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Abstract

In this thesis I study two different approaches towards proving average results on

values of L-functions, with an interest toward establishing new results on automor-

phic L-functions, especially concerning the nonvanishing of L-functions of degree > 2

at the center of the critical strip (and at other points of the complex plane), and

their applications, particularly to p-adic L-functions. In the first problem, I evaluate

a twisted average of L-values using the approximate functional equation in order

to prove a result on the determination of isobaric representations of GL(3,AQ) by

certain L-values of p-power twists. I also provide an application to the adjoint p-adic

L-function of an elliptic curve. More specifically, I show that if E is an elliptic curve

over Q with semistable reduction at some fixed prime p, then the adjoint p-adic L-

function of E evaluated at any infinite set of integers relatively prime to p completely

determines up to a quadratic twist the isogeny class of E.

For the second problem, which is part of a long project, I present some results

towards proving an average result for the degree 4 L-function on GSp(4)/Q at the

center using the relative trace formula. More specifically, I consider a suitable relative

trace formula such that the spectral side is an average of central L-values of genus

2 holomorphic Siegel eigenforms of weight k and level N twisted by some fixed

character. I then work towards computing the corresponding geometric side.
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Chapter 1

Introduction

In many cases, the values of an L-function inside the critical strip can encode impor-

tant arithmetic information. The study of the behavior of L-functions at the center

of the critical strip is especially important in this sense, as suggested by its ties with

several conjectures. For example, the Birch and Swinnerton-Dyer conjecture sug-

gests that the behavior of the L-function associated to an elliptic curve E over Q at

the center of the critical strip 0 ≤ Re(s) ≤ 2 determines the rank of E(Q). There

are also generalizations such as Deligne’s conjecture on special values of L-functions

and work due to Beilinson and Kato on the leading term in the Taylor series of the

L-function at the center.

The construction and study of p-adic L-functions is also an important and related

part of current research. It is conjectured that p-adic L-functions can be constructed

in general settings, but have only been shown to exist in a limited number of cases. It

is known that you can construct a p-adic L-function associated to a modular form by

interpolating p-power twists of the associated complex L-function at special values.

Work of Ash and Ginzburg shows that a p-adic L-function can be constructed for

certain automorphic representations π of GL(2n,AQ) under some conditions, such as

the nonvanishing of the twisted complex L-function L(π⊗χ, 1/2) by some character
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χ that is trivial at infinity.

One method of proving nonvanishing results for values of L-functions inside the

critical strip is to consider suitable averages over families of L-functions. To evaluate

such averages, one can use the traditional approach using an approximate functional

equation or, among others, the more recent approach using the relative trace formula.

In Chapter 2, we use the approximate functional equation to compute a twisted

average of L-functions which allows us to prove a result on the determination of

isobaric representations π of GL(3,AQ) by twisted L-values L(π⊗χ, β) with χ ranging

over primitve p-power order characters and β a fixed point inside the critical strip

but outside the central line. The method used also gives nonvanishing of infinitely

many such twisted L-values for isobaric automorphic representations of GL(n,AQ)

for n ≥ 3.

We also provide an application on the determination of elliptic curves over Q up

to isogeny by the adjoint p-adic L-function. The main result of Chapter 2 (Theorem

2.4) can be summarized as follows:

Theorem. Let p be an odd prime and E,E ′ be elliptic curves over Q with semistable

reduction at p. Suppose

Lp(Sym
2E, n) = CLp(Sym

2E ′, n)

for all (n, p) = 1 elements of an arbitrary infinite set Y and C ∈ Q. Then E ′ is

isogenous to a quadratic twist ED of E. If E and E ′ have square free conductor, then

E and E ′ are isogenous over Q.

In Chapter 3, I present some results which are part of a long project towards

establishing an average result for the degree 4 L-function on GSp(4)/Q at the center.

More precisely, the purpose of this project is to establish the following:
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(?) Fix a Siegel weight k ≥ 3. Then for a suitable fixed character χ0, there ex-

ist infinitely many genus 2 holomorphic Siegel eigenforms π of trivial central

character and weight k such that

L(π ⊗ χ0, 1/2) 6= 0.

as we vary the level N →∞.

Since the nonvanishing statement in (?) is only possible modulo the root number, we

consider forms π with root number 1. In particular I am looking at self-dual forms

so the root number can only be ±1.

Alternatively, we can consider the slightly modified problem:

(??) Fix a level N > 1. Then for a suitable fixed character χ0, there exist infinitely

many genus 2 holomorphic Siegel eigenforms π of trivial central character and

level N such that

L(π ⊗ χ0, 1/2) 6= 0

as we vary the weight k →∞.

My approach to proving these problems is: (?) would follow from the spectral side

of a suitable relative trace formula on GSp(4)/Q with respect to subgroups GL(2)/F

with F an auxiliary imaginary quadratic field and U the unipotent radical of the

Siegel parabolic subgroup, if the corresponding geometric side is nonvanishing as we

vary N → ∞. Similarily, (??) would follow if the corresponding geometric side is

nonvanishing as k →∞.

It should be noted that no nonvanishing results at the center are known for any

family of L-functions of degree ≥ 4. By work of Bloch and Kato, nonvanishing at
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the center of the degree 4 L-function would imply that a certain associated Selmer

group of the Siegel eigenform π is finite.

There are three steps to solving this problem: (1) Verify that the spectral side

gives the desired average, (2) Find special leading terms on the geometric side that

give a nonvanishing contribution, and (3) Show that these leading terms dominate

the others.

I give a suitable test function and show that this allows the spectral side to

be identified with a weighted average of central degree 4 L-values and identify the

leading terms on the geometric side and an oscillating behavior in the remaining

terms, which should allow me to show that the former terms dominate the latter.
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Chapter 2

Determination of elliptic curves by
their adjoint p-adic L-functions1

2.1 Introduction

There has been a lot of interest in the study of L-functions associated to symmetric

powers of motives attached to modular forms, and in particular to the study of the

Bloch-Kato conjecture for L(Sym2E, s), the L-function associated to the symmetric

square of an elliptic curve at the critical value s = 2.

In [DD97], Dabrowski and Delbourgo define the p-adic L-function attached to

the motive Sym2E at the critical point s = 2 as the Mazur-Mellin transform of a

p-adic distribution µp(Sym
2E) on Z×p . This distribution is defined by interpolat-

ing the values of the complex symmetric square L-function L(Sym2E,χ, 2) at all

twists by Dirichlet characters of p-power order. They also show that the distribution

µp(Sym
2E) is in fact a bounded measure on Z×p if E has good ordinary reduction at

p or bad multiplicative reduction at p, and is an h-admissible measure with h = 2 if

E has good supersingular reduction at p.

1This chapter is a modified version of the author’s paper [Nas15]
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The main result of this chapter is stated in Theorem 2.4. It is a result on the de-

termination of elliptic curves over Q up to isogeny by the adjoint p-adic L-function.

Using the theory of h-admissible measures developed by Visik [Vis76], we show

(see Lemma 2.4) that Theorem 2.4 reduces to proving that the twisted L-values

{L(Sym2E,χ, 2)} with χ ranging over Dirichlet characters with p-power conductor

determine the isogeny class of E up to quadratic twist. Note that just knowing

nonvanishing of the complex L-values twisted by p-power characters gives the non-

vanishing of the p-adic L-function, but not that the p-adic L-function determines the

isogeny class of E, which requires a further argument.

If f is the newfom of weight 2 associated to E by Wiles’ modularity theorem,

and π the unitary cuspidal automorphic representation of GL(2,AQ) generated by

f , then

L(Sym2E, s) = L(Sym2π, s− 1),

where Sym2π is the automorphic representation of GL(3,AQ) associated to π by

Gelbart and Jacuqet [GJ78]. It is well-known that Sym2π is cuspidal only if E is

non-CM, otherwise it is an isobaric sum of unitary cuspidal automorphic representa-

tions. Theorem 2.4 is then a consequence of a result on the determination of isobaric

automorphic representations of GL(3) which is summarized in Theorem 2.2.

One of the main ingredients in the proof of Theorem 2.2 is the computation of a

twisted average of the form

∑
χ mod pa

χ(s)χ(r)L(π ⊗ χ, β),

where the sum if over primitive p-power order characters of conductor pa. This sum

is computed in Theorem 2.1 and it uses an approximate equation similar to that used
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in [Luo05]. A proof of the approximate functional equation is provided in Section

2.2.2. Note that special care is required when π or π′ above are not cuspidal, and in

such cases I require L(π ⊗ χ, s) and L(π′ ⊗ χ, s) to be entire for all p-power twists.

A consequence of the computation of this twisted average is given by a nonvan-

ishing result on p-power twists of isobaric representations for GL(n,AQ) for n ≥ 3.

This result is summarized in Corollary 2.1. Note, however, that proving nonvanish-

ing of L(π⊗χ, β) for infinitely many p-power twists and a fixed β will not imply the

determination result of Theorem 2.2. Proving determination as in Theorem 2.2 is a

stronger result which I am only able to show for n = 3 and not for n > 4.

To give some context to the nonvanishing of twisted L-values, note that nonvan-

ishing results have been proved for many families of twisted L-values. In particular,

building on work of Rohrlich [Roh84] and Ramakrishnan and Barthel [BR94], Luo

[Luo05] showed that nonvanishing of infinitely many twisted L-values {L(π ⊗ χ, β)}

with χ ranging over all Dirichlet characters, holds for β 6∈
[

2
n
, 1− 2

n

]
and π a cusp-

idal automorphic representation of GL(3,AQ). In particular, Luo is able to obtain

nonvanishing at the center for n = 3. However, in my case the set of characters

considered is much sparser.

We now give an outline of the rest of the chapter. In Section 2.2 we present the

basic properties of the standard L-function associated to an isobaric representation

of GL(n) as well as give a proof of the approximate functional equation. In Section

2.3 we give proofs for Theorem 2.1 and Theorem 2.2, as well as give an application

on the determination of π by certain twisted L-values of the isobaric automorphic

representation Ad(π) of GL(3,AQ) when π is a cuspidal automorphic representation

of GL(2,AQ). This result is summarized in Theorem 2.3. Finally, in Section 2.4 we

give a proof of Theorem 2.4.
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2.2 Preliminaries

2.2.1 The standard L-function of GL(n)

Let π be an irreducible automorphic representation of GL(n,AQ) and L(π, s) its

associated standard L-function. Write π = ⊗′vπv as a restricted direct product with

πv admissible irreducible representations of the local groups GL(n,Qv). The Euler

product

L(π, s) =
∏
v

L(πv, s) (2.1)

converges for Re(s) large. There exist conjugacy classes of matricesAv(π) ∈ GL(n,C)

such that the local L-functions at finite places v with πv unramified are

L(πv, s) = det(1− Av(π)v−s)−1. (2.2)

Let Av(π) = [α1,v(π), · · · , αn,v(π)] be the diagonal representatives of the conjugacy

classes.

For S a set of places of Q we can define

LS(π, s) =
∏
v 6∈S

Lv(π, s) (2.3)

called the incomplete L-function associated to set S.

Let � be the isobaric sum introduced in [JS81]. We can define an irreducible auto-

morphic representation, called an isobaric representation, π1� · · ·�πm of GL(n,AQ),

n =
∑m

i=1 ni, for m cuspidal automorphic representations πi ∈ GL(ni,AQ). Such a

representation satisfies

LS(�m
j=1πj, s) =

m∏
j=1

LS(πj, s)
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with S any finite set of places.

The following is a generalization of the Strong Multiplicity One Theorem for

isobaric representations due to Jacquet and Shalika [JS81]:

Theorem (Generalized Strong Multiplicity One). Consider two isobaric represen-

tations π1 and π2 of GL(n,AQ) and S a finite set of places of Q that contains ∞.

Then π1,v
∼= π2,v for all v 6∈ S implies π1

∼= π2.

We call an isobaric representation tempered if each πi in the isobaric sum π =

π1� · · ·�πm is a tempered cuspidal automorphic representation, or more specifically

if each local factor πi,v is tempered.

We will consider a subset of the set of isobaric representations of GL(n,AQ),

more specifically those given by an isobaric sum of unitary cuspidal automorphic

representations. We denote this subset byAu(n). We will also consider the case when

the unitary cuspidal automorphic representations in the isobaric sum are tempered,

which is expected to always hold given the generalized Ramanujan conjecture.

Let n ≥ 3 and let π ∈ Au(n) be an isobaric sum of unitary cuspidal automorphic

representations of GL(n,AQ) with (unitary) central character ωπ and contragradient

representation π̃. We have

L(π∞, s) =
n∏
j=1

π−
s−µj

2 Γ

(
s− µj

2

)
, L(π̃∞, s) =

n∏
j=1

π−
s−µj

2 Γ

(
s− µj

2

)
(2.4)

for some µj ∈ C, with π in this context denoting the transcendental number.

The L-function is defined for Re(s) > 1 by the absolutely convergent Dirichlet

series

L(π, s) =
∞∑
m=1

aπ(m)

ms
(2.5)
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with aπ(1) = 1. This extends to a meromorphic function on C with a finite number

of poles.

It is known that the coefficients aπ(m) of the Dirichlet series satisfy

∑
m≤M

|aπ(m)|2 �ε M
1+ε (2.6)

for M ≥ 1 (cf. Theorem 4 in [Mol02], [JPSS83, JS81, Sha81, Sha88]). For this prop-

erty to hold, it is necessary that π be an isobaric sum of unitary cuspidal automorphic

representations, rather than any unitary isobaric representation.

If π is in fact an isobaric sum of tempered cuspidal automorphic representations,

then we have that the coefficients aπ(m) satisfy

|aπ(m)| �ε m
ε.

The completed L-function Λ(π, s) = L(π∞, s)L(π, s) obeys the functional equa-

tion

Λ(π, s) = ε(π, s)Λ(π̃, 1− s), (2.7)

where the ε-factor is given by

ε(π, s) = f 1/2−s
π W (π) (2.8)

and fπ and W (π) are the conductor and the root number of π.

Let χ denote an even primitive Dirichlet character that is unramified at ∞ and

with odd conductor q coprime to fπ. The twisted L-function obeys the functional
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equation (see for example [JPSS83])

Λ(π ⊗ χ, s) = ε(π ⊗ χ, s)Λ(π̃ ⊗ χ, 1− s), (2.9)

where Λ(π ⊗ χ, s) = L(π∞, s)L(π ⊗ χ, s). The ε-factor is given by (cf. Proposition

4.1 in [BR94])

ε(π ⊗ χ, s) = ε(π, s)ωπ(q)χ(fπ)q−nsτ(χ)n (2.10)

with τ(χ) the Gauss sum of the character χ, and ωπ the central character of π.

Since L(π ⊗ χ, s) does not vanish in the half-plane Re(s) > 1, it is enough to

consider 1/2 ≤ Re(s) ≤ 1. Twisting π by a unitary character | · |it if needed, we can

take s ∈ R. Thus, from now on,
1

2
≤ s ≤ 1. (2.11)

2.2.2 Approximate functional equation

We present a construction introduced in [Luo05, LR97]. For a smooth function g with

compact support on (0,∞), normalized such that
∫∞

0
g(u)du

u
= 1, we can introduce

an entire function k given by

k(s) =

∫ ∞
0

g(u)us−1du

such that k(0) = 1 by normalization and k decreases rapidly in vertical strips. We

then consider two functions for y > 0,

F1(y) =
1

2πi

∫
(2)

k(s)y−s
ds

s
, (2.12)

F2(y) =
1

2πi

∫
(2)

k(−s)G(−s+ β)y−s
ds

s
, (2.13)
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with G(s) = L(π̃∞,1−s)
L(π∞,s)

and the integrals above over Re(s) = 2. The functions F1(y)

and F2(y) obey the following relations (see [Luo05]):

1. F1,2(y)� Cmy
−m for all m ≥ 1, as y →∞.

2. F1(y) = 1 +O(ym) for all m ≥ 1 for y small enough.

3. F2(y)�ε 1 + y1−η−Re(β)−ε for any ε > 0, where η = max1≤j≤n Re(µj) and µj as

in (2.4). If π is tempered then η = 0 and in general the following inequality

holds (see [LRS99]):

0 ≤ η ≤ 1

2
− 1

n2 + 1
. (2.14)

The following approximate functional equation was first used in [LR97] for cuspi-

dal automorphic representations of GL(n) over Q. A similar approximate functional

equation was proved in [BH12] for slightly different rapidly decreasing functions.

Proposition If π ∈ Au(n) and χ is a primitive Dirichlet character of conductor q

such that L(π ⊗ χ, s) is entire, then for any 1
2
≤ β ≤ 1

L(π ⊗ χ, β) =
∞∑
m=1

aπ(m)χ(m)

mβ
F1

(
my

fπqn

)
+ ωπ(q)ε(0, π)τ(χ)n(fπq

n)−β ×

×
∞∑
m=1

aπ̃(m)χ(mf ′π)

m1−β F2

(
m

y

)
,

where f ′π is the multiplicative inverse of fπ modulo q.

Proof. For σ > 0, y > 0 consider the integral:

1

2πi

∫
(σ)

k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
ds

s
.
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Since k(s) and L(π ⊗ χ, s+ β) are entire functions, the only pole of the function

k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
s−1

is a simple pole at s = 0 with residue equal to

lims→0k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
= L(π ⊗ χ, β).

Then by the residue theorem

L(π ⊗ χ, β) =
1

2πi

∫
(σ)

k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
ds

s

− 1

2πi

∫
(−σ)

k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
ds

s
.

Taking s→ −s in the second integral gives

L(π ⊗ χ, β) =
1

2πi

∫
(σ)

k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
ds

s
(2.15)

+
1

2πi

∫
(σ)

k(−s)L(π ⊗ χ,−s+ β)

(
y

fπqn

)s
ds

s
.

The functional equation is

L(π∞, s)L(π ⊗ χ, s) = ε(π ⊗ χ, s)L(π̃∞, 1− s)L(π̃ ⊗ χ, 1− s),

which implies that

L(π ⊗ χ, s) = ε(π ⊗ χ, s)G(s)L(π̃ ⊗ χ, 1− s).
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Substituting this identity in the second integral gives

L(π ⊗ χ, β) = I1 + I2 (2.16)

with

I1 =
1

2πi

∫
(σ)

k(s)L(π ⊗ χ, s+ β)

(
y

fπqn

)−s
ds

s

and

I2 =
1

2πi

∫
(σ)

ε(β − s, π ⊗ χ)G(β − s)k(−s)L(π̃ ⊗ χ, 1 + s− β)

(
y

fπqn

)s
ds

s
.

Taking σ = 2 and substituting with L(π⊗χ, s) =
∑∞

m=1 aπ(m)χ(m)m−s in the region

of absolute convergence gives

I1 =
∞∑
m=1

aπ(m)χ(m)m−β · 1

2πi

∫
(2)

k(s)

(
my

fπqn

)−s
ds

s
,

and by the definition of F1,

I1 =
∞∑
m=1

aπ(m)χ(m)m−βF1

(
my

fπqn

)
. (2.17)

Similarly,

I2 =
1

2πi

∫
(2)

ε(β − s, π ⊗ χ)G(β − s)k(−s)
∞∑
m=1

aπ̃(m)χ(m)m−1−s+β
(

y

fπqn

)s
ds

s

with ε(β−s, π⊗χ) = ε(β−s, π)ωπ(q)χ(fπ)q−n(β−s)τ(χ)n and ε(β−s, π) = f
1/2−β+s
π W (π).
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This gives

I2 =
∞∑
m=1

aπ̃(m)χ(mf ′π)m−1+βf 1/2−β
π W (π)ωπ(q)q−nβτ(χ)n ×

× 1

2πi

∫
(2)

G(β − s)k(−s)ysm−sds

s
.

