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ABSTRACT

An important property with any new material is the band gap. In order to design new
materials in silico, it is critical to have an accurate and computationally inexpensive
tool for predicting band gaps. Standard density functional theory (DFT) methods
are computationally efficient, but grossly underestimate band gaps. Hybrid den-
sity functionals are known to improve band gap predictions, but the computational
cost in the overwhelmingly popular plane-wave basis set codes used for solids is
a serious drawback. Exact exchange can be evaluated much more efficiently using
localized Gaussian basis functions; however, the most readily available Gaussian
basis periodic quantum chemistry code lacked spin-orbit coupling. This seriously
limited the range of compounds that can be studies. In this thesis, spin-orbit cou-
pling was implemented in the periodic, Gaussian basis set code CRYSTAL. Using
the modified code, band gaps were computed using the B3PW91 hybrid density
functional for 70 compounds spanning the entire periodic table and a factor of 500
in band gap (0.014 - 15 eV). To benchmark the quality of the hybrid method, we
compared to the rigorous GW many-body perturbation theory method. Surpris-
ingly, the MAD for B3PW91 is about 1.5 times smaller than the MAD for GW.
Furthermore, B3PWOII is three to four orders of magnitude faster computationally.
We also show that increasing (decreasing) the amount of exact exchange compared
to B3PWO1 leads to systematic overestimates (underestimates) of band gaps. Fi-
nally, we show that the pathological vanishing of the density of states at the Fermi
level of a metal cannot be observed in practical calculations of real metals. Thus,
we believe that B3APWO91 is a practical tool for predicting the band gaps of mate-
rials before they are synthesized while being computationally efficient enough for
high-throughput applications and represents a solution to the band gap prediction

problem for materials design.
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Chapter 1

INTRODUCTION

Increases in computing power, improved algorithms, and the development of user-
friendly software packages have made computational methods in chemistry and ma-
terials science nearly as ubiquitous as standard experimental techniques like NMR.
The ultimate goal of computation in chemistry is the reliable prediction of materials
before they are synthesized to enable more efficient use of experimental resources.
Projects like the Materials Genome Initiative seek to leverage “big data" techniques

to realize this goal.

An especially important property for designing new materials is the band gap. A
fundamental question about a material is whether it is a metal, an insulator, or a
semiconductor, which is the question of the magnitude of the band gap. In order
to design new materials for applications like solar energy, it is crucial to have a
computational method that can accurately and quickly predict band gaps for mate-
rials across the entire periodic table. This is the band gap prediction problem for

materials design.

The rigorous approach to computing band gaps is to calculate the Green’s function
using many-body perturbation theory (referred to as the GW method [1]). The
rigorous quasiparticle excitation spectrum (giving the exact band gap) is calculated
in this method. Unfortunately, it is far too computationally expensive for most

systems, and requires non-self-consistent approximations.

It is very well-known [2] that hybrid density functionals, which include a fraction
of exact Hartree-Fock exchange, are more accurate for band gaps than local density
functionals. However, in plane-wave basis set codes (which are by far the most
commonly used), the computational cost of evaluating the exact exchange is a seri-
ous drawback. Localized Gaussian basis sets enable much more efficient evaluation

of Hartree-Fock exchange.

The most commonly used Gaussian basis set code for solids, CRYSTAL [3], does
not include spin-orbit coupling. This limits its applicability for band gap predic-
tion to compounds containing only light elements. In this work, CRYSTAL was
extended to include spin-orbit coupling, enabling band gap calculations using hy-

brid functionals across the entire periodic for a fraction of the computational cost
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of plane wave basis set codes. Band gap calculations for 70 compounds with ex-
perimental band gaps ranging from 0-15 eV were performed using the B3PW91
hybrid density functional in the modified code. Comparison of these calculations to
literature GW results shows that the B3PW91 hybrid density functional is more ac-
curate than the theoretically rigorous GW (many-body perturbation) method. When
used with a Gaussian basis set, hybrid density functional calculations are about
3—4 orders of magnitude faster than GW calculations. Across this wide array of
compounds, B3PW9I1 is accurate enough to enable the prediction of band gaps for
materials that have not been synthesized. This accuracy and computational speed
make Gaussian basis set B3PWO91 an ideal choice for high-throughput materials de-
sign applications, and constitutes a solution to the band gap prediction problem for

materials design. This constitutes the main result of the thesis.

The remainder of the thesis is organized as follows. Chapter 2 describes the imple-
mentation of spin-orbit coupling in CRYSTAL. Chapter 3 presents the comparison
of B3PWOI to GW. In Chapter 4, B3PWO9I is systematically compared to five
popular density functionals. It is shown that functionals with more (less) exact ex-
change than B3PW91 systematically predict higher (lower) band gaps. Comparison
of B3LYP to B3PW91 shows that the correlation functional has a smaller and not
systematic effect. Chapter 5 shows that the oft-criticised “pathology" of long-range
exchange (zero density of states at the Fermi level for metals) cannot be observed
in B3PW calculations on real metals. Finally, Chapter 6 shows the application of
B3PW91 to modelling two-dimensional slabs of the topological insulators Bi,Tes
and BisSes.



Chapter 2

IMPLEMENTATION OF SPIN-ORBIT COUPLING IN
CRYSTALO98

In the nonrelativistic Schrodinger equation, the Hamiltonian does not operate on
the electron spin. Because the spin functions @ and § are orthonormal, only matrix
elements between functions with the same spin can be nonzero. Consequently,
separate Fock matrices for @ and S spins can be constructed in unrestricted Hartree-
Fock (UHF) calculations without spin-orbit coupling. The @ and S Fock matrices

each have N X N elements, where N is the number of basis functions.

Spin-orbit coupling introduces explicit spin dependence into the Hamiltonian, and
electron spin is not a good quantum number. An orbital cannot necessarily be as-
signed an « or B spin; instead, the spin part of an orbital is some linear combination
of @ and . The wavefunction then takes the form

VY = ¢oa + ¢pp, (2.1)

and “off-diagonal” terms like (¢, a|H|¢g ) must be considered. As in UHF calcu-
lations, ¢, and ¢ are each represented as a linear combination of N basis functions.
Because off-diagonal matrix elements can be nonzero, we must diagonalize a single
2N X 2N matrix instead of two N X N matrices as in UHF.

In this chapter, the implementation of spin-orbit coupling in CRYSTALO98 [4], a
Gaussian basis set periodic quantum chemistry program, is discussed. CRY STAL98
was used because the source code was distributed for this version, but for no later
versions. This modified code was used for all spin-orbit calculations presented in
this thesis. As discussed in Section 2.1, spin-orbit coupling can be fully included
implicitly by pseudopotentials when the implications of equation 2.1 are taken into
account. Equation 2.1 also necessitates modifications in the treatment of symmetry
(Section 2.2), the density matrix (Section 2.3), and the exchange operator (Section
2.4). The all-electron spin-orbit operator is discussed in Section 2.5. However,
because the fully relativistic pseudopotentials used in all calculations presented here

fully account for spin-orbit coupling, this operator is not used in the code.



2.1 Spin-Orbit Coupling in Pseudopotentials

It is well-established that the valence electrons are most relevant to chemical bond-
ing. In fact, this intuitive picture is the conceptual basis of the periodic table and is
routinely taught to high school chemistry students. From the earliest days of quan-
tum chemistry, this intuition has been leveraged to simplify calculations. The basic
idea is to replace the Schrodinger equation for the full many-electron system with
an equation modified to explicitly treat only a subset of the electrons by adding an

effective potential, also known as a pseudopotential.

This approach began with the work of Hellmann [5] and Gombds [6] in 1935. In
1940, Fock, Vesselow, and Petraschen [7] considered the theoretical treatment of
two electrons outside a closed shell. The main challenge is in maintaining orthog-
onality of the valence orbitals to the core orbitals. Explicitly orthogonalizing the
valence orbitals would require knowledge of the exact core states, which is the
same as solving the Schrodinger equation for the full system. The pseudopoten-
tial concept was given sound theoretical basis by Phillips and Kleinman [8], whose
work was generalized to many-electron systems by Weeks and Rice [9]. The key
result was that the variational optimization of the ground state energy, subject to the
constraint that the valence eigenfunctions must be orthogonal to the core states, can
be replaced by an unconstrained optimization of the ground state energy of a modi-
fied Hamiltonian that includes a pseudopotential. In other words, the orthogonality

condition can be implicitly included via an effective potential.

In the ensuing years, a number of empirical “model potentials" were developed [10-
13]. These model potentials were developed by choosing some plausible functional
form for the effective potential and fitting adjustable parameters to experimental
data. A more systematic, ab initio, pseudopotential was developed by Goddard and

coworkers [14-18] and summarized by Kahn, Baybutt, and Truhlar [19].

Pitzer and coworkers [20-24] showed that not only do pseudopotentials substan-
tially decrease the computational cost of calculations, but they can also be used
to implicitly include relativistic effects in non-relativistic calculations. Relativistic
effects can be very large (on the order of an electron-volt) for the core orbitals of
heavy elements. For the valence orbitals, the matrix elements of the relativistic op-
erators are typically negligible. However, relativistic effects manifest themselves
in valence states via orthogonality to the core states, where relativity has a large
impact. For this reason, pseudopotentials can be used to include relativistic effects

in non-relativistic calculations.
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The pseudopotentials of Lee et al. [20], as well as those of Hay and Wadt [25] and
Stevens et al. [26], follow the approach pioneered by Kahn, Melius, and Goddard.
All of these pseudopotentials use the eigenfunctions from atomic Hartree-Fock (or
Dirac-Hartree-Fock for heavy elements) calculations to derive the pseudopoten-
tial. An alternative approach is to fit the pseudopotential parameters so that the
total energies of atomic pseudopotential calculations match those of reference all-
electron calculations. These so-called “energy-adjusted pseudopotentials" [27-34]
have been recently reviewed by Dolg and Cao [35]. In this method, a set of atomic
configurations of neutral and ions with small charges that is expected to include
the most relevant configurations for molecules and solids is chosen. These energy-

adjusted pseudopotentials are used in all pseudopotential calculations in this thesis.

The pseudopotential operator is written as a sum of angular-momentum-dependent
potentials multiplied by angular momentum projections. This ensures orthogonality
of valence and core states. The angular-momentum-dependent potentials are fit to
a sum of Gaussian functions where the kth Gaussian for angular momentum / has

coeflicient ¢;; and exponent a;;. The pseudopotential then takes the form

r

Z, L /
Vep(r) = ==L+ 3 3 ciexp(-an®) Y lm)(iml,  2.2)
1=0 %k m=—1

where Z.sr is the effective charge of a nucleus and L is the largest angular mo-
mentum in the core. The angular momentum eigenfunction |/m) is the spherical
harmonic Yj,,, and the projections |/m){Im| ensure orthogonality of the valence and

core states.

Pitzer and coworkers [20-24] showed that pseudopotentials can also be used to
implicitly include relativistic effects such as spin-orbit coupling in non-relativistic
calculations. When spin-orbit coupling is included, we must consider the total an-
gular momentum j = [ + s instead of separate orbital and spin angular momenta
[ and s. Thus, in place of the projections onto orbital angular momentum eigen-
functions in equation 2.2, we must use projections onto total angular momentum

eigenfunctions |/sjm;), with s = % Thus, the pseudopotential becomes

1

I+ i
7 L 2 J
Vpp(r) = — eff + Z chk exp(—a/jkrz) Z |[sjm;)lsjm;|.
S BRI mj==j

This can be rewritten in terms of projections onto |/m) via the Clebsch-Gordan



coeflicients [36]:

L

Z, =
Vpp(r) = — LEA Z Z Cjk exp(—a ki)

r =0 K
X Z (sjmj|lsmim Y (Ismymg|Lsjm;)|Imp)|smg)(Imy|(sm|. (2.3)

m;mmg

’ ’ ’
memymg

Carrying out the sums over m;, m;, and m; in equation 2.3 reduces matrix elements
of the fully relativistic pseudopotential operator to linear combinations of nonrel-
ativistic pseudopotential matrix elements. The evaluation of nonrelativistic pseu-
dopotential matrix elements was discussed by McMurchie and Davidson [37]. It is
important to note that McMurchie and Davidson considered real spherical harmon-
ics. The Clebsch-Gordan coefficients determine a total angular momentum eigen-
function as a linear combination of complex spherical harmonics, and the orbital
angular momentum eigenfunctions in equation 2.3 are complex spherical harmon-
ics. Using the formulae in reference [37] requires writing the complex spherical

harmonics in terms of real spherical harmonics, which is straightforward.

The highly optimized nature of the pseudopotential subroutines in CRYSTAL made
it impractical to “hack" them to compute j-dependent potentials. Therefore, the
pseudopotential equations were implemented by the author in a from-scratch sub-
routine. My subroutine occupies a fraction of the number of lines of the original
code, but runs approximately five times slower! Where the original CRYSTAL code
uses every trick in the book to evaluate the pseudopotential integrals, my code uses
a simple trapezoid rule numerical integration for the radial integral (the angular

integrals are much cheaper).

Since s = % and j = [ + s, the possible values of j are / + % and [ — % The fully
relativistic energy-consistent pseudopotentials of the Stuttgart group [35] used in
this thesis have different parameters for the two values of j corresponding to each
[. These parameters are determined from all-electron calculations based on four-
component Dirac-Hartree-Fock calculations, and therefore contain all the effects of
spin-orbit coupling. Thus, the projections of the valence states onto the potentials
forj=1=+ % account for the spin-orbit coupling. For example, a p orbital can have
Jj= % orj = % In a nonrelativistic calculation, these are degenerate. By contrast,
when spin-orbit coupling is included, this degeneracy is lifted. Instead of a six-fold

degenerate [ = 1 state, the result is a four-fold degenerate j = % state and a two-
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fold degenerate j = % state. The splitting between these states is determined by the

j-dependent potential.

