some very well-documented behavioral phenomena in individual choice. We can
also explain the effects of forced choice and choice overload in experiments.

The fifth chapter studies how the ordering of alternatives (e.g., the location of
products in a grocery store, the order of candidates on a ballot) affects a decision
maker’s choices. I develop an axiomatic model of random choice that builds on
Luce’s (1959) and incorporates the effect of the ordering of alternatives on choice
frequencies. When the ordering of alternatives is observed, I characterize the
model by two weakenings of IIA. When the ordering of alternatives is not observed,
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I can identify it from choice data. The model can accommodate the similarity,
compromise, and attraction effects, violations of stochastic transitivity, and the
choice overload, which are well-known behavioral phenomena in individual choice.
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C h a p t e r 1

HISTORY-DEPENDENT RISK AVERSION AND THE
REINFORCEMENT EFFECT

1.1 Introduction
Empirical evidence suggests that risk preferences evolve over time with personal

experiences. This paper studies history-dependent risk aversion and focuses on a
well-documented behavioral phenomenon called the reinforcement effect (hence-
forth, RE). The RE says that people become less risk-averse after a good history
than after a bad history. I show that this seemingly anomalous behavior occurs
whenever a risk preference is history-dependent (in a nontrivial way) and satisfies
monotonicity with respect to first-order stochastic dominance. Since monotonicity
is a reasonable condition, my result provides a theoretical justification for the RE.1

To study history-dependent risk aversion and the RE formally, I develop a
behaviorally founded model of dynamic choice under risk. The model generalizes
standard discounted expected utility in two ways. First, risk preferences are allowed
to reflect past risky choices and their payoffs. For example, if an agent is an expected
utility maximizer, then the model is a generalization of discounted expected utility,
in which the concavity of the agent’s utility function changes with her past risky
choices and their payoffs. In Section 1.2, I informally introduce this example and
illustrate the main result. In this example, the RE arises if the utility function after
a good history is less concave than the utility function after a bad history.

Second, risk preferences are allowed to violate expected utility and be non-
expected utility preferences such as rank-dependent utility preferences (Quiggin
1982 and Tversky and Kahneman 1992) or disappointment aversion theory prefer-
ences (Gul 1991). For example, consider a disappointment aversion theory agent,
who distorts probabilities by a real number called a disappointment parameter.
Then the model is a dynamic version of disappointment aversion theory, in which
the disappointment parameter is history-dependent. It turns out that, for a fixed

1The RE is documented in the lab experiments of Thaler and Johnson (1990), Ackert et al.
(2006), Harrison (2007), and Peng et al. (2013), and in the field studies of Massa and Simonov
(2005), Kaustia and Knüpfer (2008), Liu et al. (2010), Malmendier and Nagel (2011), Guiso et al.
(2013), and Knüpfer et al. (2014). I carefully discuss three well-known examples of the RE in Section
1.1.1.



2

utility function, the disappointment parameter dictates the agent’s degree of risk
aversion. Therefore, the RE arises if the disappointment parameter is smaller after
a good history than a bad history. The behavioral foundations of my model and the
two special cases above (dynamic versions of expected utility and disappointment
aversion theory) are provided.

To illustrate the usefulness of the model, I apply it to the classical Lucas tree
model of asset pricing (Lucas 1978) and draw implications of theREon the dynamics
of asset prices. I find that, compared to history-independent models, assets are
overpriced when the economy is in a good state, but they are underpriced when
the economy is in a bad state. Moreover, I relate the predictions of my model to
empirical facts on asset prices. Specifically, my model generates high, volatile,
and predictable asset returns, and low and smooth bond returns, consistent with
empirical evidence. Indeed, these results are consistent with the equity premium
puzzle of Mehra and Prescott (1985) and the risk-free rate puzzle of Weil (1989).

Let me illustrate the key intuition behind the main result. Suppose there are two
periods, today and tomorrow. Today an agent compares two lotteries, a dominant
lottery and a dominated lottery. The dominant lottery returns high payoffs with high
probability, while the dominated lottery returns high payoffs with low probability.
Then monotonicity requires that the dominant lottery must be preferred to the dom-
inated one. Tomorrow the agent receives a lottery after choosing one of today’s
two lotteries. Dynamic monotonicity, an extension of monotonicity to the dynamic
environment, requires that the dominant lottery is still preferred to the dominated
one, independent of tomorrow’s lottery.

Suppose the agent’s risk preference is history-dependent; that is, the utility of
tomorrow’s lottery depends on today’s payoffs. The RE says that the agent is less
risk averse after a good history (high payoff) than after a bad history (low payoff).
Since a less risk-averse agent values risky lotteries more than a risk-averse agent
does, the RE is equivalent to requiring that tomorrow’s lottery is more valuable after
a good history than after a bad history.

Now suppose the RE is violated. This implies that tomorrow’s lottery is less
valuable after a good history than after a bad history. Since the dominant lottery
returns high payoffs with high probability, it generates good histories more often
than the dominated one does. In other words, tomorrow’s lottery is less valuable
after the dominant lottery than after the dominated one because good histories make
tomorrow’s less valuable.
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Therefore, when the RE is violated, there is a tradeoff between today and to-
morrow: although the dominant lottery is preferred to the dominated one today (the
dominant lottery’s advantage today), it makes tomorrow’s lottery less valuable (dis-
advantage tomorrow). Therefore, if the dominant lottery’s disadvantage tomorrow
exceeds its advantage today, then dynamic monotonicity is violated. It turns out
that, when tomorrow’s lottery is significantly more valuable than today’s two lotter-
ies, the dominant lottery’s disadvantage tomorrow can be greater than its advantage
today.

1.1.1 Examples of the Reinforcement Effect
Using data from the Survey ofConsumer Finances from1960-2007,Malmendier

andNagel (2011) show that individuals’ experiences ofmacroeconomic shocks affect
their financial risk taking, consistent with the RE. The authors find that individuals
who have experienced low stock market returns throughout their lives report lower
willingness to take financial risks, are less likely to participate in the stock market,
and invest a lower fraction of their liquid assets in stocks if they participate. These
results are robust to controlling for age, year effects, and household characteristics
such as wealth, income, and education.

The second example of the RE comes from the experimental study of Thaler
and Johnson (1990). The authors run the following experiment, which involves two
choice scenarios. In the first scenario, the subjects are asked to choose between a
risky lottery (q, $y1, 1 − q, $y2) and a sure outcome $x, right after winning $z from
a lottery Z .2 In the second scenario, the subjects are asked to choose between a
risky lottery (q, $y1 + z, 1 − q, $y2 + z) and a sure outcome $x + z. According to
expected utility theory and considering the final wealth of each situation, there is
no difference between the two scenarios. However, Thaler and Johnson found that
when z = $15 (a good history), 77% of the subjects prefer the risky option in the first
scenario, but only 44% of subjects prefer the risky option in the second scenario.3
By contrast, when z = −$4.50 (a bad history), only 32% of the subjects prefer the

2The vector (q, $y1, 1 − q, $y2) is a lottery that gives $y1 with probability q and $y2 with
probability 1 − q.

3Thaler and Johnson phrase their questions in the following way (see p. 652): “You won x,
now choose between a gamble A and a sure outcome B." In the followup experiment by Peng et al.
(2013), they phrase their questions in the following two ways (p. 154): i) “You won x from from a
gamble X , now choose between a gamble A and a sure outcome B" or ii) “You will get allowance x,
now choose between gamble A and a sure outcome B." It turns out that, significantly more subjects
choose the gamble A in i) compared to that in ii). Therefore, it is important that the subjects know
that they won x by chance.
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risky option in the first scenario, but 57% of subjects prefer the risky option in the
second scenario.4 Therefore, the subjects become less risk-averse after z = $15 (a
good history) than after z = −$4.50 (a bad history).

The third example of the RE is from the empirical finance literature. It is well
known that some market variables move countercyclically in a way that is consistent
with the RE (see Cochrane 2011). For example, consider the stock market Sharpe
ratio (sometimes called the “price of risk") – the expected excess return of an
asset divided by the standard deviation of return. The Sharpe ratio is an important
indicator for risk aversion because the first-order condition of intertemporal utility
maximization gives that

Sharpe ratio = degree of risk aversion × std.dev(∆c) × cov(∆c; R),

where ∆c is consumption growth and R is asset return. Empirical evidence (e.g.,
Tang andWhitelaw 2011) suggests that the Sharpe ratio is countercyclical: when the
economy is good, the Sharpe ratio is low and when the economy is bad, the Sharpe
ratio is high. Therefore, if the standard deviation of consumption growth std.dev(∆c)
and the covariance between consumption growth and asset return cov(∆c; R) do not
vary much over time, the countercyclicity of the Sharpe ratio suggests the presence
of the RE. That is, when the economy is good, the Sharpe ratio is low, which implies
low risk aversion, but when the economy is bad, the Sharpe ratio is high, which
implies high risk aversion. Probably for that reason, some of the most successful
models of asset pricing (e.g., Campbell and Cochrane 1999 and Barberis et al. 2001)
use countercyclical risk aversion, which is consistent with the RE.5

The three examples above illustrate that the RE is a robust and economically
relevant notion. The first example illustrates the robustness of the RE to different
measures of risk aversion, i.e., willingness to take financial risk, stock market
participation, and so on. My explanation of the RE depends on changing preferences
for risk, but it is also possible to explain the RE through changes in wealth or beliefs.
The first example rules out these two explanations of the RE. First, it unambiguously
rules out the wealth effect explanation of the RE (wealthy people are less risk-averse
than poor people) since the two scenarios in the experiment generate the same

4In the case of z = $15, Thaler and Johnson use numbers x = $0, q = 0.5, y1 = $4.5, and
y2 = −$4.5, and in the case of z = −$4.50, they use numbers x = $5, q = 0.33, y1 = $15, and
y2 = $0.

5In fact, empirical finance research directly finds countercyclical risk aversion using an estimator
for time-varying risk aversion (e.g., Kim 2014).
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final wealth, but the subjects exhibit the RE. Second, it rules out a belief-based
explanation (optimistic people are less risk-averse than pessimistic people) since
in the experiment, subjects are asked to compare objective lotteries.6 The third
example illustrates that the RE might have market level implications.

1.1.2 Related Literature
Three well-known classes of models generate history-dependent behavior: the

Kreps-Porteus model (Kreps and Porteus 1978 and Selden 1978), the Epstein-Zin
model (Epstein and Zin 1989 andWeil 1989), and the habit-formation model (Pollak
1970, Constantinides 1990, and Campbell and Cochrane 1999). In all of these
models, an agent’s current preference is affected by past outcomes or consumption.
Themain difference betweenmymodel and the above three models is that I allow the
agent’s current preference to be affected by past outcomes and their distributions.
Therefore, my model allows the following history-dependent behavior: an agent
becomes more risk averse after winning $10 from a lottery ( 1

2, $10, 1
2, $20) and

becomes less risk averse after winning $10 from a lottery ( 1
2, $10, 1

2, $0). Moreover,
an additive version of the Kreps-Porteus model is a special case of my model (see
Section 1.3.3).

The closest paper is Dillenberger and Rozen (2015), which models choice over
multi-stage compound lotteries and studies the RE. A two-stage compound lottery
is a lottery over simple lotteries, and a t-stage compound lottery is a lottery over
(t−1)-stage compound lotteries. In Dillenberger and Rozen (2015), risk preferences
are affected by a realized (t−1)-stage compound lottery as well as unrealized (t−1)-
stage compound lotteries.7 Since each multi-stage compound lottery corresponds
to a distribution over final outcomes in the future, one key difference is that in
their model, risk preferences are affected by past distributions over future outcomes,
while in my model, risk preferences are affected by past risky choices and their
outcomes. In other words, in their model, agents care about “what might have
been" in the future, but in my model, agents care about “what might have been"
in the past. Interestingly, Dillenberger and Rozen prove that the RE is a result of
internal consistency of changes in risk preferences8, while I prove that the RE is

6Although I consider objective probabilities, in some special cases, the way my model explains
the RE is similar to the belief-based explanation. See Section 1.6.4 for more details.

7Note that any compound lottery returns a single outcome at the end and so it does not allow
intermediate consumptions.

8In their model, internal inconsistency may occur because the evaluations of final outcomes
affect the current risk preference, while the current risk preference also affects the evaluations of
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a result of dynamic monotonicity. Thus, we focus on two different channels that
may give rise to the RE. Arguably, the first two examples of the RE indicate that
the RE is caused by past risky choices rather than future outcomes. Moreover,
their model violates monotonicity while my model is built around monotonicity.9
Dillenberger and Rozen also apply their model to asset pricing and find volatile and
history-dependent prices.

The remainder of the paper is organized as follows. First, I outline the main
result and the application to asset pricing in Section 1.2. In Section 1.3, I introduce
the model and state the main result. In Section 1.4, I then apply my model to the
classical Lucas tree model of asset pricing and draw implications of the RE on
the dynamics of asset prices. Two different behavioral foundations for my model
are provided in Section 1.5. In Section 1.6, I introduce three special cases of my
model (including dynamic versions of expected utility and disappointment aversion
theory) and discuss the RE. The proofs are collected in Appendix A.1. Behavioral
foundations for dynamic versions of expected utility and disappointment aversion
are provided in Appendix A.2.

1.2 Overview of the Main Result and Its Applications
1.2.1 Main Result

In this subsection, I introduce a special case of my model and illustrate the main
result in this simple case. Suppose the agent receives a bundle (X ; Z ), which gives
a lottery X today and a lottery Z tomorrow. Suppose the lottery X gives $x with
probability p and $y with probability 1 − p, denoted by X = (p, x, 1 − p, y), and the
lottery Z gives $z with probability r and nothing with probability 1 − r , denoted by
Z = (r, z, 1 − r, 0). See Figure 1.1.

Suppose the agent is an expected utility maximizer, and her risk preference is
history-dependent. Suppose that the agent has a CRRA utility function u(t) = tµ

where 1− µ is the agent’s degree of risk aversion. Tomorrow the agent’s risk attitude
changes with today’s outcome. In particular, the agent’s degree of aversion 1 − µ
changes to 1 − µ(x) when the outcome x is realized from the lottery X , and the

final outcomes. Dillenberger and Rozen (2015) show that internal consistency also implies a behavior
called the primacy effect: an agent who experiences a bad history today and good histories forever
is more risk averse than an agent who experiences a good history today and bad histories forever.
However, the primacy effect seems not consistent with the following findings of Malmendier and
Nagel (2011): most recent experiences have a stronger effect on risk preferences than those in early
in life.

9See p. 461 of Dillenberger and Rozen 2015, where they explain why monotonicity is violated
in their model.
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X =
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1−q

(X ; Z ) =
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(y; Z )
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1−p

(Y ; Z ) =
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(y; Z )

q

1−q

Figure 1.1: Lotteries X and Y and bundles (X ; Z ) and (Y ; Z )

certainty equivalent of Z is µx (Z ) =
(
r zµ(x) + (1 − r) 0

) 1
µ(x) . Therefore, in my

model, the utility of the bundle (X ; Z ) is

p xµ + (1 − p) yµ + β
(
p
(
µx (Z )

) µ
+ (1 − p)

(
µy (Z )

) µ),
where β is the discount factor. Note that the utility of a sure bundle (x; z) is
xµ + β zµ.

The key assumption will be a form of monotonicity of risk preferences. Take
a lottery Y = (q, x, 1 − q, y) with x > y and q < p. Monotonicity requires that
the lottery X must preferred to the lottery Y because X first-order stochastically
dominates Y . I define the following extension of monotonicity to the dynamic
environment called dynamic monotonicity: the bundle (X ; Z ) must be preferred
to the bundle (Y ; Z ). Intuitively, since the two bundles provide a common lottery
Z tomorrow and X first-order stochastically dominates Y , the first bundle must be
preferred to the second. In my model, dynamic monotonicity is equivalent to the
following inequality:

xµ − yµ ≥ β
((
µy (Z )

) µ
−

(
µx (Z )

) µ)
= β

(
r

µ
µ(y) − r

µ
µ(x)

)
zµ. (1.1)

The RE states that the agent is less risk-averse after a good history (when x

is realized) than after a bad history (when y is realized); i.e., µ(x) ≥ µ(y).10
Equivalently, µx (Z ) ≥ µy (Z ). Therefore, if the RE is violated, when z is large
enough, then the RHS of (1.1) exceeds the LHS of (1.1); i.e., dynamic monotonicity
is violated.

As I show later, the above argument is true under an assumption called non-
triviality. It requires that if the agent’s risk preference is history-dependent; that is,
µx (Z ) , µy (Z ) for some Z , then there exists Z∗ such that |u(µx (Z∗)) − u(µy (Z∗)) |

10Note that in this definition, the RE does not rule out the standard case µ = µ(x) = µ(y).
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is large enough. In three special cases of my model discussed in Section 1.6, non-
triviality is equivalent to the condition that the agent’s Bernoulli utility function u

is unbounded. In the above example, nontriviality is satisfied since u(z) = zµ is
unbounded.

I prove the result in a general case in Section 1.3.2. In particular, the certainty
equivalents µx (Z ) and µy (Z ) of Z not only depend on the outcomes x and y,
but also depend on lotteries X and Y . Moreover, the agent’s risk preference can
be a non-expected utility preference such as a rank-dependent utility preference or
disappointment aversion theory preference.

1.2.2 Application to Asset Pricing
I apply my model to the Lucas tree model of asset pricing (Lucas 1978) and

show that the RE has important implications for asset prices. In Section 1.4, I
show that I can obtain predictable, high, and volatile asset returns, and low and
smooth bond returns, consistent with empirical data. I use a simple model of an
economy that follows a two-state Markov process in which the states, high and low,
are persistent. The price of an asset increases when agents become less risk-averse,
since less risk-averse agents value the asset more than risk-averse agents. Therefore,
the first implication of the RE is as follows: the asset is overpriced in a high state,
but it is underpriced in a low state, compared to models with history-independent
risk aversion. In the LHS of Figure 1.2, the price-dividend ratio is plotted against
the degree of risk aversion. The blue (dotted) lines illustrate the price-dividend ratio
in my history-dependent model (discounted expected utility). Note that in a high
state, the price-dividend ratio is above the dotted line; i.e., assets are overpriced,
while in a low state, the price-dividend ratio is below the dotted line; i.e., assets are
underpriced.

The second implication of the RE is that there is asymmetry between high and
low states. This implication relies on the following property of the model: the
degree of mispricing (overpricing and underpricing) increases as agents become
more risk-averse. Therefore, as illustrated in the LHS of Figure 1.2 in high states,
the price-dividend ratio increases as agents become more risk-averse because the
degree of overpricing increases. However, in low states, the price-dividend ratio
decreases as agents become more risk-averse because the degree of underpricing
increases.

I now discuss the dynamics of asset prices using the RHS of Figure 1.2. Since
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Figure 1.2: The Price-Dividend Ratio

states are persistent, low states continue for a while; after that, high states continue
for a while, and so on. Suppose the economy is in a low state first. By the second
implication of the RE, in a low state, asset prices decrease as agents become more
risk-averse (Point 0 to Point 1). But, when the economy recovers, asset prices
overshoot because underpricing turns to overpricing as the state changes (Point 1 to
Point 2). Moreover, the overshooting is large because the degrees of risk aversion
and overpricing are very high after a long period of low states.

Now the economy is in a high state. By the second implication of the RE, asset
prices decrease because the degrees of risk aversion and overpricing decrease (Point
2 to Point 4). Moreover, when the economy declines, asset prices drop because
overpricing turns to underpricing as the state changes (Point 4 to Point 5). However,
the drop is not as large as the overshooting since the degree of risk aversion decreased
after a long period of high states (between Point 3 to Point 4).

1.3 Model
1.3.1 Basic Setup and Model

I now introduce a model of dynamic choice under risk that generalizes standard
discounted expected utility. There are two periods, today and tomorrow.11 An
agent evaluates intertemporal consumption lotteries, which gives a lottery today and
another lottery tomorrow depending on the realization of today’s lottery. First, I
define what a lottery is. Let R+ be the set of all (monetary) outcomes. For any set

11The number of periods is not important. In fact, I use an infinite horizon version of the model
for the application to asset pricing in Section 1.4.
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L = (pi, (xi; Zi))n
i=1 =

(x1; Z1)

(xi; Zi)

(xn; Zn)

p1
pi

pn

Figure 1.3: Intertemporal Consumption Lotteries

A, I define the set of all finite lotteries over A, denoted by ∆(A). That is,

∆(A) ≡
{
A = (p1, a1, . . . , pn, an) ∈

(
[0, 1] × A

)n with
n∑

i=1
pi = 1 for some n

}
,

where a lottery A = (pi, ai)n
i=1 gives ai with probability pi for each i. I call elements

of ∆(R+) simple lotteries.

I focus on elements of L = ∆(R+ × ∆(R+)) called intertemporal consump-
tion lotteries. Figure 1.3 illustrates an intertemporal consumption lottery L =

(pi, (xi; Zi))n
i=1, an element of L = ∆(R+ × ∆(R+)). The lottery L gives an in-

tertemporal consumption bundle (xi; Zi) with probability pi for each i, and the
bundle (xi; Zi) gives an outcome xi today and gives a simple lottery Zi tomorrow.
In other words, the agent receives a simple lottery X = (pi, xi)n

i=1 today and receives
another simple lottery Zi tomorrow after an outcome xi is realized from the lottery
X . I call a pair (xi, X ) a history when xi ∈ supp(X ) ≡ {x1, . . . , xn}, the support of
X . So the agent receives a simple lottery Zi after the history (xi, X ).

The main focus of this paper is to study how the value of a lottery Zi is affected
by the history (xi, X ). I assume that there exists a utility function W:L → R+ for
intertemporal consumption lotteries. After specifying W , I analyze and compare
risk preferences after different histories (x, X ) and (x′, X ) with x > x′.

The benchmark model is discounted expected utility (henceforth, DEU). In
DEU, the utility of an intertemporal consumption lottery (pi, (xi; Zi))n

i=1 ∈ L is

W
(
(pi, (xi; Zi))n

i=1
)
= E[u(X )] + β EX

[
E[u(Zi)]

]
=

n∑
i=1

pi
(
u(xi) + β E[u(Zi)]

)
(1.2)

where u :R+ → R+ is a Bernoulli utility function, β ∈ (0, 1) is a discount factor, E
is the standard expectation operator, and EX is the expectation operator with respect
to the distribution of X . Note the following four properties of DEU:



11

1. Simple Expected Utility: the agent uses expected utility theory when she
evaluates simple lotteries;

2. History Independence: tomorrow’s risk preference is the same as today’s risk
preference; i.e, she uses the same Bernoulli utility function u to calculate
expected utilities E[u(X )] and E[u(Zi)];

3. Discounted Utility: the agent uses discounted utility theory when she aggre-
gates utilities of today and tomorrow; i.e., the utility of (x; z) is u(x)+ β u(z);

4. ExpectedUtility Aggregator: once tomorrow’s lotteries are evaluated (E[u(Zi)]
is calculated for each i), she aggregates them using expected utility theory
(EX

[
E[u(Zi)]

]
=

∑n
i=1 pi E[u(Zi)]).

I generalize DEU byweakening the first two of the above four properties of DEU
while retaining the latter two. Indeed, weakening the second property, history inde-
pendence, is essential for analyzing history-dependent risk preferences. However, I
weaken the first property, simple expected utility, not only to demonstrate the gener-
ality of the main result, but also to include well-known non-expected utility models
such as rank-dependent utility theory (Quiggin 1982 and Tversky and Kahneman
1992) and disappointment aversion theory (Gul 1991). In fact, to demonstrate the
usefulness of the model, I apply a dynamic version of disappointment aversion the-
ory to asset pricing in Section 1.4. The role of the third property, discounted utility,
will be discussed in Sections 1.3.2-3.

Therefore, in my model, the agent uses a function V0 :∆(R+) → R+ to evaluate
simple lotteries today, but she uses a history-dependent function V(x, X ) :∆(R+) →
R+ to evaluate simple lotteries tomorrow after a history (x, X ). Once simple
lotteries are evaluated, the agent aggregates them using the last two of the above
four properties of DEU. Formally, I study the following model.

Definition 1 (History-Dependent Model) AutilityW is ahistory-dependentmodel
if there exists a triplet (V0, β, {V(x, X )}) such that the utility of an intertemporal con-
sumption lottery (pi, (xi; Zi))n

i=1 ∈ L can be represented as

W
(
(pi, (xi; Zi))n

i=1
)
= V0(X ) + β

n∑
i=1

pi V(xi, X ) (Zi). (1.3)
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Indeed, the history-dependent model (1.3) reduces to DEU when V0(Z ) =
V(x, X ) (Z ) = E[u(Z )] for some u. Two different behavioral foundations for the
history-dependent model (1.3) are provided in Section 1.5. For notational simplicity,
when there is no danger of confusion, I also call {V(x, X )} a history-dependent
model.12

In order to discuss a relation between the RE and monotonicity, I assume the
following property of continuity of V(x, X ) with respect to X .

Definition 2 (Right-continuity) A history-dependentmodel {V(x, X )} is right-continuous
if for any lotteries {X n}∞n=1 and X∗ such that supp(X n) = supp(X∗) and X n first-

order stochastically dominates X∗ for each n, X n W
−→ X∗ impliesV(x, Xn)

U
−→ V(x, X∗).13

Roughly speaking, the above assumes that changes in risk preferences caused by
a lottery X are not so extreme as long as x is fixed. Indeed, right-continuity is satisfied
when V(x, X ) is independent of X . Moreover, the following special case of (1.3), in
which {V(x, X )} is represented by two step functions, satisfies right-continuity: for
each x ∈ R+, there are two functions {V0

x ,V
1
x } such that

V(x, X ) =




V1
x when x > µ0(X )

V0
x when x ≤ µ0(X ),

(1.4)

where µ0(X ) = V−1
0

(
V0(X )

)
is the certainty equivalent of X . In (1.4), when the

outcome x is greater than the certainty equivalent of the lottery X , the agent is
content and uses V1

x , but when the outcome is equal or less than the certainty
equivalent, the agent is disappointed and usesV0

x . In Section 1.4, I apply a special
case of (1.4) to asset pricing. I can also consider general cases of (1.4) in which

12One might find it conflicting since I assume that risk preferences over compound lotteries are
expected utility preferences (expected utility aggregator) while risk preferences over simple lotteries
are possibly non-expected utility preferences (V0). Non-expected utility preferences are motivated
by violations of the independence axiom such as the Allais Paradox. However, it turns out that, the
compound independence axiom, a counterpart of the independence axiom for compound lotteries, is
less likely to be violated compared to the independence axiom (Segal 1990, Luce 1990, and Camerer
and Ho 1994). For that reason, I use expected utility aggregator. Moreover, the main result is still
true if I relax expected utility aggregator to non-expected utility aggregators such as disappointment
aversion aggregator or rank-dependent utility aggregator.

13The notation Xn W
−−→ X∗ denotes the weak convergence; that is, E f (Xn) → E f (X∗) for any

bounded continuous function f . Moreover, V(x, Xn )
U
−→ V(x, X∗) denotes the uniform convergence;

that is, for any δ > 0, there exists n∗ such that for any n > n∗, |V(x, Xn ) (Z ) − V(x, X∗) (Z ) | < δ for any
Z ∈ ∆(R+). I also can assume left-continuity instead of right-continuity.
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there are more than 2 step functions. Note that such models generalize a model
with state-dependent risk aversion, in which states are endogenously determined by
histories.

1.3.2 The Reinforcement Effect and Monotonicity
I now turn to the discussion of the RE and monotonicity. The RE states that the

agent becomes less risk-averse after a good history (x, X ) than after a bad history
(x′, X ) where x > x′. Since I only focus on changes in risk preferences (not on
changes in time preferences), I assume that the utility of money does not change over
time. In other words, I assume time consistency; that is, V0(z) = V(x, X ) (z) for any
z ∈ R+. Note that time consistency generalizes the third property, discounted utility,
of the aforementioned four properties of DEU. To see this, let u(z) ≡ V0(z) for any
z ∈ R+. Then in the history-dependent model (1.3), the utility of a deterministic
bundle (x; z) is u(x) + β u(z).

Under time consistency, comparisons among V0, V(x, X ), and V(x′, X ) capture
changes in risk attitude. Specifically, the RE is equivalent to stating V(x, X ) values
risky lotteries more than V(x′, X ) does. Formally,

Definition 3 (Reinforcement Effect) A history-dependent model {V(x, X )} exhibits
the reinforcement effect if for any lottery X ∈ ∆(R+) and x, x′ ∈ supp(X ) with
x > x′, V(x, X ) (Z ) ≥ V(x′, X ) (Z ) for any Z ∈ ∆(R+).

The first-order stochastic dominance is a fundamental concept in risky choice.
It defines when one lottery is unambiguously better than another lottery. A lottery
X first-order stochastically dominates a lottery Y if for any z ∈ R+, the probability
that the agent receives at least z from X is not smaller than that from Y ; i.e.,

n∑
i=1

pi 1{xi ≥ z} ≥
m∑

j=1
qj 1{y j ≥ z}.

Monotonicity of risk preferences requires that if X first-order stochastically
dominatesY , then X must be preferred toY . Monotonicity is appealing because it is
rarely violated (e.g., see Hey 2001) and its violation may lead to the “Dutch book”
argument (e.g., see Machina 1989). Moreover, in expected utility, monotonicity
is equivalent to the monotonicity of the agent’s Bernoulli utility function. I now
extend monotonicity to the dynamic environment.14

14A necessary and sufficient condition for a general (differentiable) non-expected utility function
to satisfy monotonicity is given in Machina (1982).
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Definition 4 (Dynamic Monotonicity) For any X,Y ∈ ∆(R+), if X first-order
stochastically dominates Y , then (X ; Z ) must be preferred to (Y ; Z ) for any Z ∈

∆(R+).

Dynamic monotonicity says that if two intertemporal consumption lotteries
(X ; Z ) and (Y ; Z ) share a common lottery Z tomorrow, then monotonicity in the
static environment must be satisfied. Dynamic monotonicity is a weak version of
monotonicity in which intertemporal consumption lotteries give different lotteries
after different histories (in line with Segal 1990), but dynamic monotonicity will be
enough for my purpose.

Another key assumption is nontriviality, which requires that if two functions
V(x, X ) andV(x′, X ) are different, then theymust be significantly different. Specifically,
if V(x, X ) (Z ) > V(x′, X ) (Z ) for some Z , then there exists Z∗ such that V(x, X ) (Z∗) −
V(x′, X ) (Z∗) is large enough. Formally,

Assumption 1 (Nontriviality) Take any lottery X ∈ ∆(R+) and x, x′ ∈ supp(X ).
If there exists Z ∈ ∆(R+) such that V(x, X ) (Z ) > V(x′, X ) (Z ), then for any M > 0,
there exists Z∗ ∈ ∆(R+) such that

V(x, X ) (Z∗) − V(x′, X ) (Z∗) > M .

I briefly argue that dynamic monotonicity rather than nontriviality is mostly
responsible for the RE for two reasons. First, nontriviality treats good and bad
histories symmetrically. Second, in the three examples of the history-dependent
model (1.3) discussed in Section 1.6, I show that nontriviality is essentially unrelated
to history dependence. Specifically, in these three examples, I show that nontriviality
is equivalent to the condition u(+∞) = +∞, which is unrelated to histories (x, X )
and (x′, X ). I now state the main result.

Theorem 1 (Dynamic Monotonicity Implies the Reinforcement Effect) If a history-
dependent model {V(x, X )} satisfies right-continuity, dynamic monotonicity, and non-
triviality, then it exhibits the reinforcement effect.

In the introduction, I argued that the RE is well documented in empirical studies.
Since dynamicmonotonicity is a natural behavior, Theorem 1 provides a justification
for why the RE is well observed. The proof of Theorem 1 is in Appendix A.1. In
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the proof, in fact, I only use a weak version of dynamic monotonicity, in which X

dominates Y in the following obvious manner: X =
(
pi, xi, p j, x j, (pk, xk )k,i, j

)
and

Y =
(
pi − ε, xi, p j + ε, x j, (pk, xk )k,i, j

)
where xi > x j .

The main idea behind Theorem 1 is that when the RE is violated, bad histories
generate higher utilities than good histories do. Hence, since Y generates bad
histories more often than X does, the utility of Z is higher after Y than after X .
Therefore, if there exists Z such that the advantage of Z of (Y ; Z ) over Z of (X ; Z )
exceeds the advantage of X over Y , then dynamic monotonicity is violated. In fact,
nontriviality guarantees that such Z exists. Therefore, under nontriviality, dynamic
monotonicity implies the RE.

1.3.3 Time Consistency and Relation to Existing Models
My model (1.3) satisfies time consistency: V0(z) = V(x, X ) (z) for any z ∈ R+.

Because of the additive structure of (1.3), time consistency has the following inter-
pretation: the utilityV(x, X ) (Z ) of Z is history-independent when Z is a deterministic
lottery (i.e., ∂V(x, X) (z)

∂x =
∂V0(z)
∂x = 0).15 As I argue in this subsection, time consistency

is an important difference between my model and other history-dependent models.
In the habit-formation model (e.g., Pollak 1970 and Constantinides 1990), the utility
of a deterministic bundle (x; z) is

u(x) + β u(z − α x) for some α ∈ (0, 1).

The habit formation model not only violates time consistency ( ∂u(z−α x)
∂x , 0), but

also deviates from discounted utility.

The Kreps-Porteus model (Kreps and Porteus 1978 and Selden 1978) does not
necessarily violate time consistency. In the Kreps-Porteus model, the utility of
(pi, (xi; Zi))n

i=1 is
EX V

(
xi, u−1

xi
(
E uxi (Zi)

))
, (1.5)

where V is a time aggregator (see Koopmans 1960) and u−1
xi

(
E uxi (Zi)

)
is the

certainty equivalent of Zi after xi. In fact, my model generalizes the following
additive version of the Kreps-Porteus model (1.5), in whichV (x, z) = u(x)+ β u(z):
the utility of (pi, (xi; Zi))n

i=1 is

EX

(
u(xi) + β u

(
u−1

xi
(
E uxi (Zi)

)))
. (1.6)

15This separability property is captured by a behavioral axiom called weak separability between
today and tomorrow. See Section 1.5 for the behavioral foundations of (1.3).
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Since the additive Kreps-Porteus model (1.6) is a special case of the history-
dependent model (1.3), I can derive the following corollary of Theorem 1 for (1.6).

Corollary 1 Suppose dynamic monotonicity and nontriviality are satisfied. If there
are utility functions {ux }x∈R+ that satisfy (1.6), then for any x, x′ ∈ R+ with x > x′,
ux′ is more concave than ux; that is, there exists a concave function f x, x′ such that
ux′ = f x,x′ ◦ ux .

However, the Kreps-Porteus model (1.5) does not nest my model (1.3) because I
allow i) uxi to be dependent on X and ii) risk preferences to violate expected utility.

The Epstein-Zin model (Epstein and Zin 1989 and Weil 1989) extends the
Kreps-Porteus model (1.5) by allowing risk preferences to violate expected utility,
but they are history-independent. Hence, for example, the utility of a bundle (x; Z )
is V

(
x, µ(Z )

)
where the certainty equivalent µ(Z ) does not necessarily follow

expected utility, but is independent of x. The Epstein-Zin model can generate
history-dependent behavior because of the time aggregator V . In other words, if V

is additive-separable, then the Epstein-Zin model is history-independent. For that
reason, the only intersection between my model (1.3) and the Epstein-Zin model
is DEU. For example, consider the most popular version of the Epstein-Zin model,
in which V (x, z) = (x ρ + β zρ)

α
ρ and µ(Z ) =

(
EZα) 1

α for some α, ρ. That is, the
utility of (pi, (xi; Zi))n

i=1 is

EX
[
x ρi + β

(
E[Zα

i ]
) ρ
α ]

α
ρ . (1.7)

When ρ = α, (1.7) reduces to DEU. However, when ρ , α, Zi is not separable from
xi even if Zi is a deterministic lottery (i.e., ∂V (xi, µ(Zi ))

∂xi
, 0).16

1.4 Application: The Lucas Tree Model with HDDA Agents
In this section, I study the implications of the RE on the dynamics of asset prices.

I consider a special case of my model, a dynamic version of the disappointment
aversion theory of Gul (1991). I apply this model to the classical Lucas tree model
of asset pricing.17 I first describe the economy and preferences.

16In fact, the Epstein-Zin model (1.7) violates the aforementioned weak separability between
today and tomorrow when ρ , α.

17A dynamic version of expected utility is directly applicable to this environment, but finding
a closed-form solution is difficult because the Bernoulli utility function is history-dependent. As I
show, finding a closed-form solution is easy in the case of disappointment aversion theory because
the Bernoulli utility function is history-independent while the disappointment parameter is history-
dependent.
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The Economy: There is one unit of identical agents who live forever. An asset
produces a stochastic dividend stream {Zt }. There are two states, H and L. At each
date t ∈ {1, 2, . . .}, for a given state st−1 ∈ {H, L} and dividend zt−1, Zt takes the
value of zH

t with probability ρ(H |st−1) and zL
t with probability ρ(L |st−1) where

zH
t > zL

t . That is,
Zt = (ρ(H |st−1), zH

t , ρ(L |st−1), zL
t ).

I assume that states are persistent; i.e., ρ(H |H) = ρ(L |L) = ρ > 1
2 . In each period,

after zt is realized from Zt , agents trade the consumption good, ct , and the asset
in a competitive spot market at price pt . For a given state st , each agent faces the
following budget constraint:

cs
t + pt xs

t+1 = (zs
t + pt ) xt,

where xs
t is the asset demand at date t (x0 = 1).

History-Dependent Disappointment Aversion: The preferences of agents in this Lu-
cas economy are defined by a dynamic version of the disappointment aversion theory
of Gul (1991).18

The disappointment aversion theory is a one-parameter generalization of ex-
pected utility theory. In the disappointment aversion theory, an agent overweights
probabilities of small outcomes and underweights probabilities of large outcomes.
The degree of such probability distortion is summarized by a single parameter δ0,
the disappointment parameter. Namely, the utility of C = (ρ, cH, 1 − ρ, cL) with
cH > cL is

u(µ(C |δ0)) =
ρu(cH ) + (1 − ρ)(1 + δ0) u(cL)

ρ + (1 − ρ)(1 + δ0)
, (1.8)

where µ(C |δ0) is the certainty equivalent of C. For a fixed utility function u, the
disappointment parameter captures the degree of risk aversion; that is, a higher
disappointment parameter implies a higher degree of risk aversion.

In history-dependent disappointment aversion (HDDA), the agent’s disappoint-
ment parameter changes with her experiences. In particular, tomorrow, the agent’s
initial disappointment parameter δ0 changes to δ(x, X ) after a history (x, X ). Then
the utility of C after (x, X ) is

u(µ(C |δ(x, X ))) =
ρu(cH ) + (1 − ρ)(1 + δ(x, X )) u(cL)

ρ + (1 − ρ)(1 + δ(x, X ))
. (1.9)

18See Section 1.6 for a more detailed discussion of disappointment aversion theory.
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In other words, the agent’s distorted probabilities change with her experiences.
Since the disappointment parameter captures the degree of risk aversion, the RE is
equivalent to the following simple condition:

δ(x, X ) ≤ δ(x′, X ) when x > x′.

Preferences: In this Lucas economy, each agent has a HDDA preference with an ini-
tial disappointment parameter δ0 > 0. Consider a special case of the representation
with step functions (1.4), in which the disappointment parameter {δt } follows the
following transition law: for some α ∈ (0, 1),

δs
t+1 =




α · δt when st = H
δt
α when st = L.

Since I fix the utility function u, δt dictates the agents’ degree of risk aversion and
the transition law captures the RE.

At each date t, for a given (zt−1, st−1), the disappointment parameter δt , and the
asset demand xt , the agents’ continuation value of the asset is V (zt−1, st−1, δt, xt ).
So agents solve the following Bellman equation for given {Zt }, {pt }, and {xt }:

V (zt−1, st−1, δt, xt ) = max
Ct

{u
(
µ(Ct |δt )

)
+ βEZtV (Zt, St, δ

s
t+1, xs

t+1)}

s.t cs
t + ps

t xs
t+1 = (zs

t + ps
t ) xt,

where µ(Ct |δt ) is the certainty equivalent of Ct = (ρ(H |st−1), cH
t , ρ(L |st−1), cL

t )
for a given disappointment parameter δt . In order to find a closed-form solution, I
assume u(x) = log(x).

To emphasize history dependence and the RE, I compare HDDA with history-
independent disappointment aversion (henceforth, HIDA, in which the disappoint-
ment parameter is constant) and discounted expected utility (DEU).

1.4.1 Optimal Consumption Profile
Let me start with the optimal consumption path for given processes {Zt } and

{pt }. For given st , agents solve the following problem:

max
cst

π(st ) log(cs
t ) + β ρ(st ) V (zs

t , st, δ
s
t+1,

(zs
t + ps

t )xt − cs
t

ps
t

),

where π(st ) is the distorted probability of ρ(st ) such that

π(st ) =



ρ(H)
1+(1−ρ(H)) δt

when st = H
ρ(L)(1+δt )
1+ρ(L)δt

=
(1−ρ(H))(1+δt )
1+(1−ρ(H))δt

when st = L,
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and V (zs
t , st, δ

s
t+1,

(zst +pst )xt−cst
pst

) is the continuation value of the asset for a given zs
t

and st .

Note that when st = H , the probability ρ(H) is underweighted; that is, π(H) <
ρ(H), but when st = L, the probability ρ(L) is overweighted; that is, π(L) > ρ(L).
Let me denote the size of the probability distortion by

λs
t =




ρ(H)
π(H) = 1 + (1 − ρ(H))δt when st = H
ρ(L)
π(L) =

1+(1−ρ(H))δt
1+δt when st = L.

One important feature of HDDA is that agents use distorted probabilities π(st ) when
they evaluate the expected utility of today’s consumption, but they use objective
probabilities ρ(st ) when they evaluate the expected continuation value of the asset.
Therefore, the size of the probability distortion λt plays an important role in my
analysis. Since δt dictates the degree of risk aversion, λH

t = 1 + (1 − ρ(H))δt

increases and λL
t =

1+(1−ρ(H)) δt
1+δt decreases as agents become more risk-averse (as

δt increases). I can interpret δt as the degree of pessimism because as δt increases,
agents pay more attention to bad states. As δt increases, agents become more
pessimistic; consequently, they think a high statewill occurwith very lowprobability.
Moreover, the less likely the high state is, the larger the distortion is; that is, both
λH

t = 1 + (1 − ρ(H))δt and λL
t =

1+(1−ρ(H)) δt
1+δt are decreasing in ρ(H). I now solve

the optimal consumption path.

Optimal Consumption: For given {Zt } and {pt }, the optimal consumption level at
time t is

c∗st =
(ps

t + zs
t )xt

1 + β
1−β · λ

s
t

.

Note that (ps
t + zs

t )xt is the agents’ wealth at time t. In DEU, agents consume
1

1+ β
1−β

fraction of their wealth independently of the current state since λt = 1.

However, in HDDA, agents consume 1
1+ β

1−β ·λ
s
t

fraction of their wealth. Since λH
t >

1 > λL
t , I have

cH
t (DEU) =

(pH
t + zH

t )xt

1 + β
1−β

> c∗Ht =
(pH

t + zH
t )xt

1 + β
1−β · λ

H
t

>

> c∗Lt =
(pL

t + zL
t )xt

1 + β
1−β · λ

H
t

> cL
t (DEU) =

(pL
t + zL

t )xt

1 + β
1−β

.
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Therefore, in HDDA, for given {pt }, the optimal consumption path is much smoother
than that in DEU. Themain reason is that the HDDA agents are pessimistic in general
and so they will save more in high states.

1.4.2 Market Clearing and Equilibrium Asset Price
I now solve the equilibrium price {pt }. In order for the prices to clear the asset

market, at each time t, I must have the conditions:

Market Clearing: xt = x∗ = 1 and Ct = Zt .

Now it is simple to find the equilibrium asset prices.

Equilibrium Asset Price: For given process {Zt }, the equilibrium asset price at
time t is

p∗st =
β

1 − β
· λs

t · z
s
t .

In DEU, the price-dividend ratio pt
zt

is constant β
1−β . In HDDA, the price-

dividend ratio is β
1−β times the size of the probability distortion, so

p∗Ht =
β

1 − β
·λH

t ·z
H
t > pH

t (DEU)=
β

1 − β
·zH

t > pL
t (DEU)=

β

1 − β
·zL

t > p∗Lt =
β

1 − β
·λL

t ·z
L
t .

In HDDA, the asset is mispriced by the size of the probability distortion. In a high
state, the asset is overpriced since agents undervalue the expected utility of today’s
consumption compared to the expected continuation value of the asset. In a low
state, the asset is underpriced since agents overvalue the expected utility of today’s
consumption compared to the expected continuation value of the asset. In Figure
1.4, the price-dividend ratio pt

zt
is plotted against δt . As I described earlier, in high

states the price-dividend ratio in HDDA is greater than the price-dividend ratio in
DEU (the dotted line), and in low states the price-dividend ratio in HDDA is smaller
than the price-dividend ratio in DEU. In a high state, the asset price can take two
forms because ρ(H) is either ρ or 1− ρ depending on the previous state st−1: pH

t (L)
is the price in a high state after a low state and pH

t (H) is the price in a high state
after a high state. Similarly, the asset price in a low state can take two forms, pL (L)
and pL (H). Figure 1.4 illustrates that the asset prices for high states increase while
the asset prices for low states decrease as agents become more risk-averse (as δt

increases). Now I turn to the dynamics of the price-dividend ratio in HDDA and
compare it with HIDA.
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Pt

Zt

δt10

β
1−β

pH
t (L)
zHt
=

β
1−β (1 + ρ δt )

pH
t (H)
zHt
=

β
1−β (1 + (1 − ρ) δt )

pL
t (L)
zLt
=

β
1−β ·

1+ρ δt
1+δt

pL
t (H)
zLt
=

β
1−β ·

1+(1−ρ) δt
1+δt

Figure 1.4: The Price-Dividend Ratio and the Disappointment Parameter
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Figure 1.5: The Dynamics of the Price-Dividend Ratio
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1.4.3 The Dynamics of the Price-Dividend Ratio
Figure 1.5 illustrates the dynamics of the price-dividend ratio. Since states are

persistent, as illustrated in Figure 1.5, low states continue for a while, then high
states continue for a while. Suppose we start with a low state at time τ0 (Point 0).
By the RE, as low states continue to τ1, agents becomemore andmore risk-averse (δt

increases). Hence, the price-dividend ratio pL
t (L)
zLt
=

1+ρ δt
δt

decreases between τ0 and
τ1 (Point 0 to Point 1). However, in HIDA illustrated by the orange lines, since the
disappointment parameter is constant, the price-dividend ratio is constant between
τ0 and τ1. Once the economy starts to recover, the asset price overshoots (Point 1
to Point 2). The overshooting in HDDA is larger than in HIDA because agents with
HDDA preferences are more risk-averse at τ1+1 compared to τ0. At τ1+2, the asset
price will be adjusted down (Point 2 to Point 3) because the transition probability
ρ(H |L) switches to ρ(H |H) > ρ(H |L) (in Figure 1.4, the first line pH

t (L)
zHt

switches

to the second line pH
t (H)
zHt

).