By the definition of F2,

I2 = ωπ(q)ε(0, π)τ(χ)n(fπq
n)−β

∞∑
m=1

aπ̃(m)χ(mf ′π)

m1−β F2

(
m

y

)
. (2.18)

Here W (π)f
1/2
π = ε(0, π). Applying equations (2.16), (2.17), and (2.18) gives the

desired approximate functional equation.

2.2.3 Dihedral representations

Let π be a cuspidal automorphic representation of GL(2,AQ) with conductor fπ. We

have the symmetric square L-function L(π, s, Sym2) given by an Euler product with

local factors

Lv(π, s, Sym
2) = (1− α2

vv
−s)−1(1− αvβvv−s)−1(1− β2

vv
−s)−1

for primes v with v 6 | fπ and Av(π) = {αv, βv} the diagonal representatives of the

conjugacy classes attached to πv.

By [GJ78], there exists an isobaric automorphic representation Sym2(π) of GL(3,AQ)

whose standard L-function agrees with L(π, s, Sym2) at least at primes v with v 6 | fπ.

We have that Sym2(π) is cuspidal if and only if π is dihedral. A dihedral representa-

tion is a representation induced by the idele class character η of a quadratic extension
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K of Q. If π = IQK(η) is a dihedral representation then

L(IQK(η), s) = L(η, s).

Let π be a (unitary) cuspidal automorphic representation of GL(2,AQ). Suppose

π is dihedral, of the form IQK(η) for a (unitary) character η of CK . We can express

Sym2π as follows (see also [Kri12]). Let τ be the non-trivial automorphism of the

degree 2 extension K/Q. Note that

ηητ = η0 ◦NK/Q, (2.19)

where η0 is the restriction of η to CQ. We have

IQK(ηητ ) ∼= η0 � η0δ, (2.20)

where δ is the quadratic character of Q associated to K/Q.

If λ, µ are characters of CK , then by applying Mackey:

IQK(λ) � IQK(µ) ∼= IQK(λµ) � IQK(λµτ ). (2.21)

Taking λ = µ = η in (2.21) and using (2.19) and (2.20),

π � π ∼= IQK(η2) � η0 � η0δ.

Since π � π = Sym2(π) � ω with ω = η0δ,

Sym2(π) ∼= IQK(η2) � η0. (2.22)
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2.3 Determination of GL(3) cusp forms by p-power

twists

2.3.1 A simple lemma involving Gauss sums

For an odd prime p, define the sets (following the notations in [LR97])

X(p) = {χ a Dirichlet character of conductor pa for some a},

Xw
(p) = {χ ∈ X(p)|χ has p-power order}.

The characters of Xw
(p) are called wild characters.

If χ ∈ X(p), then χ : (Z/paZ)× → C× for some a. Note that (Z/paZ)× ∼=

Z/pa−1Z× Z/(p− 1)Z. A character in X(p) is an element in Xw
(p) if and only if it is

trivial on the elements of exponent p− 1.

We denote the integers mod pa of exponent p − 1 by Sa and the sum over all

primitive wild characters of conductor pa by
∑∗

χ mod pa .

Consider the set

G(pa) := ker((Z/paZ)× → (Z/p)×) ∼= Z/pa−1Z. (2.23)

Using the orthogonality of characters we get that summing over the primitive

wild characters of conductor pa gives (see [LR97])

∑∗

χ mod pa
χ = |G(pa)|δSa − |G(pa−1)|δSa−1 , (2.24)

with |G(pa)| = pa−1 from (2.23) and δSa the characteristic function of Sa.
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The following result for hyper-Kloosterman sums was proved in [Yan98]:

Lemma 2.1. Let p be a prime number, 1 < n < p and q = pa with a > 1. Let x′

denote the inverse of x mod q and let e(x) := e2πix. Then for any integer z coprime

to p the hyper-Kloosterman sum

∣∣∣ ∑
x1,··· ,xn(mod q)

(xi,p)=1

e

(
x1 + · · ·+ xn + zx′1 · · ·x′n

q

)∣∣∣
is bounded by 

≤ (n+ 1)qn/2 if 1 < n < p− 1, a > 1

≤ p1/2qn/2 if n = p− 1, a ≥ 5

≤ pqn/2 if n = p− 1, a = 4

≤ p1/2qn/2 if n = p− 1, a = 3

≤ qn/2 if n = p− 1, a = 2.

(2.25)

As a consequence of Lemma 2.1 we prove the following result:

Lemma 2.2. Let τ(χ) denote the Gauss sum of the character χ. If (r, p) = 1, then

the following bound holds:

∣∣∣∑∗

χ mod pa
χ(r)τn(χ)

∣∣∣� p1/2+a(n+1)/2 (2.26)

for 2 < n ≤ p.

Proof. If χ is a primitive character of conductor pa, then

τ(χ) =

pa−1∑
m=0

χ(m)e2πim/pa .
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Let

A :=
∑∗

χ mod pa
χ(r)τn(χ),

then

A =
∑∗

χ mod pa

[
χ(r)

(
pa−1∑
m=0

χ(m)e2πim/pa

)n]
.

We rewrite the above sum as

A =
∑∗

χ mod pa

[
χ(r)

(
pa−1∑
x1=0

χ(x1)e2πix1/pa

)
· · ·

(
pa−1∑
xn=0

χ(xn)e2πixn/pa

)]
.

This in turn gives

A =

pa−1∑
x1=0

· · ·
pa−1∑
xn=0

∑∗

χ mod pa
χ(r′)χ(x1) · · ·χ(xn)e

(
x1 + · · ·+ xn

pa

)
.

Thus,

A =

pa−1∑
x1=0

· · ·
pa−1∑
xn=0

[∑∗

χ mod pa
χ(r′x1 · · ·xn)

]
e

(
x1 + · · ·+ xn

pa

)
which by equation (2.24) gives

A =

pa−1∑
x1=0

· · ·
pa−1∑
xn=0

e

(
x1 + · · ·+ xn

pa

)
(pa−1δSa(r

′x1 · · ·xn)− pa−2δSa−1(r′x1 · · ·xn)).

We get that

A = pa−1
∑
b∈Sa

T (br, pa)− pa−2
∑

c∈Sa−1

p−1∑
i=0

T (cr + ipa−1, pa), (2.27)



20

where

T (u, pa) =
∑

x1,··· ,xn−1(mod pa)
(xi,p)=1

e

(
x1 + · · ·+ xn−1 + ux′1 · · ·x′n−1

pa

)
.

From Lemma 2.1, for (u, p) = 1 and a sufficiently large

|T (u, pa)| � p1/2+a(n−1)/2. (2.28)

From (2.27) and (2.28) it follows that

|A| � pa−1(p− 1)p1/2+a(n−1)/2 + pa−2(p− 1)2p1/2+a(n−1)/2.

Thus |A| � pap1/2+a(n−1)/2.

2.3.2 Non-vanishing of p-power twists on GL(n,AQ)

Here we will show the following result on isobaric sums of unitary cuspidal automor-

phic representations of GL(n,AQ) for n ≥ 3:

Theorem 2.1. Let π be an isobaric sum of unitary cuspidal automorphic representa-

tions of GL(n,AQ) with n ≥ 3 and s, r be integers relatively prime to p. If L(π⊗χ, s)

and L(π′⊗χ, s) are entire for all χ p-power order characters of conductor pa for some

a, then

lim
a→∞

p−a
∑∗

χ mod pa
χ(s)χ(r)L(π ⊗ χ, β) =

1

p

(
1− 1

p

)
aπ(s/r)

(s/r)β
, (2.29)

where
∑∗ denotes the sum over primitive p-power order characters of conductor pa

and 1 ≥ β > n−1
n+1

if π is an isobaric sum of tempered unitary cuspidal automorphic

representations and 1 ≥ β > n−1
n

in general. Here the elements aπ(s/r) represent
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the coefficients of the Dirichlet series that defines L(π, s) in the right half-plane

Re(s) > 1, with aπ(1) = 1 and aπ(s/r) := 0 if r 6 | s.

Let s, r be integers relatively prime to p. For π an isobaric sum of unitary cuspidal

automorphic representations of GL(n,AQ) define

Ss/r(p
a, π, β) = p−a

∑∗

χ mod pa
χ(s)χ(r)L(π ⊗ χ, β), (2.30)

where
∑∗ denotes the sum over primitive wild characters of conductor pa.

Hence, we will show that:

lim
a→∞

Ss/r(p
a, π, β) =

1

p

(
1− 1

p

)
aπ(s/r)

(s/r)β
(2.31)

for β > n−1
n+1

if π is tempered, and for β > n−1
n

unconditionally.

Here by π tempered we will mean an isobaric sum of tempered (unitary) cuspidal

automorphic representations. If r 6 | s above, then we define aπ(s/r) to be zero.

Proof. The following approximate functional equation holds (see Section 2.2.2):

L(π ⊗ χ, β) =
∞∑
m=1

aπ(m)χ(m)

mβ
F1

(
my

fπpan

)
+ ωπ(pa)ε(0, π)τ(χ)n(fπp

an)−β
∞∑
m=1

aπ̃(m)χ(mf ′π)

m1−β F2

(
m

y

)
,

where χ is a character of conductor pa and f ′π is the multiplicative inverse of fπ

modulo pa.

Define x such that xy = pan. Write

Ss/r(p
a, β) = S1,s/r(p

a, β) + S2,s/r(p
a, β), (2.32)
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where

S1,s/r(p
a, β) = p−a

∑∗

χ mod pa

∞∑
m=1

aπ(m)χ(ms′r)

mβ
F1

(
m

fπx

)
(2.33)

and

S2,s/r(p
a, β) = p−aωπ(pa)

∑∗

χ mod pa
ε(0, π)τ(χ)n(fπp

an)−β ×

×
∞∑
m=1

aπ̃(m)χ(ms′rf ′π)

m1−β F2

(
m

y

)
. (2.34)

Let

Zs/r(p
a, β) =

∑
b∈Sa

∑
rm≡bs(pa)

m≥1

aπ(m)

mβ
F1

(
m

fπx

)
. (2.35)

Then applying equation (2.24) gives

S1,s/r(p
a) = p−a

∞∑
m=1

aπ(m)

mβ
F1

(
m

fπx

)[
pa−1δSa(ms

′r)− pa−2δSa−1(ms′r)
]
,

and hence

S1,s/r =
1

p

[
Zs/r(p

a, β)− p−1Zs/r(p
a−1, β)

]
. (2.36)

If r|s, consider the term in (2.35) with b = 1 and m = s/r. This is a solution to

the equation rm ≡ bs(mod pa) for all a. We will want to set the necessary condition

for this to be the only dominant contribution. If r 6 | s this term will not appear in

the sum and the argument remains as below, requiring the condition that there is

no dominant contribution and that the limit of Ss/r(p
a, π, β) as a→∞ is zero.

Now if m 6= s/r, then m = bs/r + kpa. If k = 0 then b 6= 1 and since b ∈ Sa, it
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follows that b� pa/(p−1) which implies

m� pa/(p−1).

If k 6= 0, then m� kpa.

Decompose

Zs/r(p
a, β) = Σ1,a + Σ2,a,

where

Σ1,a =
aπ(s/r)

(s/r)β
F1

(
s

rfπx

)
(2.37)

and

Σ2,a =
∑
b∈Sa

∑
rm≡bs(pa)
m≥1,m 6=s/r

aπ(m)

mβ
F1

(
m

fπx

)
. (2.38)

Since F1

(
m
fπx

)
= 1 +O

(
m
fπx

)
,

Σ1,a =
aπ(s/r)

(s/r)β

(
1 +O

(
1

x

))
. (2.39)

Let

bm,a :=

1 if m = bs/r + kpa

0 otherwise.

(2.40)

Then

Σ2,a �
∣∣∣ ∑
1≤m�x1+ε

m 6=s/r

aπ(m)

mβ
bm,aF1

(
m

fπx

)∣∣∣+
∣∣∣ ∑
m�x1+ε

m 6=s/r

aπ(m)

mβ
bm,aF1

(
m

fπx

)∣∣∣. (2.41)
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Define

P2,a =
∣∣∣ ∑
1≤m�x1+ε

m 6=s/r

aπ(m)

mβ
bm,aF1

(
m

fπx

)∣∣∣ and Q2,a =
∣∣∣ ∑
m�x1+ε

m 6=s/r

aπ(m)

mβ
bm,aF1

(
m

fπx

)∣∣∣.

Since F1

(
m
fπx

)
= 1 + O(xε) for m � x1+ε and F1

(
m
fπx

)
� xt

mt
for any integer t

and m� x1+ε

P2,a � xε
∣∣∣ ∑
1≤m�x1+ε

m6=s/r

aπ(m)

mβ
bm,a

∣∣∣ and Q2,a � xt
∣∣∣ ∑
m�x1+ε

m6=s/r

aπ(m)

mβ+t
bm,a

∣∣∣. (2.42)

If π is tempered then by (2.42)

P2,a � xε
∑

1≤m�x1+ε

m 6=s/r

mε−βbm,a � p−ax1−β+ε and Q2,a � p−ax1−β+ε, (2.43)

and hence

Σ2,a � p−ax1−β+ε. (2.44)

We want Σ2,a → 0 as a→∞. Substituting with x = pan(1−υ) gives the condition

υ > 1− 1

n(1− β + ε)
. (2.45)

If π is not tempered, then applying the Cauchy-Schwarz inequality in (2.42) gives

P2,a �
x1/2+ε

pa/2

 ∑
1≤m�x1+ε

|aπ(m)|2

m2β

1/2

.
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By inequality (2.6) and summation by parts we get

P2,a � p−a/2x1−β+ε. (2.46)

Write t = t1+t2 in (2.42), with t1, t2 large integers, and apply the Cauchy-Schwarz

inequality:

Q2,a � xt1+t2

( ∑
m�x1+ε

|aπ(m)|2

m2β+2t1

)1/2( ∑
m�x1+ε

b2
m,a

m2t2

)1/2

� xt1+t2

 ∑
i�(1+ε) log(x)

∑
2i−1<m≤2i

|aπ(m)|2

m2β+2t1

1/2
 ∑
k�x1+ε

pa

1

(kpa)2t2


1/2

.(2.47)

Using (2.6) gives

Q2,a � p−at2x1−β+ε (2.48)

and hence

Σ2,a � p−a/2x1−β+ε. (2.49)

Since we want Σ2,a → 0, we get the condition

υ > 1− 1

2n(1− β + ε)
. (2.50)

For υ as above,

lim
a→∞

S1,s/r(p
a, β) =

p− 1

p2
· aπ(s/r)

(s/r)β
. (2.51)

In (2.34) write

|S2,s/r| � A2,s/r +B2,s/r, (2.52)
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where

A2,s/r = p−ap−anβ
∑

m�y1+ε

[
|aπ̃(m)|
m1−β F2

(
m

y

) ∣∣∣∑∗

χ(mod pa)
χ(ms′rf ′π)τn(χ)

∣∣∣] (2.53)

and

B2,s/r = p−ap−anβ
∑

m�y1+ε

[
|aπ̃(m)|
m1−β F2

(
m

y

) ∣∣∣∑∗

χ(mod pa)
χ(ms′rf ′π)τn(χ)

∣∣∣] . (2.54)

If π is tempered then |aπ̃(m)| � mε. Also, F2

(
m
y

)
� 1+

(
m
y

)1−β−ε
for m� y1+ε,

which gives F2

(
m
y

)
� yε(1−β). Applying Lemma 2.2,

|A2,s/r| � p−ap−anβp1/2+a(n+1)/2yε(1−β)

y1+ε∑
m=1

mε+β−1

and hence for any ε > 0

|A2,s/r| � p−anβ+a(n−1)/2yε+β. (2.55)

Assume now that π is not tempered. By the Cauchy-Schwarz inequality we obtain

|A2,s/r| � p−ap−anβyε

 ∑
m�y1+ε

|aπ̃(m)|2

m2−2β

1/2

×

×

(
∞∑

m=−∞

H

(
m

y

) ∣∣∣∑∗

χ mod pa
χ(ms′rf ′π)τn(χ)

∣∣∣2)1/2

,

where

H(u) :=
1

π(1 + u2)
.
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A simple computation shows that

∑
m�y1+ε

|aπ̃(m)|2

m2−2β
� y2β−1+ε. (2.56)

Thus,

|A2,s/r| � yβ−1/2+εp−a−anβ

(
∞∑

m=−∞

H

(
m

y

) ∣∣∣∑∗

χ mod pa
χ(ms′rf ′π)τn(χ)

∣∣∣2)1/2

.

(2.57)

Define

D :=
∞∑

m=−∞

H

(
m

y

) ∣∣∣∑∗

χ mod pa
χ(ms′rf ′π)τn(χ)

∣∣∣2. (2.58)

We have

D �
∑∗

χ mod pa

∑∗

ψ mod pa

∣∣∣τn(χ)τn(ψ)
∞∑

m=−∞

χψ(ms′rf ′π)H

(
m

y

)∣∣∣.
Following the general approach of [Luo05, War], we consider the diagonal and off-

diagonal contributions separately. The terms corresponding to χ = ψ give:

∑∗

χ mod pa

∣∣∣τn(χ)τn(χ)
∞∑

m=−∞

H

(
m

y

)∣∣∣� pa+na

∞∑
m=−∞

H

(
m

y

)

since there are� pa primitive p-power characters and since |τn(χ)| = pan/2 from the

properties of the Gauss sum of a primitive character. Using the Fourier transform

property F{g(xA)} = 1
A
ĝ
(
ν
A

)
for A > 0 (see also [Luo05, War]) we get that

∞∑
m=−∞

H

(
m

y

)
= y

∞∑
ν=−∞

T (yν).
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Function T (ν) is the Fourier transform of H(m) and is given by T (ν) = e−2π|ν|, and

hence
∑

m∈ZH
(
m
y

)
� y. Note that we have used the Poisson summation formula.

Thus the contribution to D is � pa+nay.

For the terms in D that have χ 6= ψ, even if χ and ψ are primitive the product

χψ may be non-primitive because the conductors are not relatively prime. We have

that for g : Z/qZ→ C:

∞∑
m=−∞

g(m)f

(
m

q

)
=
∑

b mod q

g(b)F

(
b

q

)
=

∞∑
ν=−∞

ĝ(−ν)f̂(ν),

where F (x) =
∑∞

ν=−∞ f̂(ν)e−2πiνx. Applying this in our case,

∞∑
m=−∞

χψ(m)H

(
m

y

)
=

y

pa

∞∑
ν=−∞

( ∑
b mod pa

χψ(b)e−2πiνb/pa

)
T

(
yν

pa

)
.

The interior sum is � pa since the number of characters is � pa, and for ν = 0 it is

zero since χψ is non-trivial. Thus,

∣∣∣ ∞∑
m=−∞

χψ(m)H

(
m

y

)∣∣∣� y
∑

ν∈Z,ν 6=0

T

(
yν

pa

)
.

Assuming υ > 1
n

(which will be part of our constraint) gives that y/pa →∞. We

have ∑
ν∈Z,ν 6=0

T

(
yν

pa

)
� 2

e2πyp−a − 1
� 1

y
.

Putting everything together, these terms of D contribute � p2a+na. Thus, we con-

clude that the two contributions for χ = ψ and χ 6= ψ combined give

D � pa+nay. (2.59)
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From (2.57) and (2.59), even if π is not tempered,

|A2,s/r| � yβ+εp−anβ+a(n−1)/2. (2.60)

For m � y1+ε, F2

(
m
y

)
� yt

mt
for any integer t ≥ 1, and applying Cauchy-

Schwarz’s inequality in (2.54) gives

|B2,s/r| � p−ap−anβyt

 ∑
m�y1+ε

|aπ̃|2

m2−2β+2t

1/2

D1/2.

