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Abstract

In this thesis I study two different approaches towards proving average results on
values of L-functions, with an interest toward establishing new results on automor-
phic L-functions, especially concerning the nonvanishing of L-functions of degree > 2
at the center of the critical strip (and at other points of the complex plane), and
their applications, particularly to p-adic L-functions. In the first problem, I evaluate
a twisted average of L-values using the approximate functional equation in order
to prove a result on the determination of isobaric representations of GL(3,Ag) by
certain L-values of p-power twists. I also provide an application to the adjoint p-adic
L-function of an elliptic curve. More specifically, I show that if E is an elliptic curve
over (Q with semistable reduction at some fixed prime p, then the adjoint p-adic L-
function of E evaluated at any infinite set of integers relatively prime to p completely
determines up to a quadratic twist the isogeny class of E.

For the second problem, which is part of a long project, I present some results
towards proving an average result for the degree 4 L-function on GSp(4)/Q at the
center using the relative trace formula. More specifically, I consider a suitable relative
trace formula such that the spectral side is an average of central L-values of genus
2 holomorphic Siegel eigenforms of weight k& and level N twisted by some fixed

character. I then work towards computing the corresponding geometric side.
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Chapter 1

Introduction

In many cases, the values of an L-function inside the critical strip can encode impor-
tant arithmetic information. The study of the behavior of L-functions at the center
of the critical strip is especially important in this sense, as suggested by its ties with
several conjectures. For example, the Birch and Swinnerton-Dyer conjecture sug-
gests that the behavior of the L-function associated to an elliptic curve E over QQ at
the center of the critical strip 0 < Re(s) < 2 determines the rank of E(Q). There
are also generalizations such as Deligne’s conjecture on special values of L-functions
and work due to Beilinson and Kato on the leading term in the Taylor series of the
L-function at the center.

The construction and study of p-adic L-functions is also an important and related
part of current research. It is conjectured that p-adic L-functions can be constructed
in general settings, but have only been shown to exist in a limited number of cases. It
is known that you can construct a p-adic L-function associated to a modular form by
interpolating p-power twists of the associated complex L-function at special values.
Work of Ash and Ginzburg shows that a p-adic L-function can be constructed for
certain automorphic representations m of GL(2n, Ag) under some conditions, such as

the nonvanishing of the twisted complex L-function L(7 ® x,1/2) by some character



x that is trivial at infinity.

One method of proving nonvanishing results for values of L-functions inside the
critical strip is to consider suitable averages over families of L-functions. To evaluate
such averages, one can use the traditional approach using an approximate functional
equation or, among others, the more recent approach using the relative trace formula.

In Chapter 2, we use the approximate functional equation to compute a twisted
average of L-functions which allows us to prove a result on the determination of
isobaric representations 7 of GL(3, Ag) by twisted L-values L(7®y, ) with x ranging
over primitve p-power order characters and 3 a fixed point inside the critical strip
but outside the central line. The method used also gives nonvanishing of infinitely
many such twisted L-values for isobaric automorphic representations of GL(n, Ag)
for n > 3.

We also provide an application on the determination of elliptic curves over Q up
to isogeny by the adjoint p-adic L-function. The main result of Chapter 2 (Theorem

2.4) can be summarized as follows:

Theorem. Let p be an odd prime and E, E" be elliptic curves over Q with semistable

reduction at p. Suppose
L,(Sym*E,n) = CL,(Sym*E’, n)

for all (n,p) = 1 elements of an arbitrary infinite set Y and C € Q. Then E' is
isogenous to a quadratic twist Ep of E. If E and E' have square free conductor, then

E and E' are isogenous over Q.

In Chapter 3, I present some results which are part of a long project towards
establishing an average result for the degree 4 L-function on GSp(4)/Q at the center.
More precisely, the purpose of this project is to establish the following:
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(x) Fix a Siegel weight £ > 3. Then for a suitable fixed character yg, there ex-
ist infinitely many genus 2 holomorphic Siegel eigenforms 7 of trivial central

character and weight k such that

L(7 ® xo,1/2) # 0.

as we vary the level N — oc.

Since the nonvanishing statement in (x) is only possible modulo the root number, we
consider forms 7 with root number 1. In particular I am looking at self-dual forms
so the root number can only be +1.

Alternatively, we can consider the slightly modified problem:

(xx) Fix a level N > 1. Then for a suitable fixed character xo, there exist infinitely
many genus 2 holomorphic Siegel eigenforms 7 of trivial central character and

level N such that
L(W®X07 1/2) ;é 0

as we vary the weight k — oo.

My approach to proving these problems is: (x) would follow from the spectral side
of a suitable relative trace formula on GSp(4)/Q with respect to subgroups GL(2)/F
with F' an auxiliary imaginary quadratic field and U the unipotent radical of the
Siegel parabolic subgroup, if the corresponding geometric side is nonvanishing as we
vary N — oo. Similarily, (¥%x) would follow if the corresponding geometric side is
nonvanishing as k — oo.

It should be noted that no nonvanishing results at the center are known for any

family of L-functions of degree > 4. By work of Bloch and Kato, nonvanishing at
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the center of the degree 4 L-function would imply that a certain associated Selmer
group of the Siegel eigenform 7 is finite.

There are three steps to solving this problem: (1) Verify that the spectral side
gives the desired average, (2) Find special leading terms on the geometric side that
give a nonvanishing contribution, and (3) Show that these leading terms dominate
the others.

I give a suitable test function and show that this allows the spectral side to
be identified with a weighted average of central degree 4 L-values and identify the
leading terms on the geometric side and an oscillating behavior in the remaining

terms, which should allow me to show that the former terms dominate the latter.



Chapter 2

Determination of elliptic curves by
their adjoint p-adic L-functions!

2.1 Introduction

There has been a lot of interest in the study of L-functions associated to symmetric
powers of motives attached to modular forms, and in particular to the study of the
Bloch-Kato conjecture for L(Sym?E, s), the L-function associated to the symmetric
square of an elliptic curve at the critical value s = 2.

In [DD97], Dabrowski and Delbourgo define the p-adic L-function attached to
the motive Sym?E at the critical point s = 2 as the Mazur-Mellin transform of a
p-adic distribution p,(Sym?E) on Zy. 'This distribution is defined by interpolat-
ing the values of the complex symmetric square L-function L(Sym?E,x,2) at all
twists by Dirichlet characters of p-power order. They also show that the distribution
tp(Sym?E) is in fact a bounded measure on Z,y if E has good ordinary reduction at
p or bad multiplicative reduction at p, and is an h-admissible measure with A = 2 if

E has good supersingular reduction at p.

!This chapter is a modified version of the author’s paper [Nas15]
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The main result of this chapter is stated in Theorem 2.4. It is a result on the de-
termination of elliptic curves over Q up to isogeny by the adjoint p-adic L-function.
Using the theory of h-admissible measures developed by Visik [Vis76], we show
(see Lemma 2.4) that Theorem 2.4 reduces to proving that the twisted L-values
{L(Sym*E, x,2)} with y ranging over Dirichlet characters with p-power conductor
determine the isogeny class of £ up to quadratic twist. Note that just knowing
nonvanishing of the complex L-values twisted by p-power characters gives the non-
vanishing of the p-adic L-function, but not that the p-adic L-function determines the
isogeny class of E, which requires a further argument.

If f is the newfom of weight 2 associated to E by Wiles’ modularity theorem,
and 7 the unitary cuspidal automorphic representation of GL(2,Ag) generated by
f, then

L(Sym*E, s) = L(Sym*r,s — 1),

where Sym?r is the automorphic representation of GL(3,Ag) associated to 7 by
Gelbart and Jacuqet [GJ78]. It is well-known that Sym?rm is cuspidal only if E is
non-CM, otherwise it is an isobaric sum of unitary cuspidal automorphic representa-
tions. Theorem 2.4 is then a consequence of a result on the determination of isobaric
automorphic representations of GL(3) which is summarized in Theorem 2.2.

One of the main ingredients in the proof of Theorem 2.2 is the computation of a

twisted average of the form

> X()x(r)L(r @ x, B),

x mod p®

where the sum if over primitive p-power order characters of conductor p®. This sum

is computed in Theorem 2.1 and it uses an approximate equation similar to that used
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in [Luo05]. A proof of the approximate functional equation is provided in Section
2.2.2. Note that special care is required when 7 or 7’ above are not cuspidal, and in
such cases I require L(m ® x, s) and L(7’' ® x, s) to be entire for all p-power twists.

A consequence of the computation of this twisted average is given by a nonvan-
ishing result on p-power twists of isobaric representations for GL(n,Ag) for n > 3.
This result is summarized in Corollary 2.1. Note, however, that proving nonvanish-
ing of L(w ® x, ) for infinitely many p-power twists and a fixed 5 will not imply the
determination result of Theorem 2.2. Proving determination as in Theorem 2.2 is a
stronger result which I am only able to show for n = 3 and not for n > 4.

To give some context to the nonvanishing of twisted L-values, note that nonvan-
ishing results have been proved for many families of twisted L-values. In particular,
building on work of Rohrlich [Roh84] and Ramakrishnan and Barthel [BR94], Luo
[Luo05] showed that nonvanishing of infinitely many twisted L-values {L(7 ® x, 3)}
with y ranging over all Dirichlet characters, holds for § ¢ [%, 1— %} and 7 a cusp-
idal automorphic representation of GL(3,Ag). In particular, Luo is able to obtain
nonvanishing at the center for n = 3. However, in my case the set of characters
considered is much sparser.

We now give an outline of the rest of the chapter. In Section 2.2 we present the
basic properties of the standard L-function associated to an isobaric representation
of GL(n) as well as give a proof of the approximate functional equation. In Section
2.3 we give proofs for Theorem 2.1 and Theorem 2.2, as well as give an application
on the determination of m by certain twisted L-values of the isobaric automorphic
representation Ad(w) of GL(3,Ag) when 7 is a cuspidal automorphic representation
of GL(2,Ag). This result is summarized in Theorem 2.3. Finally, in Section 2.4 we

give a proof of Theorem 2.4.



2.2 Preliminaries

2.2.1 The standard L-function of GL(n)

Let 7 be an irreducible automorphic representation of GL(n,Ag) and L(w,s) its
associated standard L-function. Write 7 = ® 7, as a restricted direct product with
7, admissible irreducible representations of the local groups GL(n,Q,). The Euler

product

L(m,s) =[] L(m, 5) (2.1)

converges for Re(s) large. There exist conjugacy classes of matrices A,(7) € GL(n, C)

such that the local L-functions at finite places v with 7, unramified are
L(my,s) = det(1 — A,(m)v )"t (2.2)

Let Ay(m) = [a1,0(7), -, ano(7)] be the diagonal representatives of the conjugacy
classes.

For S a set of places of Q we can define

L¥(m,s) = [ [ Lo(m. 9) (2.3)
vgS
called the incomplete L-function associated to set S.
Let H be the isobaric sum introduced in [JS81]. We can define an irreducible auto-
morphic representation, called an isobaric representation, m 8- - -Bm,, of GL(n, Ag),
n =Y. n; for m cuspidal automorphic representations m; € GL(n;, Ag). Such a

representation satisfies

LS(ETzlﬂj’ 3) = H Ls(ﬂ—j’ S)
j=1



with S any finite set of places.
The following is a generalization of the Strong Multiplicity One Theorem for

isobaric representations due to Jacquet and Shalika [JS81]:

Theorem (Generalized Strong Multiplicity One). Consider two isobaric represen-
tations m and m of GL(n,Aq) and S a finite set of places of Q that contains co.

Then ., = ma, for allv & S implies m = m,.

We call an isobaric representation tempered if each 7; in the isobaric sum 7© =
m H---Hm, is a tempered cuspidal automorphic representation, or more specifically
if each local factor m; , is tempered.

We will consider a subset of the set of isobaric representations of GL(n,Ag),
more specifically those given by an isobaric sum of unitary cuspidal automorphic
representations. We denote this subset by A, (n). We will also consider the case when
the unitary cuspidal automorphic representations in the isobaric sum are tempered,
which is expected to always hold given the generalized Ramanujan conjecture.

Let n > 3 and let m € A, (n) be an isobaric sum of unitary cuspidal automorphic
representations of GL(n, Ag) with (unitary) central character w, and contragradient

representation 7. We have

L(Tos, 8) = HW*WF (S ;“j) , L(fs,8) = Hf¥r (3 _2’”) (2.4)
7=1 7=1
for some p; € C, with 7 in this context denoting the transcendental number.
The L-function is defined for Re(s) > 1 by the absolutely convergent Dirichlet

series

Lims) =Y ax(m) (2.5)

ms

m=1
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with a,(1) = 1. This extends to a meromorphic function on C with a finite number
of poles.

It is known that the coefficients a,(m) of the Dirichlet series satisfy

S Jan(m) P <, M (26)
m<M
for M > 1 (cf. Theorem 4 in [Mol02], [JPSS83, JS81, Sha81, Sha88]). For this prop-
erty to hold, it is necessary that 7 be an isobaric sum of unitary cuspidal automorphic
representations, rather than any unitary isobaric representation.
If 7 is in fact an isobaric sum of tempered cuspidal automorphic representations,

then we have that the coefficients a,(m) satisfy
|ax(m)| < m".

The completed L-function A(7,s) = L(7w, s)L(m, s) obeys the functional equa-
tion

A(m,s) = e(m, s)A (7,1 — s), (2.7)

where the e-factor is given by
e(r,5) = f1W () (2.8)

and f, and W () are the conductor and the root number of 7.
Let x denote an even primitive Dirichlet character that is unramified at oo and

with odd conductor ¢ coprime to f,. The twisted L-function obeys the functional
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equation (see for example [JPSS83])

Ar®@x,s) =€e(mr®@x,s) A(T@X,1—5), (2.9)

where A(T ® x,8) = L(Too, $)L(m ® X, s). The e-factor is given by (cf. Proposition
4.1 in [BR94])

€(m @ X, 8) = e(m, s)wr (@)X (fr)g " 7(x)" (2.10)

with 7(x) the Gauss sum of the character y, and w, the central character of 7.

Since L(m ® x,s) does not vanish in the half-plane Re(s) > 1, it is enough to
consider 1/2 < Re(s) < 1. Twisting 7 by a unitary character | - |* if needed, we can
take s € R. Thus, from now on,

<s<l. (2.11)

N | —

2.2.2 Approximate functional equation

We present a construction introduced in [Luo05, LR97]. For a smooth function g with

du

compact support on (0, 00), normalized such that [ g(u)% = 1, we can introduce

an entire function k£ given by

k(s) = /Ooog(u)us_ldu

such that £(0) = 1 by normalization and k decreases rapidly in vertical strips. We

then consider two functions for y > 0,

1 _.ds

Bly) = 5 (Q)k(s)y S (2.12)
1 _.ds

Fy(y) = 5 (Z)k(—S)G(—8+ﬁ)?/ < (2.13)
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with G(s) = % and the integrals above over Re(s) = 2. The functions F}(y)

and Fy(y) obey the following relations (see [Luo05]):
1. Fio(y) < Cpy ™ for allm > 1, as y — oo.
2. Fi(y) =14 O(y™) for all m > 1 for y small enough.

3. Fy(y) < 1+y 1 Rel®=< for any € > 0, where n = max;<j<, Re(y;) and u; as
in (2.4). If 7 is tempered then n = 0 and in general the following inequality

holds (see [LRS99]):
1

nZ2+1

0<n< (2.14)

N | —

The following approximate functional equation was first used in [LR97] for cuspi-
dal automorphic representations of GL(n) over Q. A similar approximate functional

equation was proved in [BH12] for slightly different rapidly decreasing functions.

Proposition If 7 € A,(n) and x is a primitive Dirichlet character of conductor ¢

such that L(r ® x, s) is entire, then for any 3 < 8 <1

Lrans) = Y ORI g () 4 e, mr (0" ")

— mP frxq"
= az(m)x(mf.

where f! is the multiplicative inverse of f, modulo g.

Proof. For ¢ > 0, y > 0 consider the integral:

1 y \ ds
— kst@X,s+ﬂ( ) —.
i, HOL () S
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Since k(s) and L(m ® x, s + ) are entire functions, the only pole of the function

K()L(r © x5+ ) ( fyqn)_ssl

is a simple pole at s = 0 with residue equal to

lim,_yok(s)L(r ® X, s + B) <fyqn> )

Then by the residue theorem

Lir®yx,B) = % . k(s)L(m ® x, s+ 5) (fﬂyqn)_s%
- = PROCEeE (fqun> B %.
Taking s — —s in the second integral gives
Lir®x,B) = L k(s)L(m ® x,s+ /) ( Y )_S% (2.15)
210 J () f=q" s
+ % o k(—s)L(m ® x,—s+ () (fﬂyqn)s %

The functional equation is

L(WOWS)L(T‘— ® X, 8) = 6(7‘— ® X, S)L(ﬁ-ooa 1 - S)L(ﬁ— ® X, 1- S>7

which implies that

L(r®x,s) =€em®x,s)G(s)L(T®X,1—s).
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Substituting this identity in the second integral gives

Lir@x,B) =1 +1I (2.16)
with
1 y \ ds
L =— k(s)L(m® x,s+ ( ) —
! 27 (o) ( ) ( X 6) fﬂ'qn S
and
I b €(f—s5,m1RX)G(PB—s)k(—s)L(T@X,14+s—p) Y SE
2 — ori ©) 3 X X fﬂqn s .