Now high states continue for a while, then by the RE, agents become less
risk-averse (δt decreases). Hence, the price-dividend ratio pH

t (H)
zLt
= 1 + (1 − ρ) δt

decreases between τ1 + 2 and τ2 (Point 3 to Point 4). However, in HIDA, the
price-dividend ratio is constant between τ1 + 2 and τ2. Once the economy starts to
decline, the price-dividend ratio drops below the dotted line (Point 4 to Point 5).
But the drop is not as large as the overshooting at τ1 because agents are already less
risk-averse after a long period of high states. At τ2 + 2, the price-dividend ratio
will be adjusted up (Point 5 to Point 6) because the transition probability ρ(H |H)
switches to ρ(H |L) < ρ(H |H) (in Figure 1.4, the fourth line pL

t (H)
zLt

switches to the

third line pL
t (L)
zLt

). So the state is low again.

A sharp prediction that can be spotted easily from Figure 1.5 is that the price-
dividend ratio decreases most of the time to correct the overshooting that happens
during state changes.

1.4.4 Empirical Regularities: High, Volatile, and Predictable Asset Returns,
and Low and Smooth Bond Returns

Finally, I relate the predictions of the model to four stylized facts about the stock
market: i) high excess returns (the equity premium puzzle of Mehra and Prescott
1985), ii) low bond returns (the risk-free rate puzzle of Weil 1989), iii) volatile asset
returns and smooth bond returns (the equity volatility puzzle of Campbell 2003),
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Table 1.1: Simulated Asset and “Shadow" Bond Returns

δ0=0.15 δ0=0.2 Empirical
Asset Bond Asset Bond Asset Bond

HDDA
Mean 6.03% 1.53% 7.59% 1.46% 6.98% 0.80%
SD 11.4% 3.2% 15.6% 3.75% 16.54% 5.67%
HIDA
Mean 2.1% 1.7% 2.23% 1.65%
SD 2.1% 0.98% 2.6% 1.3%
DEU
Mean 1.9% 1.86%
SD 1.03% 0.82%
• Empirical values are from Mehra and Prescott (1985) (annualized).
• 1 period = 1 month, β = 0.999 (annual 0.988), ρ = 0.9, and α = 0.97.

and iv) the predictability of asset returns.19

One of the most well-known empirical facts about the stock market is that
asset returns are high and volatile compared to bonds (Mehra and Prescott 1985,
Campbell 2003). For example, Mehra and Prescott (1985) find that the historical
average of asset returns in the U.S. is 6.98% with a standard deviation of 16.54%,
while the historical average of relatively riskless security returns is 0.80% with
the standard deviation of 5.67%. The challenge in obtaining a high excess return
(6.18% = 6.98−0.80) in standard models is that consumption growth is too smooth,
so unreasonably high risk aversion is required (the equity premium puzzle). For
example, in the standard discounted expected utility model with CRRA utility, a
relative risk aversion of 50 is required to obtain a 6% excess return, while a relative
risk aversion of 10 is the maximum level considered plausible byMehra and Prescott
(1985). Moreover, in order to obtain a low bond return with a high degree of risk
aversion, the discount factor must be very close to one or even greater than one (the
risk-free rate puzzle). A high risk aversion also implies volatile bond returns (the
equity volatility puzzle). My model can generate high and volatile asset returns
and low and smooth bond returns with a reasonable degree of risk aversion and a
reasonable discount factor.

To emphasize that, I choose the dividend process {zt } (equal to {ct } in equilib-
rium) in a way that the first and second moments of the consumption growth match
historical U.S. data. In particular, I choose growth rates gH =

zHt
zt−1

and gL =
zLt

zt−1
to

19See Campbell (2003) for a survey of important stylized facts about the aggregate stock market.
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satisfy E(g) = 1.018 and σ(g) = 0.036 (Mehra and Prescott 1985). Therefore, I
have gH = 1.054 and gL = 0.982. Then I run simulations with values β = 0.999
(annual 0.988), ρ = 0.9, α = 0.97, and δ0 = 0.2, where each period is one month.
The simulations are illustrated in Figure 1.6. Table 1.1 shows the average asset
return and the standard deviation calculated from the simulated data. For example,
for HDDA, I find an average return of 7.59% with a standard deviation of 15.6%
when the initial disappointment parameter δ0 is 0.2. However, for HIDA and DEU,
the average returns are only 2.23% and 1.9%, respectively (no significant difference
between HIDA and DEU). Although there is no one-to-one translation between the
disappointment parameter and the degree of relative risk aversion, the initial dis-
appointment parameter δ0 = 0.2 corresponds to a very low degree of relative risk
aversion.20

Although bonds are not traded in the Lucas economy, the shadow bond return
can be calculated. In the stochastic discount factor framework of asset pricing, any
asset return should satisfy the following equation:

1 = Et[Mt+1 Rt+1]

where Mt+1 is the stochastic discount factor and Rt+1 is the asset return. In my
model, the stochastic discount factor is given by

Mt+1 = β
u′(ct+1)/λ̃t+1

u′(ct )/λt
= β

λt ct

λt+1 ct+1
.

Then I can find the shadow bond return by

R f
t+1 =

1
Et[Mt+1]

=
1
β λt

1
πt+1

ct
cH
t+1
+ (1 − πt+1) ct

cL
t+1

.

From the simulation, I find an average bond return of 1.46% (consistent with the risk-
free rate puzzle) with a standard deviation of 3.75% when the initial disappointment
parameter δ0 is 0.2. Consequently, I obtain a high excess return of 6.13% (the equity
premium puzzle), and volatile stock returns and smooth bond returns (the equity
volatility puzzle) with reasonable parameters.

Themain reason HDDA generates high average returns is that agents undervalue
high returns because of the probability distortion, so they demand very high returns.

20For example, Epstein and Zin (2001) note that, for a range of moderate to large gambles, the
disappointment parameter δ = 1.63 corresponds to a relative risk aversion 10 or less. Moreover,
Routledge and Zin (2010) introduce a one-parameter generalization of Gul’s disappointment aversion
theory and applied it to the Epstein-Zin framework of asset pricing. They use the disappointment
parameter δ = 9 in order to generate stylized facts I discussed above.
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Moreover, when returns are very high, agents happen to be very risk-averse (Point 1
to Point 2 in Figure 1.5), so they underappreciate high returns.

Another empirical fact about the stock market is the predictability of asset
returns, which refers to predictable dynamics of asset returns in the following sense:
when asset prices are high, subsequent long-horizon asset returns tend to be low.
To check the predictability, the following simple regression is usually used:

log(Rt+1) = a + b log
( pt

zt

)
+ ε t+1,

where Rt+1 =
pt+1+zt+1

pt
is the asset return. The predictability of asset returns means

that empirically b is negative, since a high pt
zt
must be followed by a low Rt+1. From

the simulation, I find that â = 4.9 and b̂ = −0.7 (with standard error 0.06). This
regression suggests that a 10% increase in the price-dividend ratio implies a 7%
decrease in the next period return.

1.5 Behavioral Foundations of the History-Dependent Model
In this section, I provide behavioral foundations for the history-dependent model

(1.3) with axioms on the primitive: a preference relation � on the set of intertempo-
ral consumption lotteries L = ∆(R+ ×∆(R+)). There are two different approaches
to characterizing (1.3). First, since the history-dependent model (1.3) is a general-
ization of DEU and a characterization of DEU is standard, I can obtain (1.3) from
DEU by dropping some restrictions of DEU. Second, I can directly characterize
(1.3) by imposing axioms on �.

I startwith the first approach. For notational simplicity, Iwrite
(
pi, (xi; Zi); (pk, (xk ; 0))k,i

)
as

(
pi, (xi; Zi); (X−i; 0)

)
when X = (pk, xk )n

i=1. First, recall the four properties of
DEU discussed in Section 1.3.1: i) simple expected utility, ii) history indepen-
dence, iii) discounted utility, and iv) expected utility aggregator. Then recall that
the history-dependent model (1.3) weakens the first two properties, simple expected
utility and history independence. Therefore, I introduce two axioms that capture the
above two properties.

First, I state an axiom for history independence, which states that if µ is the
certainty equivalent of Z today, then µ is the certainty equivalent of Z after any
history (xi, X ). Formally,

Axiom 1 (Axiom for History Independence) For any X, Z ∈ ∆(R+) and µ ∈ R+,

(Z; 0) � (µ; 0) iff
(
pi, (xi; Z ), (X−i; 0)

)
�

(
pi, (xi; µ), (X−i; 0)

)
for any i.
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Second, I state an axiom for simple expected utility. Simple expected utility
is captured by an axiom on � called strong independence, which states that if a
lottery X today is equivalent to an outcome z tomorrow and a lottery Y today is
equivalent to an outcome t tomorrow; then a mixture αX + (1 − α)Y is equivalent
to a compound lottery (α, (0; z), 1 − α, (0; t)). Formally,

Axiom 2 (Strong Independence) For any X,Y ∈ ∆(R+), z, t ∈ R+, and α ∈ (0, 1),

if (X ; 0) � (0; z) and (Y ; 0) � (0; t), then (αX+(1−α)Y ; 0) � (α, (0; z), 1−α, (0; t)).

Strong independence is slightly stronger than the independence axiom of ex-
pected utility theory. I now can state the first characterization result.

Theorem 2 (Discounted Expected Utility) A continuous preference relation � on
L is represented by a history-dependent model {V0, β,V(x, X )} and satisfies time
consistency; that is, V0(z) = V(x, X ) (z) for any z ∈ R+, the axiom for history
independence, and strong independence if and only if there exists a continuous
functionu : R+ → R+ such that for any L = (pi, (xi; Zi))n

i=1, L′ = (p′k, (x′k ; Z′k ))m
k=1 ∈

L ,

L � L′ iff
n∑

i=1
pi

(
u(xi) + β Eu(Zi)

)
≥

m∑
k=1

p′k
(
u(x′k ) + β Eu(Z′k )

)
.

Theorem 2 formally shows that the history-dependent model (1.3) is a result of
dropping two properties of DEU, history-independence and simple expected utility.

Now I turn to the second approach: imposing three axioms on �. The first
axiom is called regularity, a collection of four standard postulates.

Axiom 3 (Regularity) A preference relation � on L satisfies the following four
conditions.

1. The preference relation � is complete, transitive, and continuous.

2. (Deterministic Monotonicity) For any z, z′ ∈ R+ with z > z′ and X ∈ ∆(R+),

(z; 0) � (z′; 0) and
(
pi, (xi; z), (X−i; 0)

)
�

(
pi, (xi; z′), (X−i; 0)

)
.
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3. (Discounted Utility) There exist a utility function u : R+ → R+ and a discount
factor β ∈ (0, 1) such that for any (x; z), (x′; z′) ∈ R2

+.

(x; z) � (x′; z′) iff u(x) + β u(z) ≥ u(x′) + β u(z′), (1.10)

4. (Expected Utility Aggregator) There exists U2 : R+ → R such that for any
Z = (rk, zk )m

k=1, Z′ = (r′k, z′k )m′
k ′=1 ∈ ∆(R+),

(rk, (0; zk ))m
k=1 � (r′k, (0; z′k ))m′

k=1 iff EU2(Z ) ≥ EU2(Z′). (1.11)

The first part of regularity collects completeness, transitivity, and continuity. I
also assume a very weak form of monotonicity called deterministic monotonicity.
The second half of regularity imposes the other two properties of DEU, discounted
utility and expected utility aggregator. Specifically, the third part states that the agent
uses discounted utility theory when she aggregates utilities of today and tomorrow;
i.e., the utility of (x; z) is u(x) + β u(z) (discounted utility). The fourth part states
that compound lotteries are evaluated by expected utility theory; i.e, the utility of a
compound lottery (rk, (0; zk ))m

k=1 is
∑m

k=1 rkU2(zk ) (expected utility aggregator).

The next two axioms are novel axioms. The second axiom (Axiom 4) is
called separability, which consists of two properties of separability. Separability is
essential for studying history-dependent risk aversion because it allows me to define
a risk preferences for each history independently of other histories. Separability
also implies time consistency.

Axiom 4 (Separability) A preference relation � on L satisfies the following two
properties.

1. (Separability between Parallel Histories) For any (pi, (xi; Zi))n
i=1 ∈ L and

Y,Y ′ ∈ ∆(R+), (
pi, (xi;Y ), (X−i; 0)

)
�

(
pi, (xi;Y ′), (X−i; 0)

)
iff

(
pi, (xi;Y ), (pk, (xk ; Zk ))k,i

)
�

(
pi, (xi;Y ′), (pk, (xk ; Zk ))k,i

)
.

2. (Weak Separability between Today and Tomorrow) For any (pi, (xi; zi))n
i=1 ∈

∆(R+ ×R+) and µ, z ∈ R+,

i) (X ; 0) � (µ; 0) if and only if (X ; z) � (µ; z) and
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ii) (pi, (0; zi))n
i=1 � (0; µ) if and only if (pi, (xi; zi))n

i=1 � (X ; µ).

Suppose the agent receives either of two simple lotteries Y and Y ′ after a history
(xi, X ). Separability between parallel histories requires that a comparison between
the two simple lotteries Y and Y ′ cannot be affected by what she would receive in
histories other than (xi, X ). This axiom is essentially a dynamic version of an axiom
called replacement separability, introduced in Machina (1989). Weak separability
between today and tomorrow essentially requires that the utility of a deterministic
outcome z is history-independent (recall time consistency); i.e., the utility of z is
not affected by a lottery X and a deterministic outcome µ. Specifically, i) states
that if µ is the certainty equivalent of a simple lottery X , then µ is still the certainty
equivalent of X even if the agent will receive a deterministic outcome z in the second
period. Moreover, ii) states that if µ is the certainty equivalent of a compound lottery
(pi, (0; zi))n

i=1, then (0; µ) is still the certainty equivalent of (pi, (0; zi))n
i=1 even if

the agent receives a lottery X in the first period.

The third axiom (Axiom 5) is called additivity.21 Suppose a risky option that
gives z with probability p tomorrow is equally preferred to a safe option µ today.
Similarly, suppose a risky option that gives z′ with probability 1 − p tomorrow is
equally preferred to a safe option λ tomorrow. Additivity requires that a combination
of the two risky options is equally preferred to a combination of the two safe options;
that is, receiving z with probability p and z′with probability 1−p tomorrow is equally
preferred to receiving µ today and λ tomorrow.

Axiom 5 (Additivity) For any
(
p, (0; z), 1 − p, (0; z′)

)
∈ ∆(R+ × R+) and λ, µ ∈

R+, and for any i, j,

if
(
p, (0; z), 1 − p, (0; 0)

)
∼ (µ; 0) and

(
p, (0; 0), 1 − p, (0; z′)

)
∼ (0; λ),

then
(
p, (0; z), 1 − p, (0; z′)

)
∼ (µ; λ).

Finally, I can state the second characterization theorem.

Theorem 3 (History-Dependent Model) A preference relation � on L satisfies
regularity, separability, and additivity if and only if there are strictly increasing

21Additivity is not essential to Theorem 1. I can relax it and Theorem 1 can be modified
accordingly.
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continuous functions V0 : ∆(R+) → R+ and V(x, X ) :∆(R+) → R+ such that for any
L = (pi, (xi; Zi))n

i=1, L′ = (p′k, (x′k ; Z′k ))m
k=1 ∈ L ,

L � L′ iff V0(X ) + β
n∑

i=1
pi V(xi, X ) (Zi) ≥ V0(X ′) + β

m∑
k=1

p′k V(x′
k
, X ′) (Z′k ), (1.12)

and V0(z) = V(x, X ) (z) for each z ∈ R+.

I also have a strong uniqueness result.

Proposition 1 (Uniqueness) Take any preference relation � on L that satisfies
regularity 1-2. If it is represented by triplets (V0, β, {V(x, X )}) and (V ′0, β

′, {V ′(x, X )})
that satisfy time consistency, V0(0) = V ′0 (0), andV0(1) = V ′0 (1), then the two triplets
are identical.

I conclude this section by illustrating that Theorem 1 can be stated in terms of
axioms on � instead of using the history-dependent model {V(x, X )}. Since dynamic
monotonicity is already defined on the primitive �, and the history-dependent
model (1.3) is characterized by Theorem 3, it is sufficient to define the RE in terms
of conditions on �.22 It turns out, the RE is equivalent to the following condition.

Definition 5 (Reinforcement Effect) For any simple lottery X ∈ ∆(R+) and xi, x j ∈

supp(X ) with xi > x j , for any Z ∈ ∆(R+) and µ ∈ R+,

if
(
p j, (x j ; Z ), (X− j ; 0)

)
�

(
p j, (x j ; µ), (X− j ; 0)

)
, then(

pi, (xi; Z ), (X−i; 0)
)
�

(
pi, (xi; µ), (X−i; 0)

)
.

1.6 Specifying Risk Preferences: Expected Utility, Disappointment Aversion,
and Rank-Dependent Utility

So far, I have discussed a relation between risk preferences for different histories,
but I have not focused on specific functional forms for V0 and V(x, X ). In this section,
I obtain three special cases of the history-dependent model (1.3) by specifying V0

and V(x, X ). Specifically, I apply the history-dependent model (1.3) to three well-
known models of choice under risk: expected utility, the disappointment aversion
theory of Gul (1991), and the rank-dependent utility of Quiggin (1982) (which

22I can also state right-continuity and nontriviality in terms of axioms on the primite �.
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subsumes the cumulative prospect theory of Tversky and Kahneman 1992). By
doing so, I demonstrate the generality of Theorem 1 in the following two ways.
First, three special cases demonstrate the generality of the history-dependent model
(1.3). Second, for these three special cases, I show that nontriviality, the main
assumption of Theorem 1, is equivalent to the condition u(+∞) = +∞ where u

is a Bernoulli utility function. This illustrates that nontriviality is equivalent to
a condition that is unrelated to history dependence; i.e., dynamic monotonicity is
almost fully responsible for the RE.

Specifying V0 and V(x, X ) is useful for the following three reasons. First, I can
derive a simple condition that is equivalent to the RE in each special case, which
allows me to provide further interpretations for the RE. Second, although I consider
objective lotteries, I can demonstrate that the way my model explains the RE is
similar to a belief-based explanation (Section 1.6.4). Lastly, these specifications
make the history-dependentmodel (1.3)more tractable and applicable (demonstrated
in Section 1.4).

I call the three special cases the history-dependent expected utility (HDEU),
history-dependent disappointment aversion (HDDA), and history-dependent rank-
dependent utility (HDRDU), respectively. Behavioral foundations for HDEU and
HDDA are provided in Appendix A.2. Let me start with the definition of HDEU.

1.6.1 History-Dependent Expected Utility (HDEU)
Here I introduce a dynamic version of expected utility theory in which the

concavity of an agent’s Bernoulli utility function changes with her experiences.
More specifically, today, the agent uses expected utility theory with some Bernoulli
utility function u; i.e., the utility of a simple lottery X is

V0(X ) = E[u(X )] =
n∑

i=1
pi u(xi).

Tomorrow, u becomes uµ(x, X ) after a history (x, X ) for some positive real number
µ(x, X ). In other words, the utility of Z after the history (x, X ) is

V(x, X ) (Z ) =
(
E[(u(Z ))µ(x, X )]

) 1
µ(x, X)

=

( m∑
k=1

rk
(
u(zk )

) µ(x, X )
) 1
µ(x, X)

.

Therefore, in the history-dependent expected utility (HDEU), the utility of an in-
tertemporal consumption lottery (pi, (xi; Zi))n

i=1 ∈ L is

W
(
(pi, (xi; Zi))n

i=1
)
= E[u(X )] + β

n∑
i=1

pi

(
E[(u(Zi))µ(xi, X )]

) 1
µ(xi, X)

. (1.13)
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Since µ(x, X ) dictates the concavity of the utility function uµ(x,X ), the RE is
equivalent to the condition:

µ(x, X ) ≥ µ(x′, X ) when x > x′.

1.6.2 History-Dependent Disappointment Aversion (HDDA)
I now introduce a dynamic version of the disappointment aversion theory of

Gul (1991). Disappointment aversion theory is a one-parameter generalization of
expected utility theory. In disappointment aversion theory, an agent overweights
the probabilities of small outcomes and underweights the probabilities of large
outcomes. The degree of such probability distortion is summarized by a single
parameter δ0, a disappointment parameter. In particular, for a given lottery X , the
agent overweights the probabilities of outcomes that are not larger than the certainty
equivalent of X by 1+ δ0. Then the certainty equivalent of the lottery X , denoted by
µ(X |δ0), is a unique solution of the following implicit formula where µ is variable:

u(µ) =
∑n

i=1 pi (1 + δ0 1{xi ≤ µ}) u(xi)∑n
i=1 pi (1 + δ0 1{xi ≤ µ})

.23 (1.14)

Note that the disappointment parameter dictates the degree of risk aversion (for a
fixed u); that is, a higher δ0 implies a higher degree of risk aversion.

In history-dependent disappointment aversion (HDDA), the agent’s disappoint-
ment parameters change with her experiences. In particular, tomorrow, the agent’s
initial disappointment parameter δ0 changes to δ(x, X ) after a history (x, X ). Then
the certainty equivalent of a lottery Z after (x, X ), denoted by µ(Z |δ(x, X )), is a
unique solution to

u
(
µ
)
=

∑m
k=1 rk (1 + δ(x, X ) 1{zk ≤ µ}) u(zk )∑m

k=1 rk (1 + δ(x, X ) 1{zk ≤ µ})
.

Therefore, in HDDA, the utility of (pi, (xi; Zi))n
i=1 ∈ L is

u(µ(X |δ0)) + β
n∑

i=1
pi u

(
µ(Zi |δ(xi, X ))

)
. (1.15)

Since the disappointment parameter dictates the degree of risk aversion, the RE
is equivalent to the following simple condition:

δ(x, X ) ≤ δ(x′, X ) when x > x′.

23Note that (1.8) is a special case of this formula.
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1.6.3 History-Dependent Rank-Dependent Utility (HDRDU)
I then introduce a dynamic version of rank-dependent utility in which distorted

probabilities change with histories. The rank dependent utility of Quiggin (1982) is
a modification of the prospect theory of Kahneman and Tversky (1979) that satisfies
monotonicity in the static environment.

In rank-dependent utility, the agent distorts probabilities by some function π
and the utility of X is

V0(X ) =
n∑

i=1

(
π(Pi) − π(Pi+1)

)
u(xi),

where x1 > . . . > xn and Pi =
∑n

k=i pk . In the history-dependent rank-dependent
utility, π becomes πµ(x, X ) after a history (x, X ). In other words, the utility of Z after
(x, X ) is

V(x, X ) (Z ) =
m∑

k=1

[(
π(Rk )

) µ(x, X )
−

(
π(Rk+1)

) µ(x, X )] u(zk ),

where z1 > . . . > zm and Rk =
∑m

s=k rs. Therefore, in HDRDU, the utility of an
intertemporal consumption lottery (pi, (xi; Zi))n

i=1 ∈ L is

n∑
i=1

(
π(Pi)−π(Pi+1)

)
u(xi)+ β

n∑
i=1

pi

( mi∑
k=1

[(
π(Ri,k )

) µ(xi, X )
−
(
π(Ri,k+1)

) µ(xi, X )
]
u(zi,k )

)
,

(1.16)
where zi,1 > . . . > zi,mi and Ri,k =

∑mi

s=k ri,s for each i.

It turns out that, the concavity of the distortion function dictates the degree of
risk-aversion. Therefore, in HDRDU, the RE is equivalent to the following simple
condition:

µ(x, X ) ≥ µ(x′, X ) when x > x′.

1.6.4 Probability Distortion, Belief Change, and Nontriviality
Mymodel provides the preference-based explanation of the RE; that is, an agent

becomes less risk-averse after a good history than after a bad history. However, the
belief-based explanation is another obvious possibility: the agent becomes less
pessimistic after a good history and acts as if she is less risk-averse because she
thinks probabilities of high outcomes are higher than she previously thought. I have
two remarks on the belief-based explanation. First, the belief-based explanation is
not consistent with the experiment of Thaler and Johnson (1990) because in their
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experiment, the subjects are asked to compare objective lotteries. Second, the way
the above three special cases of the history-dependent model explain the RE is very
similar to the belief-based explanation. To illustrate, consider HDDA, in which the
utility of Z = (r, z, 1 − r, 0) after (x, X ) is

V(x, X ) (Z ) =
r

1 + (1 − r) δ(x, X )
u(z).

Note that the distorted probability r
1+(1−r) δ(x,X ) can be interpreted as the agent’s

subjective belief. Therefore, the agent exhibits the RE because she acts as if her
belief changes with her experiences. In particular, when δ(x, X ) ≤ δ(x′, X ), I have

r
1 + (1 − r) δ(x, X )

≥
r

1 + (1 − r) δ(x′, X )
.

Therefore, the agent acts as if she becomes less pessimistic after a good history
(x, X ) than a bad history (x′, X ). Similar to HDDA, in HDRDU, the utility of
Z = (r, z, 1 − r, 0) after (x, X ) is

V(x, X ) (Z ) =
[
1 − (π(1 − r))µ(x, X )] u(z)

and the distorted probability 1 − (π(1 − r))µ(x, X ) can be interpreted as the agent’s
subjective belief. In HDEU, the utility of Z = (r, z, 1 − r, 0) after (x, X ) is

V(x, X ) (Z ) = r
1

µ(x, X) u(z),

and r
1

µ(x, X) can be interpreted as the agent’s subjective belief.24

Now it is easy see that why nontriviality is equivalent to the condition u(+∞) =
+∞. Let π(x, X ) (r) be a distorted version of probability r after a history (x, X ),
which can be obtained in all three cases. Note that if there exists Z such that
V(x, X ) (Z ) > V(x, X ) (Z ), then there is some r ∈ (0, 1) such that π(x, X ) (r) > π(x′, X ) (r).
Therefore, nontriviality is satisfied when u(+∞) = +∞ since

V(x, X ) (r, z, 1−r, 0)−V(x′, X ) (r, z, 1−r, 0) =
(
π(x, X ) (r)−π(x′, X ) (r)

)
u(z) → +∞ as z → +∞.

24In HDEU, the belief-based interpretation is limited to binary lotteries while in HDDA and
HDRDU, the belief-based interpretation works for any lottery Z .
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Figure 1.6: The Price-Dividend Ratio (blue) and the Disappointment Parameter
(green)
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C h a p t e r 2

CHOOSING WITH THE WORST IN MIND: A
REFERENCE-DEPENDENT MODEL

2.1 Introduction
Rational choice theory does not allow for preference reversals, which occur

when an agent chooses alternative x over alternative y in some cases but she
chooses y over x in other cases. However, many experimental, marketing, and
field studies suggest that the presence of an irrelevant third alternative could cause
a preference reversal. Preference reversals are typically explained by models of
reference-dependent behavior in which the agent’s basis for decision making, her
reference point, changes depending on the situations that she faces. In this paper,
we axiomatically develop a reference-dependent model with endogenous reference
points that is consistent with two well-known preference reversals, the compromise
effect and the attraction effect (to be defined below).

The notion of reference dependence is first introduced to economics byMarkowitz
(1952) and is formalized by Kahneman and Tversky (1979) in the context of risky
choice. Later, Tversky and Kahneman (1991) provide the first explicit model of
reference-dependent preferences on riskless choice by extending Kahneman and
Tversky (1979). In their model, they treat reference points as exogenous and explain
many anomalies of the standard model using the following two properties: i) people
are more sensitive to losses than gains (loss aversion) and ii) the marginal values of
both gains and losses decrease with their distance from the reference point (diminish-
ing sensitivity). Despite their explanatory power, reference-dependent models with
exogenous reference points can be consistent with essentially any choice behavior
by freely choosing reference points. In order to have a model that makes testable
predictions for observed behavior, we need to explicitly model reference points in
a way that they are determined by observable factors. Therefore, in this paper we
propose a model in which reference points endogenously arise from the menu that
the agent faces. Our model will be flexible enough to allow for the compromise
and attraction effects, but restrictive enough to give bounds on preference reversals.
Moreover, the explicit modeling of reference points is useful when we apply the
model to different contexts such as intertemporal choice and risky choice.
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Figure 2.1: Compromise and Attraction Effects

Before introducing our modeling approach, let us discuss the compromise and
attraction effects, two well-documented deviations from rational choice theory.1
Throughout the paper, we focus on alternatives with two attributes and the agent’s
preference is increasing in both attributes. For example, the first dimension could
be the inverse of the price (cheapness) of the good and the second dimension could
be the quality of the good. In both the compromise and attraction effects, the agent
first compares two alternatives x = (x1, x2), a cheap and low quality good, and
y = (y1, y2), a medium price and medium quality good. Since x1 > y1 and x2 < y2,
the agent faces a tradeoff between price and quality. Suppose x is chosen over y.
Then the two effects relate to the consequences of adding a very expensive third
alternative.2

In the compromise effect, the introduction of a very expensive high quality
good z = (z1, z2) causes a preference reversal; that is, y is preferred over x in the
presence of z (the left hand side of Figure 2.1). The common explanation is that
the very expensive high quality good z makes the cheap low quality good x seems
like an extreme alternative and people compromise by choosing y since they have a

1The compromise effect and the attraction effect are first documented in the experimental studies
of Simonson (1989) andHuber et al. (1982), respectively, and confirmed bymany studies in consumer
choice (e.g., Simonson and Tversky 1992, Tversky and Simonson 1993, Ariely and Wallsten 1995,
Herne 1998, Doyle et al. 1999, Chernev 2004, and Sharpe et al. 2008). These effects are also
demonstrated in the contexts of choice over risky alternatives (Herne 1999), choice over policy
issues (Herne 1997), and choice over political candidates (Sue O’Curry and Pitts 1995), among
others.

2Here x1 is the lowest price and z1 is the highest price while x2 is the lowest quality and z2 is
the highest quality.
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tendency to avoid extremes.

In the attraction effect (sometimes called the asymmetric dominance effect or
the decoy effect), the introduction of a very expensive, but medium quality good
z’ = (z1, z′2) causes a preference reversal; that is, y is preferred over x in the presence
of z’ (the right hand side of Figure 2.1). The common explanation is that since the
medium quality but expensive good z’ is dominated by the medium quality, medium
price good y, but not by x, the third alternative makes y seem more attractive than
x. In other words, z’ works as a decoy for y.

The common understanding among psychologists is that the attraction and
compromise effects are not separate phenomena, but rather two manifestations of
the same behavior. Indeed, in the seminal paper by Simonson (1989), the same
group of subjects exhibited the two effects in roughly the same magnitude. The
aim of this paper is to develop a model that can provide a unified explanation
for the two effects using the aforementioned diminishing sensitivity property of
Tversky and Kahneman (1991). To illustrate the idea, recall that in both effects the
introduction of a very expensive good causes a preference reversal. Then note that
the two effects can be explained by the following rationale: adding z1 hurts x1 over
y1. In our model, this rationale will be an implication of diminishing sensitivity.
More specifically, we develop a model in which the reference point for the given
menu is a vector that consists of the minimums (e.g., the worst price and the worst
quality) of each dimension of the menu. Therefore, since adding z1 decreases the
minimum of the first dimension of the menu {x, y}, the marginal value of x1 over
y1 decreases by diminishing sensitivity. Intuitively, adding a very expensive good
makes a moderately expensive good seems like relatively cheaper, consequently the
advantage of x in price is less important. In other words, z1 hurts x1 over y1. We call
the above rationale weak diminishing sensitivity, and it not only rationalizes the two
effects, but also has three additional implications that provide bounds on preference
reversals.

Our explanation of the compromise and attraction effects is consistent with the
common explanations of the two effects since adding a very expensive alternative
makes the advantage of y in quality more important (attraction effect) and makes
people to avoid low quality alternatives (compromise effect).

We behaviorally characterize both diminishing sensitivity andweak diminishing
sensitivity. In particular, we show that weak diminishing sensitivity is equivalent
to observing the attraction effect, while diminishing sensitivity is equivalent to
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observing the attraction effect in a more limited way (Section 2.3.2). In other words,
we characterize diminishing sensitivity by bounds on the attraction effect. This result
illustrates that diminishing sensitivity is not only sufficient for the compromise and
attraction effects, but also necessary.

We focus on a choice theoretic environment in which an agent makes choices
from menus of two-attribute alternatives. To introduce our model, we use the
following formulation of Tversky and Kahneman (1991): the total utility of a two-
attribute alternative x for a given reference point r = (r1, r2) is

U
(
x|r

)
= f1

(
u1(x1) − u1(r1)

)
+ f2

(
u2(x2) − u2(r2)

)
. (2.1)

where u1 and u2 are strictly increasing utility functions and f and g are strictly
increasing distortion functions. In other words, the utility of the i-th dimension xi

is evaluated with respect to the reference for the i-th dimension ri and distorted by
the distortion function fi. Note that when f1 and f2 are linear, (2.1) reduces to the
standard additive utility model.

Now we turn to our model in which we specify (2.1) in the following two ways.
First, we explicitly model reference points in order to obtain predictive power, while
Tversky and Kahneman treated r as exogenous. In particular, the agent uses a vector
that consists of the minimum of each dimension of the menu as a reference point;
that is, mA is the reference point of a menu A where mA

i is the minimum of the
i-th dimension of A. Since utility functions are strictly increasing, mA

i is the worst
attribute of i-th dimension of A. Second, we also require f1 = f2 in order to rule
out violations of transitivity (see Remark 1 in Section 2.2). Then in our model, the
total utility of an alternative x of a given menu A is

UA(x) = f
(
u1(x1) − u1(mA

1 )
)
+ f

(
u2(x2) − u2(mA

2 )
)
.

We take this particular approach using the minimums as references for several
reasons. First, as we discussed earlier, in order to be consistent with the two effects,
the reference point should decrease when (z1, z2) or (z1, z′2) (i.e., a very expensive
good) is added. Second, if we consider more general models in which reference
points are determined by several factors in the menu, then the predictive power of the
model will be much weaker. For example, if we allow any kind of menu dependence
for reference points, then the model will not have any testable restriction on observed
behavior (Section 2.5). So we need to restrict our attention to a particular kind of
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menu dependence such as dimension-by-dimension minimums.3 Lastly, our model
is one of the most restrictive specifications of (2.1) because it has only two additional
“parameters" f andmA compared to the standard additive utilitymodel. Without one
of the above two “parameters", the model reduces to the standard model. Therefore,
our model is restrictive enough to make strong predictions (Sections 2.2.3, 2.3.2,
and 2.4) but flexible enough to capture well-known deviations from the standard
choice theory (Section 2.2.2).

One of the main contributions of the paper is that we axiomatically characterize
the model by two novel axioms called independence from non-extreme alternatives
(INEA) and reference translation invariance (RTI) in addition to standard axioms
(Section 2.3). Both INEA and RTI are weakenings of the weak axiom of revealed
preference (WARP). The essence of the model will be captured by INEA, and INEA
can be tested quite easily in experiments.

We apply the model to two different contexts in Section 2.4: intertemporal
choice and risky choice. In intertemporal choice, the main implication of the model
is that borrowing constraints produce a psychological pressure to move away from
the constraints even if they are not binding. To illustrate the intuition, consider a
model with two periods, today and tomorrow, and suppose there is a non-binding
borrowing constraint today. In the standard model, non-binding borrowing con-
strain would not affect the optimal consumption levels. However, in our model, the
constraint decreases the maximum level for today’s consumption, and it increases
the minimum level for tomorrow’s consumption. By diminishing sensitivity, to-
morrow’s consumption becomes more valuable as the reference (i.e., the minimum
level) for tomorrow’s consumption increases. Therefore, the consumer increases
tomorrow’s consumption and decreases today’s consumption.

It is common to explain deviations from the standard model of consumer choice
such as excess sensitivity of consumption to income and a hump-shaped consumption
profile with liquidity or borrowing constraints (see Attanasio 1999 and Attanasio
and Weber 2010). But empirically it cannot be determined whether constraints

3It is very natural to think that people care about how attractive a given attribute is compared
to the worst and best attributes. In this paper, we focus on the worst (min) attribute instead of
the the best (max) attribute for two reasons. First, a model in which references are determined
only by maximums cannot be consistent with the attraction effect. Second, when an alternative
that dominates all alternatives in a menu is added to the menu, comparisons between alternatives
in the menu cannot be observed. In Appendix B.3, we will consider a model in which reference
points depend on both the maximums and the minimums. The main implications stay the same, but
behavioral predictions are weaker.
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were binding at the time of the decision. Our model gives a justification for those
explanations with constraints since liquidity constraints can have an effect on choices
even if they are not binding.

In risky choice, our model allows contradicting risk behaviors: an agent makes
a risky choice in case 1 and makes a safe choice in case 2 and the estimated degrees
of risk aversion (in a sense of EUT) from two cases contradict each other. In both
applications, the driving force of the results is diminishing sensitivity.

We discuss existing models of reference-dependent preferences in the related
literature. To the best of our knowledge, Ok et al. (2014) is the only paper that
axiomatically develops a model with purely endogenous reference points. Ok et al.
(2014) also weaken WARP and can accommodate the attraction effect. The main
difference is that we explicitly model reference points, while they identify reference
points from observed choices in the spirit of classical revealed preference analysis.
The explicit modeling gives us more flexibility to apply our model to many different
contexts and to use diminishing sensitivity to provide bounds on preference reversals.
Moreover, Ok et al. (2014) cannot capture the compromise effect.4

A challenge to many existing reference-dependent models that can rationalize
the compromise and attraction effects is that they cannot predict that a preference
reversal is unlikely when the third alternative is obviously dominated by both x and
y (Masatlioglu and Uler 2013). However, our model can predict that a preference
reversal is unlikely when the third alternative is dominated by both x and y. More-
over, our model predicts the following implication of the attraction effect: when
there is the fourth alternative which is a decoy for x, then x should chosen over y.
Intuitively, the decoy effect of z’ for y as in the attraction effect should be canceled
out by the decoy effect of the fourth alternative for x. See Section 2.2.3 for more
detailed discussions of the above predictions and additional predictions.

The paper is organized as follows. In Section 2.2.2, we formally define the
model and diminishing sensitivity. We demonstrate that our model is not only
consistent with the compromise and attraction effects, but it also connects the two
effects through weak diminishing sensitivity. Section 2.3 discusses a behavioral
foundation of the model. Section 2.4 discusses applications to intertemporal and
risky choice. Section 2.5 shows that models with general menu-dependent reference

4In their model, an alternative that causes a preference reversal (e.g., z of {x, y, z} in the com-
promise effect) should be unambiguously worse than the chosen alternative (y of {x, y, z}). See
Proposition 2 of Ok et al. (2014).
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points have no testable implications on observed behavior. Section 2.6 discusses
the related literature. The proofs and three extensions of the model are collected in
Appendix B.

2.2 Model
Let X = X1 × X2 ≡ R

2
+ be the set of all alternatives and A ⊂ 2X \ {∅} be a

collection of finite subsets (menus) of X . An alternative with two attributes can
have many different interpretations: i) a single consumer good with two attributes
(price and quality), ii) a consumption bundle of two goods, iii) an allocation to two
agents, and iv) a state-contingent prospect.5

Let mA = (mA
1 ,m

A
2 ) ≡

(
minx∈A x1,minx∈A x2

)
for each A ∈ A (i.e., the meet

of A). We denote generic members of X by x, y, z, and t. We write x> y if x, y,
x1 ≥ y1, and x2 ≥ y2, and x>>y if x1 > y1 and x2 > y2.

The primitive is a choice correspondence C :A ⇒ X where C(A) is non-empty
and C(A) ⊆ A for each A ∈ A . First, we define our model.

Definition 6 A choice correspondence C is an additive reference dependent choice
(ARDC) if there are strictly increasing functions f , u1, u2 : R+ → R+ such that
f (0) = u1(0) = u2(0) = 0 and for any menu A ∈ A ,

C(A) = arg max
x∈A

{
f
(
u1(x1) − u1(mA

1 )
)
+ f

(
u2(x2) − u2(mA

2 )
)}
. (2.2)

Denote an ARDC with functions f , u1, u2 by C( f , u1, u2). Throughout the paper,
we assume that f , u1, u2 are continuous and surjective. Note that when f is linear,
ARDC reduces to the standard additive utility model:

C(A) = arg max
x∈A

{
u1(x1) + u2(x2)

}
.

Now we define two induced preferences for a given C. The first preference �
represents binary comparisons. For example, if x is chosen over y from the binary
menu {x, y}, then we have x � y. The second preference is defined from choices on
tripleton menus. For example, for a given alternative t, if x is chosen over y in the
presence of t, then we have x �t y.

Definition 7 (Induced Preferences) For any x, y, t ∈ X ,
5It is not difficult to extend our model to the context of choices from menus with n-attribute

alternatives. See Appendix B.2.
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Figure 2.2: Diminishing Sensitivity When u1(x1) = x

i) x � y if and only if {x} ∈ C
(
{x, y}) and

ii) x �t y if and only if {x} ∈ C
(
{x, y, t}) .

Rational choice theory relies on theweak axiom of revealed preference (WARP),
which requires that if an alternative is not chosen from a menu, then eliminating that
alternative does not effect the choice from the menu. Under WARP, x �t y implies
x � y since WARP requires that the irrelevant third alternative t should not affect
the comparison between x and y. In this paper, we weaken WARP and allow for
preference reversals such as x � y and y �t x.

Finally, note that for any ARDC C( f , u1, u2), � satisfies transitivity (x � y and
y � z imply x � z) as illustrated in the following remark.

Remark 1. Take any binary menu {x, y} with x1 > y1 and x2 < y2. Note that the
reference point of {x, y} is (y1, x2). Therefore, we have

x � y ⇔ f
(
u1(x1) − u1(y1)

)
+((((((((((

f
(
u2(x2) − u2(x2)

)
≥

((((((((((
f
(
u1(y1) − u1(y1)

)
+ f

(
u2(y2) − u2(x2)

)
⇔ u1(x1) + u2(x2) ≥ u1(y1) + u2(y2).

2.2.1 Diminishing Sensitivity
Diminishing sensitivity is a widely used behavioral property in economics and

will be a driving force of our results. We define it in terms of functional properties
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on f as in Tversky and Kahneman (1991). It requires that the marginal increase of
utility is decreasing in the distance from the reference point.

Definition 8 (Diminishing Sensitivity) An ARDC C( f ,u1,u2) satisfies diminishing
sensitivity if for any x1, y1, r1, r′1 such that x1 > y1 and r1 > r′1,

f
(
u1(x1) −u1(r1)

)
− f

(
u1(y1) −u1(r1)

)
> f

(
u1(x1) −u1(r′1)

)
− f

(
u1(y1) −u1(r′1)

)
.6

(2.3)

Diminishing sensitivity is equivalent to the strict concavity of f and it is illus-
trated in Figure 2.2.7

We can phrase diminishing sensitivity in the following way: the relative value
of the i-th dimension increases when its reference increases. This interpretation
will be useful when we discuss the compromise and attraction effects. Figure
2.3 demonstrates how indifference curves change as reference points change under
diminishing sensitivity. Here curves Ir represent indifference curves for the reference
point r. For example, I(1, 1) (solid curve) and I(3, 1) (dashed curve) are indifference
curves such that

√
x1 − 1+

√
x2 − 1 = 2.7 and

√
x1 − 3+

√
x2 − 1 = 2, respectively.

As the reference for the first dimension 1 increases to 3 (the reference point (1, 1)
shifts to (3, 1)), the indifference curve I(1, 1) (solid) becomes steeper since the first
dimension is more valuable now and shifts to I(3, 1) (dashed). On the other hand,
as the reference for the second dimension 1 increases to 3 (the reference point
(1, 1) shifts to (1, 3)), the indifference curve I(1, 1) becomes flatter since the second
dimension is more valuable now and shifts to I(1, 3) (dotted). This intuition will be
the driving force of our results in Section 2.2.2 and Section 2.2.4.

Finally, note that the relative value of x1 over y1 in the presence of r1 decreases
when r′1 is added since f

(
u1(x1) − u1(r1)

)
− f

(
u1(y1) − u1(r1)

)
> f

(
u1(x1) −

u1(r′1)
)
− f

(
u1(y1) − u1(r′1)

)
. Therefore, we can rephrase diminishing sensitivity in

the following way: adding r′1 hurts x1 over y1 in the presence of r1 ∈ (r′1, y1]. In
the introduction, we suggested a rationale that can explain both the compromise and

6By the additive nature of the model, diminishing sensitvity can be defined only using f and u1.
Indeed, diminishing sensitvity is equivalent to requiring f

(
u2(y2) − u2(r2)

)
− f

(
u2(x2) − u2(r2)

)
>

f
(
u2(y2) − u2(r ′2)

)
− f

(
u2(x2) − u2(r ′2)

)
for any y2 > x2 and r2 > r ′2.