Using summation by parts and (2.6), as well as the bound in (2.59) gives

|B2,s/r| � yβ+εp−anβ+a(n−1)/2. (2.61)

From (2.52), (2.60), and (2.61) we conclude that

|S2,s/r| � yβ+εp−anβ+a(n−1)/2. (2.62)

We want S2,s/r → 0 as a→∞. Taking y = panυ in (2.62) gives the condition

υ <
1− n+ 2nβ

2n(β + ε)
. (2.63)

If π is tempered then we need to check that υ satisfies conditions (2.45) and

(2.63). Thus, for a general n, the desired condition is

β >
n− 1

n+ 1
. (2.64)

If π is not tempered, then conditions (2.50) and (2.63) need to be satisfied. This
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gives the condition

β >
n− 1

n
.

As a consequence of Theorem 2.1, the following non-vanishing result holds:

Corollary 2.1. Let π be an isobaric sum of unitary cuspidal automorphic represen-

tations of GL(n,AQ) with n ≥ 3. There are infinitely many primitive p-power order

characters χ of conductor pa for some a, such that L(π ⊗ χ, β) 6= 0 for any fixed

β 6∈
[

1
n
, 1− 1

n

]
. If π is an isobaric sum of tempered unitary cuspidal automorphic

representations then the same holds for any fixed β 6∈
[

2
n+1

, 1− 2
n+1

]
.

Proof. Take s = r = 1 in Theorem 2.1 and use the functional equation. Note that if

β > 1, L(π ⊗ χ, β) has an Euler product expansion and hence is nonvanishing.

A similar nonvanishing result involving p-power twists of cuspidal automorphic

representations of GL(n,AQ) was proved in [War] for β 6∈
[

2
n+1

, 1− 2
2n+1

]
. In [BR94]

a nonvanishing result for β in the same intervals as in Corollary 2.1 was proved for

all twists of L-functions of GL(n), instead of just for p-power twists. In [Luo05],

the result in [BR94] was further improved to the interval β 6∈
[

2
n
, 1− 2

n

]
. Note that

the set of primitive characters of p-power order and conductor pa for some a is more

sparse than the set of characters considered in [BR94] and [Luo05].

It should be noted that for n = 2 Rohrlich [Roh84] proves that if f is a newform of

weight 2, then for all but finitely many twists by Dirichlet characters the L-function

is nonvanishing at the center.
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2.3.3 Determination on GL(3) cusp forms

We show the following result on the determination of isobaric automorphic represen-

tations of GL(3) over Q:

Theorem 2.2. Suppose π and π′ are two isobaric sums of unitary cuspidal automor-

phic representations of GL(3,AQ) with the same central character ω. Let Xw
(p) be the

set of p-power order characters of conductor pa for some a. Suppose L(π⊗χ, s) and

L(π′⊗ χ, s) are entire for all χ ∈ Xw
(p), and that there exist constants B,C ∈ C such

that

L(π ⊗ χ, β) = BaCL(π′ ⊗ χ, β) (2.65)

for some fixed 1 ≥ β > 2
3

and for all χ ∈ Xw
(p),a primitive p-power order characters

of conductor pa for all but a finite number of a. Then π ∼= π′. Moreover, if π and π′

are isobaric sums of tempered unitary cuspidal automorphic representations then the

same result holds if (2.65) is satisfied for some fixed 1 ≥ β > 1
2

(if the generalized

Ramanujan conjecture is true this condition is automatically satisfied).

Note that in [MS] a result was proved concerning the determination of GL(3)

forms by twists of characters of almost prime modulus of the central L-values. In

our case, we twist over a more sparse set of characters.

Let π ∈ Au(3) be an isobaric sum of unitary cuspidal automorphic representations

of GL(3,AQ). The local components π` are determined by the set of nonzero complex

numbers {α`, β`, γ`}, which we represent by the diagonal matrix A`(π).

The L-factor of π at a prime ` is given by

L(π`, s) = det(I −Al(π)`−s)−1 =
n∏
j=1

(1−α``−s)−1(1−β``−s)−1(1− γ``−s)−1. (2.66)
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Let S0 = {` : π` unramified and tempered}, and let S1 = {` : π` is ramified}. Note

that S1 is finite. Take the union

S = S0 ∪ S1 ∪ {∞}.

Since π is unitary, π` is tempered iff |α`| = |β`| = |γ`| = 1.

Lemma 2.3. If ` 6∈ S then

A`(π) = {u`t, u`−t, w}, (2.67)

with |u| = |w| = 1 and t 6= 0 a real number. If ` ∈ S0 then

A`(π) = {α, β, γ}

with |α| = |β| = |γ| = 1.

Proof. Suppose first that ` 6∈ S. We may assume that |α`| 6= 1. Then α` = u`t, for

some |u| = 1 complex and t 6= 0 real. By unitarity,

{α`, β`, γ`} = {α−1
` , β−1

` , γ−1
` }.

Clearly α` 6= α−1
` . Without loss of generality, take β−1

` = α`. This gives β` = u · `−t.

So, we must have γ` = γ−1
` , hence γ` = w with |w| = 1. Thus

A`(π) = {u`t, u`−t, w}

with |u| = |w| = 1.

Now suppose that ` ∈ S0. Then |α`| = |β`| = |γ`| = 1.
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Proof of Theorem 2.2. Let T = {`|π` or π′` is ramified}. This is a finite set.

Consider ` 6∈ T an arbitrary finite place with ` 6= p. Let A`(π) = {α`, β`, γ`} and

A`(π
′) = {α′`, β′`, γ′`}. Applying Theorem 2.1, aπ(n) = BaCaπ′(n) for all (n, p) = 1

and all but finitely many a. Since aπ(1) = aπ′(1), we conclude that B = C = 1.

Thus, aπ(`) = aπ′(`).

We want to show that Al(π) = Al(π
′). Indeed,

α` + β` + γ` = α′` + β′` + γ′` (2.68)

and since π and π′ have the same central character

α`β`γ` = α′`β
′
`γ
′
`. (2.69)

To show that {α` β`, γ`} = {α′`, β′`, γ′`}, by Vieta’s formulas (cf. [Vie]) and the

above two relations, it is enough to check that

α`β` + α`γ` + β`γ` = α′`β
′
` + α′`γ

′
` + β′`γ

′
`.

Suppose A`(π) = {u`t, u`−t, w} with |u| = |w| = 1. Then

α`β` + α`γ` + β`γ` = u2 + uw(`t + `−t) =
1

u2
+

1

uw
(`t + `−t) =

w + u(`t + `−t)

u2w
,

and hence α`β` + α`γ` + β`γ` = α`+β`+γ`
α`β`γ`

.

Now suppose that A`(π) = {α`, β`, γ`} with |α`| = |β`| = |γ`| = 1. Then

α`β` + α`γ` + β`γ` =
1

α`β`
+

1

α`γ`
+

1

β`γ`
=
α` + β` + γ`
α`β`γ`

.
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Thus, whenever α` + β` + γ` = α′` + β′` + γ′` and α`β`γ` = α′`β
′
`γ
′
`, we obtain that

α`β` + α`γ` + β`γ` = α′`β
′
` + α′`γ

′
` + β′`γ

′
`.

We have thus shown that for ` 6∈ T ∪ {p} ∪ {∞}, Al(π) = A`(π
′), and hence

π` ∼= π′`. Since T ∪ {p} ∪ {∞} is a finite set, this implies that π ∼= π′ by the

Generalized Strong Multiplicity One Theorem.

Let π be a unitary cuspidal automorphic representation of GL(2,AQ) withA`(π) =

{α`, β`}. At an unramified place `, it has a` = α` + β` and central character

ω($`) = α`β`, with $` the uniformizer at `. There exists an isobaric automorphic

representation Ad(π) of GL(3,AQ) (cf. [GJ78]) such that at an unramified place `,

a`(Ad(π)) = α`/β` + β`/α` + 1.

Using Theorem 4.1.2 in [Ram00], the following is a consequence of Theorem 2.2:

Theorem 2.3. Suppose π and π′ are two unitary cuspidal automorphic representa-

tions of GL(2,AQ) with the same central character ω. Suppose there exist constants

B,C ∈ C such that

L(Ad(π)⊗ χ, β) = BaCL(Ad(π′)⊗ χ, β) (2.70)

for some 1 ≥ β > 2
3

and for all χ ∈ Xw
(p),a primitive p-power order characters of

conductor pa for all but a finite number of a. Then there exists a quadratic character

ν such that π ∼= π′ ⊗ ν. If π and π′ are tempered then the same result holds if (2.70)

is true for some 1 ≥ β > 1
2
.

Proof of Theorem 2.3. Theorem 2.2 implies that Ad(π) ∼= Ad(π′). Then, by Theo-

rem 4.1.2 in [Ram00], we deduce that since π and π′ have the same central character,

there exists a quadratic character ν such that π ∼= π′ ⊗ ν.
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2.4 Application: Adjoint p-adic L-function of an

elliptic curve

2.4.1 Complex adjoint L-functions of an elliptic curve

Let E/Q be an elliptic curve with conductor N given by a global minimal Weierstrass

equation over Z:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.71)

Define the complex L-function of E by the Euler product for Re(s) > 3
2
:

L(E, s) =
∏
r|N

1

1− arr−s
∏
r 6 |N

1

1− arr−s + r1−2s
,

where ar = r+ 1−#E(Fr) if r6 |N . If r|N then ar depends on the reduction of E at

r in the following way: ar = 1 if E has split multiplicative reduction at r, ar = −1 if

E has non-split multiplicative reduction at r and ar = 0 if E has additive reduction

at r.

Let f be the holomorphic newform of weight 2 and level N associated to E. The

Fourier coefficients cr of f at r6 |N prime coincide with the coefficients ar in the Euler

product of E and the L-function of E is given by

L(E, s) =
∞∑
n=1

cnn
−s.

If Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s), then the following functional equation holds:

Λ(E, s) = ±Λ(E, 2− s),
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where the sign varies, depending on E. If we associate to f a unitary cuspidal

automorphic form π of GL(2,AQ) with trivial central character and conductor N

then we want to have L(π, s) unitarily normalized by setting

Lu(π, s) = (2π)−s−1/2L

(
E, s+

1

2

)
.

We define the complex L-function associated to the symmetric square of an elliptic

curve in the following way (cf. [CS12]). Let l be an odd prime number. Take E[ln]

to be the ln-torsion and

Tl(E) = lim←−E[ln]

to be the l-adic Tate module of E. Consider the Vl(E) = Tl(E) ⊗Zl Ql, which is

2-dimensional over Ql. There is a continuous natural action of Gal(Q/Q) on Vl. Let

Σl(E) = Sym2H1
l (E), where H1

l (E) = Hom(Vl(E),Ql). Consider the representation

ρl : Gal(Q/Q)→ Aut(Σl(E)). (2.72)

The L-function of Sym2(E) is given by the Euler product

L(Sym2E, s) =
∏

r prime

Pr(r
−s)−1 (2.73)

in the half-plane Re(s) > 2. The polynomial Pr(X) is

Pr(X) := det(1− ρl(Frob−1
r )X|Σl(E)Ir), l 6= r, (2.74)

with Ir the inertia subgroup of Gal(Qr/Qr) and Frobr an arithmetic Frobenius ele-
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ment at r. By the Néron-Ogg-Shafarevich criterion we have that

Pr(X) = (1− α2
rX)(1− β2

rX)(1− rX)

when E has good reduction at r (see [CS12]). The elements αr and βr are the roots

of the polynomial

X2 − arX + r

with ar the trace of Frobenius at r.

Let L(Sym2E,χ, s) denote the L-function associated to the twist of the l-adic

representations by a Dirichlet character χ. Note that L(Sym2E,χ, 1) = 0 for χ odd

(cf. [DD97]). The critical points for Sym2E are s = 1 and s = 2.

Let χ be a primitive even Dirichlet character with conductor cχ. Let C denote the

conductor of the l-adic representation (2.72). If τ(χ) is the Gauss sum of character

χ, define

W (χ) = χ(C)c1/2
χ

τ(χ)

τ(χ)2
.

Then, by Theorem 2.2 in [CS12], which is based on results in [GJ78], if the conductor

N of E satisfies (cχ, N) = 1, then

Λ(Sym2E,χ, s) = (C · c3
χ)s/2(2π)−sπ−

s
2 Γ(s)Γ

(s
2

)
L(Sym2E,χ, s)

has a holomorphic continuation over C and satisfies the functional equation

Λ(Sym2E,χ, s) = W (χ)Λ(Sym2E,χ, 3− s). (2.75)
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2.4.2 Adjoint p-adic L-functions of an elliptic curve

Fix p an odd prime and let E be an elliptic curve over Q with semistable reduction

at p. We now describe a construction of a p-adic analogue to L(Sym2E, s) by the

Mazur-Mellin transform of a p-adic measure µp on Z×p as introduced in [DD97].

Consider the real and imaginary periods of a Néron differential of a minimal

Weierstrass equation for E over Z which we denote by Ω±(E). Let

Ω+(Sym2E(1)) := (2πi)−1Ω+(E)Ω−(E) and Ω+(Sym2E(2)) := 2πiΩ+(E)Ω−(E)

be the periods for Sym2E at the critical twists. In [DD97] two p-adic distributions

µp(Ω
+(Sym2E(1))) and µp(Ω

+(Sym2E(2))) are defined. In this thesis we will use

the latter distribution.

Let Xp be the set of continuous characters of Z×p into C×p . For χ ∈ Xp, let pmχ

be the conductor of χ. Since Z×p ∼= (1 + pZp)× (Z/p)×, we can write X := Xp as the

product of X((Z/p)×) with X0 = X(1 + pZp). The elements of X0 are called wild

p-adic characters. By Section 2.1 in [Vis76] we can give X0 a Cp-structure through

the isomorphism of X0 to the disk

U := {u ∈ C×p ||u− 1| < 1} (2.76)

constructed by mapping ν ∈ X0 to ν(1 + p), with 1 + p a topological generator of

1 + pZp.

We follow the definition of the p-adic distribution µp(Ω
+(Sym2E(2))) on Z×p in

[DD97]. Suppose E has good reduction at p. Let χ ∈ X0 be a non-trivial wild p-

adic character, with conductor pmχ which can be identified with a primitive Dirichlet

character. Then given αp(E) the root of X2 − apX + p with ap the trace of the
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Frobenius at p, we define

∫
Z×p
χdµp(Ω

+(Sym2E(2))) := αp(E)−2mχ · τ(χ)2pmχ · L(Sym2E,χ, 2)

Ω+(Sym2E(2))
. (2.77)

If E has good ordinary reduction at p then the distributions µp(Ω
+(Sym2E(2))) are

bounded measures on Z×p . If E has supersingular reduction at p then the distributions

µp(Ω
+(Sym2E(2))) give h-admissible measures on Z×p , with h = 2. Note that the set

of h-admissible measures with h = 1 is larger, but contains the bounded measures.

Now suppose that E has bad multiplicative reduction at p (either split or non-

split). Let χ ∈ X0 denote a Dirichlet character of conductor pmχ as above. Then

∫
Z×p
χdµp(Ω

+(Sym2E(2))) := τ(χ)2pmχ · L(Sym2E,χ, 2)

Ω+(Sym2E(2))
(2.78)

and the distributions µp(Ω
+(Sym2E(2))) are bounded measures on Z×p .

Consider µ an h-admissible measure as above. Then

χ→ Lµ(χ) :=

∫
Z×p
χdµ (2.79)

is an analytic function of type o(logh) (cf. [Vis76]). Note that for an analytic function

F to be of type o(logh) it must satisfy

sup
|u−1|p<r

‖F (u)‖ = o

(
sup

|u−1|p<r
| loghp(u)|

)
for r → 1−.

Consider the p-adic distribution µ = µp(Ω
+(Sym2E(2))) as defined above. De-



40

note by Lp the corresponding p-adic L-function. We have

Lp(Sym
2E,χ, s) :=

∫
Z×p
χ(x)〈x〉sdµ,

where 〈·〉 : Z×p → 1 + pZp, 〈x〉 = x
ω(x)

, with ω : Z×p → Z×p the Teichmüller character.

2.4.3 Main result on the determination of elliptic curves

We now prove the main result of this chapter concerning the p-adic L-function of the

symmetric square of an elliptic curve over Q. Theorem 2.4 below gives a generaliza-

tion of the result obtained in [LR97] concerning p-adic L-functions of elliptic curves

over Q:

Theorem 2.4. Let p be an odd prime and E,E ′ be elliptic curves over Q with

semistable reduction at p. Suppose

Lp(Sym
2E, n) = CLp(Sym

2E ′, n) (2.80)

for all (n, p) = 1 elements of an arbitrary infinite set Y and some constant C ∈ Q.

Then E ′ is isogenous to a quadratic twist ED of E. If E and E ′ have square free

conductors, then E and E ′ are isogenous over Q.

We first prove the following lemma:

Lemma 2.4. Let p be an odd prime. Let E,E ′ be elliptic curves over Q with

semistable reduction at p such that Lp(Sym
2E, n) = CLp(Sym

2E ′, n), for an in-

finite number of integers n prime to p in some arbitrary set Y , and some constant
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C ∈ Q. Then for every finite order wild p-adic character χ,

Lp(Sym
2E,χ, s) = CLp(Sym

2E ′, χ, s)

holds for all s ∈ Zp.

Proof. We follow the approach in [LR97]. Let

G(ν) = Lp(Sym
2E, ν)− CLp(Sym2E ′, ν)

for every ν ∈ X0. G vanishes on X1 = {αn = 〈x〉n|n ∈ Y } by hypothesis; we want to

show that G vanishes on X0. We use the fact that G is an analytic function on X0

of type o(logh) (as in (2.79)). G considered as an analytic function on U (see (2.76))

vanishes on the subset

U1 = {(1 + p)n|n ∈ Y }.

There exists r = 1/p such that the number of zeros z of G such that |z − 1| = r

is infinite. Indeed, for all n ∈ Y elements in an infinite set with n relatively prime

to p as above, zn := (1 + p)n ∈ U1 is a zero of G and

|zn − 1| = |(1 + p)n − 1|p =
∣∣∣ n∑
j=1

(
n

j

)
pj
∣∣∣
p

=
1

p
.

By Section 2.5 in [Vis76], G is identically zero on U .

Proof of Theorem 2.4 in the non-CM case. By Lemma 2.4, for every finite order wild

p-power character χ, the identity

Lp(Sym
2E,χ, s) = CLp(Sym

2E ′, χ, s) (2.81)
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holds for all s ∈ Zp. By equation (2.77), if E has good reduction at p then

αp(E)−2mχL(Sym2E,χ, 2) = C ′αp(E
′)−2mχL(Sym2E ′, χ, 2) (2.82)

for some C ′ ∈ Q. If E has bad multiplicative reduction at p, then by (2.78),

L(Sym2E,χ, 2) = C ′L(Sym2E ′, χ, 2). (2.83)

Let π and π′ be the unitary cuspidal automorphic representations over GL(3,AQ)

associated to Sym2E and Sym2E ′ respectively. Then the unitarized L-functions

Lu corresponding to π and π′ satisfy Lu(π, s) = L(Sym2E, s + 1). Thus, if E has

semistable reduction at p, from (2.82) and (2.83) there exist constants C1, C2 ∈ C

such that

L(π ⊗ χ, 1) = C1C
mχ
2 L(π′ ⊗ χ, 1)

for all wild p-power characters χ of conductor pmχ with mχ sufficiently large. Then

by Theorem 2.2, we conclude that π ∼= π′ and thus Ad(η) ∼= Ad(η′) where η and

η′ are the unitary cuspidal automorphic representations of GL(2,Q) associated to

E. By Theorem 4.1.2 in [Ram00] we conclude that η′ = η ⊗ ν with ν a quadratic

character since ωη = ωη′ = 1. Write ν(·) =
( ·
D

)
. It then follows by Faltings’ isogeny

theorem that E ′ is isogenous to ED, where for the elliptic curve E given by the

equation y2 = f(x) we have that ED is given by the equation Dy2 = f(x). Clearly

if the conductors of E and E ′ are square free, then E and E ′ are isogenous.