Taking o = 2 and substituting with L(r®x, s) = > ~_, ax(m)x(m)m~* in the region

of absolute convergence gives

> 5 1 my \ °ds
I, = awmxmmﬁ-—, k:s( ) —,
= D almpmim oo | K6 (£8) S
and by the definition of F},
L= Z ar(m)x(m)m P F ( my ) . (2.17)
— f=q"
Similarly,
bt [ 8= sm @ 0GE = k(=5 3 aslmxmm (L) L
27 J o) ’ — fxq") s

with e(8—s, 7®@x) = €(B—s, T)wr(@)x(fr)g " E=97(x)" and e(B—s,7) = f2> "W (7).
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This gives
I, = Z afr(m)Y(mﬂr)m_l’Lﬁf;ﬂ_BW(ﬂ)ww(q)q_”BT(X)" X
m=1
1 ds
— G(B — s)k(=s)y’m™°—.
i J, (B = s)k(=s)y'm™—

By the definition of F3,

= az(m)x(mf!
I = wr(q)e(0, m)T(X)"(f=q") " Z m1 3 x ) (y) : (2.18)
-1
Here W(m)fx V2= €(0,7). Applying equations (2.16), (2.17), and (2.18) gives the

desired approximate functional equation. O

2.2.3 Dihedral representations

Let 7 be a cuspidal automorphic representation of GL(2, Ag) with conductor f,. We
have the symmetric square L-function L(r, s, Sym?) given by an Euler product with

local factors
Ly(7,s,Sym?) = (1 — a20™*) "1 — a,Bv )11 — B2~ %) !

for primes v with v f f; and A,(7) = {ay, 3,} the diagonal representatives of the
conjugacy classes attached to m,.

By [GJ78], there exists an isobaric automorphic representation Sym? () of GL(3, Ag)
whose standard L-function agrees with L(7, s, Sym?) at least at primes v with v f f;.
We have that Sym?(m) is cuspidal if and only if 7 is dihedral. A dihedral representa-

tion is a representation induced by the idele class character ) of a quadratic extension
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K of Q. If 7 = I2(n) is a dihedral representation then

L(Ig(n),s) = L(1, 5).

Let 7 be a (unitary) cuspidal automorphic representation of GL(2,Ag). Suppose
7 is dihedral, of the form I'2(n) for a (unitary) character n of Cx. We can express
Sym?m as follows (see also [Kril2]). Let 7 be the non-trivial automorphism of the

degree 2 extension K/Q. Note that
" = no © Nk /g, (2.19)
where 7 is the restriction of 7 to Cy. We have
L (m") = mo B 1od, (2.20)

where ¢ is the quadratic character of Q associated to K/Q.
If A\, i are characters of C'x, then by applying Mackey:

1200 B 12(0) = 12(\0) B 1207, (221)
Taking A = g =7 in (2.21) and using (2.19) and (2.20),
T [}Qé(nz) H 1o B 10.
Since 7 X = Sym?(7) Bw with w = 190,

Sym?(m) = I2(n%) B . (2.22)
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2.3 Determination of GL(3) cusp forms by p-power

twists

2.3.1 A simple lemma involving Gauss sums

For an odd prime p, define the sets (following the notations in [LR97])
X = {x a Dirichlet character of conductor p* for some a},

Xy = {x € X()|x has p-power order}.

The characters of X () are called wild characters.

If x € X, then x : (Z/p*Z)* — C* for some a. Note that (Z/p°Z)* =
Z)p*'Z x Z/(p — 1)Z. A character in X, is an element in Xy if and only if it is
trivial on the elements of exponent p — 1.

We denote the integers mod p® of exponent p — 1 by S, and the sum over all

*

primitive wild characters of conductor p* by Zx mod pa-

Consider the set
G(p®) = ker((Z/p"Z)* — (Z/p)*) = L/p" L. (2.23)

Using the orthogonality of characters we get that summing over the primitive

wild characters of conductor p® gives (see [LRI7])

>, X =GP)0s, — G )19s, (2.24)
x mod p

with |G(p®)| = p®~! from (2.23) and dg, the characteristic function of S,.
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The following result for hyper-Kloosterman sums was proved in [Yan98]:

Lemma 2.1. Let p be a prime number, 1 < n < p and ¢ = p® with a > 1. Let a’

2mix

denote the inverse of x mod q and let e(x) := e*™*. Then for any integer z coprime

to p the hyper-Kloosterman sum

€
q

21, wn(mod q)
(20.p)=1

15 bounded by

(

<(n+1Dg"? ifl<n<p—1la>1

< p'/2qn/? ifn=p—1,a>5

< pq"”? fn=p—1l,a=4 (2.25)
< pt2gn/? ifn=p—1,a=3

\Sqnﬂ ifn=p—1a=2.

As a consequence of Lemma 2.1 we prove the following result:

Lemma 2.2. Let 7(x) denote the Gauss sum of the character x. If (r,p) =1, then
the following bound holds:

RO < pe (220

for2 <n <p.

Proof. 1f x is a primitive character of conductor p®, then

p*-1
() =Y x(m)eX /",
m=0
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Let

A=30 X0,

A= [w) ( x(m)emm/p“) ] .

We rewrite the above sum as

then

A= Zi mod [X(r) (Z X(xl)e%rixl/p“) e (Z X(:Bn)ehm"/pa)] .

x1=0 xn,=0
This in turn gives

p*—1 p*—1

A= Z Z ZX o e Ix(z1) - x(xn)e (W) ,

xr1= =0 xn—O

Thus,

p*—1 p?—1

A=Y % [Z;modpax(r’xlwxn)] e (W)

x1=0 =0

which by equation (2.24) gives

p?—1 p?—1
T + n a— / a— /
A=) o) e (—) (9185, (121 -+ ) — P28, (121 - ).

x1=0 xn=0

We get that

p—1
= p?~ 1ZT br, p*) — p*? Z ZT(cr+ipa_1,p“), (2.27)
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where

fL“"""I’l’n_ _f_um/...xl_
ORI ST ),
1, ,Zn—1(mod p®) b

(zi,p)=1

From Lemma 2.1, for (u,p) = 1 and a sufficiently large
T (u, p*)| < p!/*Fetr=D/2, (2.28)
From (2.27) and (2.28) it follows that
4] < pa—l(p _ 1)p1/2+a(n—1)/2 + pa—2(p _ 1)2p1/2+a(n—1)/2‘

Thus |A| < papl/2+a(n—l)/2‘ 0

2.3.2 Non-vanishing of p-power twists on GL(n,Aq)

Here we will show the following result on isobaric sums of unitary cuspidal automor-

phic representations of GL(n, Ag) for n > 3:

Theorem 2.1. Let w be an isobaric sum of unitary cuspidal automorphic representa-
tions of GL(n,Ag) withn > 3 and s,r be integers relatively prime to p. If L(r®x, s)
and L(1'®, s) are entire for all x p-power order characters of conductor p* for some

a, then

S XENOLme s =1 (1-0) EU )

p

where Y. denotes the sum over primitive p-power order characters of conductor p®
and 1 > 3 > Z—jri if ™is an isobaric sum of tempered unitary cuspidal automorphic

representations and 1 > 3 > "T’l in general. Here the elements a,(s/r) represent
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the coefficients of the Dirichlet series that defines L(w,s) in the right half-plane
Re(s) > 1, with a,(1) =1 and ay(s/r) :=0if r [ s.

Let s, be integers relatively prime to p. For 7 an isobaric sum of unitary cuspidal

automorphic representations of GL(n, Ag) define

*

Sor(P®,m,B) =" X(s)x(r)L(m @ x, B), (2.30)

x mod p@

where Y " denotes the sum over primitive wild characters of conductor p®.

Hence, we will show that:

lim Sy (p®, m, ) = % (1 - %) a(g(/sr/)z) (2.31)

for g > Z—jr} if 7 is tempered, and for g > "T’l unconditionally.
Here by 7 tempered we will mean an isobaric sum of tempered (unitary) cuspidal

automorphic representations. If r f s above, then we define a.(s/r) to be zero.

Proof. The following approximate functional equation holds (see Section 2.2.2):

Lixr®x,8) = i a“(”;i?f(m)ﬂ( my )

m=1

T+ wn(p)e0, My ey f 3 ) (T) |

where x is a character of conductor p® and f! is the multiplicative inverse of f,
modulo p®.

Define x such that xy = p*"*. Write

Ss/r(paa 6) = Sl,s/r(paaﬁ) + S2,s/r(pa7ﬁ): (2'32)



where
. = ax(m)x(ms'r) m
Sls/r( aﬁ):p meodpamzl mP F (fﬂ- ) (233)
and
So,s/r(0% B) = P~ we(p?) ZX ot o COTITOO" (™) 70 x
. oo aﬁ—(m)YEir;SIr.f;r)ﬁé (T) ) (234)
m=1 m Yy
Let

Z 0. 8) =5 Y a” <fo) (2.35)

beSa rm=bs(p*)
m>1

Then applying equation (2.24) gives

= A (m m o , o ,
S =7 3 I () [0 ) = 0, ).

and hence

Sl,s/r = ]19 |:Zs/r<paa 6) - p_lzs/r(pa_17ﬁ)} . (236)

If r|s, consider the term in (2.35) with b = 1 and m = s/r. This is a solution to
the equation rm = bs(mod p®) for all a. We will want to set the necessary condition
for this to be the only dominant contribution. If r } s this term will not appear in
the sum and the argument remains as below, requiring the condition that there is
no dominant contribution and that the limit of S,/ (p®, 7, 8) as a — oo is zero.

Now if m # s/r, then m = bs/r + kp®. If k = 0 then b # 1 and since b € S, it
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follows that b > p¥ =1 which implies

m >> pa/(p_l)_

If £ # 0, then m < kp®.

Decompose
Zs/r(paa 5) = El,a + 22,0,7
where
ar(s/r) S
Yia = F 2.
=G () 230
and

=5 ¥ af;)izl)F1< fo) (2.38)

beSa rm=bs(p®)

m>1 m;ﬁs/r
Since Fy (%) =140 (%),
ar(s/r) 1
X a — 1 — . 2.
o= (140 () (239)
Let
1 ifm=bs/r+ kp*
bm,a = / (2.40)
0 otherwise.
Then
. a7r
22,a<<‘ 3 ng )bmaFl(f >‘+‘ 3 b (ﬁ)‘ (2.41)

1<m<alte m>axlte
m#s/r m#s/r
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Define
P —‘ 3 L GOPS ‘and@ —‘ S ar(m)y o (m ‘
2,0 — mﬁ m,adl 1 fﬂ—l‘ 2,0 — me m,al 1 fﬂ—l' .
1Sm<<x1+e m>>x1+e
m#s/r m#s/r

Since Fy (}Z:—z> =1+ 0(af) for m < z'*¢ and F} ( ) < 7 "~ for any integer ¢

and m > x'te

c ar(m) ¢ ax(m)
P27a <L Z Wbm@ and Q2,a Lz ‘ Z m5+t bm,a . (242)
1<m<alte m>xlte
m#s/r m#s/r
If 7 is tempered then by (2.42)
Py < 1t Z M Py e < p a2 P and Q. < ptat TP (2.43)
1<m<azlte
m#s/r
and hence
Yoo < ptal Pt (2.44)

We want Yy, — 0 as a — oo. Substituting with z = pa”(l_“) gives the condition

1

If 7 is not tempered, then applying the Cauchy-Schwarz inequality in (2.42) gives

1/2

x1/2+6 Z |a7r(m)|2

P, << —
2, pa/2 m28

1<m<xlte
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By inequality (2.6) and summation by parts we get
Py, < p 2 hte (2.46)

Write t = t;+1t5 in (2.42), with ¢, ¢, large integers, and apply the Cauchy-Schwarz

inequality:
1/2 ) 1/2
t1+t |ax(m)[? bina
0« oo T bl (3 B
m>>$1+5 m>>ml+€
1/2 1/2
< plitte Z Z |a71'(m)|2 Z 1 (2 47)
m25—|—2t1 (kpa)QtQ :
> (1+¢€) log(x) 20— 1<m<2¢ k>>m;:5
Using (2.6) gives
Qa0 < p a7t (2.48)
and hence
Yoo L p VPt Pte (2.49)
Since we want Xy, — 0, we get the condition
1
v>1— ——m——. (2.50)
2n(l — B +¢)
For v as above,
. p—1 CLW(S/T‘)
lim Sy /. (p*, B) = . 2.51
a1—>1£10 1,5/ (p ﬂ) ])2 (8/7”)6 ( )

In (2.34) write
‘52,8/7“‘ < A2,s/r + B2,s/r> (2.52)
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where
A oy = —a, —anf3 |aﬁ(m)|F T ‘ * — / / n ’ 253
= % e () [ Wm0 | (259
and

Basjr =p~"p"" Z Pc;zl B (%) ‘Zi(modpa)Y(mslrf’lf)Tn(X)”' (2:54)

m>>y1+e

1—B—¢
If 7 is tempered then |az(m)| < m. Also, Fy ( ) < 1+< ) form < y'*
which gives F, < > < y 1= Applying Lemma 2.2,

yte
|Ag /e < pap amBpl/2Halnt1)/2, €(1=0) Z meth—1
m=1
and hence for any € > 0
|Ag /e < panBran=1)/2)+8 (2.55)

Assume now that 7 is not tempered. By the Cauchy-Schwarz inequality we obtain

1/2

—a, —anf, € ’aﬁ'(m)|2
Avapel < p™ ™™y | D | X

m<<yl+e

’ <m_oo ( )‘meodp (ms'r £1)7 ()

> 1/2

where
1

H(u) := AT
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A simple computation shows that

|az(m)|” e
Z W < y% 1+. (256)
m<<yl+€
Thus,
o N\ 2
B—1/2+€, —a—anf @ ‘ * — Ioopl\.n
gl < 724 (_Z H ()30 X270 ) .
(2.57)
Define
m * _ n 2
D=% H<§> ‘meodpa (ms'r L) (x)| - (2.58)
We have
* * n n( - — /.. ¢l m
D&Y S [0 @) S s ()|

m=—00

Following the general approach of [Luo05, War|, we consider the diagonal and off-

diagonal contributions separately. The terms corresponding to xy = v give:

S 0@ 3w () e 3 (M)

m=—0Q0 m=—0oQ y

since there are < p® primitive p-power characters and since |7 ()| = p*/? from the
properties of the Gauss sum of a primitive character. Using the Fourier transform

property F{g(zA)} = 4§ (%) for A > 0 (see also [Luo05, War]) we get that

(e 9] [e.9]

3 H<%> =y > T(y).

m=—oo v=—00
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Function T'(v) is the Fourier transform of H(m) and is given by T'(v) = ="l and
hence ), H <%> < y. Note that we have used the Poisson summation formula.
Thus the contribution to D is < ptmay.
For the terms in D that have x # 1, even if x and v are primitive the product

X¥ may be non-primitive because the conductors are not relatively prime. We have

that for g : Z/qZ — C:

> s (2)= X o0F (1) = 3 at-nfw)

m=—00 b mod ¢

where F(z) =% f(v)e 2" Applying this in our case,

V=—00

= _ m Y — _ —omivh /o yv
> wimi (%)=L Y (5w ) (%),
m=—00 Y p v=—00 \b mod p® P

The interior sum is < p® since the number of characters is < p®, and for v = 0 it is

zero since Y is non-trivial. Thus,

Y e (M) <u X (%),
m=—o00 y vEZ,v#0 p
Assuming v > % (which will be part of our constraint) gives that y/p* — co. We
have

v 2 1
Yor(®)e 2 !
pa 627ryp -1 Yy

veZ,v#0

2a+na

Putting everything together, these terms of D contribute < p . Thus, we con-

clude that the two contributions for y = ¢ and x # 1 combined give

D < p*tey. (2.59)



29
From (2.57) and (2.59), even if 7 is not tempered,

|A2,s/r| < yﬁ+ep—an,6’+a(n—1)/2. (260)
For m > y'™¢ F, (%) < g@—l for any integer ¢ > 1, and applying Cauchy-

Schwarz’s inequality in (2.54) gives

1/2

—a, —an |aT~F|2 1/2
|Ba,s/r| < p D B?/t Z m2—28+2t D',

m>>y1+e

Using summation by parts and (2.6), as well as the bound in (2.59) gives
| Byoje| gy tepmanfratn=hlz, (2.61)
From (2.52), (2.60), and (2.61) we conclude that
| S50 < yPFepmenttatn=Dl2, (2.62)

We want S 5/r — 0 as a — oco. Taking y = p*™ in (2.62) gives the condition

1—n+2npg

< SnGro (2.63)

If 7 is tempered then we need to check that v satisfies conditions (2.45) and

(2.63). Thus, for a general n, the desired condition is

n—1
n+1

B> (2.64)

If 7 is not tempered, then conditions (2.50) and (2.63) need to be satisfied. This
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gives the condition
n—1

As a consequence of Theorem 2.1, the following non-vanishing result holds:

Corollary 2.1. Let w be an isobaric sum of unitary cuspidal automorphic represen-
tations of GL(n,Ag) with n > 3. There are infinitely many primitive p-power order
characters x of conductor p® for some a, such that L(m ® x, ) # 0 for any fized
B & [%, 1— ﬂ If 7 1s an isobaric sum of tempered unitary cuspidal automorphic

representations then the same holds for any fixed § & [n%l, 1— %H]

Proof. Take s = r =1 in Theorem 2.1 and use the functional equation. Note that if

g > 1, L(m ® x, 8) has an Euler product expansion and hence is nonvanishing. [

A similar nonvanishing result involving p-power twists of cuspidal automorphic
representations of GL(n, Ag) was proved in [War| for 5 ¢ [%H, 1— %Zﬁ] In [BR94]
a nonvanishing result for 3 in the same intervals as in Corollary 2.1 was proved for
all twists of L-functions of GL(n), instead of just for p-power twists. In [Luo05],
the result in [BR94] was further improved to the interval 8 & [2,1 — 2]. Note that
the set of primitive characters of p-power order and conductor p* for some a is more
sparse than the set of characters considered in [BR94| and [Luo05].