7Diminishing sensitivity may be an implication of a general law of human perception in psy-
chology called the Weber-Fechner law. The law states that perceived intensity is proportional to the
logarithm of the stimulus (or to more general concave functions). In other words, the law states that
people exhibit diminishing sensitivity to stimuli in general. This connection is suggested by Bruni
and Sugden (2007) and also discussed in Bordalo et al. (2012) and Bordalo et al. (2013).
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Figure 2.3: The Effect of a Shift in Reference Points When f (t) =
√

t.

attraction effects: adding z1 hurts x1 over y1. This rationale can be obtained from
diminishing sensitivity by setting r1 = y1 and r′1 = z1. We call this rationale weak
diminishing sensitivity and define it formally in the following way.

Definition 9 (Weak Diminishing Sensitivity) An ARDC C( f ,u1,u2) satisfies weak
diminishing sensitivity if for any x1, y1, and z1 with x1 > y1 > z1,

f
(
u1(x1) − u1(y1)

)
+ f

(
u1(y1) − u1(z1)

)
> f

(
u1(x1) − u1(z1)

)
. (2.4)

Now we will discuss the compromise and attraction effects and implications
of diminishing sensitivity. Section 2.3.2 provides two behavioral postulates (on
choices) equivalent to two diminishing sensitivities, and argues that diminishing
sensitivity is not just sufficient, but also necessary for the two effects.

2.2.2 Implications of Diminishing Sensitivity
In this subsection, weak diminishing sensitivity plays an important role. First,

we show the equivalence between the attraction and compromise effects and weak
diminishing sensitivity (Proposition 2). Second, we show that more concavity (of
f ) means that we are more likely to observe the compromise and attraction effects
(Proposition 3). Third, we discuss additional implications of weak diminishing
sensitivity that are testable in lab experiments (Observation 1 and Proposition 4). In
Section 2.2.3, we discuss the effects of adding a fourth alternative and symmetrically
dominated third alternative, and their relation to the compromise and attraction
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effects. Explicit modelling of reference points (especially using minimums) will be
useful to have predictions which are either consistent with experimental results or
can be tested easily.

Although weak diminishing sensitivity is enough to rationalize the compromise
and attraction effects, the intuition of diminishing sensitivity will be more useful to
interpret the two effects (e.g., Figure 2.4). Moreover, in section 2.4, we will apply
our model to two different contexts of decision making, and diminishing sensitivity
will be necessary to obtain our results. Now we turn to the first implication of weak
diminishing sensitivity.

Proposition 2 Suppose C = C( f ,u1,u2). Take any x, y, z, and z’ = (z1, z′2) ∈ X such
that x1 > y1 > z1 and x2 < z′2 < y2 < z2. Suppose z2 is small enough such that z
cannot be chosen from {x, z}. Then the following statements are equivalent.

i) (Compromise effect) The alternative x is chosen over y from menu {x, y}, but
y is chosen over x from {x, y, z}.

ii) (Attraction effect) The alternative x is chosen over y from menu {x, y}, but y is
chosen over x from {x, y, z’}.

iii) (Weak diminishing sensitivity) C exhibits weak diminishing sensitivity at
x1, y1, z1 in the following way:

f
(
u1(x1)−u1(y1)

)
> f

(
u2(y2)−u2(x2)

)
> f

(
u1(x1)−u1(z1)

)
− f

(
u1(y1)−u1(z1)

)
.

The first two statements i) and ii) are the formal definitions of the compromise
and attraction effects, respectively. Note that in the first case, adding z to {x, y}makes
x an extreme option and y a compromise option. In the second case, z’ = (z1, z′2) is
dominated by y since y1 > z1 and y2 > z′2.

The intuitive argument behind Proposition 2 is given in Figure 2.4. Here I(y1, x2)

(solid curve) is the indifference curve for the reference point (y1, x2) of {x, y} and
I(z1, x2) (dashed curve) is the indifference curve for the reference point (z1, x2) of
{x, y, z} (also {x, y, z’}). In both the compromise and attraction effects, adding a third
alternative changes the reference point (y1, x2) to (z1, x2). Then by diminishing
sensitivity, the second dimension becomes more valuable since the reference of the
first dimension decreased. Therefore, the indifference curve I(y1, x2) (solid curve)
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Figure 2.4: Compromise Effect, Attraction Effect, and Diminishing Sensitivity

becomes flatter and should shift left to I(z1, x2) (dashed curve), which helps y to be
chosen over x.

Note that our explanations are consistent with common rationales for the two
effects. A common rationale for the compromise effect is that people avoid extreme
options. Similarly, in our model, the agent also avoids extremes because of the strict
concavity of f . A rationale for the attraction effect is that a decoy z’ makes y more
attractive, i.e., the decoy effect. However, it must be that y becomes more attractive
because of the second dimension rather than the first dimension since y1 < x1.
Similarly, in our model, the second dimension becomes more valuable compared to
the first dimension because of diminishing sensitivity. Next, we will show that the
compromise and attraction effects are more likely to be observed when f is more
concave.

Proposition 3 (More Concave, More Preference Reversals) Take any twoARDCs
C( f , u1, u2) and C( f ′, u1, u2) and {�t} and {�′t } are induced preferences, respectively.
Suppose f ′ is more concave than f ; that is, there is some strictly concave and
increasing function h such that f ′ = h( f ). Then for any x, y, z∈ X and z′2 ∈ X2 such
that x1 > y1 > z1 and x2 < z′2 < y2 < z2, x ≺(z1, z′2) y implies x ≺′(z1, z′2) y and x ≺z y
implies x ≺′z y.

This proposition shows that the concavity of f measures how likely we are to
observe preference reversals. Indeed, when f is linear, our model reduces to the
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Figure 2.5: Two Decoy Effect and Two Compromise Effect

standard additive utility which does not allow preference reversals.

2.2.3 Implications of the Compromise and Attraction Effects, and Bounds on
Preference Reversals

When can we say our model is a good model of the compromise and attraction
effects? We argue that our model needs to i) be consistent with common expla-
nations of the compromise and attraction effects; and ii) predict implications of
the compromise and attraction effects. In the previous subsection, we argued that
our explanations are consistent with common explanations of the compromise and
attraction effects. We now will argue that predictions of our model are consistent
with implications of the compromise and attraction effects.

Implication of the Attraction Effect – Two Decoy Effect: The usual explanation
of the attraction effect says that z’ works as a decoy for y, so y is chosen over x
in the presence of z’. Then we can consider the following obvious implication of
the attraction effect: If we introduce a fourth alternative which is a decoy for x,
then the decoy effect of z’ for y should be cancelled out by the decoy effect of the
fourth alternative for x. We call it the two decoy effect, which is confirmed by the
experimental result of Teppan and Felfernig (2009). In fact, our model is consistent
with the two decoy effect, and the intuition is given in the left hand side of Figure
2.5.

To illustrate, suppose we add (k1, t2) to {x, y, z’} where (k1, t2) is dominated by
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x (i.e., k1 < x1 and t2 < x2), but not by y (i.e., y1 < k1). The model predicts that
the decoy effect of z’ to y should be cancelled out with the decoy effect of (k1, t2) to
x. Note that when (k1, t2) is added, the reference point shifts down to (z1, t2) since
s < p. So the indifference curve I(z1, x2) (dashed curve) becomes steeper and shifts
to I(z, s) (dotted curve) as the reference point (z1, x2) shifts to (z1, t2).8 In other
words, although z1 hurts x1 over y1, it should be cancelled out by t2 since t2 also
hurts y2 over x2. Therefore, it is more likely that x is chosen from {x, y, z’, (k1, t2)}.

Implication of the Compromise Effect – Two Compromise Effect: The usual
explanation of the compromise effect says that zmakes x an extremeoption, so people
compromise to y. Consider the following obvious implication of the compromise
effect: If we add a fourth alternative which is more extreme than x, then x is
not an extreme option anymore, so people would not avoid x. We call it the two
compromise effect. In fact, our model is consistent with the two compromise effect,
and the intuition is given in the right hand side of Figure 2.5.

To illustrate, suppose we add (k′1, t2) to {x, y, z} where x1 < k′1 and t2 < x2.
We will obtain an argument which is very similar to the two decoy effect. Note that
when (k′1, t2) is added, the reference point shifts down to (z1, t2) since t2 < x2. Note
that the three indifference curves in the right hand side of Figure 2.5 are identical
to the three indifference curves in the left hand side of Figure 2.5. Therefore, it is
more likely that x is chosen from {x, y, z, (k′1, t2)}.

Symmetric Dominance: The above arguments also suggest that if we add a sym-
metrically dominated alternative (z1, t2) to the binary menu {x, y}, we are less likely
to observe a preference reversal, compared to the compromise and attraction effects
(see Figure 2.6). In fact, this prediction is also consistent with the experimen-
tal results of Masatlioglu and Uler (2013). Observation 1 shows this argument
formally.

Observation 1: Suppose C( f , u1, u2) satisfies weak diminishing sensitivity. For any
x, y and z1, z′2, and t2 with x1 > y1 > z1 and y2 > z′2 > x2 > t2, if x ≺(z1, t2) y, then
x ≺(z1, z′2) y.

8Note that I(z1, t2) (dotted curve) is very similar to I(y1, x2) (solid curve) compared to I(z1, x2)
(dashed curve).
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Figure 2.6: Symmetric Dominance

Intuitively, Observation 1 states that we are more likely to observe the attraction
effect than to observe a preference reversal when the third alternative is symmetri-
cally dominated.

Now let us summarize Proposition 2, the two decoy effect, the compromise
effect, and the symmetric dominance (or Observation 1) in the following way (where
≥̇ represents the likelihood of observing a preference reversal):

Compromise Effect =̇ Attraction (Decoy) Effect >̇

Two Decoy Effect =̇ Two Compromise Effect =̇ Symmetric Dominance.

Let us conclude the discussion of Symmetric Dominance by arguing that Obser-
vation 1 can be strengthen in some cases. The idea is that when the attributes of the
third alternative z1 and t2 are small enough, the utility differences u1(x1) − u1(z1)
and u1(y1) − u1(z1) and u2(y2) − u2(t2) and u2(x2) − u2(t2) are large enough, and
f is close to linear at large values. Therefore, similar the fact that we cannot obtain
a preference reversal when f is linear, we cannot obtain a preference reversal when
z1 and t2 is small enough because f is close to linear.

We now show that weak diminishing sensitivity provides an additional behav-
ioral prediction that can be easily tested in experimental settings. Roughly speaking,
Proposition 4 provides an observable restriction on pairs of alternatives that can be
involved in preference reversals.
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Proposition 4 (Preference Reversal) SupposeC( f , u1, u2) satisfies weak diminishing
sensitivity. For any alternatives x, y ∈ X andmenus A, B ∈ A such that x, y ∈ A∩B,
if x ∈ C(A) and y < C(A), but y ∈ C(B) and x < C(B), then either x is a non-extreme
option of A or y is a non-extreme option of B.9

We can check whether the attraction and compromise effects are consistent with
Proposition 4. In both effects, we observe a preference reversal for a pair x and y.
The two effects are consistent with Proposition 4 since y is a non-extreme option of
{x, y, z} and {x, y, z’}.

We conclude Section 2.2.3 with the following numerical example that demon-
strates the predictive power of the model. Suppose u1(t) = u2(t) = t, f (t) =

√
t,

x = (20, 11), and y = (9, 20). Note that x � y. Then Figure 2.7 illustrates all
possible third alternatives that can cause a preference reversal for the pair x and y.
Note that in order to cause a preferences reversal, the first dimension of the third
alternative should be smaller than z∗1 =

80
9 and the second dimension of the third

alternative should be in the interval (t∗2, z∗2) ≈ (5.61, 47). In particular, the yellow
shaded area is the set of z that can cause the compromise effect. The blue shaded
area is the set of all asymmetrically dominated alternatives z’ that can cause the

9We say an alternative x is an extreme option of A∪ {x} if either x1 < mA
1 or x2 < mA

2 . So x ∈ A
is a non-extreme option of A ∪ {x} if x ≥ mA.
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attraction effect. Finally, the orange shaded area is the set of all symmetrically
dominated alternatives (z1, t2) that can cause a preference reversal. In other words,
any alternative in the non-shaded area cannot cause a preference reversal.10

2.3 Behavioral Foundation
In this section, we axiomatically characterize our model by two novel axioms

called independence of non-extreme alternatives (INEA) and reference translation
invariance (RTI) in addition to three standard axioms (Theorem 4). The role of
axioms and the sketch of the proof of the main theorem will be discussed in Section
2.3.3. We also characterize diminishing sensitivity by another novel axiom called
bound on the attraction effect (BAE) (Proposition 5) in Section 2.3.2.

2.3.1 Axioms and Representation Theorem
We impose five axioms, and the first three of them are standard axioms. The first

axiom, regularity, is a collection of three properties that guarantee a well-behaved
representation.

Axiom 6 (Regularity) A choice correspondenceC satisfies the following three prop-
erties.

i) (Monotonicity) For any A ∈ A and x, x’ ∈ A, if x′ > x, then x < C(A).

ii) (Continuity) � and {�t}t∈X are continuous; that is, {y ∈ X : y � x} and
{y ∈ X : x � y} are closed, and {y ∈ X : y �t x} and {y ∈ X : x �t y} are
closed for each t.

iii) (Solvability) For any x, y, t ∈ X , for each i ∈ {1, 2}, there exists x′i ∈ R+ such
that (x′i, x j ) � y and (x′i, x j ) �t y.

Monotonicity and continuity are standard properties. Solvability requires that
(x′i, x j ) can be preferred over y as long as x′i is large enough. Solvability is rather
technical, but frequently used in the literature. We also require transitivity of binary
comparisons.

10All the implications of diminishing sensitivity we have discussed are true even if we weaken the
additive structure of the model. In section 2.3.2, we characterize diminishing sensitivity by bounds
on the attraction effect. If we weaken the additive structure of the model, bounds on the attraction
effect will not be enough to characterize diminishing sensitivity. However, bounds on preference
reversals will be sufficient to characterize diminishing sensitivity.
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Axiom 7 (Transitivity) For any x, y, z ∈ X , if x � y and y � z, then x � z.11

The next two axioms, INEA and RTI, are our main axioms and weakenings
of the weak axiom of revealed preference (WARP). It is well known that WARP
is necessary and sufficient for choice correspondence to be consistent with utility
maximization. We can phrase WARP in the following way: for any A and x < A, if
{x} , C(A∪ {x}), then C(A) = C(A∪ {x}) \ {x}.12 INEA is a postulate that is very
similar to WARP and can be stated in the following way: for any non-extreme x’s,
WARP is satisfied, but for extreme x’s, WARP can be violated.

Axiom 8 (Independence of Non-Extreme Alternatives (INEA)) For any A ∈ A

and x < A,

if {x} , C(A ∪ {x}) and x ≥ mA, then C(A) = C(A ∪ {x}) \ {x}.

INEA is illustrated in Figure 2.8. Suppose A is a triangle and x is inside
the triangle. Suppose x∗ is chosen from A ∪ {x}. Then INEA requires that x∗ is
also chosen from A. Under, regularity and INEA, we will obtain the following
representation: there existsW such that

11In Appendix B.4, we weaken transitivity and obtain a general representation with two different
distortion functions.

12Arrow (1959) statedWARP in the followingway: for any A, B ∈ A with B ⊂ A, ifC(A)∩B , ∅,
then c(A) ∩ B = C(B). If we state INEA in this way, then our representation theorem also works for
all compact menus.
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Figure 2.9: Reference Translation Invariance (RTI)

C(A) = arg max
x∈A
W (x,mA).

Therefore, the last two axioms impose more structure onW .

We now define RTI, which is a modification of the standard translation invari-
ance. The main idea of RTI is to connect two different preferences �t and �t′ in the
following way: if we can get (x′, y′, t′) from (x, y, t) by some distance-preserving
shift (to be defined later), then we have x �t y iff x′ �t′ y′. When we have linear
utility functions, the above simply means that if (x′, y′, t′) = (x+∆, y+∆, t+∆) for
some ∆ ∈ R2, then x �t y iff x′ �t′ y′.

When we have nonlinear utility functions, distance-preserving shift should take
account for preferences. So we formally define a notion of relative distance which
takes account for nonlinear utilities.

Relative Distance: For any xi, yi, x′i, and y′i , we say a relative distance between xi

and yi is equivalent to that of x′i and y′i , denoted by [xi, yi]Di[x′i, y
′
i ], if for any x j

and y j , x ∼ y if and only if (x′i, x j ) ∼ (y′i, y j ).

RTI is illustrated in Figure 2.9. Suppose for each i, the relative distance between
xi and yi is equivalent to that of x′i and y′i (e.g., dashed intervals) and the relative
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distance between yi and ti is equivalent to that of y′i and t′i (e.g., dotted intervals).
In other words, we can get x′, y′, t′ from x, y, t by a distance-preserving shift. Then
RTI requires that x is indifferent with y in the presence of t (solid curve It) if and
only if x′ is indifferent with y′ in the presence of t′ (dashed curve It′).

Axiom 9 (Reference Translation Invariance (RTI)) For any x, y, t, x′, y′, t′ ∈ X ,
if for each i ∈ {1, 2}, [xi, yi]Di[x′i, y

′
i ], [yi, ti]Di[y′i, t

′
i], then

x �t y if and only if x′ �t′ t′.

RTI is much weaker than standard translation invariance. In fact, it is a weak-
ening of WARP. First, note that by the definition of relative distances D1 and D2,
(x1, x2) ∼ (y1, y2) iff (x′1, x2) ∼ (y′1, y2) iff (x′1, x′2) ∼ (x′1, y

′
2). Second, remember

that WARP requires that the irrelevant third alternatives do not affect a comparison
between a and b. Therefore, under WARP, x∼t y if and only if x∼y and x′∼t′ y′ if
and only if x′∼y′.

With the last axiom, called cancellation, in addition to transitivity, we can
use existing methods to obtain additive representations. It is well known that two
axioms are necessary and sufficient to have an additive representation: transitivity
and cancellation (see Krantz et al. 1971, Fishburn and Rubinstein 1982, Wakker
1988, and Tversky and Kahneman 1991).13 In particular, we use cancellation for �
and �0 where 0 = (0, 0). Although we need to have cancellation for each �t, since
the last axiom Reference Translation Invariance connects �t and �t’ for any t and
t′, it turns out enough to have cancellation for only �0.

Axiom 10 (Cancellation) For any x, y, z ∈ X ,

i) if (x1, x2) ∼ (y1, z2) and (y1, y2) ∼ (z1, x2), then (x1, y2) ∼ (z1, z2);

ii) if (x1, x2) ∼0 (y1, z2) and (y1, y2) ∼0 (z1, x2), then (x1, y2) ∼0 (z1, z2).

Figure 2.10 illustrates cancellation for �. Solid and dashed curves represent
indifferences. Intuitively, it requires that if the relative advantage of x1 over y1 is
equivalent to that of z2 over x2 (dashed intervals) (i.e., (x1, x2) ∼ (y2, z2)) and the
relative advantage of y1 over z1 is equivalent to that of x2 over y2 (dotted intervals),

13Cancellation is sometimes called the Thomsen condition or double cancellation.
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then the relative advantage of x1 over z1 is equivalent to that of z2 over y2 (combined
intervals).

It turns out, RTI connects �t and �t’ in the following way: �t satisfies cancel-
lation if �0 satisfies cancellation. Therefore, it is enough to impose cancellation on
�0 in cancellation (ii).

Finally, we can state our main theorem. Theorem 4 characterizes (2.2) and also
provides a uniqueness result, which guarantees that utility functions have cardinal
meaning.

Theorem 4 C satisfies regularity, transitivity, cancellation, INEA, and RTI if and
only if there exist strictly increasing and continuous functions f , u1, u2 : R+ → R+

such that f (R+) = u1(R+) = u2(R+) = R+ and for any menu A ∈ A ,

C(A) = arg max
x∈A
{ f

(
u1(x1) − u1(mA

1 )
)
+ f

(
u2(x2) − u2(mA

2 )
)
}.

Moreover, for any two vectors of continuous functions ( f , u1, u2) and ( f ′, u′1, u
′
2)

such that f (1) = f ′(1) and u1(1) = u′1(1), if C = C( f , u1, u2) = C( f ′, u′1, u
′
2), then

( f , u1, u2) = ( f ′, u′1, u
′
2).

The uniqueness result can be stated in two steps. First, by Remark 1 in Section
2.2, we have x � y if and only if u1(x1) + u2(x2) ≥ u1(y1) + u2(y2). It is known
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that u1 and u2 are unique up to a linear transformation (e.g., see Krantz et al. 1971).
Second, for given u1 and u2, it turns out f is also unique up to a linear transformation.
In other words, after fixing f (1) and u1(1), functions f , u1, and u2 are unique.

2.3.2 Characterizing Diminishing Sensitivity
In Section 2.2.2, we showed that diminishing sensitivity is sufficient to ratio-

nalize the compromise and attraction effects. In this subsection, we show that
diminishing sensitivity is in fact necessary for the attraction effect by behaviorally
characterizing two versions of diminishing sensitivity. Since Proposition 2 shows
the equivalence between the attraction and compromise effects, we can say that di-
minishing sensitivity is also necessary for the compromise effect in our model. Now
we will impose two novel axioms. The first axiom characterizes weak diminishing
sensitivity while the second axiom characterizes diminishing sensitivity.

Axiom 11 (Weak Bound on the Attraction Effect (WBAE)) For anyx, y ∈ X and
z1 ∈ R+ such that x1 > y1 > z1, if x ∼(z1, x2) y, then x � y.

Roughly speaking, WBAE requires that (z1, x2) gives an advantage to y over x.
Evidently, WBAE is very similar to the attraction effect. In fact, we now show that
WBAE is equivalent to observing the attraction effect in some neighborhoodwithout
assuming our model. Suppose x ∼ y and WBAE is satisfied. Then with continuity
and monotonicity, there is ε > 0 such that (x1−ε, x2) � y and (x1−ε, x2) ≺(z1, x2) y.
Note that we obtained the attraction effect at alternatives (x1− ε, x2), y, and (z1, x2).
Therefore, WBAE is equivalent to observing the attraction effect in a neighborhood
of a triple x, y, and (z1, x2). In our model, since WBAE is equivalent to weak
diminishing sensitivity, observing the attraction effect in some neighborhood is
equivalent to weak diminishing sensitivity. Now we define the second axiom.

Axiom 12 (Bound on the Attraction Effect (BAE)) For any x, y ∈ X and z1, t1 ∈

R+ such that x1 > y1 > z1 > t1, if x ∼(z1, x2) y, then x ≺(t1, x2) y and x � y.

Roughly speaking, BAE requires that (z1, x2) helps y over x, but (t2, x2) helps
more when t1 < z1. Now we illustrate a connection between BAE and the attraction
effect without assuming our model. Suppose x ∼(z1, x2) y and BAE is satisfied.
With BAE, we have x ≺(t1, x2) y and x � y. Similar to the discussion of WBAE,
by continuity and monotonicity, there is ε > 0 such that (x1 + ε, x2) �(z1, x2) y,
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(x1 + ε, x2) ≺(t1, x2) y, and (x1 + ε, p) � y. Now we argue that BAE is summarzied
by two properties. First, notice that we obtained the attraction effect at (x1 + ε, x2),
y, and (t1, x2). Second, (x1 + ε, x2) �(z1, x2) y implies that (t1, x2) is more likely to
cause a preference reversal compared to (z1, x2) since z1 > t1. Therefore, BAE is
equivalent to observing the attraction effect in the neighborhood of a triple x, y, and
(t1, x2) while not in the neighborhood of a triple x, y, and (z1, x2). In other words,
BAE dictates the degree of observing the attraction effect in some neighborhood
(recall Proposition 3). In our model, since diminishing sensitivity is equivalent to
BAE, diminishing sensitivity is equivalent to observing the attraction effect in the
neighborhood of x, y, and (l, p) but not in that of x, y, and (z1, x2).

Finally, we show that (W)BAE characterizes (weak) diminishing sensitivity.

Proposition 5 Suppose C = C( f , u1, u2) for strictly increasing continuous functions
f , u1, and u2 such that f (+∞) = u1(+∞) = u2(+∞) = +∞. Then

i) C satisfies WBAE if and only if it satisfies weak diminishing sensitivity.

ii) C satisfies BAE if and only if it satisfies diminishing sensitivity.

2.3.3 Sketch of the Proof of Theorem 4
Last, we briefly discuss the roles of INEA andRTI in the representation theorem.

To do so, we need to know the role of the other three axioms: regularity, transitivity,
and cancellation. First, with regularity, there are functions {VA}A∈A , such that for
any A ∈ A ,

C(A) = arg max
x∈A

VA(x).

Second, cancellation (i) (in addition to transitivity) on � is necessary and sufficient
to have functions u1 and u2 such that V{x,y} ({x}) = u1(x1) + u2(x2); that is,

x � y if and only if u1(x1) + u2(x2) ≥ u1(y1) + u2(y2).

Similarly, cancellation (ii) on �t (for a given t) is necessary and sufficient to have
functions u1

t and u2
t such that for any A = {x, y, t} with x, y > t, VA(x) = u1

t (x1) +
u2
t (x2); that is,

x �t y if and only if u1
t (x1) + u2

t (x2) ≥ u1
t (y1) + u2

t (y2).

Now note that there is no connection between utilities for different menus since the
above conditions are separately imposed on � and �t. In particular, there is no
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connection between the utilities for doubleton menus (u1+u2), tripleton menus with
dominated alternative t (u1

t + u2
t ), and other menus with at least three alternatives A

(VA).

In other words, INEA and RTI connect u1 + u2, u1
t + u2

t , and VA. We use two
steps. In the first step, INEA connects u1

t +u2
t andVA. In particular, we show that the

comparison between x and y in A is only affected bymA; that is, VA(x)=V{x,y,mA} (x)
and VA(y) = V{x,y,mA} (y). In the second step, RTI connects u1 + u2 and u1

t + u2
t .

In particular, we show that we can obtain ui
t from ui by some common distortion

function f ; that is, ui
t(xi) = f (ui (xi) − ui (ti)). While the first step is naturally

expected from INEA, the second step is a non-obvious implication of RTI because
we need to prove that that ui

t(xi) is independent of t j and is a function of the utility
difference ui (xi) − ui (ti).

Sketch of the proof of step 2: Most of the proof of Theorem 4 is devoted to
proving the last step. Essentially we need to show that V{x,y,mA} (x) = f

(
u1(x1) −

u1(mA
1 )

)
+ f

(
u2(x2) − u2(mA

2 )
)
for some f . With cancellation (ii), we know that

V{x,y,mA} (x) = u1
mA (x1) + u2

mA (x2). Therefore, if we can prove that V{x,y,mA} (x) =
W

(
u1(x1) − u1(mA

1 ), u2(x2) − u2(mA
2 )

)
for some W (Lemma 5); then we can prove

that ui
mA (xi) is a function of ui (xi) − ui (mA

i ).

In order to prove Lemma 5, we will construct W
(
u1(x1) − u1(mA

1 ), u2(x2) −
u2(mA

2 )
)
. In particular, for any x and mA, we find x∗1 such that (x∗1,m

A
2 ) ∼mA x

(Lemma 1) and set W
(
u1(x1) − u1(mA

1 ), u2(x2) − u2(mA
2 )

)
= u1(x∗1) − u1(mA

1 ).
Finally, we need to make sure that W is well defined.

For example, we shall prove that for any x′1 and mA′
1 , u1(x′1) − u1(mA′

1 ) =
u1(x1) − u1(mA

1 ) implies W
(
u1(x1) − u1(mA

1 ), u2(x2) − u2(mA
2 )

)
= W

(
u1(x′1) −

u1(mA′
1 ), u2(x2)−u2(mA

2 )
)
. In other words, we shall prove that if u1(x∗1)−u1(mA

1 ) =
u1(x∗∗1 ) − u1(mA′

1 ) for some x∗∗1 , then we have (x∗∗1 ,m
A
2 ) ∼(mA′

1 ,mA
2 ) (x′1, x2). Now

recall the definition of D1. Note that u1(x′1) − u1(mA′
1 ) = u1(x1) − u1(mA

1 ) is
equivalent to [x′1,m

A′
1 ]D1[x1,mA

1 ] and u1(x∗∗1 ) − u1(mA′
1 ) = u1(x∗1) − u1(mA

1 ) is
equivalent to [x∗∗1 ,m

A′
1 ]D1[x∗1,m

A
1 ]. In other words, (x∗∗1 ,m

A
2 ), (x′1, x2), (mA′

1 , mA
2 )

can be obtained from (x∗1,m
A
2 ), x,mA by a distance-preserving shift. Therefore, RTI

concludes the proof since (x∗1,m
A
2 ) ∼mA x if and only if (x∗∗1 ,m

A
2 ) ∼(mA′

1 ,mA
2 ) (x′1, x2).

2.4 Applications
Explicit modeling of reference points allows us to apply our model to many

different contexts. In order to demonstrate the usefulness of the model, we apply
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our model in two different contexts and diminishing sensitivity plays an important
role in both cases. First, we discuss the standard intertemporal consumption choice.
The main implication of the model is that if there is a borrowing constraint, then the
consumer prefers to consume away from the constraint even if the constraint is not
binding.

Second, we discuss risky choice. Our model can explain contradicting risk
behavior (in the sense of the expected utility). More precisely, the model can allow
behaviors such that an agent need to have both high and low degrees of risk aversion,
i.e., the agent prefers riskier options in some cases and safer options in other cases.

2.4.1 Intertemporal Choice with Non-Binding Borrowing Constraint
Let us consider a two-period intertemporal choice model. A consumer lives two

periods and her utility function is

UB(c1, c2) = (c1 − cB1 )µ + β(c2 − cB2 )µ,

where β is a discount factor, ci is consumption in period i ∈ {1, 2}, and cBi is the
possible minimum consumption level in period i for the given budget setB. Suppose
µ < 1, so we will have diminishing sensitivity.

The consumer earns income yi in period i and she can borrow at most b̄ in
the first period at the interest rate z2. We assume the consumer exhausts all her
discounted total income M ≡ y1 +

y2
1+r . Then the budget set is

B = {(c1, c2) ∈ R2
+ | c1 +

c2

1 + r
= M and c1 ≤ y1 + b̄ }.

Now we calculate the optimal consumption profile for two cases, without and
with a borrowing constraint, and compare them.

Without a Borrowing Constraint: Suppose there is no borrowing constraint; that
is, b̄ ≥ y2

1+r . Then the consumer’s maximization problem is:

max
(c1,c2)∈B

UB(c1, c2) = cµ1 + βcµ2 ,

where B = {(c1, c2) ∈ R2
+ | c1 +

c2

1 + r
= M } and (0, 0) is the reference point.

By a direct calculation, the optimal consumption levels are

c∗1 =
M

1 + β
1

1−µ (1 + r)
µ

1−µ
and c∗2 =

M ·
(
β(1 + r)

) 1
1−µ

1 + β
1

1−µ (1 + r)
µ

1−µ
.
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Figure 2.11: The Effect of a Non-Binding Borrowing Constraint

Note that, similar to the standard lifetime consumption model, the optimal
consumption levels are proportional to M .

With a Borrowing Constraint: Now suppose there is a borrowing constraint; that
is, b̄ < y2

1+r . Then the consumer’s maximization problem is:

max
(c1,c2)∈B

UB(c1, c2) = cµ1 + β
(
c2 − [y2 − (1 + r)b̄]

) µ
where

B= {(c1, c2) ∈R2
+ | c1+

c2

1 + r
=M and c1≤ y1+b̄ } and (0, y2−(1+r)b̄) is the reference point.

By a direct calculation, the new optimal consumption levels are

c∗∗1 =
M − ( y2

1+r − b̄)

1 + β
1

1−µ (1 + r)
µ

1−µ
=

y1 + b̄

1 + β
1

1−µ (1 + r)
µ

1−µ
and c∗∗2 =

M ·
(
β(1 + r)

) 1
1−µ + (y2 − b̄(1 + r))

1 + β
1

1−µ (1 + r)
µ

1−µ
.

In the standard model, the optimal consumption profiles are the same when the
constraint is not binding; i.e., y1 + b̄ > c∗1. However, in our model, the two cases are
different even if the constraint is not binding (see Figure 2.11). The first implication
of the model and diminishing sensitivity is the effect of non-binding constraint on
the optimal consumption profile.

Observation 2: The consumer decreases her first period consumption; that is,
c∗1 > c∗∗1 , even if the borrowing constraint is not binding (c∗1 < y1 + b̄). Moreover,
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as the constraint gets tighter (as b̄ decreases), she consumes less in the first period.
In other words, c∗∗1 is increasing in b̄.

The intuition of Observation 2 is as follows. The borrowing constraint decreases
the consumer’s the maximum consumption level for today and increases minimum
consumption level for tomorrow. Then by diminishing sensitivity (µ < 1), the
relative value of tomorrow’s consumption with respect to today’s consumption will
increase. Therefore, the consumer will decrease her consumption today and increase
consumption tomorrow.

It is common to explain deviations from the standard model of consumer choice
such as excess sensitivity of consumption to income and a hump-shaped consumption
profile with liquidity or borrowing constraints (see Attanasio 1999 and Attanasio
and Weber 2010). However, there is no strong empirical evidence that constraints
were actually binding at the time of the decision. For example, Jappelli (1990)
directly asked consumers whether they applied for and were denied credit and only
12.5 percent of 1982 respondents answered that they were denied credit. Moreover,
Deaton (1991) shows that liquidity constraints are rarely binding by simulation. Our
model gives a justification for those explanations since liquidity constraints can have
an effect on choices even if they are not binding.14

Observation 3: c∗∗i is positively correlated with yi, fixing M constant. Moreover,
c∗∗i = αiyi + βi for some αi and βi.

Contrast to permanent income hypothesis, it is well known that consumption
depends on current income. For example, Figure 2.12, borrowed fromAttanasio and
Weber (2010), reports life-cycle profiles for two education groups in the UK. The
left hand side of Figure 2.12 shows income and consumption paths for the group
with compulsory education; the dotted curve is disposable income and the solid
curve is nondurable consumption. Note that the consumption path closely follows
the income path. Moreover, Campbell and Mankiw (1991) showed that in many
different countries, a large number of consumers who follow a “rule of thumb" set

14A similar behavior (a non-binding constraint matters) is obtained by Hayashi (2008) in the
context of choice under ambiguity (i.e., choice over Anscombe-Aumann acts). He also considers
a menu-dependent choice, and in his model, an agent responds to non-binding constraints because
of anticipated ex post regrets. It is not obvious how to relate our results with Hayashi (2008) since
regret aversion is defined in the context of choice under uncertainty and naturally has a dynamic
interpretation, while diminishing sensitivity is defined in a deterministic environment.
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Figure 2.12: Average Income and Consumption by Education, Attanasio and Weber
(2010)

their consumption proportional to their income. Observation 3 shows that our model
is consistent with the above empirical regularities on consumption paths.

We could apply Observation 3 in a different context. For example, in a context of
financial decision, it is known that younger people invest in risky asset less than older
people even after controlling the income effect via risk preference. Observation 3
suggests an additional income effect to younger people’s financial decisions. There-
fore, the income effect via reference-dependent preference might be an additional
cause for younger people to invest less.

We can also make another interesting observation: when b̄ is small, c∗∗1 is more
dependent on y1. In fact, Zeldes (1989) observed that consumers with a low level
of assets (low b̄) more tightly link their consumption to their income.

2.4.2 Observing Different Degrees of Risk Aversion
Now we turn to risky choice. In particular, we focus on binary lotteries x where

x denotes a binary lottery that gives x1 dollars with probability x2 and nothing with
probability 1 − x2. Now recall that the utility of x for a given menu A:

UAx = f
(
u1(x1) − u1(mA

1 )
)
+ f

(
u2(x2) − u2(mA

2 )
)
.

The objective of this subsection is to obtain contradicting risk behavior: an agent
makes a risky choice in case 1 and makes a safe choice in case 2 and the estimated
degrees of risk aversion (in the sense of EUT) from two cases contradict each other.
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Note that by diminishing sensitivity (the strict concavity of f ), f introduces an
additional concavity to the total value of alternatives since utilities are distorted by
f . Moreover, the additional concavity is menu-dependent. Therefore, an agent will
act as if her degree of risk aversion (in the standard sense) is high in somemenus and
as if it is low in other menus. Now let us show the above intuition more formally.

Suppose an agent has the following additive reference-dependent preference:
For any menu A of binary lotteries and binary lottery x ∈ A,

U
(
x|A

)
=

(
α log(x1) − α log(mA

1 )
) µ
+

(
log(x2) − log(mA

2 )
) µ.

Here α is the degree of risk aversion (in the standard sense) because when µ = 1,
the model reduces to the expected utility theory: the agent maximizes expected
utility x2 · xα1 . Moreover, µ is independent from the agent’s risk preference since
the concavity of f is motivated by riskless choices.

Take four binary lotteries x, y, x’, and y’ with x1 > y1 and x2 < y2 and x′1 > y′1
and x′2 < y′2. Suppose the agent prefers x over y in the menu {x, y} (choosing the
riskier option), but prefers y’ over x’ in some menu A (choosing the safer option). In
the standard model, the two choices contradict each other when log(y′2/x′2)

log(x′1/y
′
1) <

log(y2/x2)
log(x1/y1)

because choosing x over y implies that α >
log(y2/x2)
log(x1/y1) (the agent is risk loving), but

choosing y’ over x’ implies that α < log(y′2/x′2)
log(x′1/y

′
1) (the agent is risk averse).

However, in ourmodel the agent could choose y’ over x’ from Abecause f (x1) =
xµ introduces an additional menu-dependent concavity to utilities of alternatives.
To illustrate, note that choosing x over y implies α >

log(y2/x2)
log(x1/y1) , as in the standard

model. However, choosing y’ over x’ from A implies

α <
( (log(y′2/m

A
2 ))µ − (log(x′2/m

A
2 ))µ

(log(x′1/m
A
1 ))µ − (log(y′1/m

A
1 ))µ

) 1
µ

≡ α(µ).

If the reference point of A satisfies log(x′1/m
A
1 )

log(y′1/m
A
1 )

<
log(y′2/m

A
2 )

log(x′2/m
A
2 )
, then α(µ) converges

to infinity as µ → 0. Therefore, as long as log(x′1/m
A
1 )

log(y′1/m
A
1 )

<
log(y′2/m

A
2 )

log(x′2/m
A
2 )

and µ is small

enough,15 we can have log(y2/x2)
log(x1/y1) < α < α(µ). Therefore, when µ is small, the agent

could act as if she is very risk-averse even if α is large.
15For example, let A = {x’, y’, z’} where x ′1 > y′1 > z′1 and x ′2 < y′2 < z′2. Since (z′1, x ′2) is the

reference point of A; i.e., (mA
1 ,m

A
2 ) = (z′1, x ′2), the inequality log(x′1/m

A
1 )

log(y′1/m
A
1 )
=

log(x′1/z
′
1)

log(y′1/z
′
1) <

log(y′2/m
A
2 )

log(x′2/m
A
2 )
=

log(y′2/x
′
2)

log(x′2/x
′
2) = ∞ always holds.
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Last, we briefly discuss the estimation of risk preference when the agent has an
additive reference-dependent preference. Because of diminishing sensitivity or the
strict concavity of f , measuring risk preferences from observed choices could be
misleading. However, ifwe estimate risk preferences only using binary comparisons,
then it provides an unambiguous measure for the degree of risk because the effect
of f is cancel out (recall Remark 1 on � in Section 2.2).

2.5 Model with General Menu-Dependent References
As we mentioned in the introduction, (2.1) is too general to have testable

implications on observed choice behavior since reference points are exogenously
given. The objective of the current paper is to endogenize reference points and so
we focused on menu-dependent reference points. In this section, we show that, in
fact, we do not lose any generality by focusing on menu-dependent reference points.
In other words, we will show that any observed choice data can be rationalized by
a model with menu-dependent reference points. This result also suggests that we
should have more specific models for reference points in order to obtain testable
predictions.

For the sake of simplicity, suppose we observe choices from a finite number
of finite menus A1, A2, . . . , AN . Suppose C(An) ∈ An for each n. The next result
shows that any such choices can be rationalized by a reference-dependent model
with menu-dependent reference points as long as monotonicity is satisfied.

Proposition 6 If C satisfies monotonicity, then there exist λ > 0 and reference-
points r1, r2, . . . , rN such that for each n, rn ∈ An and

C(An) = arg max
x∈An

f (x1 − rn
1 ) + f (x2 − rn

2 ) where f (t) =



t if t ≥ 0.

−λt if t < 0.

In fact, we can rationalize observed choices by a model with a very specific
functional form. Therefore, Proposition 6 also suggests that a specific functional
form may not give us more predictive power without the further specification of
menu-dependence.

In this paper, we took the specific approach of using minimums of menus
as a reference point. Another factor to determine reference points might be the
maximums of the menu. However, as mentioned in the introduction, models in
which reference points only depend on the maximums cannot explain the attraction
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effect. Although there are many other possibilities, as long as reference points
are increasing in the minimums, it is possible to rationalize the compromise and
attraction effects. But behavioral predictions of the general models will be weaker
compared to only using the minimums. In Appendix B.3, we will consider a model
in which reference points depend on both the maximums and the minimums. The
main implications stay the same, but behavioral predictions are weaker.

2.6 Related Literature
Tversky and Kahneman (1991) provided the first explicit model of reference-

dependent preferences. Their model is an extension of the prospect theory of
Kahneman and Tversky (1979) in the context of riskless choice. The model of
Tversky and Kahneman (1991) is further developed by Munro and Sugden (2003)
(to the n-dimensional commodity space), Sugden (2003) (to subjective expected
utility), and Koszegi and Rabin (2006, 2007) (expectation-based reference points,
to be discussed later).

The main objective of the current paper is to develop an axiomatic model of
reference-dependent preferences with endogenous reference points. However, in
most of the previous work, reference points are exogenously given. To the best of
our knowledge, Ok et al. (2014) is the only paper that axiomatically develops amodel
with purely endogenous reference points. As we explained in the introduction, the
authors weakenWARP to allow for choice behavior that exhibits the attraction effect,
but not the compromise effect.

The literature related to reference-dependent behavior and prospect theory is
too large to be discussed here (see Barberis 2013). We will now narrow our focus
and discuss related literature in the following three ways. First, we discuss two main
approaches to model reference points in the literature. Second, we discuss papers
that accommodate behavioral phenomena we study in this paper. Finally, we attempt
to place our model in the broad choice theory literature.

1. Two main approaches to model reference points:

In the first approach, an agent uses an exogenously given alternative as a ref-
erence point. For example, that alternative is the status quo, the default option
(Masatlioglu and Ok 2005, Sagi 2006, and Apesteguia and Ballester 2009), or the
initial endowment (Masatlioglu and Ok 2013). However, there are many choice
situations where no alternative is exogenously given as the status quo or the initial
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endowment. For example, there is no sensible status quo or initial endowment in the
compromise and attraction effects. Since in our model the reference point can be
defined for any given menu, our approach complements their approach in situations
where there is no sensible default option or initial endowment.

In the second approach, an agent has probabilistic beliefs over possible outcomes
and she uses her expectations of the outcome as a reference point (Koszegi and
Rabin 2006, 2007). This approach builds on Tversky and Kahneman (1991), as
did we. Moreover, it is more natural in repeated or dynamic choice. However,
there are two crucial differences. First, in their approach, the reference point is not
purely endogenous because probabilistic beliefs are not directly observable, whereas
in our model a reference point is completely determined by the menu. Second,
their model reduces to the standard rational model when there is no underlying
uncertainty. Therefore, their model cannot allow reference-dependent behavior
such as the compromise and attraction effects since the effects are normally defined
in a riskless environment. On the other hand, our model can be applied to both risky
and riskless environments (Section 2.4.2).

2. Papers that discuss behavioral phenomena we study:

In the literature, the attraction and compromise effects are usually used as
motivations for menu-dependent or context-dependent preferences. Therefore, it
is already well known that these two effects can be explained by menu-dependent
preferences or context-dependent preferences (e.g., Simonson and Tversky 1992,
Wernerfelt 1995, Kamenica 2008, and Bordalo et al. 2013).16 However, there is
a common understanding among psychologists that the attraction and compromise
effects are not separate phenomena, but rather two manifestations of the same
behavior. To the best of our knowledge, this is the first paper that formally shows
that, not only are the two effects implications of diminishing sensitivity, but they are
also equivalent to diminishing sensitivity.17

It might be useful to compare our model with information-theoretic models of
consumer choice (Wernerfelt 1995 and Kamenica 2008) that are consistent with the
two effects. For example, Kamenica (2008) studies amodel inwhich there is amarket

16Moreover, there are a number of recent works on stochastic choice that are consistent with
the two effects. For example, see Natenzon (2010), Echenique et al. (2013), and Fudenberg et al.
(2013a).

17De Clippel and Eliaz (2012) rationalize the attraction and compromise effects as the result of a
single bargaining protocol (to be discussed in part 3). However, behavioral postulates leading to the
two effects are different.
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with rational consumers who learn values of attributes of a good from a product line.
Consumers obtain menu-dependent utility as a result of a market equilibrium that
leads to preference reversals. However, there is evidence of the compromise and
attraction effects that information-theoretic models cannot fully explain. First, in
information-theoretic models, it is important that consumers face the binary menu
first and the tripleton menu second in order to have different information in two
choice situations (because consumers cannot unlearn information after facing the
tripleton menu). However, the two effects are observed even if a decision maker
sees the tripleton menu first and the binary menu second (e.g., see Sivakumar and
Cherian 1995 and Wiebach and Hildebrandt 2012). Second, the two effects are
robustly exhibited in non-market situations (e.g., choice over binary lotteries, Herne
1999, and choice over bundles of chewing gum and chocolate cookies, Herne 1998),
and learning the values of attributes from a product line does not seem to be the
main factor of preferences reversals.