An elliptic curve E over Q is of CM-type if End(E)⊗Q = K, with K = Q(
√
−D)

an imaginary quadratic number field. We have that L(E, s) = L(η, s−1/2) for some

unitary Hecke character η of the idele class group CK . Let π = IQK(η) be the asso-



43

ciated dihedral representation of GL(2,AQ). Denote by π′ the cuspidal automorphic

representation IQK(η2) of GL(2,AQ). By (2.22) we have

L(Sym2π, s) = L(π′, s)L(η0, s),

where η0 is the restriction of η to CQ. Twisting by some character χ gives

L(Sym2π ⊗ χ, s) = L(π′ ⊗ χ, s)L(η0 ⊗ χ, s).

Note that L(π′ ⊗ χ, s)L(η0 ⊗ χ, s) is entire unless η0 ⊗ χ is trivial, in which case

L(Sym2π ⊗ η−1
0 , s) = L(π′ ⊗ η−1

0 , s)ζ(s)

has a pole at s = 1. Thus, we have that L(Sym2π ⊗ χ, s) is entire unless χ = η−1
0 .

Proof of Theorem in CM case. Let π and π′ be the isobaric sums of unitary cuspidal

automorphic representations over GL(3,AQ) associated to Sym2E and Sym2E ′ re-

spectively. Just as in the non-CM case, it follows that if E has semistable reduction

at p we have that

L(π ⊗ χ, 1) = C1C
mχ
2 L(π′ ⊗ χ, 1)

for all wild p-power characters χ of conductor pmχ with mχ sufficiently large and by

the discussion above, the twisted L-functions are entire. Then by Theorem 2.2 we

conclude that π ∼= π′, and the proof proceeds as in the non-CM case.
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Chapter 3

Average result for the degree 4
L-function on GSp(4) using the
relative trace formula

3.1 Introduction

The relative trace formula was first introduced by Jacquet to study period integrals of

autormorphic forms, which can be in some cases related to values of L-functions. The

trace formula, in the usual and relative versions, is most commonly used to prove

functoriality. In such situations, one compares the geometric sides of the relative

trace formulas for two different groups. The idea is to show that the relative traces

for these two groups are equal with respect to suitably chosen test functions, without

actually computing either geometric side. The equality of the relative trace formulas,

together with some global work, has allowed the proof of several cases of functoriality

of automorphic representations.

However, another way the relative trace formula can be used is to fix just one

group and explicitly evaluate the geometric side and then deduce results for the

spectral side. The difficulty of this method lies in computing the geometric side,
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which in general can be very hard to do. In my case, I identify the spectral side

with an appropriate weighted average of L-values at the center and then work on

explicitly evaluating the terms that appear on the geometric side. I want to show

that there exist leading terms that are nonzero in a suitable limit.

A holomorphic cusp form π on GSp(4)/Q gives rise to a holomorphic differen-

tial form ω on the Siegel threefold X, for instance, when π has scalar weight 3, ω

is a (3, 0)-form on X. The holomorphic cuspidal automorphic representations on

GSp(4,AQ) are not generic, since at the infinite place the holomorphic discrete series

do not admit a Whittaker model. Piatetski-Shapiro [PS97] gave a Rankin-Selberg

type integral construction for the degree 4 L-function of automorphic representations

of GSp(4) which works for representations that are not necessarily generic.

Using the integral representation I will define a suitable relative trace formula

whose spectral side is an average of twisted central L-values of holomorphic Siegel

eigenforms weighted by Fourier-Bessel coefficients.

Let G = GSp(4)/Q and let Z denote the center of G. Fixing an imaginary

quadratic field F , I consider a relative trace formula of G with respect to H × U ,

where H is the group of matrices in GL(2)/F with rational determinant and U is

the unipotent radical of the Siegel parabolic subgroup. More precisely, I consider the

linear functional

I(f) :=

∫
Z(A)H(Q)\H(A)

∫
U(Q)\U(A)

Kf (h, u)Eφs (h)ψ(u)dudh,

where Eφs (h) is an Einsenstein series on GL2/F , ψ is a nontrivial character of U(Q)\U(A)

and Kf is the kernel associated to a convenient test function f ∈ C∞c (Z(A)\G(A)).
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The linear functional can be written as

I(f) =
∑
δ

I(δ, f),

where the sum is over the double coset representatives δ ∈ H̃(Q)\G̃(Q)/U(Q), with

H̃ = Z\H and G̃ = Z\G.

In Section 3.4 we show that there are two types of cosets indexed by parameters

λ, ρ, µ ∈ Q with λ 6= 0 and µ 6= 0 given by

η(λ) =


1 0 0 0

0 0 0 λ

0 0 λ 0

0 −1 0 0

 and ξ(ρ, µ) =


0 0 µ ρ

0 0 0 1

−1 0 0 0

ρ −µ 0 0

 .

In Section 3.6, I argue that the leading contribution comes from the double cosets

ξ(0, 1) and the oscillating contribution comes from the double cosets ξ(ρ, 1) with ρ ∈

Z \ {0}. The remaining double cosets have a contribution of zero for an appropriate

choice of data.

I am currently working towards showing that the oscillating terms have an overall

smaller contribution than the leading terms. This can be done by taking a fixed

weight at infinity, say k = 3 and verifying that under the variation of the prime

parahoric level N , the leading terms is nonzero as N →∞.

The ultimate goal would be to prove the following non-vanishing result:

(?) Fix a Siegel weight k ≥ 3. Then for a suitable fixed character χ0, there ex-

ist infinitely many genus 2 holomorphic Siegel eigenforms π of trivial central
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character and weight k such that

L(π ⊗ χ0, 1/2) 6= 0.

as we vary the level N →∞.

Alternatively, I expect the procedure to work when fixing a suitable level N > 1 and

varying the weight k at infinity.

I now give an outline of the rest of the chapter. In Section 3.2 I give a detailed

description of the relative trace formula, as well as other relevant notions necessary

to set up the problem, such as the integral representation for the degree 4 L-function.

In Section 3.3, I present a suitable test function, and compute its value at the archi-

median place. In Section 3.4 I compute the double cosets, while in Section 3.5 I show

that the relative trace formula gives a desirable weighted average of central L-values

on the spectral side. Finally, in Section 3.6 I express each I(δ, f) as a (sum of)

factorizable integrals and determine which terms contribute to the sum with respect

to the double coset representatives. The results obtained thus far are summarized in

Section 3.7.

3.2 Setup

3.2.1 GSp(4) and its subgroups

Let G = GSp(4) = {g ∈ GL(4) : ∃λ(g) ∈ GL(1) gtJg = λ(g)J}, where

J =

 I2

−I2

 .
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The map λ : G → GL(1) is called the multiplier homomorphism. Its kernel is the

symplectic group Sp(4). If we let

g =

A B

C D

 ∈ G
be an arbitrary element, then the blocks A,B,C and D satisfy

CtA = AtC, DtB = BtD and DtA−BtC = λI2. (3.1)

The strong approximation theorem gives

GSp(4,A) = GSp(4,Q)GSp(4,R)+
∏
p<∞

Kp, (3.2)

where GSp(4,R)+ is the subgroup of elements of GSp(4,R) with positive determinant

and Kp = GSp(4,Zp).

The Weyl group of G is the dihedral group with eight elements. G has three

standard parabolic subgroup: the Borel subgroup B, the Siegel subgroup P , and the

Klingen subgroup Q. The Borel subgroup B has Levi decomposition

B =




a

b

λa−1

λb−1




1 x

1

1

−x 1




1 s t

1 t u

1

1




,
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while P has the Levi decomposition P = MU with reductive part

M =


A

λ · (A−1)t

 |A ∈ GL(2,Q), λ ∈ Q×


and

U =


I2 X

I2

 |X ∈ Sym2(Q)

 .

the unipotent radical.

Proposition (Bruhat decomposition) We have

G = PP ∪ Pw1P ∪ Pw2P, (3.3)

where P is the transpose of the Siegel parabolic and

w1 =

 0 I2

−I2 0

 , w2 =


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

 .

The subgroup P of G is given by the Levi decomposition P = MU where

U =


I2 0

Y I2

 |Y ∈ Sym2(Q)

 .

Proof. See for example Section 4.1 in [FS03].

Let F = Q(
√
d) be a quadratic imaginary field with d a square-free integer.
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Consider the group

H = {h ∈ GL(2, F )|det(h) ∈ Q×}. (3.4)

For x = (x1, x2), y = (y1, y2) ∈ F 2 we consider a skew-symmetric form

ρ(x, y) = TrF/Q(x1y2 − x2y1).

We can then define

GSpρ = {g ∈ GL(4,Q)|ρ(xg, yg) = λ(g)ρ(x, y)}.

Since H preserves ρ up a factor in Q×, more precisely ρ(xh, yh) = det(h)ρ(x, y) for

h ∈ H, there exists a natural embedding

H ↪→ GSpρ.

By Proposition 2.1 in [PS97], there exists an isomorphism ϕ : GSpρ → GSp(4)

satisfying certain properties. The map ϕ is defined on H by

ϕ

a1 + b1

√
d a2 + b2

√
d

a3 + b3

√
d a4 + b4

√
d

 =


a1 b1d

a2

2
b2
2

b1 a1
b2
2

a2

2d

2a3 2b3d a4 b4

2b3d 2a3d b4d a4

 .

The above map can be viewed in terms of a change of basis. Indeed, consider the

linear transformation T : F 2 → F 2 defined on the standard basis elements {e1, e2}
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of F 2 as a F -vector space:

T (e1) = (a1 + b1

√
d)e1 + (a3 + b3

√
d)e2

T (e2) = (a2 + b2

√
d)e1 + (a4 + b4

√
d)e2.

Then

A =

a1 + b1

√
d a2 + b2

√
d

a3 + b3

√
d a4 + b4

√
d


is the matrix associated to this linear transformation with respect to {e1, e2}. Fur-

thermore, assume that det(A) ∈ Q×. This implies that a1b4 + b1a4− a2b3− b2a3 = 0.

Consider the basis of F 2 as a 4-dimensional Q-vector space given by {f1, f2, f3, f4}

with f1 = e1, f2 = e1

√
d, f3 = e2

2
, f4 = e2

2
√
d
. The matrix of T in the basis {f1, f2, f3, f4}

is then 
a1 b1d

a2

2
b2
2

b1 a1
b2
2

a2

2d

2a3 2b3d a4 b4

2b3d 2a3d b4d a4

 ∈ GSp(4). (3.5)

From now on we let H be the subgroup of GSp(4) consisting of matrices as in

(3.5) with

a1b4 + b1a4 − a2b3 − b2a3 = 0.



52

3.2.2 Holomorphic Siegel eigenforms of degree 2

Just as before, we let G = GSp(4) and we consider the space L2(G(Q)\G(A)) of

measurable functions ϕ : G(A)→ C that have the property that

ϕ(zγg) = ϕ(g) for all z ∈ Z(A), γ ∈ G(Q), g ∈ G(A)

and such that
∫
G(Q)\G(A)

|ϕ(g)|2dg < ∞. We say that a function ϕ in this space is

cuspidal if for any parabolic subgroup P with Levi decomposition P = MU we have

∫
U(Q)\U(A)

ϕ(ug)du = 0.

The subspace of cuspidal functions is denoted L2
0(G(Q)\G(A)). The right regular

representation of G(A) on L2
0 decomposes as a direct sum of cuspidal automorphic

representations of G(A).

A holomorphic cuspidal Siegel eigenform of degree 2, weight k ≥ 3 and level N

generates a cuspidal automorphic representation of G(A) with the property that π∞

is a holomorphic discrete series Dk with scalar minimal K-type τk,k. This means that

the Harish-Chandra parameter of π∞ is (k − 1, k − 2).

The maximal compact subgroup of G(R) is

K∞ =


 A B

−B A

 : AtA+BtB = I and AtB = BtA

→ {A− iB} ∈ U(2).

We have that τk,k is an irreducible representation of K∞ ∼= U(2) with highest

weight (k, k). Then we must have that τk,k ∼= detk. We let v0 be a lowest weight (unit)

vector which generates the minimal K-type τk,k. This will be computed explicitly in
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Section 3.3.

For a finite place v of Q, we let Kv = GSp(4,Zv) with measure normalized such

that meas(Kv) = 1, and if N is a positive integer, we define the subgroup

K0(N)v =


A B

C D

 ∈ Kv|C ≡ 0(mod NZv)

 (3.6)

and then consider

K0(N) =
∏
v<∞

K0(N)v. (3.7)

Note that if v is a place prime to N then K0(N)v = Kv.

For a cuspidal representation π of G(A), we can write π = π∞ ⊗ πfin, with πfin a

representation of G(Afin). We let Sk(N) denote the subspace of cuspidal representa-

tions of G(A) given by

Sk(N) =
⊕

π∞=Dk
π
K0(N)
fin 6=0

Cv0 ⊗ πK0(N)
fin , (3.8)

where π
K0(N)
fin is the space of K0(N)-fixed vectors in πfin.

We have that the forms in Sk(N) are exactly the classical holomorphic Siegel

eigenforms of weight k and level N (see for example [AS01]).

A fact that will be useful later on is that for an automorphic form ϕ on G(A) we

have a Fourier expansion (see [PS97]):

ϕ(g) =
∑

ψ character of U(A\U(A)
ψ nontrivial

ϕψ(g), (3.9)
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where the Fourier coefficients are given by

ϕψ(g) =

∫
U(Q)\U(A)

ϕ(ug)ψ(u)du. (3.10)

3.2.3 Principal series of GL(2) over a local field

Let F be a local field with ring of integers O and p the maximal ideal of O. Let χ1, χ2

be characters of F and let V (χ1, χ2, s) for s ∈ C be the space of locally constant

functions φs : GL(2, F )→ C such that

φs

a x

0 b

 g

 = χ1(a)χ2(b)
∣∣∣a
b

∣∣∣s+1/2

φs(g).

Let the action of GL(2, F ) on this vector space be g.φs(x) = φs(xg). This gives an

admissible representation. Also note that

V (χ1, χ2, s)
∨ = V (χ−1

1 | · |−2s, χ−1
2 | · |2s, s).

We have that V (χ1, χ2, s) is irreducible if and only if χ1χ
−1
2 6= | · |±1−2s. If χ1χ

−1
2 =

| · |1−2s then V (χ1, χ2, s) is a twisted Steinberg representation.

If V (χ1, χ2, s) is irreducible then it is called a principal series. We have that

two irreducible representations V (χ1, χ1, s) and V (χ′1, χ
′
2, s
′) are equal if and only if

χ1| · |s = χ′1| · |s
′

and χ2| · |−s = χ′2| · |−s
′

or vice versa.

Let

Γ2(n) =


a b

c d

 ∈ GL(2,OF ) : c ∈ pn and d ∈ 1 + pn

 .

If π = V (χ1, χ2, s) then the conductor c(π) of π is the minimal n such that V Γ2(n) 6=
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{0}. The space V Γ2(c(π)) is 1-dimensional. The conductor of π is the sum of the

conductors of χ1 and χ2.

Lemma 3.1.

GL(2,O) =
n⊔
i=0

B̃(O)γiΓ2(n),

where

γi =

 1

$i 1


for 0 ≤ i ≤ n − 1 and γn = I2. Here B̃ denotes the standard Borel subgroup of

GL(2) and $ a uniformizer for O.

Proof. If v(c) = i > 0 then we have that

a b

c d

 =

ad$iv
c
− b$i b

d

 1

$i
v 1

 c
$ivd

1

 .

If v(c) = 0 then

a b

c d

 =

ad
c
− b a+

(
b− ad

c

)
(1 +$n)

c

1

1 1

1 +$n (1 +$n)d
c
− 1

−$n 1−$n d
c

 .

To check that the union is disjoint, consider i 6= j, with 0 ≤ i < j ≤ n and

suppose a m

0 b

 1 0

$i 1

 =

 1 0

$j 1

k1 k2

k3 k4

 ,

with k1 k2

k3 k4

 ∈ Γ2(n).
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This gives

a+m$i = k1, m = k2, b$
i = k1$

j + k3 and b = k2$
j + k4.

From the last two equations we get that k2$
j+i + k4$

i = k1$
j + k3, which is a

contradiction, because since k4 ∈ 1 + pn and k3 ∈ pn, and hence the left hand side

has valuation i, while the right hand side has valuation at least j.

Consider a principal series representation V (χ1, χ2, s). Let n1 and n2 be the

conductors of χ1 and χ2 respectively, and assume n2 ≥ n1 > 0. Let n = n1 + n2. A

nontrivial Γ2(n)-invariant vector is given by (see for example [Sch02]):

φs(g) =



χ1(a)χ2(b)
∣∣∣ab ∣∣∣s+1/2

χ1($−n2)qn2s if g ∈

a ?

b


 1

$n2 1

Γ2(n)

0 if g 6∈ B̃(O)

 1

$n2 1

Γ2(n),

(3.11)

where q = |O/p| is the size of the residue field.

3.2.4 Eisenstein series on GL(2) over a quadratic field

Let F = Q(
√
d) be a quadratic field, (χ1, χ2) a pair of characters of F×\A×F and

s ∈ C. Let V (χ1, χ2, s) denote the representation of GL(2,AF ) by right translation
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on the space of classes of functions φs satisfying

φs

a x

0 b

 g

 = χ1(a)χ2(b)
∣∣∣a
b

∣∣∣s+1/2

φs(g)

and ∫
Γ

∣∣∣φs(k)
∣∣∣2dk <∞,

with Γ =
∏

v Γv the maximal compact subgroup of GL(2,AF ).

We can view V (χ1, χ2, s) as a fibre bundle over the space of pairs (χ1, χ2). By

Iwasawa decomposition, V (χ1, χ2, s) can be viewed as the subspace of functions in

L2(Γ) such that

φs

a x

0 b

 k

 = χ1(a)χ2(b)
∣∣∣a
b

∣∣∣s+1/2

φs(k)

for all k ∈ Γ and a x

0 b

 ∈ Γ.

For Φ ∈ S(A2
F ) a Schwarz-Bruhat function, the function

φs(g) = χ1(det g)|det g|s+1/2

∫
IF

Φ[(0, t)g]|t|2s+1χ1χ
−1
2 (t)d×t (3.12)

is in the space V (χ1, χ2, s), and we can define the corresponding Eisenstein series

which converges for Re(s) > 1 as

Eφs (g) =
∑

γ∈B̃(F )\GL(2,F )

φs(γg) (3.13)

where B̃ is the standard Borel subgroup of GL(2).
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3.2.5 The intertwining operator

We continue to use the notations from Section 3.2.4. We write φs = ⊗φs,v and for

each place v we define the local intertwining operator to be

Av(s, w0)φs,v(g) =

∫
Nv

φs,v(w0ng)dn,

with

N =

1 ?

1


the unipotent subgroup of GL(2) and

w0 =

 1

−1

 .

We let

M(s) = ⊗vAv(s, w0).

As a consequence of the theory of Eisenstein series, M(s) extends to a meromor-

phic function on C with a finite number of simple poles.