It should be noted that for n = 2 Rohrlich [Roh84] proves that if f is a newform of
weight 2, then for all but finitely many twists by Dirichlet characters the L-function

is nonvanishing at the center.
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2.3.3 Determination on GL(3) cusp forms

We show the following result on the determination of isobaric automorphic represen-

tations of GL(3) over Q:

Theorem 2.2. Suppose w and 7" are two isobaric sums of unitary cuspidal automor-
phic representations of GL(3, Ag) with the same central character w. Let X&’)) be the
set of p-power order characters of conductor p® for some a. Suppose L(m ® x,s) and
L(n' ® x, s) are entire for all x € X&’J,), and that there exist constants B,C € C such
that

L(r®x, ) = B*CL(7" @ x, ) (2.65)

Jor some fized 1 > 3 > 3 2 and for all x € X*, primitive p-power order characters

(p),a
of conductor p* for all but a finite number of a. Then w = 7’. Moreover, if m and 7’
are isobaric sums of tempered unitary cuspidal automorphic representations then the
same result holds if (2.65) is satisfied for some fized 1 > 3 > 3 (if the generalized

Ramanugjan conjecture is true this condition is automatically satisfied).

Note that in [MS] a result was proved concerning the determination of GL(3)
forms by twists of characters of almost prime modulus of the central L-values. In
our case, we twist over a more sparse set of characters.

Let 7 € A,(3) be an isobaric sum of unitary cuspidal automorphic representations
of GL(3, Ag). The local components 7, are determined by the set of nonzero complex
numbers {ay, B¢, v¢}, which we represent by the diagonal matrix Ay (7).

The L-factor of m at a prime ¢ is given by

L(m, 8) = det(I — Ay(n H (1— gl ™) 11— Bl 5) 11—yl ™%)71. (2.66)
7j=1
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Let Sy = {¢ : m, unramified and tempered}, and let S; = {¢ : 1, is ramified}. Note
that S; is finite. Take the union

S:SOU51U{OO}.

Since 7 is unitary, m is tempered iff |oy| = |5e] = |7¢] = 1.

Lemma 2.3. If( ¢ S then
Ag(m) = {ult, ul™" w}, (2.67)
with |u| = |w| =1 and t # 0 a real number. If £ € Sy then
Ay(m) ={a, 8,7}

with || = |B] = |y = 1.

Proof. Suppose first that £ ¢ S. We may assume that |ay| # 1. Then a, = uf?, for

some |u| =1 complex and ¢ # 0 real. By unitarity,

{6573&76} = {0[21755177;1}'

Clearly @, # o, '. Without loss of generality, take 3, ' = @,. This gives 8, = u- (7.

So, we must have 7, = 7, ', hence 7, = w with |w| = 1. Thus
Aglm) = {ult, ut )

with |u| = |w| = 1.

Now suppose that ¢ € Sy. Then |ay| = [5e] = || = 1. O
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Proof of Theorem 2.2. Let T = {{|m, or 7, is ramified}. This is a finite set.
Consider ¢ ¢ T an arbitrary finite place with ¢ # p. Let A,(7) = {a, B¢, v¢} and
Ay(n") = {ay, B, 7} Applying Theorem 2.1, a.(n) = B*Can(n) for all (n,p) =1
and all but finitely many a. Since a,(1) = a. (1), we conclude that B = C' = 1.
Thus, a.(¢) = a({).
We want to show that A;(m) = A;(7’). Indeed,

o+ Be+ e = oy + B+ (2.68)

and since m and 7’ have the same central character

auBeve = By (2.69)

To show that {ay Be,ve} = {, 5}, 7}, by Vieta’s formulas (cf. [Vie]) and the

above two relations, it is enough to check that

/

B + aye + Beye = aqBy + vy + Beve

Suppose Ay(m) = {wl’, ul~" w} with |u] = |w| = 1. Then

~ 1 1 _ w+ u(lt + 7
azﬁzz+%%+5ﬂz:U2+Uw(€t+€ t>:_2+_(£t+£ t>: (2 )’
u uw uw
and hence a8, + apye + Beye = —O‘zggjﬁ

Now suppose that Ay(7) = {ay, Be, ve} with |ay| = |5e] = |7¢| = 1. Then

1 L 1 I o+ 8+
afe  ouye Beve wbeye

e+ aye + Beve =
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Thus, whenever ay + B¢ + v = o + B, + 7y and o SBeye = a;58,)7,, we obtain that
By + awye + Beve = By + g + B
We have thus shown that for ¢ & T'U {p} U {0}, Aj(m) = Ay(n’), and hence
e = m. Since T'U {p} U {oo} is a finite set, this implies that # = 7’ by the

Generalized Strong Multiplicity One Theorem. O

Let 7 be a unitary cuspidal automorphic representation of GL(2, Ag) with Ay(7) =
{ag, Be}. At an unramified place ¢, it has a = a4 + B, and central character
w(wy) = apfy, with wy the uniformizer at ¢. There exists an isobaric automorphic

representation Ad(m) of GL(3,Ag) (cf. [GJ78]) such that at an unramified place ¢,

ag(Ad(ﬂ')) = Oég/ﬁg + Bg/ag + 1.

Using Theorem 4.1.2 in [Ram00], the following is a consequence of Theorem 2.2:

Theorem 2.3. Suppose © and @' are two unitary cuspidal automorphic representa-

tions of GL(2,Aq) with the same central character w. Suppose there exist constants

B,C € C such that

L(Ad(m) ® x, §) = B*CL(Ad(n") @ x, B) (2.70)

for some 1 > § > % and for all x € Xy Primitive p-power order characters of

conductor p® for all but a finite number of a. Then there exists a quadratic character
v such that m 2 7' @ v. If m and ' are tempered then the same result holds if (2.70)

is true for some 1 > 3 > %

Proof of Theorem 2.3. Theorem 2.2 implies that Ad(w) = Ad(n’). Then, by Theo-
rem 4.1.2 in [Ram00], we deduce that since 7 and 7’ have the same central character,

there exists a quadratic character v such that 7 & 7’ ® v. O
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2.4 Application: Adjoint p-adic L-function of an

elliptic curve

2.4.1 Complex adjoint L-functions of an elliptic curve

Let E/Q be an elliptic curve with conductor N given by a global minimal Weierstrass
equation over Z:

y: + a1y + asy = 22 + ax® + asx + ag. (2.71)

Define the complex L-function of E by the Euler product for Re(s) > 3:

1 1
L(E, s) = };V[ 1—a,r—s Tl;][\f 1—apr—s+4ri=2s’
where a, = r+1—#E(F,) if rfN. If r|N then a, depends on the reduction of £ at
r in the following way: a, = 1 if E has split multiplicative reduction at r, a, = —1 if
E has non-split multiplicative reduction at r» and a, = 0 if F has additive reduction
at r.

Let f be the holomorphic newform of weight 2 and level N associated to E. The
Fourier coefficients ¢, of f at r /N prime coincide with the coefficients a, in the Euler
product of F and the L-function of F is given by

L(E,s) = Z cpn”’.

n=1

If A(E,s) = N*/?(2r)~*I'(s)L(E, s), then the following functional equation holds:

A(E;s) = £A(F,2 — s),



36

where the sign varies, depending on FE. If we associate to f a unitary cuspidal
automorphic form 7 of GL(2,Ag) with trivial central character and conductor N

then we want to have L(7, s) unitarily normalized by setting
—s—1/2 1
L,(m,s) = (2m) L{E, s+ 5 )

We define the complex L-function associated to the symmetric square of an elliptic
curve in the following way (cf. [CS12]). Let [ be an odd prime number. Take E[i"]
to be the ["-torsion and

T(E) = lim E[I"]

to be the l-adic Tate module of E. Consider the V)(E) = T)(E) @z, Q;, which is
2-dimensional over Q;. There is a continuous natural action of Gal(Q/Q) on V. Let

Y(F) = Sym?*H} (E), where H!(E) = Hom(V;(E), Q). Consider the representation
o Gal(Q/Q) — Aut(Xy(E)). (2.72)
The L-function of Sym?(E) is given by the Euler product

L(Sym’E,s) = [[ Pt (2.73)

r prime

in the half-plane Re(s) > 2. The polynomial P,(X) is
P.(X) := det(1 — py(Frob, ) X|Z)(E)"), 1 #, (2.74)

with I, the inertia subgroup of Gal(Q,/Q,) and Frob, an arithmetic Frobenius ele-
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ment at r. By the Néron-Ogg-Shafarevich criterion we have that
P(X) = (1-aiX)(1 - BX)(1 - rX)

when E has good reduction at r (see [CS12]). The elements «,. and 3, are the roots
of the polynomial
X?—a,X +r

with a, the trace of Frobenius at r.

Let L(Sym?E, x,s) denote the L-function associated to the twist of the l-adic
representations by a Dirichlet character y. Note that L(Sym?E, x,1) = 0 for y odd
(cf. [DD97]). The critical points for Sym?E are s = 1 and s = 2.

Let x be a primitive even Dirichlet character with conductor ¢,. Let C' denote the
conductor of the [-adic representation (2.72). If 7(x) is the Gauss sum of character

X, define

_ er T
W(x) = x(O)cy )

Then, by Theorem 2.2 in [CS12], which is based on results in [GJ78], if the conductor
N of E satisfies (¢y, N) = 1, then

S S
A(Sym?E, x;5) = (C - &)"*(2m)*n 3T(s)T (5 ) L(Sym?E, x. )

has a holomorphic continuation over C and satisfies the functional equation

A(Sym*E, v, s) = W()A(Sym*E, 3 5). (2.75)
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2.4.2 Adjoint p-adic L-functions of an elliptic curve

Fix p an odd prime and let E be an elliptic curve over QQ with semistable reduction

at p. We now describe a construction of a p-adic analogue to L(Sym?FE,s) by the

Mazur-Mellin transform of a p-adic measure ji, on Z as introduced in [DD97].
Consider the real and imaginary periods of a Néron differential of a minimal

Weierstrass equation for E over Z which we denote by Q*(E). Let
QT (Sym?E(1)) := (27i) QT (E)Q ™ (E) and QT (Sym*E(2)) := 2miQT (E)Q (E)

be the periods for Sym?E at the critical twists. In [DD97] two p-adic distributions
pp(QH(Sym?E(1))) and u,(QT(Sym?E(2))) are defined. In this thesis we will use
the latter distribution.

Let X, be the set of continuous characters of Z; into CJ. For x € X, let p™x
be the conductor of x. Since Z) = (1+pZ,) x (Z/p)*, we can write X := X, as the
product of X((Z/p)*) with Xy = X(1 + pZ,). The elements of X, are called wild
p-adic characters. By Section 2.1 in [Vis76] we can give X, a C,-structure through

the isomorphism of X to the disk
U={ueC)llu—-1] <1} (2.76)

constructed by mapping v € Xy to v(1 + p), with 1 + p a topological generator of
1+ pZ,,.

We follow the definition of the p-adic distribution 1, (Q*(Sym*FE(2))) on Z¥ in
[DD97]. Suppose E has good reduction at p. Let x € Xy be a non-trivial wild p-
adic character, with conductor p™x which can be identified with a primitive Dirichlet

character. Then given a,(E) the root of X? — a,X + p with a, the trace of the
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Frobenius at p, we define

L(Sym?*E, x,2)
Qt(Sym2E(2))

[ 3l @ Sy B)) = (B2 o (277)

P

If E has good ordinary reduction at p then the distributions p,(Q*(Sym?FE(2))) are
bounded measures on Z;. If E has supersingular reduction at p then the distributions
pp (U (Sym?E(2))) give h-admissible measures on ZX, with h = 2. Note that the set
of h-admissible measures with h = 1 is larger, but contains the bounded measures.
Now suppose that E has bad multiplicative reduction at p (either split or non-

split). Let x € X, denote a Dirichlet character of conductor p™x as above. Then

L(Sym*E, x,2)

dp, (2 2E(2))) := 7(x)*p™ - 2.
[ @ St B@) = 7 GRETERSS(278)
and the distributions 1,(Q*(Sym?®E(2))) are bounded measures on Z.
Consider i an h-admissible measure as above. Then
X = Lu(x) 22/ xdp (2.79)
Zy

is an analytic function of type o(log™) (cf. [Vis76]). Note that for an analytic function
F to be of type o(log") it must satisfy

sup [|[F(u)|| =0 < sup |log£‘(u)\> for r — 1_.

lu—1|p<r lu—1|p<r

Consider the p-adic distribution p = u,(Q"(Sym?E(2))) as defined above. De-
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note by L, the corresponding p-adic L-function. We have
LySym*Eox.s) = [ x(a)(a)dn,
Zy

where (-) : Z) — 1+ pZy, (x) = 575, with w : Z — Z5 the Teichmiiller character.

w(z)?

2.4.3 Main result on the determination of elliptic curves

We now prove the main result of this chapter concerning the p-adic L-function of the
symmetric square of an elliptic curve over Q. Theorem 2.4 below gives a generaliza-
tion of the result obtained in [LR97] concerning p-adic L-functions of elliptic curves

over Q:

Theorem 2.4. Let p be an odd prime and E,E’ be elliptic curves over Q with

semistable reduction at p. Suppose
L,(Sym?E,n) = CL,(Sym*E’,n) (2.80)

for all (n,p) = 1 elements of an arbitrary infinite set Y and some constant C' € Q.
Then E' is isogenous to a quadratic twist Ep of E. If E and E' have square free

conductors, then E and E' are isogenous over Q.
We first prove the following lemma:

Lemma 2.4. Let p be an odd prime. Let E,E’ be elliptic curves over Q with
semistable reduction at p such that L,(Sym?E,n) = CL,(Sym?E’,n), for an in-

finite number of integers n prime to p in some arbitrary set'Y, and some constant
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C € Q. Then for every finite order wild p-adic character x,
LP(Sym2E7 X S) = CLP<Sym2E/a X 8)

holds for all s € Z,.

Proof. We follow the approach in [LR97]. Let
G(v) = L,(Sym*E,v) — CL,(Sym*E’, v)

for every v € Xy. G vanishes on X; = {«,, = (x)"|n € Y’} by hypothesis; we want to
show that G vanishes on X,. We use the fact that G is an analytic function on X
of type o(log") (as in (2.79)). G considered as an analytic function on U (see (2.76))
vanishes on the subset

Uy ={(1+p)"lneY}.

There exists r = 1/p such that the number of zeros z of G such that |z — 1| =r
is infinite. Indeed, for all n € Y elements in an infinite set with n relatively prime

to p as above, z, := (1 +p)" € U; is a zero of G and

"L /n\ 1
m—1=]1+p)" -1 :‘ ()P] =
et =l -1, = 32 (7)), =
By Section 2.5 in [Vis76], G is identically zero on U. O

Proof of Theorem 2.4 in the non-CM case. By Lemma 2.4, for every finite order wild
p-power character y, the identity

L,(Sym®E, x, s) = CL,(Sym*E', x, s) (2.81)



42
holds for all s € Z,,. By equation (2.77), if E' has good reduction at p then

ap(E) ™ L(Sym*E, x,2) = C'a,(E') ™ L(Sym*E', x, 2) (2.82)
for some ¢’ € Q. If E has bad multiplicative reduction at p, then by (2.78),
L(Sym?E, x,2) = C'L(Sym*FE’, x, 2). (2.83)

Let 7 and 7" be the unitary cuspidal automorphic representations over GL(3, Ag)

/

associated to Sym?E and Sym?E’ respectively. Then the unitarized L-functions
L, corresponding to 7 and 7’ satisfy L,(m,s) = L(Sym?E,s + 1). Thus, if E has
semistable reduction at p, from (2.82) and (2.83) there exist constants Cy,Cy € C
such that

Lir®x,1) = Ci0y" L(' ® x, 1)

for all wild p-power characters x of conductor p”x with m, sufficiently large. Then
by Theorem 2.2, we conclude that 7 = 7’ and thus Ad(n) = Ad(n’) where n and
n' are the unitary cuspidal automorphic representations of GL(2,Q) associated to
E. By Theorem 4.1.2 in [Ram00] we conclude that ' = n ® v with v a quadratic
character since w, = w,y = 1. Write v/(-) = (). It then follows by Faltings’ isogeny
theorem that E’ is isogenous to Ep, where for the elliptic curve E given by the
equation y* = f(z) we have that Ep is given by the equation Dy? = f(x). Clearly

if the conductors of £ and E’ are square free, then F and E’ are isogenous. ]

An elliptic curve E over Q is of CM-type if End(F)®Q = K, with K = Q(v/—D)
an imaginary quadratic number field. We have that L(E,s) = L(n,s—1/2) for some
unitary Hecke character n of the idele class group Ck. Let m = I}%(n) be the asso-
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ciated dihedral representation of GL(2, Ag). Denote by 7’ the cuspidal automorphic
representation Ie(n?) of GL(2,Ag). By (2.22) we have

L(Sym?n,s) = L(x', s)L(no, 5),
where 7y is the restriction of 1 to Cy. Twisting by some character x gives
L(Sym*m @ x, s) = L(7' ® x,s)L(no ® X, ).
Note that L(7" ® x,s)L(no ® X, s) is entire unless 1y ® x is trivial, in which case
L(Sym*m @nyt,s) = LT @1, 8)((s)

has a pole at s = 1. Thus, we have that L(Sym?r ® x, s) is entire unless x = n,*.