Now, we narrow our focus to reference-dependent models which discuss either
the attraction effect, the compromise effect, life-cycle consumption profile, or risky
choice. Koszegi and Rabin (2009) and Pagel (2013) apply the expectation-based
reference dependent model of Koszegi and Rabin (2006) to life-cycle consumption
choice. They explain empirical observations about consumption profiles, including
excess sensitivity of consumption to income and a hump-shaped consumption pro-
file. The main difference is that we rely on a non-binding borrowing constraint while
their models rely on uncertainty since the expectation-based reference dependent
model reduces to the standard model when there is no uncertainty.18

Explaining two different risk attitudes and introducing reference-dependent
behavior are two of the most important contributions of Kahneman and Tversky
(1979). As mentioned in the introduction, loss aversion and diminishing sensitivity
help to explain many different anomalies in risky choice (e.g., Benartzi and Thaler
1995, Koszegi and Rabin 2007 and Bordalo et al. 2012). One contribution of our
paper is to obtain two different risk behaviors relying on diminishing sensitivity, but
not relying on loss aversion.

Last, the salience theory of Bordalo et al. (2013) is important to mention in
detail. Salience theory focuses on alternatives with two attributes, quality and price.
It generalizes standard models in the way that an agent uses menu-dependent weight

18Moreover, in some of Pagel (2013)’s results, she also needs to have a hyperbolic discounting
agent.



68

functions, wq and wp, that distort evaluations of attributes of alternatives: if the
quality dimension of an alternative is more salient than the price dimension, then
the agent overweights quality and underweights price (wq > 1 > wp) and vice
versa (wq < 1 < wp).19 In their model, the agent uses the average quality (q̄) and
the average price (p̄) of the menu as references in order to decide the saliency of
dimensions. In particular, for a given menu A = {(qk, pk )n

k=1},

C(A) = arg max
k

{
wq

(
σ(qk, q̄), σ(pk, p̄)

)
· qk︸                             ︷︷                             ︸

=V (qk, pk, q̄, p̄)

−wp
(
σ(qk, q̄), σ(pk, p̄)

)
· pk

}

where the saliency of dimensions are determined by numbers σ(qk, q̄) and σ(pk, p̄)
for some function σ.

Our model and salience theory have two important similarities. Let us consider
the utilities of the first dimension in our model and salience theory: f (u1(x1) −
u1(mA

1 )) and V (qk, pk, q̄, p̄). First, both terms depend on some reference points that
are purely determined by the menu, mA

1 and (q̄, p̄). Second, diminishing sensitivity
properties on two terms (in particular, on f and σ) can explain the attraction and
compromise effects.

However, salience theory cannot provide bounds on preference reversals. In
particular, salience theory predicts that if (z1, z′2) leads to the attraction effect, then
for any t2 ∈ [0, z′2], (z1, t2) must cause a preference reversal (See Proposition 4.i of
Bordalo et al. 2013). Therefore, salience theory is not consistent with the two decoy
effect and symmetric dominance.

3. Choice theory literature:

In this paper, we weakened WARP in order to obtain a model that is consis-
tent with observed behavioral phenomena. This approach is in the same spirit as
a body of work that seeks to characterize models of non-standard choice in terms
of direct axioms on choice behavior. This body of work includes, for example,
rational shortlisting (Manzini and Mariotti 2007), choosing the uncovered set of
some preference relation (Ehlers and Sprumont 2008), choosing two finalists (Eliaz
et al. 2011), choosing an alternative that survived after a sequential elimination of
alternatives by lexicographic semiorders (Manzini and Mariotti 2012b), multiself
(De Clippel and Eliaz 2012), choosing from a subset of a menu because of limited
attention (Masatlioglu et al. 2012), comparing all pairs by certain orders (Apesteguia

19The authors discuss salience theory in the context of choice under risk in Bordalo et al. (2012).
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and Ballester 2013), and considering only alternatives that (belong to the best cate-
gory (Manzini andMariotti 2012a), optimal according to some rationalizing criteria
(Cherepanov et al. 2013), and pass some menu-dependent threshold (Manzini et al.
2013)). The main difference between our paper and the above papers is that, except
for the fact that we study a reference-dependent behavior, attributes of alternatives
are known,20 which allows us to obtain stronger predictions (e.g., bounds on pref-
erence reversals as in Section 2.2.3), while the above papers study alternatives with
unknown attributes (as in abstract choice theory).21

The paper by De Clippel and Eliaz (2012) is important to mention; it axiomat-
ically models choices as a solution to an intrapersonal bargaining problem among
two selves of an individual. Each self is endowed with a preference relation, so
having two preference relations for two selves is similar to having two-attribute
alternatives. However, their model requires that C({x, y}) = {x, y} for any x1 > y1

and x2 < y2. Therefore, technically, they allow only “weak" forms of the attraction
and compromise effects: the original two alternatives (x and y) are indifferent and
the third alternative breaks the tie (in favor of y.)22

20This is a common assumption in economics. For example, in consumer theory, an alternative is
a bundle of goods, and the i-th dimension represents the quantity of the i-th good. In social choice,
an alternative is an allocation, and the i-th dimension represents the amount of money allocated
to the i-th person. In finance, an alternative is a state-contingent prospect, and the i-th dimension
represents the return at the i-th state.

21In fact, only Masatlioglu et al. (2012), De Clippel and Eliaz (2012), and Manzini et al. (2013)
can be consistent with the attraction and two decoy effects. Although Manzini and Mariotti (2012a)
and Cherepanov et al. (2013) are consistent with the attraction effect, the two decoy effect violates
Weak WARP, an axiom that is necessary for the characterization of these two papers.

22More precisely, they only allow C({x, y})= {x, y} and C({x, y, z})= {y}. In other words, they do
not allow the compromise (attraction) effect such that C({x, y}) = {x} and C({x, y, z}) = {y}.
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C h a p t e r 3

THEORY OF DECISIONS BY INTRA-DIMENSIONAL
COMPARISONS

3.1 Introduction
Making a choice between two multidimensional alternatives is a difficult task

unless one dominates the other. It is not surprising, therefore, that a decision
maker adopts some procedure, or heuristic, to make this choice. One such heuristic
called the Intra-Dimensional Comparison (IDC) heuristic has been documented
in the experimental work of Tversky (1969). The IDC heuristic is a procedure
that compares multidimensional alternatives dimension-by-dimension and makes
a decision based on those comparisons. We develop an axiomatic model of the
IDC heuristic and provide a general framework that is applicable to many different
contexts, such as risky choice and social choice.

To illustrate the IDC heuristic, consider the following two scenarios. In the first
scenario, a decision maker (henceforth, DM) has to choose a lottery from two binary
lotteries. Let us denote by (x, p) the binary lottery that returns $x with probability
p, and the prize $0 with probability 1−p. Suppose the DM compares binary lotteries
($11, 0.43) and ($10, 0.45). There is no obvious answer to the question of howmany
dollars are equivalent to a 2% increase in the probability of winning. Instead, it is
easier for the DM to compare the binary lotteries dimension-by-dimension (i.e., $11
with $10 and 43% with 45%) because the compared numbers represent the same
attributes. In this scenario, the DM may prefer ($11, 0.43) over ($10, 0.45) because
their winning probabilities are not very different and the former has a higher prize.

In the second scenario, a social planner (SP) needs to choose an allocation.
Suppose she wants to allocate $24 to three people and is considering two possible
allocations: ($12, $4, $8) and ($14, $3, $7) (person 1 gets either $12 or $14, person
2 gets either $4 or $3, and so on). Although all dimensions are expressed in dollars,
it may be easier for the SP to compare the allocations dimension-by-dimension (i.e.,
$12 with $14, $4 with $3, and $8 with $7). In this scenario, the SP may choose
($12, $4, $8) over ($14, $3, $7) because although person 1 is worse off, he still gets
$12, and the other two people are better off in the first allocation.

As we have seen in the above two scenarios, the IDC heuristic simplifies and
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guides choice in individual decision making as well as in social choice. The IDC
heuristic was documented in the experimental work of Tversky (1969). Tversky run
the following experiment in the context of the first scenario. Subjects were asked to
choose one lottery from each of all possible pairs from a= (5, 7

24 ), b= (4.5, 9
24 ), and

c = (4, 11
24 ). Tversky (1969) obtained a systematic violation of transitivity: almost

half of the subjects preferred the lottery with the higher payoff among adjacent pairs
(a and b or b and c), while on the extreme pair (a and c), they preferred the lottery
with the higher winning probability.1

In the words of one of Tversky’s subjects in a post-experimental interview,
“There is a small difference between lotteries a and b or b and c, so I would pick
the one with higher payoff. However, there is a big difference between lotteries a

and c, so I would pick the one with higher probability.” In other words, the subject
compared prizes and probabilities separately and made a decision based on those
comparisons; i.e., used the IDC heuristic.2

The goal of this paper is to develop an axiomatic model of the IDC heuristic
and discuss its implications. The main representation theorem of the paper shows
that under standard axioms, in addition to an axiom called Separability, there are
dimension-specific functions that represent dimension-by-dimension comparisons
and a function that aggregates those comparisons in order to make a decision.
Moreover, these functions are unique up to a certain normalization. Separability
guarantees that comparisons within one dimension are independent from compar-
isons within other dimensions.

Now we introduce our model of the IDC heuristic in the aforementioned two
scenarios and discuss some implications of them. First, let us describe our model
in the context of the first scenario: choice over binary lotteries. Consider a DM
who has to choose between lotteries (x, p) and (y, q) where x > y and q > p. Our
discussion above suggests that she compares x with y and q with p separately. She
thenmakes a decision based on numbers f (x, y) and g(q, p), where f (x, y) measures
the advantage of x over y and g(q, p) measures the advantage of q over p. We can

1Therefore, we obtain a violation of transitivity a= (5, 7
24 )� b= (4.5, 9

24 )� c= (4, 11
24 )� a which

is called the Similarity Cycle. More generally, the similarity cycle is a triple (x, p), (y, q), (z, r) of
binary lotteries such that x > y > z and (x, p) � (y, q) � (z, r) � (x, p). While Tversky’s original
experiment involved only a small number of subjects, this result was replicated by Lindman and
Lyons (1978) and Budescu andWeiss (1987). Moreover, Day and Loomes (2010) produced a similar
result by using different lotteries with real incentives.

2 By using an eye-tracking experiment in the same settingwith Tversky (1969), Arieli et al. (2011)
found that when decision-making is difficult, subjects compare prize and probability separately.
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imagine that if f (x, y) > g(q, p), then the prize-dimension becomes more salient,
and she prefers (x, p) over (y, q) since x > y. If by contrast, f (x, y)< g(q, p), then
the probability-dimension becomes more salient, and she prefers (y, q) over (x, p)
since q > p. Finally, if f (x, y)=g(q, p), then she is indifferent between (x, p) and
(y, q). More formally, we say that a binary relation � on binary lotteries is an IDC
relation if there are functions f and g such that for any binary lotteries (x, p) and
(y, q),

(x, p) � (y, q) if and only if f (x, y) ≥ g(q, p). (3.1)

For example, when f (x, y) = 1 − u(y)
u(x) and g(q, p) = 1 − p

q , (3.1) gives us Expected
Utility Theory (EUT) preferences on binary lotteries. By allowing a more general
form for g, themodel can accommodatewell-known deviations of EUT: theCommon
Ratio Effect (a version of the Allais Paradoxes) and the Similarity Cycle and Regret
Cycle (both violations of transitivity that have opposite directions). We are not aware
of any other axiomatic model that can accommodate all deviations mentioned.3

Next, we define our general model in the context of the second scenario, social
choice. A social planner (SP) for the society N = {1, 2, . . . , n} compares two
allocations x= (x1, . . . , xn) and y= (y1, . . . , yn), where xi and yi are the amounts of
money that person i receives from the allocations. If the SP uses the IDC heuristic,
then she asks each i to say how much he prefers xi over yi; in other words, she
obtains a real number fi (xi, yi) that measures the advantage of xi over yi for person
i, and aggregates these real numbers. More formally, we say that a binary relation
� on n-vectors is an IDC relation if there exist functions { fi}

n
i=1 and W such that for

any x and y,

x � y if and only if W
(

f1(x1, y1), . . . , fn(xn, yn)
)
≥ 0. (3.2)

Note that (3.2) generalizes (3.1). In contrast to the Bergson-Samuelson social
welfare criterion4 in which the SP aggregates preferences before comparing alter-
natives, in our model the SP aggregates preferences after she compares alternatives
dimension-by-dimension. The IDC relations are (possibly) intransitive. For exam-

3The common ratio effect is a violation of the Independence Axiom such that (x, p)≺ (y, q) and
(x, αp) � (y, αq) with x > y and 1 > α > 0. See Allais (1953) and Kahneman and Tversky (1979).
The Regret Cycle is a violation of transitivity such that (x, p)≺ (y, q)≺ (z, r)≺ (x, p) with x > y> z,
which is observed in the experiments of Loomes et al. (1991) and Day and Loomes (2010). We can
generate the Similarity Cycle, the Regret Cycle, and the Common Ratio Effect with distance-based
functions g(q, p)= (1 − p

q )[ 1−βp(q−p−µ)
1−δ ] and f (x, y)=1− u(y)

u(x) where β, µ, δ ∈ [0, 1).
4 In the Bergson-Samuelson social welfare criterion, the SP compares W

(
u1(x1), . . . , un(xn)

)
and W

(
u1(y1), . . . , un(yn)

)
for given functions u1, . . . , un, and W (See Mas-Colell et al. (1995)).
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ple, the model allows Condorcet Cycles in which the SP compares three allocations
x, y, and z, and y is preferred to x, z to y, but x to z.5

The remainder of the paper is organized as follows. First, we discuss related
literature in Section 3.1.1. In Section 3.2, we introduce the basic model and a
behavioral foundation for (3.2). We also discuss some specifications and properties
of fi in Section 3.2.2 and the proof of the main theorem is in Appendix C.

3.1.1 Related Literature
Representations similar to (3.2) are characterized in Bouyssou and Pirlot (2002).

They focus on binary aggregators, so they cannot have a uniqueness result. In other
words, their representations have no cardinal meaning. Moreover, the implications
of their representations for economic contexts and specifications are not worked out.

Now we discuss two axiomatic works on intransitive preferences related to our
work. The first work is the Similarity Relation Model (SRM) of Rubinstein (1988),
a model of choice under risk that used an idea of the IDC heuristic.

SRM consists of two similarity relations on prizes and probabilities, denoted by
∼x and ∼p respectively. Suppose a DM compares binary lotteries (x, p) and (y, q)
where x > y and p < q. In SRM, the DM uses the following procedure: if she
considers p and q to be similar (p ∼p q) and x and y not to be similar (x �x y),
then she prefers (x, p) over (y, q); if instead she considers x and y to be similar
(x ∼x y) and p and q not similar (p �p q), then she prefers (y, q) over (x, p); finally,
if she considers both x and y and p and q to be similar (x ∼x y and p ∼p q) or
not similar (x �x y and p �p q), then the SRM procedure is not specified. As in
the IDC heuristic, SRM compares prizes and probabilities separately and makes a
decision based on these comparisons if possible. The main difference between our
model and SRM is that the similarity relations ∼x and ∼p are exogenously given in
SRM and are not unique, i.e., there could be multiple similarity relations that are
compatible with one binary relation. Moreover, the procedure that is generated by
the similarity relations is not complete.6 On the other hand, we fully characterize
the set of IDC relations (which are complete), f and g are endogenously derived
from each IDC relation, and they are unique.

5For example, suppose the SP wants to allocate $60 to three people and considers three possible
allocations: x = ($24, $20, $16), y = ($16, $24, $20), and z = ($20, $16, $24). Let f i (xi, yi) =
− f i (yi, xi) =

xi−yi
xi

for any i and xi, yi with xi ≥ yi . Suppose W ( f1, f2, f3) = f1 + f2 + f3. Then we
obtain a Condorcet Cycle because 24−20

24 + 20−16
20 − 24−16

24 =
1
30 > 0.

6There are cases in which the SRM procedure is almost never specified.
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The second work is the Relative Discounting Model of Ok and Masatlioglu
(2007) in intertemporal choice. They model a DM who compares intertemporal
prospects (x, t) where (x, t) denotes an intertemporal prospect that gives $x at time
t. Although their model does not build on the IDC heuristic, when there are only
two dimensions, our model coincides with the Relative Discounting Model. More
precisely, they have a representation similar to (3.1) in which the time-dimension
corresponds to the probability-dimension in (3.1).

3.2 The Basic Model
Let X ≡

∏n
i=1 Xi ⊆ R

n be a set of alternativeswith n attributes, where Xi= (ai, bi]
for some ai, bi ∈R with ai < bi for each i.7 Let � be a binary relation on X . Let
� (resp. ∼) denote the asymmetric (resp. symmetric) part of �. For any x, y ∈ X ,
we say that x dominates y, denoted by x>y, if xi ≥ yi for each i and x , y. For any
vector t ∈ Rn, we denote by t−i, the (n − 1)-dimensional vector that remains after ti

is excluded from t. Similarly, we can define t−i,− j .

Now we define the model and the IDC relations. We say a function f :R2→

(−1, 1) is a distance-based function if it is strictly increasing in its first argument
and f (x, y) = − f (y, x) for all x, y ∈ R. Note that f (x, x) = 0 and f (x, y) > 0
if x > y. Roughly speaking, f (x, y) is a relative advantage of x over y. For
example, f (x, y) can be a function of the utility differences between x and y,
i.e., f (x, y) = h(u(x) − u(y)) for some functions h and u. We say a function
W : (−1, 1)n→R is an aggregator if it is strictly increasing in all its arguments and
for any i and ti ∈ (−1, 1), W (ti, 0−i) = ti. For example, W (t) =

∑n
i=1 ti + α ·

∏n
i=1 ti

is an aggregator for all α ∈ [−1, 1].

Definition 10 (IDC Relation) A binary relation � on X is an IDC relation if there
exist distance-based functions { fi}

n
i=1 and an aggregatorW such that for any x, y ∈ X ,

x � y if and only if W
(

f1(x1, y1), . . . , fn(xn, yn)
)
≥ 0.

The functions f1, . . . , fn represent dimension-by-dimension comparisons as in
the IDC heuristic. We call fi the ith-dimensional distance-based function. Distance-
based functions have three natural interpretations. First, fi measures similarity (or

7We focus on left-open intervals because comparisons between alternatives on the left boundaries
(e.g., (ai, x−i) and (a j, y−j )) may violate the representation. For example, let us consider a binary
relation � on [0, x]× [0, 1] the set of binary lotteries and the representation (3.1). Then a comparison
between zero lotteries (0, p) and (0, q) (with p , q) is not consistent with our representation because
f (0, 0) , g(q, p) and (0, p) ∼ (0, q).
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dissimilarity) of xi and yi. For example, in the first scenario, if prizes x and y are
similar, then | f (x, y) | is small, and if x and y are distinct, then | f (x, y) | is large.
But f also measures a degree of (dis)similarity of prizes. The similarity relations
of Rubinstein (1988) have close features and in fact, IDC relations can be seen as
smooth and complete versions of the procedure he analyzed.8 Second, fi measures
how salient the ith-dimension is compared to other dimensions. For example, in
the first scenario, f > g means that the prize-dimension is more salient than the
probability-dimension. Finally, fi can be seen as a function of utility difference. We
will discuss this interpretation in Section 3.2.2.

3.2.1 Separability and Representation Theorem
In this subsection, we characterize our model. In particular, we can characterize

(3.2) by an axiom called Separability in addition to standard postulates. We begin by
imposing four standard properties: completeness, continuity, strong monotonicity,
and richness. We concentrate all of these properties in one axiom, called Regularity.

Axiom 13 (Regularity) Let � be a binary relation on X .

1. (Completeness) For any x, y ∈ X , either x � y or y � x;

2. (Continuity) For any x ∈ X , {y ∈ X |y � x} and {y ∈ X |x � y} ∪ X0 are closed
sets where X0 ≡ {t ∈

∏n
i=1[ai, bi]|∃i such that ti = ai};

3. (Strong Monotonicity) For any x, y, z ∈ X , if x ∼ y and y > z, then x � z;

4. (Richness) For any x ∈ X , i, and y−i ∈ X−i, there exists yi ∈ Xi such that
x � y = (yi, y−i).9

Completeness states that any two alternatives are comparable. Continuity re-
quires, loosely speaking, that an upper contour set and a lower contour set of any

8Note that any IDC relation � with distance-based functions f and g is consistent with the
similarity relation model of Rubinstein (1988) (SRM) with the following similarity relations ∼x and
∼p: x ∼x y iff | f (x, y) | ≤ λ and p ∼p q iff |g(p, q) | ≤ λ for some fixed λ ∈ (0, 1). Here, we say that
a binary relation � is consistent with SRM if there are similarity relations ∼x and ∼p such that for
any x > y and p < q, if p ∼p q and x �x y, then (x, p) � (y, q), and if x ∼x y and p �p q, then
(y, q) � (x, p).

9In the context of choice over binary lotteries, if one wants to use the domain [0, x]×[0, 1] instead
of (0, x] × (0, 1], then Richness is equivalent to the following simpler condition: (x, p) � (y, 0) and
(x, p) � (0, q) for any (x, p), (y, q) >> (0, 0). It requires that any zero lottery is worse than non zero
lotteries. For more details, see the discussion in Section 3.3.
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alternative are closed. Technically, a lower contour set is closed after we take into
account that each Xi = (ai, bi] is left-open. Hence the presence of X0 in the axiom.
Richness states that for any vector y−i, there exists yi such that y = (yi, y−i) is worse
than a fixed lottery x. Strong monotonicity implies the standard monotonicity ax-
iom: x > y implies x � y. Strong monotonicity also requires transitivity where one
of three alternatives dominates one of the other two alternatives (y > z). We do not
impose transitivity beyond this minimal case. Therefore, we allow binary relations
that violate transitivity.

The key axiom in this paper is called Separability and is closely related to the
IDC heuristic.10 In the IDC heuristic, the DM compares alternatives dimension-
by-dimension and Separability requires that these dimension-by-dimension compar-
isons are independent. For example, in the context of choice over binary lotteries,
Separability requires that a comparison between prizes x and y is independent of a
comparison between probabilities q and p. Figure 3.1 illustrates the intuition behind
Separability for n = 2. In Figure 3.1, solid and dashed curves represent indifference
curves. Consider two indifferent pairs of binary lotteries (x, p) and (y, q) and (x′, p)
and (y′, q); i.e., (x, p) ∼ (y, q) and (x′, p) ∼ (y′, q) (two solid indifference curves).
Since these lotteries use the same probabilities, the indifferences suggest that the
relative advantage of x with respect to y is equal to that of x′ with respect to y′. If
this is the case, then the same should hold even if we change the probabilities: we
should have (x, p′) ∼ (y, q′) if and only if (x′, p′) ∼ (y′, q′) for any probabilities
p′ and q′ (two dashed indifference curves). This is the content of Separability on
choice over binary lotteries. It is a simple exercise to show that any EUT preference
on binary lotteries satisfies Separability.

Axiom 14 (Separability) For all x, y, x’, y’ ∈ X and i, if

(xi, x−i) ∼ (yi, y−i), (x′i, x−i) ∼ (y′i, y−i), and

(xi, x’−i) ∼ (yi, y’−i), then (x′i, x’−i) ∼ (y′i, y’−i).

10This axiom is used in the theories of additive utility representation. For example, it is called
the corresponding tradeoff condition in Keeney and Raiffa (1976) and triple cancellation in Wakker
(1988). When there are only two dimensions and transitivity is satisfied, Separability is implied
by Cancellation (sometimes it is called Double Cancellation or Thomsen condition). There are a
large literature on separability (See Blackorby et al. (2008)). However, they focus on horizontal
separability in line with additive utility models in which transitivity is assumed while we use vertical
separability in line with IDC heuristic.
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Figure 3.1: Separability when n = 2

Separability states that for each i, a comparison between xi and yi is indepen-
dent from the other dimensions (Lemma 7). In the IDC heuristic, the DM compares
alternatives dimension-by-dimension and Separability guarantees that these com-
parisons can be represented by well-defined functions. Now, we are ready to state
the main representation theorem.

Theorem 5 A binary relation � on X satisfies Regularity and Separability if and
only if it is an IDC relation with some continuous aggregator W and continuous
distance-based functions { fi}

n
i=1 such that for any t ∈ (−1, 1)n,W (t)= W (t−n, 0n)+tn

and fn(bn, xn) = bn−xn
bn−an

for any xn ∈ Xn = (an, bn]. Moreover, { fi}
n
i=1 and W are

unique.

Separability captures the idea of the IDC heuristic and guarantees dimension-
specific distance-based functions f1, . . . , fn and an aggregator W . Regularity guar-
antees that these functions are well-behaved. Note that when n = 2, Theorem 5 also
characterizes (3.1) since W (t1, t2) = t1 + t2.

We can derive unique distance-based functions and an aggregator function up
to a certain normalization. It is obvious that we cannot get any uniqueness without
normalizing distance-based functions and an aggregator. For example, any common
monotonic transformation of f and g, h( f ) and h(g), satisfies (3.1). Therefore, we
normalize one of the distance-based functions, e.g., fn. However, it is not necessary
to specify fn on all points of X2

n . When n = 2, it is enough to normalize fn as
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Figure 3.2: Difference-i

fn(bn, xn) = bn−xn
bn−an

for any xn ∈ Xn. When n ≥ 3, we also need a normalization
on W such that W (t) = W (t−n, 0n) + tn for each t ∈ (−1, 1)n. We discuss some
specifications and properties of fi in the next subsection.

To gain an intuition of the proof of Theorem 5, we construct f and g for (3.1)
on choice over binary lotteries. Let X1 = (0, x] and X2 = (0, 1]. For any x, y ∈ X1

with x ≥ y, set f (x, y) = 1 − p whenever (x, p) ∼ (y, 1). By Regularity, f is a
well-defined function (Lemma 6). For any p, q ∈ X2 with q≥ p, set g(q, p)= f (x, y)
whenever (x, p)∼ (y, q). Obviously, we can find two different pairs x and y and x′

and y′ such that (x, p)∼ (y, q) and (x′, p)∼ (y′, q). Therefore, we need to show that
f (x, y)= f (x′, y′). Take any two pairs x and y and x′ and y′ such that (x, p)∼ (y, q)
and (x′, p) ∼ (y′, q). Let r ∈ X2 such that (x, r) ∼ (y, 1). By Separability, we have
(x′, r) ∼ (y′, 1). Then, by the construction of f , we obtain f (x, y)= f (x′, y′)=1− r

which implies that g is well-defined.

3.2.2 Some Specifications and Properties of Distance-Based Functions fi

Finally, we discuss some specifications and properties of fi. A natural spec-
ification of fi is fi (xi, yi) = hi (ui (xi) − ui (yi)) for some functions hi and ui. In
other words, fi is a function of utility difference. In fact, many models (e.g., ad-
ditive utility models, EUT, the Additive Difference Model of Tversky (1969), and
the Regret Theory of Loomes and Sugden (1982)) follow this specification. It can
be characterized by the following axiom: for given i, we define an axiom called
Difference-i.

Axiom 15 (Difference-i) For any x, y, x’, y’ ∈ X , if

(xi, x−i) ∼ (yi, y−i) and (x′i, x−i) ∼ (y′i, y−i), then

(xi, x’−i) ∼ (x′i, y’−i) iff (yi, x’−i) ∼ (y′i, y’−i).

Figure 3.2 illustrates Difference-i. It requires that if the relative advantage of
xi over yi is equal to that of x′i over y

′
i (represented by the segments xiyi and x′iy

′
i ),
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then the relative advantage of xi over x′i is equal to that of yi over y′i (represented by
the arcs xi x′i and yiy

′
i ). Now we state the characterization for fi.

Proposition 7 For given i, if an IDC relation � with distance-based functions
{ f j }

n
j=1 is continuous and satisfies Difference-i, then there are continuous strictly

increasing functions hi and ui such that fi (xi, yi) = hi (ui (xi) − ui (yi)).

Since this characterization directly follows from the result of Suppes and Winet
(1955), we omit the proof. Next, we discuss a property on distance-based functions,
called Diminishing Sensitivity. Formally,

Diminishing Sensitivity: A distance-based function f satisfies Diminishing Sensi-
tivity if f (x + ε, y + ε ) < f (x, y) for any x > y and ε > 0.

Diminishing sensitivity requires that the relative advantage of x over y decreases
as the average x+y

2 goes up. In other words, the DM is less sensitive when x and
y are large. The idea of diminishing sensitivity is commonly used in the literature
(e.g., Tversky and Kahneman (1991) and Bordalo et al. (2012)). In fact, the same
condition is called diminishing sensitivity in Bordalo et al. (2012). It is also related
to the Weber-Fechner law of human perception, which states that the perceived
intensity is proportional to the logarithm of the stimulus.11 We think diminishing
sensitivity is likely to be satisfied in two contexts we discussed in the introduction.
Diminishing sensitivity is also natural when fi measures (dis)similarity or saliency.
Moreover, when f is a function of utility difference; i.e., f (x, y) = h(u(x) − u(y)),
diminishing sensitivity is equivalent to the strict concavity of u. In particular, when
f (x, y) = 1 − exp(u(y) − u(x)) = 1 − exp(u(y))

exp(u(x)) = 1 − ũ(y)
ũ(x) , diminishing sensitivity is

equivalent to the strict log-concavity of ũ.

In general, characterizing diminishing sensitivity is difficult. However, in our
model, the following simple axiom characterizes diminishing sensitivity.

Axiom 16 (Diminishing Sensitivity) For any x, y ∈ X and i, if (xi, x−i) ∼ (yi, y−i)
and xi > yi, then (xi + ε, x−i) ≺ (yi + ε, y−i) for any ε > 0 such that xi + ε ∈ Xi.

11To illustrate, suppose x and y are the magnitudes of some stimulus with x > y. Then the
difference between the perceived intensities of x and y is proportional to log( xy ). Now note that the
perceived intensity difference decreases as the average x+y

2 goes up since log( xy ) > log( x+εy+ε ) for any
ε > 0.
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Further specifications may depend on the context of decision-making. So we
will not discuss further specifications of fi.12

3.3 Discussion on Changing the Domain
Here let us briefly discuss how to change left-open intervals (ai, bi] to closed

intervals [ai, bi] and obtain the same representation result. We discuss it in the
context of choice over binary lotteries. Suppose we want to obtain (3.1) for the
domain [0, x] × [0, 1]. In this case, Richness can replaced by the following simpler
condition.

Richness*: (x, p) � (y, 0) and (x, p) � (0, q) for any (x, p), (y, q) >> (0, 0).

Under Richness*, we can obtain Theorem 5 for the domain [0, x] × [0, 1] with
two exceptions. First of all, the main technical difficulty of using the domain
[0, x] × [0, 1] is that zero lotteries are indifferent with each other; that is, (0, p) ∼
(0, q) ∼ (x, 0) ∼ (y, 0) for any (x, p), (y, q). This violates our representation
(3.1) because f (0, 0) = 0 < g(q, p) and f (x, y) > g(0, 0) = 0 when x > y and
q > p. Therefore, we cannot compare zero lotteries in our representation. However,
comparisons between zero lotteries and non zero lotteries are consistent with (3.1).
Second, because of Richness*, we need to have f (x, 0) = 1 and g(p, 0) = 1 when
x, p > 0. Therefore, f and g are continuous and strictly increasing only at (0, x]2

and (0, 1]2, respectively.

12A natural specification of W is that W (t) =
∑n

t=1 ti . This specification generalizes the theories
of additive utilities (Debreu (1960b) and Wakker (1988)), the Additive Difference Model of Tversky
(1969), the Regret Theory of Loomes and Sugden (1982), and a version of the Salience Theory of
Bordalo et al. (2012).
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C h a p t e r 4

THE PERCEPTION-ADJUSTED LUCE MODEL

4.1 Introduction
We study the role of perception in individual stochastic choice. Perception is

captured through priority orders, which determine whether an alternative, or object
of choice, is perceived sooner or later than other alternatives. The perception priority
order could represent differences in familiarity, or salience, of the objects of choice.

Our main contribution is to identify a perception priority order from an agent’s
violations of independence from irrelevant alternatives (IIA), the rationality axiom
behind Luce’s (1959) model of choice. We attribute any violation of Luce’s model
to the role of perception, and use these violations to back out a perception order.
Our model, a perception-adjusted Luce model (PALM), reduces to Luce’s when
perception plays no role, and uses perception to capture violations of Luce’s model.

In PALM, an agent makes choices as if she were following a sequential pro-
cedure. In the procedure, the agent considers different alternatives in sequence,
following a perception priority order. The probability of choosing an alternative de-
pends on the probability that no alternative that was considered, or perceived, before
was chosen. The choice probability also depends on relative utility, just as in Luce’s
model. The sequential nature of PALM allows us to explain well-known behavioral
phenomena, such as the attraction and compromise effects, and the consequences of
forced choice and choice overload (see Sections 4.4.1 and 4.5).

We use stochastic choice data to construct a perception priority order. We start
from a primitive stochastic choice, and when the choice satisfies certain axioms, we
can construct a PALM model. The perception priority order comes from the ob-
served violations of Luce’s IIA. Luce’s IIA says that the relative choice probabilities
of alternative a over b should not be affected by adding a third alternative c. So
suppose that we have a violation of IIA, and that adding c changes the probability of
choosing a relative to that of choosing b. What can we conclude about perception?
We claim that a decrease in the relative probability of choosing a over b is an
indication that a has higher perception priority than b.

The reasoning is as follows. Adding c should in principle decrease the probabil-
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ity of choosing a and the probability of choosing b. The reason is that c competes
with a and b. But when a has a higher perception priority than b, then the very
fact that a is chosen with lower probability means that b has a higher chance of
being perceived. So there is a second effect of adding c, and it favors choosing b.
The final consequence is that adding c provokes a larger decrease in the probability
of choosing a than in the probability of choosing b. This means that the resulting
violation of Luce’s IIA takes the form of a decrease in the relative probability of
choosing a over b.

The second idea in our construction is to use the perception priority order to
define a hazard rate. The hazard rate is the probability of choosing an object,
conditional on not choosing any of the objects with higher perception priority. So
hazard rates incorporate the effects of perception. We impose two axioms. The first
requires that the perception priority be complete and transitive. The second axiom
is imposed on hazard rates, and says that hazard rates must satisfy the IIA. Since
hazard rates are obtained from choices by accounting for priority, and hazard rates
equal the primitive choice probability where priority does not matter, our axiom
means that perception explains all the deviations from IIA.

The resulting model of choice is what we call PALM, the perception-adjusted
Luce model. In PALM, an agent who is faced with a choice problem considers
the different alternatives in order of their priority. Each time one alternative is
considered, it is chosen with probability dictated by an underlying Luce model. So
the probability that a given alternative is chosen depends both on its utility (as in
Luce) and on its priority in perception.

Despite having a tight axiomatic characterization, PALM is quite flexible and
can accomodate many behavioral phenomena, including some of the best known
violations of Luce’s model in experiments. It can explain the attraction and compro-
mise effects: Section 4.5 has the details. Some of these effects stem from violations
of the regularity axiom; PALM can violate the regularity axiom. In Section 4.5,
we also use PALM to explain recent experimental findings on how forcing agents
to make a choice affects their choices. Another application of PALM is to choice
overload (see Section 4.4). An increase in the number of objects can lead to an
increased probability of not making a choice, when the objects are similar to each
other.

It is instructive to see how PALM can accommodate the attraction effect. Doyle
et al. (1999) is a representative experiment with evidence in favor of the attraction
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effect: Doyle et al. present customers with a choice of baked beans. The first choice
is between two types of baked beans: a and b; a is Heinz baked beans, while b is
a local cheap brand called Spar. In the experiment, b was chosen 19% of the time.
The authors then introduced a third option, c, a more expensive version of the local
brand Spar. After c was introduced, b was chosen 33% of the time. This pattern of
choices cannot be explained by Luce’s model; indeed it cannot be explained by any
model of random utility. It can, however, be explained by PALM.

Suppose that perception is related to the familiarity of the brand of beans. Since
a is the well-known Heinz brand, it is likely to be the highest priority alternative.
Also, b is at least as familiar as c because b and c are the same brands, and c is
introduced later. Given this perception priority, if the utility of a is large enough,
PALM produces the attraction effect in Doyle et al.’s experiment. As we explained
above, the addition of c in principle hurts the choice probabilities of both a and b,
but, while a does not benefit from b’s potential decrease, b does benefit from the
decrease in the probability of choosing a because b has lower priority than a. The
magnitude of this positive effect depends on the utility of a; if the utility of a is
large enough, then the indirect positive effect overcomes the direct negative effect,
and that is how PALM produces an increase in the probability of choosing a. This
increase in the probability of choosing a is the attraction effect.

There are models within the axiomatic literature that explain the attraction and
compromise effects. Section 4.7 discusses the related literature. Most of proofs are
collected in Appendix D.

4.2 Primitives and Luce’s model
Let X be a countable and nonempty set of alternatives, and A be a set of finite

and nonempty subsets of X . Suppose that A includes all sets with two and three
elements. We model an agent who makes a probabilistic choice from A0 ≡ A∪{x0},
with A ∈ A . The element x0 < X represents an outside option that is always
available to the agent. Choosing the outside option can be interpreted as the agent
not making a choice. Let X0 ≡ X ∪ {x0}.

Definition 11 A function ρ : X0 ×A → [0, 1] is called a stochastic choice function
if ∑

a∈A0

ρ(a, A) = 1
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for all A ∈ A . A stochastic choice function ρ is nondegenerate if ρ(a, A) ∈ (0, 1)
for all A ∈ A with |A| ≥ 2 and a ∈ A.

We write ρ(B, A) for
∑

b∈B ρ(b, A), and say that ρ(∅, A) = 0. Note that we
allow for ρ(x0, A) = 0. So it is possible that the outside option is never chosen with
positive probability, even when ρ is nondegenerate.

Definition 12 (IIA) A stochastic choice function ρ satisfies Luce’s independence of
irrelevant alternatives (IIA) axiom at a, b ∈ X0 if, for any A ∈ A ,

ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a, A)
ρ(b, A)

.

Moreover, ρ satisfies IIA if ρ satisfies IIA at a, b for all a, b ∈ X .

Luce (1959a) proves that, if a non-degenerate stochastic choice function satisfies
IIA, then it can be represented by the followingmodel (also referred to asmultinomial
logit):

Definition 13 (Luce’s Model) ρ satisfies the (extended) Luce’s model if there exists
a real-valued function u on X0 such that

ρ(a, A) =
u(a)∑

a′∈A u(a′) + u(x0)
. (4.1)

Luce presented his model with no outside option. Here we allow for an outside
option, and use the version of Luce’s model in which not choosing in A is possible.
Note that ρ(x0, A) = 0 iff u(x0) = 0.

Luce’s model satisfies a monotonicity property: ρ(x, A) ≥ ρ(x, B), if A ⊂ B.
This property is called regularity.

4.2.1 PALM
Perception priority. We capture the role of perception through a weak order %.
The idea is that when a � b, then a tends to be perceived sooner than b, and when
a ∼ b, then a and b are perceived simultaneously.

A PALM decision maker is described by two parameters: a weak order % and
a utility function u. She perceives each element of a set A sequentially according
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to the perception priority %. Each perceived alternative is chosen with probability
described by µ, a function that depends on utility u according to Luce’s formula (4.1).
Formally, the representation is as follows.

Definition 14 (PALM) A perception-adjusted Luce model (PALM) is a pair (u,%)
of a weak order % on X , and a function u : X0 → R such that

ρ(a, A) = µ(a, A)
∏

α∈A/%: α�a

(
1 − µ(α, A)

)
, (4.2)

where
µ(a, A) =

u(a)∑
b∈A u(b) + u(x0)

.

The notation A/ % is standard: A/ % is the set of equivalence classes in which
% partitions A. That is, (i) if A/ %= {αi}i∈I , then ∪i∈Iαi = A; and (ii) x ∼ y if and
only if x, y ∈ αi for some i ∈ I. The notation α � a means that x � a for all x ∈ α.
Luce’s model is a special case of PALM, in which a ∼ b for all a, b ∈ X .

For any PALM (u,%), we denote by ρ(u,%) the stochastic choice defined
through (4.2). (When there is no risk of confusion, we write ρ instead of ρ(u,%).)

The PALM has a procedural interpretation. Consider the following procedure.
First consider the highest-priority alternatives in A, and choose each of them with
probability given by µ(·, A); these probabilities obey a Luce formula. This means
that if α is the set of highest-priority elements of A, then each a ∈ α is chosen
with probability µ(a, A). With probability 1 − µ(α, A) none of the elements in α is
chosen. If none of the elements of α are chosen, then move on to the second-highest
priority alternatives, and choose each of them with the Luce probability specified
by µ. And so on and so forth.

For example, consider the menu A = {x, y, z} with x � y � z. In the PALM,
the agent first looks at x and chooses x with “Luce probability” µ(x, A). With
probability 1 − µ(x, A), x is not chosen, and the agents moves on to consider y,
the second-highest priority element. She chooses y with probability µ(y, A). This
means that the probability of choosing y is µ(y, A)

(
1 − µ(x, A)

)
. Finally, the

probability of choosing z is equal to µ(z, A)
(
1 − µ(x, A)

) (
1 − µ(y, A)

)
. If, instead

of having x � y � z, we have that x ∼ y � z then the probability of choosing z is
equal to µ(z, A)

(
1 − µ(x, A) − µ(y, A)

)
. The idea captured by x ∼ y is that x and

y are perceived, and considered, simultaneously. So the probability of choosing an
option that has higher priority than z is µ(x, A) + µ(y, A).
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4.3 Axioms
We introduce the revealed perception priority order derived from ρ, and the

resulting hazard rate function. The hazard rate function will be a “perception
adjusted” random choice function. It coincides with the random choice function
except where violations of Luce’s IIA are present. When there are violations of
Luce’s IIA, they will be attributed to the role of perception. So in our model the
hazard rate will satisfy IIA, even when the primitive stochastic choice violates IIA.

Revealed perception priority.We denote by%∗ the revealed priority relation that
we obtain from the data in ρ. To define %∗, first we identify the direct revealed
priority relation %0 from ρ. The revealed priority relation %∗ is defined as the
transitive closure of %0.

We shall attribute all violations of IIA to the role of perception. That is, we
require that a ∼0 b when IIA holds at a and b. In other words, when two alternatives
a and b do not exhibit a violation of IIA then we impose that they are equivalent
from the view point of perception: they have the same perception priority.

In contrast, if a and b are such that IIA fails at a and b, meaning that there is
some third alternative whose presence affects the relative probability of choosing a

over b, then we shall require that a and b are strictly ordered by �0. We shall require
that either a �0 b or that b �0 a. Which of the two orderings, a �0 b or b �0 a, is
determined by the nature of the violation of IIA.

Suppose that IIA fails at a and b because there is some c such that

ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

. (4.3)

In words, the presence of c lowers the probability of choosing a relative to the
probability of choosing b. When does adding an option hurt one alternative relatively
more than another? We claim that this happens when a has higher priority than b.
The reason is that by adding c we are “muddying the waters.” We are making the
choice between a and b less clear than before, and thus diluting the advantage held
by the high priority a over the low priority b.

As we explained in the introduction, we seek to model perception through an
order in which alternatives are considered. Adding c to {a, b} would in principle
decrease the probability of choosing both a and b because c competes with a and b;
but when a has higher priority than b, then the sole fact that a’s choice probability
decreases implies that choosing b becomes more likely. The reason is that b is
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only chosen when a is not chosen, so the decrease in the probability of choosing
a increases the probability of choosing b. Of course, by adding c we may also be
decreasing the probability of choosing b because c and b are in competition, so
the net effect on the probability of choosing b is not determined. However, we do
know that ρ(a,{a,b})

ρ(b,{a,b}) >
ρ(a,{a,b,c})
ρ(b,{a,b,c}) . And thus the direction of violation of Luce’s IIA is

dictated by perception priority.

Definition 15 Let a and b be arbitrary elements in X .
(i)

a ∼0 b if
ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X;
(ii)

a �0 b if
ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X such that c �0 a and c �0 b, and if there is at least one such c. We
write a %0 b if a ∼0 b or a �0 b.
(iii) Define%∗ as the transitive closure of%0: that is, a %∗ b if there exist c1, . . . , ck ∈

X such that
a %0 c1 %

0 · · · ck %
0 b.

The binary relation %∗ is called the revealed perception priority derived from ρ.

It is important to note that

ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

does not always imply that a � b. It will imply that a � b only when c has either
more or less priority than both a and b. When c is inbetween, then its presence may
also disproportionally hurt b, as it has higher priority than b.1

We shall impose the following condition on ρ:

1 To illustrate, consider the case a � c � b. As we explained before, adding c to {a, b} has
negative effects on the choice probabilities of both a and b because c competes with a and b. It also
has a positive effect on b because b will be chosen only after a is not chosen, and a is not chosen
with higher probability after we add c. However, when a � c � b, then c also directly hurts b (but
not a) because b will be chosen only after c is not chosen. Therefore, when a � c � b, we can have

ρ(a, {a, b})
ρ(b, {a, b})

<
ρ(a, {a, b, c})
ρ(b, {a, b, c})

.
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Axiom 17 (Weak Order) The relation %∗ derived from ρ is a weak order.

Hazard rate. The second important component of our analysis is the hazard rate
function. The hazard rate is the probability of choosing an object, conditional on
not choosing any of the objects with higher perception priority.

Definition 16 (Hazard Rate) For all a ∈ X and A ∈ A , define

q(a, A) =
ρ(a, A)

1 − ρ(Aa, A)
,

where Aa = {b ∈ A|b �∗ a}, A ∈ A and a ∈ A. For the outside option, we also
define q(x0, A) = 1 −

∑
a∈A q(a, A). Here q is called ρ’s hazard rate function.

We ascribe all violations of IIA to the role of perception, and the hazard rate is
the tool that we use to that purpose.

Axiom 18 (Hazard Rate IIA) The hazard rate function q satisfies Luce’s IIA; that
is, for any a, b ∈ X0, and A ∈ A ,

q(a, {a, b})
q(b, {a, b})

=
q(a, A)
q(b, A)

.