The magnitude of spin-orbit coupling scales as 1/r>, where r is the distance from
the nucleus, and Z2, where Z is the nuclear charge. Clearly, spin-orbit coupling is
much larger for core electrons than valence electrons, since valence electrons are
further from the nucleus than core electrons. Furthermore, valence electrons are
shielded from the full nuclear charge by core electrons. Therefore, the effect of
spin-orbit coupling on valence electrons is indirect, stemming from orthogonality

to core states rather than the direct effect of the spin-orbit operator.

2.2 Symmetry
For computational efficiency, three types of symmetry are used: the crystal symme-

try, the Hermitian property of operators, and time reversal symmetry.

Crystal Symmetry

A space group operation rotates a basis function to a linear combination of other
basis functions of the same angular momentum on another atom in the crystal (pos-
sibly in another unit cell). For instance, a rotation around the z-axis may take a py
orbital on atom A to a linear combination of p, and p, orbitals on atom B. With
spin-orbit coupling, the Hamiltonian depends on the electron spin. Because the
Hamiltonian must have the full space group symmetry of the crystal, this means
that space group operators must apply to electron spins. Thus, a symmetry opera-
tion takes an a spin on atom A to a linear combination of @ and S spins on atom B.

For symmetry operation O,
Oa
op

a\a + b]ﬁ

ara + bzﬂ.

u .
). Operation O takes o to

A general spin oo = ua + v, which can be written as (
v

ul
o’ = ( /). Thus,
\%

which can be rewritten as
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The effect of O on the electron spin is thus given by the unitary 2 X 2 matrix corre-
sponding to the 3 X 3 spatial rotation by the homomorphism SO(3) — SU(2). The
rotation corresponding to O can be represented in terms of Euler angles «, 8, . Fol-
lowing the convention used by Tinkham [38], the rotation is given by R, (@) R, (B)R,(y),
where R, (@) represents rotation by « around the z-axis. Here, rotation by a will be

taken to be counterclockwise (note that Tinkham uses clockwise rotations). In this

convention,
cos(a) —sin(a) O
R (o) =|sin(a) cos(a) O
0 0 1
and

cos(B) O sin(B)
Ry(B) = 0 0 1

—sin(B) 0 cos(pB)
Thus, a general rotation is given by

R ARy (PR (y) =

cos(a) cos(y) cos(B) — sin(a) sin(y) —cos(a) cos(B)sin(y) — sin(a) cos(y) cos(a) sin(f)
sin(a) cos(y) cos(B) + cos(a) sin(y) —sin(a)cos(fB) sin(y) + cos(a) cos(y) sin(a)sin(B) |.
—sin(S) cos(y) sin(f) sin(y) cos(f)

The corresponding SU(2) matrix is

e i r+a)/2 g (g) —elr=®/2gjp (g)
B (e‘i(y‘“)/z sin (g) e+ ®12 cog (g) )

For a Fock matrix element,

O(pa|F|¢'c’) = (¢p(aa + bB)|F|§ (d'a + I B))

= aa'(pa|F|§ ) + ab’($a|F|§ B) + ba'(§BIF|& a) + bb'($BIF|§' B).
Thus, the tensor product U ® U generates (pa|F|¢'a), {(pa|F|¢’'B), (¢ B|F|d a),
and (¢ B|F|¢’ B) from (pa|F|§ @), (pa|F|§' B), ($BIF|¢ a), and ($B|F|§’ B).

2.3 Density Matrix
Using (2.1), the density operator becomes



~
Il

) (Y
(Iparla) + 101 8)) (Pallal + (dpl{B])
|paXPal - laXal + |¢p)Xdpl - |BXBI

|gaX@pl - la) Bl + 1p)dal - BNl
P 4 pPP 4 pb 4 phe.

+

As with the pseudopotential and exchange operators, we must add contributions
from alpha-beta and beta-alpha. In general, we need density matrix elements of the
form
P (k) = > g (kyey (k)
v
where o and o’ can be either @ or 5. Diagonalization of the Fock matrix at a
given k-point returns eigenvectors composed of ¢, (k), the complex weight of basis

function y with spin o to the wavefunction at k.

The first N components of an eigenvector are the ¢, (k); the second N components
are the cﬁ (k). In a UHF code, these can be treated independently. The code simply
reads the eigenvector for @, makes the density matrix P, and then repeats the
process for 5. However, with spin-orbit coupling, the @ and S contributions to an
eigenvector must be mixed to compute P*B and PA_ Thus, the code must read both

the @ and S pieces, then compute all four blocks of the density matrix.

The code computes the Fock and density matrices for an irreducible wedge of the
Brillouin zone and uses the space group symmetry to sum over the Brillouin zone
and form the real space density matrix. In addition to the space group symmetry,
the original code also used a combination of time reversal symmetry and the com-
mutation of the Hamiltonian with S, to further reduce the number of k-points it

evaluated. Time reversal symmetry says
(Y10|®) =(TDIOITY),
where 7 is the anti-unitary time reversal operator. For a periodic system, we have
(PO|O|DR) = (TOR|O|TYO0) = (TYO0|O|TDP-R). (2.4)

The time reversal operator has no effect on the real space vector R. However, time

reversal negates momentum, so in k-space we have

(Pk|O|Dk) =(TD - k|OITY — k). (2.5)
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The effect of T on the spin functions @ and S is,

Ta = B
T = -—a.

Without spin-orbit, these symmetries allow the code to assume P, (k) = P, (k).
Since the density matrix is transformed to real space, the code can simply add the
contributions from k and —k with the appropriate phase factors. These are complex

conjugates, and the code simply keeps 2Re (P, (k)).

With spin-orbit coupling, the Hamiltonian does not commute with S, and we can
only use time reversal symmetry and the Hermitian property of the Fock operator.

For a Hermitian operator O and states V', ®,
(P|0|D) = (D|O|Y).

In a system with translational symmetry, a basis function is associated with a unit
cell R. Because of the translational symmetry, we choose a unit cell 0 all other cells
are referred to. Then,

(Y0|0|DR) = (PRIO[Y0),

or, translating the entire system by -R,

(YO|O|DR) = (DO|O|Y-R). (2.6)

In k-space,
(Pk|O|Dk) = (Pk|O|Vk). (2.7)
Together, time reversal symmetry and Hermiticity tell us P;ff (k) = —Pﬁf (=k).

Use of these symmetries allows the generation of the density matrix at —k from
that at +k. However, because of the assumption of time reversal symmetry, the
modified code is only applicable to time-reversal-invariant systems. Consequently,

the modified code cannot treat open-shell systems such as magnets.

2.4 Exchange Integrals
Let y represent a general spin function, and y;(R;) basis function 7 in unit cell R;.

The Fock matrix contains the Coulomb term (using chemist’s notation [39])

e (R2) = D" > P (Rs, Ra) (11 (0)pa2(Ro) 3 (Rs) pa(Ra))
H3H4 R3Ry

~(x1lx2)(xslxa).
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Defining R’ = R4 — Rz and R” = R3, we can rewrite this as

(R = D7 " PEKER) Y (1 O)ma(Ro) s (R (R’ + R”))

H3p4 R R"

“(x1lx2)(xalxa).

Now, since the spin functions are orthogonal, we know x| = y2 and y3 = y4. Just

like in standard UHF, we get terms from y3 y4 = aa and S for y| x> = aa and
X1x2 = BpB. Thus,

Ju(R) =2 3" > Pet (R) Y (11(0) o (R)|us(R")ua(R' + R”))

H3p4 R R"

+2 3 3 PELLR) Y (1 @) (Ry) s (R pa(R' + R”))

[5ps R’ R”

=2 3" X [P (R + PLl, (R)iosa(R),
H3ps R

where 11234(R") = Y g (1(0) p2(R2) |3 (R”) pa(R' + R”)).

This is the rigorous, full Coulomb term. Now, for speed we should exploit the
available symmetries in the density matrix. Combining time reversal symmetry and
Hermiticity, P22, (R') = P45, (R), and P22, (R') + PL%,,(R') € R. Using these
symmetries, we can write the Coulomb contribution to the Fock matrix as

T (R) =2 37 3" (Pee (R)) + PLEL(R)) [134(R) + Tas (=R . (2.8)
H3zpy R’

We can do this because R’ can always be written as —R’ in a sum over all R’, since

for every R’ there is a —R’ (taking care, of course, to handle the unit cell R = 0.

The general exchange piece of the Fock matrix is

KX (R == > T P (R Iisa (R Ot vs) (ralxa).
H3M4 R

So, in contrast to the Coulomb contribution, we get contributions from K*%, K BB,
K% and KB,
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K (Ro) = = Z Z P (RN 1134(R)

H3=pa R

- Z Z Py (R 1324 (R")

H3<ps R’

== > D P (R su(R)

M3Zp4 R

- Z szfﬂs( R)143(=R')

M3Zps R

We can easily show P (R') = P, (—R’)". It then follows that

M4 M3
Re {K2e, (R} == > > Re{Pi, (R K* 2.9)
H3zZp4 R
Im (K2, (R} == > > Im{P2, (RH} K™, (2.10)
M3Zps R

where K* = I1304(R’) + I1423(=R’).

Finally,
KR == > > P (R)3a(R)
H32ps R
= > Pl (R 3a(R)
H3<p4 R’

= Z ZPﬁiM(R')IBm(R/)

M3Zu4 R

B Z Zpﬁﬁm( R')I1403(-R).

H3zps R

Applying time reversal symmetry gives Pﬁﬁm( R) = —Pﬁ’;‘;,4 (R’), and it follows
that

Re {Kf,(Ry)} = Z ZR {Phe (R K 2.11)
M3ZH4 R
Im (KL, (Ry)} = Z Zlm [Pl (R K. (2.12)

H3ZH4 R
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As with the density matrix, these invocations of time reversal symmetry limit the
applicability of the modified code to time-reversal-invariant systems. It is not phys-
ically necessary to use time reversal in this way. However, the unmodified CRY S-
TAL code does not need to worry about P*# or PA®. Furthermore, its density
matrices are always real in real space. Therefore, the code leveraged the Hermitian
property of the density matrix here as well. In order to avoid entirely rewriting
the code for evaluating the two electron integrals, it was necessary to invoke time

reversal symmetry here as well.

The key advantage of CRYSTAL over its competitors is its computational speed,
and this speed is the result of very careful optimization of every subroutine. Nowhere
is that more evident than in the routines for the two-electron integrals, and a home-
built version that could have been written in a reasonable amount of time would

have been so slow as to make doing real science impractical.

2.5 Spin-Orbit Operator in All-Electron Calculations

For completeness, the evaluation of the spin-orbit operator is discussed in this sec-
tion. As detailed in Section 2.1, this is not implemented in the modified code used
for calculations in this thesis, as the spin-orbit coupling is accounted for implicitly
by the pseudopotentials. The spin-orbit coupling (SOC) operator can be written in
atomic units as

1 -
—E(VVXP—))'O',

where V is the nuclear potential, j is the momentum operator, and & is the vector of
Pauli matrices. The potential from the nuclei is ). —Z./r., where r. is the distance

between a given electron and nucleus ¢. The momentum operator p = —iV.

Let ¢(I,m,n,a, A) be a Gaussian orbital centered on atom A: x'y"z1e~@=4° The

matrix elements needed for the spin-orbit operator are thus

I o | Lo s R
12 Z <¢1(l1,m1,n1,011,A)) ‘2° XV ‘¢2(12,m2,n2,az,3)> 113 L),
c

r

where ) is a spin function, that is, @ or 8. The evaluation of these integrals was
discussed by McMurchie and Davidson [40].

Expanding the cross product yields
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Noticing that
1
Xe re

rg_ 0x

and integrating by parts, the spin-orbit matrix element can be written as

- g 1 =
[f (V¢1(11,m1,n1,6¥1,A) X Vsbz(lz,mz,nz,dz,B)) r_d3r] Axilolx2).

Cc

The integrals over spin functions are easily evaluated.

<aloy|p> = < Bloxla>=1
<aloxla > = < Blo|p>=0
—<aloylB> = <Bloyla>=i
<aloyla > = <Bloy|B>=0
<alop> = <Bloa>=0

<alola> = =< BloB>=1
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Chapter 3

RESOLUTION OF THE BAND GAP PREDICTION PROBLEM
FOR MATERIALS DESIGN

As we enter the Materials Genome Initiative (MGI) era of designing optimal ma-
terials in silico, it is essential to quickly and accurately predict the band gaps of
proposed new materials. Similarly, experimentalists would benefit from an efficient
computational tool for predicting band gaps prior to synthesis. We consider the
problem of predicting physical band gaps to be solved by a computational method
that delivers an accurate band gap for compounds spanning the whole periodic table

and is simultaneously practical to compute.

Standard DFT methods, such as the Perdew-Burke-Ernzerhof (PBE) [41] func-
tional, have been the workhorse of computational materials science for decades.
PBE is used by both theorists and experimentalists because of its computational
speed and widespread availability in commercial codes. Unfortunately, it contains

unphysical self-Coulomb repulsion [42], leading to a systematic underestimate of
band gaps [43-45].

It is well known that including exact Hartree-Fock exchange substantially reduces
the Coulomb self-repulsion error [2]. The Heyd Scuseria Ernzerhof functional
(HSEO06) includes short-range exact Hartree Fock exchange and has become a stan-
dard in the community [46].

In 2012, Moussa et al. [47] and Lucero et al. [48] benchmarked HSEO6 against
a set of 33 compounds consisting solely of simple binary materials of the form
AB. This set neglects many classes of materials such as: alkali halides, transition
metal oxides (Mott insulators), transition metal halides, systems with strong spin-
orbit coupling (particularly bismuth- and lead-containing compounds), transition
metal chalcogenides, magnetic systems, and two-dimensional systems. Moussa et
al. found a mean absolute deviation (MAD) of 0.32 eV with a mean error (ME) of
-0.24 eV, while Lucero et al. found a MAD of 0.33 eV and a ME of -0.26 eV for
this limited set of compounds.