Proof of Theorem in CM case. Let m and 7’ be the isobaric sums of unitary cuspidal
automorphic representations over GL(3, Ag) associated to Sym?E and Sym?*FE’ re-
spectively. Just as in the non-CM case, it follows that if £ has semistable reduction
at p we have that

Lir®x,1)=CiCy*L(' @ x,1)

for all wild p-power characters x of conductor p™x with m, sufficiently large and by
the discussion above, the twisted L-functions are entire. Then by Theorem 2.2 we

conclude that 7 = 7/, and the proof proceeds as in the non-CM case. O
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Chapter 3

Average result for the degree 4
L-function on GSp(4) using the
relative trace formula

3.1 Introduction

The relative trace formula was first introduced by Jacquet to study period integrals of
autormorphic forms, which can be in some cases related to values of L-functions. The
trace formula, in the usual and relative versions, is most commonly used to prove
functoriality. In such situations, one compares the geometric sides of the relative
trace formulas for two different groups. The idea is to show that the relative traces
for these two groups are equal with respect to suitably chosen test functions, without
actually computing either geometric side. The equality of the relative trace formulas,
together with some global work, has allowed the proof of several cases of functoriality
of automorphic representations.

However, another way the relative trace formula can be used is to fix just one
group and explicitly evaluate the geometric side and then deduce results for the

spectral side. The difficulty of this method lies in computing the geometric side,
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which in general can be very hard to do. In my case, I identify the spectral side
with an appropriate weighted average of L-values at the center and then work on
explicitly evaluating the terms that appear on the geometric side. I want to show
that there exist leading terms that are nonzero in a suitable limit.

A holomorphic cusp form 7 on GSp(4)/Q gives rise to a holomorphic differen-
tial form w on the Siegel threefold X, for instance, when 7 has scalar weight 3, w
is a (3,0)-form on X. The holomorphic cuspidal automorphic representations on
GSp(4, Ag) are not generic, since at the infinite place the holomorphic discrete series
do not admit a Whittaker model. Piatetski-Shapiro [PS97] gave a Rankin-Selberg
type integral construction for the degree 4 L-function of automorphic representations
of GSp(4) which works for representations that are not necessarily generic.

Using the integral representation I will define a suitable relative trace formula
whose spectral side is an average of twisted central L-values of holomorphic Siegel
eigenforms weighted by Fourier-Bessel coefficients.

Let G = GSp(4)/Q and let Z denote the center of G. Fixing an imaginary
quadratic field F', I consider a relative trace formula of G with respect to H x U,
where H is the group of matrices in GL(2)/F with rational determinant and U is
the unipotent radical of the Siegel parabolic subgroup. More precisely, I consider the

linear functional

1= | [ K,
Z(AH(@Q)\H(A) JU@Q\U(A)

where £¢(h) is an Einsenstein series on GLy/F, 9 is a nontrivial character of U(Q)\U (A)
and K7 is the kernel associated to a convenient test function f € C*(Z(A)\G(A)).
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The linear functional can be written as
I(f)=>_1( ),
5

where the sum is over the double coset representatives § € H(Q)\G(Q)/U(Q), with
H=27\H and G = Z\G.
In Section 3.4 we show that there are two types of cosets indexed by parameters

A p, it € Q with A # 0 and p # 0 given by

1 0 00 0 0 u p

0 0 0 \ 0 0 0 1
n(\) = and {(p, p) =

0 0 XA O 1 0 00

0 -1 0 0 p —pu 00

In Section 3.6, I argue that the leading contribution comes from the double cosets
£(0,1) and the oscillating contribution comes from the double cosets &(p, 1) with p €
Z\ {0}. The remaining double cosets have a contribution of zero for an appropriate
choice of data.

I am currently working towards showing that the oscillating terms have an overall
smaller contribution than the leading terms. This can be done by taking a fixed
weight at infinity, say £k = 3 and verifying that under the variation of the prime
parahoric level N, the leading terms is nonzero as N — oo.

The ultimate goal would be to prove the following non-vanishing result:

(x) Fix a Siegel weight £ > 3. Then for a suitable fixed character xq, there ex-

ist infinitely many genus 2 holomorphic Siegel eigenforms 7 of trivial central
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character and weight k such that
L(m ® x0,1/2) # 0.

as we vary the level N — oc.

Alternatively, I expect the procedure to work when fixing a suitable level N > 1 and
varying the weight £ at infinity.

I now give an outline of the rest of the chapter. In Section 3.2 I give a detailed
description of the relative trace formula, as well as other relevant notions necessary
to set up the problem, such as the integral representation for the degree 4 L-function.
In Section 3.3, I present a suitable test function, and compute its value at the archi-
median place. In Section 3.4 I compute the double cosets, while in Section 3.5 I show
that the relative trace formula gives a desirable weighted average of central L-values
on the spectral side. Finally, in Section 3.6 I express each I(4, f) as a (sum of)
factorizable integrals and determine which terms contribute to the sum with respect
to the double coset representatives. The results obtained thus far are summarized in

Section 3.7.

3.2 Setup

3.2.1 GSp(4) and its subgroups

Let G = GSp(4) = {g € GL(4) : I\(g9) € GL(1) ¢'Jg = A(g)J}, where
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The map A : G — GL(1) is called the multiplier homomorphism. Its kernel is the
symplectic group Sp(4). If we let

A B
g = ed
C D

be an arbitrary element, then the blocks A, B, C and D satisfy
C'A= A'C, D'B = B'D and D'A — B'C = \I. (3.1)
The strong approximation theorem gives

GSp(4,A) = GSp(4,Q)GSp(4,R)* [ ] K. (3.2)
p<oo
where GSp(4,R)™ is the subgroup of elements of GSp(4, R) with positive determinant
and K, = GSp(4,Z,).
The Weyl group of G is the dihedral group with eight elements. G has three
standard parabolic subgroup: the Borel subgroup B, the Siegel subgroup P, and the
Klingen subgroup (). The Borel subgroup B has Levi decomposition

( 3\
a 1 «x 1 s t
b 1 1 ¢t u
B = ,
Aa~t 1 1
b1 —x 1 1
\ /
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while P has the Levi decomposition P = MU with reductive part

A
M = |A € GL(2,Q),\ € Q*
A (A7)
and
I, X
U= P | X € Sym2(Q)
2

the unipotent radical.

Proposition (Bruhat decomposition) We have

G = PP U Pw, P U Pw,P, (3.3)

where P is the transpose of the Siegel parabolic and

w; = ) Wy =
-1, 0

o o O
o o O

o = O O

o O = O

The subgroup P of G is given by the Levi decomposition P = MU where

— I, 0
U= Y € Syms(Q)
Y L
Proof. See for example Section 4.1 in [FS03]. O

Let F = Q(\/;l) be a quadratic imaginary field with d a square-free integer.
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Consider the group
H ={h € GL(2, F)|det(h) € Q*}. (3.4)

For x = (x1,23),y = (y1,42) € F? we consider a skew-symmetric form
p(r,y) = TTF/@(951?J2 — Ty1).
We can then define
GSp, = {9 € GL(4,Q)|p(zg,y9) = Ng)p(z,y)}.

Since H preserves p up a factor in Q*, more precisely p(zh,yh) = det(h)p(z,y) for

h € H, there exists a natural embedding
H — GSp,,.

By Proposition 2.1 in [PS97], there exists an isomorphism ¢ : GSp, — GSp(4)
satisfying certain properties. The map ¢ is defined on H by

a bhd 2 &
ai + bl\/a as + bz\/a . b1 ap %2 %
as + b3\/3 ay + b4\/8 261,3 2b3d Qg b4

2b3d 2a3d b4d ay

The above map can be viewed in terms of a change of basis. Indeed, consider the

linear transformation 7' : F? — F? defined on the standard basis elements {e;, e5}
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of F? as a F-vector space:
T(er) = (a1 + biVd)er + (a3 + bsVd)es

T(e3) = (ag 4 byVd)ey + (ag + byvd)es.

Then
a1 + 51\/3 as + 52\/8

as + bg\/a as + b4\/a

is the matrix associated to this linear transformation with respect to {ej, es}. Fur-
thermore, assume that det(A) € Q*. This implies that a,bs + byay — asbs — byag = 0.

Consider the basis of F? as a 4-dimensional Q-vector space given by { f1, fo, f3, f1}
with fi = eq, fo = e1Vd, f3 = 2 fa= 2%. The matrix of 7" in the basis { f1, fa, f3, fa}

is then

aq bld L by

=al

2
a2
2 [ e GSp(4). (3.5)
2&3 2b3d ay b4

2b3d 2a3d b4d ay

2
by a1 %

From now on we let H be the subgroup of GSp(4) consisting of matrices as in
(3.5) with

alb4 + b1a4 - Clzbg — b20/3 =0.
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3.2.2 Holomorphic Siegel eigenforms of degree 2

Just as before, we let G = GSp(4) and we consider the space L?*(G(Q)\G(A)) of
measurable functions ¢ : G(A) — C that have the property that

p(2v9) = p(g) for all z € Z(A),y € G(Q),g € G(A)

and such that fG(Q)\G(A) lo(g)]?Pdg < oco. We say that a function ¢ in this space is
cuspidal if for any parabolic subgroup P with Levi decomposition P = MU we have

/ o(ug)du = 0.
U(Q@\U(4)

The subspace of cuspidal functions is denoted LZ(G(Q)\G(A)). The right regular
representation of G(A) on L3 decomposes as a direct sum of cuspidal automorphic
representations of G(A).

A holomorphic cuspidal Siegel eigenform of degree 2, weight k£ > 3 and level N
generates a cuspidal automorphic representation of G(A) with the property that 7.,
is a holomorphic discrete series Dy, with scalar minimal K-type 7j . This means that
the Harish-Chandra parameter of 7 is (k — 1,k — 2).

The maximal compact subgroup of G(R) is

Ky = 4 B cA'A+ B'B=1and A'B=DB'A} - {A—iB} e U(2).

-B A
We have that 7, is an irreducible representation of K., = U(2) with highest

weight (k, k). Then we must have that 7, 2 det®. We let vy be a lowest weight (unit)

vector which generates the minimal K-type 75 . This will be computed explicitly in
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Section 3.3.
For a finite place v of Q, we let K, = GSp(4,Z,) with measure normalized such

that meas(K,) = 1, and if N is a positive integer, we define the subgroup

A B
Ko(N), = € K,|C = 0(mod NZ,) (3.6)
C D
and then consider
Ko(N) =[] Ko(N).. (3.7)

v<oo
Note that if v is a place prime to N then Ky(N), = K,.

For a cuspidal representation 7 of G(A), we can write m = 7o, ® Tg,, With 7, a
representation of G(Agy,). We let Si(N) denote the subspace of cuspidal representa-
tions of G(A) given by

SiN)= P Cuwem®, (3.8)

Too=D}
Ko(N)

Tin 7£D

where ﬂgf’(m is the space of Ky(N)-fixed vectors in 7gy,.

We have that the forms in Si(/N) are exactly the classical holomorphic Siegel
eigenforms of weight & and level N (see for example [ASO01]).

A fact that will be useful later on is that for an automorphic form ¢ on G(A) we

have a Fourier expansion (see [PS97]):

p(g) = > Pu(9), (3.9)

1 character of U(A\U(A)
1) nontrivial
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where the Fourier coefficients are given by

oo(g) = / (g (u)du. (3.10)
U@Q)\U(A)

3.2.3 Principal series of GL(2) over a local field

Let F be a local field with ring of integers O and p the maximal ideal of O. Let x1, x2
be characters of F' and let V' (x1, x2,s) for s € C be the space of locally constant
functions ¢, : GL(2, F') — C such that

s+1/2

. - ?s(9)-

Os g le(a)m(b)’g
0 b

Let the action of GL(2, F) on this vector space be g.¢s(x) = ¢s(xg). This gives an

admissible representation. Also note that

V(X17X2>S)v = V(X1_1| ' ’_2S7X2_1’ ’ ‘2873)-

We have that V(x1, X2, s) is irreducible if and only if x1x5" # |- [F172. If xixy ' =
| - ]172% then V(x1, X2, 8) is a twisted Steinberg representation.
If V(x1,Xx2,s) is irreducible then it is called a principal series. We have that

two irreducible representations V' (x1, x1,$) and V(x}, x5, ') are equal if and only if

xil 1P = x40 1¥ and xo| - |7 = x4| - |7 or vice versa.
Let
a b
a(n) = € GL(2,0p) :cep”andd e 1 +p"
c d

If 7 = V(x1, X2, ) then the conductor ¢(7) of 7 is the minimal n such that V72" £
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{0}. The space V'2((™) is I-dimensional. The conductor of 7 is the sum of the

conductors of y; and ys.

Lemma 3.1.

where

for 0<i<n-—1and~, = I, Here B denotes the standard Borel subgroup of
GL(2) and @ a uniformizer for O.

Proof. If v(c) =i > 0 then we have that

a b AN R ¢
c d d] \@® 1 1

If v(¢) = 0 then

a b “_p a+ (b— ) (1+w") 1 l+@" (1+=")¢-1

c d c 11 —o" 1 — o"d

To check that the union is disjoint, consider ¢ # j, with 0 < ¢ < j < n and

suppose
a m 1 0 B 1 0 k1 ko
0 b))\ 1) \w 1) \ky ki)’
with
ik € Ta(n).

ks k4
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This gives

a—+ mwi - kl? m = qu bwz = klw] + kg and b = l{?gwj =+ k/’4,

From the last two equations we get that kow’™ + kyw' = ki’ + ks, which is a
contradiction, because since ky € 1 4 p™ and k3 € p”, and hence the left hand side
has valuation 7, while the right hand side has valuation at least j.

]

Consider a principal series representation V'(x1,x2,s). Let n; and ny be the
conductors of y; and y» respectively, and assume ny > ny > 0. Let n =ny +ny. A

nontrivial I'y(n)-invariant vector is given by (see for example [Sch02]):

)
s+1/2 . a x 1
x1(w™)g"* if g € [y(n)

xi1(a)x2(b) &

0 if g & B((’)) Iy(n),

where ¢ = |O/p| is the size of the residue field.

3.2.4 Eisenstein series on GL(2) over a quadratic field

Let ' = Q(v/d) be a quadratic field, (x1,x2) a pair of characters of F*\AY and
s € C. Let V(x1, x2,s) denote the representation of GL(2, Ar) by right translation
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on the space of classes of functions ¢, satisfying

s+1/2

“ 2 bs(g)

bs g =><1(a)><2(b)‘5
0 b

and

gzﬁs(k;)‘zdk: < oo,

J

with I' = [[, I, the maximal compact subgroup of GL(2, Ap).
We can view V(x1, x2,5) as a fibre bundle over the space of pairs (x1,x2). By

Iwasawa decomposition, V' (x1, x2,s) can be viewed as the subspace of functions in

L*(T) such that

a|s+1/2

b

Ps k| = xi(a)xa(b

for all £k € I" and

a x
cl.

0 b

For ® € S(A%) a Schwarz-Bruhat function, the function

6.9) = aldet g)det g [ BN G 00 (312)

Ip

is in the space V(x1, x2,$), and we can define the corresponding Eisenstein series

which converges for Re(s) > 1 as

)= Y. 9 (3.13)

~veB(F)\GL(2,F)

where B is the standard Borel subgroup of GL(2).
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3.2.5 The intertwining operator

We continue to use the notations from Section 3.2.4. We write ¢, = ®¢,, and for

each place v we define the local intertwining operator to be

Av(sa w0>¢s,v (g) = 9258,@ (wOng)dn>
Ny
with
1 %
N =
1

the unipotent subgroup of GL(2) and
Wy =

We let
M(s) = @, A, (s, wp).

As a consequence of the theory of Eisenstein series, M (s) extends to a meromor-
phic function on C with a finite number of simple poles.

Using (3.12) we get

M<S)¢s(g) = ¢5(wong)dn

Ny

= aldet g)ldet g [ [ @t migleving (O dn
rJIp

= x1(det g)|det gIS“/Q/

Ir

(/AF ‘I’[(t»”)g]dn> 1% g L (£)d .
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We have
s+1/2
X1,0(det g)\det g‘vJrl 2541 -1 x
Osw(Gy) = = — D(0,8)g] |t X1,0X2,(t)d 7T
(90) L2+ Lawg)) e [(0,2)g][t] 20(t)
and hence

X1.0(det g)|det g|f,+1/2

L(25+ 1, X1,0X2,)

<[] el tnglit O dn
F, JFE}

AU(S7 w0)¢s,v(gv) = Xl,vxg,i(_l)

which, after the change of variables n — t~!n, gives

X1o(det g)|det g3
L(2s+1, Xlﬂ,xz_ﬂlj)

< [ ot maian] v oan

v

Av(57 w0)¢s,v (gv> = Xl,vXQ_ﬂl;(_l)

Let @'(t) := [, ®[(t,n)g]dn. Then we have:

Fy

X1.0(det g)|det g|i+1/2

L<2S + 17 Xl,vXE,};)

Ay(5,w0) P50 (gv) = XLUXE,M_U Z(q)la Xl,vX2_,zln 2s).