The idea behindHazard Rate IIA is that all violations of Luce’s IIA are explained
by the perception priority order. The definition of q implies that

q(a, A)
q(b, A)

=
ρ(a, A)
ρ(b, A)

ρ(Ab, A)

ρ(Aa, A)
. (4.4)

(Where Aa = A0 \ Aa and Ab = A0 \ Ab.) If Luce’s IIA is violated, we must have a
change in the “relative probability” of choosing a over b: ρ(a,A)

ρ(b,A) ,
ρ(a,{a,b})
ρ(b,{a,b}) . Hazard

Rate IIA implies that the “relative hazard rate” stays the same, q(a,{a,b})
q(b,{a,b}) =

q(a,A)
q(b,A) .

This means that the far-right term of (4.4), ρ(Ab,A)
ρ(Aa,A)

, must change as well.

In particular, when either a ∼ c � b or a � c � b and the utility of c is large enough, we will have

ρ(a, {a, b})
ρ(b, {a, b})

<
ρ(a, {a, b, c})
ρ(b, {a, b, c})

.

Observe that the definition of �0 involves c ∈ X such that c �0 a and c �0 b. The subtlety in the
definition of �0 is to rule out the case a ∼ c � b.
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Now, if a ∼∗ b then Aa = Ab, and Hazard Rate IIA implies the Luce IIA formula
for a and b. Therefore Hazard Rate IIA only differs from Luce’s IIA for alternatives
that are strictly ordered by perception priority.

So suppose that a has higher priority than b, and that the relative probability of
choosing a over b is smaller when the choice set is A ∪ {c} than when the choice
set is A. Hazard Rate IIA means that the perception priority explains the change in
relative probabilities: we must have a compensating decrease in the probability of
choosing an element that is perceived before b, relative to the probability of choosing
an element that is perceived before a. The explanation is that a was “hurt” relative
to b because the choice of a or b depends in part on the probability of choosing an
element with higher perception priority, and the addition of c decreased the relative
probability of choosing an element with higher priority than b.

In other words, the relative probability of choosing a over b decreased, and
therefore Luce’s IIA was violated, because the probability of choosing an element
that is perceived before b increased relative to the probability of choosing an element
that is perceived before a. Hazard Rate IIA means that the only permissible viola-
tions of Luce’s IIA are those that can be explained in this fashion by the perception
priority order.

4.4 Theorem
Before stating the theorem, we also define an additional technical condition

called “richness”. Richness requires that X has infinitely many alternatives. We
do not need this condition to prove the sufficiency of the axioms: that the axioms
imply a PALM representation. We need it to prove the necessity of the axioms, in
particular, the result that %=%∗.

Richness: For any pair a, b ∈ X with a � b, there is c ∈ X with c � a or b � c.2

Theorem 6 If a nondegenerate stochastic choice function ρ satisfies Weak Order
and Hazard Rate IIA, then there is a PALM (u,%) such that %∗=% and ρ = ρ(u,%).

Conversely, for a given PALM (u,%), if% satisfies Richness, then ρ(u,%) satisfies
Weak Order and Hazard Rate IIA, and %=%∗.

2We can prove Theorem 6 when X is finite by slightly modifying the revealed perception priority
order �∗. See Appendix D.7.
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The proof of the theorem is in Appendix D.1. The sufficiency of the axioms for
the representation is straightforward. The converse of Theorem 6 states, not only
that PALM satisfies the axioms, but that % must coincide with %∗. The perception
priority is thus identified from data on stochastic choice. Therefore, u is unique up
to multiplication by a positive scalar. The bulk of the proof is devoted to establishing
that %=%∗.

Despite the tight behavioral characterization in Theorem 6, PALM is very
flexible and can account for some well known behavioral phenomena. We discuss
two of them in the next section:

1. The compromise effect; violations of Luce’s IIA (Section 4.5.1).

2. The attraction effect; violations of regularity (Section 4.5.2).3

4.4.1 Discussion of Outside Option
It is useful to compare how Luce and PALM treat the outside option, the

probability of not making a choice from a set A.

For PALM, the utility of the outside option is:

u(x0) =
∑
a∈A

u(a)
(

1∑
a∈A q(a, A)

− 1
)
. (4.5)

In (extended) Luce’s model, the utility of the outside option has a similar
expression. Indeed,

û(x0) =
∑
a∈A

u(a)
(

1∑
a∈A ρ(a, A)

− 1
)
, (4.6)

with ρ in place of the hazard rates q .

It is interesting to contrast the value of u(x0) according to Equation (4.5) with
what one would obtain from Equation (4.6). Given a PALM model (u,%), we can
calculate û(A) from ρ(u,%) by application of Equation (4.6). If we do that, we obtain

1. û(x0) ≥ u(x0),

2. and û(x0) = u(x0) when a ∼ b for all a, b ∈ A.
3PALM can also account for violations of stochastic transitivity.
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The inequality û(x0) ≥ u(x0) reflects that there are two sources behind choosing
the outside option in PALM. One source is the utility u(x0) of not making a choice;
this is the same as in Luce’s model with an outside option. The second source is due
to the sequential nature of choice in PALM.When we consider an agent that chooses
sequentially, following the priority order %, then it is possible that we exhaust the
elements in Awithout making a choice. When that happens, it would seem to inflate
(or bias) the value of the outside option; as a result we get that û(x0) ≥ u(x0). For
example, when the utility of the outside option is zero, the outside option will not
be chosen in Luce’s model. However, in PALM, the outside option will be chosen
with positive probability because of the second source behind choosing the outside
option. Therefore, the utility of the outside option must be negative in order to
choosing the outside option with zero probability.4

Choice Overload

The outside option in PALM allows us to capture various behavioral phenomena.
One example is “choice overload:” the idea that a subject may be inclined to
make no choice when presented with many alternatives. The paper by Iyengar and
Lepper (2000) is a well known study of choice overload. Iyengar and Lepper run
an experiment where subjects had to choose among a large set of nearly identical
alternatives. They find that a large fraction of subjects make no choice whatsoever,
and that the fraction of subjects who make no choice increases from 26% to 40% as
the number of alternatives increases. These results are easily captured by PALM.

Let A = {a1, . . . , an} be a menu with n elements, each of which provide the same
Luce utility; so u(x1) = u(x2) = . . . = u(xn) > 0. Suppose that the n elements in
A are strictly ordered by the perception priority %, and that u(x0) = 0. Then the
probability of choosing the outside option is

ρ(x0, A) = (1 − 1/n)n,

which is monotone increasing in n. In other words, the probability of not making
a choice in A increases as the cardinality of A increases. Moreover, ρ(x0, A) goes
from about 25% to 1

e ≈ 37% as n increases. So PALM approximately matches the
numbers in the Iyengar and Lepper experiment.

4For example, when a � b and u(x0) = −u(a), we have ρ(x0, {a, b}) = 0.
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Forced Choice

Another advantage of PALM’s treatment of the outside option is that it allows
us to understand forced choice. In particular, the presence of the outside option
allows us to compare environments in which agents are forced to make a choice
with environments in which they are not forced to make a choice. Our model is
consistent with the experimental results of Dhar and Simonson (2003) on the effects
of forced choice on choice (Section 4.5.3). Moreover, we show that if an agent
chooses not to make choice with high probability, then utility and perception are
positively correlated (Section 4.6).

4.5 Compromise and Attraction Effects
The compromise and attraction effects are well-known deviations from Luce’s

model. See Rieskamp et al. (2006) for a survey. In this section, we demonstrate
how PALM can capture each of these phenomena.

The compromise and attraction effects are defined in the same kind of experi-
mental setup. An agentmakes choices from the sets {x, y} and {x, y, z}. The “effects”
relate to the consequences of adding the alternative z. PALM can explain the attrac-
tion effect when one uses familiarity to infer perception priority, so familiar objects
are perceived before unfamiliar ones. The role of familiarity in the compromise and
attraction effects is documented in Sheng et al. (2005) and Ratneshwar et al. (1987),
respectively.

In the following, we reviewexperiments on the compromise effects and attraction
effects. To apply PALM to such experiments, we need to discuss what is the outside
of option in the experiments. We claim that one natural interpretation of the outside
option is opting out from the experiments. In the next two sections we show how
PALM captures the compromise and attraction effects.5 Then we investigate how
the option to opt out of the experiment affects the results.

4.5.1 Compromise Effect– Violation of IIA
Consider three alternatives, x, y and z. Suppose that x and z are “extreme”

alternatives, while y represents a moderate middle ground, a compromise. In the
experiment studied by Simonson and Tversky (1992), x is X-370, a very basic
model of Minolta camera; y is MAXXUM 3000i, a more advanced model of the

5Appendix D.8 discusses a modification of PALM which avoids the outside option. Using the
modification, we illustrate that the outside option does not really play a role in explaining the two
effects, but the sequential procedure does.
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same brand; and z is MAXXUM 7000i, the top of the line offered by Minolta in this
class of cameras.

Model Price ($) Choices Exp. 1 Choices Exp. 2
x (X-370) 169.99 50% 22%

y (MAXXUM 3000i) 239.99 50 % 57%
z (MAXXUM 7000i) 469.99 N/A 21%

Figure 4.1: Compromise effect in Simonson and Tversky (1992)

The agent’s choice set is {x, y} in Experiment 1 and {x, y, z} in Experiment
2. The experimental data show that the probability of choosing y increases when
moving from Experiment 1 to 2 (see Figure 4.1). Simonson and Tversky (1992)
call this phenomenon the compromise effect. As in Rieskamp et al. (2006), the
compromise effect can be written as follows:

ρ(x, {x, y, z})
ρ(y, {x, y, z})

< 1 ≤
ρ(x, {x, y})
ρ(y, {x, y})

. (4.7)

Proposition 8 When x � y % z, ρ(u,%) exhibits the compromise effect (i.e., (4.7))
if and only if u(y) > u(x) and

u(z) + u(x0) >
u2(x) − u2(y) + u(x)u(y)

u(y) − u(x)
≥ u(x0). (4.8)

Proposition 8 results from a straightforward calculation so the proof is omitted.

Simonson and Tversky (1992)’s explanation for the compromise effect is that
subjects are averse to extremes, which helps the “compromise” option y when facing
the problem {x, y, z}. PALM can capture the compromise effect when we assume
that y is “in between” x and z with respect to priority. One rationale for x � y % z

is familiarity. The basic camera model may be more familiar, while the top of the
line is the least familiar.

4.5.2 Attraction Effect– A Violation of Regularity
PALM can accommodate violations of regularity. We focus on the attraction

effect, awell-knownviolation of regularity. A famous example of the attraction effect
is documented by Simonson and Tversky (1992) using the following experiment.
Consider our three alternatives again, x, y and z. Suppose now that y and z are
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different variants of the same good: y is a Panasonic microwave oven (meaning a
higher quality and expensive good6), while z is a more expensive version of y: z

is dominated by y. The alternative x is an Emerson microwave oven (meaning a
lower quality and cheap good). A more recent example, which we discussed in the
introduction, is due to Doyle et al. (1999). As we mentioned in the introduction, the
findings in Doyle et al.’s experiments fit the story in PALM particularly well.

Option Choices Exp. 1 Choices Exp. 2
x (Emerson) 57 % 27 %

y (Panasonic I) 43 % 60 %
z (Panasonic II) N/A 13 %

Figure 4.2: Attraction effect in Simonson and Tversky (1992)

Simonson and Tversky (1992) (p. 287) asked subjects to choose between x and
y in Experiment 1, and to choose among x, y, and z in Experiment 2 (see Figure
4.2). They found that the share of subjects who chose y in Experiment 2 is higher
than in Experiment 1. This finding is called the attraction effect. As in Rieskamp
et al. (2006), the effect can be described as follows:

ρ(y, {x, y, z}) > ρ(y, {x, y}). (4.9)

Proposition 9 If x � y % z and u(x) is large enough, then ρ(u,%) exhibits the
attraction effect (i.e., (4.9)).

Proof of Proposition 9: We have

ρ(y, {x, y, z}) > ρ(y, {x, y}) ⇔

⇔ q(y, {x, y, z})(1 − q(x, {x, y, z})) > q(y, {x, y})(1 − q(x, {x, y}))

⇔ u(x) >
√

(u(y) + u(z) + u(x0))(u(y) + u(x0))

�

The assumption x � y % z means that the Emerson microwave x is more salient
than the Panasonic microwaves, perhaps because of its price. The first Panasonic

6Microwave ovens were at one point expensive; see “Money for nothing” by Dire Straits.
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microwave y is at least as salient as z since there are the same brands. It is also
possible to tell a story of familiarity for the microwaves experiment. The Emerson
microwave x is likely to be the most familiar alternative since it is the cheapest and
simplest model. In Doyle et al.’s experiments (as discussed in the introduction),
perception is related to the familiarity of the brand of beans.

A different, symmetric, experiment would be to add an alternative t to enhance
the choice of x. So t could be a more expensive version of x. Heath and Chatterjee
(1995) found that one is less likely to observe the attraction effect when the third
alternative is dominated by the low-quality alternative (x), compared to the high-
quality alternative (y). More precisely, one is more likely to have ρ(y, {x, y, z}) >
ρ(y, {x, y}) compared to ρ(x, {x, y, t}) > ρ(x, {x, y}). PALM is consistent with this
finding: we cannot have ρ(x, {x, y, t}) > ρ(x, {x, y}) when x � y.7

4.5.3 The Effects of Forced Choice
Dhar and Simonson (2003) run choice experiments in which agents may not

have to make a choice. In their design, “no-choice” and “forced choice” are two
experimental treatments. Under the no-choice option, subjects can opt not to make
a choice. Under the forced-choice treatment, subjects must make a choice, as in
the experiments described in the two previous sections. Dhar and Simonson show
that the introduction of the no choice option weakens the compromise effect and
decrease the relative share of an option that is “average” on all dimensions. In our
model, not making a choice corresponds to choosing the outside option x0. We
proceed to illustrate how PALM can capture the evidence presented by Dhar and
Simonson.

Consider two PALM models, ρ = ρ(u,%) and ρ f = ρ(u f ,% f ). Suppose that these
two models only differ in u(x0). Thus, u(x) = u f (x) for any x ∈ X and %=% f . We
assume that ρ(x0, A) > ρ f (x0, A) for all A ∈ A . Roughly speaking, in the PALM
ρ f , a decision maker chooses the outside option less often.

In PALM, choosing the outside option more frequently is tied to a larger utility
of the outside option. In particular:

Condition ♠: ρ(x0, {x, y}) > ρ f (x0, {x, y}) iff ρ(x0, {x, y, z}) > ρ f (x0, {x, y, z}) iff
u(x0) > u f (x0).

7However, it is still possible that the relative probability of choosing x increases; that is,
ρ(x, {x,y,t })
ρ(y, {x,y,t }) >

ρ(x, {x,y })
ρ(x, {x,y }) , when t is added where x % t � y.
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Proposition 10 Any PALM model satisfies Condition ♠.

Recall our discussion of the outside option in PALM. There are two sources
behind the choice of the outside option. One is the sequential nature of choice, and
the other is the utility of the outside option. Proposition 10 says that the utility of the
outside option is the source behind “global” increases in the probability of choosing
the outside option.

In light of Proposition 10, we can trace the probability of opting out of an
experiment, and not making a choice, to the incentives provided for participation
in the experiment. In particular, consider the findings of Dhar and Simonson. Fix
three alternatives x, y, z ∈ X . Suppose that x � y � z. So y can be interpreted as an
“average” option. Given our assumption on ρ and ρ f , and under Condition ♠, we
assume that u(x0) > u f (x0).

In first place, PALMcan capture Dhar and Simonson’s finding that the no-choice
option decreases the relative share of an average alternative (recall that ρ represents
the case where subjects exercise the outside “no-choice” option more):

Proposition 11 If u(x0) > u f (x0), then

ρ(y, {x, y})
ρ(x, {x, y})

>
ρ f (y, {x, y})
ρ f (x, {x, y})

and
ρ(y, {x, y, z})
ρ(x, {x, y, z})

>
ρ f (y, {x, y, z})
ρ f (x, {x, y, z})

.

Proof of Proposition 11: By a direct calculation, ρ(x,{x,y})
ρ(y,{x,y}) =

u(x)
u(y)

(
1 + u(x)

u(y)+u(x0)
)

and ρf (x,{x,y})
ρf (y,{x,y}) =

u(x)
u(y)

(
1 + u(x)

u(y)+u f (x0)
)
. Since f (t) = u(x)

u(y)
(
1 + u(x)

u(y)+t
)
is decreasing

in t, we obtain u(x0) > u f (x0) if and only if ρ(x,{x,y})
ρ(y,{x,y}) <

ρf (x,{x,y})
ρf (y,{x,y}) . Similarly,

ρ(x,{x,y,z})
ρ(y,{x,y,z}) =

u(x)
u(y)

(
1 + u(x)

u(y)+u(z)+u(x0)
)
and ρf (x,{x,y,z})

ρf (y,{x,y,z}) =
u(x)
u(y)

(
1 + u(x)

u(y)+u(z)+u f (x0)
)
.

Since g(t) = u(x)
u(y)

(
1 + u(x)

u(y)+u(z)+t
)
is decreasing in t, we obtain u(x0) > u f (x0) if

and only if ρ(x,{x,y,z})
ρ(y,{x,y,z}) <

ρf (x,{x,y,z})
ρf (y,{x,y,z}) . �

In second place, PALM can capture Dhar and Simonson’s finding that the no-
choice option weakens the compromise effect as follows:

Proposition 12 If u(x0) > u f (x0), then

ρ f (x, {x, y})
ρ f (y, {x, y})

/ ρ f (x, {x, y, z})
ρ f (y, {x, y, z})

>
ρ(x, {x, y})
ρ(y, {x, y})

/ ρ(x, {x, y, z})
ρ(y, {x, y, z})

.
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4.6 Correlation between Utility u and Perception Priority %
Perception and utility are two independent parameters in PALM. Therefore,

PALM allows us to model scenarios where perception is positively correlated with
utility, negatively correlated, or simply unrelated.

In experimental settings, Reutskaja et al. (2011) find no intrinsic correlation
between utility and perception (a similar finding is reported in Krajbich and Rangel
2011). High-utility items are not per semore likely to be perceivedmore prominently
than others. It is therefore important that PALM not force a particular relation
between perception and utility.

However, we argue that when an agent chooses the outside option with high
probability, it is likely that utility and perception are positively correlated. Now we
give some conditions under which u(a) > u(b) if and only if a � b.

Proposition 13 Suppose a � bandu(a) , u(b). If ρ(x0, {a, b}) ≥ min
{
ρ(a, {a, b}),

ρ(b, {a, b})
}
and u(x0) ≤ 0, then u(a) > u(b) if and only if a � b.

The condition that ρ(x0, {a, b}) ≥ min{ρ(a, {a, b}), ρ(b, {a, b})} means that the
probability of choosing the outside option must be large enough. This property is
necessary to achieve positive correlation, as evidenced in the following result.

Proposition 14 If a � b, u(a) > u(b), and u(b) − u(a) ≤ u(x0), then

ρ(a, {a, b}) > ρ(x0, {a, b}) ≥ ρ(b, {a, b}) = min{ρ(a, {a, b}), ρ(b, {a, b})}.

4.7 Related Literature
Section 4.5 explains how PALM relates to the relevant empirical findings,

including the compromise, and attraction effects. We now proceed to discuss the
relation between PALM and some of the most important theoretical models of
stochastic choice.

There is a non-axiomatic literature proposing models that can explain the com-
promise and attraction effects. Rieskamp et al. (2006) is an excellent survey. Ex-
amples are Tversky (1972b), Roe et al. (2001) and Usher and McClelland (2004).
The latter two papers propose decision field theory, which allows for violations of
Luce’s regularity axiom. The recent paper by Natenzon (2010) presents a learning
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model, in which an agent learns about the utility of the different alternatives, and
makes a choice with imperfect knowledge of these utilities. Learning is random,
hence choice is stochastic. Natenzon’s model can explain these effects (as well as
the similarity effect of Tversky 1972b).

We shall not discuss these papers here, and focus instead on the more narrowly
related axiomatic literature in economics.

1) The benchmark economic model of rational behavior for stochastic choice is
the random utility model. Luce’s model is a special case of both PALM and random
utility. So PALM and random utility are not mutually exclusive; PALM is, however,
not always a random utility model.

The random utility model is described by a probability measure over preferences
over X ; ρ(x, A) is the probability of drawing a utility that ranks x above any other
alternative in A. The random utility model is famously difficult to characterize
behaviorally: see the papers by Falmagne (1978), McFadden and Richter (1990),
and Barberá and Pattanaik (1986).

As we have seen in Section 4.5, there are instances of PALM that violate the
regularity axiom. A random utility model must always satisfy regularity. Thus
PALM is not a special case of random utility. Moreover, Luce’s is a random utility
model, and a special case of PALM. So the class of PALMand random utility models
intersect, but they are distinct.

2) The recent paper by Gul et al. (2014) presents a model of random choice in
which object attributes play a key role. Object attributes are obtained endogenously
from observed stochastic choices. Their model has the Luce form, but it applies
sequentially; first for choosing an attribute and then for choosing an object. In terms
of its empirical motivation, the model seeks to address the similarity effect.

Gul, Natenzon and Pesendorfer’s model is a random utility model (in fact they
show that any random utility model can be approximated by their model). There
are therefore instances of PALM that cannot coincide with the model in Gul et al.
(2014). (Importantly, PALM can explain violations of the regularity axiom.) On
the other hand, Luce’s model is a special case of their model and of PALM. So the
two models obviously intersect.

3) Manzini and Mariotti (2014) study a stochastic choice model where attention
is the source of randomness in choice. In their model, preferences are deterministic,
but choice is random because attention is random. Manzini and Mariotti’s model
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takes as parameters a probability measure g on X , and a linear order �M . Their
representation is then

ρ(a, A) = g(a)
∏

a′�Ma

(1 − g(a′)).

In PALM, perception is described by the (non-stochastic) perception priority relation
%. Choice is stochastic because it is dictated by utility intensities, similarly to Luce’s
model. In Manzini and Mariotti, in contrast, attention is stochastic, but preference
is deterministic.

Manzini and Mariotti’s representation looks superficially similar to ours, but
the models are in fact different to the point of not being compatible, and seek to
capture totally different phenomena. Manzini and Mariotti’s model implies that IIA
is violated for any pair x and y, so their model is incompatible with Luce’s model.
PALM, in contrast, has Luce as a special case. Appendix D.2 shows that the two
models are disjoint. Any instance of their model must violate the PALM axioms,
and no instance of PALM can be represented using their model. So their model and
ours seek to capture completely different phenomena.

4) A closely related paper is Tserenjigmid (2013). In this paper, an order on
alternative also matters for random choice, and the model can explain the attraction
and compromise effects (as well as the similarity effect). The source of violations
of IIA is not perception, but instead a sort of menu-dependent utility.

5) The paper by Fudenberg et al. (2013b) considers a decision maker who
chooses a probability distribution over alternatives so as tomaximize expected utility,
with a cost function that ensures that probabilities are non-degenerate. One version
of their model can accommodate the attraction effect, and one can accommodate the
compromise effect.

6) Some related studies use the model of non-stochastic choice to explain some
of the experimental results we describe in Section 4.5. This makes them quite
different, as the primitives are different. The paper by De Clippel and Eliaz (2012) is
important to mention; it gives an axiomatic foundation for models of non-stochastic
choice that can capture the compromise effect. PALM gives a different explanation
for the compromise effect, in the context of stochastic choice.

Another related paper is Lleras et al. (2010). (See also Masatlioglu et al. (2012)
for a different model of attention and choice.) They attribute violations of IIA to
the role of attention. They elicit revealed preference (not perception priority, but
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preference) in a similar way to ours. When the choice from {x, y, z} is x and from
{x, z} is z, then they conclude that x is revealed preferred to z (this is in some sense,
the opposite of the inference we make).

7) Some papers study deliberate stochastic choice due to non-expected utility
or uncertainty aversion. Machina (1985) proposes a model of stochastic choice of
lotteries. In Machina’s paper, an agent deliberately randomizes his choices due to
his non-expected utility preferences. Machina does not provide an axiomatization.
Saito (2015) axiomatizes a model of stochastic choice of act. In Saito’s model, an
agent deliberately randomizes his choices because of non-unique priors over the set
of states. Saito’s primitives is preferences over sets of acts (i.e., payoff-profiles over
the set of states).

8) Ravid (2015) studies a random choice procedure that is similar to PALM.
First, an agent picks an option at random from the choice set; the option becomes
“focal.” Second, she compares the focal option to each other alternative in the set.
Third, the agent chooses the focal option if it passes all comparisons favorably.
Otherwise, the agent draws a new focal option with replacement. Ravid (2015)
characterizes the procedures by an relaxation of IIA termed Independence of Shared
Alternatives (ISA).

9) Marley (1991) axiomatizes a more general model than the model proposed
by Ravid. Marley (1991) called the model, binary advantage models. In the models,
choice probabilities depend on a measure of binary advantage and an aggregation
function which maps choice set to a strictly positive number. The model by Ravid
is a special case of binary advantage models, in which the aggregation function is
constant and equal to one.
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C h a p t e r 5

THE ORDER-DEPENDENT LUCE MODEL

5.1 Introduction
Luce (1959b)’s model of random choice (or multinomial logit model) has been

widely used and studied in econometrics and economic theory (seeMcFadden 2001).
This model relies on the axiom of independence from irrelevant alternatives (IIA)
which says that the probability of choosing alternative x relative to that of choosing
alternative y is not affected by the presence of alternatives other than x or y. This
kind of menu-independence assumption is also common in standard choice theory
models. However, many consistent violations of IIA are documented both in the
real world and in lab experiments.1

In this paper, we develop a menu-dependent version of Luce’s Model in which
menu-dependence is caused by an underlying linear order on alternatives. To
illustrate the menu-dependence of interest, consider a consumer choice in a grocery
store. It is well-understood that the location of a product in the shop can make a
crucial difference to its sales. Traditionally, “eye-level shelving" is best, followed by
“waist-level", “knee-level", and “ankle-level" (Dreze et al. 1995). Simple product
reorganization can produce changes in sales of 5-6% (Dreze et al. 1995). Since
space is limited, the location of one product affects the location of all other products
which in turn affects the sales of those products. Therefore, the locations of products
potentially cause menu-dependent choice.

Another example of menu-dependent behavior is the effect of ballot order on
vote shares. Meredith and Salant (2013) estimated that, in California city council
and school board elections, candidates listed first win office between 4-5% more
often than expected, absent order effects. Candidates listed first in primary or non-
partisan elections for U.S. state or federal offices gain about 2% points (Koppel and
Steen 2004, Ho and Imai 2008).

In this paper, we focus on an environment in which alternatives are ordered by
some underlying (fixed) linear order and an agent’s behavior is influenced by the

1For example, there are many experimental results that suggest a violation of IIA. See Tversky
(1972a), Huber et al. (1982), Simonson and Tversky (1992), and Tversky and Simonson (1993). Also
see Rieskamp et al. (2006) for survey.
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ordering over alternatives in the menu she faces. We axiomatically model an agent
who makes a random choice in such environment. We characterize our model by
two weakenings of IIA.

In many cases, the underlying linear order is subjective, unobservable, or too
costly to obtain for a researcher. For example, the attractiveness or salience of
alternatives affect the agent’s behavior, but they are purely subjective. Also, ad-
vertisement expenditures and Google search ranking give an objective ranking on
alternatives, but it is costly to obtain for the researcher. One of the main contribu-
tions of the paper is that we can uniquely identify the underlying linear order from
observed choice probabilities (Propositions 16-17).

Despite having a tight axiomatic characterization, our model can explain many
well-known behavioral phenomena. In Section 5.5, we will show that our model
can accommodate the similarity effect of Tversky (1972a), the compromise effect
of Tversky and Simonson (1993), the attraction effect of Huber et al. (1982), a
violation of stochastic transitivity (Tversky 1969), and the choice overload (Iyengar
and Lepper 2000). Since the attraction effect is a violation of regularity and random
utility models always satisfy regularity (see Section 5.5.2), our model is not a special
case of random utility models.

The paper proceeds as follows. In Section 5.2, we introduce basic notations
and definitions. In Section 5.3, we focus on a case in which the underlying linear
order on alternatives is observed and provide a characterization theorem. In Section
5.4, we focus on a case in which the underlying linear order on alternatives is not
observed. Section 5.5 discusses aforementioned behavioral phenomena and Section
5.6 concludes with related literature. Proofs are collected in Appendix E.

5.2 Basic
Let X be a finite set of alternatives with at least three elements, and A be a

set of nonempty subsets (menus) of X . We assume that A includes all binary and
tripleton menus. We model an agent who makes a probabilistic choice from A with
A ∈ A .

Definition 17 (Random Choice Rule) A function p : X × A → [0, 1] is called a
random choice rule if ∑

a∈A

p(a, A) = 1
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for all A ∈ A . A random choice rule p is nondegenerate if p(a, A) > 0 for any A

and a ∈ A.

Throughout the paper we focus on nondegenerate random choice rules since a
zero probability is empirically indistinguishable from a positive but small probabil-
ity. Now we formally define IIA and Luce’s model.

Definition 18 (IIA) A random choice rule p satisfies Luce’s independence of irrel-
evant alternatives (IIA) axiom if for any a, b ∈ X and A, B ∈ A with a, b ∈ A ∩ B,

p(a, A)
p(b, A)

=
p(a, B)
p(b, B)

.

Luce (1959b) proves that, if a nondegenerate random choice rule satisfies IIA,
then it can be represented by the following model: p satisfies Luce’s model if there
exists a positive-valued function u (menu-independent utility function) on X such
that

p(a, A) =
u(a)∑

a′∈A u(a′)
.

In this paper, we focus on a menu-dependent version of Luce’s model. How-
ever, without a specific kind of menu-dependence, we cannot obtain any testable
predictions on observed data. In other words, any nondegenerate random choice
rule can be represented by some menu-dependent version of Luce’s Model; that is,
there exists a positive-valued function u (menu-dependent utility function) on X×A

such that
p(a, A) =

u(a, A)∑
a′∈A u(a′, A)

.

In this paper, we consider a menu-dependent Luce’s model in which menu-
dependence is determined by some underlying linear order on alternatives. Let R

be the underlying linear order on X of interest. Let R(a, A) ≡ |{b ∈ A : bRa}| + 1
which gives a ranking of an alternative a in a menu A by R. Now we formally define
our model.

Definition 19 An order-dependent Luce Model (ODLM) is a pair (u, R) of a linear
order R on X and a function u : X×N→ R+ such that for any A ∈ A ,

p(a, A) =
u
(
a, R(a, A)

)∑
a′∈A u

(
a′, R(a′, A)

) . (5.1)
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For any ODLM (u, R), we denote by p(u,R) the random choice rule defined
through (5.1). The ODLM includes the following three different choices:

• Luce’s model: if u(a, i) = u(a, j) for any a ∈ X and i, j ∈ N, then an OLDM
produces Luce’s model.

• Top-3: when u(·, i) > 0 only if i ≤ 3, an ODLM (u, R) produces Top-3
choice.

• Advertisement Expenditures: suppose R is a ranking of products in amarket
by their advertisement expenditures. Suppose agent’s evaluations of products
are weighted depending on that ranking, then the agent’s choice generates an
ODLM (u, R) such that u(a, R(a, A)) = v(a) · w(R(a, A)) where v is a utility
function and w is a weight function.

Before we proceed to the characterization theorems, let us discuss two simple
predictions of themodel. For sake of clarity, we say that IIA is satisfied at alternatives
a, b, and c, if the probability of choosing a from menu {a, b, c} relative to that of
choosing b does not change if c is eliminated from the menu; that is,

p(a, {a, b, c})
p(b, {a, b, c})

=
p(a, {a, b})
p(b, {a, b})

.

Now take any ODLM (u, R) and three alternatives a, b, and c with a R b R c.
Suppose u(c, 2) > u(c, 3). Then the model predicts, the following two observations.

Observation 4: IIA is satisfied at a, b, and c since

p(a, {a, b, c})
p(b, {a, b, c})

=
u(a, 1)
u(b, 2)

=
p(a, {a, b})
p(b, {a, b})

.

In other words, an alternative with a lower ranking (c) has no effect on alterna-
tives with higher ranking (a and b).

Observation 5: IIA is violated at a, c, and b since

p(a, {a, b, c})
p(c, {a, b, c})

=
u(a, 1)
u(c, 3)

>
p(a, {a, c})
p(a, {a, c})

=
u(a, 1)
u(c, 2)

.

In other words, eliminating an alternative (b) hurts an alternative with higher
ranking (a) more than an alternative with a lower ranking (c).
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5.3 Axioms and Representation Theorem for given R

In some cases the ordering of alternatives is observable. For example, in
elections the ordering of candidates on ballots is observable to both voters and
researchers. In this section, we suppose that the linear order R is given. For the
given order R, two weakenings of IIA are enough to characterize the ODLM.

To illustrate the first axiom, let us consider consumer choices in a grocery store.
Suppose a grocery store has three shelves, top, middle, and bottom, and goods a, b,
and c are on each one of them. Suppose being on the top shelf gives 5% advantage
over being on the middle shelf, and being on the middle shelf gives 3% advantage
over being on the bottom shelf in terms of sales. Consider two scenarios.

First, consider a case in which a is on the top, b is in the middle, and c is at
the bottom. Then the elimination of c does not effect the probability of choosing
a relative to that of choosing b because the rankings of a and b in {a, b, c} are the
same that of in {a, b}. Therefore, a still should have 5% advantage over b, so IIA
should be satisfied consistent with Observation 4.

Second, consider a case in which a is in the middle, b is at the bottom, and c is
on the top. Now let us replace c with a new alternative c′. Since the rankings of a

and b in {a, b, c} are the same that of in {a, b, c′}, a should still have 3% advantage
over b.

We formalize the idea of the above two scenarios and obtain a weaker version
of IIA: the probability of choosing a relative to that of choosing b is constant across
menus in which their rankings are the same. Formally,

Axiom 19 (R-IIA) For any A, B ∈ A and a, b ∈ A ∩ B, if

R(a, A) = R(a, B) and R(b, A) = R(b, B), then
p(a, A)
p(b, A)

=
p(a, B)
p(b, B)

.

Indeed, R-IIA is weaker than IIA. Nowwe turn to the second axiom. To illustrate
the second axiom, let us discuss the following indirect implication of IIA:

p(a, {a, c})
p(c, {a, c})

·
p(c, {b, c})
p(b, {b, c})

=
p(a, {a, b})
p(b, {a, b})

. (5.2)

Luce interpreted (5.2) as follows: let p(a, A) be the probability of a being the
best element in A for some (random) preference �∗ on X; that is,

p(a, A) = Pr
(
a �∗ b for all b ∈ A \ {a}

)
.
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Then the product p(a, {a, c}) · p(c, {b, c}) is equal to the probability of the event
{a �∗ c �∗ b} and the product p(c, {a, c}) · p(b, {b, c}) is equal to the probability of
the event {b �∗ c �∗ a}. Then we rewrite (5.2) in the following way:

LHS of (5.2) =
Pr (a �∗ c �∗ b)
Pr (b �∗ c �∗ a)

=
Pr (a �∗ b)
Pr (b �∗ a)

= RHS of (5.2).

In other words, equation (5.2) requires that the product p(a,{a,c})
p(c,{a,c}) ·

p(c,{b,c})
p(b,{b,c}) (=

p(a,{a,b})
p(b,{a,b}) ) does not depend on c. We weaken this property in the following way: the
above product does not depend on c when c has a lower ranking than both a and b

by R. Formally,

Axiom 20 (R-Constant Impact (R-CI)) For any a, b ∈ X , the product p(a,{a,c})
p(c,{a,c}) ·

p(c,{b,c})
p(b,{b,c}) is constant across all c ∈ X such that aRc and bRc; that is, for any c, c′ ∈ X

such that aRc, bRc, aRc′, and bRc′,

p(a, {a, c})
p(c, {a, c})

·
p(c, {b, c})
p(b, {b, c})

=
p(a, {a, c′})
p(c′, {a, c′})

·
p(c′, {b, c′})
p(b, {b, c′})

.

Now we state the first main result of our paper.

Theorem 7 A nondegenerate random choice rule p satisfies R-IIA and R-CI if and
only if there is an ODLM (u, R) such that p = p(u,R). Moreover, u is unique up to
multiplication by a positive scalar.

5.3.1 Increasing Order-Dependent Luce Model
Let us consider the grocery store example again. In that example, evaluations

of alternatives are increasing in order of shelves: being on the middle shelf is better
than being on the bottom and being on the top shelf is better than being in the
middle. In this subsection, we discuss a case in which the utilities of alternatives
are increasing in rankings of alternatives (decreasing in R). Formally, we say an
ODLM (u, R) is increasing if for any i, j with i < j, u(a, i) ≥ u(a, j).

Consider the grocery store example in which a is on the top, b is in the middle,
and c is on the bottom. Similar to Observation 5 in Section 5.2, the elimination of
b from {a, b, c} helps c more than a because c moves to the middle shelf while a is
still on the top shelf. Formally,

Axiom 21 (R-Increasing) p(c,A)
p(a,A) ≤

p(c,A\{b})
p(a,A\{b}) for all A and a, b, c ∈ Awith a R b R c.
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We also require the following condition: when a R b R c,

p(a, {a, b})
p(b, {a, b})

·
p(b, {b, c})
p(c, {b, c})

≥
p(a, {a, c})
p(c, {a, c})

. (5.3)

In the grocery story example, if the consumer prefers all alternatives equally,
since the top shelf has 5% advantage over the middle one, then LHS of (5.3) is
(1 + 5%)(1 + 5%) and RHS of (5.3) is (1 + 5%). Now we state the second result of
the paper. Above two conditions are enough to characterize increasing ODLMs.

Proposition 15 For any ODLM (u, R), a random choice rule p = p(u,R) satisfies
R-Increasing and (5.3) for any a, b, c ∈ X with aR bR c if and only if it is increasing.

5.4 Identifying Unknown R and Revealed Order
In many cases R is not observable. For example, suppose that R is a ranking

over products in a market by their levels of advertisement spending. Indeed, R

affects the choices of consumers, but it is not observable to outside researchers. We
identify R from observable choice data by using Observation 4.

Let us restate the main message of Observation 4: an alternative with lower
ranking has no effect on alternatives with higher ranking. Therefore, in order to
identify R, we simply take menus with three alternatives and check whether IIA is
satisfied.

More formally, we say that c has lower rank than a and b if IIA is satisfied at a,
b, and c; that is, p(a,{a,b,c})

p(b,{a,b,c}) =
p(a,{a,b})
p(b,{a,b}) . Now for any two alternatives a and b, let us

define the set of elements that have lower rank than both a and b:

L(a, b) =
{
c ∈ X \ {a, b}|

p(a, {a, b, c})
p(b, {a, b, c})

=
p(a, {a, b})
p(b, {a, b})

}
.

Now we define a revealed order R0 on X from the sets L.

Definition 20 (Revealed Order) for any a, b ∈ X , we say a has revealed higher
ranking than b, denoted by aR0b, if there exists a′ ∈ X such that b ∈ L(a, a′).

Two postulates on L are enough to obtain a well-behaved revealed order R0

which almost uniquely identifies the underlying order R.

The first axiom is called asymmetry, which requires that if a has revealed higher
ranking than b, then b cannot have revealed higher ranking than a. Formally,
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Axiom 22 (Asymmetry) For any a, b ∈ X , if there exists c ∈ X \ {a, b} such that
b ∈ L(a, c), then a < L(b, c′) for all c′ ∈ X \ {a, b}.

The second axiom is called transitivity, which requires that if c does not have
revealed higher ranking that b, and c does not have revealed higher ranking that a,
then both a and b have revealed higher ranking than c. Formally,

Axiom 23 (Transitivity) For any a, b, c ∈ X , if b < L(a, c) and a < L(b, c), then
c ∈ L(a, b).

The following result proves that R0 is well-behaved and almost complete under
asymmetry and transitivity.

Proposition 16 (Sufficiency) Suppose a nondegenerate random choice rule p sat-
isfies Asymmetry and Transitivity. Then R0 is transitive; that is, aR0b and bR0c

imply aR0c, and asymmetric; that is, aR0b implies ¬bR0a. Moreover, if there is
a pair (a∗, b∗) such that neither a∗R0b∗ nor b∗R0a∗, then for any (a, b) , (a∗, b∗),
either aR0b or bR0a, and for any c ∈ X \ {a∗, b∗}, a∗R0c and b∗R0c.

Proposition 16 shows that Asymmetry and Transitivity are sufficient for R0

to be well behaved. The next result shows that Asymmetry and Transitivity are
necessary under conditions on the utility function u give us enough variety in choice
probabilities. Proposition 16 also shows that R0 is almost complete.2 Then the next
result also shows that R0 is in fact consistent with R.

Proposition 17 (Necessity) For any ODLM (u, R), if u(b, 2) , u(b, 3) and u(a,1)
u(b,2) ,

u(a,2)
u(b,3) for all a, b ∈ X with a R b, then p(u,R) satisfies Asymmetry and Transitivity.
Moreover, for any a, b ∈ X , if aR0b, then aRb.

5.5 Behavioral Phenomena
5.5.1 Consistency with Violations of IIA–the Similarity Effect and Compro-

mise Effects
The similarity and compromise effects are well-known deviations from Luce’s

model (see Rieskamp et al. (2006) for a survey). In this section, we demonstrate
how the ODLM can capture each of these phenomena.

2In Appendix E.5, we discuss how to complete R0.
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The similarity and compromise effects are defined in the same kind of exper-
imental setup. An agent makes choices from the menus {x, y} and {x, y, z}. The
“effects” relate to the consequences of adding the alternative z.

The Similarity Effect and Debreu’s Red Bus/Blue Bus Example

Suppose that our three alternatives are such that x and z are somehow very similar to
each other, and clearly distinct from y. This setup is discussed by Tversky (1972a),
building on a well-known example of Debreu (1960a) in which the agent makes a
transportation choice and x and z are a red bus and a blue bus while y is a train.
Since z is more similar to x, adding z hurts x more than y. This effect is called the
similarity effect, and can be formalized as follows:

p(x, {x, y, z})
p(y, {x, y, z})

<
p(x, {x, y})
p(y, {x, y})

.

In Debreu’s example, the agent is assumed to like bus and train equally; that
is, p(x, {x, y}) = p(y, {x, y}) = 1

2 , but when there are two buses the probability of
choosing blue bus halves; that is, p(x, {x, y, z}) = 1

4 and p(y, {x, y, z}) = 1
2 .

Observation 6: When y R z R x, the ODLM is consistent with the similarity effect.
In particular, when u(x, 2) = 2, u(x, 3) = 1, u(y, 1) = 2, then we obtain Derbeu’s
example:

p(x, {x, y, z})
p(y, {x, y, z})

=
u(x, 3)
u(y, 1)

=
1
2
<

p(x, {x, y})
p(y, {x, y})

=
u(x, 2)
u(y, 1)

= 1.

The Compromise Effect

Consider again three alternatives x, y, and z. Suppose that x and z are “extreme”
alternatives, while y represents a moderate middle ground, a compromise. In the
experiment studied by Simonson and Tversky (1992), x is X-370, a very basic
model of Minolta camera; y is MAXXUM 3000i, a more advanced model of the
same brand; and z is MAXXUM 7000i, the top of the line offered by Minolta in this
class of cameras.

In Experiment 1, the menu is {x, y} and x is chosen at least as frequently as y.
However, in Experiment 2, the menu is {x, y, z} and y is chosen more often than x.3

3Essentially, it is a stochastic version of preference reversal.
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Model Price ($) Choices Exp. 1 Choices Exp. 2
x (X-370) 169.99 50% 22%

y (MAXXUM 3000i) 239.99 50 % 57%
z (MAXXUM 7000i) 469.99 N/A 21%

Figure 5.1: The Compromise effect in Simonson and Tversky (1992)

Simonson and Tversky (1992) call this phenomenon the compromise effect. As in
Rieskamp et al. (2006), the compromise effect can be written as follows:

p(x, {x, y, z})
p(y, {x, y, z})

< 1 ≤
p(x, {x, y})
p(y, {x, y})

.

Simonson and Tversky (1992)’s explanation for the compromise effect is that
subjects are averse to extremes, which helps the “compromise” option y when facing
the problem {x, y, z}.

Observation 7: ODLMcan capture the compromise effect when yRzRx. Moreover,
we can replicate Figure 5.1 with the following numbers: u(x, 2) = u(y, 1) = 1,
u(x, 3)= 22

57 , and u(z, 2)= 21
57 .4

5.5.2 Consistency with Violation of Regularity–Attraction Effect
The ODLM can also accommodate violations of regularity, another property

that Luce’s Model satisfy. In fact, regularity is the property that all Random Utility
Models satisfy which requires that adding alternative to a menu weakly decreases
the probability of choosing alternatives of the original menu. Formally,

Regularity: p(a, A) ≥ p(a, A ∪ {b}) for any A ∈ A , and a, b ∈ X .

We focus on the well-known attraction effect (documented by Simonson and
Tversky 1992) using the following experiment. Consider our three alternatives
again, x, y, and z. Suppose now that y and z are different variants of the same good:
y is a Cross pen (meaning a higher quality pen), while z is a pen of regular quality:
y clearly dominates z. We give the alternative x a monetary value ($6). Then

Simonson and Tversky (1992) (p.287) asked subjects to choose between x and
y in Experiment 1 and to choose among x, y, and z in Experiment 2. They found

4Then p(x, xy) = u(x,2)
u(x,2)+u(y,1) =

1
1+1 = 0.5, p(x, xyz) = u(x,3)

u(x,3)+u(y,1)+u(z,2) =
22/57

22/57+1+21/57 = 0.22,
and p(y, xyz) = u(y,1)

u(x,3)+u(y,1)+u(z,2) =
1

22/57+1+21/57 = 0.57.
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Option Choices Exp. 1 Choices Exp. 2
x ($6) 64 % 52 %

y (Cross pen) 36 % 46 %
z (Other pen) N/A 2 %

Figure 5.2: Attraction effect in Simonson and Tversky (1992)

that in Experiment 2, the share of subjects who chose y becomes higher than that
in Experiment 1. This effect is called the attraction effect. As in Rieskamp et al.
(2006), the effect can be described as follows:

p(y, xyz) > p(y, xy).