Using (3.12) we get

M(s)φs(g) =

∫
NA

φs(w0ng)dn

= χ1(det g)|det g|s+1/2

∫
AF

∫
IF

Φ[(t, tn)g]|t|2s+1χ1χ
−1
2 (t)d×t dn

= χ1(det g)|det g|s+1/2

∫
IF

(∫
AF

Φ[(t, n)g]dn

)
|t|2sχ1χ

−1
2 (t)d×t.
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We have

φs,v(gv) =
χ1,v(det g)|det g|s+1/2

v

L(2s+ 1, χ1,vχ
−1
2,v)

∫
F×v

Φ[(0, t)g]|t|2s+1
v χ1,vχ

−1
2,v(t)d

×t

and hence

Av(s, w0)φs,v(gv) = χ1,vχ
−1
2,v(−1)

χ1,v(det g)|det g|s+1/2
v

L(2s+ 1, χ1,vχ
−1
2,v)

×

×
∫
Fv

∫
F×v

Φ[(t, tn)g]|t|2s+1
v χ1,vχ

−1
2,v(t)d

×t dn,

which, after the change of variables n→ t−1n, gives

Av(s, w0)φs,v(gv) = χ1,vχ
−1
2,v(−1)

χ1,v(det g)|det g|s+1/2
v

L(2s+ 1, χ1,vχ
−1
2,v)

×

×
∫
F×v

[∫
Fv

Φ[(t, n)g]dn

]
|t|2sv χ1,vχ

−1
2,v(t)d

×t.

Let Φ′(t) :=
∫
Fv

Φ[(t, n)g]dn. Then we have:

Av(s, w0)φs,v(gv) = χ1,vχ
−1
2,v(−1)

χ1,v(det g)|det g|s+1/2
v

L(2s+ 1, χ1,vχ
−1
2,v)

Z(Φ′, χ1,vχ
−1
2,v, 2s).

But by Tate’s thesis

Z(Φ̂′, χ−1
1,vχ2,v, 1− 2s)

L(1− 2s, χ−1
1,vχ2,v)

= ε(2s, χ1,vχ
−1
2,v, υv)

Z(Φ′, χ1,vχ
−1
2,v, 2s)

L(2s, χ1,vχ
−1
2,v)

.

Note that for almost all v, ε(2s, χ1,vχ
−1
2,v, υv) ≡ 1 for a fixed υv. From the above we

get

Av(s, w0)φs,v(gv) =
L(2s, χ1,vχ

−1
2,v)

L(2s+ 1, χ1,vχ
−1
2,v)ε(2s, χ1,vχ

−1
2,v, υv)

φ̃s,v(g), (3.14)
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where

φ̃s,v(g) = χ1,vχ
−1
2,v(−1)

χ1,v(det g)|det g|sv
L(1− 2s, χ−1

1,vχ2,v)
Z(Φ̂′, χ−1

1,vχ2,v, 1− 2s)

= χ1,vχ
−1
2,v(−1)

χ1,v(det g)|det g|s+1/2
v

L(1− 2s, χ−1
1,vχ2,v)

∫
F×v

Φ̂′(t)χ−1
1,vχ2,v(t)|t|1−2s

v d×t.

(3.15)

Let

g =

a b

c d

 ,

and

Φ̂(x) =

∫
Fv

Φ(u)υv(xu)du.

We get

Φ̂′(t) =

∫
Fv

Φ′(u)υv(tu)du

=

∫∫
F 2
v

Φ[(u, v)g]υv(tu)dudv

=

∫∫
F 2
v

Φ(au+ cv, bu+ dv)υv(tu)dudv.

Taking u′ = au+ cv and v′ = bu+ dv gives

u =
u′d− v′c
ad− bc

=
u′d− v′c
det(g)

and

J =

∂u′/∂u ∂u′/∂v

∂v′/∂u ∂v′/∂v

 =

a c

b d

 .



61

Thus,

Φ̂′(t) =

∫∫
F 2
v

Φ(u′, v′)υv(t(u
′d− v′c)(det(g))−1)

du′dv′

|det(g)|
.

Now, if we let

Φ̂(x, y) :=

∫
F 2
v

Φ(u, v)υv(yu− xv)dudv,

we conclude that

Φ̂′(t) = |det(g)|−1Φ̂[(det(g)−1)(0, t)g].

This gives

φ̃s,v(g) = χ1,vχ
−1
2,v(−1)

χ1,v(detg)|detg|s+1/2
v

L(1− 2s, χ−1
1,vχ2,v)

×

×
∫
F×v

|det(g)|−1Φ̂[(det(g)−1)(0, t)g]χ−1
1,vχ2,v(t)|t|1−2sd×t

= χ1,vχ
−1
2,v(−1)

χ1,v(detg)|detg|s−1/2
v

L(1− 2s, χ−1
1,vχ2,v)

×

×
∫
F×v

Φ̂[(det(g)−1)(0, t)g]χ−1
1,vχ2,v(t)|t|1−2sd×t.

Now we do the change of variables t→ det(g)t which gives

φ̃s,v(g) =
χ1,vχ

−1
2,v(−1)χ1,v(det g)|det g|s−1/2

v

L(1− 2s, χ−1
1,vχ2,v)

×

×
∫
F×v

Φ̂[(0, t)g]χ−1
1,vχ2,v(t)|t|1−2sχ−1

1,vχ2,v(det g)|det g|2−2sd×t.

Thus,

φ̃s,v(g) = χ1,vχ
−1
2,v(−1)

χ2,v(det g)|det g|3/2−sv

L(1− 2s, χ−1
1,vχ2,v)

∫
F×v

Φ̂[(0, t)g]χ−1
1,vχ2,v(t)|t|1−2sd×t.
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Note that the map φs,v → φ̃s,v takes (Φ, χ1,v, χ2,v)→ (Φ̂, χ2,v| · |1−2s, χ1,v| · |1+2s).

3.2.6 The degree 4 L-function

The Langlands dual group of G is LG = GSp(4,C). Given ρ a finite dimensional

representation of LG, and π a cuspidal automorphic representation of G(A), Lang-

lands defined an L-function L(π, s, ρ) as a certain Euler product convergent in some

right half plane. For G, we can consider the irreducible representations of dimension

4 and 5, which give the spinor L-function and the standard L-function repsectively.

If for each prime p, the local representation πp of the automorphic representation

π has Satake parameters αp, βp, γp, the degree 4 (spinor) L-function has the Euler

product

L(π, s, ρ4) =
∏
p

(
(1− αpp−s)(1− αpβpp−s)(1− αpγpp−s)(1− αpβpγpp−s)

)−1
,

while the degree 5 (standard) L-function has the Euler product

L(π, s, std) =
∏
p

(
(1− p−s)(1− βpp−s)(1− β−1

p p−s)(1− γpp−s)(1− γ−1
p p−s)

)−1
.

In this section, we review an integral representation of Rankin-Selberg type for

the degree 4 L-function that is due to Piatetski-Shapiro [PS97] and that is applicable

even in the case of non-generic representations. In the next section, we will further

review how this integral representation unfolds in terms of a generalized global Whit-

taker model, and how a generalized local Whittaker can be defined, which leads to

construction of the local L-factors. We will use some of the notations in [PS97] for

simplicity.
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We let ν be a character of IF and µ and Grössencharacter on Q and consider

φs(g) = µ(det g)|det g|s+1/2

∫
F

Φ[(0, t)g]|tt|s+1/2µ(tt)ν(t)dt,

which satisfies the property that φs ∈ IndHA
B̃A
χ, where χ is a character of B̃A defined

by

χ

x 0

0 1

t 0

0 t

1 n

0 1

 = µ(x)|x|s+1/2ν−1(t).

The Eisenstein series Eφs is then defined as in Section 3.2.4. Note that in the notations

of Section 3.2.4, we have that characters µ and ν correspond to the pair (χ1, χ2) as

follows: µ(x) = χ1(x) and ν−1(t) = χ1(t)χ2(t).

If µ(tt)ν(t) 6= 1 (or equivalently if χ1 6= χ2), we have that Eφs has no poles.

Otherwise, it has a pole at s = −1
2

and s = 3
2
.

Let π be a holomorphic cuspidal automorphic representation on GSp(4,A), and

consider ϕ ∈ π. We define the Rankin Selberg type integral

L(ϕ; Φ, µ, ν, s) :=

∫
Z(A)H(Q)\H(A)

ϕ(g)EΦ
s (g;µ, ν)dg. (3.16)

The meromorphic continuation of the Eisenstein series gives the meromorphic con-

tinuation of L(ϕ; Φ, µ, ν, s). The twisted L-function L(π, µ, s) of π can be defined

to be so that L(ϕ;Φ,µ,ν,s)
L(π,µ,s)

is entire for all choices of ν and Φ. To do this we describe

in the next section a generalized local Whittaker model introduced in [PS97], which

will allow us to define local L-factors.
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3.2.7 Generalized Whittaker models on GSp(4)

While in the GL(2) case we can define the local L-factors by using a Whittaker

model, a Whittaker model does not exist for holomorphic cuspidal automorphic

representations of G. However, a generalized (local) Whittaker model can be defined,

not with respect to the maximal unipotent U , but rather with respect to another

subgroup R of G.

Let k be a local field. Consider a non-degenerate linear form

lβ(u) = tr(βX), (3.17)

where

u =

I X

I

 ,

and β ∈ GL(2, k) with βt = β. If we let Tβ be the connected component of the

stabilizer of lβ in M , where M is the reductive part of the Siegel parabolic P = MU

(see Section 3.2.1) then there exists a unique semisimple algebra K over k such that

(K : k) = 2 and Tβ ∼= K?. In each orbit of M we can find a representative lβ

corresponding to

β =

1

−d

 ,

with a d square free integer. Then K = k ⊕ k if d = 1 and K = k(
√
d) if d 6= 1. We

also let

Nβ = {u ∈ U : lβ(u) = 0} and Hβ =
{
g ∈ GL(2, K)|det(g) ∈ k×

}
.
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If K = k(
√
d) we have that

Tβ =


t 0

0 t

 : t ∈ K?

 ∼=



t1 −t2d

−t2 t1

t1 t2

t2d t1

 : t1 + t2
√
d ∈ K?


and

Nβ =


1 n1 + n2

√
d

0 1

 ∼=



1 n1

2
n2

2

1 n2

2
n1

2d

1

1




.

We let Rβ = TβU . We omit the index β from now on for simplicity. If we take ν

to be a character of T and ψβ a character of U , with

ψβ(u) = ψ0(lβ(u)), (3.18)

we can define a character αν,ψ of R as

αν,ψ(r) = αν,ψ(tu) = ν(t)ψ(u), (3.19)

where r = tu with t ∈ T and u ∈ U .

By Theorem 3.1 in [PS97], we have that if π is an irreducible smooth admissible

representation of GSp(4, k) and αν,ψ a character of R as in (3.19), then there exists

at most one linear functional (up to scalar multiplication) l : Vπ → C such that

l(π(r)υ) = αν,ψ(r)l(υ), (3.20)
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for all r ∈ R(k) and ϕ ∈ π. In addition, Howe showed that if k 6= C then a functional

as in (3.20) always exists for π an infinite-dimensional representation, and that for

k = C the only exceptions are the Weil representations.

For υ ∈ Vπ define the generalized Whittaker function

Wυ(g) = l(π(g)υ),

and let Wν,ψ be the space of generalized Whittaker functions. We can define the

representation by right translation on this space. We have π ∼= Wν,ψ and for r ∈ R

and υ ∈ Vπ
Wυ(rg) = αυ,ψ(r)Wυ(g).

For W ∈ Wν,ψ, µ a character of k? and Φ a Schwarz function on K2 define

L(W,Φ, µ, s) =

∫
N\H

W (h)Φ[(0, 1)g]µ(det g)|det g|s+1/2
k dg, (3.21)

and if to Φ we associate the function

φ(g;µ, ν, s) = µ(det g)|det g|s+1/2

∫
K×

Φ[(0, t)g]|t|2s+1µ(tt)ν(t)d×t, (3.22)

we have

L(W,Φ, µ, s) =

∫
TN\H

W (g)φ(g;µ, ν, s)dg. (3.23)

This function converges in some right half plane of s and admits a meromorphic

continuation to the entire plane and a functional equation.

We can make an analogous construction for global fields. More specifically, we

define a generalized global Whittaker model as follows. For a global field k, a cuspidal

automorphic representation π of G(A) and character αν,ψ of R(A) there exists a cusp
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form ϕ ∈ π such that ∫
ZAR(k)\R(A)

ϕ(r)α−1
ν,ψ(r)dr 6= 0, (3.24)

and we can define

Wϕ(g) =

∫
ZAR(k)\R(A)

ϕ(rg)α−1
ν,ψ(r)dr (3.25)

for g ∈ GSp(4,A). The function Wϕ has the property that

Wϕ(rg) = αν,ψ(r)Wϕ(g).

LetWν,ψ be the space of Whittaker functions Wϕ and consider the representation of

GSp(4,A) on this space by right translation. This representation is isomorphic to π.

If we write π = ⊗′πv, then for each πv there exists a unique generalized local

Whittaker model corresponding to ανv ,ψv , with νv and ψv the local components at v

of ν and ψ respectively. The global model is then the restricted tensor product of

the corresponding local models.

The integral representation in equation (3.16) unfolds in terms of the generalized

global Whittaker model to give

∫
T (A)N(A)\H(A)

Wϕ(g)φ(g;µ, ν, s), (3.26)

which can be further expressed as

∫
N(A)\H(A)

Wϕ(g)Φ[(0, 1)g]µ(det g)|det g|1/2+sdg. (3.27)

Note that if π is a cuspidal automorphic representation of GSp(4,AQ) and ϕ ∈ π
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we have a Fourier expansion (see for example [Har04]):

ϕ(ug) =
∑
β

ϕβ(g)ψβ(u)

for u ∈ U(A) and ψβ as in (3.18), with the sum over β ∈ Sym2(Q). The Fourier

coefficients ϕβ are smooth functions on GSp(4,AQ). If ϕβ is nonzero then we say

that β is in the support of π.

If π is holomorphic then β must be a positive definite matrix so that K is an

imaginary quadratic field. If π is not holomorphic then K is either a real quadratic

field or Q⊕Q.

For this reason, the subgroup H = Hβ as it appears in (3.16) corresponds to an

imaginary quadratic field F .

3.2.8 The relative trace formula

Jacquet’s relative trace formula is a generalization of the Arthur-Selberg trace for-

mula. The setup of the relative trace formula consists of integrating the kernel over

non-diagonal subgroups.

For G = GSp(4)/Q we define

C∞c (G(A)) = C∞c (G(R))⊗ C∞c (G(Afin)),

where C∞c (G(R)) is the space of smooth compactly supported functions on G(R)

with values in C, and C∞c (G(Afin)) is the space of locally constant and compactly

supported functions on G(Afin) with values in C.

Let Z denote the center G. For a test function f ∈ C∞c (Z(A)\G(A)) we associate
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the kernel function

K(x, y) :=
∑

γ∈Z(Q)\G(Q)

f(x−1γy). (3.28)

Let ρ be the right regular representation

(ρ(y)ϕ)(x) = ϕ(xy)

of Z(A)\G(A) on the Hilbert space L2(Z(A)G(Q)\G(A)). We define

ρ(f) : L2(Z(A)G(Q)\G(A))→ L2(Z(A)G(Q)\G(A))

given by

(ρ(f)ϕ)(x) =

∫
Z(A)\G(A)

f(y)ρ(y)ϕ(x)dy =

∫
Z(A)\G(A)

f(y)ϕ(xy)dy. (3.29)

Setting some conditions on f∞, the component of f at the archimedian place (see

Sections 3.3 and 3.5), the operator ρ(f) will decompose into a direct sum of cuspidal

representations:

ρ(f) = ⊕πmππ(f).

Note that π(f) is defined as:

(π(f)ϕ)(x) =

∫
Z(A)\G(A)

f(y)π(y)ϕ(x)dy =

∫
Z(A)\G(A)

f(y)ϕ(xy)dy,

for ϕ ∈ π. Associated to this decomposition of ρ(f) into a direct sum of π(f), we
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have an alternative expression of the kernel

K(x, y) =
∑
π

Kπ(x, y).

Let F = Q(
√
d) be a fixed auxiliary imaginary quadratic field with d < 0 square-

free. Let H be the group of matrices in GL(2)/F with rational determinant, viewed

as a subgroup of GSp(4)/Q (see Section 3.2.1 ) and U be the unipotent radical of

the Siegel parabolic P of G.

We consider the linear functional on C∞c (Z(A)\G(A))

I(f) :=

∫
Z(A)H(Q)\H(A)

∫
U(Q)\U(A)

Kf (h, u)Eφs (h)ψ(u)du dh, (3.30)

where Eφs (x) is an Einsenstein series on GL(2)/F and ψ is a nontrivial character of

U(Q)\U(A). The character ψ is given by

ψ(u) = ψ0(trSX) (3.31)

with

u =

I X

0 I

 ,

and X a symmetric 2× 2 matrix over Q. Here ψ0 is the standard additive character

of Q\A and S is a symmetric 2 × 2 matrix over Q. The character ψ0 is defined as

follows. We define the local component ψ0,p at p prime to be

ψ0,p =
[
Qp → Qp/Zp → Q/Z→ S1

]
.
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Now every x ∈ Qp can be represented in the form

x = x−rp
−r + x1−rp

1−r + · · ·+ x−1p
−1 + x0 + x1p+ · · · = a

pr
+
∞∑
i=0

xip
i

with 0 ≤ xn ≤ p− 1. We say that a
pr

is the fractional part {x}p of x. We set

ψ0,p(x) = e2πi{x}p .

Note that ψ0,p(x) = 1 iff x ∈ Zp. In addition, we let

ψ0,∞ : R→ S1, x→ e−2πix

be the standard non-trivial character at infinity.

From now on, we will sometimes use when convenient the notations G̃ = Z\G

and H̃ = Z\H.

3.3 Test function

We take the test function f to be a factorizable, smooth function in C∞c (G(A)) with

suitable properties. We write:

f = f∞ × ffin = f∞ × fN × fS × fS0

with S0 = S ∪ {N} with N some fixed prime.

The places in S correspond to a finite set of places p where χ1,p and χ2,p defining

the Eisenstein series Eφs (see eq. (3.12) and (3.13)) are ramified with conductor np.

Let Dk denote the holomorphic discrete series representation of PGSp(4,R) of
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lowest weight k. We choose the function f∞ to be (up to a constant) the complex

conjugate of the matrix coefficient

〈Dk(g)v0, v0〉,

where v0 is a vector that generates the K-type τk,k. We can take v0 to be a unit

vector.

We take fN to be the characteristic function of ZN\K0(N)NZN divided by the

measure VN of ZN\K0(N)NZN . Here

K0(N)v =


A B

C D

 ∈ GSp(4,Zv)|C ≡ 0(mod NZv)

 .

We take fS0 to be the characteristic function of
∏

v 6∈S0
GSp(4,Zv)Zv. Finally we take

fp with p ∈ S to be 1 on the coset

K(2np)p


−1

2

− 1
2d

−$n
p 2

−$n
p 2d

K(2np)p,

and zero otherwise. Here

K(2np)p =


A B

C D

 ∈ GSp(4,Zp)|

A B

C D

 ≡
I 0

0 I

 (mod $2np
p )

 .

Finally, let us compute f∞(g) through a series of lemmas. The group G+(R)

consisting of those element with λ(g) > 0 acts on the Siegel upper half plane H2 =
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{Z ∈ Mat2(C) : Zt = Z, Im(Z) > 0} in the usual way:

g · Z := (AZ +B)(CZ +D)−1

for g =

A B

C D

 and Z ∈ H2. We write

Z =

X1 + iY1 X2 + iY2

X2 + iY2 X3 + iY3

 ∈ H2

with

Im(Z) =

Y1 Y2

Y2 Y3

 > 0,

which is equivalent to Y1 + Y3 > 0 and Y1Y3 − Y 2
2 > 0, so in particular we have

Y1, Y3 > 0.