In Moussa et al. [47], the HSE calculations were done without spin-orbit coupling
for experimental crystal structures and were compared to experimental band gaps

with the spin-orbit coupling removed. For these compounds, the spin-orbit splitting
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is seen at the valence band maximum at the I" point (wave vector k = 0). In these
cases, the spin-orbit coupling originates from the anions (Sb, Se, Te, As). At the I’
point, the valence band consists of anion p orbitals. Spin-orbit coupling splits these
triply degenerate p states at I into a four-fold degenerate (j = 3/2) band and a two-
fold degenerate (j = 1/2) band. The j = 3/2 state is split upwards in energy by
(1/3)A and the j = 1/2 state is split downwards by (2/3)A, where A is the energy
difference between the j = 3/2 and j = 1/2 state. For comparison to non-spin-orbit
coupling HSE calculations, the known experimental band gaps of the compounds
with the above anions must be increased by (1/3)A. For the As, Se, Sb, and Te
compounds, A is approximately 0.3, 0.4, 0.7, and 0.9 eV, respectively.

Inexplicably, Moussa et al. include the spin orbit correction for CdTe (1.61 eV
experiment corrected to 1.92 eV), but fail to include the spin-orbit correction for
BAs, AlAs, AlISb, GaAs, GaSb, InAs, InSb, ZnSe, ZnTe, CdSe, MgSe, MgTe,
BaSe, and BaTe. In addition, Moussa et al. use an experimental band gap of 7.22 eV
for MgO instead of the low-temperature value of 7.9 eV [48, 49]. These numbers
appear to have been transcribed from Heyd et al. [50]. When we correct these

values, the MAD increases to 0.39 eV, and the mean error becomes -0.36 eV.

In Lucero et al. [48], the MgO experimental value was corrected. These authors
optimized the geometry and quoted band gaps at the optimized structures. Thus,
we cannot directly compare these results to those of Moussa et al [47]. While no
spin-orbit corrections were made to the experimental band gaps, it is unclear from
the paper whether these calculations include spin-orbit coupling or not. However,
in Figure 4, the authors show their band structure for AlSb, and there is no splitting
of the valence band at the I" point. This figure suggests spin-orbit coupling may not

have been included in these calculations.

The two authoritative HSEO6 studies discussed above did not include the Mott in-
sulators (FeO, NiO, MnO, CoO) or any compounds with band gaps above 8 eV.
Thus, we expanded the HSEQ6 test set to include these Mott insulators and NaCl,
B-cristobalite Si0,, LiCl, a-quartz Si0O;, and LiF because these additional com-
pounds are included in our present work. Using literature HSEQ6 values for these
compounds [51-54], the MAD and ME for Moussa et al. rise to 0.57 eV and -0.51
eV, respectively. The MAD and ME for Lucero et al. rise to 0.52 eV and -0.43 eV,
respectively. These numbers are slight underestimates because we were unable to
locate a literature HSEO6 band gap for S-cristobalite. Thus, we assumed HSE06

obtained perfect agreement to experiment for this compound. As we show below,
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the MAD and ME for many-body perturbation theory (GW method) are better than
these HSEO6 numbers. Thus, we do not consider HSE06 any further.

The rigorous approach to solving the band gap problem is to calculate the Green’s
function using many-body perturbation theory (referred to as the GW method [1]).
In this method, the quasiparticle excitation spectrum is calculated rigorously, whereas
DFT calculates Kohn-Sham eigenvalues that are not rigorously physical. However,
full GW calculations are far too computationally expensive for routine use. A non-
self-consistent GW approximation, GoWy, has been used to improve standard DFT
results for decades [51, 55-58]. Recently, iterative “post-GoWy" methods have been
used to improve GoWj results [59—63]. As the next term in the expansion of the true
Green’s function, post-GoWy should systematically improve quasiparticle energies
and band gaps, albeit at a considerably higher computational cost. Despite intense
effort in recent years, all GW methods are too computationally expensive for appli-

cations such as MGI.

Here, we show that the B3PW91 hybrid density functional is more accurate than
GW by approximately a factor of 1.5 and is also 3-4 orders of magnitude faster
computationally. Because speed and accuracy are competing properties, it is highly
unusual to discover a method that dramatically improves both. This observation
constitutes the main result of the thesis, and suggests that B3PW91 should replace
PBE as the default computational approach.

Hybrid density functionals include a fraction of exact Hartree-Fock exchange, which
dramatically reduces the self-Coulomb error in DFT. Previously, we have shown
that hybrid DFT matches the best GoW bulk band structure for the useful thermo-
electrics and topological insulators Bi; Tes and BirSes, whereas standard DFT does
not [64]. Moreover, with hybrid DFT, we performed calculations of large slabs that
are inaccessible to GW. Other studies [2, 47, 48, 65-68] of small sets of compounds
have also hinted at the usefulness of hybrid functionals for solids.

In order to determine the quality of the B3PWO91 functional (referred to as B3PW
hereafter), we computed band gaps of 70 insulating compounds with band gaps
ranging from 0.014 to 14.2 eV. These compounds span the entire periodic table (ex-
cept for lanthanides, actinides, and solid noble gases) and include thermoelectrics,
topological insulators, transition metal oxides, photovoltaics, elemental and binary
semiconductors, and transition metal halides. In order to have the most accurate

comparison to experiment, spin-orbit coupling was included.
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No lanthanides or actinides were studied because they have strong spin-orbit cou-
pling and partially filled 4f and 5f shells. The CRYSTAL98 source code we mod-
ified to include spin-orbit coupling does not include f orbitals. Solid noble gases
were excluded because the anion is unbound, and, in the solid phases, the conduc-
tion band is above the vacuum energy [69]. We know of no other study that spans
as many classes of materials. Of these 70 compounds, we found GW published
literature results for only 53, and there was no single study of all 53 of these com-
pounds. The largest study [62] we found had 16 compounds. We did not perform
any GW calculations. Tables A.7 — A.7 contain references to every single GW data

point used in this chapter.

All of our band gap results are shown in Figure 3.1. Panels 3.1a, b, and c plot the
B3PW, PBE, and GW band gaps up to 7 eV, respectively. Panel 3.1d plots the band
gaps for all three methods from 7-15 eV. The experimental band gap range is split
into 0 —7 eV and 7 — 15 eV for clarity only. Figures A.9 — A.11 show all band
gap results for B3PW, PBE, and GW, respectively over the full range of 0 — 15 eV.
All of the compounds are listed in Figures 3.2 and 3.3. The results in Figures 3.1a
and 3.1b are for 64 out of the total 70 compounds. The results in Figure 3.1c for
GW are for 47 out of the 53 total compounds. The mean absolute deviation (MAD)
for B3PW is 0.22 eV. The MAD over all GW methods (GoW; and post-GoW)) is
0.36 eV. The MADs for GoWj and post-GoWj are equal to 0.36 eV and 0.35 eV,
respectively. The MAD for PBE is 1.10 eV. The B3PW MAD is 1.6 times smaller
than the GW MAD, and 5 times smaller than the PBE MAD. As is well known
[43], PBE systematically underestimates band gaps. In fact, for ten compounds,
PBE predicts a metal (zero band gap) rather than an insulator (nonzero band gap).
We found two exceptions (PbSe and Bi,Se3), shown in the inset to Figure 3.1c.
These compounds have strong spin-orbit coupling, and will be discussed later in

the paper.

Figure 3.1d shows B3PW (blue circles), PBE (purple circles), GoW (red circles),
and post-GoW, (green circles) results for six compounds with experimental band
gaps above 7 eV. The MAD for each method over these compounds is shown in the
upper left corner. The bottom right of the figure shows the MADs for the full band
gap range (0 — 15 eV). The MADs are worse in the 7 — 15 eV band gap range for all
methods compared to the 0 — 7 eV range. For the entire 0 — 15 eV band gap range,
post-Go W) is slightly better than GoWy. The MAD for B3PW is worse than all GW
methods in the 7 — 15 eV range. Over the full 0 — 15 eV band gap range, B3PW has
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Figure 3.1: Calculated B3PW (hybrid DFT), GW (many-body perturbation), and
PBE (standard DFT) band gaps versus low-temperature experiment. A list of the
compounds studied may be found in Figures 3.2 and 3.3 and Tables A.7-A.7. (a)
B3PW, (b) PBE, (c) GW results (GoW; and post-Go W) versus experiment for com-
pounds with experimental band gaps from O to 7 V. (d) B3PW, PBE, and GW data
for eight compounds with experimental band gaps larger than 7 eV. For the full band
gap range, the MADs are 1.28, 0.41, 0.39, and 0.28 eV for PBE, GoW), post-GoW),
and B3PW, respectively. Overall, the error for B3PW is 1.4 times smaller than that
for post-GoWj. The computational cost of B3PW is 3.2 + 2.4 times that of PBE.

the lowest MAD.

In order to further test B3PW against the GW method, we broke down the GW data
into four subsets: GoWy with any starting wavefunction, GoW specifically using
LDA as the starting wavefunction, GoW, using PBE as the starting wavefunction,
and post-GoW (Figures A.1 — A.8). In all four cases, B3PW had the lower MAD.



20

Since the only difference between our B3PW and PBE calculations is the func-
tional, we can make a machine-independent comparison of computational cost. We
find that the computational cost of B3PW is 3.2 + 2.4 times that of PBE. It is im-
portant to note that hybrid functionals are typically ~ 10° times slower than PBE in
plane-wave basis set codes. Because we used localized Gaussian basis sets, B3PW
became competitive with PBE. In practical terms, this additional cost is negligible

compared to the nearly five-fold improvement in accuracy.

Plane-wave basis sets are simpler than Gaussian basis sets because they are charac-
terized by one number: the wave vector cutoff. Gaussian basis sets require Gaus-
sian exponents and contraction coefficients for each basis function, and different
Gaussian basis sets have different numbers of basis functions. Thus, the choice
of the correct Gaussian basis set is more complicated. Fortunately, computational
chemists have developed highly optimized Gaussian basis sets for every element.
However, these highly optimized basis sets developed for computational chemistry
usually cannot be used without some modification. This is because the extremely
diffuse basis function commonly used in high-quality Gaussian basis sets can lead

to basis set linear dependence when used in a periodic system [3].

Linear independence can usually be ensured by modifying the basis set so that
the most diffuse Gaussian has an exponent of 0.1, as discussed in reference [68].
Although minimizing the energy with respect to other Gaussian exponents can im-
prove band gap predictions, we intentionally chose not to perform this step to keep
our evaluation of B3PW as straightforward as possible. Basis sets were not tuned

to a particular system, and hence can be transferred to other compounds.

The basis sets used in this paper were chosen according to a systematic recipe which
is described in complete detail in section 1 of Appendix A. Additionally, the basis
sets used in our input decks (included in the Supplement to ref [70]) are linearly
independent. As a result, we believe these basis sets can be used as a template for

rapid calculation of systems not considered here.

An issue for both Gaussian and plane-wave basis set calculations is whether or not
to optimize the crystal structure or use the experimental crystal structure. A perfect
theory would predict zero force for experimental structures, rendering this question
irrelevant. However, DFT (regardless of basis set) tends to overestimate lattice
constants by a few percent. We did our calculations at the experimental crystal
structure because it is a harsher test to demand that a theory predict the correct

electronic structure given only the physical structure of a material.
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We now return to the inset of Figure 3.1b showing that PBE overestimated the
band gaps for PbSe and Bi;Ses;. These are the only two compounds where PBE
overestimated the band gap. In general, spin-orbit coupling decreases the band gap
by breaking the spin degeneracy. However, if the PBE band gap without spin-orbit
coupling is smaller than the magnitude of the spin-orbit splitting, unphysical band
repulsions may occur. Thus, for strong spin-orbit compounds with small gaps, PBE

may overestimate the band gap.

Figures 3.2 and 3.3 show the band gap error broken down by compound for all 70
compounds with experimental band gaps in the range 0—14.2 eV. The compounds
are ordered on the x-axis by increasing experimental band gap, and compounds with
magenta labels are those where we did not find GW data. The largest B3PW band
gap error occurred for a-quartz. As discussed above, these errors could be reduced

by basis set optimizations. The mean signed error of B3PW is -0.03 eV.

In some cases (e.g., CoO), there is more than one measured experimental band gap.
Our methodology for choosing a number for comparison is discussed in Table A.8.
We did not choose the experimental results closest to the B3PW prediction. Doing
so would lower the overall MAD from 0.28 eV to 0.25 eV. On the other hand,
choosing the experimental band gaps furthest from the B3PW prediction raises the
MAD by 0.03 eV to 0.31 eV, which is less than the post-GoWy MAD of 0.39 eV.
Thus, we believe that B3PW solves the band gap problem.
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Figure 3.2: The difference between computed and experimental band gaps for 41
of the 70 compounds studied in Figure 1. The compounds are ordered by increas-
ing experimental band gaps. Results for compounds with experimental gaps from
(a) 0.0 - 0.82 eV, (b) 0.9 — 2.91 eV. The horizontal lines at zero represent perfect
agreement between theory and experiment. Points above these lines indicate theory
has overestimated the gap, and points below these lines indicate theory has under-
estimated the gap. Compound names are listed on the bottom x-axes; experimental
band gaps (low temperature or T ~ 0K when available; see Supplemental Table S4
for a discussion of experimental gaps) are listed on the top x-axes. Compound la-
bels in magenta are those for which our literature search found no GW results. Our
B3PW results are shown by blue circles, and our PBE results are shown by purple
circles. Red and green circles represent literature GoWj and post-GoWj results, re-
spectively. Bi;Se3(NQL) refers to a two-dimensional slab of Bi;Ses composed of
N quintuple layers (QLs) (see reference [64] for further details). Tables A.7-A.7
contain all of our B3PW and PBE results, the lowest and highest GW band gap for
each system, all references from which GW results were taken.