Observation 8: The ODLM can capture the attraction effect when yRzRx. More-
over, we can replicate Figure 5.2 with numbers u(x, 2) = 64,u(y, 1) = 36, u(x, 3) =
4016

23 , and u(z, 2)= 36
23 .5

5.5.3 Violation of Stochastic Transitivity
The ODLM also allows for violations of weak stochastic transitivity. Formally,

weak stochastic transitivity is defined as follows.

Weak Stochastic Transitivity: For any x, y, z ∈ X , if p(x, xy) ≥ 1
2 and p(y, yz) ≥

1
2 , then p(x, xz) ≥ 1

2 .

Violations of transitivity are consistently observed in lab experiments. For ex-
ample, Figure 5.3 shows observed choice probabilities in the experiment of Tversky
(1969). In the experiment, subjects were asked to choose between binary lotteries
x = ($5, 7

24 ), y = ($4.5, 9
24 ), and z = ($4, 11

24 ). Here ($5, 7
24 ) denotes a binary lottery

that gives $5 with probability 7
24 and gives nothing with probability 17

24 and so on.6

Figure 5.3: Choice Probabilities in Tversky (1969)

Gambles x and y y and z x and z
x = ($5, 7/24) 67.5% 36%
y = ($4.5, 9/24) 32.5% 65%
z = ($4, 11/24) 35% 64%

5 Then p(y, xy)= u(y,1)
u(x,2)+u(y,1) =0.36 and p(y, xyz) = u(y,1)

u(x,3)+u(y,1)+u(z,2) =
36

40 16
23+36+ 36

23
=0.46.

6Figure 5.3 is directly calculated from Tversky (1969)’s results. Tversky’s result was replicated
by Lindman and Lyons (1978), Budescu and Weiss (1987), and Day and Loomes (2010).
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Observation 9: ODLM allows for violations for weak stochastic transitivity when
yRzRx. Moreover, we can replicate Figure 5.3with numbersu(x, 2)=1, u(y, 1)= 13

27 ,
u(z, 1)= 16

9 .

5.5.4 Choice Overload
The choice overload is a scenario documented in both lab and field experiments,

where an increase in the number of alternatives in menu leads to adverse conse-
quences such as a decrease in the motivation to choose or the satisfaction with the
finally chosen option (e.g., Chernev 2003 and Iyengar and Lepper 2000). One of
usual explanations for the choice overload is that having toomany alternatives makes
it hard to choose (or find) the good alternative. Here we demonstrate that adding a
new alternative into a menu may lead to a decrease in the agent’s satisfaction with
the his chosen option even if added alternative does not decrease the average level
of utility of the menu.

We can convey the main intuition by just considering three alternatives: x, y,
and z. Take an ODLM (u, R) such that u(a, i) = w(i) · u(a) where w(i) is strictly
decreasing in i. The following observation shows that adding alternative z into
menu the {x, y} decreases the expected utility of menu even if the utility of z is high
enough.

Observation 10: Suppose xRzRy, u(y) > u(x), and the utility of z is equal to the
expected utility of the menu {x, y}; that is, u(z) = p(x, {x, y}) · u(x) + p(y, {x, y}) ·
u(y). If w(3) is small enough, then

p(x, {x, y}) · u(x) + p(y, {x, y}) · u(y) >

p(x, {x, y, z}) · u(x) + p(y, {x, y, z}) · u(y) + p(z, {x, y, z}) · u(z).

Intuitively, adding z makes it harder to choose (or find) the best alternative y because
y is the last alternative under the ordering R. If R is related to the search process
that agents use to make consumption choices, then the intuition of Observation 10
is consistent with the usual explantation for the choice overload.

5.6 Related Literature
Section 5.5 explains how the ODLM relates to the relevant empirical findings,

including the similarity, compromise, and attraction effects. We now proceed to
discuss the relation between the ODLM and some of the most important theoretical
models of stochastic choice.
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There is a non-axiomatic literature that proposes several models which can
explain the similarity, compromise, and attraction effects. Rieskamp et al. (2006)
is an excellent survey. Examples are Tversky (1972a), Roe et al. (2001) and Usher
and McClelland (2004). The latter two papers propose decision field theory, which
allows for violations of Luce’s regularity axiom. The recent work by Natenzon
(2010) presents a learning model, in which an agent learns about the utility of
the different alternatives randomly and makes a choice with imperfect knowledge
of these utilities. Natenzon’s model can explain all three effects. We shall not
discuss these papers here, and focus instead on the more narrowly related axiomatic
literature in economics. We separate literature in three categories.

1. Random Utility Models: The benchmark economic model of rational behav-
ior for stochastic choice is the random utility model. Since Luce’s model is a special
case of both the ODLM and random utility, the ODLM and random utility intersect.
However, the ODLM allows for the attraction effect while random utility models
always satisfy regularity, so the ODLM is not a special case of random utility.

The recent paper by Gul et al. (2010) presents a random utility model in which
object attributes play a key role as in Tversky (1972a). Their model has Luce’s
form, but it applies sequentially, and in terms of its empirical motivation, it seeks to
address the similarity effect.

2. Models with Bounded Rational Agents: A closely related paper is Echenique
et al. (2013). In this paper, an order on alternatives also matters for random choice,
and themodel can explain the attraction and compromise effects, aswell as violations
of stochastic transitivity. In their paper, the source of violations of IIA is limited
perception while the utilities are menu-independent.

Manzini and Mariotti (2014) study a stochastic choice model where attention
is the source of randomness in choice while preferences are deterministic. Their
model can explain the similarity and compromise effects as well as violations of
stochastic transitivity.

The paper by Fudenberg et al. (2015) considers a decision maker who chooses
a probability distribution over alternatives so as to maximize expected utility, with
a cost function that ensures that probabilities are non-degenerate. One version of
their model can accommodate the attraction effect, and one can accommodate the
compromise effect.

3. Non-Stochastic Choices: Our model is more closely related to two lines of
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research on choice theory. Before we discuss them, note that we can easily obtain a
choice theoretic version of the ODLM in the following way: for any A ∈ A ,

a is chosen from menu A iff u
(
a, R(a, A)

)
> u

(
b, R(b, A)

)
for each b ∈ A \ {a}.

Similar to Section 5.3.1, we can also define choice-theoretic versions of increasing
ODLMs and decreasing ODLMs.

The first line of research is on limited attention and consideration set. Masatli-
oglu et al. (2012) attribute violations of WARP (the counterpart of IIA in determin-
istic choice models) to the role of attention. They elicit revealed preference in the
following way: when the choice from {x, y, z} is x and from {x, z} is z, then they
conclude that x is revealed preferred to z. In contrast, we conclude that x has a
higher ranking than z in decreasing ODLMs (opposite of Observation 5). In fact, a
choice-theoretic version of decreasing ODLMs is a special case of Masatlioglu et al.
(2012). However, choice-theoretic versions of increasing ODLMs are not special
cases of Masatlioglu et al. (2012).

The second line of research is on framing effects. In particular, Rubinstein
et al. (2006) and Salant and Rubinstein (2008) discuss the effect of different frames
(e.g., different rankings over alternatives) while in our paper the ordering is fixed.
A more closely related paper is Yildiz (2012) which also discusses fixed ordering
on alternatives. Since Yildiz focuses on choices in which the choice procedure is
also influenced by the ordering on alternatives and an agent engage in some kind
of sequential search, he obtains a very different model from ours. In particular, a
random choice version of his model cannot have Luce’s Model as a special case
because of the sequentiality.

Besides these two lines of research, there are several recent papers on choice
theory that explain behavioral phenomena in Section 5.5. For example, Kamenica
(2008) discusses model of context-dependent preferences and explains the attraction
and compromise effects as well as the choice overload; Ok et al. (2014) discusses
model of (endogenous) reference-dependent preferences and explains the attraction
effect; De Clippel and Eliaz (2012)’s model produces the compromise and attraction
effects as solutions of some bargaining problems.
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A p p e n d i x A

APPENDIX TO CHAPTER 1

A.1 Proofs
A.1.1 Proofs of Theorem 1 and Corollary 1
Proof of Theorem 1: Take any lottery X and its two outcomes xi, x j with xi > x j .
I shall prove that V(xi, X ) (Z ) ≥ V(x j, X ) (Z ) for any Z ∈ ∆(R+). Let me consider the
following special case of dynamic monotonicity.

First define the following new lotteries: for any ε ∈ (0, p j ), Xε ≡ (pi + ε, xi, p j −

ε, x j, X−i,− j ). Since Xε first-order stochastically dominates X , I must have:

Weak Dynamic Monotonicity. W (Xε ; Z ) ≥ W (X ; Z ) for any Z ∈ ∆(R+).

In terms of (1.3), the above is equivalent to the inequality:

V0(Xε ) + β
(
(pi + ε ) V(xi, Xε ) (Z ) + (p j − ε ) V(x j, Xε ) (Z ) +

∑
s,i, j

ps V(xs, Xε ) (Z )
)
≥

V0(X ) + β
(
pi V(xi, X ) (Z ) + p j V(x j, X ) (Z ) +

∑
s,i, j

ps V(xs, X ) (Z )
)
;

equivalently,

V0(Xε ) − V0(X )
β

+ ε
(
V(xi, X ) (Z )−V(x j, X ) (Z )

)
+ (pi + ε )

(
V(xi, Xε ) (Z )−V(xi, X ) (Z )

)
+

(p j − ε )
(
V(x j, Xε ) (Z ) − V(x j, X ) (Z )

)
+

∑
s,i, j

ps
(
V(xs, Xε ) (Z ) − V(xs, X ) (Z )

)
≥ 0.

By right-continuity, V(xs, Xε )
U
−→ V(xs, X ) for each s. That is, for any δ > 0, there

exists ε∗ > 0 such that for any ε ∈ (0, ε∗),

|V(xs, Xε ) (Z ) − V(xs, X ) (Z ) | < δ for any Z ∈ ∆(R+).

Fix any δ > 0. Therefore, for any s, there exists ε s (δ) > 0 such that for any
ε < ε s (δ),

|V(xs, Xε ) (Z ) − V(xs, X ) (Z ) | < δ for any Z ∈ ∆(R+).
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Let ε∗(δ) = min{ε1(δ), . . . , εn(δ)}. Then for any ε < ε∗(δ) and s,

|V(xs, Xε ) (Z ) − V(xs, X ) (Z ) | < δ for any Z ∈ ∆(R+).

Fix any ε ∈ (0, ε∗(δ)). Then the inequality for weak dynamic monotonicity implies
that

0 ≤
V0(Xε ) − V0(X )

β
+ε

(
V(xi, X ) (Z )−V(x j, X ) (Z )

)
+(pi+ε )

(
V(xi, Xε ) (Z )−V(xi, X ) (Z )

)
+

(p j − ε )
(
V(x j, Xε ) (Z ) − V(x j, X ) (Z )

)
+

∑
s,i, j

ps
(
V(xs, Xε ) (Z ) − V(xs, X ) (Z )

)
<

<
V0(Xε ) − V0(X )

β
+ ε

(
V(xi, X ) (Z ) − V(x j, X ) (Z )

)
+ δ.

Now I shall prove the Theorem 1. By way of contradiction, suppose there exists
Z ∈ ∆(R+) such that V(xi, X ) (Z ) < V(x j, X ) (Z ).

By nontriviality, there exists Z∗ ∈ ∆(R+) such that

V(x j, X ) (Z∗) − V(xi, X ) (Z∗) > |
V0(Xε ) − V0(X ) + β δ

ε β
|.

Therefore, I obtain a violation of weak dynamic monotonicity since

0 <
V0(Xε ) − V0(X )

β
+ ε

(
V(xi, X ) (Z∗) − V(x j, X ) (Z∗)

)
+ δ <

<
V0(Xε ) − V0(X )

β
+ δ − |

V0(Xε ) − V0(X ) + β δ
β

| ≤ 0.

�

Proof of Corollary 1: For (1.6), Theorem 1 proves that when x > x′,

u−1
x

(
E[ux (Z )]

)
≥ u−1

x′
(
E[ux′ (Z )]

)
any Z ∈ ∆(R+).

Now with the Jensen’s Inequality, the above inequality implies that ux′ is more
concave than ux . To illustrate, let f (x,x′) ≡ ux′ ◦ u−1

x and tk = ux (zk ) for each k.
Then the above inequality is equivalent to

f x, x′
(
E[T]

)
≥ E[ f x, x′ (T )] any T ∈ ∆(R+).

By the Jensen’s inequality, in order to satisfy the above inequality for anyT ∈ ∆(R+),
f x, x′ must be concave.

�
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A.1.2 Proofs of Theorems 2-3
Proof ofTheorem2Suppose a continuous preference relation� onL is represented
by a history-dependent model {Vx, X } and satisfies time consistency, the axiom for
history independence, and strong independence. I prove Theorem 2 with two steps.

Step 1. V0(Z ) = V(x, X ) (Z ) for any X, Z ∈ ∆(R+).

First, let u(z) ≡ V0(z) for any z ∈ Z . Take any X, Z ∈ ∆(R+) and let µ ≡
u−1 (V0(Z )

)
. By (1.3), (Z; 0) ∼ (µ; 0). By the axiom for history independence,

(Z; 0) ∼ (µ; 0) implies(
pi, (xi; Z ), (X−i; 0)

)
∼

(
pi, (xi; µ), (X−i; 0)

)
;

equivalently, by (1.3), V(xi, X ) (Z ) = V(xi, X ) (µ). By time consistency and the defini-
tion of µ, V(xi, X ) (Z ) = V(xi, X ) (µ) = V0(µ) = V0(Z ).

Step 2. V0(Z ) = Eu(Z ).

Take any X,Y ∈ ∆(R+). Let z ≡ u−1(V0(X )
β ) and t ≡ u−1(V0(Y )

β ). By (1.3), I
have (X ; 0) ∼ (0; z) and (Y ; 0) ∼ (0; t). By strong independence,

(αX + (1 − α)Y ; 0) ∼ (α, (0; z), 1 − α, (0; t)) for any α ∈ [0, 1];

equivalently, by (1.3) and time consistency,

V0(αX + (1 − α)Y ) = β
(
α u(z) + (1 − α) u(t)

)
for any α ∈ [0, 1].

By the definitions of z and t, I have

V0(αX + (1 − α)Y ) = αV0(X ) + (1 − α) V0(Y ) for any α ∈ [0, 1].

Therefore, for any Z = (r1, z1, . . . , rm, zm),

V0(Z ) = V0(
m∑

k=1
rk zk ) =

m∑
k=1

rkV0(zk ) = Eu(Z ).

�

Proof of Theorem 3 Suppose � on L satisfies all three axioms. I prove Theorem
3 with the following four steps.
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Step 1: First, let me construct V0 and V(xi, X ).

First, let me define a function µ0 : ∆(R+) → R+. Take any X ∈ ∆(R+). Then
let µ0(X ) ≡ x whenever (x; 0) ∼ (X ; 0). Indeed, µ0 is well-defined and µ0(t) = t

for any t ∈ R+. Now let V0(X ) ≡ u(µ0(X )). Second, let me define a function
µ(xi, X ) for any history (xi, X ). Take any history (xi, X ) and Z ∈ ∆(R+). Then let
µ(xi, X ) (Z ) ≡ z whenever(

pi, (xi; Z ), (X−i; 0)
)
∼

(
pi, (xi; z), (X−i; 0)

)
.

Indeed, µ(xi, X ) is well-defined and µ(xi, X ) (t) = t for any t ∈ R+. Let V(xi, X ) (Z ) ≡
u(µ(xi, X ) (Z )). By the above construction, I have V0(t) = V(xi, X ) (t) = u(t) for any
t ∈ R+.

Step 2: For any (pi, (xi;Yi))n
i=1 ∈ L ,

(pi, (xi;Yi))n
i=1 ∼

(
X ; U−1

2
( n∑

i=1
pi U2(µ(xi, X ) (Yi))

))
.

Take any L = (pi, (xi;Yi))n
i=1 ∈ L . By Separability Between Parallel Histories,

since
(
pi, (xi;Yi), (X−i; 0)

)
∼

(
pi, (xi; µ(xi, X ) (Yi)), (X−i; 0)

)
for each i,

I have (
pi, (xi;Yi)

)n
i=1 ∼

(
pi, (xi; µ(xi, X ) (Yi))n

i=1
)
.

Let zi ≡ µ(xi, X ) (Yi). Then
(
pi, (xi;Yi)

)n
i=1 ∼

(
pi, (xi; zi)

)n
i=1.

Let me find z ∈ R+ such that
(
pi, (0; zi)

)n
i=1 ∼ (0; z). Then, by Regularity 4,

z = U−1
2

( ∑n
i=1 pi U2(zi)

)
. By Weak Separability Between Today and Tomorrow ii),

(
pi, (xi; zi)

)n
i=1 ∼ (X ; z) =

(
X ; U−1

2
( n∑

i=1
pi U2(zi)

))
=

(
X ; U−1

2
( n∑

i=1
pi U2(µ(xi, X ) (Yi))

))
.

Step 3: For any L = (pi, (xi;Yi))n
i=1, L′ = (p′k, (x′k ;Y ′k ))m

k=1 ∈ L ,

L � L′ iff u
(
µ0(X )

)
+ β u

(
U−1

2
( n∑

i=1
pi U2(µ(xi, X ) (Yi))

))
≥

≥ u
(
µ0(X ′)

)
+ β u

(
U−1

2
( m∑

k=1
p′k U2(µ(x′

k
, X ′) (Y ′k ))

))
.
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By Weak Separability Between Today and Tomorrow i),

(X ; z) ∼ (µ0(X ); z) since (X ; 0) ∼ (µ0(X ); 0).

By transitivity,

(pi, (xi;Yi))n
i=1 ∼ (X ; z)∼ (µ0(X ); z)=

(
µ0(X ); U−1

2
( n∑

i=1
pi U2(zi)

))
=

=
(
µ0(X ); U−1

2
( n∑

i=1
pi U2(µ(xi, X ) (Yi))

))
.

Then by Regularity 3 and transitivity,

(pi, (xi;Yi))n
i=1 � (p′k, (x′k ;Y ′k ))m

k=1 iff(
µ0(X ); U−1

2
( n∑

i=1
pi U2(µ(xi, X ) (Yi))

))
�

(
µ0(X ′); U−1

2
( m∑

k=1
p′k U2(µ(x′

k
, X ′) (Y ′k ))

))
iff

u
(
µ0(X )

)
+β u

(
U−1

2
( n∑

i=1
pi U2(µ(xi, X ) (Yi))

))
≥u

(
µ0(X ′)

)
+β u

(
U−1

2
( m∑

k=1
p′k U2(µ(x′

k
, X ′) (Y ′k ))

))
.

Step 4: Without loss of generality, supposeu(0) = U2(0) = 0 and u(1) = U2(1) = 1.
Then U2 = u.

Take any
(
p, (0; z), 1 − p, (0; z′)

)
∈ L . Let me find λ, µ ∈ R+ such that(

p, (0; z), 1 − p, (0; 0)
)
∼ (λ; 0) and

(
p, (0; 0), 1 − p, (0; z′)

)
∼ (0; µ).

By Step 3, I have

u(λ) = β u
(
U−1

2
(
p U2(z)

))
and β u(µ) = β u

(
U−1

2
(
(1 − p) U2(z′)

))
.

By Additivity, I have
(
p, (0; z), 1 − p, (0; z′)

)
∼ (λ; µ); equivalently,

β u
(
U−1

2
(
p U2(z) + (1 − p) U2(z′)

))
= u(λ) + β u(µ) =

= β u
(
U−1

2
(
p U2(z)

))
+ β u

(
U−1

2
(
(1 − p) U2(z′)

))
.

Let A ≡ p U2(z) and B ≡ (1 − p) U2(z′). Therefore, I obtain

u
(
U−1

2 (A + B)
)
= u

(
U−1

2 (A)
)
+ u

(
U−1

2 (B)
)
for any A, B ∈ R+.
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Since the above is a typical Cauchy functional equation for u ◦ U−1
2 , I know that

u ◦U−1
2 is linear. Therefore, u = U2.

Uniqueness: Since u = U2, I have

(rk, (0; zk ))m
k=1 ≥ (r′k, (0; z′k ))m′

k=1 iff E u(Z ) ≥ E u(Z′).

It is well known that, u that satisfies the above is unique up to the normalization
u(0) = 0 and u(1) = 1. Now it is sufficient to prove that functions µ0 and µ(xi, X )

are unique. Recall Step 1. By deterministic monotonicity, µ0 is unique since for
any X , there exists unique x such that (x; 0) ∼ (X ; 0). Moreover, by deterministic
monotonicity, µ(xi, X ) is unique since for any Z , there exists unique z such that(

pi, (xi; z), (X−i; 0)
)
∼

(
pi, (xi; Z ), (X−i; 0)

)
.

�

A.2 Behavioral Foundations of HDEU and HDDA
A.2.1 Characterizing HDEU

I characterize HDEU (1.13) with additional three axioms.

Axiom 24 (Expected Utility) A preference relation � on L satisfies the following
two conditions.

1. (EU at Period 1) There exists a utility function U1 such that for any X, X ′ ∈

∆(R+),
(X ; 0) � (X ′; 0) ⇔ EU1(X ) ≥ EU1(X ), (A.1)

2. (EU at Period 2) For any history (xi, X ), there exists a utility function U(xi, X )

such that for any Z, Z′ ∈ ∆(R+),(
pi, (xi; Z ), (X−i; 0)

)
�

(
pi, (xi; Z′), (X−i; 0)

)
iff EU(xi, X ) (Z ) ≥ EU(xi, X ) (Z′).

(A.2)

This axiom assumes that � has an expected utility representation in static case.
The first part of Axiom 24 requires that � has an expected utility representationwhen
it compares lotteries in the first period. The second part of Axiom 24 requires that
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� has an expected utility representation when it compares lotteries in the second
period. I allow that utilities for difference periods and different histories can be
different.

The second axiom is called Additivity Today which exploits additive structure
of EU in the first period. It states that if receiving z today with probability r is
equivalent to receiving y tomorrow and receiving z′ today with probability r′ is
equivalent to receiving x today, then receiving (r, z, r′, z′, 1 − r − r′, 0) is equivalent
to receiving (x; y). More formally,

Axiom 25 (Additivity Today) For any (r, z, r′, z′, 1− r − r′, 0) ∈ ∆(R+) and x, y ∈

R+,

if
(
(r, z, 1 − r, 0); 0

)
∼ (0; y) and(

(1 − r′, 0, r′, z′); 0
)
∼ (x; 0), then(

(r, z, r′, z′, 1 − r − r′, 0); 0
)
∼ (x; y).

The third axiom is called Linearity. It states that if receiving an outcome x

after a history (xi, X ) is equivalent to receiving a lottery (p, x, 1 − p, 0) after a
history (y j,Y ), then replacing x with y does not change the equivalence; that is, if
receiving an outcome y after the history (xi, X ) is equivalent to receiving a lottery
(p, y, 1 − p, 0) after the history (y j,Y ). More formally,

Axiom 26 (Linearity) For any X,Y ∈ ∆(R+) with (X ; 0) ∼ (Y ; 0), z, z′ > 0 and
r ∈ (0, 1],

if
(
pi, (xi; z), (X−i; 0)

)
∼

(
qj, (y j ; (r, z, 1 − r, 0)), (Y− j ; 0)

)
,

then
(
pi, (xi; z′), (X−i; 0)

)
∼

(
qj, (y j ; (r, z′, 1 − r, 0)), (Y− j ; 0)

)
.

Under Axioms 3 and 24, there are functions u, U1, and U(xi,X ) for each history
(xi, X ). Without loss of generality, I assume u(0) = U1(0) = U(xi, X ) (0) = 0 and
u(1) = U1(1) = U(xi, X ) (1) = 1. Now I can state the characterization theorem for
HDEU (1.13).

Theorem 8 (HDEU) Take any preference � onL that satisfies (1.12). If it satisfies
Axiom 24 (Expected Utility), Additivity Today, and Linearity, then u = U1 and for
any history (x, X ), U(x, X ) = uµ(x, X ) for some µ(x, X ) > 0.
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A.2.2 Characterizing HDDA
I also characterize HDDA (1.15) with additional two axioms.

Axiom 27 (Axioms of Gul’s Disappointment Aversion) A preference relation �
on L satisfies the following two conditions.

1. (Disappointment Aversion at Period 1) There exists a pair (U0, δ0) such that
for any X, X ′ ∈ ∆(R+),

(X ; 0) � (X ′; 0) ⇔ µ0(X |δ1) ≥ µ0(X ′|δ1), (A.3)

2. (Disappointment Aversion at Period 2) For any history (xi, X ), there exists a
pair (U(xi, X ), δ(xi, X )) such that for any Z, Z′ ∈ ∆(R+),(

pi, (xi; Z ), (X−i; 0)
)
� (pi, (xi; Z′), (X−i; 0)) iff

µ(xi, X ) (Z |δ(xi, X )) ≥ µ(xi, X ) (Z′|δ(xi, X )). (A.4)

This axiom assumes that � has a Gul’s Disappointment Aversion representation
in the static case. The first part of Axiom 27 requires that � has a Gul’s Disap-
pointment Aversion representation when it compares lotteries in the first period.
The second part of Axiom 27 requires that � has a Gul’s Disappointment Aversion
representation when it compares lotteries in the second period. I allow that utilities
and disappointment parameters for different periods and different histories can be
different.

The second axiom is a weakening of Additivity Today, I call itWeak Additivity.
First, let me rewrite Additivity Today in the following way: when r + r′ ≤ 1 and
s + s′ ≤ 1,

if (r, z, 1 − r, 0) � (s, t, 1 − s, 0) and

(1 − r′, 0, r′, z′) � (1 − s′, 0, s′, t′), then

(r, z, r′, z′, 1 − r − r′, 0) � (s, t, s′, t′, 1 − s − s′, 0).

However, consistent violations of Additivity Today are documented in lab experi-
ments. One well-known violation of Additivity Today is the Common Consequence
Effect, a version of the Allais Paradox. For example, Kahneman and Tversky (1979)
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found the following instance of the Common Consequence Effect:

(0.33, $27, 0.67, $0) � (0.34, $24, 0.66, $0) and

(0.34, $0, 0.66, $24) = (0.34, $0, 0.66, $24), but

(0.33, $27, 0.66, $24, 0.01, $0) ≺ (1, $24).

The main reason of the above violation is that the lottery (0.34, $0, 0.66, $24) com-
pletely complements (0.34, $24, 0.66, $0). As a result, the agent has to compare a
risky lottery (0.33, $27, 0.66, $24, 0.01,&0) with a deterministic lottery (1, $24), but
her behavior will be different from the case when she compares two risky lotteries
(0.33, $27, 0.67, $0) and (0.34, $24, 0.66, $0). Therefore, I modify Additivity Today
in the following way: the additive property should hold when i) there is no mixture
between risky and deterministic lotteries (e.g., r + r′ = 1 and s + s′ = 1); and ii)
lotteries do not complement each other (e.g., z′ is small enough compared to z and
t′ is small enough compared to t). More formally, when (r, z, 1 − r, 0) � z′ and
(s, t, 1 − s, 0) � t′,

if (r, z, 1 − r, 0) � (s, t, 1 − s, 0) and

(r, 0, 1 − r, z′) � (s, 0, 1 − s, t′), then

(r, z, 1 − r, z′) � (s, t, 1 − s, t′).

I require that the new additivity property holds for lotteries in the first period and
also for lotteries in the second period. Formally,

Axiom 28 (Weak Additivity) Take any (r, z, 1−r, z′) ∈ ∆(R+) with (r, z, 1−r, 0) �
z′.

1. (Weak Additivity Today) For any x, y ∈ R+,

if
(
(r, z, 1 − r, 0); 0

)
∼ (0; y) and(

(r, 0, 1 − r, z′); 0
)
∼ (x; 0), then(

(r, z, 1 − r, z′); 0
)
∼ (x; y).

2. (Weak Additivity Tomorrow) For any x, y ∈ R+ and history (xi, X ),

if
(
pi, (xi; (r, z, 1 − r, 0)), (X−i; 0)

)
∼ (X ; y) and(

pi, (xi; (r, 0, 1 − r, z′)), (X−i; 0)
)
∼ (x; 0), then(

pi, (xi; (r, z, 1 − r, z′)), (X−i; 0)
)
∼ (x; y).



124

Under Axioms 3 and 27, there are (u, β), (U0, δ0), and (U(xi, X ), δ(xi, X )) for any
history (xi, X ). Without loss of generality, I assume u(0) =U1(0) =U(xi, X ) (0) = 0
and u(1) =U1(1) =UH (1) = 1. Now I can state the characterization theorem for
HDDA (1.15).

Theorem 9 Take any preference � on L that satisfies (1.12). If it satisfies Axioms
of Gul’s Disappointment Aversion, and Weak Additivity, then u = U0 = U(x, X ) for
any history (x, X ); that is, for any X, Z ∈ ∆(R+),

µ0(X |δ0) is solution to u(µ) =
∑n

i=1 pi u(xi)(1 + δ0 1{xi ≤ µ})∑n
i=1 pi (1 + δ0 1{xi ≤ µ})

and

µ(x,X ) (Z |δ(x, X )) is solution to u(µ) =
∑m

k=1 rk u(zk )(1 + δ(x, X ) 1{zk ≤ µ})∑n
i=1 rk (1 + δ(x, X ) 1{zk ≤ µ})

.

Proofs of Theorems 8-9

Proof of Theorem 8 I prove Theorem 8 with three steps. Recall Step 1 of the
proof of Theorem 3. There are functions µ0 and {µ(x,X )} such that for any L =

(pi, (xi;Yi))n
i=1, L′ = (p′k, (x′k ;Y ′k ))m

k=1 ∈ L ,

L � L′ iff u
(
µ0(X )

)
+β

n∑
i=1

pi u
(
µ(xi, X ) (Yi)

)
≥ u

(
µ0(X ′)

)
+β

m∑
k=1

p′k u
(
µ(x′

k
, X ′) (Y ′k )

)
.

(A.5)

Step 1. By Axiom 24, for any X and Z ,

µ0(X ) = U−1
1

(
EU1(X )

)
and µH (Z ) = U−1

H
(
EUH (Z )

)
where H = (xi, X ).

Take any X and x such that (X ; 0) ∼ (x; 0). By (A.5), I have µ0(X ) = x. By Axiom
24, I then obtain the first equation of Step 1. Moreover, take any H = (xi, X ), Z ,
and and z such that

(
pi, (xi; Z ), (X−i; 0)

)
∼ 0)

)
∼

(
pi, (xi; z), (X−i; 0)

)
. By (A.5), I

have µH (Z ) = z. By Axiom 24, I then obtain the second equation of Step 1.

Step 2. By Additivity Today, u = U1

Take any (r, z, (1 − r), z′) ∈ ∆(R+) and x, y ∈ R+. Suppose(
(r, z, 1 − r, 0)); 0

)
∼ (0; y) and

(
(r, 0, (1 − r),−z′); 0

)
∼ (x; 0);

equivalently, by (A.5),

u
(
µ0(r, z, 1 − r, 0)

)
= β u(y) and u

(
µ0(r, 0, 1 − r, z′)

)
= u(x).
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By Additivity Today, (
(r, z, 1 − r,−z′); 0

)
∼ (x; y);

equivalently, by (A.5),

u
(
µ0(r, z, 1 − r, z′)

)
= u(x) + β u(y).

Therefore, from the above three equalities, I obtain

u
(
µ0(r, z, (1 − r), 0)

)
+ u

(
µ0(r, 0, 1 − r, z′)

)
= u

(
µ0(r, z, 1 − r, z′)

)
; (A.6)

equivalently

u
(
U−1

1
(
rU1(z)

))
+u

(
U−1

1
(
(1−r)U1(z′)

))
= u

(
U−1

1
(
rU1(z)+(1−r)U1(z′)

))
. (A.7)

Let A = rU1(z) and B = (1 − r)U1(z′). Therefore, I have

u
(
U−1

1 (A)
)
+ u

(
U−1

1 (B)
)
= u

(
U−1

1 (A + B)
)
for any A, B ≥ 0.

Since the above is a typical Cauchy functional equation, u ◦U−1
1 is a linear function.

Since u(1) = U1(1) = 1, I have u = U1.

Step 3: For any history H , by Linearity, UH = uµ(H) for some µ(H) > 0.

Take any X,Y ∈ ∆(R+) with (X ; 0) ∼ (Y ; 0) and
(
pi, (xi; x), (X−i; 0)

)
∼(

qj, (y j ; (p, x, 1 − p, 0)), (Y− j ; 0)
)
for some x > 0 and p > 0. By (A.5),

E u(X ) = E u(Y ) and

E u(X ) + β pi u(x) = E u(Y ) + β qj u
(
U−1

H
(
p UH (x)

))
where H = (y j,Y ).

From the above two equalities, I obtain

pi u(x) = qj u
(
U−1

H
(
p UH (x)

))
.

By Linearity, I have(
pi, (xi; y), (X−i; 0)

)
∼

(
qj, (y j ; (p, y, 1 − p, 0)), (Y− j ; 0)

)
for any y > 0.

Therefore,

pi u(x) = qj u
(
U−1

H
(
p UH (x)

))
iff pi u(y) = qj u

(
U−1

H
(
p UH (y)

))
for any y > 0.
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Let y = 1 and UH (x) = t and G ≡ u ◦U−1
H . Then I have

G(p) G(t) = G
(
p t

)
for any t > 0 and p ∈ (0, 1).

Since G(1) = 1, G(p) = 1
G( 1

p )
when p · t = 1. Therefore, I have

G(p) G(t) = G
(
p t

)
for any t > 0 and p > 0.

Since the above is a typical Cauchy functional equation, there exists α > 0 such
that G(t) = tα; that is, UH = u

1
α . Since α depends on H , let µ(H) ≡ 1

α ; that is,
UH = uµ(H).

�

Proof of Theorem 9 I prove Theorem 9 with three steps.

Step 1. Let H be a history. By Axiom 27, for any X and Z ,

µ0(X |δ0) is a unique solution to U1(µ) =
∑n

i=1 pi U0(xi)(1 + δ0 1{xi ≤ µ})∑n
i=1 pi (1 + δ0 1{xi ≤ µ})

and

µH (Z |δ(H)) is a unique solution to UH (µ) =
∑m

k=1 rk UH (zk )(1 + δ(H) 1{zk ≤ µ})∑n
i=1 pi (1 + δ(H) 1{zk ≤ µ})

.

Take any X and x such that (X ; 0) ∼ (x; 0). By (A.5), µ0(X ) = x. By Axiom
27, I then obtain the first first equation of Step 1. Moreover, take any H = (xi, X ),
Z , and and z such that

(
pi, (xi; Z ), (X−i; 0)

)
∼

(
pi, (xi; z), (X−i; 0)

)
. By (A.5),

µH (Z ) = z. By Axiom 27, I then obtain the second equation of Step 1.

Step 2. By Weak Additivity Today, u = U0

Take any (r, z, (1 − r), z′) ∈ ∆(R+) with (r, z, (1 − r), 0) � z′, and x, y ∈ R+.
Suppose (

(r, z, 1 − r, 0)); 0
)
∼ (0; y) and

(
(r, 0, (1 − r),−z′); 0

)
∼ (x; 0);

equivalently, by (A.5),

u
(
µ1(r, z, 1 − r, 0)

)
= β u(y) and u

(
µ1(r, 0, 1 − r, z′)

)
= u(x).

By Weak Additivity Today,(
(r, z, 1 − r,−z′); 0

)
∼ (x; y);
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equivalently, by (A.5),

u
(
µ0(r, z, 1 − r, z′|δ0)

)
= u(x) + β u(y).

Therefore, from the above three equalities, I obtain

u
(
µ0(r, z, (1 − r), 0)

)
+ u

(
µ0(r, 0, 1 − r, z′)

)
= u

(
µ0(r, z, 1 − r, z′)

)
. (A.8)

Since (r, z, (1 − r), 0) � z′,

u
(
U−1

0
( rU0(z)
r + (1 − r)(1 + δ0)

))
+ u

(
U−1

0
( (1 − r)U0(z′)(1 + δ0)

r + (1 − r)(1 + δ0)
))
= (A.9)

u
(
U−1

0
(rU0(z) + (1 − r)U0(z′)(1 + δ0)

r + (1 − r)(1 + δ0)
))
.

Let A = rU0(z)
r+(1−r)(1+δ0) and B = (1−r)U0(z′)(1+δ0)

r+(1−r)(1+δ0) . Therefore, I have

u
(
U−1

0 (A)
)
+ u

(
U−1

0 (B)
)
= u

(
U−1

0 (A + B)
)
for any A, B ≥ 0.

Since the above is a typical Cauchy functional equation, u ◦U−1
0 is a linear function.

Moreover, since u(1) = U0(1) = 1, I have u = U0.

Step 3: Let H be a history. By Weak Additivity Tomorrow, UH = u.

Take any X, (r, z, (1− r), z′) ∈ ∆(R+) with (r, z, (1− r), 0) � z′, and x, y ∈ R+.
Let H = (xi, X ). Suppose(
pi, (xi; (r, z, 1−r, 0)), (X−i; 0)

)
∼ (X ; y) and

(
pi, (xi; (r, 0, (1−r),−z′)), (X−i; 0)

)
∼ (x; 0);

equivalently, by (A.5),

u
(
µ0(X )

)
+ β pi u

(
µH (r, z, 1 − r, 0)

)
= u

(
µ0(X )

)
+ β u(y)

and
u
(
µ1(X )

)
+ β pi u

(
µH (r, 0, 1 − r, z′)

)
= u(x).

By Weak Additivity, I have(
pi, (xi; (r, z, 1 − r,−z′)), (X−i; 0)

)
∼ (x; y);

equivalently, by (A.5),

u
(
µ0(X )

)
+ β pi u

(
µH (r, z, 1 − r, z′)

)
= u(x) + β u(y).
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Therefore, from the above three equalities, I obtain

u
(
µH (r, z, (1 − r), 0)

)
+ u

(
µH (r, 0, 1 − r, z′)

)
= u

(
µH (r, z, 1 − r, z′)

)
. (A.10)

Since (r, z, (1 − r), 0) � z′, I have

u
(
U−1

H
( rUH (z)
r + (1 − r)(1 + δH )

))
+ u

(
U−1

H
( (1 − r)UHi (z′)(1 + δH )

r + (1 − r)(1 + δH )
))
= (A.11)

u
(
U−1

H
(rUH (z) + (1 − r)UH (z′)(1 + δH )

r + (1 − r)(1 + δH )
))
.

Let A = rUH (z)
r+(1−r)(1+δH ) and B = (1−r)UH (z′)(1+δH )

r+(1−r)(1+δH ) . Therefore, I have

u
(
U−1

H (A)
)
+ u

(
U−1

H (B)
)
= u

(
U−1

H (A + B)
)
for any A, B ≥ 0.

Since the above is a typical Cauchy functional equation, u ◦U−1
H is a linear function.

Since u(1) = UH (1) = 1, I have u = UH .

�
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A p p e n d i x B

APPENDIX TO CHAPTER 2

B.1 Proofs
B.1.1 Proof of Proposition 2

First, let us prove that (i) is equivalent to (iii). Take any x, y, z ∈ X , and z2 ∈ R+

such that x1 > y1 > z1 and x2 < z′2 < y2 < z2. Note that the alternative x is chosen
over y from menu {x, y} iff

f
(
u1(x1)−u1(y1)

)
+((((((((((

f
(
u2(x2) − u2(x2)

)
>((((((((((

f
(
u1(y1) − u1(y1)

)
+ f

(
u2(y2)−u2(x2)

)
.

Moreover, y is chosen from {x, y, z} iff

f
(
u1(x1)−u1(z1)

)
+((((((((((

f
(
u2(x2) − u2(x2)

)
< f

(
u1(y1)−u1(z1)

)
+ f

(
u2(y2)−u2(x2)

)
and

((((((((((
f
(
u1(z1) − u1(z1)

)
+ f

(
u2(z2)−u2(x2)

)
< f

(
u1(y1)−u1(z1)

)
+ f

(
u2(y2)−u2(x2)

)
.

However, the second inequality is implied the first inequality since x is chosen over
z from {x, z} iff

f
(
u2(z2) − u2(x2)

)
< f

(
u1(x1) − u1(z1)

)
.

Therefore, when z2 is small enough, the compromise effect is equivalent to

f
(
u1(x1)−u1(y1)

)
> f (u2(y2)−u2(x2)) > f

(
u1(x1)−u1(z1)

)
− f

(
u1(y1)−u1(z1)

)
.

Second, let us prove that (ii) is equivalent to (iii). Note that y is chosen over x from
{x, y, (z1, z′2)} iff

f
(
u1(x1)−u1(z1)

)
+((((((((((

f
(
u2(x2) − u2(x2)

)
> f

(
u1(y1)−u1(z1)

)
+ f

(
u2(y2)−u2(x2)

)
.

Therefore, the attraction effect is also equivalent to

f
(
u1(x1)−u1(y1)

)
> f (u2(y2)−u2(x2)) > f

(
u1(x1)−u1(z1)

)
− f

(
u1(y1)−u1(z1)

)
.

B.1.2 Proof of Proposition 3
By C( f , u1, u2), x ≺(z1,z′2) y (x ≺z y) is equivalent to

f
(
u1(x1) − u1(z1)

)
− f

(
u1(y1) − u1(z1)

)
< f

(
u2(y2) − u2(x2)

)
.
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Y

X1a + bab

α

β

h(a + b)

h(a)

h(b)

h(x1)

Figure B.1: Strictly Concave h

Since h is strictly increasing, we have

h
(

f
(
u1(x1)−u1(z1)

)
− f

(
u1(y1)−u1(z1)

))
< h

(
f
(
u2(y2)−u2(x2)

))
= f ′

(
u2(y2)−u2(x2)

)
.

Then, in order to obtain x ≺′(z1, z′2) y (x ≺′z y), it is enough to prove that

h
(

f
(
u1(x1)−u1(z1)

))
−h

(
f
(
u1(y1)−u1(z1)

))
< h

(
f
(
u1(x1)−u1(z1)

)
− f

(
u1(y1)−u1(z1)

))
.

In other words, it is enough to prove that h(a) + h(b) > h(a + b) for any a, b > 0
when h is strictly concave.

Without loss of generality, suppose a ≥ b. Figure B.1 illustrates the intuitive
proof. By the strict concavity of h, the angle ]α is greater than the angle ]β. Now
since the tangent function is increasing, we have h(a + b) − h(a) = tan(β)

(
(a +

b) − a
)
< tan(α)

(
b − 0

)
= h(b).

B.1.3 Proof of Proposition 4
Without loss of generality, suppose x1 > y1, x2 < y2, and C({x, y}) 3 x. Then

we will prove that y is a non-extreme option of B. By way of contradiction, suppose
b is an extreme option of B, so y1 = mB

1 . Note that C({x, y}) 3 x implies that
f (u1(x1) − u1(y1)) ≥ f (u2(y2) − u2(x2)) and C(B) 3 y and C(B) = x imply that
f (u1(y1) − u1(y1)) + f (u2(y2) − u2(mB

2 )) = f (u2(y2) − u2(pB)) > f (u1(x1) −
u1(y1))+ f (u2(x2)−u2(mB

2 )). Therefore, we obtain the following violation of weak
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diminishing sensitivity:

f (u2(y2) − u2(mB
2 )) > f (u1(x1) − u1(y1)) + f (u2(x2) − u2(mB

2 )) ≥

≥ f (u2(y2) − u2(x2)) + f (u2(x2) − u2(mB
2 )).

B.1.4 Proof of Proposition 5
First we prove i). Take any x1, y1, z1 ∈ R+ such that x1 > y1 > z1. Since
f (+∞) = u1(+∞) = u2(+∞) = +∞, there exist x2 and y2 such that f

(
u1(x1) −

u1(z1)
)
= f

(
u1(y1)−u1(z1)

)
+ f

(
u2(y2)−u2(x2)

)
; that is, x ∼(z1, x2) y. ByWBAE,

we have x � y; that is, u1(x1) − u1(y1) > u2(y2) − u2(x2). Therefore, we have

f
(
u1(x1) − u1(z1)

)
= f

(
u1(y1) − u1(z1)

)
+ f

(
u2(y2) − u2(x2)

)
<

< f
(
u1(y1) − u1(z1)

)
+ f

(
u1(x1) − u1(y1)

)
.

Second we prove ii). Take any x1, y1, z1, t1 with x1 > y1 > z1 > t1. Since f (+∞) =
u1(+∞) = u2(+∞) = +∞, there exist x2 and y2 such that f (u1(x1) − u1(z1)) −
f (u1(y1) − u1(z1)) = f (u2(y2) − u2(x2)); equivalently, x ∼(z1, x2) y. By BAE, we
have x ≺(t1, x2) y; equivalently,

f
(
u1(x1) − u1(t1)

)
− f

(
u1(y1) − u1(t1)

)
< f (u2(y2) − u2(x2)) =

= f (u1(x1) − u1(z1)) − f (u1(y1) − u1(z1)).

B.1.5 Proof of Proposition 6
Let A ≡ ∪N

n=1 An and λ ≡ max
{

max{ x1−y1
y2−x2

; y2−x2
x1−y1

}|x, y ∈ A with x1 > y1 and x2 <

y2
}
. Moreover, let

f (t) ≡



t if t ≥ 0

−(λ + ε )t if t < 0,

for some ε > 0 and rn ≡ C(An). Then we will prove that

C(An) = arg max
x∈An

f (x1 − rn
1 ) + f (x2 − rn

2 ).

In other words, we shall prove that for any n and x ∈ An \ C(An),

f (rn
1 − rn

1 ) + f (rn
2 − rn

2 )=0 > f (x1 − rn
1 ) + f (x2 − rn

2 ).