Consider the space of holomorphic C-valued functions F on H2 and let

Dk(g)F (Z) = λ(g)k(det(CZ +D))−kF
(
(AZ +B)(CZ +D)−1

)
.

The measure is

dZ = det(Y )−3
∏
i≤j

dXijdYij.

Take v0(Z) := det((Z+iI)−k) for Z ∈ H2. A straightforward computation verifies

that v0(Z) is well-defined on H2.

We have for

g =

A B

C D

 ∈ GSp(4,R) (3.32)
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with λ(g) > 0,

Dk(g)v0(Z) = λ(g)k(det(CZ +D))−kdet((AZ +B)(CZ +D)−1 + iI)−k

= λ(g)kdet(AZ +B + i(CZ +D))−k.

Now consider k∞ ∈ K∞,

k∞ =

 A B

−B A

 .

We have

Dk(k∞)v0(Z) = λ(g)kdet(A− iB)−kv0(Z),

and hence the vector v0 generates the K-type τk,k.

Let g as in (3.32). We want to compute

sk(g) = 〈Dk(g)v0, v0〉

= λ(g)k
∫
H2

det(AZ +B + i(CZ +D))−kdet(Z − iI)−kdet(Y )k−3 ×

× dX1dX2dX3dY1dY2dY3

= λ(g)kdet(A+ iC)−k
∫
H2

det(Z + (A+ iC)−1(B + iD))−kdet(Z − iI)−k ×

× det(Y )k−3dX1dX2dX3dY1dY2dY3. (3.33)

We will compute sk(g) by using the Cartan decomposition of GSp(4). To do that we

first show the following result:

Lemma 3.2. 〈Dk(g)F, F 〉 = 〈F,Dk(g
−1det g)F 〉
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Proof. If g is an in (3.32) then

〈Dk(g)F, F 〉 =

∫
H2

λ(g)k(det(CZ +D))−kF
(
(AZ +B)(CZ +D)−1

)
×

× F (Z)det(Y )k−3dX1dX2dX3dY1dY2dY3.

Now let Z ′ = (AZ + B)(CZ + D)−1 be a change of variables. Then we have that

Z = (A− Z ′C)−1(Z ′D −B). Let

g−1 =

M N

P Q

 .

It is easy to verify that

Z = (A− Z ′C)−1(Z ′D −B) = (MZ ′ +N)(PZ ′ +Q)−1. (3.34)

Thus, we get

〈Dk(g)F, F 〉 =

∫
H2

λ(g)k(det(C(MZ ′ +N)(PZ ′ +Q)−1 +D))−kF (Z ′)×

× F ((MZ ′ +N)(PZ +Q)−1)det(Y )k−3dX1dX2dX3dY1dY2dY3.

(3.35)

We want to show that this equals

〈F,Dk(g
−1det g)F 〉 =

∫
H2

λ(g−1det(g))kdet(PZ ′ +Q)−kdet(g)−2kdet(Y ′)k−3 ×

× F (Z ′)F ((MZ ′ +N)(PZ ′ +Q)−1)dX ′1dX ′2dX ′3dY ′1dY ′2dY ′3 .

(3.36)
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Now note that λ(g)k = λ(g−1det(g))k · det(g)−k, and hence it is enough to show that

(det(C(MZ ′ +N)(PZ ′ +Q)−1 +D))−kdet(Y )k−3dX1dX2dX3dY1dY2dY3 =

det(PZ ′ +Q)−kdet(g)−2kdet(Y ′)k−3dX ′1dX ′2dX ′3dY ′1dY ′2dY ′3 . (3.37)

Now

det(C(MZ ′ +N)(PZ ′ +Q)−1 +D))−k =

det(C(MZ ′ +N) +D(PZ ′ +Q))−kdet(PZ ′ +Q)k. (3.38)

But since A B

C D

M N

P Q

 = I4,

we have that CM +DP = 0 and CN +DQ = I, which implies that

det(C(MZ ′ +N) +D(PZ ′ +Q))−k = 1.

Thus, it is enough to show the following two relations:

det(PZ ′ +Q)det(PZ ′ +Q)det(Y ) = det(g−1)det(Y ′) (3.39)

and

det(Y )−3dX1dX2dX3dY1dY2dY3 = det(Y ′)−3dX ′1dX ′2dX ′3dY ′1dY ′2dY ′3 . (3.40)

Since g−1 ∈ GSp(4), we get that M tP = P tM , N tQ = QtN and QtM − N tP =
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λ(g−1)I. Then, (3.39) follows from the following matrix identity

(QtM −N tP )(Z ′ − Z ′)(PZ ′ +Q)−1 = (PZ ′ +Q)t((MZ ′ +N)(PZ ′ +Q)−1

− (MZ ′ +N)(PZ ′ +Q)−1), (3.41)

by applying the determinant (note that Y = (Z −Z)/2i). To show (3.41), note that

it is equivalent to

(QtM −N tP )(Z ′−Z ′) = (PZ ′+Q)t(MZ ′+N − (MZ ′+N)(PZ ′+Q)−1(PZ ′+Q)).

But (MZ ′+N)(PZ ′+Q)−1 = ((PZ ′+Q)−1)t(MZ ′+N)t since g−1 ∈ GSp(4). Thus

(3.41) is equivalent to

λ(g−1)(Z ′ − Z ′) = (QtM −N tP )(Z ′ − Z ′)

= (Z ′P t +Qt)(MZ ′ +N)− (Z ′M t +N t)(PZ ′ +Q),

which can be verified through a direct computation.

To show (3.40) we use Proposition 2.9, Chapter 1 in [AZ90], which states that the

volume element on the Siegel upper half plane H2 is invariant under all symplectic

transformations.

Corollary 3.1. Let k1, k2 ∈ K∞ such that

k1 =

 A1 B1

−B1 A1


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and

k−1
2 · det(k2) =

 M2 N2

−N2 M2

 .

Then we have that

sk(k1gk2) = λ(k1)kdet(A1 − iB1)−ksk(g)×

× λ

 M2 N2

−N2 M2

k

det(M2 − iN2)−k.

Proof. By Lemma 3.2 we have

sk(k1g) = 〈Dk(k1g)v0, v0〉 = 〈Dk(g) ◦ Dk(k1)v0, v0〉,

= λ(k1)kdet(A1 − iB1)−k〈Dk(g)v0, v0〉 = λ(k1)kdet(A1 − iB1)−ksk(g),

and

sk(gk2) = 〈Dk(gk2)v0, v0〉 = 〈v0,Dk(k−1
2 · det k2 · g−1det g)v0〉

= 〈v0,Dk(g−1det g) ◦ Dk(k−1
2 · det(k2))v0〉

= λ

 M2 N2

−N2 M2

k

det(M2 − iN2)−k〈v0,Dk(g−1det g)v0〉

= λ

 M2 N2

−N2 M2

k

det(M2 − iN2)−k〈Dk(g)v0, v0〉

= λ

 M2 N2

−N2 M2

k

det(M2 − iN2)−ksk(g).

Putting the two identities together we get the desired result.
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If g ∈ GSp(4) as in (3.32), we have that A+ iC is invertible and we can define

M + iN := (A+ iC)−1(B + iD).

We have by (3.33)

sk(g) = λk(g) det (A+ iC)−k
∫

det (Z +M + iN)−k det
(
Z̄ − iI

)−k
detY k−3 ×

× dX1dX2dX3dY1dY2dY3. (3.42)

By using the Cartan decomposition of GSp(4) and Corollary 3.1, we can reduce

the computation of sk(g) to the case when g is diagonal.

Theorem 3.1. If

g =

A
D

 , A =

a1 0

0 a2

 , D =

d1 0

0 d2

 ,

then we have

sk(g) =
π343−k

(k − 1)(k − 2)(2k − 3)

det gk/2

(a1 + d1)k(a4 + d4)k
. (3.43)

Proof. In this case M = 0 and

N =

 a−1
1 d1 0

0 a−1
2 d2

 ≡
 n1 0

0 n2

 ,

and the condition gTJg = λ(g)J translates to

a1d1 = a4d4 = λ(g).
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The integral we want to compute is

I = λk(g) det (A)−k
∫

det (Z + iN)−k det
(
Z̄ − iI

)−k
detY k−3 ×

× dX1dX2dX3dY1dY2dY3.

We first perform the X1 integral. The second determinant has a pole at

X1 →
−X2

2 + 2iX2Y2 − iX3Y1 − iX3 − Y1Y3 − Y1 + Y 2
2 − Y3 − 1

−X3 + iY3 + i
,

which is always in the upper half-plane, while the first determinant has a pole at

X1 →
n1n2 − in1X3 + n1Y3 + n2Y1 +X2

2 + 2iX2Y2 − iX3Y1 + Y1Y3 − Y 2
2

in2 +X3 + iY3

,

which is always in the lower half-plane. We can thus perform the contour integral

using the residue theorem and obtain

I = 2π(−1)k−1

(
2(k − 1)

k − 1

)
detA−kλk(g)

∫
(−X3 + iY3 + i)k−1(in2 +X3 + iY3)k−1

(denominator1)2k−1
×

× detY k−3dX2dX3dY1dY2dY3. (3.44)

The denominator above has two poles, at

X2 →
Y2(2X3 + i(n2 − 1))±

√
sqrt1

n2 + 2Y3 + 1
,

where sqrt1 is given by

sqrt1 = (iX3 + Y3 + 1)(−n2 + iX3 − Y3)×

×
(
n1n2 + 2Y3(n1 + 2Y1 + 1) + n1 + 2n2Y1 + n2 + 2Y1 − 4Y 2

2 + 1
)
.
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We need to argue that these poles are always in different half-planes. Since dealing

with the imaginary part of the square root is difficult, we will use an alternative

argument. Suppose there is a value of the parameters {X3, Y1, Y2, Y3, n1, n2} such

that the poles are in the same half-plane. Then by closing the contour around the

other half-plane the integral

I ′ =

∞∫
−∞

dx2

denominator1

must equal 0. However, the real part of denominator1 is

n1n2 + n1X
2
3 + n2X

2
2 + 2n2Y1− n2Y

2
2 + n2 +X2

2 − 4X2X3Y2 + 2X2
3Y1 +X2

3 − Y 2
2 > 0,

so the real part of I ′ cannot be zero. Thus for any value of {X3, Y1, Y2, Y3, n1, n2},

the two poles of 1/denominator1 must be in different half-planes, so the two poles

of 1/ (denominator1)2k−1 must also be in different half-places (since the locations

coincide). Thus, to compute I up to a sign it suffices to close the contour around

either pole. With p = 2k − 1 we obtain that I is equal to

I = iπ2 (−1)k−1

22p−3

(
2(k − 1)

k − 1

)(
2(p− 1)

p− 1

)
detA−kλk(g)×

×
∫

(1 + n2 + 2y3)2k−2

denominator2

detY k−3dX3dY1dY2dY3,

where

denominator2 = (−X3 + iY3 + i)k−
1
2 (in2 +X3 + iY3)k−

1
2 (1 + n1 + n2 + n1n2 + 2Y1

+2n2Y1 − 4Y 2
2 + 2Y3 + 2n1Y3 + 4Y1Y3)2k− 3

2 .
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We now perform the X3 integral. For n2 > 0, Y3 > 0, we have

∞∫
−∞

dX3

[−n2 + i(1− n2)X3 −X2
3 − Y3 − n2Y3 − Y 2

3 ]
k− 1

2

=

i
√
π(−1)k22k−2 Γ(k − 1)

Γ
(
k − 1

2

)(n2 + 2Y3 + 1)2−2k,

so that I becomes

I = π5/223−2k

(
2(k − 1)

k − 1

)(
2(p− 1)

p− 1

)
Γ(k − 1)

Γ
(
k − 1

2

) detA−kλk(g)×

×
∫

(Y1Y3 − Y 2
2 )

k−3

denominator3

dY1dY2dY3,

with

denominator3 =
(
1 + n1 + n2 + n1n2 + 2Y1 + 2n2Y1

−4Y 2
2 + 2Y3 + 2n1Y3 + 4Y1Y3

)2k− 3
2 .

Denote

Iy =

∫
(Y1Y3 − Y 2

2 )
k−3

denominator3

dY1dY2dY3.

We use the fact that

∞∫
Y 2

2 /Y3

(Y1Y3 − Y 2
2 )

k−3

denominator3

dY1 = −82−k(2k − 3)(2k − 1)Y
2k− 5

2
3√

π(4k − 5)
Γ

(
7

2
− 2k

)
×

× Γ(2k − 4)(n2 + 2Y3 + 1)2−k ((n1 + 1)Y3(n2 + 2Y3 + 1) + 2(n2 + 1)Y 2
2

)−k− 1
2 .
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Performing the Y2 integral we obtain

Iy = −2
11
2
−3k(2k − 3)(2k − 1)(n1 + 1)−kΓ

(
7

2
− 2k

)
Γ(k)Γ(2k − 4)×

×
∞∫

0

Y
k− 5

2
3 (n2 + 2Y3 + 1)2−2k

(4k − 5)
√
n2 + 1Γ

(
k + 1

2

)dY3,

which can be integrated to give

Iy =
√
π211−6k(k − 1)Γ

(
5

2
− 2k

)
Γ(2k − 4)(n1 + 1)−k(n2 + 1)−k.

Thus

I = π3214−8k(k − 1)

(
2(k − 1)

k − 1

)(
2(p− 1)

p− 1

)
Γ(k − 1)Γ

(
5
2
− 2k

)
Γ(2k − 4)

Γ
(
k − 1

2

) ×

× detA−kλk(g)

(n1 + 1)k(n2 + 1)k
,

which can be written as the expression in equation (3.43).

Corollary 3.2. For k ≥ 3 and g as in (3.32). We have

sk(g) =
π343−k

(k − 1)(k − 2)(2k − 3)

det gk/2

det [A+D − i(B − C)]k
. (3.45)

Proof. Follows through straightforward computations by Theorem 3.1, Lemma 3.2

and the Cartan decomposition.

As a consequence, we will have

f∞(g) = ck
det gk/2

det[A+D + i(B − C)]k
(3.46)
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if λ(g) > 0, and f∞(g) = 0 if λ(g) < 0, where ck is some fixed constant that depends

on the weight k.

3.4 Computing the double cosets

In this section, we will determine the double coset representatives for H\G/U , where

U is the unipotent radical of the Siegel parabolic. More specifically, we will show the

following result:

Lemma 3.3. The elements

η(λ) =


1 0 0 0

0 0 0 λ

0 0 λ 0

0 −1 0 0

 , ξ(ρ, µ) =


0 0 µ ρ

0 0 0 1

−1 0 0 0

ρ −µ 0 0

 ,

for λ ∈ Q?, ρ ∈ Q, µ ∈ Q? constitute a complete list of double coset representatives

for the space H\G/U .

Proof. We have

P =


A

λ(A−1)t

I2 X

I2

 : A ∈ GL(2), λ ∈ GL(1), X ∈ Sym2


denote the Siegel parabolic of G and P be is transpose. It has a Levi decomposition

of the form

P =


A

µ(A−1)t

I2

Y I2

 : A ∈ GL(2), µ ∈ GL(1), Y ∈ Sym2

 .
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Let H1 = H ∩ P and H2 = H ∩ P .

A computation shows that

P =
⋃

s2,t2 6=0,y1


1 s2 0 0

0 t2 0 0

0 0 t2 0

0 0 −s2 1

 ·


1 0 y1 0

0 1 0 0

0 0 1 0

0 0 0 1

 ·H1.

Indeed, let

p =


m1 n1 m1x1 + n1x2 m1x2 + n1x3

p1 q1 p1x1 + q1x2 p1x2 + q1x3

0 0 λq1 −λp1

0 0 −λn1 λm1


be an arbitrary element in P . This can be written as a product

1 dm1p1−n1q1
n1p1−m1q1

0 0

0
dp2

1−q2
1

n1p1−m1q1
0 0

0 0
dp2

1−q2
1

n1p1−m1q1
0

0 0 −dm1p1−n1q1
n1p1−m1q1

1

 ·


1 0 x1−dx3

λ
0

0 1 0 0

0 0 1 0

0 0 0 1

 · h1,

where

h1 =



n1p1q1−m1q2
1

dp2
1−q2

1

n1p2
1−m1p1q1
dp2

1−q2
1

d d(n1p1−m1q1)(p1x2+q1x3)

dp2
1−q2

1

(n1p1−m1q1)(p1x1+q1x2)

dp2
1−q2

1

n1p2
1−m1p1q1
dp2

1−q2
1

n1p1q1−m1q2
1

dp2
1−q2

1

(n1p1−m1q1)(p1x1+q1x2)

dp2
1−q2

1

(n1p1−m1q1)(p1x2+q1x3)

dp2
1−q2

1

0 0
n1p1q1λ−m1q2

1λ

dp2
1−q2

1
−p1(n1p1−m1q1)λ

dp2
1−q2

1

0 0 −p1(n1p1−m1q1)λ

dp2
1−q2

1
d

n1p1q1λ−m1q2
1λ

dp2
1−q2

1

 .
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Similarily, we can show that

P =
⋃

s1,t1 6=0,y3

H2


1 s1 0 0

0 t1 0 0

0 0 t1 0

0 0 −s1 1

 ·


1 0 0 0

0 1 0 0

0 0 1 0

0 y3 0 1

 .

Thus, using Bruhat’s decomposition (3.3), we have the following (non-disjoint)

union

G =
⋃
i

⋃
s1,t1 6=0,y3

⋃
s2v2−u2t2 6=0,λ 6=0

H2


1 s1 0 0

0 t1 0 0

0 0 t1 0

0 0 −s1 1

 ·


1 0 0 0

0 1 0 0

0 0 1 0

0 y3 0 1

×

× wi


s2 t2 0 0

u2 v2 0 0

0 0 λv2 −λu2

0 0 −λt2 λs2

U,

with i = 0, 1, 2 and w0 := I4. So the distinct double coset representatives for H\G/U

can be chosen from among elements of the form Ti(s1, t1, y3, s2, t2, u2, v2, λ), which

are defined to be
1 s1 0 0

0 t1 0 0

0 0 t1 0

0 0 −s1 1

 ·


1 0 0 0

0 1 0 0

0 0 1 0

0 y3 0 1

 · wi

s2 t2 0 0

u2 v2 0 0

0 0 λv2 −λu2

0 0 −λt2 λs2

 .
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So it is enough to show that each of these matrices are in the same equivalence

class as one of the two types of cosets η(λ) or ξ(ρ, µ).

We have

T1(s1, t1, y3, s2, t2, u2, v2, λ) :=


s2 + s1u2 t2 + s1v2 0 0

t1u2 t1v2 0 0

0 0 t1v2λ −t1u2λ

u2y3 v2y3 −t2λ− s1v2λ s2λ+ s1u2λ


and

T2(s1, t1, y3, s2, t2, u2, v2, λ) :=


0 0 −s1t2λ+ v2λ s1s2λ− u2λ

0 0 −t1t2λ s2t1λ

−s2t1 −t1t2 0 0

s1s2 − u2 s1t2 − v2 −t2y3λ s2y3λ


and

T3(s1, t1, y3, s2, t2, u2, v2, λ) :=


s2 t2 −s1t2λ s1s2λ

0 0 −t1t2λ s2t1λ

0 0 t1v2λ −t1u2λ

−u2 −v2 −s1v2λ− t2y3λ s1u2λ+ s2y3λ

 .