23

a Low-Temperature Experimental Gap (eV)
% % &
P Do H D > N > o o 0
IR R R R s W53 ,0 &, o o P 5
; _;é; I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1
o 9 1k i
TE $ s ! o
— = 3 ° ' : ° 4
= 20 e ! s ' o 3 $ ¢ i e ¥
o i [] L] L ° L 7
ouw-l1tle ° ° ° ° ° e
8 ;\_2 -_ [ ] ° o o ° ° ° ® ¢ o .:
T 5 ° ° ° ° o
S Q 3k @® B3PW @ Post-GyW,® ° ° ]
[ ]
@ ®G,W, @PBE .
_4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. K . P 3
e /Q/ ﬁo(// QJOV&Q‘S /(’?94/ Kz 9 ke /Q/Q ’ovfzo (’:94,47004\79/\%& Q/\s\ Y% /0@7/4/ /@’V
%, %, 0 s, 1 Y 9
7 707 N S Doy A 4
% % 2%, %, .
%, %S %, ¥
K R o &
% S
b Low-Temperature Experimental Gap (eV)
) 6 Vv
= . @ B3PW Post-GoW,
se o} ® G,W, ® PBE . .
5% . :
L;_ﬁ 0 2 - °
G ’ [ i '
O > ° ° L4 ]
T 5 b °
SS9 -2F 4
o bt °
E . .
-4 1 1 1 1 1 ®
. ; (/‘ . (/'
& % i
% C 22 “ % 2
/}\S\(b 90(9/?(
q%" >
N

Figure 3.3: Same as Figure 3.2 for the remaining 29 compounds from Figure 3.1.
Results for compounds with experimental gaps (a) 3.023 — 6.36 eV, (b) 7.83 — 14.2
eV.

In summary, we believe hybrid DFT can successfully resolve the band gap pre-
diction problem for practical materials design. Standard DFT methods such as
PBE have sufficient computational speed, but suffer from very poor accuracy. In
particular, we found the PBE functional to have a mean absolute deviation from
experiment (MAD) of 1.28 eV over a class of 70 insulating compounds. While
many-body perturbation methods (GW) are significantly more accurate than PBE
(MAD = 0.40 eV), they are 3—4 orders of magnitude slower. Here, we have shown
that the B3PWO1 hybrid density functional has the best of both worlds. The MAD
of B3PW91 was 0.28 eV. When used with localized Gaussian basis sets, the com-
putational cost of B3PWO91 is only 3.2 + 2.4 times that of PBE. This remarkable
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result was achieved without optimization of any computational parameter, includ-
ing crystal structure. Thus, B3PW91 can be employed “off the shelf” by non-expert
users to deliver excellent predictions of band gaps for materials that have not yet

been synthesized.

3.1 Computational Methods

The GW data we used for comparison consisted of 387 calculations from 42 pub-
lications dating from 1987 to 2015. Of these 42 publications, 23 were from 2010
or later. Tables A.7 — A.7 contain all references to the GW data, and all references
to experimental band gaps. Hyperlinks to the input decks for all of our hybrid DFT
calculations are included in the corresponding tables in the supplement to ref [70].
In this chapter, we only study band gaps because GW is primarily benchmarked
against band gaps. We chose low-temperature experimental band gaps from refer-
ence [49] for comparison whenever possible. Supplemental Table S4 details our

choice of experimental band gaps.

In this work, we use the first proposed hybrid functional, B3PWO91 [71], based on
its prior success with topological isulators [64], binary semiconductors [68], and
band offsets [72]. We refer to the B3PW91 functional as B3PW for simplicity. This
functional was developed by Becke using the adiabatic connection [71]. B3PW
makes three corrections to the local density approximation (LDA) exchange corre-
lation energy. First, a fraction ag of the LDA exchange is replaced by Hartree-Fock
exact exchange. Second, Becke’s 1988 gradient correction [73] for exchange is
included, weighted by the parameter a,. Finally, the Perdew-Wang 1991 (PWO1)
gradient correction [74] for correlation is included, weighted by the parameter a..
These parameters were determined by a least squares fit to 56 atomization energies,
42 ionization potentials, 8 proton affinities, and 10 total atomic energies [71]. This
fitting gave ag = 0.20, a, = 0.72, and a, = 0.81. Becke’s parameterization made
no use of band gaps or any property of a solid, and we made no adjustment to these

parameters.

Computing exact Hartree-Fock exchange is about three orders of magnitude faster
with localized Gaussian basis sets [64] compared to plane-wave basis sets. There-
fore, we use the CRYSTAL [3] code for all of our calculations. CRYSTAL does
not include spin-orbit coupling. For the cases with strong spin-orbit coupling, we
used our modified version of CRYSTAL98 [64]. When used for solids, the Gaussian
basis sets commonly used and optimized for molecules can lead to linear dependen-
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cies. Hence, modifications for diffuse orbitals are required to remove these linear
dependencies, as described in the CRYSTAL manual [3]. We also used Stuttgart
pseudopotentials [75, 76]. The basis set and pseudopotential (if used) for all of our
calculations can be seen in the input decks included in the supplement to ref [70].
Our systematic basis set recipe is described in full detail in section 1 of Appendix A.
It is known that optimization of basis sets and geometries improves band gaps [68].
However, we chose not to optimize basis sets and to use experimental crystal struc-
tures because these optimizations are impractical for high-throughput applications
such as MGL.

In addition to the choice of basis set, it is important to have enough irreducible
k-points to obtain a fully converged result. We chose on average 103 irreducible
k-points in our calculations. This number is far larger than necessary, but our cal-
culations are so computationally inexpensive that this overkill is irrelevant. High-
throughput screening becomes more practical when one can ensure convergence
with a default k-point sampling. In fact, we believe our basis sets and input decks
(included in the Supplement to ref [70]) can be used as a template for studies on

new materials.
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Chapter 4

ANALYSIS OF THE ROLE OF EXACT EXCHANGE IN HYBRID
DENSITY FUNCTIONALS

4.1 Introduction

In Chapter 3, we found the surprising result that the B3PW hybrid density func-
tional is about 1.5 times more accurate for band gaps and 3-4 orders of magnitude
faster than GW. However, B3PW has not been systematically compared to any of
the many flavors of hybrid density functional that have been developed over the last
two decades. Naturally, different hybrid functionals use different exchange and cor-
relation functionals, and contain different fractions of exact Hartree-Fock exchange.
It is not clear how these differences affect band gap predictions from one functional
relative to another. The purpose of the present chapter is to compare B3PW to sev-
eral other hybrid functionals in order to gain some insight into the reasons behind

the success of B3PW for band gap prediction.

Soon after the introduction of B3PW came the B3LYP functional, which quickly be-
came the default method in molecular quantum chemistry. Both B3PW and B3LYP
use the B88 gradient correction to the LDA exchange and 20% Hartree-Fock ex-
change. The difference between the two functionals is the correlation functional:
B3LYP uses the Lee-Yang-Parr [77] correlation functional, and B3PW uses the
Perdew-Wang 1991 [74] correlation functional.

The fraction of exact exchange in Becke’s three-parameter functionals B3LYP and
B3PW was determined by fitting to experimental data. Perdew and coworkers [78]
argued from perturbation theory that 25% exact exchange should be used. This
idea was implemented by Adamo and Barone in the PBEO functional [79]. In this
functional, PBE is used for both the exchange and correlation. The only modifica-
tion from PBE is the replacement of 25% of the PBE exchange with Hartree-Fock
exchange. Thus, PBEO has no empirically adjusted parameters, while B3PW and
B3LYP have three.

The HSE functional (briefly discussed in Chapter 3) differs from PBEO in the treat-
ment of exact exchange. While the Hartree-Fock exchange in PBEO is evaluated
over all space, it is only evaluated over a short range in HSE. There is one parame-

ter determining the distance over which to evaluate the exact exchange. It is worth



27

noting that in the formulation of HSE [46], this parameter was not fully optimized.
Rather, the authors chose the value they considered to have the best balance of ac-
curacy and speed. These authors used the Gaussian software for their studies. We
can make no independent study of the performance of this program, since we are
forbidden from buying a license (see http://www.bannedbygaussian.org). Thus, we
can only state that the computational cost of evaluating the full exact exchange in

CRYSTAL is only 3 times the cost of a local density functional.

All of the hybrid functionals discussed above use GGA functionals like PBE or
PWO91. A more recent development that has become very widely used in molecular
quantum chemistry is the meta-GGA, which includes dependence on the spin ki-
netic energy density [80]. One such meta-GGA, MO6L, was found to outperform
B3LYP for main-group thermochemistry [80]. When applied to a small set of nine
semiconductors, MO6L. was found to predict band gaps more accurately than PBE,
but less accurately than HSE [81]. While MO6L is a purely local density functional,
MO6 is a global hybrid version of the same functional with 27% exact exchange
[82]. These functionals contain many more parameters than those described above,

but are highly regarded by computational chemists.

In this chapter, we systematically compare B3LYP, MO6L, HSE06, PBEO, and M06
to B3PW. We find that MO6L. and HSEO6, which have less Hartree-Fock exchange
than B3PW, always return lower band gaps than B3PW. By contrast, PBEO and
MO06, which have more Hartree-Fock exchange than B3PW, systematically predict
higher band gaps than B3PW. The B3LYP functional, which differs only in the
correlation functional, does not systematically predict higher or lower band gaps
than B3PW. The error of the B3LYP band gaps compared to experiment is slightly
higher than the error for B3PW. Based on these trends, we suggest two possible
avenues for improving hybrid functionals even further for band gap prediction.

4.2 Computational Methods

Band gap calculations using these functionals were carried out for 64 of the 70
compounds from Chapter 3. The BiySes quintuple layer systems were excluded
due to their high computational cost. Exactly the same geometries and basis sets
were used in these calculations as those in Chapter 3. Because only the B3PW
and B3LYP hybrid functionals were implemented in CRYSTALO9S, these were the
only functionals that could be used for spin-orbit coupling (SOC) calculations. For

all 6 functionals, the 2014 version of CRYSTAL was used to perform calculations
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without SOC. Band gaps from non-SOC calculations should not be compared to
experiment for systems with non-negligible SOC, since these band gaps are not
physical. Despite this, some authors have used non-SOC band gaps for assessing

the quality of density functionals [47, 48].

One possibility to make consistent comparisons to experiment using non-SOC cal-
culations is to “correct” the experimental band gap values to remove the effect of
SOC. This is possible in simple zincblende systems where the spin-orbit coupling
comes from the anion atomic-like spin-orbit splitting. For more complex materials,
there is no clear way to make this correction, so we choose not to take this approach.
Another alternative is to use the difference between SOC and non-SOC B3PW band
gaps to correct the band gaps calculated using other functionals. In many cases,
SOC is a first-order perturbation and this approach is reasonable. However, in
strongly covalent systems, there can be significant projection of orbitals from an
atom onto a neighboring atom. In these cases, the effect of SOC depends strongly
on the orbital character of the valence and conduction bands, which is arrived at

self-consistently and varies significantly from one functional to another.

In order to have a completely consistent comparison, we chose to compare non-SOC
calculations of all the functionals considered here to non-SOC B3PW calculations.
The figures in the next section plot non-SOC band gaps from various functionals
versus non-SOC B3PW band gaps. The line y = x represents the B3PW non-SOC
band gap. In these plots, points above the diagonal are systems where the functional
being considered predicted a higher band gap than B3PW. Conversely, points below
the diagonal are systems where the given functional predicted a lower band gap than
B3PW. The purpose of these plots is to show how computed band gaps change when
using different exchange and/or correlation functionals than those used in B3PW.
These plots do not give direct information about the accuracy of a functional for

predicting band gaps.

When SOC is included, B3PW has a mean signed error of near zero compared to
experiment. Therefore, if a method systematically returns higher non-SOC band
gaps compared to non-SOC B3PW band gaps, to first order that method will likely
have a positive mean signed error when SOC calculations are compared to exper-
iment. Similarly, a method that systematically returns lower non-SOC band gaps
compared to non-SOC B3PW band gaps will have a negative mean signed error

when SOC calculations are compared to experiment.
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4.3 Results and Discussion

The non-SOC band gaps computed with every functional considered here are tabu-
lated in Table 4.4.

B3LYP

Table 4.3 shows band gaps computed with B3PW and B3LYP including spin-orbit
coupling for the 64 compounds considered in this chapter. Because spin-orbit cou-
pling is included in these calculations, the computed band gaps can be compared to
experiment. Figure 4.3 shows the results. The MAD and ME for B3PW are 0.30
and -0.03 eV, respectively. The MAD and ME for B3LYP are 0.35 and +0.03 eV,
respectively. The MAD is about 17% larger than the MAD for B3PW, but the ME
has the same magnitude (near zero). Thus, B3LYP is as likely to overestimate a

band gap as it is to underestimate one.

Figure 4.3 shows non-spin-orbit B3LYP gaps versus non-spin-orbit B3PW band
gaps. The mean signed difference between B3LYP and B3PW, defined as

N
1 B3LYP B3PW
N Z Eg - Eg ’
i=1
is 0.05 eV, indicating a very slight tendency of B3LYP to return higher gaps than
B3PW. The mean unsigned difference, defined as

| &

B3LYP _ :B3PW

~ § |E EB3PY),
i=1

is 0.14 eV.

The differences between band gaps computed with B3LYP and B3PW are caused
by the different correlation functionals, since this is the only difference between
B3LYP and B3PW. Thus, it is clear that LYP is not quite as well-suited for band
gap prediction as B3PW. As indicated by the small mean signed difference, B3LYP
does not systematically predict higher or lower gaps than B3PW.

MO6L

Figure 4.3 shows non-spin-orbit MO6L gaps versus non-spin-orbit B3PW band
gaps. The mean signed difference between MO6L and B3PW is -0.94 eV, and the
mean unsigned difference is 0.94 eV. As is evident in Figure 4.3, MO6L always
predicts lower band gaps than B3PW. This is consistent with the results of ref [81],

which considered band gaps for only 9 compounds.
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Table 4.1: Band Gaps (eV) from experiment, B3PW, and B3LYP calculations in-
cluding spin-orbit coupling (SOC). The abbreviations zb and w stand for zincblende
and wurtzite, respectively. For TiO,, (r) and (a) refer to rutile and anatase. For SiO5,
(a) and (b) refer to @-quartz and S-cristobalite. All calculations were performed us-
ing exactly the same input decks used in Chapter 3.