It is obvious when rn > x since 0 > f (x1 − rn
1 ) and 0 > f (x2 − rn

2 ). Moreover, by
monotonicity, we cannot have rn ≤ x.
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Therefore, we now consider two cases. When x1 ≥ rn
1 and x2 < rn

2 , f (x1−r i
1)+

f (x2−r i
2) = (x1−rn

1 )− (λ+ ε )(rn
2 − x2) < 0, by the definition of λ. Similarly, when

x1 < rn
1 and x2 ≥ rn

2 , f (x1 − rn
1 ) + f (x2 − rn

2 ) = −(λ + ε )(rn
1 − x1) + (y2 − rn

2 ) < 0,
by the definition of λ.

B.1.6 Implications of Regularity and INEA
We first prove the following useful implications of Regularity and INEA.

Lemma 1 Suppose C satisfies regularity and transitivity. For any y, t ∈ X and
x j ∈ X j with y > t and x j < y j , there exist xi and x′i such that i) (xi, x j ) ∼ y and ii)
(x′i, x j ) ∼t y.

Proof 1 (Proof of Lemma 1) Since there is no essential difference between (i) and
(ii), we only prove (i). Take any y ∈ X and x j ∈ X j with x j < y j . We shall
prove that there exists xi such that (xi, x j ) ∼ y. By solvability, there exists x0

i

such that (x0
i , x j ) � y. Now we construct two sequences {xn

i }
∞
n=0 and {yn

i }
∞
n=0 by

the induction. Let y0
i ≡ yi. Note that x0

i > y0
i . Suppose we have constructed

x0
i , . . . , xk

i and y0
i , . . . , y

k
i and we will define xk+1

i and yk+1
i in the following way: if

(
xki +y

k
i

2 , x j ) � y, then let xk+1
i ≡

xki +y
k
i

2 and yk+1
i ≡ yk

i , and if (
xki +y

k
i

2 , x j ) ≺ y, then let
xk+1

i ≡ xk
i and yk+1

i ≡
xki +y

k
i

2 . Since {xn
i }
∞
n=0 is a non-increasing sequence, {y

n
i }
∞
n=0 is

a non-decreasing sequence, and limk→∞ xk
i − yk

i = limk→∞
x0
i −y

0
i

2k = 0, there exists
x∗i such that limk→∞ xk

i = limk→∞ yk
i = x∗i . Moreover, by this construction, we have

(xk
i , x j ) � y and y � (yk

i , x j ) for each k. By continuity, (x∗i , x j ) ∼ y.

Lemma 2 For any x, y, z ∈ X such that x1 > y1 > z1 and x2 < y2 < z2,

i) C({x, y, z}) , {z} implies C({x, y, (z1, x2)}) = C({x, y, z}) \ {z},

ii) C({(x1, y2), (y1, x2), z}) = C({(x1, y2), (z1, x2), z}).

Proof 2 (Proof of Lemma 2) First, we prove i). Let A = {x, y, z} and A′ = {x, y, (z1, x2)}.
Suppose C(A) , z. Consider a menu A ∪ {(z1, x2)}. Since z > (z1, x2), by
monotonicity, C(A ∪ {(z1, x2)}) = (z1, x2). Therefore, since (z1, x2) ≥ mA and
(z1, x2) < A, by INEA,C(A∪{(z1, x2)}) = C(A). Moreover, by INEA,C(A′∪{z}) =
C(A ∪ {(z1, x2)}) = C(A) , z, z ≥ mA′, and z < A′ imply that

C(A) \ {z} = C(A ∪ {(z1, x2)}) \ {z} = C(A′ ∪ {z}) \ {z} = C(A′).
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Second, we prove ii). Consider amenu {(x1, y2), (y1, x2), (z1, x2), z}. Since (x1, y2)>
(y1, x2)> (z1, x2), bymonotonicity,C({(x, q), (y1, x2), (z1, x2), z}) = (z1, x2), (y1, x2).
By INEA,

since C({(x, q), (y1, x2), (z1, x2), z}) = (z1, x2) and (z1, x2) ≥ m{(x1, y2),(y1, x2),z},

we have

C({(x1, y2), (y1, x2), z}) = C({(x1, y2), (y1, x2), (z1, x2), z}).

Moreover, by INEA,

since C({(x1, y2), (y1, x2), (z1, x2), z}) = (y1, x2) and (y1, x2) ≥ m{(x1, y2),(z1, x2),z} implies that

C({(x1, y2), (z1, x2), z}) = C({(x1, y2), (y1, x2), (z1, x2), z}).

Therefore, we have

C({(x1, y2), (y1, x2), z}) = C({(x1, y2), (y1, x2), (z1, x2), z}) = C({(x1, y2), (z1, x2), z}).

B.1.7 Useful Lemmas for the proof of Theorem 4

Axiom 29 (Transitivity*) For any x, y, z, t ∈ X with x, y, z > t, if x �t y and y �t z,
then x �t z.

Lemma 3 If C satisfies INEA and Monotonicity, then it satisfies Transitivity*.

Proof 3 (Proof of Lemma 3) Take any x, y, z, t ∈ X with x, y, z > t and x �t y and
y �t z. Let us consider C({x, y, z, t}).

If C({x, y, z, t}) 3 x, then since y > t and C({x, y, z, t}) , y, by INEA, we have
C({x, z, t}) 3 x. In other words, x �t z. Now suppose C({x, y, z, t}) ⊆ {y, z}.

If C({x, y, z, t}) 3 y, then since z > t and C({x, y, z, t}) , z, by INEA, we have
C({x, y, t}) = y. In other words, we have y �t x. A contradiction.

If C({x, y, z, t}) = y and C({x, y, z, t}) 3 z, then since x > t and C({x, y, z, t}) = x,
by INEA we have C({y, z, t}) = z. In other words, z �t y. A contradiction.

Now we turn to the proof of Theorem 4. First, we focus on binary choices.
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Lemma 4 If � satisfies regularity, transitivity, and cancellation (i), then there exist
strictly increasing and continuous functions u1 and u2 such that u1(R+) = u2(R+) =
R+ and for any x, y ∈ X ,

x � y if and only if u1(x1) + u2(x2) ≥ u1(y1) + u2(y2). (B.1)

Since Lemma 4 is a relatively well-known result, we omitted the proof. For
example, see Krantz et al. (1971). Now we assume that we have strictly increasing
and continuous functions u1 and u2 that satisfy (B.1).

Lemma 5 If C satisfies regularity, transitivity, cancellation (i), INEA, and RTI,
then there exists a strictly increasing and continuous function W : R2

+ → R+ such
that W (t, 0) = W (0, t) = t for any t ∈ R+ and for any A ∈ A ,

C(A) = argmax
x∈A
{W

(
u1(x1) − u1(mA

1 ), u2(x2) − u2(mA
2 )

)
}.

Proof 4 (Proof of Lemma 5) First, take a menu B = {x, y, z} with x1 > y1 > z1

and x2 < y2 < z2. Let WB (x) ≡ u1(x1) − u1(z1) and WB (z) ≡ u2(z2) − u2(x2).
Moreover, by Lemma 1, there exists x′1 such that (x′1, x2) ∼(z1, x2) y. Then let
WB (y) ≡ u1(x′1) − u1(z1).

Fact 1:
C(B) = arg max

x’∈B
{WB (x’)}.

To prove Fact 1, we consider two cases.

Case 1: When C(B) 3 x, we shall prove that

WB (x) = u1(x1)−u1(z1) ≥ max{WB (z) = u2(z2)−u2(x2); WB (y) = u1(x′1)−u1(z1)}.

By INEA, x �y z implies x � z; equivalently, u1(x1) − u1(z1) ≥ u2(z2) − u2(x2) by
(B.1). Moreover, since C({x, y, z}) , {z}, by Lemma 2 (i),

C({x, y, z}) \ {z} = C({x, y, (z1, x2)}) 3 x.

Therefore, we obtainx�(z1, x2) y. SinceWB (y)=u1(x′1)−u1(z1) where (x′1, x2)∼(z1, x2)

y, by Transitivity*, we have (x1, x2) �(z1, x2) (x′1, x2); equivalently, x1 ≥ x′1. There-
fore, u1(x1) − u1(z1) ≥ u1(x′) − u1(z1).
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Case 2: When C(B) 3 y, we shall prove that

WB (y) = u1(x′1)−u1(z1) ≥ max{WB (z) = u2(z2)−u2(x2); WB (x) = u1(x1)−u1(z1)}.

First, since C({x, y, z}), {z}, by Lemma 2 (i),

C({x, y, z}) \ {z} = C({x, y, (z1, x2)}) 3 y.

Therefore, we obtain y�(z1, x2) x. SinceWB (y)=u1(x′1)−u1(z1) where (x′1, x2)∼(z1, x2)

y, by Transitivity*, we have (x′1, x2) ∼(z1, x2) x; equivalently, x′1 ≥ x1. Therefore,
u1(x′1) − u1(z1) ≥ u1(x1) − u1(z1).

Second, since C({x, y, z}), {x}, by Lemma 2 (i),

C({x, y, z}) \ {x} = C({(z1, x2), y, z}) 3 y.

Therefore, we obtain y�(z1, x2) z. SinceWB (y)=u1(x′1)−u1(z1) where (x′1, x2)∼(z1, x2)

y, by Transitivity*, we have (x′1, x2)�(z1, x2) z. Since (z1, x2) ≥ m{(x′1,x2),z}, by INEA,
(x′1, x2)�(z1, x2) z implies (x′1, x2)� z; equivalently, u1(x′1)−u1(z1) ≥ u2(z2)−u2(x2)
by (B.1).

Now we construct W in the following way: for any menu B = {x, y, z} with x1 >

y1 > z1 and x2 < y2 < z2, let W (u1(x1) − u1(z1), 0) ≡ WB (x) = u1(x1) − u1(z1),
W (0, u2(z2)−u2(x2)) ≡ WB (z) = u2(z2)−u2(x2), and W

(
u1(y1)−u1(z1), u2(y2)−

u2(x2)
)
≡ WB (y). Finally, note that W

(
u1(y1) − u1(z1), u2(y2) − u2(x2)

)
is a

function of y1, z1, x2, y2 because WB (y) does not depend on x1 and z2. Now we shall
prove that W is well-defined.

Fact 2: W is well-defined; that is, for any y1, z1, x2, y2 and y′1, z′1, x′2, y
′
2, if u1(y1) −

u1(z1) = u1(y′1) − u1(z′1) and u2(y2) − u2(x2) = u2(y′2) − u2(y′2), then W
(
u1(y1) −

u1(z1), u2(y2) − u2(x2)
)
= W

(
u1(y′1) − u1(z′1), u2(y′2) − u2(x′2)

)
.

First, by (B.1), note that u1(y1) − u1(z1) = u1(y′1) − u1(z′1) is equivalent to
[y1, z1]D1[y′1, z′1]andu2(y2)−u2(x2) = u2(y′2)−u2(x′2) is equivalent to [y2, x2]D2[y′2, x′2].

By the definition of W , W
(
u1(y1) − u1(z1), u2(y2) − u2(x2)

)
= u1(x1) − u1(z1)

where x1 satisfies x ∼(z1,x2) y. Let us find x′1 such that u1(x1) − u1(z1) = u1(x′1) −
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u1(z′1). By the definition of W , we shall prove that W
(
u1(y′1) − u1(z′1), u2(y′2) −

u2(x′2)
)
= u1(x′1) − u1(z′1); i.e., x’ ∼(z′1,x

′
2) y’.

Since u1(x1) −u1(z1) = u1(x′1) −u1(z′1) and u1(y1) −u1(z1) = u1(y′1) −u1(z′1),
we have u1(x1) − u1(y1) = u1(x′1) − u1(y′1); i.e., [x1, y1]D1[x′1, y

′
1].

Therefore, since [x1, y1]D1[x′1, y
′
1], [y1, z1]D1[y′1, z′1], [y2, x2]D2[y′2, x′2], and

[x2, x2]D2[x′2, x′2], by RTI, we have x ∼(z1,x2) y if and only if x’ ∼(z′1,x
′
2) y’.

Now we will prove that we obtained desired W .

Fact 3: For any menu A ∈ A ,

C(A) = argmax
x∈A
{W

(
u1(x1) − u1(mA

1 ), u2(x2) − u2(mA
2 )

)
}.

Let |A| = n. It is obvious when n = 2. Now consider the cases when n ≥ 3.
We have already proved the case when A = B = {x, y, z} with x1 > y1 > z1 and
x2 < y2 < z2. We now need to consider two other cases when n = 3.

Case 1: A = {y, y’, t} with y, y’ > t and C(A) 3 y.

By the definition of W , we have W (u1(y1) − u1(t1), u2(y2) − u2(t2)) = u1(x1) −
u1(t1) where (x1, t2) ∼t y and W (u1(y′1) − u1(t1), u2(y′2) − u2(t2)) = u1(x′1) − u1(t1)
where (x′1, t2) ∼t y’. Then by Transitivity*, we have (x1, t2) ∼t y �t y’ ∼t (x′1, t2).
Therefore, we have x1 ≥ x′1. In other words, W (u1(y1) − u1(t1), u2(y2) − u2(t2))=
u1(x1) − u1(t1) ≥ W (u1(y′1) − u1(t1), u2(y′2) − u2(t2))=u1(x′1) − u1(t1).

Case 2: A = {(x1, y2), (y1, x2), z} with x1 > y1 > z1 and x2 < y2 < z2.

By Lemma 2 (ii), we have C({(x1, y2), (y1, x2), z}) = C({(x1, y2), (z1, x2), z}).
Since (x1, y2), z > (z1, x2), the proof of Case 1 concludes the proof of Case 2.

Now let us consider menus with more than three alternatives. Let A =

{x1, . . . , xn} and C(A) 3 xk . We shall prove that for any i , k,

W
(
u1(xk

1 ) − u1(mA
1 ), u2(xk

2 ) − u2(mA
2 )

)
≥ W

(
u1(xi

1) − u1(mA
1 ), u2(xi

2) − u2(mA
2 )

)
.

Without loss of generality, let x1
1 ≥ x2

1 ≥ . . . ≥ xn
1 and xs

2 = mA
2 for some s. Then

we shall prove that for any i , k,

W
(
u1(xk

1 ) − u1(xn
1), u2(xk

2 ) − u2(xs
2)

)
≥ W

(
u1(xi

1) − u1(xn
1), u2(xi

2) − u2(xs
2)

)
.
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We consider several cases and in all cases, we eliminate alternatives that do not
include minimums (xn

1 and xs
2) from A \ {xi, xk }.

Case 1: s , i, n, k and k = n.

By INEA, C(A) 3 xn implies that C({xi, xs, xn}) 3 xn. Then by the previous
argument for n = 3, u2(xn

2) − u2(xs
2) ≥ W

(
u1(xi

1) − u1(xn
1), u2(xi

2) − u2(xs
2)

)
.

Case 2: s , i, n and k = s.

By INEA, C(A) 3 xs implies that C({xi, xs, xn}) 3 xs. Then by the previous
argument for n = 3, u1(xs

1) − u1(xn
1) ≥ W

(
u1(xi

1) − u1(xn
1), u2(xi

2) − u2(xs
2)

)
.

Case 3: s = n , k.

By INEA, C(A) 3 xk implies that C({xi, xk, xn}) 3 xk . Then by the previ-
ous argument for n = 3, W

(
u1(xk

1 ) − u1(xn
1), u2(xk

2 ) − u2(xn
2)

)
≥ W

(
u1(xi

1) −
u1(xn

1), u2(xi
2) − u2(xn

2)
)
.

Case 4: s = i.

By INEA, C(A) 3 xk implies that C({xi, xk, xn}) 3 xk . Then by the previous
argument for n = 3, W

(
u1(xk

1 ) − u1(xn
1), u2(xk

2 ) − u2(xi
2)) ≥ u1(xi

1) − u1(xn
1).

Case 5: s , i, n, k and k , n.

Let A′ = {xi, xs, xk, xn}. By INEA, C(A) 3 xk implies that C(A′) 3 xk . Let
us consider a menu A′ ∪ {(xn

1, xs
2)} = {xi, xs, xk, xn, (xn

1, xs
2)}. By monotonicity,

C(A′ ∪ {(xn
1, xs

2)}) = (xn
1, xs

2). Therefore, by INEA, C(A′) = C(A′ ∪ {(xn
1, xs

2)}).

Since C(A′ ∪ {(xn
1, xs

2)}) = C(A′) , xn , by INEA,

C(A′ ∪ {(xn
1, xs

2)} \ {xn}) = C(A′ ∪ {(xn
1, xs

2)}) \ {xn} = C(A′) \ {xn} 3 xk .

Moreover, since C(A′ ∪ {(xn
1, xs

2)} \ {xn}) , xs, by INEA, we have

C(A′ ∪ {(xn
1, xs

2)} \ {xn}) \ {xs} = C(A′ ∪ {(xn
1, xs

2)} \ {xn, xs})

= C({xi, xk, (xn
1, xs

2)}).

Therefore, we obtain

C(A′) \ {xn, xs} = C(A′ ∪ {(xn
1, xs

2)} \ {xn, xs})

= C({xi, xk, (xn
1, xs

2)}) 3 xk .
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Then by the previous argument for n = 3, we have W
(
u1(xk

1 ) − u1(xn
1), u2(xk

2 ) −
u2(xs

2)
)
≥ W

(
u1(xi

1) − u1(xn
1), u2(xi

2) − u2(xs
2)

)
.

B.1.8 Proof of Theorem 4
We focus on the sufficiency part of Theorem 4. See Appendix F for the necessity

part of Theorem 4. By Lemma 5, there exist strictly increasing continuous functions
u1, u2, and W : R2

+ → R+ such that W (t, 0) = W (0, t) = t for each t ∈ R+ and for
any A ∈ A ,

C(A) = argmax
x∈A
{W

(
u1(x1) − u1(mA

1 ), u2(x2) − u2(mA
2 )

)
}.

Fact: IfC satisfies cancellation (ii), then there exists a strictly increasing continuous
function f such that W (t1, t2) = f −1 ( f (t1) + f (t2)

)
.

Let us consider a binary relation �0. We know that x �0 y if and only if
W

(
u1(x1), u2(x2)

)
≥ W

(
u1(y1), u2(y2)

)
. Similar to Lemma 4, by cancellation (ii)

and transitivity*, there exist strictly increasing continuous functions f1 and f2 such
that fi (R+) = R+ and x �0 y if and only if f1(x1) + f2(x2) ≥ f1(y1) + f2(y2). See
Krantz et al. (1971).

Take any x, y such that x ∼0 y. Equivalently, we have f1(x1) + f2(x2) =
f1(y1) + f2(y2). Given that f1 is continuous and strictly increasing, we obtain x1 =

f −1
1 ( f1(y1) + f2(y2) − f2(x2)). Therefore, W (u1(x1), u2(x2)) = W (u1(y1), u2(y2))

implies that

W
(
u1

(
f −1
1 ( f1(y1) + f2(y2) − f2(x2))

)
, u2(x2)

)
= W

(
u1(y1), u2(y2)

)
.

Since the right hand side does not depend on x2, the left hand side also should not
depend on x2. Therefore, there exists a continuous and strictly increasing function
F such that

W
(
u1

(
f −1
1 ( f1(y1)+ f2(y2)− f2(x2))

)
, u1(x2)

)
= F

(
f1(y1)+ f2(y2)

)
= W

(
u1(y1), u2(y2)

)
.

Since W (t, 0) = W (0, t) = t, if we set yi = 0, then the above equality implies
that F

(
f j (y j )

)
= W

(
u j (y j ), 0

)
= u j (y j ). Therefore, f j = F−1 ◦ u j . Therefore,

W (t1, t2) = F ( f1(u−1(t1)) + f2(u−2(t2))
)
= F (F−1(t1) + F−1(t2)

)
. Let f = F−1,

then we have W (t1, t2) = f −1( f (t1) + f (t2)).

Now it is easy to see that for any A ∈ A ,

C(A) = arg max
(x, p)∈A

{ f
(
u1(x1) − u1(mA

1 )
)
+ f

(
u2(x2) − u2(mA

2 )
)
}.
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Uniqueness: Take any two vectors of continuous functions ( f , u1, u2) and ( f ′, u′1, u
′
2)

such that C = C( f ,u1,u2) = C( f ′,u′1,u
′
2), u1(1) = u′1(1), and f (1) = f ′(1). We prove the

uniqueness in two steps.

Step 1. u′1 = u1 and u′2 = u2.

Take any y ∈ X . By Lemma 1, there exists x1 ∈ R+ such that (x, 0) ∼ y. Then
we have

u1(x1) = u1(y1) + u2(y2) ⇔ u1(x1) = u1(y1) + u2(y2); equivalently,

x1 = u−1
1

(
u1(y1) + u2(y2)

)
= u′−1

1
(
u′1(y1) + u′2(y2)

)
since all functions are strictly increasing and continuous.

First, let y1=0. Then we have u−1
1 ◦u2=u′−1

1 ◦u′2; equivalently, u
′
1◦u−1

1 =u′2◦u−1
2 .

Second, let t1 ≡ u1(y1), t2 ≡ u2(y2), and h(t) ≡ u′1
(
u−1

1 (t)
)
. Since u1 and u′1

are strictly increasing and continuous and u1(R+) = u′1(R+) = R+, h is also strictly
increasing and continuous and h(R+) = R+. Then we have

h(t1 + t2) = u′1
(
u−1

1 (t1 + t2)
)
= u′1

(
u−1

1 (u1(y1) + u2(y2))
)
, (by the definitions of h, t1, t2)

= u′1
(
u′−1

1 (u′1(y1) + u′2(y2))
)
= u′1(y1) + u′2(y2)

= u′1
(
u−1

1 (t1)
)
+ u′2

(
u−1

2 (t2)
)
, (by the definitions of t1, t2)

= u′1
(
u−1

1 (t1)
)
+ u′1

(
u−1

1 (t2)
)
= h(t1) + h(t2).

Since we obtained a typical Cauchy functional equation (see Kuczma 2008), there
exists α > 0 such that h(t) = α t; that is, u′1 = α u1 and u′2 = α u2. Moreover, since
u1(1) = u′1(1), we have u′1 = u1 and u′2 = u2.

Step 2. f ′ = f .

Take any y ∈ X . By Lemma 1, there exists x ∈ R+ such that (x, 0) ∼(0, 0) y.
Then we have

f (u1(x1)) = f (u1(y1)) + f (u2(y2)) ⇔ f ′(u1(x1)) = f ′(u1(y1)) + f ′(u2(y2)).

Since u1, u2, f , f ′ are strictly increasing and continuous, similar to Step 1, we will
obtain a Cauchy functional equation. Therefore, there exists β > 0 such that
f ′ ◦ u1 = β · f ◦ u1 and f ′ ◦ u2 = β · f ◦ u2. Since f ′(1) = f (1), we have f ′ = f .
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B.2 Alternatives with n-attributes
Let us briefly discuss how to generalize our result to the n-dimension case. In

particular, let us consider the following model:

C(A) = arg max
x∈A

n∑
i=1

f
(
ui (xi) − ui (mA

i )
)

(B.2)

where A ⊂ Rn
+ and mA is the vector that consists of the minimums of attributes of

A; that is, mA
i = minx∈A xi for each i.

In addition to standard axioms, we need three axioms. First, we need to INEA.
Under INEA, x is chosen over y from a menu A iff x is chosen over y from the menu
{x, y,mA} (i.e., x �mA y). Therefore, we can focus on {�t}t∈Rn+ . Now we will use
a very standard technique to obtain an additive representation for each �t. Under
a general version of cancellation (see Debreu (1960b) and Wakker (1988)), we can
find functions w1

t , . . . ,w
n
t such that for any x, y with x, y > t,

x �t y iff
n∑

i=1
wi
t(xi) ≥

n∑
i=1

wi
t(yi).

Without loss of generality, for any wi
t, we can write that w

i
t(xi) = f i

t
(
ui (xi) − ui (ti)

)
where ui is a utility function that is consistent with relative distance Di. Therefore,
we have

x �t y iff
n∑

i=1
f i
t
(
ui (xi) − ui (ti)

)
≥

n∑
i=1

f i
t
(
ui (yi) − ui (ti)

)
.

Then we modify RTI in the following way:

Axiom 30 (Reference Translation Invariance* (RTI*)) Take any x, y, z ∈ Rn
+ and

any i. For any x′i, y
′
i, z′i ∈ R+ such that [xi, yi]Di[x′i, y

′
i ] and [yi, zi]Di[y′i, z′i],

(xi, x−i) ∼(zi, z−i ) (yi, y−i) if and only if (x′i, x−i) ∼(z′i, z−i ) (y′i, z−i).

Under RTI*, we can prove that f i
t is independent of t. Therefore, we have

x �t y iff
n∑

i=1
f i (ui (xi) − ui (ti)

)
≥

n∑
i=1

f i (ui (yi) − ui (ti)
)
.

Then we modify transitivity in the following way.
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Axiom 31 (Transitivity**) For any i, j and x, y, z ∈ Rn
+,

if (xi, x j, 0−i,− j )� (yi, y j, 0−i,− j ) and (yi, y j, 0−i,− j )� (zi, z j, 0−i,− j ), then

(xi, x j, 0−i,− j )� (zi, z j, 0−i,− j ).

It turns out, under transitivity**, we can prove that f i = f for some f . Therefore,
we have

x �t y iff
n∑

i=1
f
(
ui (xi) − ui (ti)

)
≥

n∑
i=1

f
(
ui (yi) − ui (ti)

)
.

In other words, under INEA, RTI*, Transitivity*, and a general version of cancella-
tion in addition to standard axioms, we have (B.2).

B.3 Using both Maximums and Minimums
Here we consider models in which reference points not only depend on the mini-

mumsof themenu, but also themaximums. LetMA = (M A
1 , M A

2 ) ≡
(

maxx∈A x1,maxx∈A x2
)

for each A ∈ A (i.e., the join of A). We focus on the following more general model:
for any menu A ∈ A ,

C(A) = arg max
x∈A

{
f
(
u1(x1) − u1(r1(M A

1 ,m
A
1 ))

)
+ f

(
u2(x2) − u2(r1(M A

2 ,m
A
2 ))

)}
(B.3)

where r1 and r2 are strictly increasing reference functions. In Appendix B.3.1-2, we
discuss implications of (B.3) by reconsidering section 2.2.2-3.

B.3.1 Attraction Effect and Compromise Effect
First, we discuss a relation between the compromise and attraction effects.

Previously, Proposition 2 showed that an agent exhibits the the compromise effect
if and only if she exhibits the attraction effect. But in the model (B.3), we have a
weaker prediction. In particular, we can show that if the agent exhibits the attraction
effect, then she exhibits the compromise effect, which means that the compromise
effect is more likely to be exhibited than the attraction effect.

To illustrate, suppose the agent exhibits the attraction effect at some x, y, and
(z1, z′2) with with x1 > y1 > z1 and y2 > z′2 > x2. That is, x � y and x ≺(z1, z′2) y.
By the representation (B.3), we have

f
(
u1(x1) − u1(r1(x1, y1))

)
− f

(
u1(y1) − u1(r1(x1, y1))

)
>

> f
(
u2(y2) − u2(r2(y2, x2))

)
− f

(
u2(x2) − u2(r2(y2, x2))

)
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and
f
(
u1(x1) − u1(r1(x1, z1))

)
− f

(
u1(y1) − u1(r1(x1, z1))

)
<

< f
(
u2(y2) − u2(r2(y2, x2))

)
− f

(
u2(x2) − u2(r2(y2, x2))

)
.

Take any z2 such that z2 > y2. Then since r2(z2, x2) > r2(y2, x2), by diminishing
sensitivity, we have

f
(
u2(y2) − u2(r2(y2, x2))

)
− f

(
u2(x2) − u2(r2(y2, x2))

)
<

< f
(
u2(y2) − u2(r2(z2, x2))

)
− f

(
u2(x2) − u2(r2(z2, x2))

)
.

Therefore, we have

f
(
u1(x1) − u1(r1(x1, z1))

)
− f

(
u1(y1) − u1(r1(x1, z1))

)
<

< f
(
u2(y2) − u2(r2(z2, x2))

)
− f

(
u2(x2) − u2(r2(z2, x2))

)
;

equivalently, x ≺z y. In other words, the agent exhibits the compromise effect at
x, y, and z since x � y and x ≺z y.

B.3.2 Symmetric Dominance and Two Decoy Effect
Second, we discuss the effect of the symmetrically dominated third alternative

(z1, t2) as in Observation 1. Consider again two alternatives x and y with x � y
and x1 > y1 and x2 < y2. Remember that Observation 1 showed that when
t2 < x2 < z′2 < y2, observing x ≺(z1, t2) y is less likely than x ≺(z1, z′2) y; that is,
x ≺(z1, t2) y implies x ≺(z1, z′2) y. We can obtain the same result as in Observation 1.

To illustrate, suppose x ≺(z1, t2) y. By the representation (B.3), we have

f
(
u1(x1) − u1(r1(x1, z1))

)
− f

(
u1(y1) − u1(r1(x1, z1))

)
<

< f
(
u2(y2) − u2(r2(y2, t2))

)
− f

(
u2(x2) − u2(r2(y2, t2))

)
.

By diminishing sensitivity and r2(y2, x2) > r2(y2, t2), we have

f
(
u2(y2) − u2(r2(y2, t2))

)
− f

(
u2(x2) − u2(r2(y2, t2))

)
<

< f
(
u2(y2) − u2(r2(y2, x2))

)
− f

(
u2(x2) − u2(r2(y2, x2))

)
.

Therefore, we have

f
(
u1(x1) − u1(r1(x1, z1))

)
− f

(
u1(y1) − u1(r1(x1, z1))

)
<

< f
(
u2(y2) − u2(r2(y2, x2))

)
− f

(
u2(x2) − u2(r2(y2, x2))

)
;
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equivalently, x ≺(z1, z′2) y.

Finally, note that the symmetric dominance and the two decoy effect are also
equivalent as in Section 2.2.3 since the maximums and the minimums are identical.
Therefore, we can summarize Section B.3 in the following way (≥̇ represents the
likelihood of observing a preference reversal):

Compromise >̇ Attraction (Decoy) >̇ Two Decoy =̇ Symmetric Dominance.

B.4 Asymmetry of Two Dimensions and Violations of Transitivity
In Section 2.2.2 and Section 2.3.2, we demonstrated the equivalence between

diminishing sensitivity and the compromise and attraction effects. In particular,
Proposition 3 shows that if C is more diminishing sensitive (if f is more concave),
then the compromise and attraction effects are more likely to be observed. So far
we treated two dimensions in a symmetric way in sense that two dimensions have
a common distortion function f (recall and compare (2.1) and (2.2)). Now we
consider a general representation in which two dimensions have different distortion
functions, f and g as in (2.1). More formally,

Definition 21 A choice correspondence C is a general additive reference dependent
choice (GARDC) if there are strictly increasing functions f , g, u1, u2 such that f (0) =
g(0) = 0 and for any menu A ∈ A ,

C(A) = arg max
x∈A
{ f

(
u1(x1) − u1(mA

1 )
)
+ g

(
u2(x2) − u2(mA

2 )
)
}. (B.4)

Nowwe have two different diminishing sensitivities for two dimensions and they
are defined as in (2.3). Indeed, diminishing sensitivities are equivalent to the strict
concavity of f and g. The new representation allows us to compare two dimensions
in terms of diminishing sensitivity; i.e., to know which of f and g is more concave.
The generalization allows us to obtain the following observed behavior: Heath and
Chatterjee (1995) found that, when the dimensions are quality and price, one is less
likely to observe the attraction effect when the third alternative is a decoy for the
low-quality alternative compared to the high-quality alternative. More precisely,
one is more like to have y � x and y ≺(k1,t2) x compared to x � y and x ≺(z1,z′2) y
(See Figure B.2). We can have this behavior when g is more diminishing sensitive
than f by an argument similar to Proposition 2-3.
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Figure B.2: Asymmetry of Two Dimensions

It turns out the comparison of two dimensions in terms of diminishing sensitivity
is closely related to violations of transitivity of binary comparisons.1 Violations of
transitivity are consistently documented in experimental literature.2

Now we discuss how to know which of two dimensions is more diminishing
sensitivity; that is, which of f and g is more concave, from observed choices.
Essentially, a direction of a violation of transitivity tells us which dimension is more
diminishing sensitive. Indeed, f can be more concave than g for only a subset of
R+, but in order to illustrate a connection between violations of transitivity and the
relative diminishing sensitivity, we suppose f (t) = tα and g(t) = t β for some α and
β. Therefore, we have

C(A) = arg max
x∈A
{
(
u1(x1) − u1(mA

1 )
)α
+

(
u2(x2) − u2(mA

2 )
) β
}.

Our objective is to know either α = β, α > β, or α < β. Take some alternatives x,
y, and z with x1 > y1 > z1 and z2 > y2 > x2 such that

x ∼ y and y ∼ z; equivalently,

by our representation,(
u1(x1) − u1(y1)

) α
β = u2(y2) − u2(x2) and

(
u1(y1) − u1(z1)

) α
β = u2(z2) − u2(y2).

1In fact, we can obtain (B.4) by weakening transitivity of �, but we will omit a behavioral
foundation for it since it is very similar to Theorem 4.

2For example, a violation of transitivity of pairwise comparisons of binary lotteries is documented
in Tversky (1969), Lindman and Lyons (1978), Budescu and Weiss (1987), Loomes et al. (1991),
and Day and Loomes (2010).
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There are three cases for the comparison between x and z: either i) x ∼ z; ii) x ≺ z;
or iii) x � z.

In the first case, we have α = β because x ∼ z implies(
u1(x1) − u1(y1)

) α
β +

(
u1(y1) − u1(z1)

) α
β = u2(y2) − u2(x2) + u2(z2) − u2(y2) =

= u2(z2) − u2(x2) =
(
u1(x1) − u1(z1)

) α
β .

Therefore, if transitivity is satisfied, two dimensions are the same in terms of
diminishing sensitivity (α = β).

In the second case, we have α < β because x ≺ z implies(
u1(x1) − u1(y1)

) α
β +

(
u1(y1) − u1(z1)

) α
β = u2(y2) − u2(x2) + u2(z2) − u2(y2) =

= u2(z2) − u2(x2) >
(
u1(x1) − u1(z1)

) α
β .

Therefore, if transitivity is violated in a direction x ∼ y ∼ z � x, then the the first
dimension is more diminishing sensitive than the second dimension (α < β).

Lastly, if transitivity is violated in a direction x ∼ y ∼ z ≺ x, the the second
dimension is more diminishing sensitive than the first dimension (α > β).
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A p p e n d i x C

APPENDIX TO CHAPTER 3

C.1 Proof of Theorem 5
Since the necessity part is obvious, we only prove the sufficiency part. Suppose

a binary relation � is regular and satisfies Separability. We then shall prove that
there exist continuous distance-based functions { fi}

n
i=1 and a continuous aggregator

W such that (3.2) holds. First, we will prove the following useful lemma. Recall
that ak and bk are the infimum and the supremum of Xk = (ak, bk], respectively.

Lemma 6 Suppose � is regular. Take any x ∈ X . For any i and y−i ∈ X−i with
(bi, y−i) � x, there exists yi ∈ Xi such that x ∼ y = (yi, y−i).

Proof of Lemma 6 Take any x ∈ X , i, and y−i ∈ X−i such that (bi, y−i)�x. We shall
find yi ∈ Xi such that x∼y. By richness, there exists yi ∈ Xi such that x� (yi, y−i).
We now construct two infinite sequences {xn}∞n=0 and {yn}∞n=0 by the induction.
First, let us set x0 = bi and y0 = yi. Suppose we have constructed two sequences
x0, . . . , xk and y0, . . . , yk . Now we will define xk+1 and yk+1 in the following way:
if ( xk+yk

2 , y−i) � x, then let xk+1 ≡
xk+yk

2 and yk+1 ≡ yk ; and if ( xk+yk

2 , y−i) ≺ x, then
let xk+1 ≡ xk and yk+1 ≡

xk+yk

2 . Note that {xk }∞k=1 is a non-increasing sequence,
{yk }∞k=1 is a non-decreasing sequence, and limk→∞ xk− yk = limk→∞

x0−y0

2k = 0. So
there exists y∗ ∈ Xi such that limk→∞ xk = limk→∞ yk = y∗ ∈ Xi. Moreover, by the
construction, we have (xk, y−i)�x and x� (yk, y−i) for all k. By continuity, we have
(y∗, y−i)�x� (y∗, y−i). Therefore, x∼ (y∗, y−i). �

We frequently use the following corollary of Lemma 6.

Corollary 2 For any i, j with i , j and xi, yi ∈ Xi with xi ≥ yi, there exists x j ∈ X j

such that (xi, x j, b−i,− j )∼ (yi, b j, b−i,− j ). .

Proof of Corollary 2 Since xi ≥ yi, we have (xi, b j, b−i,− j ) � (yi, b j, b−i,− j ) by
strong monotonicity. By Lemma 6, there exists x j ∈ X j such that (xi, x j, b−i,− j ) ∼
(yi, b j, b−i,− j ). �
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Now we will prove a lemma which shows that there exist continuous distance-based
functions consistent (in some sense) with �.

Lemma 7 If � is regular and satisfies Separability, then there exist continuous
distance-based functions { fi}

n
i=1 such that for any x, y ∈ X , i, and x′i, y

′
i ∈ Xi, if x ∼ y

and fi (xi, yi)= fi (x′i, y
′
i ), then (x′i, x−i) ∼ (y′i, y−i).

Proof of Lemma 7 First, let us construct distance-based functions.

For each i < n, let fi be a function such that for any xi, yi ∈ Xi with xi ≥ yi,
fi (xi, yi) =

bn−xn
bn−an

and fi (yi, xi) = −
bn−xn
bn−an

whenever (xi, xn, b−i,−n) ∼ (yi, bn, b−i,−n).
By Corollary 2, fi is well-defined. Moreover, by continuity and strongmonotonicity,
fi is also continuous and strictly increasing in its first argument. Therefore, fi is a
continuous distance-based function.

Now, wewill construct fn. By Corollary 2, for any xn, yn ∈ Xn with xn ≥ yn, there
exists x1 ∈ X1 such that (x1, xn, b−1,−n) ∼ (yn, b−n). Let fn be a function such that
for any xn, yn ∈ Xn with xn ≥ yn, fn(xn, yn) = f1(b1, x1) and fn(yn, xn) = f1(x1, b1)
whenever (x1, xn, b−1,−n)∼ (yn, b−n). Similarly, fn is well-defined, continuous, and
strictly increasing in its first argument. Also, note that by the definition of f1,
fn(bn, xn)= bn−xn

bn−an
for all xn ∈ Xn.

Now, we will prove that we constructed desired distance-based functions. Take
any x, y ∈ X , i, and x′i, y

′
i ∈ Xi such that x ∼ y and fi (xi, yi) = fi (x′i, y

′
i ). We shall

prove that (x′i, x−i) ∼ (y′i, y−i). Without loss of generality, suppose xi ≥ yi. We
consider two cases.

Case 1: i<n.

Take some xn ∈ Xn such that fi (xi, yi) = fi (x′i, y
′
i ) =

bn−xn
bn−an

. By the definition
of fi, we obtain (xi, xn, b−i,−n) ∼ (yi, b−i) and (x′i, xn, b−i,−n) ∼ (y′i, b−i). Since
x ∼ y, (xi, xn, b−i,−n) ∼ (yi, b−i), and (x′i, xn, b−i,−n) ∼ (y′i, b−i), by Separability,
(x′i, x−i)∼ (y′i, y−i) holds.

Case 2: i=n.

Take some x1 ∈ X1 such that fn(xn, yn) = fn(x′n, y
′
n) = f1(b1, x1). By the def-

inition of fn, we obtain (x1, xn, b−1,−n) ∼ (yn, b−n) and (x1, x′n, b−1,−n) ∼ (y′n, b−n).
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Since x∼ y, (x1, xn, b−1,−n) ∼ (yn, b−n), and (x1, x′n, b−1,−n) ∼ (y′n, b−n), by Separa-
bility, (x′n, x−n)∼ (y′n, y−n) holds. �

Corollary 3 For any i, the range fi (X2
i ) = (−1, 1).

Proof of Corollary 3 When i = n, note that fn(bn, xn) = bn−xn
bn−an

can take any
number in [0, 1) by appropriately choosing xn. Therefore, fn(X2

n ) = (−1, 1). Now
suppose i < n. By Corollary 2, for any xn ∈ Xn, there exists xi ∈ Xi such that
(xi, bn, b−i,−n) ∼ (bi, xn, b−i,−n). By the construction of fi, we have fi (bi, xi) =
fn(bn, xn) = bn−xn

bn−an
. Therefore, fi (X2

i ) = (−1, 1).

�

Finally, we will prove Theorem 5. We shall find an strictly increasing and
continuous function W such that W (ti, 0−i) = ti and W (t) = W (t−n, 0n) + tn for any
t ∈ (−1, 1)n. We construct W in the following way. First, for any t−n ∈ (−1, 1)n−1,
we construct W (t−n, 0n). Then for any t ∈ (−1, 1)n, we set W (t)≡W (t−n, 0n) + tn.
In order to construct W (t−n, 0n), for each t−n ∈ (−1, 1)n−1, we will find xn, yn ∈ Xn

(to be described later) and set W (t−n, 0n)≡ fn(yn, xn).

Take t−n ∈ (−1, 1)n−1. We will construct xn and yn by the following two claims.

Claim 1: For any j <n, there exist x j, y j ∈ X j such that t j = f j (x j, y j ).

By Corollary 3, there exists z j ∈ X j such that f j (b j, z j ) = |t j |. Then we have
t j = f j (x j, y j ) by setting (x j, y j ) = (b j, z j ) when t j ≥ 0 and (x j, y j ) = (z j, b j ) when
t j < 0.

Now suppose we have constructed x1, . . . , xn−1, y1, . . . , yn−1 by Claim 1.

Claim 2: There exist xn, yn ∈ Xn such that x∼y.

Now let W (t−n, 0n)≡ fn(yn, xn) and W (t)≡W (t−n, 0n) + tn for any t ∈ (−1, 1)n.
By this construction, W is continuous and strictly increasing in all its arguments.

Now we shall prove that x � y if and only if W
(
( fi (xi, yi))i

)
≥ 0. Since W

is continuous and strictly increasing in all its arguments and each fi is continuous
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and strictly increasing in its first argument, it is enough to prove that x∼ y implies
W

(
( fi (xi, yi))i

)
=0.

Take any x, y ∈ X with x ∼ y. First, let t−n= (( fi (xi, yi))i<n). Then by the
above procedure that involves Claims 1-2, we find x, y∈ X such that f j (x j, y j )= t j

for all j < n and x ∼ y. By the construction of W , we have W
(
( fi (xi, yi))i

)
=

W
(
( fi (xi, yi))i

)
= W

(
( fi (xi, yi))i<n, 0n

)
+ fn(xn, yn) = W

(
t−n, 0n

)
+ fn(xn, yn) =

fn(yn, xn) + fn(xn, yn).

Since f1(x1, y1) = f1(x1, y1) = t1, by Lemma 7, x ∼ y implies (x1, x−1) ∼
(y1, y−1). Similarly, since f2(x2, y2) = f2(x2, y2) = t2, by Lemma 7, (x1, x−1) ∼
(y1, y−1) implies (x1, x2, x−1,−2)∼ (y1, y2, y−1,−2). Since fi (xi, yi)= fi (xi, yi)= ti for
each i < n, by repeating this argument n−1 times, we will obtain that (x−n, xn) ∼
(y−n, yn). Moreover, since x ∼ y, by Lemma 7, (x−n, xn) ∼ (x−n, xn) ∼ (y−n, yn)
implies fn(yn, xn) = fn(yn, xn). In other words, W

(
( fi (xi, yi))i

)
= fn(yn, xn) +

fn(xn, yn) = 0.

Lastly, we show that W is an aggregator; that is, W (ti, 0−i) = ti for any ti ∈

(−1, 1). By the construction of W , it is obvious when i = n. Now take any
i < n and ti ∈ [0, 1). By Corollary 3, there exist xi, yi ∈ Xi such that fi (xi, yi) =
−ti = fn(bn(1 − ti) + anti, bn). By the construction of fi, we have (xi, b−i) ∼
(yi, bn(1 − ti) + anti, b−i,−n). Since W (t) = W (t−n, 0n) + tn for each t ∈ (−1, 1)n,
we obtain 0 = W

(
fi (yi, xi), fn(bn(1 − ti) + anti, bn), 0−i,−n

)
= W

(
fi (yi, xi), 0−i

)
+

fn(bn(1 − ti) + anti, bn) = W
(
ti, 0−i

)
− ti. A similar argument works for any

ti ∈ (−1, 0].

Uniqueness: Suppose there are two sets of functions (W, { fi}
n
i=1) and (W ′, { f ′i }

n
i=1)

such that W (t) = W (t−n, 0n) + tn and W ′(t) = W ′(t−n, 0n) + tn for any t ∈ (−1, 1)n

and fn(bn, xn)= f ′n(bn, xn)= bn−xn
bn−an

for any xn ∈ Xn that satisfy (3.2). We shall prove
that W =W ′ and fi= f ′i for any i.

Take any i < n and xi, yi ∈ Xi with xi > yi. By Corollary 2, there exists xn ∈ Xn

such that (xi, xn, b−i,−n)∼ (yi, b−i). By (3.2), we have

0 = W
(

fi (xi, yi), 0−i,−n, fn(xn, bn)
)

= W
(

fi (xi, yi), 0−i
)
+ fn(xn, bn), (since W (t)=W (t−n, 0n) + tn),

= fi (xi, yi) −
bn − xn

bn − an
, (by the definition of aggregator).
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Similarly,

W ′
(

f ′i (xi, yi), 0−i,−n, f ′n(xn, bn)
)
= f ′i (xi, yi) −

bn − xn

bn − an
=0.

Then we will obtain that fi (xi, yi) = f ′i (xi, yi) =
bn−xn
bn−an

. Therefore, fi = f ′i for any
i<n.