For T1 we have two cases. If y3 = 0 then we have that T1(s1, t1, 0, s2, t2, u2, v2, λ)

for λ 6= 0 is always in the same coset as T1(s1, t1, 0, s2, t2, u2, v2, 1). If y3 6= 0

then we have that T1(s1, t1, y3, s2, t2, u2, v2, λ) is always in the same double coset

as T1(0, t1, y3, s2, t2, u2, v2, λ).

For T2 we have that T2(s1, t1, y3, s2, t2, u2, v2, λ) is in the same double coset as
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T2(s1, t1, 0, s2, t2, u2, v2, 1). Finally, we have that T3(s1, t1, y3, s2, t2, u2, v2, λ) is in the

same coset as T3(0, t1, 0, s2, t2, u2, v2, λ). This is useful to simplify the computations.

Now, we have that T3 is always in the same coset as some η(λ′) for an appropriate

λ′:
v2

s2v2−t2u2
0 0 t2

s2v2−t2u2

0 v2

s2v2−t2u2

t2
s2v2−t2u2

0

0 u2

s2v2−t2u2

s2
s2v2−t2u2

0

u2

s2v2−t2u2
0 0 s2

s2v2−t2u2

T3(0, t1, 0, s2, t2, u2, v2, λ) = η(t1λ).

In addition, that T2 is always in the same coset as some ξ(ρ, µ) for an appropriate ρ

and µ. Indeed,
s1t2−v2

t1t2u2−s2t1v2

dt2
s2v2−t2u2

0 0

t2
s2v2−t2u2

s1t2−v2

t1t2u2−s2t1v2
0 0

ms2+nt2
s2v2−t2u2

ms1s2+ns1t2−mu2−nv2

t1t2u2−s2t1v2

s1t2−v2

t1t2u2−s2t1v2

t2
t2u2−s2v2

ms1s2+ns1t2−mu2−nv2

t1t2u2−s2t1v2

d(ms2+nt2)
s2v2−t2u2

dt2
t2u2−s2v2

s1t2−v2

t1t2u2−s2t1v2

×
× T2(s1, t1, 0, s2, t2, u2, v2, 1)×

×


1 0 m n

0 1 n
2n(−s2t2s21+t2u2s1+s2v2s1+ds2t21t2−u2v2)−m((s21−dt21)s22−2s1u2s2+u2

2)
(s21−dt21)t22−2s1v2t2+v2

2

0 0 1 0

0 0 0 1


= ξ

(
−ds2t

2
1t2 + s2

1s2t2 − s1s2v2 − s1t2u2 + u2v2

t1(t2u2 − s2v2)
,
−dt21t22 + s2

1t
2
2 − 2s1t2v2 + v2

2

s2t1v2 − t1t2u2

)
.

If y3 = 0 we have that T1 is in the same coset as ξ(ρ, µ) for an appropriate ρ and µ.
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Indeed, we have
0 0 dv2

s2v2−t2u2
− t2+s1v2

t1t2u2−s2t1v2

0 0 − t2+s1v2

t1t2u2−s2t1v2

v2

s2v2−t2u2

v2

t2u2−s2v2
− t2+s1v2

t1t2u2−s2t1v2
−ms2+nt2+ms1u2+ns1v2

t1t2u2−s2t1v2

mu2+nv2

s2v2−t2u2

− t2+s1v2

t1t2u2−s2t1v2

dv2

t2u2−s2v2

d(mu2+nv2)
s2v2−t2u2

−ms2+nt2+ms1u2+ns1v2

t1t2u2−s2t1v2

×
× T1(s1, t1, 0, s2, t2, u2, v2, 1)×

×


1 0 m n

0 1 n −m(s22+2s1u2s2+(s21−dt21)u2
2)+2n(s2(t2+s1v2)+u2(v2s21+t2s1−dt21v2))

t22+2s1v2t2+(s21−dt21)v2
2

0 0 1 0

0 0 0 1


= ξ

(
−dt21u2v2 + s2

1u2v2 + s1s2v2 + s1t2u2 + s2t2
s2t1v2 − t1t2u2

,
−dt21v2

2 + s2
1v

2
2 + 2s1t2v2 + t22

t1(t2u2 − s2v2)

)
.

Now if y3 6= 0 we can show that T1 is in the same coset as η(λ′) for some λ.

Indeed, we have
v2

s2v2−t2u2
0 dt1v2

(t2u2−s2v2)y3

t2
(t2u2−s2v2)y3

0 v2

s2v2−t2u2

t2
(t2u2−s2v2)y3

t1v2

(t2u2−s2v2)y3

0 − u2

t2u2−s2v2

s2
(t2u2−s2v2)y3

t1u2

(t2u2−s2v2)y3

− u2

t2u2−s2v2
0 dt1u2

(t2u2−s2v2)y3

s2
(t2u2−s2v2)y3

T1(0, t1, y3, s2, t2, u2, v2, 1)×

×


1 0

t22−dt21v2
2

(t2u2−s2v2)y3
− s2t2−dt21u2v2

(t2u2−s2v2)y3

0 1 − s2t2−dt21u2v2

(t2u2−s2v2)y3
− dt21u

2
2−s22

(t2u2−s2v2)y3

0 0 1 0

0 0 0 1

 = η

(
− t1
y3

)
.

Finally, a straightforward computation shows that η(λ) and η(λ′) for λ 6= λ′ are
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never in the same coset. Similarily, for (ρ, µ) 6= (ρ′, µ′) we have that ξ(ρ, µ) and

ξ(ρ′, µ′) are never in the same coset.

3.5 Spectral side

Let f be the test function chosen in Section 3.3. In this section we will study the

properties of ρ(f) and give the spectral decomposition of the kernel Kf (x, y) and of

the linear functional I(f).

Define the compact open subgroup KN,S of GSp(4,Afin) (using the notations from

Section 3.3)

KN,S =
∏
p 6∈S0

Kp ×K0(N) · ×
∏
p∈S

K(2np)p. (3.47)

We let ASk (N) denote the subspace of cuspidal representations of G(A) given by

ASk (N) =
⊕

π∞=Dk
π
KN,S
fin 6=0

Cv0 ⊗ π
KN,S
fin , (3.48)

where π
KN,S
fin is the space of KN,S-fixed vectors in πfin and v0 is the lowest weight

vector which generates the minimal K-type τk,k of the holomorphic discrete series

Dk.

For the test function f chosen in Section 3.3, we will find that ρ(f) annihilates

(ASk (N))⊥ and maps ASk (N) to itself. We will generalize some of the computations in

Chapter 13 of [KL06] from GL(2) to our case. Recall that we can write f = ffin×f∞.

Lemma 3.4. For any ϕ ∈ L2(G(Q\G(A)), ρ(f)ϕ is cuspidal.

Proof. Since bounded functions ϕ in L2 are dense in the space, it is enough to show

that for bounded functions ϕ ∈ L2 we have ρ(f)ϕ ∈ L2
0.
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Consider ϕ bounded. This assumption, along with the fact that f is L1 integrable

will provide a gurantee that

∫
U(Q)\U(A)

ρ(f)ϕ(ug)du

is absolutely convergent. We will show that the integral is in fact zero. By definition,

we can write

∫
U(Q)\U(A)

ρ(f)ϕ(ug)du =

∫
U(Q)\U(A)

∫
Z(A)\G(A)

f(x)ϕ(ugx)dxdu

=

∫
U(Q)\U(A)

∫
Z(A)\G(A)

f(g−1u−1x)ϕ(x)dxdu

=

∫
U(Q)\U(A)

∫
U(Q)Z(A)\G(A)

∑
γ∈U(Q)

f(g−1u−1γx)ϕ(x)dxdu.

Switching the order of integration we get

∫
U(Q)\U(A)

ρ(f)ϕ(ug)du =

∫
U(Q)Z(A)\G(A)

[∫
U(A)

f(g−1ux)du

]
ϕ(x)dx. (3.49)

But now note that

∫
U(A)

f(g−1ux)du =

∫
U(R)

f∞(g−1ux)du ·
∏
v<∞

∫
U(Qv)

fv(g
−1uvx)duv.

If U0 is any subgroup of U , we have

∫
U(R)

f∞(g−1ux)du =

∫
U0(R)\U(R)

∫
U0(R)

f∞(g−1γux)dγdu.
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We choose U0(R) to be the set of matrices of the form

γ(t) :=


1 t

1

1

1


with t ∈ R. Then we have that the entries of g−1γ(t)ux are linear functions of t and

in addition we have that f∞(g−1γ(t)ux) is a constant multiple of

1

(αt+ β)k

with α, β ∈ C. Then we have

∫
U0(R)

f∞(g−1γux)dγdu =

∫ ∞
−∞

dt

(αt+ β)k
= 0,

and hence we conclude that
∫
U(Q)\U(A)

ρ(f)ϕ(ug)du = 0.

Corollary 3.3. ρ(f) annihilates (L2
0)⊥.

Proof. A straightforward computation shows that the adjoint f ? also satisfies the

property ρ(f)? = ρ(f ?) : L2 → L2
0. This means that ρ(f) annihilates (L2

0)⊥.

Theorem 3.2. ρ(f) ⊂ ASk (N).

Proof. We may assume ϕ ∈ L2
0 (since ρ(f) annihilates (L2

0)⊥). Writing L2
0 as a

direct sum of irreducible cuspidal representations (π, Vπ) and using the fact that the

space ASk (N) is closed, we may assume that ϕ ∈ π for some irreducible cuspidal

representation π.
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Writing ϕ = ϕ∞ ⊗ ϕfin, we have

ρ(f)ϕ = π∞(f∞)ϕ∞ ⊗ πfin(ffin)ϕfin.

In order to have π∞(f∞)ϕ∞ 6= 0 we must have π∞ ∼= Dk, in which case Dk(f∞)ϕ∞ ∈

Cv0 with v0 the lowest weight vector of Dk. Now, because ffin is KN,S-invariant we

have that πfin(ffin)ϕfin is KN,S-invariant thus we get that

ρ(f)ϕ ∈ ASk (N).

In fact, ρ(f) annihilates (ASk (N))⊥. This is because ρ(f)? also satisfies the prop-

erty that ρ(f)? ⊂ ASk (N).

Now we give the spectral decomposition of the linear functional I(f).

Theorem 3.3.

I(f) =
∑
π

mπ

∑
ϕi∈π

1

〈ϕi, ϕi〉
L(ϕi,Φ, µ, ν, s)ϕi,ψ

∏
p∈S

ai, p,

where ϕi,ψ is the Fourier coefficient of ϕi with respect to character ψ (see eq. (3.10))

and ai,p is the eigenvalue such that ρ(fi)ϕi,p = ai,pϕi,p for p ∈ S. The outer sum is

over π in ASk (N) and the inner sum is over an orthogonal basis of π.

Proof. We can write the spectral decomposition of the kernel as follows:

K(x, y) =
∑
π

mπ

∑
ϕi∈π

(ρ(f)ϕi)(x)ϕi(y)

〈ϕi, ϕi〉A
,
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with the outer sum over π in ASk (N) and the inner sum over an orthogonal basis of

π.

This gives a spectral decomposition

I(f) =
∑
π

mπ

∑
{ϕi}

1

〈ϕi, ϕi〉

∫
H̃(Q)\H̃(A)

∫
U(Q)\U(A)

(ρ(f)ϕi)(x)ϕi(y)EΦ
s (x)ψ(y)dx dy.

After a separation of variables, we get

I(f) =
∑
π

mπ

∑
{ϕi}

1

〈ϕi, ϕi〉

(∫
(H̃(Q)\H̃(A))

(ρ(f)ϕi)(x)EΦ
s (x)dx

)(∫
(N(Q)\N(A)

ϕi(y)ψ(y)dy

)
.

We can now compute ρ(f) on an element ϕ ∈ ASk (N) belonging to a cuspidal

representation π. We can write

f = f∞ × fS ×
∏
p∈S

fp

and

ϕ = ϕ∞ ⊗ ϕS ⊗
⊗
p∈S

ϕp.

Then we must have that

ρ(f)ϕ = Dk(f∞)ϕ∞ ⊗ πS(fS)ϕS ⊗
⊗

πp(fp)ϕp.

By the properties of the matrix coefficient we get Dk(f∞)ϕ∞ = ϕ∞. Now

since fS = fN × fS0 is such that fS0 is the characteristic function of
∏

p 6∈S0
ZKp

and fN is the characteristic function of ZN\ZNK0(N)N divided by the measure of
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ZN\ZNK0(N)N

πS(fS)ϕS = ϕS.

Finally, if we have that p ∈ S, we have that fp is bi-K(2np)p-invariant, and hence ϕp

is an eigenvector and let’s call the eigenvalue ap. This eigenvalue is given by

ap = f∨p (tp),

where f∨p is the Satake transform of fp in the Hecke algebra of locally constant

compactly supported bi-K(2np)p-invariant functions on GSp(4,Qp), and tp is the

Satake parameter of πp.

Thus, we can conclude

ρ(f)ϕ =

(∏
p∈S

ap

)
ϕ

and the conclusion follows.

Corollary 3.4. If for s = 1/2 and weight k → ∞ we have that I(f) 6= 0 then it

would imply that that L(π ⊗ µ, 1/2) 6= 0 for infinitely many Siegel eigenforms π.

Proof. If π is a holomorphic cuspidal automorphic representation of G and ϕ ∈ π

then L(ϕ,Φ, µ, ν, s) has an Euler product with local factors that are at almost all

places given by L(πv ⊗ µ, s). More precisely (see [Har04]),

L(ϕ,Φ, µ, ν, s) = α(π, d, ν)
∏
v∈T

Lv(ϕ,Φ, µ, ν, s)
∏
v 6∈T

L(πv ⊗ µ, s)

= α(π, d, ν)
∏
v∈T

Lv(ϕ,Φ, µ, ν, s)
L(π ⊗ µ, s)∏

v∈T Lv(π ⊗ µ, s)
.

The conclusion then follows by Theorem 3.3.
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3.6 Geometric side

For δ ∈ G̃ define the subgroup of H̃ × U :

Cδ = {(h, u) ∈ H̃ × U : h−1δu = δ}.

We split the sum over γ in the kernel into sums over double cosets in the following

way:

∑
γ∈G̃(Q)

f(h−1γu) =
∑

δ∈H̃(Q)\G̃(Q)/U(Q)

∑
(h0,u0)∈Cδ(Q)\(H̃(Q)×U(Q))

f(h−1h−1
0 δu0u).

We then get that

I(f) =
∑
{δ}

∫
Z(A)H(Q)\H(A)

∫
U(Q)\U(A)

∑
(x0,y0)∈Cδ(Q)\(H̃(Q)×U(Q))

f((h0h)−1δ(u0u))×

× Eφs (h0h)ψ(u0u)du dh,

where the first sum is over the double coset representatives δ ∈ H̃(Q)\G̃(Q)/U(Q).

Then we get that

I(f) =
∑
{δ}

I(δ, f),

where

I(δ, f) =

∫
Cδ(Q)\H̃(A)×U(A)

f(h−1δu)Eφs (h)ψ(u)dh du.

We write

I(δ, f) =

∫
Cδ(A)\(H̃(A)×U(A))

∫
(Cδ(Q)\Cδ(A))1

f((zh)−1δ(δ−1zδ)u)×

× Eφs (zh)ψ(δ−1zδy)dh du dz,
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where (Cδ(Q)\Cδ(A))1 is the projection on the first component, and hence

I(δ, f) =

∫
Cδ(A)\(H̃(A)×U(A))

f(h−1δu) ·
(∫

(Cδ(Q)\Cδ(A))1

Eφs (zh)ψ(δ−1zδu)dz

)
du dh.

In principle, there are two types of cosets: regular and singular. There are

infinitely many regular cosets and finitely many singular ones, but the dominant

terms typically come from the singular cosets.

Lemma 3.5. I(η(λ), f) = 0 for all λ ∈ Q?.

Proof. Since (Cη(λ)(Q)\Cη(λ)(A))1 is the identity matrix

I(η(λ), f) =

∫
H̃(A)×U(A)

f(h−1η(λ)u)ψ(u) · Eφs (h)dh du. (3.50)

We have

Eφs (g) =
∑

γ∈B̃(F )\GL(2,F )

φs(γg),

where B̃ is the Borel subgroup of GL(2).

We can define the β-th local Whittaker integral

Wβ(φv, gv) =

∫
Fv

φv

w0

1 xv

0 1

 gv

ϑ(−βxv)dxv

and the intertwining operator

(Mw0φv)(gv) =

∫
Fv

φv

w0

1 xv

0 1

 gv

 dxv,
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where

w0 =

0 −1

1 0

 .

Then we have the Fourier expansion

Eφs (g) = φs(g) +Mw0φ(g) +
∑
β∈F

Wβ(g), (3.51)

where

Mw0φ(g) =
1√
DF

∏
v

Mw0φv(gv),

and

Wβ(g) =
1√
DF

∏
v

Wβ(φv, gv),

with DF is the discriminant of F .

Using the Fourier expansion (3.51), we have that (3.50) can be expressed as a

sum of factorizable integrals

I(η(λ), f) = I1 + I2 +
∑
β∈F

Iβ,

where

I1 =

∫
H̃(A)×U(A)

f(h−1η(λ)u)ψ(u) · φs(h)dh du =
∏
v

I1,v,

I2 =

∫
H̃(A)×U(A)

f(h−1η(λ)u)ψ(u) ·Mw0φ(h)dh du =
∏
v

I2,v,

Iβ =

∫
H̃(A)×U(A)

f(h−1η(λ)u)ψ(u) ·Wβ(h)dh du =
∏
v

Iβ,v.

Consider now place v = N . We have that fN is the characteristic function of
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K0(N)ZN . We have by assumption that (N, d) = 1 and (N, 2) = 1. We will show

that I1,N = I2,N = Iβ,N = 0, which will imply that I(η(λ, f) = 0.

We will show that h−1η(λ)u 6∈ K0(N)ZN , which implies that fN(h−1η(λ)u) = 0

for all h ∈ H̃(QN) and u ∈ U(QN). Writing, h = h′ · z with z ∈ ZN , we can reduce

this to showing that h−1η(λ)u 6∈ K0(N) ⊂ GSp(4,ZN).

Let

h−1 =


a1 b1d

a2

2
b2
2

b1 a1
b2
2

a2

2d

2a3 2b3d a4 b4

2b3d 2a3d b4d a4

 ∈ H̃,

and

u =


1 0 r s

0 1 s t

0 0 1 0

0 0 0 1

 ∈ U.

Then

h−1η(λ)u =


a1 − b2

2
a1r − b2s

2
+ a2λ

2
a1s− b2t

2
+ b1dλ

b1 −a2

2d
b1r − a2s

2d
+ b2λ

2
b1s− a2t

2d
+ a1λ

2a3 −b4 2a3r − b4s+ a4λ 2a3s− b4t+ 2b3dλ

2b3d −a4 2b3dr − a4s+ b4dλ 2b3ds− a4t+ 2a3dλ

 .

In order to have that h−1η(λ)u ∈ GSp(4,Zv), with v = N , we need to have

v(a1), v(b1), v(a2), v(b2), v(a3), v(b3), v(a4), v(b4) ≥ 0,

i.e. h−1 ∈M4(Zv)∩GSp(4,Qv). The determinant of h−1η(λ)u has to be a unit, and
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hence det(h−1)λ2 is a unit. Then 2v(λ) = v(det(h)).

Now note that if h−1 ∈ M4(Zv) ∩ GSp(4,Qv) then h · det(h−1) ∈ M4(Zv) ∩

GSp(4,Qv). We get

η(λ)u · det(h−1) ∈M4(Zv) ∩GSp(4,Qv).