System Exp B3PW B3LYP | System Exp B3PW B3LYP
Bi 0.014  0.00 0.02 | AgBr 271 2.24 2.23
BixSes 0.16  0.12 0.16 | ZnSe 282  2.69 2.65
PbSe 0.165 0.25 0.38 | Agl 291  3.13 3.09
BiyTes 0.171 0.23 022 | SiC(6H) 3.023 3.34 3.59
PbTe 0.190 0.59 0.66 | CuBr 3.07  2.87 2.84
InSb 024 034 0.26 | Cul 3.12 321 3.20
SbyTes 0.28 0.22 0.18 | CoO 3.16  3.60 3.84
HgTe 0.3 0.01 0.00 | AgCl 325 2.63 2.66
SnTe 036  0.44 0.56 | SiC(4H) 3.263 3.58 3.83
InAs 042 047 042 | GaN (zb) 3.28 3.08 3.24
VO, 0.6 1.25 1.31 | SrTiO3 33 3.38 3.40
InN 0.72  0.87 0.93 | TiO; (v) 33 3.47 3.50
Ge 0.744  0.86 0.72 | SiC(2H) 3.33  3.61 3.88
GaSb 0.82  0.66 0.54 | CuCl 34 3.06 3.06
SnSe 090 095 1.04 | TiO; (a) 34 3.60 3.63
Si 1.17 1.61 1.79 | ZnO 344 282 2.90
MoS, 1.29  1.63 1.71 | GaN 3.503 343 3.55
InP 142  1.78 1.74 | MnO 3.54  3.17 3.33
GaAs 1.52  1.48 1.40 | MgTe 3.6 3.31 3.42
CdTe 1.61 1.53 1.50 | ZnS 3.84  4.08 4.07
AlSb 1.69 1.83 201 | NiO 394  4.62 4.56
CdSe 1.85 1.57 1.56 | CuSCN 394 397 3.94
BP 2.1 248 271 | AIN(zb) 4.9 4.92 5.20
Cu,;0 217 2.20 229 | C 5.5 5.74 5.96
AlAs 223 237 263 | AIN(w) 619 594 6.14
GaP 235 271 2.88 | BN 6.36  6.19 6.49
ZnTe 239 255 250 | MgO 7.83  6.774 6.90
FeO 24 2.33 2.58 | NaCl 8.5 7.20 7.05
BiVOy4 241 298 3.02 | SiO; (b) 8.9 8.77 8.46
SiC (3C) 242  2.66 293 | LiCl 9.4 8.57 8.57
AlP 2.5 2.76 298 | SiO2(a) 9.65 8.12 8.05
CdS 2.5 2.49 2.50 | LiF 142 1333 13.35
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Figure 4.1: Band gaps computed using the (a), (b) B3PW and (c), (d) B3LYP hybrid
density functionals including spin-orbit coupling versus experiment.
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Figure 4.3 shows non-spin-orbit HSEO6 gaps versus non-spin-orbit B3PW band
gaps. The mean signed difference between HSE06 and B3PW is -0.26 eV, and the
mean unsigned difference is 0.26 eV. For each of the 64 compounds tested, HSE06
returned a lower band gap than B3PW. In cases where B3PW overestimates band
gaps, such as transition metal oxides, HSE06 will likely give better agreement with
experiment. By contrast, in cases where B3PW underestimates band gaps, such as

alkali halides, B3PW will likely give better agreement with experiment.

PBE(
Figure 4.3 shows non-spin-orbit PBEO gaps versus non-spin-orbit B3PW band gaps.
The mean signed difference between PBEO and B3PW is +0.32 eV, and the mean
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Figure 4.2: B3LYP band gaps excluding SOC versus B3PW band gaps excluding
SOC for a) 54 compounds with experimental band gaps from 0 to 4 eV and b) 10
compounds with experimental band gaps from 4 to 15 eV. Exactly the same basis
sets and crystal structures were used for the B3PW and B3LYP calculations. The
mean signed difference between B3LYP and B3PW is 0.05 eV. The mean unsigned
difference is 0.14 eV.
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Figure 4.3: MO6L band gaps excluding SOC versus B3PW band gaps excluding
SOC for a) 54 compounds with experimental band gaps from 0 to 4 eV and b) 10
compounds with experimental band gaps from 4 to 15 eV. Exactly the same basis
sets and crystal structures were used for the B3PW and MO6L calculations. The
mean signed difference between MO6L and B3PW is -0.94 eV. The mean unsigned
difference is 0.94 eV.
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Figure 4.4: HSEO6 band gaps excluding SOC versus B3PW band gaps excluding
SOC for a) 54 compounds with experimental band gaps from 0 to 4 eV and b) 10
compounds with experimental band gaps from 4 to 15 eV. Exactly the same basis
sets and crystal structures were used for the B3PW and HSEOQ6 calculations. The
mean signed difference between HSEO6 and B3PW is -0.26 eV. The mean unsigned
difference is 0.26 eV.
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Figure 4.5: PBEO band gaps excluding SOC versus B3PW band gaps excluding
SOC for a) 54 compounds with experimental band gaps from 0 to 4 eV and b) 10
compounds with experimental band gaps from 4 to 15 eV. Exactly the same basis
sets and crystal structures were used for the B3PW and PBEO calculations. The
mean signed difference between PBEO and B3PW is +0.32 eV. The mean unsigned
difference is 0.32 eV.
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Table 4.2: Band Gaps (eV) Computed with B3PW and B3LYP with and without
spin-orbit coupling (SOC). Abbreviations are defined in Table 4.3.

System B3PW  B3PW  B3LYP B3LYP | System B3PW  B3PW B3LYP B3LYP
w/SOC No SOC w/SOC No SOC w/SOC No SOC w/SOC No SOC
Bi 0.00 0.07 0.02 0.08 AgBr 2.24 2.32 223 2.31
BiySe; 0.12 0.76 0.16 0.84 ZnSe 2.69 2.80 2.65 2.71
PbSe 0.25 0.66 0.38 0.84 Agl 3.13 3.40 3.09 3.34
BiyTes 0.23 0.87 0.22 0.95 SiC (6H) 3.34 3.34 3.59 3.58
PbTe 0.59 1.34 0.66 1.53 CuBr 2.87 2.95 2.84 292
InSb 0.34 0.54 0.26 0.40 Cul 3.21 3.44 3.20 3.41
Sb,Tes 0.22 0.05 0.18 0.16 CoO 3.60 3.59 3.84 3.84
HgTe 0.01 0.19 0.00 0.13 AgCl 2.63 2.75 2.66 2.76
SnTe 0.44 0.61 0.56 0.80 SiC (4H) 3.58 3.58 3.83 3.83
InAs 0.47 0.55 0.42 0.43 GaN (zb)  3.08 3.07 3.24 3.16
VO, 1.25 1.24 1.31 1.31 SrTiO3 3.38 3.37 3.40 3.40
InN 0.87 0.86 0.93 0.92 TiO; (1) 3.47 3.49 3.50 3.50
Ge 0.86 0.88 0.72 0.68 SiC (2H) 3.61 3.61 3.88 3.88
GaSb 0.66 0.82 0.54 0.64 CuCl 3.06 3.15 3.06 3.14
SnSe 0.95 1.10 1.04 1.24 TiO; (a) 3.60 3.62 3.63 3.63
Si 1.61 1.61 1.79 1.79 ZnO 2.82 2.96 2.90 3.06
MoS, 1.63 1.79 1.71 1.81 GaN 3.43 3.43 3.55 3.52
InP 1.78 1.74 1.74 1.65 MnO 3.17 3.17 3.33 3.33
GaAs 1.48 1.53 1.40 1.39 MgTe 3.31 3.60 342 3.65
CdTe 1.53 1.78 1.50 1.70 ZnS 4.08 4.07 4.07 4.00
AlSb 1.83 2.16 2.01 2.30 NiO 4.62 4.62 4.56 4.07
CdSe 1.57 1.69 1.56 1.62 CuSCN 3.97 4.08 3.94 4.56
BP 248 248 271 271 AIN (zb) 4.92 4.92 5.20 5.20
Cu,O0 2.20 2.30 2.29 241 C 5.74 5.74 5.96 5.96
AlAs 237 2.46 2.63 2.66 AIN (w) 5.94 5.94 6.14 6.14
GaP 271 2.76 2.88 2.86 BN 6.19 6.19 6.49 6.49
ZnTe 2.55 2.76 2.50 2.68 MgO 6.74 6.74 6.90 6.90
FeO 2.33 231 2.58 2.58 NaCl 7.20 7.21 7.05 7.05
BiVOy4 298 3.06 3.02 3.10 SiO; (b) 8.77 8.77 8.46 8.45
SiC (3C)  2.66 2.66 2.93 2.93 LiCl 8.57 8.58 8.57 8.57
AlP 2.76 2.76 2.98 298 SiO; (a) 8.12 8.12 8.05 8.04
CdS 249 2.50 2.50 245 LiF 13.33 13.34 13.35 13.34

unsigned difference is 0.32 eV. Contrary to HSEQ06, for each of the 64 compounds
tested, PBEO returned a higher band gap than B3PW. In cases where B3PW over-
estimates band gaps, such as transition metal oxides, B3PW will likely give better
agreement with experiment. By contrast, in cases where B3PW underestimates
band gaps, such as alkali halides, PBEO will likely give better agreement with ex-
periment. This is consistent with the results of “dielectric-dependent” hybrids [83],
where the amount of exact exchange varies for different systems. In general, it is
found that a higher fraction of exact exchange is necessary for materials with high

band gaps.

PBEQ is the limiting case of HSEO6 where exact exchange is considered over all of
space, rather than just a short range. Since HSE06 gives lower gaps than B3PW and

PBEO gives higher gaps, there is some parameterization of an HSE-type functional
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Figure 4.6: MO06 band gaps excluding SOC versus B3PW band gaps excluding
SOC for a) 54 compounds with experimental band gaps from O to 4 eV and b) 10
compounds with experimental band gaps from 4 to 15 eV. Exactly the same basis
sets and crystal structures were used for the B3PW and MO06 calculations. The
mean signed difference between PBEO and B3PW is +0.33 eV. The mean unsigned
difference is 0.34 eV.
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that will return band gaps very close to the B3PW gaps. This functional would
have the advantage of having near zero mean error as B3PW does, but may be more
computationally affordable than global hybrids in a plane-wave code. We note that
this was done by Moussa et al. in 2012 [47], who indeed found a set of parameters

for an “HSE12" functional that gave zero mean error.
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Mo06

Figure 4.3 shows non-spin-orbit M06 gaps versus non-spin-orbit B3PW band gaps.
The mean signed difference between M06 and B3PW is +0.33 eV, and the mean
unsigned difference is 0.34 eV. For 4 of the 64 cases tested, M06 returned a lower
band gap than B3PW. In the remaining 60 systems, M06 predicted a larger band
gap. These results suggest that the emphasis on molecular thermochemistry in the

parametrization of M06 limits its applicability for band gap prediction.

4.4 Conclusions

For exact exchange, Gaussian basis sets have a significant advantage in computa-
tional speed compared to plane waves [84], plane wave basis sets remain by far
the more popular choice in solid state calculations. In plane-wave codes, range-
separated functionals like HSE are less computationally demanding than global hy-
brids. The results presented here suggest that band gap predictions in plane wave
codes could be improved by increasing the fraction of exact exchange or the dis-

tance over which the exact exchange is evaluated.

The band gaps computed with all of the hybrid functionals considered here are sur-
prisingly similar. Hybrid functionals with less exact exchange than B3PW return
band gaps that are lower than the corresponding B3PW value by a nearly constant
amount. Similarly, functionals with more exact exchange return band gaps that are
higher by a nearly constant amount. While the ideal amount of exact exchange
varies from one system to another [83], the results presented here suggest that the
treatment of exact exchange is a well-balanced choice, neither systematically over-
estimating nor underestimating band gaps. Given that the mean signed error com-
paring B3PW with SOC to experiment is very close to zero (-0.03) and the mean
signed error for B3LYP with SOC is +0.03, it does not seem likely that much im-
provement in band gap predictions can be achieved by simply altering the (fixed)
amount of exact exchange in the functional. Dielectric-dependent hybrids that use
a system-dependent amount of exact exchange may perform better than B3PW, but
involve additional complexity. Therefore, developing a hybrid density functional
that improves B3PW’s band gap predictions would involve choosing or developing

a correlation functional to replace PW9I.
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Table 4.3: Band gaps (eV) computed without spin-orbit coupling (SOC) using the
B3PW, B3LYP, MO6L, HSE06, PBEO, and M06 density functionals. Abbreviations

are defined in Table 4.3.