But by Tate’s thesis

Z((Isla Xizl)X2,v7 1 - 25)
L(1—2s, X7 aX20)

Z((I)lv XLUX;,'})J 28)

= 6<287 XI,UXQ_ﬂlﬂ Uv) L(2S i X_l)
) YWA20

Note that for almost all v, €(2s, Xl,sz_ﬂanv) =1 for a fixed v,. From the above we

get

L(287 Xl,vX2_,11)>

Av S, W s,o\Gv) =
(5, w0)0u0l90) = 7o L X1,0X2,0)€(25, X1.0 X205 Vo)

bs0(9), (3.14)
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where
- _ X1o(det g)|det g[5 ., ~, _
Ps0(g) = Xl,vX2,11;(_1) ) | Z (¥, X1,11,X2,m 1 —2s)

L<1 - 257 Xizl)XQ,v)
X1.o(det g)|det gfs*"/?
L(l - 257 X1_711;X2,v)

= nzh(-1) | O a0l
J ke

(3.15)
Let
a b
9= )
c d
and
(iJ(as):/ O (u)v, (zu)du.
We get

~

Q'(t) = /Fv O (u)v, (tu)du
= //Fg O[(u, v)g|vy, (tu)dudv

= // O (au + cv, bu + dv)v,(tu)dudo.
F3

Taking ' = au + cv and v' = bu + dv gives

- u’d—v’c_ u'd—1v'c
~ad—bc  det(g)

and
S o [Ou oW /ov) [a c
o' [Oou OV /v b d
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Thus,
du/do’

//F2 u' v v, (t(u'd — v'e)(det(g))~ )\det( T

Now, if we let

d(x,y) == /F2 O (u, v)v, (yu — zv)dudw,

we conclude that

() = |det(g)| " @[(det(g)*)(0, t)g].

This gives

X1.0(detg)|detg|s T/

L(l - 257 X1_,11;X2,U)

/FX [det(g)| " @[(det(g) ") (0, )glxroxz (D]t~

X1,0(detg)|detg|s "/

L(1 = 25, X1y X20)
<[ al(detlo) 0.0 a0l
Ff

(bS,v(g) = Xl,vXQ_,zl;(_l)

X

X1,0X20(—1)

Now we do the change of variables t — det(g)t which gives

D g g
5,0 L(l — 28, Xl_ﬂl,XZv)
X/ (i)[((),t)g]Xl_ﬂl)XZ,v(t)’t|1_28X1_»11’X2’U(det g)|det g|2—2stt.
Fy
Thus,

2.(det g)|det g[2/*~*

L<1 - 257 Xl,vXQ,U)

Gonl9) = X1axz (-1 [ #1005 a0l
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Note that the map ¢;, — E#Es\; takes (®, x1.0, X2.0) — (<j>7 Xzo] - |1-2s, Xt - |1+2s).

3.2.6 The degree 4 L-function

The Langlands dual group of G is G = GSp(4,C). Given p a finite dimensional
representation of G, and 7 a cuspidal automorphic representation of G(A), Lang-
lands defined an L-function L(7, s, p) as a certain Euler product convergent in some
right half plane. For GG, we can consider the irreducible representations of dimension
4 and 5, which give the spinor L-function and the standard L-function repsectively.
If for each prime p, the local representation 7, of the automorphic representation
7 has Satake parameters «,, f3,,7,, the degree 4 (spinor) L-function has the Euler

product

L(m, s, ps) = H ((1 - app_s)(l - O‘pﬁpp_s)(l - ap'Ypp_S>(1 - O‘pﬁzﬁpp_s))_l )

while the degree 5 (standard) L-function has the Euler product

Lims,std) = [T ((L=p7) (1= B ™) (1= 5, ) (1 =7} (1 = 3,0 7))
p
In this section, we review an integral representation of Rankin-Selberg type for
the degree 4 L-function that is due to Piatetski-Shapiro [PS97] and that is applicable
even in the case of non-generic representations. In the next section, we will further
review how this integral representation unfolds in terms of a generalized global Whit-
taker model, and how a generalized local Whittaker can be defined, which leads to
construction of the local L-factors. We will use some of the notations in [PS97] for

simplicity.
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We let v be a character of Ip and p and Grossencharacter on Q and consider

s(9) = p(det g)|det g[*+/2 / O[(0, )] |7+ p(ttyv (t)dt,
F
which satisfies the property that ¢, € Indgix, where  is a character of B, defined
by
x 0 t 0

1 n
X = pu() |z (1),
01 0 t 01

The Eisenstein series £ is then defined as in Section 3.2.4. Note that in the notations
of Section 3.2.4, we have that characters p and v correspond to the pair (1, x2) as
follows: u(z) = x1(x) and v=1(t) = x1(t)xa(t).

If p(tt)v(t) # 1 (or equivalently if y; # x2), we have that £? has no poles.

Otherwise, it has a pole at s = —% and s = %
Let m be a holomorphic cuspidal automorphic representation on GSp(4,A), and

consider ¢ € m. We define the Rankin Selberg type integral

Lg: @, i, v, 8) = / ()€ (g: 1, v)dg. (3.16)
Z(A)H(Q)\H(A)

The meromorphic continuation of the Eisenstein series gives the meromorphic con-
tinuation of L(g;®, u,v,s). The twisted L-function L(7,u,s) of m can be defined
to be so that L(L“’(;{:—/’jsy)s) is entire for all choices of v and ®. To do this we describe
in the next section a generalized local Whittaker model introduced in [PS97], which

will allow us to define local L-factors.
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3.2.7 Generalized Whittaker models on GSp(4)

While in the GL(2) case we can define the local L-factors by using a Whittaker
model, a Whittaker model does not exist for holomorphic cuspidal automorphic
representations of G. However, a generalized (local) Whittaker model can be defined,
not with respect to the maximal unipotent U, but rather with respect to another
subgroup R of G.

Let k£ be a local field. Consider a non-degenerate linear form

lp(u) = tr(8X), (3.17)
where
I X
u - )
1

and f € GL(2,k) with ' = f. If we let T be the connected component of the
stabilizer of {3 in M, where M is the reductive part of the Siegel parabolic P = MU
(see Section 3.2.1) then there exists a unique semisimple algebra K over k such that
(K : k) =2 and Ts = K*. In each orbit of M we can find a representative lg

corresponding to

™
I

Y

—d

with a d square free integer. Then K =k @ k if d =1 and K = k(\/d) if d # 1. We

also let

Ng={u€eU:ls(u) =0} and Hs = {g € GL(2, K)|det(g) € k*} .
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If K = k(v/d) we have that

( \
ty  —tod
t 0 —ty t
T/g: te KF ) = 2 ! 3t1+t2\/EEK*
0 ¢ t1 1o
\ tad t )
and
( . m o\ )
2 2
1 ny +neVd 1 2w
N = o~
0 1 1
1
( )

We let Rz = T3U. We omit the index 8 from now on for simplicity. If we take v

to be a character of 7" and 13 a character of U, with

() = to(ls(u)), (3.18)

we can define a character o, of R as

au,w(r) - au,w(tu) = V(t)l/)(U), (319)

where r = tu witht € T"and v € U.
By Theorem 3.1 in [PS97], we have that if 7 is an irreducible smooth admissible
representation of GSp(4, k) and a4 a character of R as in (3.19), then there exists

at most one linear functional (up to scalar multiplication) [ : V; — C such that

l(m(r)v) = ayu(r)l(v), (3.20)
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for all r € R(k) and ¢ € 7. In addition, Howe showed that if & # C then a functional
as in (3.20) always exists for 7 an infinite-dimensional representation, and that for
k = C the only exceptions are the Weil representations.

For v € V. define the generalized Whittaker function

and let W% be the space of generalized Whittaker functions. We can define the
representation by right translation on this space. We have 7 = W"¥ and for r € R

and v € V,
Wo(rg) = awy(r)Wy(g).

For W € W¥"¥_ 11 a character of k* and ® a Schwarz function on K? define

LW, ®,p1,8) = [ W(h)®[(0,1)g]p(det g)|det gl;"*dg,  (3.21)

N\H

and if to ® we associate the function

¢(g; p1, v, s) = p(det g)|det 9\3“/2/ O[(0,t)gl[t]*** u(tt)v(t)d*t, (3.22)
KX
we have
L(W,®, p1,5) = W(g)o(g: 1, v, s)dg. (3.23)
TN\H

This function converges in some right half plane of s and admits a meromorphic
continuation to the entire plane and a functional equation.

We can make an analogous construction for global fields. More specifically, we
define a generalized global Whittaker model as follows. For a global field &, a cuspidal

automorphic representation 7 of G(A) and character «,,,, of R(A) there exists a cusp
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form ¢ € 7 such that
/ gp(r)a;fb(r)dr £ 0, (3.24)
ZyR(k)\R(A)

and we can define

W, (g) = / o(rg)oy L (r)dr (3.25)
ZyR(k)\R(A)

for g € GSp(4, A). The function W, has the property that

W (rg) = awy(r)We(g).

Let W"¥ be the space of Whittaker functions W, and consider the representation of
GSp(4, A) on this space by right translation. This representation is isomorphic to .
If we write 7 = ®'m,, then for each 7, there exists a unique generalized local
Whittaker model corresponding to o, y,, with v, and 1, the local components at v
of v and v respectively. The global model is then the restricted tensor product of
the corresponding local models.
The integral representation in equation (3.16) unfolds in terms of the generalized

global Whittaker model to give

/ Woal9)0(g: 1,1, 5), (3.26)
T(A)N(A)\H(A)
which can be further expressed as
[ Wlg)al0 gl g)det o> dg (3.27)
N(A)\H(A)

Note that if 7 is a cuspidal automorphic representation of GSp(4, Ag) and ¢ € 7
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we have a Fourier expansion (see for example [Har04)):

p(ug) = alg)vs(u)
B

for w € U(A) and g as in (3.18), with the sum over § € Syms(Q). The Fourier
coefficients g are smooth functions on GSp(4,Aq). If ¢z is nonzero then we say
that (8 is in the support of .

If 7 is holomorphic then § must be a positive definite matrix so that K is an
imaginary quadratic field. If 7 is not holomorphic then K is either a real quadratic
field or Q & Q.

For this reason, the subgroup H = Hp as it appears in (3.16) corresponds to an

imaginary quadratic field F'.

3.2.8 The relative trace formula

Jacquet’s relative trace formula is a generalization of the Arthur-Selberg trace for-
mula. The setup of the relative trace formula consists of integrating the kernel over

non-diagonal subgroups.

For G = GSp(4)/Q we define
Cr(G(A) = CZ(G(R)) © CF(G(Adn)),

where C2°(G(R)) is the space of smooth compactly supported functions on G(R)
with values in C, and C°(G(Agy)) is the space of locally constant and compactly
supported functions on G(Ag,) with values in C.

Let Z denote the center G. For a test function f € C*(Z(A)\G(A)) we associate
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the kernel function

K(z,y):= > fla ). (3.28)

1€Z(Q\G(Q)

Let p be the right regular representation

(p(y)p)(x) = p(xy)

of Z(A)\G(A) on the Hilbert space L*(Z(A)G(Q)\G(A)). We define
p(f) : LH(Z(A)G(Q\G(A)) — L*(Z(A)G(Q\G(A))

given by

D)@ = |

Z(ANG(A)

F)p(y)p(x)dy = / fWely)dy.  (3.29)

Z(A\G(A)

Setting some conditions on f.,, the component of f at the archimedian place (see
Sections 3.3 and 3.5), the operator p(f) will decompose into a direct sum of cuspidal

representations:

p(f) = @ﬂmww(f>‘

Note that 7(f) is defined as:

(o)) = [

Z(A\G(A)

f)m(y)p(z)dy = / f(y)e(ry)dy,

Z(A\G(A)

for ¢ € m. Associated to this decomposition of p(f) into a direct sum of 7(f), we
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have an alternative expression of the kernel
K(z,y) =Y Ki(z,y).

Let F' = Q(\/E) be a fixed auxiliary imaginary quadratic field with d < 0 square-
free. Let H be the group of matrices in GL(2)/F with rational determinant, viewed
as a subgroup of GSp(4)/Q (see Section 3.2.1 ) and U be the unipotent radical of
the Siegel parabolic P of G.

We consider the linear functional on C°(Z(A)\G(A))

1= [ [ g, (330
Z(AH(@Q\H((A) JU@QN\U(A)

where £9(z) is an Einsenstein series on GL(2)/F and 1) is a nontrivial character of

U(Q)\U(A). The character 1) is given by

U(u) = o (trSX) (3.31)
with
I X
U=
0 I

and X a symmetric 2 X 2 matrix over Q. Here 1)y is the standard additive character
of Q\A and S is a symmetric 2 X 2 matrix over Q. The character v is defined as

follows. We define the local component )y, at p prime to be

1/)0,:0 = [Qp %Qp/Zp — Q/Z_> Sl} .



71

Now every z € Q, can be represented in the form
t=x_p  taip  +taap  Fagfapt = I% + ixipi
=0
with 0 <z, <p— 1. We say that o5 s the fractional part {z}, of x. We set
¢07p(x) = e?ritely,
Note that ¢ ,(x) =1 iff x € Z,. In addition, we let
Y000 : R — St g — e 2mi®

be the standard non-trivial character at infinity.
From now on, we will sometimes use when convenient the notations G = Z\G

and H = Z\H.

3.3 Test function

We take the test function f to be a factorizable, smooth function in C°(G(A)) with

suitable properties. We write:

f:fooxfﬁn:foofoXfSXfSO

with Sy = S U{N} with N some fixed prime.
The places in S correspond to a finite set of places p where x;, and x2, defining
the Eisenstein series £¢ (see eq. (3.12) and (3.13)) are ramified with conductor n,,.

Let Dy denote the holomorphic discrete series representation of PGSp(4,R) of
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lowest weight k. We choose the function f., to be (up to a constant) the complex

conjugate of the matrix coefficient

(Dr(g)vo, vo),

where vy is a vector that generates the K-type 7;,;,. We can take vy to be a unit

vector.
We take fy to be the characteristic function of Zy\Ko(N)yZy divided by the
measure Vy of Zy\Ko(N)yZy. Here

A B
KO(N)U = c D S Gsp(4> Zv)lc = O(mOd NZ’U)

We take £ to be the characteristic function of [Togs, GSp(4,Z,)Z,. Finally we take
fp with p € S to be 1 on the coset

_1
2
_ 1
K(2n,), 2d K(2n,),,
—w;‘ 2
—wg 2d
and zero otherwise. Here
A B A B I 0 )
K(2n,), = € GSp(4,Z,)| = (mod ww2)
C D C D 0 I

Finally, let us compute f.(g) through a series of lemmas. The group GT(R)
consisting of those element with A\(g) > 0 acts on the Siegel upper half plane H, =
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{Z € Mat,(C) : Z" = Z,Im(Z) > 0} in the usual way:

g-Z:=(AZ+ B)(CZ+ D)™

A B
for g = and Z € Hy. We write

C D

X1 +iY7 X +1iY,
Xy +1Yy X3 +iYs

with
i Y,
Im(Z) = > 0,
Yo V3
which is equivalent to Y; + Y3 > 0 and Y Y3 — Y2 > 0, so in particular we have
Yi,Y; > 0.

Consider the space of holomorphic C-valued functions F' on H, and let
Di(9)F(Z) = Mg)*(det(CZ + D)) *F ((AZ + B)(CZ+ D)) .

The measure is
dZ = det(Y)"* [ [ dX;dYs;.
1<j
Take vo(Z) := det((Z+il)~*) for Z € H,. A straightforward computation verifies
that vo(Z) is well-defined on Hs.

We have for

A B
g= € GSp(4,R) (3.32)
C D
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with A(g) > 0,

Di(9)vo(Z) = Mg)*(det(CZ + D))" det((AZ + B)(CZ + D)™ +il)™*
= Ag)'det(AZ + B+i(CZ + D))"

A B
oo = |

Di(koo)vo(Z) = Mg)*det(A — iB)Fvy(2),

Now consider ko, € K,

We have

and hence the vector vy generates the K-type 7y .

Let ¢ as in (3.32). We want to compute

sk(9) = (Dk(g)vo, vo)
= )\(g)k/ det(AZ + B+i(CZ + D)) *det(Z — il) *det(Y)*? x
X XmdXZlengldYQdYg
= Ag)"det(A +iC)* / det(Z + (A +iC) (B +1iD)) *det(Z —il) ™" x

Ho
% det(Y )3 X,d Xod XsdYidYadYs. (3.33)

We will compute si(g) by using the Cartan decomposition of GSp(4). To do that we

first show the following result:

Lemma 3.2. (Dy(g)F, F) = (F, Dp(g ' det g)F)
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Proof. If g is an in (3.32) then

(Dp(g)F,F) = /H Ag)*(det(CZ + D)) ™"F ((AZ + B)(CZ + D)™") x

% F(Z)det(Y)"3dX1d Xod X3dY;dYadYs.