Now we will prove that fn= f ′n. Take any xn, yn ∈ Xn with xn< yn. By Corollary
2, there exists y1 ∈ X1 such that (xn, b−n)∼ (y1, yn, b−1,−n). By (3.2),

0 = W
(

f1(b1, y1), 0−1,−n, fn(xn, yn)
)

= W
(

f1(b1, y1), 0−1
)
+ fn(xn, yn), (since W ′(t)= W ′(t−n, 0n) + tn)

= f1(b1, y1) + fn(xn, yn), (by the definition of aggregator)

and
W ′

(
f ′1(b1, y1), 0−1,−n, f ′n(xn, yn)

)
= f ′1(bn, y1) + f ′n(xn, yn) = 0.

Since f1= f ′1, we obtain that fn(yn, xn)= f ′n(yn, xn) = f1(b1, y1). Therefore, fn= f ′n.

Finally, we shall prove that W =W ′. Since W (t)= W (t−n, 0n) + tn and W ′(t)=
W ′(t−n, 0n) + tn, it is enough to prove that W (t−n, 0n) = W ′(t−n, 0n) for any t−n ∈

(−1, 1)n−1.

Now take any t−n ∈ (−1, 1)n−1. For each i < n, there exist xi, yi ∈ Xi such that
ti = fi (xi, yi) = f ′i (xi, yi) by Claim 1. Moreover, by Claim 2, there exist xn, yn ∈ Xn

such that x∼y. Let tn = fn(xn, yn) = f ′n(xn, yn). Therefore,

W (t−n, 0) = W (t−n, tn) − tn = 0 − tn, (by x∼y and (3.2)),

= W ′(t−n, tn) − tn, (by x∼y and (3.2)),

= W ′(t−n, 0).

Therefore, W =W ′.
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A p p e n d i x D

APPENDIX TO CHAPTER 4

D.1 Proof of Theorem 6
D.1.1 Necessity

We start by proving the converse statement. Let (u,%) be a regular PALM in
which % satisfies Richness. Let %∗ be derived revealed perception priority from
ρ(u,%). We shall first prove that %∗=%. The next lemma is useful throughout this
section.

Lemma 8 If c � a � b, or a � b � c, then
ρ(a, {a, b, c})
ρ(b, {a, b, c})

<
ρ(a, {a, b})
ρ(b, {a, b})

.

Proof: Let a � b.

Case 1: c � a � b. Since b � c,

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ ρ(a, {a, b})
ρ(b, {a, b})

=

(
µ(a, {a, b, c})(1 − µ(c, {a, b, c}))

µ(b, {a, b, c})(1 − µ(c, {a, b, c}))(1 − µ(a, {a, b, c}))

)
(

µ(a, {a, b})
µ(b, {a, b})(1 − µ(a, {a, b}))

)
=

(1 − µ(a, {a, b}))
(1 − µ(a, {a, b, c}))

[u(a)
u(b)

/
u(a)
u(b)

]
< 1,

where the last strict inequality is by Luce’s regularity on µ; that is, µ(a, {a, b}) =
u(a)

u(a)+u(b)+u(x0) > µ(a, {a, b, c}) = u(a)
u(a)+u(b)+u(c)+u(x0) .

Case 2: a � b � c. Since b � c,

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})

µ(b, {a, b, c})(1 − µ(a, {a, b, c}))

/ µ(a, {a, b})
µ(b, {a, b})(1 − µ(a, {a, b}))

=
1 − µ(a, {a, b})

1 − µ(a, {a, b, c})
< 1;

where the last strict inequality is by Luce’s regularity on µ. �

First, we prove a ∼ b if and only if a ∼∗ b. Then, we prove a � b if and only if
a �∗ b.

Lemma 9 a ∼ b if and only if a ∼∗ b.
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Proof of Lemma 9:

Step 1: If a ∼ b then a ∼∗ b.

Proof of Step 1: Fix c ∈ X to show ρ(a,{a,b,c})
ρ(b,{a,b,c}) /

ρ(a,{a,b})
ρ(b,{a,b}) = 1.

Case 1: a ∼ b % c.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})
µ(b, {a, b, c})

/ µ(a, {a, b})
µ(b, {a, b})

=
u(a)
u(b)

/u(a)
u(b)

= 1.

Case 2: c � a ∼ b.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})(1 − µ(c, {a, b, c}))
µ(b, {a, b, c})(1 − µ(c, {a, b, c}))

/ µ(a, {a, b})
µ(b, {a, b})

=

=
u(a)
u(b)

/u(a)
u(b)

= 1.

�

Step 2: If a � b, then a �0 b.

Proof of Step 2: By Richness, there is c with c � a � b or a � b � c. In either
case, by Lemma 8, ρ(a,{a,b,c})

ρ(b,{a,b,c}) <
ρ(a,{a,b})
ρ(b,{a,b}) . Hence, a �0 b. �

Step 3: If a %0 b, then a % b.

Proof of Step 3: We show that if a 6% b then a 6%0 b. Let a 6% b. Then by complete-
ness, b � a. By Richness, there is c with c � b � a or b � a � c. Suppose without
loss of generality that c � b � a. By Lemma 8, we have ρ(b,{a,b,c})

ρ(a,{a,b,c}) <
ρ(b,{a,b})
ρ(a,{a,b}) .

Moreover, since c � b and c � a, Step 2 shows that c �0 a and c �0 b. Hence,
b �0 a, so that a 6%0 b. �

Step 4: If a ∼∗ b then a ∼ b.

Proof of Step 4: Let a ∼∗ b. By the definition of ∼∗, a %∗ b and b %∗ a. Then
a %∗ b implies that there exist c1, . . . , ck such that a = c1 %0 c2 %0 . . . %0 ck = b.
By Step 3 and the transitivity of %, we have that a % b. Similarly, b %∗ a implies
that b % a. Thus a ∼ b. �

In the following, we prove that a � b if and only if a �∗ b.
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Lemma 10 If a �∗ b then a � b.

Proof:

Let a �∗ b. It suffices to consider the following two cases.

Case 1: a �0 b. Suppose, towards a contradiction, a � b. By the completeness
of %, b % a. Note that a �0 b implies a �0 b, so a � b by Lemma 9. Then
b � a. By Richness there is c such that c � b � a or b � a � c. In either case,
ρ(a,{a,b,c})
ρ(b,{a,b,c}) /

ρ(a,{a,b})
ρ(b,{a,b}) > 1 by Lemma 8, in contradiction with a �0 b.

Case 2: By the definition of �∗, there exist c1, . . . , ck ∈ X such that a �0 c1 �
0

· · · �0 ck �
0 b (at least one strict relation). Then, by Lemma 9 and Case 1,

a � c1 � · · · � ck � b (at least one strict relation). Hence, by transitivity, a � b.

�

The next lemma shows the converse.

Lemma 11 If a � b then a �∗ b.

Proof:

Since X is countable, by Richness, we can write X = ∪i∈ZXi such that for any
x, x′ ∈ Xi and y ∈ X j with i < j, x � y and x ∼ x′.

Let a � b. There exists i, j ∈ Z with i < j such that a ∈ Xi and b ∈ X j .

Case 1: j = i + 1. It suffices to show that a �0 b. Take any c ∈ X such that a �0 c

and b �0 c. By Lemma 9, a � c and b � c. Therefore, c ∈ X \ Xi ∪ Xi+1. That is,
either c � a or b � c. Since a � b, then c � a � b or a � b � c. In either case, by
Lemma 8, ρ(a,{a,b,c})

ρ(b,{a,b,c}) /
ρ(a,{a,b})
ρ(b,{a,b}) < 1. Thus a �0 b. Hence, a �∗ b.

Case 2: j > i + 1. For any k ∈ Z with i < k < j, let us take ck ∈ Xk . By the
argument in Case 1, a �0 ci+1 �

0 · · · �0 c j−1 �
0 b. Therefore, a �∗ b. �

D.1.2 Sufficiency
In this section, we prove sufficiency. Choose a nondegenerate stochastic choice

function ρ that satisfies the axioms in the theorem. Let %∗ be the derived revealed
perception priority.
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Step 1: there exists u : X0 → R such that q(a, A) = u(a)∑
a′∈A u(a′)+u(x0) .

Proof of Step 1: Since q satisfies Luce’s IIA and
∑

a∈A0 q(a, A) = 1, by Luce’s the-
orem (Luce 1959), there exists u : X → R such that q(a, A) = u(a)∑

a′∈A u(a′)+u(x0) .
Since ρ is nondegenerate, 1 > ρ(a, A) > 0 for all a ∈ A. Remember that
Aa = {b ∈ A|b �∗ a}. Since a < Aa, 1 − ρ(Aa, A) > 0. Therefore, u(a) > 0
for any a ∈ A. �

Step 2: ρ = ρ(u,%∗).

Proof of Step 2: Choose any A ∈ A . Since %∗ is a weak order, therefore the
indifference relation ∼∗ is transitive. Then, the set of equivalence classes A/%∗ is
well defined and finite. That is, there exists a partition {α1, α2, . . . αk } of A such
that a j �

∗ ai for all ai ∈ α
i and a j ∈ α

j with j > i and ai ∼
∗ ai′ for all ai, ai′ ∈ α

i.

Define pi ≡ ρ(αi, A) =
∑

a′∈αi ρ(a′, A). Then for a ∈ αi, q(a, A) = ρ(a,A)
1−

∑
j>i pj

.
Therefore,∑

a∈αi

q(a, A) =
∑
a∈αi

ρ(a, A)
1 −

∑
j>i p j

=

∑
a∈αi ρ(a, A)

1 −
∑

j>i p j
=

pi

1 −
∑k

j=i+1 p j
.

Hence,

1 −
∑
a∈αi

q(a, A) = 1 −
pi

1 −
∑k

j=i+1 p j
=

1 −
∑k

j=i+1 p j − pi

1 −
∑k

j=i+1 p j
=

1 −
∑k

j=i p j

1 −
∑k

j=i+1 p j
.

Therefore, for any s ∈ {1, . . . , k},
k∏

i=s+1
(1 −

∑
a∈αi

q(a, A)) =
k∏

i=s+1

1 −
∑k

j=i p j

1 −
∑k

j=i+1 p j
=

1 −
∑k

j=s+1 p j

1
= 1 − ρ(Aa, A).

For all a ∈ A and A ∈ A , define µ(a, A) = q(a, A) .

Choose a ∈ A. Without loss of generality assume that a ∈ αs. Then,
ρ(a, A) = q(a, A)(1 − ρ(Aa, A)) = µ(a, A)(1 − ρ(Aa, A)) = µ(a, A)

∏k
i=s+1(1 −∑

a′∈αi µ(a′, A)) ≡ ρ(u,%∗) (a, A). �

D.2 Relation to Manzini and Mariotti
The model of Manzini and Mariotti (2014) is specified by a probability measure

g on X , and a linear order �M . Their representation is then

ρ(a, A) = g(a)
∏

a′�Ma

(1 − g(a′)).
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Superficially, this representation looks similar to ours, but it is actually very
different: It is incompatible with our model, in the sense that the set of stochastic
choices that satisfy ourmodel is disjoint from the set of stochastic choices inManzini
and Mariotti’s model. We now proceed to prove this fact.

Let ρ have a Manzini and Mariotti (2014) representation as above and let X

have at least three elements. Suppose, towards a contradiction that it also has a
representation using our model.

We are going to prove that the two models differ in a strong sense, because we
are going to show that there is no subset of X of three elements on which the two
models can coincide.

Let a, b, c ∈ X . The preference relation �M is a linear order. Suppose, without
loss of generality, that a �M b �M c. Given the Manzini-Mariotti representation,
then

ρ(a, {a, b, c}) = ρ(a, {a, b}) = ρ(a, {a, c}) = g(a),

and
ρ(b, {a, b, c}) = ρ(b, {a, b}) = g(b)(1 − g(a)).

We have assumed that ρ has a PALM representation given by some (u,%). Now
consider how a, b, c are ordered by %.

There are seven cases to consider; each one of these cases end in a contradiction.

1. a % b, a % c, and b � c: By Regularity, since b � c, ρ(a, {a, b, c}) =
q(a, {a, b, c}) < ρ(a, {a, b}) = q(a, {a, b}).

2. b % a, b % c and a � c: By Regularity, since a � c, ρ(b, {a, b, c}) =
q(b, {a, b, c}) < ρ(b, {a, b}) = q(b, {a, b}).

3. c � a % b: By Regularity, ρ(a, {a, b, c}) = q(a, {a, b, c})(1−q(c, {a, b, c})) <
q(a, {a, b, c}) ≤ q(a, {a, b}) = ρ(a, {a, b}).

4. a � b ∼ c: ByRegularity, since ρ(a, {a, b, c}) = q(a, {a, b, c}) = ρ(a, {a, b}) =
q(a, {a, b}) and q(b, {a, b, c}) < q(b, {a, b}) because a � c, ρ(b, {a, b, c}) =
q(b, {a, b, c})(1−q(a, {a, b, c})) < ρ(b, {a, b}) = q(b, {a, b})(1−q(a, {a, b})).

5. b � a ∼ c: By Regularity, ρ(a, {a, b, c}) = q(a, {a, b, c})(1−q(b, {a, b, c})) <
q(a, {a, b, c}) ≤ q(a, ac) = ρ(a, ac).
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6. c � b � a: By Regularity, ρ(b, {a, b, c}) = q(b, {a, b, c})(1− q(c, {a, b, c})) <
q(b, {a, b, c}) ≤ ρ(b, {a, b}) = q(b, {a, b}).

7. a ∼ b ∼ c: In this case, Luce’s IIA cannot be violated in PALM. However, in
Manzini and Marriott’s Model, there is always at least one violation of Luce’s
IIA.

D.3 Proof of Proposition 10
Observation 11: For any PALM ρ,

ρ(x0, {x, y}) > ρ f (x0, {x, y}) if and only if u(x0) > u f (x0)

Proof:

Byadirect calculation, ρ(x0, {x, y})=
(
u(x)+u(x0)

) (
u(y)+u(x0)

)(
u(x)+u(y)+u(x0)

)2 and ρ f (x0, {x, y})=(
u(x)+u f (x0)

) (
u(y)+u f (x0)

)(
u(x)+u(y)+u f (x0)

)2 . Let g(t) =
(
u(x)+t

) (
u(y)+t

)(
u(x)+u(y)+t

)2 . Since g′(t) = t
(
u(x)+u(y)

)
+u2(x)+u2(y)(

u(x)+u(y)+t
)3 ,

g is increasing in t when t > −u2(x)+u2(y)
u(x)+u(y) .

Now it is enough to prove thatu(x0) is larger than−u2(x)+u2(y)
u(x)+u(y) . First, ρ(y, {x, y}) =

u(y)
(
u(y)+u(x0)

)(
u(x)+u(y)+u(x0)

)2 > 0 implies that u(x0) > −u(y). Second,

ρ(x0, {x, y}) =
(
u(x) + u(x0)

) (
u(y) + u(x0)

)(
u(x) + u(y) + u(x0)

)2 ≥ 0

and u(x0) > −u(y) imply u(x0) ≥ −u(x). Then we obtain u(x0) > −u(x)+u(y)
2 ≥

−
u2(x)+u2(y)
u(x)+u(y) . �

Observation 12: For any PALM ρ,

ρ(x0, {x, y, z}) > ρ f (x0, {x, y, z}) if and only if u(x0) > u f (x0).

Proof: By a direct calculation,

ρ(x0, {x, y, z}) =
(
u(x) + u(y) + u(x0)

) (
u(x) + u(z) + u(x0)

) (
u(y) + u(z) + u(x0)

)(
u(x) + u(y) + u(z) + u(x0)

)3

and p f (x0, {x, y, z}) =
(
u(x)+u(y)+u f (x0)

) (
u(x)+u(z)+u f (x0)

) (
u(y)+u(z)+u f (x0)

)(
u(x)+u(y)+u(z)+u f (x0)

)3 .
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Let s(t) =
(
u(x)+u(y)+t

) (
u(x)+u(z)+t

) (
u(y)+u(z)+t

)(
u(x)+u(y)+u(z)+t

)3 . Also, let A ≡ u(x)+u(y)+u(z),

B ≡ u2(x)+u2(y)+u2(z)+u(x)u(y)+u(x)u(z)+u(y)u(z), andC ≡ u3(x)+u3(y)+
u3(z) + u2(x)u(y) + u2(x)u(z) + u2(y)u(x) + u2(y)u(z) + u2(z)u(x) + u2(z)u(y) +
3u(x)u(y)u(z).

Then we obtain s′(t) = t2·A+2t·B+C
(t+A)4 . Therefore, s is increasing when t >

− B−
√

B2−AC
A .

Now it is enough to prove thatu(x0) is larger than− B−
√

B2−AC
A . First, ρ(y, {x, y, z})=

u(y)
(
u(y)+u(z)+u(x0)

)(
u(x)+u(y)+u(z)+u(x0)

)2 > 0 implies u(x0) > −
(
u(y) + u(z)

)
. Second,

ρ(z, {x, y, z}) = u(z)
(
u(y)+u(z)+u(x0)

) (
u(x)+u(z)+u(x0)

)(
u(x)+u(y)+u(z)+u(x0)

)3 > 0 and u(x0) > −
(
u(y) +

u(z)
)
imply u(x0) > −

(
u(x) + u(z)

)
. Lastly,

ρ(x0, {x, y, z}) =
(
u(x) + u(y) + u(x0)

) (
u(x) + u(z) + u(x0)

) (
u(y) + u(z) + u(x0)

)(
u(x) + u(y) + u(z) + u(x0)

)3 ≥ 0

implies that u(x0) ≥ −
(
u(x) + u(y)

)
. When u(x) = u(y) = u(z) = t, it is obvious

that u(x0) > − B−
√

B2−AC
A = −2t. Now it is enough to prove that

−min
(
u(x) + u(z); u(x) + u(z); u(x) + u(z)

)
≥ −

B −
√

B2 − AC
A

.

Since the inequality is completely symmetric, without loss of generality, let us
assume that u(z) ≥ u(y) ≥ u(x). Now we shall prove that B−

√
B2−AC
A ≥ u(x)+u(y).

B−
√

B2 − AC ≥ A
(
u(x)+u(y)

)
if and only if u2(z)−u(x)u(y) ≥

√
B2 − AC if and only if

u4(z) − 2u2(z)u(x)u(y) + u2(x)u2(y) ≥ u2(x)u2(y) + u2(y)u2(z) + u2(x)u2(z) −
u(x)u(y)u(z)

(
u(x) + u(y) + u(z)

)
; equivalently,

u4(z)+u2(x)u(y)u(z)+u2(y)u(x)u(z) ≥ u2(x)u2(z)+u2(y)u2(z)+u2(z)u(x)u(y)

if and only if u(z)
(
u(z) − u(y)

) (
u(z) − u(x)

) (
u(x) + u(y) + u(z)

)
≥ 0.

�

D.4 Proof of Proposition 12
By direct calculations, we obtain

ρ(x, {x, y})
ρ(y, {x, y})

/ ρ(x, {x, y, z})
ρ(y, {x, y, z})

= 1+
u(x) u(z)(

u(y) + u(x0)
) (

u(x) + u(y) + u(z) + u(x0)
) and
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ρ f (x, {x, y})
ρ f (y, {x, y})

/ ρ f (x, {x, y, z})
ρ f (y, {x, y, z})

= 1+
u(x) u(z)(

u(y) + u f (x0)
) (

u(x) + u(y) + u(z) + u f (x0)
) .

Therefore, ρ
f (x,{x,y})
ρf (y,{x,y})/

ρf (x,{x,y,z})
ρf (y,{x,y,z}) >

ρ(x,{x,y})
ρ(y,{x,y})/

ρ(x,{x,y,z})
p(ρ,{x,y,z}) if and only if

1 >
(
u(y) + u f (x0)

) (
u(x) + u(y) + u(z) + u f (x0)

)(
u(y) + u(x0)

) (
u(x) + u(y) + u(z) + u(x0)

) iff u(x0) > u f (x0).

D.5 Proof of Proposition 13
First, we show that if u(a) > u(b) then a � b. By way of contradiction,

suppose b � a. By calculation, ρ(a, {a, b}) = u(a)(u(a)+u(x0))
(u(a)+u(b)+u(x0))2 , ρ(b, {a, b}) =

q(b, {a, b}) = u(b)
u(a)+u(b)+u(x0), and ρ(x0, {a, b}) = 1 − ρ(b, {a, b}) − ρ(a, {a, b}) =

(u(a)+u(x0))(u(b)+u(x0))
(u(a)+u(b)+u(x0))2 .

First consider the case when ρ(a, {a, b}) = min(ρ(a, {a, b}), ρ(b, {a, b})). Then
ρ(x0, {a, b}) ≥ ρ(a, {a, b}) if and only if (u(a)+u({a,b}))(u(b)+u(x0))

(u(a)+u(b)+u(x0))2 ≥
u(a)(u(a)+u(x0))

(u(a)+u(b)+u(x0))2

if and only if u(b) + u(x0) ≥ u(a). Therefore, since u(x0) ≤ 0, ρ(x0, {a, b}) ≥
ρ(a, {a, b}) implies u(b) ≥ u(a). Contradiction.

Second consider the case when ρ(b, {a, b}) = min(ρ(a, {a, b}), ρ(b, {a, b})).
Then ρ(x0, {a, b}) ≥ ρ(b, {a, b}) if and only if (u(a)+u(x0))(u(b)+u(x0))

(u(a)+u(b)+u(x0))2 ≥
u(b)

u(a)+u(b)+u(x0)

if and only if (u(a)+u(x0))(u(b)+u(x0)) ≥ u(b)(u(a)+u(b)+u(x0)). Therefore,
since u(x0) ≤ 0, ρ(x0, {a, b}) ≥ ρ(b, {a, b}) implies (u(a)+u(x0))(u(b)+u(x0)) ≥
(u(b) + u(x0))(u(a) + u(b) + u(x0)), i.e., u(a) + u(x0) ≥ u(a) + u(b) + u(x0).
Contradiction. Therefore, we proved that a � b.

Finally, we show that if a � b, then u(a) > u(b). Suppose u(b) > u(a). Then
by the previous part, u(b) > u(a) implies b � a. Contradiction.

D.6 Proof of Proposition 14
Bycalculation, we obtain ρ(a, {a, b}) = q(a, {a, b}) = u(a)

u(a)+u(b)+u(x0) , ρ(b, {a, b}) =
q(b, {a, b})(1− q(a, {a, b})) = u(b)(u(b)+u(x0))

(u(a)+u(b)+u(x0))2 , and ρ(x0, {a, b})=1− ρ(a, {a, b})−
ρ(b, {a, b}) = (u(a)+u(x0))(u(b)+u(x0))

(u(a)+u(b)+u(x0))2 .

First, ρ(a, {a, b}) > ρ(x0, {a, b}) if and only if u(a)
u(a)+u(b)+u(x0) >

(u(a)+u(x0))(u(b)+u(x0))
(u(a)+u(b)+u(x0))2

if and only if u(a)(u(a) + u(b) + u(x0)) > (u(a) + u(x0))(u(b) + u(x0)). Since
u(a) + u(b) + u(x0) > u(b) + u(x0), we obtain (u(a) + u(x0))(u(b) + u(x0)) ≥
(u(a)+u(x0))(u(a)+u(b)+u(x0)). Therefore, ρ(a, {a, b}) > ρ(x0, {a, b}). Second,
ρ(x0, {a, b}) ≥ ρ(b, {a, b}) if and only if (u(a)+u(x0))(u(b)+u(x0))

(u(a)+u(b)+u(x0))2 ≥
u(b)(u(b)+u(x0))

(u(a)+u(b)+u(x0))2

if and only if u(a) + u(x0) ≥ u(b). Therefore, ρ(x0, {a, b}) ≥ ρ(b, {a, b}) =
min(ρ(a, {a, b}), ρ(b, {a, b})).
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D.7 Finite X

Here we consider the case where X is finite. In order to obtain the sufficiency
part of Theorem 6, we will modify %∗ in the following way:

Definition 22 Let a and b be arbitrary elements in X .
(i)

a ∼0 b if
ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X;
(ii)

aPb if
ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X such that c �0 a and c �0 b, and if there is at least one such c.

(iii) a �0 b if aPb, but there is no c1, . . . , ck ∈ X such that aPc1P · · · ck Pb. We
write a %0 b if a ∼0 b or a �0 b.

(iv) Define%∗ be the transitive closure of%0; that is, a %∗ b if there exist c1, . . . , ck ∈

X such that
a %0 c1 %

0 · · · ck %
0 b.

The binary relation %∗ is called the revealed perception priority derived from ρ.

Now we can prove Theorem 6 when X is finite. In particular, we use very weak
version of Richness.

Richness*: There exist a, b, c ∈ X such that a � b � c.

Theorem 10 If a nondegenerate stochastic choice function ρ satisfies Weak Order
and Hazard Rate IIA, then there is a PALM (u,%) such that %∗=% and ρ = ρ(u,%).

Conversely, for a given PALM (u,%), if % satisfies Richness*, then ρ(u,%)

satisfies Weak Order and Hazard Rate IIA, and %=%∗.

Proof:

The proof of the sufficiency part of Theorem 10 is identical to that of Theorem 6.
For the necessity part of Theorem 10, we want to prove lemmas similar to Theorem
6.
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Lemma 8*: If c � a � b, or a � b � c, then ρ(a,{a,b})
ρ(b,{a,b}) >

ρ(a,{a,b,c})
ρ(b,{a,b,c}) .

The proof is identical to the proof of Lemma 8 of Theorem 6.

Lemma 9*: a ∼ b if and only if a ∼∗ b.

The proof is identical to the proof of Lemma 9 of Theorem 6.

Lemma 10*: If a �∗ b, then a � b.

Let a �∗ b. It suffices to consider the following two cases.

Case 1: a �0 b. Suppose, towards a contradiction, a � b. By the completeness of
%, b % a. Note that a �0 b implies a �0 b, so a � b by Lemma 9*. Then b � a.

By Richness*, there is c such that c � b � a or b � a � c. In either case,
ρ(a,{a,b,c})
ρ(b,{a,b,c}) /

ρ(a,{a,b})
ρ(b,{a,b}) > 1 by Lemma 8*, in contradiction with a �0 b.

Case 2: There exist c1, . . . , ck ∈ X such that a �0 c1 �
0 · · · �0 ck �

0 b. Then, by
the proof in Case 1, a � c1 � · · · � ck � b. Hence, by transitivity, a � b.

Lemma 11*: If aPb, then a � b.

Let aPb. Suppose, towards a contradiction, a � b. By the completeness of %,
b % a. Note that aPb implies a �0 b, so a � b by Lemma 9*. Then b � a.

By Richness*, there is c such that c � b � a or b � a � c. In either case,
ρ(a,{a,b,c})
ρ(b,{a,b,c}) /

ρ(a,{a,b})
ρ(b,{a,b}) > 1 by Lemma 8*, in contradiction with aPb.

Lemma 12*: If a � b, then a �∗ b.

Let a � b. To simplify the exposition, we use the following notation in this
proof: a ` b if a � b and there is no c ∈ X with a � c � b.

Case 1: a ` b. It suffices to show that a �0 b. By Richness*, there exists c such
that a � c and b � c. By Lemma 9*, a �0 c and b �0 c.

Choose any d ∈ X such that a �0 d and b �0 d. By Lemma 9*, a � d

and b � d. Since a ` b, it is not true that a � d � b. That is, either d � a or
b � d. Since a � b, then d � a � b or a � b � d. In either case, by Lemma 8*,
ρ(a,{a,b,c})
ρ(b,{a,b,c}) /

ρ(a,{a,b})
ρ(b,{a,b}) < 1. Thus aPb.

We now shall prove that there is no c1, . . . , ck ∈ X such that aPc1P . . . Pck Pb.
Bywayof contradiction, suppose there exist c1, . . . , ck ∈ X such that aPc1P . . . Pck Pb.
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By Lemma 11*, aPc1P . . . Pck Pb implies a � c1 � . . . � ck � b, in contradiction
with a ` b. Thus a �0 b. Hence, a �∗ b.

Case 2: a 0 b. There exist c1, . . . , ck ∈ X such that a ` c1 ` · · · ` ck ` b. By the
argument in Case 1, a �0 c1 �

0 · · · �0 ck �
0 b. Therefore, a �∗ b.

�

D.8 A modification without the outside option
In this section we show that by modifying PALM, we can dispense with the

outside option. In the modified model, whenever the agent chooses no alternative,
she repeats the sequential procedure of PALM until she chooses some alternatives.
This modified PALM is represented by the following representation:

ρ(a, A) =
µ(a, A)

∏
α∈A/%: α�a

(
1 − µ(Aα, A)

)∑
b∈A µ(b, A)

∏
α∈A/%: α�b

(
1 − µ(Aα, A)

)
where

µ(a, A) =
u(a)∑

b∈A u(b)
.

Let us now show that this modified PALM can rationalize the compromise
and attraction effects. First, we show that this modified PALM can rationalize the
compromise effect. In fact, we obtain the following observation which is very
similar to Proposition 8 (note that Equation (D.1) is very similar to Equation (4.8)).

Observation 13: When x � y % z, ρ(u,%) exhibits the compromise effect (i.e.,
(4.7)) if and only if u(y) > u(x) and

u(z) >
u2(x) − u2(y) + u(x)u(y)

u(y) − u(x)
≥ 0. (D.1)

Proof of Observation 13: We have ρ(x,{x,y,z})
ρ(y,{x,y,z}) < 1 ≤ ρ(x,{x,y})

ρ(y,{x,y}) iff

µ(x, {x, y, z})
µ(y, {x, y, z})

(
1 − µ(x, {x, y, z})

) < 1 ≤
µ(x, {x, y})

µ(y, {x, y})
(
1 − µ(x, {x, y})

) iff

u(x)
u(y)

·
u(x) + u(y) + u(z)

u(y) + u(z)
< 1 ≤

u(x)
u(y)

·
u(x) + u(y)

u(y)
.

By direct calculations, we obtain (D.1). �
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Similarly, the following observationwhich is very similar to Proposition 9 shows
that the modified PALM can rationalize the attraction effect.

Observation 14: If x � y � z and u(x) is large enough, then ρ(u,%) exhibits the
attraction effect (i.e., (4.9)).

Proof of Observation 14: We have ρ(y, {x, y, z}) > ρ(y, {x, y}) iff

µ(y, {x, y, z})(1 − µ(x, {x, y, z}))
µ(x, {x, y, z})+µ(y, {x, y, z})(1−µ(x, {x, y, z})) + µ(z, {x, y, z})(1−µ(x, {x, y, z}))(1−µ(y, {x, y, z}))

>
µ(y, {x, y})(1 − µ(x, {x, y}))

µ(x, {x, y})+µ(y, {x, y})(1−µ(x, {x, y}))
iff

u(y)(1 − µ(x, {x, y, z}))
u(x)+u(y)(1−µ(x, {x, y, z})) + u(z)(1−µ(x, {x, y, z}))(1−µ(y, {x, y, z}))

>
u(y)(1 − µ(x, {x, y}))

u(x)+u(z)(1−µ(x, {x, y}))
.

By direct calculations, we obtain that ρ(y, {x, y, z}) > ρ(y, {x, y}) iff

u2(x) > u(y)
(
u(y) + u(z)

) u(x) + u(z)
u(x) + u(y) + u(z)

.

Since 1 > u(x)+u(z)
u(x)+u(y)+u(z) , ifu(x) >

√
u(y)

(
u(y) + u(z)

)
, thenwehave ρ(y, {x, y, z}) >

ρ(y, {x, y}). Therefore, when u(x) is large enough, we can have the attraction effect.

�

The above two observations illustrate that the outside option does not really play
a role in explaining the two effects, but the sequential procedure does.
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A p p e n d i x E

APPENDIX TO CHAPTER 5

E.1 Proof of Theorem 7
Since the necessity part is obvious, we only prove the sufficiency part. Suppose

p satisfies R-IIA and R-CI. We shall construct a utility function u : X × N→R++

such that p = p(u,R). Without loss of generality, let X = {a1, a2, . . . , an} where n ≥ 3
and R(ai, X )= i for each i = 1, 2, . . . , n. Let us define u as follows.

First, let
u(a1, 1) ≡ 1.

Second, for each i such that 2 ≤ i ≤ n − 1, let

u(ai, 1) ≡
p(ai, {ai, an}) · p(an, {a1, an})
p(an, {ai, an}) · p(a1, {a1, an})

.

Lastly, for any k and i such that 2 ≤ i ≤ n and 2 ≤ k ≤ i, let

u(ai, k) ≡
p(ai, A(k, i))
p(a1, A(k, i))

where A(k, i) ≡ {a1, . . . , ak−1, ai}.

Now we prove that we in fact constructed the desired u. In particular, we shall
prove that for any A= {ai1, ai2, . . . , aim } with i1< i2< . . . < im,

p(ais, A)=
u(ais, s)∑m

k=1 u(aik, k)
for all s.

Let us consider two cases.

Case 1: When i1=1. Take any s. By the construction of u, u(ais, s) = p(ais , A(s,is ))
p(a1, A(s,is )) .

Since R(a1, A)= R(a1, A(s, is)) = 1 and R(ais, A)= R(ais, A(s, is))= s, by R-IIA,

p(ais, A)
p(a1, A)

=
p(ais, A(s, is))
p(a1, A(s, is))

= u(ais, s).

Therefore,

u(ais, s)∑m
k=1 u(aik, k)

=

p(ais , A)
p(a1, A)∑m

k=1
p(aik , A)
p(a1, A)

=

p(ais , A)
p(a1, A)

1
p(a1, A)

= p(ais, A).
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Case 2: When i1 ≥ 2. If we can prove that p(ais , A)
p(ai1, A) =

u(ais ,s)
u(ai1,1) for each s, then we

obtain

u(ais, s)∑m
k=1 u(aik, k)

=

p(ais , A)
p(ai1, A) · u(ai1, 1)∑m

k=1
p(aik , A)
p(ai1, A) · u(ai1, 1)

=

p(ais , A)
p(ai1, A)

1
p(ai1, A)

= p(ais, A).

Take any s. By the construction of u, u(ais, s) = p(ais ,A(s,is ))
p(a1,A(s,is )) . Moreover, since

a1Rai1 Ran and a1Rai1 Rai2 , by R-CI,

p(ai2, {a1, ai2 })
p(a1, {a1, ai2 })

/
p(ai2, {ai1, ai2 })
p(ai1, {ai1, ai2 })

=
p(an, {a1, an})
p(a1, {a1, an})

/
p(an, {ai1, an})
p(ai1, {ai1, an})

= u(ai1, 1)

where the second equality is from the definition of u. Therefore, we obtain

u(ais, s)
u(ai1, 1)

=
p(ais, A(s, is))
p(a1, A(s, is))

· [
p(ai2, {ai1, ai2 })
p(ai1, {ai1, ai2 })

·
p(a1, {a1, ai2 })
p(ai2, {a1, ai2 })

]. (E.1)

Moreover, since ai1, ai2 are the top two alternatives in A, by R-IIA,

p(ai2, {ai1, ai2 })
p(ai1, {ai1, ai2 })

=
p(ai2, A)
p(ai1, A)

. (E.2)

Combining equations (E.1) and (E.2),

p(ais, A)
p(ai1, A)

=
u(ais, s)
u(ai1, 1)

if and only if
p(ais, A)
p(ai1, A)

=
p(ais, A(s, is))
p(a1, A(s, is))

·
p(ai2, A)
p(ai1, A)

·
p(a1, {a1, ai2 })
p(ai2, {a1, ai2 })

if and only if
p(ais, A)
p(ai2, A)

=
p(ais, A(s, is))
p(a1, A(s, is))

·
p(a1, {a1, ai2 })
p(ai2, {a1, ai2 })

. (E.3)

So it is enough to prove (E.3).

Let A′ ≡ {a1, ai2, . . . , aim }. Since R(ai2, A) = 2= R(ai2, A′) and R(ais, A) = s =

R(ais, A′), by R-IIA,
p(ais, A)
p(ai2, A)

=
p(ais, A′)
p(ai2, A′)

.

Moreover, since a1 and ai2 are the top two alternatives in A′, by R-IIA,

p(a1, A′)
p(ai2, A′)

=
p(a1, {a1, ai2 })
p(ai2, {a1, ai2 })

.

Also, since R(a1, A′) = 1 = R(a1, A(s, is)) and R(ais, A′) = s = R(ais, A(s, is)), by
R-IIA,

p(ais, A′)
p(a1, A′)

=
p(ais, A(s, is))
p(a1, A(s, is))

.
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Combining the last three equalities:

p(ais, A)
p(ai2, A)

=
p(ais, A′)
p(ai2, A′)

=
p(a1, A′)
p(ai2, A′)

·
p(ais, A′)
p(a1, A′)

=
p(ais, A(s, is))
p(a1, A(s, is))

·
p(a1, {a1, ai2 })
p(ai2, {a1, ai2 })

.

Uniqueness: Now we shall prove the uniqueness of u. Suppose there exist functions
u and u′ such that p = p(u, R), p = p(u′, R), and u(a1, 1) = u′(a1, 1).

First, we will prove that for any i and k such that 2 ≤ i ≤ n and k ≤ i,
u(ai, k) = u′(ai, k). Let’s prove it by induction on i. By assumption, it is true when
i = 1. Suppose for any i ≤ (t − 1) and 2 ≤ k ≤ i, u(ai, k) = u′(ai, k). Now we need
to prove that u(at, k) = u′(at, k) for all 2 ≤ k ≤ t. Let A = {a1, . . . , ak−1, at }. Note
that

p(at, A) =
u(at, k)∑k−1

j=1 u(a j, j) + u(at, k)
=

u′(at, k)∑k−1
j=1 u′(a j, j) + u′(at, k)

.

Since u(a j, j) = u′(a j, j) for all j ≤ (k − 1) ≤ (t − 1), above implies that u(at, k) =
u′(at, k).

Second, we will prove that u(ai, 1) = u′(ai, 1) for all n > i ≥ 2. Note that

p(ai, {ai, an}) =
u(ai, 1)

u(ai, 1) + u(an, 2)
=

u′(ai, 1)
u′(ai, 1) + u′(an, 2)

.

Since u(an, 2) = u′(an, 2) by the previous argument, we obtain u(ai, 1) = u′(ai, 1).

E.2 Proof of Proposition 15
Take anODLM (u, R) and suppose p = p(u,R) satisfiesR-Increasing and p(a,{a,b})

p(b,{a,b}) ·
p(b,{b,c})
p(c,{b,c}) ≥

p(a,{a,c})
p(c,{a,c}) for any a, b, c ∈ X with aRbRc. Without loss of generality, let

X = {a1, a2, . . . , an} where n ≥ 3 and R(ai, X )= i for each i and u(a1, 1) = 1.

First, let us prove that u(ai, k) ≤ u(ai, k − 1) for any i ≥ 3 and i ≥ k ≥ 3. Let
A = {a1, . . . , ak−1, ai}. Then, by R-Increasing, a1Rak−1Rai implies

p(ai, A)
p(a1, A)

= u(ai, k) ≤
p(ai, A \ ak−1)
p(a1, A \ ak−1)

= u(ai, k − 1).

Second, we will prove that u(ai, 1) ≥ u(ai, 2) for all (n − 1) ≥ i ≥ 2. Note that

u(ai, 1) =
p(ai, {ai, an})
p(an, {ai, an})

·
p(an, {a1, an})
p(a1, {a1, an})

and u(ai, 2) =
p(ai, {a1, ai})
p(a1, {a1, ai})

.

Therefore, p(a1,{a1,ai })
p(ai,{a1,ai })

·
p(ai,{ai,an})
p(an,{ai,an})

≥
p(a1,{a1,an})
p(an,{a1,an})

implies u(ai, 1) ≥ u(ai, 2).
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E.3 Proof of Proposition 16
Asymmetry: Take any a, b ∈ X . Without loss of generality, suppose aR0b; that is,
there exists c ∈ X \ {a, b} such that b ∈ L(a, c). Then we cannot have bR0a because
by Asymmetry there is no c′ such that a ∈ L(b, c′).

Transitivity: Take any a, b, c ∈ X such that aR0b and bR0c. By Asymmetry, aR0b

implies a < L(b, c) and bR0c implies b < L(a, c). By Transitivity, a < L(b, c) and
b < L(a, c) imply c ∈ L(a, b). Therefore, aR0c.

Almost Complete: Suppose that there is a pair (a∗, b∗) such that neither a∗R0b∗ nor
b∗R0a∗; that is, for any c such that a∗ < L(b∗, c) and b∗ < L(a∗, c). By transitivity,
we have c ∈ L(a∗, b∗). Therefore, a∗R0c and b∗R0c.

Now we will prove that for any a and b such that (a, b) , (a∗, b∗), either aR0b

or bR0a. We consider three cases.

Case 1: a ∈ {a∗, b∗} and b < {a∗, b∗}. Since b ∈ L(a∗, b∗), {a∗, b∗} 3 aR0b.

Case 2: a < {a∗, b∗} and b ∈ {a∗, b∗}. Since a ∈ L(a∗, b∗), {a∗, b∗} 3 bR0a.

Case 3: a < {a∗, b∗} and b < {a∗, b∗}. Since a ∈ L(a∗, b∗), by Asymmetry we
obtain a∗ < L(a, b). Then by Transitivity, a∗ < L(a, b) implies either a ∈ L(a∗, b);
that is, bR0a, or b ∈ L(a∗, a); that is, aR0b.

E.4 Proof of Proposition 17
Take any ODLM (u, R) such that u(a, 1) > u(a, 2) for any a ∈ X and u(b, 2) ,

u(b, 3) and u(a,1)
u(b,2) ,

u(a,2)
u(b,3) for all a, b ∈ X with aRb. Without loss of generality, let

X = {a1, an, . . . , an} with a1Ra2 . . . Ran.

First, let us prove that R∗ = R. Take any i, j with 1 < i < j. Then a1R0a j and
ai R0a j because

p(a1, {a1, ai, a j })
p(ai, {a1, ai, a j })

=
u(a1, 1)
u(ai, 2)

=
p(a1, {a1, ai})
p(ai, {a1, ai})

⇒ a j ∈ L(a1, ai).

Now we shall prove that a1R∗a2. For any i > 2, since u(ai, 2) , u(ai, 3),

p(a1, {a1, a2, ai})
p(ai, {a1, a2, ai})

=
u(a1, 1)
u(ai, 3)

,
p(a1, {a1, ai})
p(ai, {a1, ai})

=
u(a1, 1)
u(ai, 2)

⇒ a2 < L(a1, ai).

Similarly, for any i > 2, since u(a2,2)
u(ai,3) ,

u(a2,1)
u(ai,2) ,

p(a2, {a1, a2, ai})
p(ai, {a1, a2, ai})

=
u(a2, 2)
u(ai, 3)

,
p(a2, {a2, ai})
p(ai, {a2, ai})

=
u(a2, 1)
u(ai, 2)

⇒ a1 < L(a2, ai).
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Moreover, for any i > 2, p(a1,{a1,a2})·p(a2,{a2,ai })·p(ai,{a1,ai })
p(a2,{a1,a2})·p(ai,{a2,ai })·p(a1,{a1,ai })

=
u(a2,1)
u(a2,2) > 1. Therefore,

a1R∗a2.

Now we prove the necessity of Asymmetry and Transitivity.

Asymmetry: Take any a, b ∈ X . Suppose there exists c ∈ X \ {a, b} such that
b ∈ L(a, c). We shall prove that a < L(b, c′) for all c′ ∈ X \ {a, b}. First of all,
b ∈ L(a, c) implies aR0b. Since R∗ = R, we have aRb. By way of contradiction,
suppose there is c′ ∈ X \ {a, b} such that a ∈ L(b, c′). Then bR0a. A contradiction.

Transitivity: Take any a, b, c ∈ X such that b < U (a, c) and a < L(b, c). We shall
prove that c ∈ L(a, b). If aRb and cRb, then b ∈ L(a, c). A contradiction. Similarly,
if bRa and cRa, then a ∈ L(b, c). A contradiction. Therefore, we have aRc and
bRc which imply c ∈ L(a, b).

E.5 Completing revealed order R0

Proposition 16 shows that R0 is almost complete. In particular, there are only
one pair that is not comparable by R0. Now we will discuss how to complete R0

using the following observation.

Observation 13: Take any ODLM (u, R). For any a, b, c, d ∈ X with aRbRcRd,

p(a, {a, b, d})
p(d, {a, b, d})

=
u(a, 1)
u(d, 3)

=
p(a, {a, c, d})
p(d, {a, c, d})

and
p(b, {a, b, d})
p(d, {a, b, d})

=
u(b, 2)
u(d, 3)

,
u(b, 1)
u(d, 3)

=
p(b, {b, c, d})
p(d, {b, c, d})

.

Observation 13 says that since the rankings of the highest ranking alternative a

and the lowest ranking alternative d does not change, replacing bwith c cannot affect
the probability of choosing a relative to that of choosing d. However, replacing a

with c affects the probability of choosing b relative to that of choosing d as long as
u(b, 1) , u(b, 2).

Now we discuss how to complete R0 using the idea of Observation 3. Suppose
there is a pair (a∗, b∗) such that neither a∗R0b∗ nor b∗R0a∗. Take any c, d such
that c, d ∈ X \ {a∗, b∗}. By Proposition 16, a∗, b∗R0c, d and either cR0d or dR0c.
Without loss of generality, let us assume cR0d.
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By Observation 13, if

p(a∗, {a∗, b∗, d})
p(d, {a∗, b∗, d})

=
p(a∗, {a∗, c, d})
p(d, {a∗, c, d})

,

then we complete R0 in the way that a∗ has a higher ranking than b∗. However, if

p(a∗, {a∗, b∗, d})
p(d, {a∗, b∗, d})

,
p(a∗, {a∗, c, d})
p(d, {a∗, c, d})

,

then we complete R0 in the way that b∗ has a higher ranking than a∗. As long as
u(x, 1) , u(x, 2) for any x ∈ X , we can uniquely identify an unknown R.
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