System  B3PW B3LYP MO6L HSE PBEO MO06 | System B3PW B3LYP MO6L HSE PBEO MO06
Bi 0.07 0.08 0.00 0.00 0.12 0.10 | AgBr 2.32 2.31 1.51 213 277 281
Bi,Ses 0.76 0.84 034 049 0.89 1.18 | ZnSe 2.80 2.71 227 266 322 3.06
PbSe 0.66 0.84 032 032 0.78 1.29 | Agl 3.40 3.34 2.43 320 384 371
BiyTe; 087 095 065 061 100 125|SiC(6H) 334 358 230 293 357 371
PbTe 1.34 1.53 1.10 099 144 1.78 | CuBr 2.95 2.92 144 281 350 348
InSb 054 040 029 049 086 072 |Cul 344 341 211 328 394 387
SbyTe; 005 016 000 003 011 024 | CoO 359 384 079 339 410 393
HgTe 019 013 005 012 045 051 | AgCl 275 276 163 254 322 3.8
SnTe 061 080 038 028 068 103 |SiC@4H) 358 383 254 318 383 398
InAs 055 043 040 048 088 073 |GaN(zb) 307 316 194 290 340 343
VO, 1.24 1.31 0.00 099 1.66 1.13 | SrTiO3 3.37 3.40 2.05 3.13 379 355
InN 0.86 0.92 0.00 0.73 1.13 0.95 | TiO; (r) 3.49 3.50 202 320 394 371
Ge 0.88 0.68 056 080 1.25 0.79 | SiC(2H) 3.61 3.88 262 320 3.84 4.08
GaSb 0.82 0.64 0.53 0.78 1.16 0.88 | CuCl 3.15 3.14 138 298 370 3.62
SnSe 1.10 1.24 0.81 081 1.21 1.60 | TiO; (a) 3.62 3.63 2.27 337  4.07 381
Si 1.61 1.79 1.06 120 1.79 2.09 | ZnO 2.96 3.06 136 275 340 3.26
MoS, 1.79 1.81 090 141 2.03 2.03 | GaN 343 3.52 2.25 322 378 3.80
InP 1.74 1.65 144 1.60 206 1.69 | MnO 3.17 3.33 126 296 3.61 3.75
GaAs 1.53 1.39 124 145 1.89 159 | MgTe 3.60 3.65 3.23 325 382 3.63
CdTe 1.78 1.70 1.16 1.62 213 1.85 | ZnS 4.07 4.00 3.35 386 450 4.17
AISb 2.16 2.30 1.35 176 234 223 | NiO 4.62 4.07 2.71 459 514 495
CdSe 1.69 1.62 1.19 153 2.05 1.86 | CuSCN 4.08 4.56 214 376 446 441
BP 2.48 2.71 1.77 206 2.69 3.05 | AIN(zb) 492 5.20 3.61 456 522 5.66
Cu,O 2.30 241 0.63 201 272 272 |C 5.74 5.96 474 536 6.04 640
AlAs 2.46 2.66 1.73  2.05 2.66 278 | AIN (w) 5.94 6.14 4.63 564 626 6.69
GaP 2.76 2.86 208 239 299 287 |BN 6.19 6.49 490 580 6.50 6.70
ZnTe 276 268 226 259 312 269 | MgO 674 690 505 643 714 734
FeO 231 258 000 210 283 247 | NaCl 721 705 667 680 754 7.80
BiVO, 306 310 201 276 340 358 |SiO,(b) 877 845 762 826 907 933
SIC(30) 266 293 163 225 288 3.04 | LiCl 858 857 790 820 894 927
AIP 276 298 201 234 297 302 |Si0 () 812 804 677 777 855 83l
CdS 2.50 2.45 1.82 227 2.87 254 |LiF 13.34 13.34  11.65 13.08 13.84 14.17
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Chapter 5

DO HYBRID FUNCTIONALS REALLY FAIL FOR METALS?

All of the systems considered thus far have had bulk band gaps. For metallic sys-
tems, long-range Hartree-Fock exchange rigorously causes an unphysical logarith-
mic singularity in the Fermi velocity [85]. This is standard enough to be included

in basic solid-state physics textbooks [86]. For the Hartree-Fock Hamiltonian,

Wk 262 k
k)= ———-—k ermil’ s
e(k) 2m 7 (kfe,m,-)
where 5
1 1-x 1+x
F(x) == :
=35+ "=

The logarithmic singularity arises from the long-range part of the exchange opera-
tor. It is often used as a reason to avoid global hybrid functionals like B3PW, and
is central to the rationale behind the HSE functional [87]. However, calculations of
the Hartree-Fock density of states by Fry, Brener, and Bruyere [88] did not display
the theoretically required zero density of states at the Fermi level for the nearly-free
electron gas. They computed the density of states using the tetrahedron method on

a grid of up to 1505 k points.
The prevailing attitude in the literature echoes the opinion of Monkhorst [85]:

“The fact that numerical inaccuracies tend to wash out these HF-caused singularities
(or near sinularities) is irrelevant, although expedient in practice. The point is that
the theory allows for them, and therefore they should be either shown faithfully or

corrected for.”

Moussa et al. [47], state that “...exact exchange interactions in three-dimensional

metals are doomed to fail”.

In this brief chapter, we show that any practical Hartree-Fock calculation of a metal
will not display this theoretically required pathology. We extended the study of
Fry et al. by computing the rigorous Hartree-Fock density of states using up to 8
billion k points. The same tetrahedral interpolation method was used. The results

are shown in Figure 5.
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Figure 5.1: Hartree-Fock density of states evaluated by tetrahedral interpolation.

For an extremely large number of k points, the effect of the logarithmic singularity
on the density of states can be observed. However, even for 8 billion k points, many
orders of magnitude more than can be used in any practical calculation, the theoret-
ically mandated zero of the density of states at the Fermi level has not yet appeared.
This is the worst case scenario for exact exchange because the logarithmic singu-
larity is manifest in the equation being evaluated. In a calculation of a real system,

this is not the case.

We now wish to study the Hartree-Fock density of states of some real metals in order
to determine the effect of the “pathology" on real calculations of metals. We per-
formed B3PW CRYSTAL14 (unmodified, no spin-orbit coupling) calculations on
sodium metal using the 6-311G* basis set. Calculations were performed using 413,
8797, and 13728 irreducible k points. No smearing was employed, which would
artificially remove the singularity. The latter requires approximately 8 gigabytes of
memory, and represents a far larger calculation than would performed under nor-
mal practical circumstances. The density of states for each of these calculations was
calculated using CRYSTAL and an 81x81x81 k-point grid for interpolation. This
corresponds to approximately 12000 irreducible k points, and is again many more
k points than would be used normally. As shown in Figure 5, the three densities of

states are indistinguishable. No evidence of a singularity is seen.

As a second example, B3PW calculations of the density of states of copper were
performed using 72, 413, and 2769 irreducible k points for the SCF calculation. For
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Figure 5.2: Density of states for sodium metal computed with B3PW with 413,
8797, and 13728 irreducible k points. The Fermi energy is set to 0, shown by
the vertical line. For all three density of states calculations, an 81x81x81 k-point
grid was used for the interpolation. The differences among the three densities of
states are negligible, and no evidence of the theoretically mandated singularity is
observed.

all three calculations, an 81x81x81 k-point grid was used in the density of states
interpolation. The SBKIJC [26] pseudopotential and basis set were used for copper.
The same 81x81x81 k-point grid was used for the interpolation in the density of
states calculation. The results are shown in Figure 5. Again, no evidence of a

singularity is observed as the number of k points in the SCF calculation is increased.

Finally, to investigate the effect of the number of k points used for the interpolation
in a density of states calculation, the density of states for the same copper calcu-
lation (using 2769 irreducible k points) was calculated using 72, 413, 2769, 8797,
13728 irreducible k points. The results are shown in Figure 5. CRYSTAL uses
Legendre polynomials for the k space interpolation. The “wiggles” in the densities

of states seen in Figure 5 even for the densest grid used are the result of this poly-
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Figure 5.3: Density of states for copper metal computed with B3PW using 72, 413,
and 2769 irreducible k points. The Fermi energy is set to 0, shown by the vertical
line. For all three density of states calculations, an 81x81x81 k-point grid was used
for the interpolation.

nomial interpolation. However, in this case as with Figure 5, no singularity can be

observed.

The long-range part of the exact exchange rigorously requires the density of states
of a metal to vanish at the Fermi energy. This fact is not disputed here. However,
we find that even for the largest calculations we could afford, this singularity could
not be observed in hybrid density functional calculations of sodium or copper. Our
results do not remove the theoretical problem. Instead, they show that for any prac-
tical calculation of a metal, the logarithmic singularity manifests itself too slowly

to be observed.

We philosophically disagree with Monkhorst that theoretical rigor must always be
prioritized over practical efficacy. As famously stated by R.W. Hamming [89], “The

purpose of computing is insight, not numbers”. (The more cynical reader may pre-
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Figure 5.4: Density of states for copper metal computed with B3PW using 72,
413, 2769, 8797, and 13728 irreducible k points for the interpolation. For the SCF
calculation, 2769 irreducible k points were used.

fer the 1984 Macintosh’s admonition that one should “never trust a computer that
you can’t lift”.) There is absolutely no theoretical justification for the excellent per-
formance of hybrid density functionals (or any density functional) for band gaps. As
is well-known, Kohn-Sham eigenvalues are not physical, and their differences have
no physical meaning. Even worse, global hybrid density functionals like B3PW
have parameters that were fit using experimental data (although we emphasize here
that no properties of solids were used in these fits). Consider the stark contrast to
GW methods, with their exact quasiparticle excitation spectra. Despite the unfor-
givable lack of theoretical rigor in B3PW and the obvious superiority of GW, the
engineered density functional is, at present, more accurate for band gap prediction.
Of course, this is not an argument to eschew theory entirely in favor of blind em-

piricism, but it would be foolish to ignore the excellent performance of B3PW for



band gaps prediction.
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Chapter 6

ACCURATE AB INITIO QUANTUM MECHANICS
SIMULATIONS OF BI,SE3 AND BI,TEz; TOPOLOGICAL
INSULATOR SURFACES

Topological insulators are bulk insulators for which a strong spin-orbit interaction
inverts the orbital character of the conduction and valence bands. In a topological
insulator, there exist surface states at all energies within the bulk band gap. These
surface states have a linear dispersion with respect to the surface momentum Kk,
and the spin polarization varies with k [90, 91]. Angle-resolved photoemission
experiments on finite slabs observing the linear dispersion [92, 93] show that bulk

Bi,Tes and Bi,Ses are topological insulators.

In order to better understand the nature of these topological insulators, it is essen-
tial to determine the electronic structure. This requires an accurate prediction of
band gaps (including relativistic effects) with computational efficiency sufficient
for realistic surfaces and interfaces. It is generally accepted that the ideal ab initio
calculation would be fully self-consistent GW [1] because it rigorously approxi-
mates the true quasiparticle energies. However, GW is computationally impractical
even for bulk Bi;Tes and BirSes. A non-self-consistent GW approximation, GoWj,
can be performed for bulk materials, but it is also impractical for slab calculations
to examine the surface states. Consequently, comparisons of GoWj and density
functional theory (DFT) calculations on bulk solids are used to empirically cor-
rect the electronic states of the surface [94]. We refer to this approach as EC-LDA

(“empirically-corrected LDA").

Density functional (DFT) methods based on the local density approximation (LDA)
or the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE)
[41] are practical for computation of realistic surfaces. Unfortunately, these meth-
ods underestimate band gaps in solids because of a discontinuity of the derivative
of the energy with respect to the number of electrons [43, 44], the electron self
Coulomb repulsion, and the nonlinear dependence of energy on number of elec-
trons [45]. This underestimate is especially problematic in small-gap semiconduc-
tors with strong spin-orbit coupling. Viewed as a first-order perturbation, spin-orbit

coupling tends to decrease band gaps by lifting spin degeneracies in the valence and
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conduction bands. If the ab initio method already underestimates band gaps with-
out spin-orbit coupling, then including it may cause an unphysical band inversion,

or a “false positive" prediction that a material is a topological insulator [95].

Hybrid density functionals include a fraction of exact Hartree-Fock exchange, which
allows much of the self Coulomb repulsion error to be eliminated [68]. This leads to
much more accurate reaction barriers so that the B3LYP hybrid method has been the
de facto standard DFT approach in molecular computational chemistry for decades.
Computing exact exchange is impractical for codes (such as VASP or Quantum
Espresso) that use plane wave basis sets. This has lead to increased popularity of
the hybrid HSE functional [96], which only computes the exact exchange opera-
tor over a short range. While still costly, this approach has been applied to some

topological insulators using plane-wave codes [97, 98].

In contrast, with Gaussian basis sets, hybrid functionals such as B3PW91 [71] (re-
ferred to as B3PW in this paper for brevity) involve computational costs comparable
to PBE. We have shown elsewhere [68] that the B3PW hybrid functional used in this
paper gives excellent agreement (mean absolute error = 0.09 eV) with experimental

band gaps across a wide range of semiconductors.

In this chapter, we show that the B3PW hybrid DFT method leads to excellent
agreement with the best available GoWj calculations of the bulk band structure for
the topological insulators Bi;Te; and Bi;Ses. We also report slab calculations on
Bi;Te; and Bi;Ses using B3PW. We find that B3PW, with no empirical corrections,
is in excellent agreement with the EC-LDA slab calculations. This result is the main

point of this chapter.

Figure 6.1 shows the crystal structure and Brillouin zone of bulk Bi,Tes and a two
quintuple layer slab. Both Bi;Tes; and BiySe3 crystallize in a layered structure com-
posed of repeating quintuple layers (QLs). Each quintuple layer is composed of
three bismuth and two tellurium layers, with the Bi and Te layers alternating. Within
a QL, atoms in adjacent layers are covalently bound. In contrast, there is only van

der Waals interaction between QLs.

In order to assess the quality of our hybrid approach, we compared the results of
bulk band structure calculations of Bi,Tes and Bi»Sesz with PBE and GoW, [99].
Our PBE calculations are in good agreement with previously published calcula-
tions [100-102]. The GoWj calculation we chose for comparison was performed

by Aguilera et al.[99]. They used an explicitly spin-dependent GoW,, approxima-
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Figure 6.1: (a) Bulk crystal structure of BipTes. Te and Bi atoms are colored orange
and purple, respectively. (b) Bulk Brillouin zone of Bi, Tes showing high-symmetry
k-points. (c) Side view of a two-quintuple-layer slab of BiyTes. The red box indi-
cates a single quintuple layer, and the arrows show the quintuple layer within the
bulk structure. (d) Brillouin zone of a two-dimensional slab of Bi>Tes. The I point
is the zone center.

tion, thereby fully accounting for the spin-orbit coupling rather than adding it as a
perturbation to a scalar-relativistic calculation. The comparison is shown in Figure
6.2.

Physically, the most important energy regime is near the conduction and valence
band edges (in the vicinity of the I' point). Here, B3PW is in excellent agreement
with GoWy. In contrast, PBE fails to obtain the correct band structure in the valence
and conduction bands at the I" point. In the valence band for both materials, PBE
always obtains a pronounced “m" shape that is not seen for Bi;Ses and appears
weakly for Bi;Tes. Additionally, B3PW and GoW, predict a direct band gap for
Bi;Ses and an indirect gap for Bi;Te; (between the Z and F points in the Brillouin
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Figure 6.2: Comparison of the B3PW hybrid density functional (blue line) to high-
quality GoWj (red line) calculations of the band structures of (a) Bi;Ses, and (c)
Bi,Te;. The Fermi level is set to zero. The black dashed line is the PBE result.

zone), in agreement with recent photoemission experiments [103, 104]. On the

other hand, PBE finds an indirect band gap for both materials.