Now let Z' = (AZ + B)(CZ + D)™! be a change of variables. Then we have that
Z = (A—2Z'C)"Y(Z'D — B). Let

It is easy to verify that
Z=(A-2'C)"YZ'D-B)=(MZ + N)(PZ' + Q). (3.34)
Thus, we get

(Dp(g)F, F) = /H Mg)*(det(C(MZ'+ N)Y(PZ'+ Q) + D)) "F(Z') x

x F((MZ + N)(PZ + Q) Ddet(Y)" 3dX,d.X,d X5dY;dYad V5.
(3.35)

We want to show that this equals

(F,Dy(g"'det g)F) = A Mg tdet(g))fdet(PZ’ + Q)~*det(g) ?*det(Y")F 3 x

x F(ZVF(MZ + N)(PZ + Q)~")dX,dX;d X}dy;dy/dY;.
(3.36)
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Now note that A(g)* = X(g~'det(g))* - det(g)~*, and hence it is enough to show that

(det(C(MZ' + N)(PZ' + Q)™ + D)) *det(Y)F 2dX,d Xod X3dY1dYodYs =

det(PZ' + Q)~*det(g) **det(Y')*3dX|d X,d X;dY/dY,dY;. (3.37)
Now
det(C(MZ'+ N)(PZ'+ Q)" + D))" =
det(C(MZ'+ N) 4+ D(PZ' + Q)) *det(PZ' + Q)" (3.38)
But since

A B\ (M N
¢ p]\P @

we have that CM + DP =0 and CN + DQ = I, which implies that
det(C(MZ'+ N) + D(PZ' + Q) = 1.
Thus, it is enough to show the following two relations:
det(PZ' + Q)det(PZ' + Q)det(Y) = det(g " )det(Y”) (3.39)
and
det(Y) ?dX;d X5d X3dY1dYadYs = det(Y”)?d X|dX,d X5dY/dY,dY;. (3.40)

Since g~ € GSp(4), we get that M'P = P'M, N'Q = Q'N and Q'M — N'P =
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Ag™1)I. Then, (3.39) follows from the following matrix identity

(Q'M — N'P)(Z' = ZN(PZ' + Q)" = (PZ' +Q)'((MZ' + N)(PZ'+ Q)"
— (MZ'+ N)(PZ'+Q)™), (3.41)

by applying the determinant (note that Y = (Z — Z)/2i). To show (3.41), note that

it is equivalent to
(Q'M —N'P)(Z'~Z') = (PZ+Q)'(MZ'+ N —(MZ'+ N)(PZ'+ Q)" (PZ'+Q)).

But (MZ'+ N)(PZ'+Q)~! = (PZ'+Q) )Y (MZ'+ N)! since g~! € GSp(4). Thus
(3.41) is equivalent to

Mg )2 =Z") = (Q'M—-N'P)(Z' - Z)

= (Z'P'+Q")MZ' +N)— (ZM'+ N")(PZ' + Q),

which can be verified through a direct computation.
To show (3.40) we use Proposition 2.9, Chapter 1 in [AZ90], which states that the
volume element on the Siegel upper half plane H, is invariant under all symplectic

transformations. O]

Corollary 3.1. Let ky, ko € Ko, such that
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and
Ms N,

—Ny Mo

k:2_1 - det(ks) =
Then we have that

Sk(kilgkg) = /\(krl)kdet(Al — iBl)_kSk(g) X
k

My N
XA det(My — iNy)~+.
—Ny M,

Proof. By Lemma 3.2 we have

si(k1g) = (Dr(k19)vo,v0) = (Di(g) © Di(k1)vo, vo),

= Mk1)¥det(A; —iBy) " (Dy(g)vo, vo) = A(ky)*det(A; —iB1) si(g),

and

sk(gka) = (Di(gk2)vo,vo) = (vo,Dk(kgl -det ky - g~ 'det g)vo)
= <1)0, Dk(gfldet g) o Dk(k’gl . det(kg))v[)}
2
M2 N2 . _ -1
= A det(Ms — iNo)~*{(vg, D(g~ det g)vo)
—Ny M,
k
My Ny .
= )\ det(Ms — iN3)~*(Dy(g)vo, vo)
— Ny M,
k
My Ny .
= A det(M2 — ZNQ)ikSk(g).
— Ny M,

Putting the two identities together we get the desired result.
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If g € GSp(4) as in (3.32), we have that A 4 ¢C' is invertible and we can define

M +iN = (A+iC)" Y (B +iD).
We have by (3.33)

silg) = N(g)det (A+iC)™" / det (Z + M +iN) ™" det (Z —iI) " det Y*=% x
X dX1dX2dX3dY1dYadY;. (3.42)

By using the Cartan decomposition of GSp(4) and Corollary 3.1, we can reduce

the computation of sx(g) to the case when ¢ is diagonal.

Theorem 3.1. If

A aq 0 dl 0
g = ) A - b D = b
D 0 a9 0 d2
then we have
343k det gk/z

9) = D= D2k = 3) (@ T d)(as £ A (343)

Proof. In this case M = 0 and

al_ldl 0 nq 0

0 &51 dg 0 N9

N:

and the condition g7 Jg = \(g)J translates to

ard; = aqdy = M(g).
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The integral we want to compute is

I = M(g)det(A)™" / det (Z +iN) " det (Z —il) ™" det Y3 x
X dX1dX,dXsdY1dYsdYs,

We first perform the X integral. The second determinant has a pole at

— X35 4 2iX,Ys —iX5Y) —iXs - ViV - Vi + V7 — Y3 -1

X —
! X3+ iYs i

Y

which is always in the upper half-plane, while the first determinant has a pole at

ning — Ny Xz +n Yz +noYy + X2 + 21X, — i X3Y) + VY3 — Y7
1y + X3 +1Y3

X —

Y

which is always in the lower half-plane. We can thus perform the contour integral

using the residue theorem and obtain

- - ' Nk—1(; Vb1
I = 27.‘.(_1)19—1(2(k 1)) detA_k)\k(g)/( X3+ Y3 +0) " (ing + X3 + 1Y3) .

k—1 (denominator; )*"!
x det Y 3dXydXsdY1dYodYs. (3.44)

The denominator above has two poles, at

Y5(2X3 +i(ny — 1)) £ /sqrt;

X9 —
2 ny +2Ys + 1

where sqrt, is given by

sqrt; = (IXs+ Y5+ 1)(—ng +iX3 —Y3) X

X (n1n2+2Y3(n1—|—2Y1—|—1)+n1—|—2n2}/1_}_n2_|_2y1_4Y22+1)‘
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We need to argue that these poles are always in different half-planes. Since dealing
with the imaginary part of the square root is difficult, we will use an alternative
argument. Suppose there is a value of the parameters { X3, Y1, Ys, Y3, ny,n2} such
that the poles are in the same half-plane. Then by closing the contour around the

other half-plane the integral

o0
I/ _ deQ
denominator;
—0oQ

must equal 0. However, the real part of denominator; is
ning +n1 X3 +no Xy + 2n9Y) — noYy +ng + X5 — 4Xo X3Ys + 2X3Y) + X5 — Y7 > 0,

so the real part of I’ cannot be zero. Thus for any value of {X3, Y7, Ys, Y3, ny,no},
the two poles of 1/denominator; must be in different half-planes, so the two poles

of 1/ (denominator;)**~"

must also be in different half-places (since the locations
coincide). Thus, to compute I up to a sign it suffices to close the contour around

either pole. With p = 2k — 1 we obtain that [ is equal to

1= ) (M - 1)) <2(p B 1)> det A™F\F(g) x

22p—3 kE—1 p—1
1 2 2k—2
/ (L 72 4 205) 7 o Yo =30X,dY,dYsdYi,
denominator,
where
denominator, = (—X3+4 Y3+ i)k_%(ing + X3+ iY},)k_%(l +n1 + ng +ning + 2Y;

F2n5Y; — AV + 2Y5 + 20 Vg + 4Y;Y5) 25
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We now perform the X3 integral. For ny > 0, Y3 > 0, we have

oo

/ dX;
S g il = n2)Xs — X3~ Yy — npYs — Y22

. ko2k—2 F<k — 1)
ivm(—1)"2 m

(712 +2}/3 4 1)272]6,

so that I becomes

P = (D) (207 1))%det A7EN¥(g) x

k—1 p—1 5
Y; — Y2
[SEE ) viavay,
denominators
with
denominators = (1 + nqy + ng +ning + 2Y7 + 2nY;
_3
—AYZ 4 2V5 + 2, Y3 + 4Y1Y5) "2,
Denote

Y Ys — v2)F?
Iy:/( REIREY dY,dYsdYs.

denominators

We use the fact that

7 Y, -y ek -k - )y T
denominators Vr(4k — 5) 2

Y3 /Y3

x T2k —4)(ny +2Ys+ 1)* % ((n + 1)Ys(no + 2Y3 + 1) + 2(na + 1)Y5) ™

X

k—1

2
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Performing the Y5 integral we obtain

I, = —27 %2k — @@k—n@h+n*T(g—mDr@W@k—®x

5
k=3

n2+2Y3+1)2 2k

[
x 0/4k_5mr(k+ s

which can be integrated to give

@:VG?P%@—1w<g—%Jr@k—@my+n*my+n*

Thus
2(k — 1)\ [2(p— D\ T(k =)' (3 —2k) T(2k — 4
I — 7r3214—8k(k_1)( (k ))( (p )) ( ) (2 1) ( ) v
k=1 p—1 L (k-3)
det A7*\¥(g)
(n1 4 1)%(na + ¥
which can be written as the expression in equation (3.43). [

Corollary 3.2. For k > 3 and g as in (3.32). We have

w343~k det g*/?
—1)(k—=2)(2k =3)det [A+ D —i(B—C))*

SMQZ(k (3.45)

Proof. Follows through straightforward computations by Theorem 3.1, Lemma 3.2
and the Cartan decomposition. [
As a consequence, we will have

det ¢*/?

Jl9) = O AT D+ (B - OF (3.46)
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if A(g) > 0, and f(g) = 0 if A(g) < 0, where ¢;, is some fixed constant that depends
on the weight k.

3.4 Computing the double cosets

In this section, we will determine the double coset representatives for H\G /U, where
U is the unipotent radical of the Siegel parabolic. More specifically, we will show the

following result:

Lemma 3.3. The elements

1 0 0 0 0 0 w p

0 0 0 X 0 0O 0 1
77()‘) = ) f(ﬂ, :u) = )

0O 0 X O — 0O 0 0

0 -1 0 0 p —p 0 0

for A\ e Qr, p e Q, u € QF constitute a complete list of double coset representatives
for the space H\G/U.

Proof. We have

A I, X
P= :Ae GL(2),A € GL(1), X € Syms
)\(Ail)t I

denote the Siegel parabolic of G and P be is transpose. It has a Levi decomposition
of the form
A I

P= : A e GL(2),p € GL(1),Y € Sym,
pay ) \y L
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Let HH=HNP and H,= HN P.

A computation shows that

1 s 0 0 1 0 yp O
0 ¢ 0 0 01 0 O
p= | ? CH,.
sotat0gn [0 0 ta O 00 1 0
0 0 —s9 1 00 0 1
Indeed, let
my Ny MT1+N1Te MiTo + N1T3
b= D1 @1 1t T qix2 P12+ 13
0 0 Aq1 —Ap1
0 0 —)\nl )\ml
be an arbitrary element in P. This can be written as a product
dm1p1_—n1q1 0 0 1 0 1‘1—)\d:173 0
nipi1—miqi
2 2
L 0 0 01 0 0
nipi1—miqi 5 , . h17
0 0 e 00 1 0
nipi1—maiqi
0 0 _dmipi—miq 0 0 0 1

nipi—miqi

where
nip1gi—migcs  nipi—mipiqu d dnipi—miq1)(prza+qiz3)  (nipi—miq1)(prz1+qiz2)
dpi—q3 dp?—q} dpi—q} dpi—q3
nip —mipiqn = Mipiq1—migs (nipr—miq1)(pizi+qize)  (nipi—miq)(pizatqizs)
hy = dp?—q? dpi—ai dpi—ai dpi—qi
0 0 nMp1@A—m1gEN p1(nipi—migi)A
dp2—q2 - dp2—q2
PT—47 P14
nipi—m A n1Pp1g1 A—m1g2 A
0 0 _pi(mpi—ma)A g mMpIgA—magiA

dpY—qi dpY—ai
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Similarily, we can show that

1 57 0 O 1 0 00

— 0 t 0 O 0O 1 0O
P= |J H !

s1,t170,y3 0 0 t 0 0 0 1 0

Thus, using Bruhat’s decomposition (3.3), we have the following (non-disjoint)

union

1 s 0 O 1 0 0 O
0 tt 0 0 01 00
G = U U U H2 X

i 81,617£0,y3 S2v2—uata#0,AF#0 0 0 tl 0 O 0 ]- 0
00 —s; 1) \0 55 01

S9 tQ 0 0

Uy U 0 0

X w; 2 ? U,

0 0 )\1)2 —/\'LL2
0 0 — /\tQ /\82

with 7 =0, 1,2 and wy := I4. So the distinct double coset representatives for H\G /U
can be chosen from among elements of the form T;(sy,t1,ys, 2, ta, U2, v2, A), which

are defined to be

1 s 0 O 1 0 00 s9 ty 0O 0

0 ¢t 0 O 01 00 uy vy 0 0

0 0 ¢t O 0 010 o 0 0 Avy —Aug
0 0 —s 1 0 y3 0 1 0 0 —=Xa2 Asy
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So it is enough to show that each of these matrices are in the same equivalence

class as one of the two types of cosets n(\) or &(p, u).

We have
So + S1U2 t2 + S1V9 0 0
t1Us t1U9 0 0
T1(s1,t1,y3, 52,12, U, V2, \) i=
0 0 tivg A —t1ug \
U2Ys V2Ys3 —tz)\ — 811)2)\ 82)\ + 81’&2)\
and
0 0 —Sltg)\+l)2>\ 8182)\ — Ug)\
0 0 —tth)\ Sztl)\
TQ(Sl, tl, Y3, S2, tg, Usg, Vg, )\) =
—Sgtl —tth 0 0
8182 — Uz Sity — Vo —layzA S2Y3A
and
S92 tz —Sltg)\ 5182)\
0 O —tth)\ Sgtl)\
T5(s1,t1, Y3, 52,12, U, V2, A) i=
0 0 t1’02)\ —t1U2>\

—Ug —7V9 —511}2)\ — tgyg)\ 81UQ)\ + Sng)\

For T7 we have two cases. If y3 = 0 then we have that Ti(s1, 1,0, o, to, Uz, v, A)
for A # 0 is always in the same coset as Ti(s1,t1,0, So,to, us, v9,1). If y3 # 0
then we have that T)(s1,t1,ys, S, L2, U2, V9, A) is always in the same double coset
as T1(0,t1,ys, S2, ta, Uz, Vg, A).

For Ty we have that Ty(s1,t1, s, S2, t2, Ug, V2, A) is in the same double coset as
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Ts(s1,1t1,0, 89, t9, us, v9, 1). Finally, we have that T3(sy, t1, ys, S2, ta, g, U2, A) is in the
same coset as T3(0,t1,0, so, o, ug, U2, A). This is useful to simplify the computations.

Now, we have that T3 is always in the same coset as some 7(\’) for an appropriate
N

Y2 __ta
S2v2—t2u2 0 0 Sav2—tau2
0 2 £ 0
Sovy—tou2 Sovy—tou2 -
13(0,11,0, 52, t2, u2,v2, \) = n(t1A).
0 U2 S92 0
Sov2—tou2 Sov2—tous
Uu S2
Sovo—tou2 0 O

Sov2—tau2

In addition, that 75 is always in the same coset as some &(p, ) for an appropriate p

and p. Indeed,

S1to—va dto 0 0
titous—sativ2 Ssov2—touo
t2 S1t2—v2 0 0
Sovg—tou2 t1toug—soti1v2 %
mso+nto ms1So+nsito—mugs—nuv2 S1to—v2 to
S92 —toUs titous—sotivo t1taus—sativa toug —Sav2
ms1S2+nsito—mus—nva d(msa+nta) dto s1to—vo
t1toug—sativa Sov2—tausg toug—sovo t1toug—sativg
X Ty(s1,t1,0, 89,12, uz,v2,1) X
1 0 m n
0 1 Qn(—sztzs%—l—tzuzsl+321)251+d52t%t2—uzv2)—m((s%—dt%)s%—?slugsz—‘ru%)
n
2 2\42 2
> (sl—dt1>t2—2slvgt2+v2
0 0 1 0
00 0 1

_ f <—d82t%t2 + S%SQtQ — §1S2U9 — SthUQ + UgV2 —dt%t% + S%t% — 281t2U2 + U%)
t1(taus — Sov9) ’ Sat1vg — t1lals

If y3 = 0 we have that 77 is in the same coset as &(p, ) for an appropriate p and pu.
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Indeed, we have

0 0 __dva __ lotsivg
S2v2—t2uU2 t1tous—sotivo
0 0 __ totsivg v
titaug—sativ2 S2v2 —t2u2 %
V2 _ to+s1v2 _ mso+4nto+msius+nsive mu2+nuvy
toug—Sov2 t1toug—sotiv2 t1toug—sativ2 Sovg—tou2
to+s1v90 dvo d(mug+nvs) __ msatntat+msius+nsive
titaug—sativ2 toug—sav2 Sov2—tau2 ti1tauz—s2t1v2

X Ti(s1,11,0, S2,ta, us, va,1) X

1 0 m n
m(s§+2slu232+(s%—dt%)u§)+2n(sz(t2+slv2)+u2 (’Uzs%—&—tgsl—dt%vg))

y 01 n — t§+251vzt2+(5%*dt%)”§
00 1 0
00 0 1

—dt3Ugvy + $2Un + S189Vy + Sitally + Soty —dt2v3 + sT03 + 251t9vs + 13

’ tl(tQUQ — SQUQ)

= £

Sot1v9 — t1laus

Now if y3 # 0 we can show that 77 is in the same coset as n()\’) for some A.

Indeed, we have

Vo 0 dtiva to
sov2—tauz (t2uz—s2v2)ys  (touz—s2v2)y3
0 v2 ( to ) ( t1v2 )
S2v2—t2u2 touz—s2v2)y3 tau2—s2v2)yY3
T1<0, tl, Ys, Sa, tg, U2, Vg, ].) X
0 _ ug 52 tiug
toug—sovy  (toug—s2v2)y3  (tauz—s2v2)ys
__ uz 0 dtius 59
tauz —s2v2 (t2uz—s2v2)ys  (tauz—sav2)y3
1 O tgfdt%l)g Sztzfdt%ug’ug
(touz—s2v2)ys3 (touz—s2v2)y3
01 — sztg—dt%uyug . dt%u%—s% "
« (t2uz—s2v2)y3 (t2uz—s2v2)y3 = _u
0 0 1 0 Y3
00 0 1

Finally, a straightforward computation shows that n(\) and n(\') for A # X are
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never in the same coset. Similarily, for (p, u) # (o', ') we have that £(p, ) and

£(p', 1) are never in the same coset. O

3.5 Spectral side

Let f be the test function chosen in Section 3.3. In this section we will study the
properties of p(f) and give the spectral decomposition of the kernel K¢(z,y) and of
the linear functional I(f).

Define the compact open subgroup Ky s of GSp(4, Agy) (using the notations from
Section 3.3)

Kys =[] K x Ko(N) - x [ [ K(2n,),- (3.47)
pZSo peS

We let A% (N) denote the subspace of cuspidal representations of G(A) given by

AZ(N) = @ Cup ® WéiN’S, (3.48)

WOOZDk

7rifnzv,s £0
where ﬂéiN * is the space of K ~,s-fixed vectors in g, and vy is the lowest weight
vector which generates the minimal K-type 7 of the holomorphic discrete series

D;..

For the test function f chosen in Section 3.3, we will find that p(f) annihilates
(AZ(N))* and maps AZ(N) to itself. We will generalize some of the computations in

Chapter 13 of [KL06] from GL(2) to our case. Recall that we can write f = fz, X foo.
Lemma 3.4. For any ¢ € L*(G(Q\G(A)), p(f)¢ is cuspidal.

Proof. Since bounded functions ¢ in L? are dense in the space, it is enough to show

that for bounded functions ¢ € L? we have p(f)p € L2.
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Consider ¢ bounded. This assumption, along with the fact that f is L! integrable

will provide a gurantee that

/ o) p(ug)du
UQ\U(A)

is absolutely convergent. We will show that the integral is in fact zero. By definition,

we can write

/ o(f)plug)du =
U@Q\U(A) QN\U(A) \G(A)

[
_ / o / f(g_lu_lx)gp(m)da:du

ANG(A

_ / \UA)/ S flg ) p(z)dedu.

VZANGA) L o)

Jo(ugx)dedu

Switching the order of integration we get

[ pstugn= | [ st s @9
U@\U(A) U(QZ(AM\G(A) LJUA)

But now note that

/ flg™ uxdu-/ foolg™ tur)du - H/U (9 upx)du,.

V<00 (Q”

If Uy is any subgroup of U, we have

/ foo(g™ tuz)du = / / foo (g™ yum)dydu.
U(R) Uo(R\U(R) v Uo(R)
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We choose Up(R) to be the set of matrices of the form

with ¢ € R. Then we have that the entries of g~'v(¢)uz are linear functions of ¢ and

in addition we have that f. (¢~ 'v(t)uz) is a constant multiple of

_ 1
(at + B

with o, f € C. Then we have

© gt
foolg™ yuz)dydu = / ——— =0,
/UO(R) ( ) —o0 (&t + ﬁ)k

and hence we conclude that fU(Q)\U(A) p(fe(ug)du = 0.

Corollary 3.3. p(f) annihilates (L3)*.

Proof. A straightforward computation shows that the adjoint f* also satisfies the
property p(f)* = p(f*) : L* — L2. This means that p(f) annihilates (L3)*. O

Theorem 3.2. p(f) C AY(N).

Proof. We may assume ¢ € L2 (since p(f) annihilates (L2)*). Writing L2 as a
direct sum of irreducible cuspidal representations (7, V;) and using the fact that the
space A7 (N) is closed, we may assume that ¢ € 7 for some irreducible cuspidal

representation .
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Writing ¢ = ¢oo @ @fn, we have

P(f)sD - 7T-c>o<foo)<)000 ® 71—ﬁn(fﬁn)(,pﬁm

In order to have T (foo)Poo # 0 we must have mo, = Dy, in which case Di(fs)poo €
Cuvg with vy the lowest weight vector of Dy. Now, because fs, is Ky g-invariant we

have that s, ( fan)pan is Ky s-invariant thus we get that

p(f)e € AZ(N).

]

In fact, p(f) annihilates (A3 (N))+. This is because p(f)* also satisfies the prop-
erty that p(f)* C A7 (N).

Now we give the spectral decomposition of the linear functional I(f).

Theorem 3.3.

[<f) = Zmﬂ Z ! L(90i7q)7/~b7 v, S)Gi,qﬁHaiul%

i ET <(‘0i’ (’Oi> peES

where ; 4 is the Fourier coefficient of @; with respect to character 1 (see eq. (3.10))
and a;, is the eigenvalue such that p(f;)ip = aippip for p € S. The outer sum is

over  in A7 (N) and the inner sum is over an orthogonal basis of 7.

Proof. We can write the spectral decomposition of the kernel as follows:

K@y =3 m:> (P(f)%)(ff)m’

piem <9017 SOZ>A
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with the outer sum over 7 in A7 (N) and the inner sum over an orthogonal basis of
.

This gives a spectral decomposition

=X o o AR @

After a separation of variables, we get

mez <80za ©i) (/(H(Q)\mm)(,O(f)cpi)(x)é’f(x)dx) (/(N(Q)\N(A) mw(y)dy) ‘

™ {vi}

We can now compute p(f) on an element ¢ € AY(N) belonging to a cuspidal

representation . We can write

f=rtox fSxI] 4

peES

and

P =00 ® 0° @ (X) 0.

peS

Then we must have that

p(f)@ = Dk(fOO)Spoo ® WS(fS)SOS ® ®7Tp(fp)§0p

By the properties of the matrix coefficient we get Di(foo)Poo = @Yoo. Now
pZSo ZKP
and fy is the characteristic function of Zy\ZyKo(N)y divided by the measure of

since f° = fy x f% is such that f°° is the characteristic function of []
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ZN\ZNKo(N)n

T (f)e” = ¢°.

Finally, if we have that p € S, we have that f, is bi-K(2n,,),-invariant, and hence ¢,

is an eigenvector and let’s call the eigenvalue a,. This eigenvalue is given by

ap = f;;/(tp>>

where fpv is the Satake transform of f, in the Hecke algebra of locally constant
compactly supported bi-K(2n,),-invariant functions on GSp(4,Q,), and t, is the
Satake parameter of 7.

Thus, we can conclude

p(f)p = (H ap> o

peS

and the conclusion follows. ]

Corollary 3.4. If for s = 1/2 and weight k — oo we have that I(f) # 0 then it
would imply that that L(m ® u,1/2) # 0 for infinitely many Siegel eigenforms .

Proof. 1f 7 is a holomorphic cuspidal automorphic representation of G and ¢ € 7
then L(¢p, ®, p, v, s) has an Euler product with local factors that are at almost all
places given by L(m, ® p,s). More precisely (see [Har04]),

L(p, @, p,v,s) = a(m,dv) [[Lole. ® 1 v,s) [] Lz, @ p,5)

veT vegT
L(m ® p, s)
= a(m,d,v) || Ly(o, P, p, v, s) .
g HUGT LU(T‘- ® H, 8)

The conclusion then follows by Theorem 3.3. ]
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3.6 Geometric side

For § € G define the subgroup of H x U:
Cs = {(h,u) € Hx U :h~'ou =24}

We split the sum over 7 in the kernel into sums over double cosets in the following

way:

> fh ) = > > F(h™ hg Yougu).
v€G(Q) SEH(Q\G(Q)/U(Q) (houo)Cs(Q\(H(Q)xU(Q))
We then get that

f((hoh)~ 6 (ugu)) x
(20,50)€Cs (Q\(H(Q)xU(Q))

1) = / /
7 Jrwm@\E®) Ju@\we)

x  E2(hoh)(ugu)du dh,

where the first sum is over the double coset representatives § € H(Q)\G(Q)/U(Q).
Then we get that

I(f) =) _1(5, ),
{6}
where

105, f) = F(h71ou)EL(R)(u)dh du.

/Ca(Q)\H(A) xU(A)

We write

16.f) = / / F((zh)6(5 28)u)
Cs(A\(H(A)XU(A)) J (Cs(Q\Cs(A)1

x  E2(zh)Y(6  26y)dh du dz,
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where (Cs(Q)\Cs(A)); is the projection on the first component, and hence

106, f) = / f(h'ou) - ( / 5§(zh)¢(5—1z5u)dz) du dh.
Cs(A\(H (A)xU(4)) (Cs(@\Cs(A)r

In principle, there are two types of cosets: regular and singular. There are
infinitely many regular cosets and finitely many singular ones, but the dominant

terms typically come from the singular cosets.
Lemma 3.5. I(n(A\), f) =0 for all A € Q*.

Proof. Since (Cyx)(Q)\Cyhny(A)); is the identity matrix

0.0 = [ O € e (350

We have

E) = Y. ¢9),

yEB(F)\GL(2,F)
where B is the Borel subgroup of GL(2).
We can define the S-th local Whittaker integral

1 =z,
Wﬂ(¢v7gv> :/ (bv Wo 9o ﬁ(_ﬁxv)dxv
Fy 0 1
and the intertwining operator
1 =z,
(Mo P0)(90) = ¢y | wo 9o | dxy,
By 0 1



where

0 —1

Wy =
1 0
Then we have the Fourier expansion
gf(g) = ¢5( ) + Mw0¢ + Z Wﬁ (351)
BeF
where
Mu,9(g) \/_ H Mouyu(g0),

and

wmmzﬁzﬂwmmm,

with Dy is the discriminant of F'.
Using the Fourier expansion (3.51), we have that (3.50) can be expressed as a

sum of factorizable integrals

I\, f)=hL+L+ Y I

BeF

where

hzéw o T 0000 - 6,00 du =T

xU
I, = hin()\ - My, o(h)dh du = Is,
: mewﬂ A0 Mago(h)ah du =TT 1,
=/ (N w)(u) - Wa(h)dh du =[] I,
H(A)xU(A) v

Consider now place v = N. We have that fy is the characteristic function of



99
Ko(N)Zy. We have by assumption that (N,d) = 1 and (N,2) = 1. We will show
that I} y = I y = Iz x = 0, which will imply that I(n(X, f) = 0.

We will show that h™'n(A\)u & Ko(N)Zy, which implies that fx(h™'n(A)u) = 0
for all h € H(Qy) and u € U(Qy). Writing, h = I’ - z with z € Zy, we can reduce
this to showing that h='n(\)u & Ko(N) C GSp(4, Zy).

Let

=a

2

aq bld L o

=

2

b1 aq 72
2a3 2b3d ay
2b3d 20,3d b4d ay

wl@
IO
m
]

ht=

S
iy

and

—_

0 r s
1 s ¢

e U.
010

0 01

o o O

Then

ap =2 agr - ars — Bt 4 byd\

a ass bo ast
h_ln()\)u _ b1 —ﬁ bl’/’ — ﬁ + 27 b18 — 2_2d + CL1/\

2&3 —b4 2&37" — b48 + CL4)\ 2&38 — b4t + 2b3d)\
2bsd —ay 2bsdr — ays + bydX  2bsds — agt + 2asd )\
In order to have that A~ 'n(A\)u € GSp(4,Z,), with v = N, we need to have

v(ay),v(by),v(az),v(by),v(as),v(bs),v(as),v(by) > 0,

ie. h' e My(Z,) N GSp(4,Q,). The determinant of h~'n(A\)u has to be a unit, and
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hence det(h™')A? is a unit. Then 2v(\) = v(det(h)).
Now note that if h=' € My(Z,) N GSp(4,Q,) then h - det(h™') € My(Z,) N
GSp(4,Q,). We get

n(ANu - det(h™') € My(Z,) N GSp(4, Q).

So, we must have that

1 0 r s
0 0
n(Au = € det(h)My(Z,) N GSp(4,Q,).
0O 0 X 0
0 -1 —s —t

But then 0,v(r),v(s),v(t),v(A) > 2v(\). Thus, we get the constraints that

v(A) <0 and v(r),v(s),v(t) > 2v(N),

the entries of matrix h have valuation > 2v(\) and the entries of h~! have valuation
> 0 and det(h) = 2v(A).

However, it is actually the case that A must be a unit, i.e. v(A) = 0. To see this
we will use the Iwasawa decomposition. We have that GSp(4,Q,) = GSp(4,Z,) -

B(Q,), where B is the Borel subgroup. An arbitrary element of B in the Iwasawa
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decomposition can be chosen to be

T 0 T3 %

b— 0 v vy w3
0 0 ¢ 0

0 0 0 1wy

Since we are looking at elements in G, we can assume without loss of generality that

C1 = 1.
We can write h™! = kb with & € GSp(4,Z,) and b an element of the Borel

subgroup as above. So then the condition that h~'n(A\)u € GSp(4,Z,) is equivalent

to bn(A)u € GSp(4,Z,). But this implies that

1 —% re, — —syy"’fl + A\zg sz — tzy1_1yz
0o - Ays — S Ay; —t
bn()\)u _ Ys Y2 Ys hn Ys c GSp(4, Zv)-
0 0 A 0
0 —uy —SUy —luy

In particular, we conclude that A € Z,. But previously we had the condition that

v(A) <0. Thus A € Z. Thus, the above conditions become
v(A) =0,h € GSp(4,Z,),u € U(Z,).

To see when h™'n(A)u € Ko(N) C GSp(4,Z,), we use the already known condi-
tions that v(\) = 0, v(r),v(s),v(t) > 0, and h € GSp(4,Z,).
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If
ay —%2 alr—l%s—k% als—%quld)\
a ass bo A ast
h—ln(/\)u _ bl —ﬁ b17’ — ﬁ + 27 b1$ — 2_2d + al)\

€ Ko(N),
2CL3 —b4 2&37” — b48 + CL4)\ 20,38 — b4t + 2b3d)\

2b3d —ay 2b3d7“ — 48 + b4d)\ 2b3d8 — CL4t + 2a3d)\

we get that v(as),v(bs),v(as),v(bsy) > 1, so in particular h € Ko(N). This implies
n(Au € Ko(N).

But then
1 0 r S
0 0
77(/\)“ = € KO(N)a
0 0 A0
0 -1 —s —t

which is a contradiction since v(—1) = 0.
]

Let’s now consider the contribution from cosets &(p, u) with p, p € Q and p # 0.
We have

IE&(p,p), f) = F(h™'e(p, p)u)p(u) x

/Cap,m(A)\(FI(A)xU(A))
% </ _ gf(zh)w(é(pw)1Z£(p,u))dz> dh du,
N(Q\N(A)

where
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Note that every element z € N can be expressed as wy 'nwy, where
*

1
neN= /F.
01

We can write

I(&(p,p), ) = F(R=E(p, m)u)ib(u) x

/C&(p,u)(A)\(H(A)XU(A))
x (/ EL(n(woh)) (& (p, 1)~ wy nwol (p, u))dn) dh du.
N@Q\N(A)

From the definition of the Eisenstein series we get

I(&(p,p), f) = (R e(p, p)u)o(u) ¥

/Cap,u) (A\(H (A)xU(A))

a S oulamlwoh) (€, ) g (o, w))dn | dh
NOWR e ponm@
We have ¢s(nwoh) = ¢s(woh) for all n € N(A). In addition, weé(p, i) is an element
of M(Q), where P = MU is the Levi decomposition of the Siegel parabolic, which
we call m. We then get that ¢ (m~tynm) = Y(m~ymm™nm) = (m~'nm) for all

v € N(Q) since m™'ym € N(Q). Applying the Bruhat decomposition we obtain

I(&(p, 1)) = La(p, 1) + L(p, ),
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where

Lipp) = /C " U(A))f(h‘lé(p, )W) (woh )i (u) X
£(p,m) )%
X /N \N(A (p, 1)~ wy 'naweé (p, 1))dndh du, (3.52)
Lipw) = / " U(A))f(hli(p, Wy (u) x
E(p.m) )%

X ( N (&) ¢s(wonwoh)¢(§(P7 M>_1w0—1nUJO§(p7 N))dn> dh du. (353)

The integrals I,(p, 1) and Iy(p, i) factorize at places, and we can write

:u) - HIa,v(pv H’)? Iy = HIb,v(pv :u)

Lemma 3.6. Let v be a finite place and h € H(Q,) and u € U(Q,). Then
h=1e(p, p)u € GSp(4,Z,) implies h € H(Zy), u € U(Zy), p € Ly, and p € 77,

Proof. We use the notations for h and u, and for the Iwasawa decomposition h~! = kb
as in Lemma (3.5). We want to determine when h='¢(p, u)u € GSp(4,Z,). By the
Iwasawa decomposition h~! = kb, we get that

T1Y2
o 0as 50

0 v v us
b (p, p)u = §(p, p)u
0 0 1 0

0 0 0 1w
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is equal to

PT1Y2 _ HT1Y2 _ SHy2T1 pT1Y2 _ tpyema PT1Y2
y1 T3 yno o M0 1 —1—7‘( u x?’) P o S( 1 I3)

PYs — Yo —HYs3 r(pys — y2) — SpYs3 1 — tys + s (pys — yo)
-1 0 -r —5
P4 — Uy TpUy — SjUy spuy — Ty

and is an element in GSp(4,Z,). This implies r, s € Z,.
Now if h=1&(p, p)u, which is equal to

Yog e mEer(P-9) b repts(P-9)
S S b (%) oo (%)
bap —ay  —byp  2azp — bysp + r(byp — ay) 2b3d — bt + 2a3p + s(byp — ay)

agp — byd —agp 2bsdp — agsp + r(agp — byd)  2azd + 2bspd — agtp + s(agp — byd)
(3.54)

is an element in GSp(4, Z,), it implies that

R e GSp(4,Q,) N My(Z,). (3.55)

This is because from the second column of (3.54) we get that bQ’“‘, 2, by, and agp
are all elements in Z,. Now all the entries in the first column are also in Z, and in
addition 7, s € 7Z, as we saw above. Thus, from the third column we also get that
aipt, by, 2asp, and 2bsdp are all in Z,.