The excellent match we find between B3PW and the GyW; valence band structure
does not prove the viability of hybrid functionals. We must also ascertain if a band
inversion has occurred. Thus, we computed the degree of valence band inversion,
using a previously defined expression [94]. The valence band inversion parameter,
nvp, 18 equal to one when the valence band is completely inverted. We find exactly

the same inversion at the I" point as GoW), as shown in Figure 6.2.

Having established the accuracy of the B3PW functional for bulk band structures,
we now turn to calculations for realistic slabs. A direct calculation of these slabs
requires up to 35 atoms per periodic cell (whereas only 5 are required for the bulk
system), making GoW, impractical for the slabs. Yazyev et al. [94] empirically cor-
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rected LDA calculations to estimate GoW, results for slabs (EC-LDA). In contrast,

using the B3PW functional with a Gaussian basis set is quite practical for slabs.

We computed the I'-point band gap for slabs with 1 to 6 QLs (Figure 6.3) in order to
determine the fewest number of quintuple layers that leads to a topological insulator.
Both EC-LDA and B3PW hybrid calculations agree well with each other and the
experimental results [105] for BioSe;. While the experiment found closure of the
I" energy gap at a minimum thickness of six QLs, both EC-LDA and B3PW did
not. For B3PW, the mean absolute error in band gaps was found to be 0.09 eV in
ref [68]. We find band gaps below this mean absolute error for 6QL and 7QL slabs
(0.08 and 0.07 eV, respectively). We believe a Dirac point exists at 6 QLs within
our computational error. Our PBE calculations, as well as those of reference [106],

predict zero gap by three QLs.

Relative to BiySes, all three methods predict a faster decrease of the energy gap
with film thickness in BipTes. While the band gap is smaller than our estimated
computational error by 2QLs, we see a true gap closing in Bi;Tesz slabs composed
of 5 or more QLs, in contrast to EC-LDA. There is currently no experimental data
for BiTes for QLs.

The B3PW band structures of all QL slabs for both materials are shown in Appendix
B. There is a dramatic difference between the B3PW and EC-LDA band structures
for 5QL BipTes. The B3PW band structure has a clear Dirac cone, whereas the
empirically corrected band structure of Yazyev et al. [94] does not. A true GoW
calculation of a SQL Bi;Te; would most likely give a similar band structure to
B3PW. Therefore, we believe this is the first time an ab initio method has simul-
taneously provided accurate band gaps and demonstrated the onset of topological
insulating behavior in a Bi;Tes slab. At I, we find a Fermi velocity of 4 X 10° m/s,

in agreement with experiment [107].

For 5QL BiySes, the B3PW and EC-LDA band structures are similar. Neither
method predicts a Dirac point at SQL, so in this case the Fermi velocity is zero
at I'. Thus, we estimated the slope of the Dirac cone by fitting to the linear part of
our band structure near I" (0.006 to 0.05 inverse Bohr along the M direction). We
find a velocity of 4 x 10° my/s, slightly below the experimental value of 5 x 10° m/s.
[108].

We have shown that the hybrid B3PW functional returns GW-quality results for

band gaps. We emphasize here that hybrid functionals are only practically use-
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Figure 6.3: Comparison of our B3PW calculations (blue circles), empirically cor-
rected LDA (EC-LDA, red squares) [94], and our PBE (open circles) calculations
of the energy gap at I', E,(I"), for (a) BixSes and (b) Bi,Tes. The lines between
the points are guides to the eye. The insets show the valence and conduction bands
of (a) a four quintuple layer (4QL) slab and (b) a 1QL slab computed with B3PW.
B3PW band structures for 1-7QL slabs of BiSe3 and Bi;Ses are shown in the Sup-
porting Information. The horizontal lines at 0.09 eV indicate the mean absolute
error in band gaps computed with B3PW [68]. The green squares are the exper-
imental results [105] for Bi;Ses. Currently, there are no experimental results for
BizTe3.
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ful for most material systems, and surfaces in particular, with the use of localized
Gaussian basis sets. In order to compare the speed of calculations using Gaussians
to equivalent calculations using plane waves, we performed B3LYP calculations of
a 40-atom single-walled carbon nanotube system using VASP [109] version 5.2.11
and CRYSTALO09. We used 36 k-points for both calculations. The kinetic energy
cutoff chosen for the VASP calculation was 400eV; the standard 6-21G* basis set
for carbon was used in CRYSTAL. Using 4 CPUs on exactly the same machine,
VASP required 900 times more CPU time than CRYSTAL, and 9 times more mem-

ory.

With a Gaussian basis set, B3PW delivers comparable results to the highest-level
GoW)y calculations available for significantly less cost. Indeed, this off-the-shelf
functional allows direct computation of systems that are presently beyond the reach
of GoWy. The results presented here pave the way to calculations of topological
insulator surfaces and interfaces with realistic treatments of defects, doping, and
surface reconstruction. All of these effects are important to accurate simulations
of topological phase transitions and new spintronic devices, and our approach is

expected to be effective for other semiconductors with strong spin-orbit coupling.

6.1 Computational Methods

Using the B3PW functional, we calculated the electronic structure of bulk BiyTes
and BirSe; and of slabs with 1 to 6 QLs. All calculations were performed using the
CRYSTAL program [3, 110], which we modified to include spin-orbit coupling. We
used the fully relativistic large-core pseudopotentials and valence basis sets of Stoll
et al. for Bi and Te [76], and the small-core pseudopotential and valence basis set of
Peterson et al. for Se [75]. In the valence basis sets, all exponents smaller than 0.1
were removed to ensure linear independence. A 10 X 10 X 10 k-point grid was used
for bulk calculations, and a 10x10x 1 grid was used for the slab calculations. These
grids include more k-points than necessary, but the calculations are fast enough to
render this overkill irrelevant. All calculations were converged to a 1076 Hartree
root mean square difference in Fock matrix elements. Convergence was accelerated
using a modified Broyden approach [111]. PBE calculations were also performed
using exactly the same basis sets, crystal structures, and computational parameters
as our B3PW calculations in order to have a direct comparison of the results of
the two functionals. For all the calculations in this paper (bulk and slabs), we find
B3PW to be 2-3 times slower than an identical PBE calculation. Experimental
crystal structures for Bi;Ses [112] and BiyTes [113] were used for both bulk and



(111) slab calculations.
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Appendix A

SUPPLEMENTAL INFORMATION FOR CHAPTER 3

A.1 Basis Set Recipe

Our basis sets were chosen according to the following systematic recipe:

e For elements up to chlorine, we chose 6-311++G** by default. Because very
diffuse basis functions can cause linear dependence in basis sets, basis func-
tions were removed so that there was only one basis function with an expo-
nent less than 0.1. We only retain the basis function with the largest exponent

less than 0.1. All basis functions with smaller exponents are removed.

e If this modified basis could be used without numerical (linear dependence)
problems, we used it. Otherwise, we replaced the most diffuse exponent with
0.1.

e [f this modified basis could be used without numerical (linear dependence)
problems, we used it. Otherwise, we replaced the most diffuse exponent with
0.12.

o If this modified basis could be used without numerical (linear dependence)

problems, we used it. Otherwise, this basis function was removed.

In several cases, the above procedure did not yield a linearly independent basis set.
Thus, we made the following modifications.
e For oxygen, we used the 6-31d1 basis set of Gatti et al [114].

e For LiF, we removed all basis functions with exponents below 0.1 from the
aug-cc-PCVTZ basis set.

e For Co, Ni, and Mn, we used 6-31G* and followed the above procedure for

treating diffuse exponents.

e We used 6-31G for Fe and followed the above procedure for treating diffuse

exponents.
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e For all SiC polymorphs, we used 6-31+G** for Si and followed the above

procedure for treating diffuse exponents.

e For AIN (zincblende and wurtzite), AIP, AlAs, and AlSb, we used 6-31+G**

for Al and followed the above procedure for treating diffuse exponents.

For Sr and all elements from Cu to Bi, we used Stuttgart fully relativistic pseudopo-
tentials and the accompanying cc-PVDZ-level basis sets with the same treatment of

diffuse exponents outlined above.
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A.2 Comparison of B3PW and GyW,
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Figure A.1: GoWp and B3PW calculated band gaps versus experiment (low-
temperature) for 43 compounds with band gaps below 7 eV. These 43 compounds
are those for which our literature search found GyW, results, and are a subset of
the 70 compounds listed in Figures 3.2 and 3.3. These 43 compounds are listed in
Figure A.2. (a) Published GoW, results (164 data points, 43 compounds, 32 pub-
lications). The mean absolute deviation (MAD) is 0.36 eV. (b) B3PW hybrid DFT
calculations on the same 43 compounds. The MAD is 0.23 eV. (¢) Zoom of (a)
from 0—1 eV. (d) Zoom of (b) from 0-1 eV.
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Figure A.2: Difference between computed and low-temperature experimental band
gaps for the 49 compounds for which our literature search found GoWj results. Our
B3PW results are shown by blue circles, and red circles represent literature GoWj
results. Compound names are listed on the bottom x-axes; experimental band gaps
(low temperature or T ~ 0K when available; see Table A.8 for a discussion of
experimental gaps) are listed on the top x-axes. (a) Results for Bi to AlAs (experi-
mental band gaps 0.014 — 2.23 eV). (b) Results for GaP to BN (experimental gaps
2.35-6.36 V). (c) Results for MgO to LiF (experimental gaps 7.83 — 14.2 eV)
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A.3 Comparison of B3PW and GyW;, @ LDA
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Figure A.3: GoWy @ LDA (GoWj using LDA DFT as the starting point) and B3PW
calculated band gaps versus experiment (low-temperature) for 34 compounds with
band gaps below 7 eV. These 34 compounds are those for which our literature search
found GoWy @ LDA results, and are a subset of the 70 compounds listed in Figures
3.2 and 3.3. These 34 compounds are listed in Figure A.4 (a) Published GoW, @
LDA results (100 data points, 34 compounds, 22 publications). The mean absolute
deviation (MAD) is 0.33 eV. (b) B3PW hybrid DFT calculations on the same 34
compounds. The MAD is 0.21 eV. (¢) Zoom of (a) from 0-1 eV. (d) Zoom of (b)
from 0-1 eV.
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Figure A.4: Difference between computed and low-temperature experimental band
gaps for the 39 compounds for which our literature search found GoWy @ LDA
results. Our B3PW results are shown by blue circles, and red circles represent
literature GoWy @ LDA results. Compound names are listed on the bottom x-axes;
experimental band gaps (low temperature or 7 ~ 0K when available; see Table A.8
for a discussion of experimental gaps) are listed on the top x-axes. (a) Results for
Bi to AlISb (experimental band gaps 0.014 — 1.69 eV). (b) Results for CdSe to BN
(experimental gaps 1.86 — 6.36 eV). (c) Results for MgO to LiF (experimental gaps
7.83-14.2¢eV)
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Figure A.5: GoWy @ PBE (GoW using PBE DFT as the starting point) and B3PW
calculated band gaps versus experiment (low-temperature) for 22 compounds with
gaps below 7 eV. These 22 compounds are those for which our literature search
found GoWy @ PBE results, and are a subset of the 70 compounds listed in Figures
3.2 and 3.3. These 22 compounds are listed in Figure A.6. (a) Published GoWy @
PBE results (33 data points, 22 compounds, 8 publications). The mean absolute
deviation (MAD) is 0.33 eV. (b) B3PW hybrid DFT calculations on the same 22
compounds. The MAD is 0.22 eV. (¢) Zoom of (a) from 0-1 eV. (d) Zoom of (b)

from 0—1 eV.
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Figure A.6: Difference between computed and low-temperature experimental band
gaps for the 26 compounds for which our literature search found GoW, @ PBE
results. Our B3PW results are shown by blue circles, and red circles represent
literature GoW, @ PBE results. Compound names are listed on the bottom x-axes;
experimental band gaps (low temperature or 7 ~ 0K when available; see Table A.8
for a discussion of experimental gaps) are listed on the top x-axes. (a) Results for
Bi;Ses to BN (experimental band gaps 0.16 — 6.36 eV). (b) Results for MgO to LiF
(experimental gaps 7.83 — 14.2 eV)
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Figure A.7: Post-GoW, and B3PW calculated band gaps versus experiment (low-
temperature) for 40 compounds with band gaps below 7 eV. These 40 compounds
are those for which our literature search found post-GoW results, and are a subset
of the 70 compounds listed in Figures 3.2 and 3.3. These 40 compounds are listed
in Figure A.8. (a) Published post-GoW results (180 data points, 40 compounds, 17
publications). The mean absolute deviation (MAD) is 0.35 eV. (b) B3PW hybrid
DFT calculations on the same 40 compounds. The MAD is 0.22 eV. (c) Zoom of
(a) from 0-1 eV. (d) Zoom of (b) from 01 eV.
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Figure A.8: Difference between computed and low-temperature experimental band
gaps for the 46 compounds for which our literature search found post- GoWy. Our
B3PW results are shown by blue circles, and red circles represent literature post-
GoW results. Compound names are listed on the bottom x-axes; experimental band
gaps (low temperature or 7 ~ 0K when available; see Table A.8 for a discussion of
experimental gaps) are listed on the top x-axes. (a) Results for Bi to GaP (experi-
mental band gaps 0.014 — 2.35 eV). (b) Results for ZnTe to BN (experimental band
gaps 2.39 — 6.36 eV). (c) Results for MgO to Ne (experimental gaps 7.83 — 21.7
eV)
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A.6 Calculated Band Gaps Versus Low-Temperature Experiments for all Com-

pounds
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Figure A.9: B3PW calculated band gaps versus experiment (low-temperature) for
all 70 compounds listed in Figures 3.2 and 3.3. The mean absolute deviation is 0.28
eV.
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Figure A.10: PBE calculated band gaps versus experiment (low-temperature) for
PBE for all 70 compounds listed in Figures 3.2 and 3.3. The mean absolute devia-
tion is 1.28 eV.
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Figure A.11: GoWj (red circles) and post-Go W, (green circles) calculated band gaps
versus experiment (low-temperature) for the 53 compounds where our literature
search found GoWj or post-GoWjy results. These 53 compounds form a subset of
the 70 compounds listed in Figures 3.2 and 3.3. The mean absolute deviation is
0.40 eV overall, 0.41 eV for GoW), and 0.39 eV for post-GoWj.
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A.7 Tables of B3PW, PBE, GW, and Experimental Band Gaps

Table A.1: Band Gaps (eV) from B3PW, GW, PBE and Experiment. Table A.8 lists
the experimental band gap from every reference.