We have that det(h™!) - pu? € Z from (3.54) and det(h™') - u* € Z, from (3.55).

This implies that u? € Z,, and hence u € Z,.
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We apply Iwasawa decomposition in the following way. Write

Rt = kY
with k' € GSp(4,Z,) and
Y2
1 0 T3 yi
y— 0 vi Y2 Us
0 0 2z O
0O 0 0 =

The condition that h~'&(p, u)u € GSp(4,Z,) is equivalent to the condition that

t

At Y1 Y1 Y1

PYs — Yo —UY3 T (pys — Y2) — Spys Y1 — tuys + s (pys — yo)

/

VE(p, p)u =
—21 0 —rz —sz
P21 _ pz rpz1 _ spz spz1 _ tpz
Y1 Y1 Y1 Y1 Y1 Y1

is an element in GSp(4,Z,), which in particular implies that z; € Z,. On the other
hand, we must have that det(d/)u? = 2?u® € ZX and we saw before that p € Z,.

Thus, u € Z, and as a consequence, we get from (3.55) that
h™t € GSp(4,7Z,).

But then from h='¢(p, u)u € GSp(4,Z,) we conclude
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0 0 ju p
0 O 0 1

E(p, p)u = € GSp(4,Z,),
-1 0 -r -8

p o —H TP =S Sp—1tu
and hence p € Z,. In addition tu € Z, and since p is a unit we get that ¢ € Z,.
Thus, the conditions that h~'¢(p, u)u € GSp(4,7Z,) implies that h € H(Z,),
p E Ly, p € Z; and u € U(Z,).

Lemma 3.7. We have that I,(p, ) = I(p, ) =0 if p € Z or pu # +1.

Proof. At all finite places v we have that f,(h™'¢(p, u)u) = 0 if b '¢(p, u)u &
GSp(4,Z,). Thus, if there exists h and u such that f,(h™'¢(p, u)u) # 0 by Lemma
3.6 we get that p € Z, and p € Z}. In particular, if we must have 1, ,(p, u) # 0 for
all v, it must be the case that p € Z and p = +1. The same is true for I;. ]

Thus, we only need to consider I,(p,+1) and I(p,£1) with p € Z. We will

further set restrictions by choosing the symmetric matrix S in (3.31) to be

with m € Z*. If
1 as + bg\/a

0 1

n =
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we have

W(E(p, p)wg tnwel (p ) = Poltr(SE(p, 1) wy 'nwol(p, 1))
B 2as(—p*md + m(d + p?)) 4bydmp
v ( I > v ( I ) ’

Plugging this into the expression for [, in (3.52) and using character orthogonality,

we get that since

/ W(E(p, 1)~ wy 'nweé (p, p))dn # 0
N@\N(A)

implies p = 0 and p = %1, it must be the case that if

Lo(p, ) #0

then 1,(0,+1) are the only possibilities.
We will evaluate 1,(0,41) and [,(0, £1) corresponding to the two cosets £(0,+1).
We have

1,(0,41) = vol(N(@\N(4)) / F(hE(0, £1)u) x

Ce(0,41) W\ (H(A)xU(A))
X ¢s(woh)(u)dh du

— vol(N(Q)\N(A W(h™1E(0, £
Vol VAN ))1:[/of(o,ﬂ)(@ﬂ\(ﬁ(@ﬁxw@mf( 0, £1)u) x

X st,v(woh)d]v(u)dh du (356)
= vol(N(Q\N(A) [ ] Zas
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and

no£) = [ F(hE(0, £ )u)b(u) x
Ceo,41) (A A)xU(A))
X < Os wonwgh)dn) dh du
- / ~ FOE(0, £ 1)) x
Ce(0,+1)(Qu)\(H(Qu) XU (Qv))
X </ gbs(wonwoh)dn) dh du. (3.57)
N(Qu)

Since H = GL(2)/F and H = Z\G, we have the Iwasawa decomposition of H(F,)
at each place v of F' given by

where

and A = Z\A and T, is a maximal compact subgroup in H(F,). In particular, when
v is a non-archimedian place, we have that I', = H(F,). The Haar measure dh in

Iwasawa coordinates is given by
dh = |a| *dndady

such that if we have a measurable function f on H(F,), we have

1 n a
/ f(h)dh:// /f v | |a|tdyd*adn.
H(Fy) v JFY JTy 1 1
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As a result we have the following lemma:

Lemma 3.8. Cg(p,#)\f[ x U over a local field has coset representatives given by the

elements of
N\H x U
with the right H-invariant measure on N\H given by |a|"'d*ady, where d*a is the

Haar measure on A and dvy is the Haar measure on T'.

Proof. A direct computation shows that

Cetoy = 1@, E(p, )7 E(p, )T € N} .

Let’s suppose that N\ﬁ is given by a disjoint union of cosets U;c;Nh;. Then
we will check that (h;,u) represent disjoint coset representatives for C’g(p,#)\f[ x U.

Indeed, if we let (h,u) € H x U be an arbitrary element, we can write it as

(h,u) = (@, &(p; 1)1 E(p, 1)) (hi )

!/

with ' the unique solution to u = &(p, u)"t0h™1&(p, pu)u’. Tt is now easy to check

that (h;,u’) and (h;,u"”) represent different cosets for i # j. Indeed, suppose

(@, &(p, )~ "€ (p, ) (hay ') = (hy, u”).

Then we get h; = h; which implies 7 = 1 and v’ = ",
Note that N = woNwy ', so that the Iwasawa decomposition of H can be rewrit-
ten as H = woNwy 'ATL, or alternatively, H = Nwy'Al'. The measure on N\H in

Iwasawa coordinates can be deduced from this.
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3.6.1 Non-archimedian computation of [, ,(0, £1)

In the following theorem we will evaluate all I, ,(0,%1) in the relevant cases.

Theorem 3.4. 1. If v is an inert place where X1, and X2, are unramified and

fov is the characteristic function of GSp(4,7Z,)Z, then

1,.5(0, £1) = meas(H(Z,) x U(Z,)).

2. If v = N is an inert place where x1 n and xo,n are unramified and fy is the

characteristic function of Ko(N)Zy then

I, n(0,41) = meas(To(N)) - (meas(Ko(N))) ™.

3. If (v,2) =1 is another inert place then
1,,(0,1)>0

and

I,,(0,—1) =0.

4. If v = v1vy is a split place with (v,2) =1 such that Xgl),xgm,xél),xg) are all

unramified then

1,,(0,+1) = meas(H(Z,) x U(Zy,)).

5. If (v,2) = 1 is a ramified place then assuming x1 and s are both unramified
we get

1,,(0,£1) = Xl,s(d_l)xg,s(d_l) -meas(Hy x U(Zy,)),
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where Hy is a subgroup of H whose entries satisfy the inequalities in (3.60).

6. If v =2 then
I.,(0,41) = Xii(2d)x£},(2d) - meas(H, x U(Z,)),

where Hy is a subgroup of H(Q,).

Proof. 1. We have by Lemma 3.8

T(0,41) = / ~ £ €0, 1)) o (woh) i ()R
Ce(0,+1) (Qu)\(H(Qu) XU (Qw))

Asin Lemma 3.6, f,(h='€(0,41)u) # 0 implies in particular h € H(Z,) and u €

U(Z,). 1t is easy to see that for f, the characteristic function of GSp(4,Z,)Z,

this is also a sufficient condition. Thus, taking into consideration Lemma 3.8,

we have

I,,(0,£1) = / Gs0(woh)y(u)dh du

H(Zy,)xU(Zy)

= meas(H(Z,) x U(Z,))
since when i, and X2, are unramified we have that ¢,, is right H (Zy)-
invariant, and we also have ¢, (u) = 1 for all u € U(Z,).

2. Since x1,n, x2,n are unramified, ¢, x is again right I:I(ZN)-invariant. We have
that since fy is the characteristic function of Zy\Ko(N)Zy divided by the

volume, the necessary and sufficient conditions that we get from

ht€(0, £1)uy € Ko(N)
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are that hy € H(Zy) and uy € U(Zy), and in addition if

ap bd 2 %
S IR
20,3 2b3d Qg b4

ngd 2a3d b4d ay

then we must also have vy(a1),vn(b1) > 0. Consider the set of elements

I5(N) = @ p € H(Op,),vn(a) > 0

v o

We have
I, n(0,£1) = meas(I'y(N) x U(Zy)).

Note however that

) 01
I5(N) = [o(N),
10
where
a b b *x K
[o(N) = € GL(2,0)| = (mod w)
c d c d 0 %

Thus, we get that meas(I'5(N)) = meas(I'y(N)).

3. In this case, x1, and xa, are not both unramified. Assume that cond(x1,) =n

and cond(x2,) = n and that x;, and X2, are even characters. Just as before,
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since f, is zero outside GSp(4,Z,), we get
I,,(0,£1) :/ fo(h71E(0, £1)u) - ¢ (woh)dh du.
H(Zy)xU (Zy)

We have that f, is 1 on the coset

_1
2
_1
K(2n) 2d K(2n),
—w, 2
—wo, 2d
and zero otherwise. Here
A B A B I 0 )
K(2n) = € GSp(4,Z,)| = (mod w@.")
C D C D 0 1

and the double coset consists of elements

_1

2
A B —

= 2d (mod ™).
C D — oy 2
—wy 2d
If
ap bd 2 %

ht =
2(13 ngd Qy b4

2bgd 2a3d b4d ay
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then
-% F¥ FaFR-rg bd¥H sy
b a ass b a b
—ay Fby E2a3 F bys —aqr  2b3d F bat — aus
—b4d Fay :thgd F a48 — b4d7” 2a3d F aut — b4d8
(3.58)
Note that
_1
2
1
hLE(0, —1)u € K(2n) 2d K (2n)
— T, 2
—y 2d
will give us a contradiction, hence I,,(0, —1) = 0.
If h1£(0,1)u as in (3.58) is an element in
1
2
_ 1
K(2n) 2d K(2n),
— Ty 2
—y 2d
then a; = 1(mod @w?"), by,by = 0(mod @), a4y = @"(mod @w?"), a3 =

1(mod @"), and by = 0(mod @) are necessary conditions. The matrix h~*

corresponds to the matrix

a v a1 +bVd as + boV/d
= e T eGL2,0)
d d (13—|-b3\/3 a4+b4\/3
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so that o/, ¢ = 1(mod @w”), and d' = @"(mod @?>"). Then
d v
h _ a b _ ad —bc! _a’d/—b’c’
C d C/ a/

a’'d' —b'c! a'd' —b'c!

with

a = —w"(mod w>") and b, c = 1(mod =). (3.59)

Since v(a) =n > 0, we can write

woh = = a s
—a —b —b w

and for ¢, supported on

a ['y(2n)-invariant map as in (3.11)

Gs0o(woh) = x14((cb — ad)w™ /a)x2.,(—b).

Since X1, and X2, are even characters and trivial on 1 4 p", we get that for h

with entries satisfying (3.59), we get ¢s,(woh) = 1.

Then the integral is just the volume of the elements (h,u) € H(Z,) x U(Z,)
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with the property that

h7E(0,1)u € Ki(2n) K1(2n).
~1

—1

4. Here we consider the case when v splits into places vy and v of F', and (v,2) =

1. We have that d is a square of F'. We can write

Qbs = ¢gl) ' gbg)a

where qbgz) represents the component at place v;, and
. a x ; ; ;
o g | = xin(@xsn )¢ (9).

If f, is the characteristic function of Z,GSp(4,Z,) and X?Z, and ng) are all

unramified, then similar to case 1 above we get that I,,(0,4+1) = 1.
5. If v is a ramified place such that (v,2) = 1 then if wp is a fixed uniformizer of
F we have that w% = w. We may also assume that v(v/d) = 1/2.

Just like before, h™'¢(0,+1)u € GSp(4,Z,) implies h € GSp(4,Z,) and u €
U(Z,). 1f

=

ba
2

aq bld

NI to|,§
NS

b1 ayq
2(13 2b3d a4 b4
2b3d 2a3d b4d ay

h = € GSp(4,Z,),
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then

v(ay),v(b),v(as),v(bs),v(az),v(by),v(as) > 0 and v(bs) > —1. (3.60)

We can write

¢s(w0h) = (bs th )
0 dt 0 d
and since
d 0
woh € GL(2,0),
0 d
we get that

ds(woh) = Xl,s(d_l)X2,5<d_1)-

Thus, we conclude that
Io(0,£1) = x1.4(d ) xas(d™) - meas(Hy x U(Zy,)),

where Hy is the subgroup of H (Q,) with entries satisfying the conditions in
(3.60).

. If v = 2 and d = 2(mod 4) then 2 ramifies, and using the usual notation
we have v(ay),v(b1),v(aq),v(by) > 0 and v(be) > 1, v(az) > —1 v(az) > 2,
’U(bg) > —2.

If v =2and (d,2) = 1 and 2 is inert or ramified, which corresponds to d =
3,5(mod 8), we have v(ay),v(b1),v(ay),v(bs) > 0 and v(by) > 1, v(az) > —1
v(ag) > 1, v(bg) > —1.
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If v =2 and (d,2) = 1 and 2 is split, i.e. d = 1(mod 8), then we have that
Vd € Zy and v(ay), v(b1), v(as), v(bs) > 0 and v(by) > 1, v(as) > —1 v(ag) > 1,
U(bg) Z —
In all cases, ¢s.(wox) = x1,(2d)x5,(2d) from which the conclusion follows just

like before.

3.6.2 Non-archimedian computation of [, (0, +1)

Recall

L(0,£1) = F(h71E(0, £1)u)tb(u) x

/C£<0 +1) (A)\(H(A)xU(4))

< Os wonwgh)dn) dh du

X

/ P E(0, £ 1)) x
Ce(0,41) (Qu)\(H (Qu) xU(Qy))

( / ¢s(’wonwoh)dn> dh du.
N@))

The inner integral is given by (see Section 3.2.5)

X

/ os(wonwoh)du = M (s)ps(woh),
N(A)
and hence

1,(0,%1) = F(h€(0, £1)u)(u) - M(s), (woh)dhdu.

/Cg(o,il)(A)\(H(A) xU(A))
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At place v, we have

/ _ f(h;16(07 i1>u)¢v(uv) : AU(*S)gbs,v(thv)dhvduw
Ce(0,4+1) (Qu)\(H(Qu)xU(Qu))

We saw in Section 3.2.5 (see eq. (3.14)) that

L(25, X1,0X2,0)
L(2S + 17 Xl,in};)e(257 Xl,vXQi}n Uv)

Av(sa w0)¢s,v(g) - ¢s,v(g>'

Thus, we get I,(0, £1) equals

L(287 Xl,vXZ_ﬂl)
L(23 + 17 Xl,vX2_,111)6(287 Xl,vX2_,11;a Uv)

F(h €00, £ 1))y (wy) - dsy(wohy)dhyduy,

I ,(0,£1)

X

<
Ce(0,41) (Qu)\(H (Qu) xU(Qw))

and we can replicate the computations in Theorem 3.4 for this integral.

3.7 Conclusion

We can summarize the results obtained thus far as follows:

Theorem. For an appropriate choice of test function f and character ) of U(Q)\U(A),

the spectral side of the relative trace formula considered gives

[<f) = Zmﬂ' Z ;L@OH(I%M? v, S)Ei,d)Haiap?

piET <(‘0i’ (’Oi> peES

where ; y is the Fourier coefficient of @; with respect to character 1 (see eq. (3.10))
and a;, is such that p(f)eip = a;ppip for p € S, with S a finite set of places. The

outer sum is over T cuspidal representations in the space A7 (N), and the inner sum
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1s over an orthogonal basis of .

The corresponding geometric side 1s given by a sum

I(f) = L(0,1) + > L(p, 1),
pPEL
with 1,,(0,1) # 0 and I,,(0,1) # 0 at all non-archimedian places v, as the prime
level N — oo. The elements I,(p, i) and I(p, ) represent the contribution from the

coset representative £(p, ).

The terms I,(p, 1) corresponding to double coset representatives £(p, 1) with p €
Z \ {0} are equal to

/ i F(hE(p, ) (u) x
Ce o,y W\ (H (A)xU (4))

< A€ ) e, 0)dn ) dh
N(A

In this case, the interior integral exhibits an oscillating behavior due to the factor
V(E(p, 1)~ wy 'nweé (p, 1)) which is not trivial unlike in the case when p = 0, u = £1.
It is our hope that we can use this fact to get a bound on these terms and show
nonvanishing of 7(f).

On the spectral side it is enough that characters x1, x2 have just one prime place p
(which we may assume is inert in F') where x1, and xs, are ramified. A computation
similar to that in part (3) of Theorem 3.4 also shows that we can make some of the
terms Iy(p, 1) to be zero. Indeed, if we have a finite place p where x;, and x2, are

ramified, then I(p, 1) with p a multiple of p is zero.
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