System B3PW Exp Refs PBE GW Refs

BixSe; (6 QL)  0.08 0.0 [105] 0.00 N/A N/A

BirSe3 (7QL)  0.07 0.0 [105] 0.00 N/A N/A

Bi 0.00 0.011-0.015 [49,115-119] 0.03 0.013-0.032 [63]

BiSe; (5QL) 0.12 0.04 [105] 0.00 N/A N/A

BirSe; (4 QL) 0.17 0.07 [105] 0.00 N/A N/A

Bi;Se3 3QL)  0.25 0.14 [105] 0.00 N/A N/A

Bi;Ses 0.18 0.16-0.35 [49, 120] 0.24  0.01-0.34 [94, 121, 122]

PbSe 0.25  0.145-0.165 [49, 123] 043  0.14-0.23 [124, 125]

BiyTes 0.22 0.13-0.171 [49, 126] 0.09 0.17-0.21 [94, 121]

PbTe 0.59 0.190 [123] 0.05 0.22-0.3 [124, 125]

InSb 0.34 0.24 [49] 0.00  0.08-0.54 [56, 60, 127]

BirSe; (2QL)  0.39 0.25 [105] 0.04 N/A N/A

SbyTes 0.22 0.28 [49] 0.00 0.189-0.201 [128]

HgTe 0.01 0.3 [49] 0.00  0.45-0.57 [129]

SnTe 0.44 0.36 [49] 0.05 N/A N/A

InAs 0.47 0.42 [49] 0.00  0.31-0.68 [56, 60, 127, 130]

VO, 1.25 0.6 [131] 0.00  0.46-1.12 [132,133]

InN 0.86 0.7-1.0 [134-136] 0.01  0.72-0.89 [137-139]

Ge 0.86 0.744 [49] 0.07 0.5-1.0 [58, 61, 62, 140]

GaSb 0.66 0.82 [49] 0.00  0.62-1.16 [56, 60, 127]

SnSe 0.95 0.86-0.95 [141-143] 0.33 0.78 [144]

Si 1.61 1.17 [49] 0.64  0.56-1.91 [56, 58, 61, 62, 130]

[59, 140, 145-147]

MoS, 1.63 1.29 [148] 0.68 1.29-1.69 [62]

InP 1.78 1.42 [49] 0.86 1.32-1.99 [56, 60, 127, 146, 147]

GaAs 1.48 1.52 [49] 0.55 1.09-3.77 [56, 58, 60-62, 127, 140]
[55, 145-147]

CdTe 1.53 1.61 [149] 0.48 1.22-1.84 [60, 129, 150]

AlSb 1.83 1.69 [49] 0.92 1.64-1.75 [56, 60]

CdSe 1.57 1.85 [151] 0.46 1.25-2.01 [129, 150]

BP 2.48 2.1 [49] 1.34 1.9 [152]

Cu,O 1.97 2.17 [49, 153] 0.20 1.36-2.65 [133, 140]

AlAs 237 2.23 [49] 1.31 1.57-2.25 [56, 130, 146]

[55, 57, 60]



68

Table A.2: Band Gaps (eV) from B3PW, GW, PBE and Experiment. Table A.8 lists

the experimental band gap from every reference.

System B3PW Exp Refs PBE GW Refs
GaP 2.71 2.35 [49] 1.69 2.33-297 [56, 60, 62]
ZnTe 2.55 2.39 [49] 1.39  1.97-2.67 [60, 129, 150]
FeO 2.33 24 [154] 0.00 0.86-2.32 [51, 133,155, 156]
BiVOy4 2.98 241 [157] 1.72 N/A N/A
SiC (3C) 2.66 242 [49] 1.38  1.8-2.88 [61, 130, 140]
AlP 2.59 2.5 [49] 1.51  1.88-3.1 [56, 61, 140]
[60, 147]
CdS 2.49 2.5 [151] 1.20  2.11-3.41 [58, 61, 129]
[140, 150, 158]
AgBr 2.24 2.71 [49] 0.62 N/A N/A
ZnSe 2.69 2.82 [49] 1.37 2.24-3.26 [129, 150]
[60, 62]
Agl 3.13 291 [49] 1.57 N/A N/A
SiC (6H) 3.34 3.023 [159] 2.04 3.24-3.25 [160, 161]
CuBr 2.87 3.07 [49] 0.76 N/A N/A
Cul 3.21 3.12 [49] 1.36 N/A N/A
CoO 354  2.1-543 [162-166] 0.13 24478 [51, 133, 155]
[156, 167, 168]
AgCl 2.63 3.25 [49] 0.82 N/A N/A
SiC (4H) 3.58 3.263 [159] 226 3.08-3.8 [62, 160, 161]
GaN (zincblende)  3.08 3.28 [169] 1.73 3.27-3.82 [61]
SrTiO; 338 3.25-33 [170-172] 1.75 3.36-5.15 [58, 173, 174]
TiO; (Rutile) 347 33 [172] 1.78 3.11-4.84 [133, 174, 175]
[62, 140]
SiC (2H) 3.60 333 [176] 230 3.15-3.68 [160, 161]
CuCl 3.06 34 [49] 0.81 N/A N/A
TiO, (Anatase) 3.60 3.4 [177] 198 3.73-5.28 [174, 175]
ZnO 2.82 3.44 [49] 1.00  0.1-4.61 [61, 140, 147]
GaN 343 3.503 [49] 201 2.75-3.82 [58, 61, 62]
MnO 316 2.0-42 [163,178-181] 0.86 2.34-4.39 [51, 133, 155]
[158, 167]
[59, 156]
MgTe 3.31 3.6 [182] 2.18 N/A N/A
ZnS 4.07 3.84 [151] 2.55 1.52-4.15 [61, 129, 150]
[60, 147]
CuSCN 3.97 3.94 [183] 2.36 N/A N/A
NiO 457 3743 [163,165,184] 097 1.74-5.0 [51, 133, 155]
[166, 185] [140, 158, 167]

[59, 156]
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Table A.3: Band Gaps (eV) from B3PW, GW, PBE and Experiment. Table A.8 lists
the experimental band gap from every reference.

System B3PW Exp Refs PBE GW Refs
AIN (zincblende) 4.94 4.9 [186] 333 N/A N/A
C (diamond) 5.74 5.5 [49] 419  5.59-6.99 [58, 145, 146]
[62, 140]
[61, 147]
AIN (wurtzite) 6.05 6.19 [49] 4.31 4.81-5.79 [62]
BN 6.19 6.36 [187] 448  6.19-7.51 [58, 61, 140, 147]
MgO 6.74 7.83 [188] 4.67  6.71-103  [58, 61, 62, 140, 147]
NaCl 9.08 8.5-8.69 [189,190] 7.27 7.53 [58]
Si0; (B-cristobalite)  8.90 8.9 [191] 6.52  8.36-10.5 [62, 192]
LiCl 8.76 9.4 [193] 7.00  8.75-10.98 [56, 140, 145, 146]
SiO; (@-quartz) 10.18 9.65 [194] 7.79 8.77 [53]
LiF 13.33 14.2 [195] 10.75 13.13-16.17 [53, 61, 62, 147]
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Table A.4: Experimental Band Gaps (caption below). When there is more than one
experimental result, our choice is in bold.

System Band Gap (eV) Temperature (K) Reference
Bi,Ses (6QL) 0.00 ? [105]
Bi,Ses (7QL) 0.00 ? [105]
Bi 0.015 1.2 [118]
Bi 0.015 4 [115]
Bi 0.011 4 [116]
Bi 0.0136 0 (extrapolated) [117]
Bi 0.0153 1.4 [119]
Bi 0.0136 ? [49]
Bi;Ses (5QL) 0.04 ? [105]
Bi;Ses (4QL) 0.07 ? [105]
Bi;Ses (3QL) 0.14 ? [105]
BizSe3 0.35 RT [120]
BiZSe3 0.16 77 [49]
PbSe 0.145 4 [49]
PbSe 0.165 4.2 [123]
Bi2T63 0.13 293 [49]
Bi; Tes 0.171 0 (extrapolated) [126]
PbTe 0.190 4.2 [123]
InSb 0.24 1.7 [49]
Bi;Ses; (2QL) 0.25 ? [105]
Sb,Tes 0.28 299 [49]
HgTe 0.304 0 (extrapolated) [49]
SnTe 0.36 12 [49]
InAs 0.42 4.2 [49]
VO, 0.6 300 [131]
InN 0.7-0.8 12 - 300 [134]
InN 0.7-1.0 RT [135]
InN 0.72 4-6 [136]
Ge 0.744 1.5 [49]
GaSb 0.82 0 (extrapolated) [49]
SnSe 0.86 RT [143]
SnSe 0.898 RT [141]
SnSe 0.95 RT [142]
SnSe (average) 0.90

Si 1.17 0 (extrapolated) [49]
MoS, 1.29 ? [148]
InP 1.42 1.6 [49]



System Band Gap (eV) Temperature (K) Reference
GaAs 1.52 0 (extrapolated) [49]
CdTe 1.48 300 [49]
CdTe 1.61 4.2 [149]
AISb 1.69 27 [49]
CdSe 1.73 300 [49]
CdSe 1.85 0 [151]
BP 2.1 RT [49]
Cu,O 2.17 4.2 [153]
Cu,O 2.17 4.2 [49]
AlAs 2.23 4 [49]
GaP 2.35 0 (extrapolated) [49]
ZnTe 2.39 <2 [49]
FeO 2.4 77 [154]
BiVO, 2.41 ? [157]
SiC (30) 2.42 2K [49]
AlIP 2.5 2 [49]
CdS 2.5 300 [151]
AgBr 2.71 1.8 [49]
ZnSe 2.82 6 [49]
Agl 2.91 4 [49]
SiC (6H) 3.023 4.2 [159]
CuBr 3.07 1.6 [49]
Cul 3.12 80 [49]
CoO 3.6 ? [162]
CoO 2.6 ? [163]
CoO 2.5 ? [164]
CoO 2.1 78 [165]
CoO 2.7 ? [166]
CoO 5.43 ? [168]
CoO (average) 3.16

AgCl 3.25 1.8 [49]
SiC (4H) 3.263 4.2 [159]
GaN (zincblende) 3.28 0 [169]
SrTiO; 33 ? [172]
SrTiO; 3.25 ? [171]
SrTiO; 33 20 [170]
TiO; (rutile) 3.3 ? [172]
SiC (2H) 3.33 4.2 [176]
CuCl 34 2 [49]
TiO;, (anatase) 34 0 (extrapolated) [177]
7Zn0O 3.44 6 [49]
GaN 3.503 1.6 [49]
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System Band Gap (eV) Temperature (K) Reference

MnO 3.6-3.8 ? [178]
MnO 3.8-4.2 ? [179]
MnO 4.1 ? [163]
MnO 3.9 ? [180]
MnO 2.0 77 [181]
MnO (average) 3.54

MgTe 3.49 RT [49]
MgTe 3.6 0 (extrapolated) [182]
ZnS 3.72 300 [49]
ZnS 3.84 0 [151]
CuSCN 3.94 RT [183]
NiO 43 [184]
NiO 4.0 ? [163]
NiO 4.0 78 [165]
NiO 3.7 [185]
NiO 3.7 [166]
NiO (average) 3.94

AIN (zincblende) 4.9 0 [186]
C (diamond) 5.5 RT [49]
AIN (wurtzite) 6.19 7 [49]
BN 6.2 ? [49]
BN 6.36 8 [187]
MgO 7.22 ? [196]
MgO 7.9 0 (extrapolated) [49]
MgO 7.83 83 [188]
NaCl 8.69 77 [190]
NaCl 8.75 10 [197]
NaCl 8.5 ? [189]
SiO, (B-cristobalite) 8.9 ? [191]
LiCl 94 55 [193]
Si0; (a-quartz) 9.65 ? [194]

LiF 14.2 7 [195]
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Table A.8 lists the experimental band gap in every reference we found. We also list
the temperature for each result or a question mark when we were unsure. In many
cases there are several experimental results to choose from. When this is the case,
our choice is shown in bold in Table A.8. In general, when a low-temperature result
from reference [49] (a standard and well-known reference work) was available, we

used it. We followed this approach in all cases except the following.

PbSe. We chose reference [123], as this result is more commonly used in the liter-

ature.

Bi,Tes;. We chose reference [126] because it is a O K result, whereas the band gap

in [49] is at room temperature.

SnSe. We found three recent room-temperature measurements. In order to avoid

biasing our comparison, we chose to average these results.

Co0, MnO, NiO. There appears to be no clear consensus as to the band gaps of
these materials. We gathered the results most commonly cited in the GW literature
and averaged. As a result, the MADs for GW decreased by ~ 0.01 eV and the
MADs for B3PW increased by ~ 0.01 eV.

MgO and NaCl. We chose the references commonly used in the GW literature.

This choice biases the comparison in favor of GW.

BP. Lucero et al. [48] quote a low-temperature experimental band gap of 2.4 eV.
This number seems plausible given the room temperature value of 2.1 eV. However,
we were unable to locate any experimental paper containing this value. Thus, we

used the room temperature band gap from reference [49].
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Appendix B

B3PW BAND STRUCTURES OF SLABS

Figures B.1 and B.2 show the 1-7QL band structures for Bi, Tes and Bi,Ses, respec-
tively.
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