So, we must have that

η(λ)u =


1 0 r s

0 0 0 λ

0 0 λ 0

0 −1 −s −t

 ∈ det(h)M4(Zv) ∩GSp(4,Qv).

But then 0, v(r), v(s), v(t), v(λ) ≥ 2v(λ). Thus, we get the constraints that

v(λ) ≤ 0 and v(r), v(s), v(t) ≥ 2v(λ),

the entries of matrix h have valuation ≥ 2v(λ) and the entries of h−1 have valuation

≥ 0 and det(h) = 2v(λ).

However, it is actually the case that λ must be a unit, i.e. v(λ) = 0. To see this

we will use the Iwasawa decomposition. We have that GSp(4,Qv) = GSp(4,Zv) ·

B(Qv), where B is the Borel subgroup. An arbitrary element of B in the Iwasawa



101

decomposition can be chosen to be

b =


x1 0 x3

x1y2

y1

0 y1 y2 y3

0 0 c1 0

0 0 0 u4

 .

Since we are looking at elements in G̃, we can assume without loss of generality that

c1 = 1.

We can write h−1 = kb with k ∈ GSp(4,Zv) and b an element of the Borel

subgroup as above. So then the condition that h−1η(λ)u ∈ GSp(4,Zv) is equivalent

to bη(λ)u ∈ GSp(4,Zv). But this implies that

bη(λ)u =


x1 −x1y2

y1
rx1 − sy2x1

y1
+ λx3 sx1 − tx1y2

y1

0 −y3 λy2 − sy3 λy1 − ty3

0 0 λ 0

0 −u4 −su4 −tu4

 ∈ GSp(4,Zv).

In particular, we conclude that λ ∈ Zv. But previously we had the condition that

v(λ) ≤ 0. Thus λ ∈ Z×v . Thus, the above conditions become

v(λ) = 0, h ∈ GSp(4,Zv), u ∈ U(Zv).

To see when h−1η(λ)u ∈ K0(N) ⊂ GSp(4,Zv), we use the already known condi-

tions that v(λ) = 0, v(r), v(s), v(t) ≥ 0, and h ∈ GSp(4,Zv).
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If

h−1η(λ)u =


a1 − b2

2
a1r − b2s

2
+ a2λ

2
a1s− b2t

2
+ b1dλ

b1 −a2

2d
b1r − a2s

2d
+ b2λ

2
b1s− a2t

2d
+ a1λ

2a3 −b4 2a3r − b4s+ a4λ 2a3s− b4t+ 2b3dλ

2b3d −a4 2b3dr − a4s+ b4dλ 2b3ds− a4t+ 2a3dλ

 ∈ K0(N),

we get that v(a3), v(b3), v(a4), v(b4) ≥ 1, so in particular h ∈ K0(N). This implies

η(λ)u ∈ K0(N).

But then

η(λ)u =


1 0 r s

0 0 0 λ

0 0 λ 0

0 −1 −s −t

 ∈ K0(N),

which is a contradiction since v(−1) = 0.

Let’s now consider the contribution from cosets ξ(ρ, µ) with ρ, µ ∈ Q and µ 6= 0.

We have

I(ξ(ρ, µ), f) =

∫
Cξ(ρ,µ)(A)\(H̃(A)×U(A))

f(h−1ξ(ρ, µ)u)ψ(u)×

×
(∫

N(Q)\N(A)

Eφs (zh)ψ(ξ(ρ, µ)−1zξ(ρ, µ))dz

)
dh du,

where

N =

1 0

? 1

 /F.



103

Note that every element z ∈ N can be expressed as w−1
0 nw0, where

n ∈ N =

1 ?

0 1

 /F.

We can write

I(ξ(ρ, µ), f) =

∫
Cξ(ρ,µ)(A)\(H̃(A)×U(A))

f(h−1ξ(ρ, µ)u)ψ(u)×

×
(∫

N(Q)\N(A)

Eφs (n(w0h))ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ))dn

)
dh du.

From the definition of the Eisenstein series we get

I(ξ(ρ, µ), f) =

∫
Cξ(ρ,µ)(A)\(H̃(A)×U(A))

f(h−1ξ(ρ, µ)u)ψ(u)×

×

∫
N(Q)\N(A)

∑
γ∈B̃(Q)\H(Q)

φs(γn(w0h))ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ))dn

 dh du.

We have φs(nw0h) = φs(w0h) for all n ∈ N(A). In addition, w0ξ(ρ, µ) is an element

of M(Q), where P = MU is the Levi decomposition of the Siegel parabolic, which

we call m. We then get that ψ(m−1γnm) = ψ(m−1γmm−1nm) = ψ(m−1nm) for all

γ ∈ N(Q) since m−1γm ∈ N(Q). Applying the Bruhat decomposition we obtain

I(ξ(ρ, µ)) = Ia(ρ, µ) + Ib(ρ, µ),
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where

Ia(ρ, µ) =

∫
Cξ(ρ,µ)(A)\(H̃(A)×U(A))

f(h−1ξ(ρ, µ)u)φs(w0h)ψ(u)×

×
∫
N(Q)\N(A)

ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ))dndh du, (3.52)

Ib(ρ, µ) =

∫
Cξ(ρ,µ)(A)\(H̃(A)×U(A))

f(h−1ξ(ρ, µ)u)ψ(u)×

×
(∫

N(A)

φs(w0nw0h)ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ))dn

)
dh du. (3.53)

The integrals Ia(ρ, µ) and Ib(ρ, µ) factorize at places, and we can write

Ia(ρ, µ) =
∏
v

Ia,v(ρ, µ), Ib =
∏
v

Ib,v(ρ, µ).

Lemma 3.6. Let v be a finite place and h ∈ H̃(Qv) and u ∈ U(Qv). Then

h−1ξ(ρ, µ)u ∈ GSp(4,Zv) implies h ∈ H̃(Zv), u ∈ U(Zv), ρ ∈ Zv, and µ ∈ Z?v.

Proof. We use the notations for h and u, and for the Iwasawa decomposition h−1 = kb

as in Lemma (3.5). We want to determine when h−1ξ(ρ, µ)u ∈ GSp(4,Zv). By the

Iwasawa decomposition h−1 = kb, we get that

bξ(ρ, µ)u =


x1 0 x3

x1y2

y1

0 y1 y2 y3

0 0 1 0

0 0 0 u4

 ξ(ρ, µ)u
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is equal to



ρx1y2

y1
− x3 −µx1y2

y1
µx1 − sµy2x1

y1
+ r

(
ρx1y2

y1
− x3

)
ρx1 − tµy2x1

y1
+ s

(
ρx1y2

y1
− x3

)
ρy3 − y2 −µy3 r (ρy3 − y2)− sµy3 y1 − tµy3 + s (ρy3 − y2)

−1 0 −r −s

ρu4 −µu4 rρu4 − sµu4 sρu4 − tµu4


and is an element in GSp(4,Zv). This implies r, s ∈ Zv.

Now if h−1ξ(ρ, µ)u, which is equal to


b2ρ
2
− a2

2
− b2µ

2
a1µ− b2sµ

2
+ r

(
b2ρ
2
− a2

2

)
b1d− b2tµ

2
+ a1ρ+ s

(
b2ρ
2
− a2

2

)
a2ρ
2d
− b2

2
−a2µ

2d
b1µ− a2sµ

2d
+ r

(
a2ρ
2d
− b2

2

)
a1 − a2tµ

2d
+ b1ρ+ s

(
a2ρ
2d
− b2

2

)
b4ρ− a4 −b4µ 2a3µ− b4sµ+ r(b4ρ− a4) 2b3d− b4tµ+ 2a3ρ+ s(b4ρ− a4)

a4ρ− b4d −a4µ 2b3dµ− a4sµ+ r(a4ρ− b4d) 2a3d+ 2b3ρd− a4tµ+ s(a4ρ− b4d)


(3.54)

is an element in GSp(4,Zv), it implies that

h−1 · µ ∈ GSp(4,Qv) ∩M4(Zv). (3.55)

This is because from the second column of (3.54) we get that b2µ
2

, a2µ
2d

, b4µ, and a4µ

are all elements in Zv. Now all the entries in the first column are also in Zv and in

addition r, s ∈ Zv as we saw above. Thus, from the third column we also get that

a1µ, b1µ, 2a3µ, and 2b3dµ are all in Zv.

We have that det(h−1) · µ2 ∈ Z×v from (3.54) and det(h−1) · µ4 ∈ Zv from (3.55).

This implies that µ2 ∈ Zv, and hence µ ∈ Zv.
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We apply Iwasawa decomposition in the following way. Write

h−1 = k′b′

with k′ ∈ GSp(4,Zv) and

b′ =


1 0 x3

y2

y1

0 y1 y2 y3

0 0 z1 0

0 0 0 z1
y1

 .

The condition that h−1ξ(ρ, µ)u ∈ GSp(4,Zv) is equivalent to the condition that

b′ξ(ρ, µ)u =



ρy2

y1
− x3 −µy2

y1
− sy2µ

y1
+ µ+ r

(
ρy2

y1
− x3

)
ρ− tµy2

y1
+ s

(
ρy2

y1
− x3

)
ρy3 − y2 −µy3 r (ρy3 − y2)− sµy3 y1 − tµy3 + s (ρy3 − y2)

−z1 0 −rz1 −sz1

ρz1
y1

−µz1
y1

rρz1
y1
− sµz1

y1

sρz1
y1
− tµz1

y1


is an element in GSp(4,Zv), which in particular implies that z1 ∈ Zv. On the other

hand, we must have that det(b′)µ2 = z2
1µ

2 ∈ Z×v and we saw before that µ ∈ Zv.

Thus, µ ∈ Z×v , and as a consequence, we get from (3.55) that

h−1 ∈ GSp(4,Zv).

But then from h−1ξ(ρ, µ)u ∈ GSp(4,Zv) we conclude
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ξ(ρ, µ)u =


0 0 µ ρ

0 0 0 1

−1 0 −r −s

ρ −µ rρ− sµ sρ− tµ

 ∈ GSp(4,Zv),

and hence ρ ∈ Zv. In addition tµ ∈ Zv and since µ is a unit we get that t ∈ Zv.

Thus, the conditions that h−1ξ(ρ, µ)u ∈ GSp(4,Zv) implies that h ∈ H̃(Zv),

ρ ∈ Zv, µ ∈ Z?v and u ∈ U(Zv).

Lemma 3.7. We have that Ia(ρ, µ) = Ib(ρ, µ) = 0 if ρ 6∈ Z or µ 6= ±1.

Proof. At all finite places v we have that fv(h
−1ξ(ρ, µ)u) = 0 if h−1ξ(ρ, µ)u 6∈

GSp(4,Zv). Thus, if there exists h and u such that fv(h
−1ξ(ρ, µ)u) 6= 0 by Lemma

3.6 we get that ρ ∈ Zv and µ ∈ Z?v. In particular, if we must have Ia,v(ρ, µ) 6= 0 for

all v, it must be the case that ρ ∈ Z and µ = ±1. The same is true for Ib.

Thus, we only need to consider Ia(ρ,±1) and Ib(ρ,±1) with ρ ∈ Z. We will

further set restrictions by choosing the symmetric matrix S in (3.31) to be

S =

−md 0

0 m


with m ∈ Z?. If

n =

1 a2 + b2

√
d

0 1

 ,
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we have

ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ)) = ψ0(tr(Sξ(ρ, µ)−1w−1

0 nw0ξ(ρ, µ)))

= ψ0

(
2a2(−µ2md+m(d+ ρ2))

µ

)
ψ0

(
4b2dmρ

µ

)
.

Plugging this into the expression for Ia in (3.52) and using character orthogonality,

we get that since

∫
N(Q)\N(A)

ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ))dn 6= 0

implies ρ = 0 and µ = ±1, it must be the case that if

Ia(ρ, µ) 6= 0

then Ia(0,±1) are the only possibilities.

We will evaluate Ia(0,±1) and Ib(0,±1) corresponding to the two cosets ξ(0,±1).

We have

Ia(0,±1) = vol(N(Q)\N(A))

∫
Cξ(0,±1)(A)\(H̃(A)×U(A))

f(h−1ξ(0,±1)u)×

× φs(w0h)ψ(u)dh du

= vol(N(Q)\N(A))
∏
v

∫
Cξ(0,±1)(Qv)\(H̃(Qv)×U(Qv))

fv(h
−1ξ(0,±1)u)×

× φs,v(w0h)ψv(u)dh du (3.56)

= vol(N(Q)\N(A))
∏
v

Ia,v
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and

Ib(0,±1) =

∫
Cξ(0,±1)(A)\(H̃(A)×U(A))

f(h−1ξ(0,±1)u)ψ(u)×

×
(∫

N(A)

φs(w0nw0h)dn

)
dh du

=
∏
v

∫
Cξ(0,±1)(Qv)\(H̃(Qv)×U(Qv))

f(h−1ξ(0,±1)u)ψ(u)×

×
(∫

N(Qv)

φs(w0nw0h)dn

)
dh du. (3.57)

Since H = GL(2)/F and H̃ = Z\G̃, we have the Iwasawa decomposition of H̃(Fv)

at each place v of F given by

H̃(Fv) = N(Fv)Ã(Fv)Γv,

where

A =

? 0

0 ?

 ,

and Ã = Z\A and Γv is a maximal compact subgroup in H̃(Fv). In particular, when

v is a non-archimedian place, we have that Γv = H̃(Fv). The Haar measure dh in

Iwasawa coordinates is given by

dh = |a|−1dndadγ

such that if we have a measurable function f on H̃(Fv), we have

∫
H̃(Fv)

f(h)dh =

∫
Fv

∫
F×v

∫
Γv

f

1 n

1

a
1

 γ

 |a|−1dγd×adn.
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As a result we have the following lemma:

Lemma 3.8. Cξ(ρ,µ)\H̃ × U over a local field has coset representatives given by the

elements of

N\H̃ × U

with the right H̃-invariant measure on N\H̃ given by |a|−1d×adγ, where d×a is the

Haar measure on Ã and dγ is the Haar measure on Γ̃.

Proof. A direct computation shows that

Cξ(ρ,µ) =
{

(n, ξ(ρ, µ)−1n−1ξ(ρ, µ))|n ∈ N
}
.

Let’s suppose that N\H̃ is given by a disjoint union of cosets ∪i∈INhi. Then

we will check that (hi, u) represent disjoint coset representatives for Cξ(ρ,µ)\H̃ × U .

Indeed, if we let (h, u) ∈ H × U be an arbitrary element, we can write it as

(h, u) = (n, ξ(ρ, µ)−1n−1ξ(ρ, µ))(hi, u
′)

with u′ the unique solution to u = ξ(ρ, µ)−1bh−1ξ(ρ, µ)u′. It is now easy to check

that (hi, u
′) and (hj, u

′′) represent different cosets for i 6= j. Indeed, suppose

(n, ξ(ρ, µ)−1n−1ξ(ρ, µ))(hi, u
′) = (hj, u

′′).

Then we get hi = hj which implies n = 1 and u′ = u′′.

Note that N = w0Nw
−1
0 , so that the Iwasawa decomposition of H̃ can be rewrit-

ten as H̃ = w0Nw
−1
0 ÃΓ, or alternatively, H̃ = Nw−1

0 ÃΓ. The measure on N\H̃ in

Iwasawa coordinates can be deduced from this.
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3.6.1 Non-archimedian computation of Ia,v(0,±1)

In the following theorem we will evaluate all Ia,v(0,±1) in the relevant cases.

Theorem 3.4. 1. If v is an inert place where χ1,v and χ2,v are unramified and

fv is the characteristic function of GSp(4,Zv)Zv then

Ia,v(0,±1) = meas(H̃(Zv)× U(Zv)).

2. If v = N is an inert place where χ1,N and χ2,N are unramified and fN is the

characteristic function of K0(N)ZN then

Ia,N(0,±1) = meas(Γ0(N)) · (meas(K0(N)))−1.

3. If (v, 2) = 1 is another inert place then

Ia,v(0, 1) > 0

and

Ia,v(0,−1) = 0.

4. If v = v1v2 is a split place with (v, 2) = 1 such that χ
(1)
1 , χ

(2)
1 , χ

(1)
2 , χ

(2)
2 are all

unramified then

Ia,v(0,±1) = meas(H̃(Zv)× U(Zv)).

5. If (v, 2) = 1 is a ramified place then assuming χ1 and χ2 are both unramified

we get

Ia,v(0,±1) = χ1,s(d
−1)χ2,s(d

−1) ·meas(H0 × U(Zv)),
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where H0 is a subgroup of H̃ whose entries satisfy the inequalities in (3.60).

6. If v = 2 then

Ia,v(0,±1) = χ−1
1,v(2d)χ−1

2,v(2d) ·meas(H1 × U(Zv)),

where H1 is a subgroup of H̃(Qv).

Proof. 1. We have by Lemma 3.8

Ia,v(0,±1) =

∫
Cξ(0,±1)(Qv)\(H̃(Qv)×U(Qv))

fv(h
−1ξ(0,±1)u)φs,v(w0h)ψv(u)dh du.

As in Lemma 3.6, fv(h
−1ξ(0,±1)u) 6= 0 implies in particular h ∈ H̃(Zv) and u ∈

U(Zv). It is easy to see that for fv the characteristic function of GSp(4,Zv)Zv
this is also a sufficient condition. Thus, taking into consideration Lemma 3.8,

we have

Ia,v(0,±1) =

∫
H̃(Zv)×U(Zv)

φs,v(w0h)ψv(u)dh du

= meas(H̃(Zv)× U(Zv))

since when χ1,v and χ2,v are unramified we have that φs,v is right H̃(Zv)-

invariant, and we also have ψv(u) = 1 for all u ∈ U(Zv).

2. Since χ1,N , χ2,N are unramified, φs,N is again right H̃(ZN)-invariant. We have

that since fN is the characteristic function of ZN\K0(N)ZN divided by the

volume, the necessary and sufficient conditions that we get from

h−1
N ξ(0,±1)uN ∈ K0(N)
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are that hN ∈ H̃(ZN) and uN ∈ U(ZN), and in addition if

hN =


a1 b1d

a2

2
b2
2

b1 a1
b2
2

a2

2d

2a3 2b3d a4 b4

2b3d 2a3d b4d a4


then we must also have vN(a1), vN(b1) > 0. Consider the set of elements

Γ?0(N) =


α β

γ δ

 ∈ H̃(OFN ), vN(α) > 0

 .

We have

Ia,N(0,±1) = meas(Γ?0(N)× U(ZN)).

Note however that

Γ?0(N) =

0 1

1 0

Γ0(N),

where

Γ0(N) =


a b

c d

 ∈ GL(2,O)|

a b

c d

 ≡
? ?

0 ?

 (mod $)

 .

Thus, we get that meas(Γ?0(N)) = meas(Γ0(N)).

3. In this case, χ1,v and χ2,v are not both unramified. Assume that cond(χ1,v) = n

and cond(χ2,v) = n and that χ1,v and χ2,v are even characters. Just as before,
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since fv is zero outside GSp(4,Zv), we get

Ia,v(0,±1) =

∫
H̃(Zv)×U(Zv)

fv(h
−1ξ(0,±1)u) · φs,v(w0h)dh du.

We have that fv is 1 on the coset

K(2n)


−1

2

− 1
2d

−$n
v 2

−$n
v 2d

K(2n),

and zero otherwise. Here

K(2n) =


A B

C D

 ∈ GSp(4,Zv)|

A B

C D

 ≡
I 0

0 I

 (mod $2n
v )


and the double coset consists of elements

A B

C D

 ≡

−1

2

− 1
2d

−$n
v 2

−$n
v 2d

 (mod $2n
v ).

If

h−1 =


a1 b1d

a2

2
b2
2

b1 a1
b2
2

a2

2d

2a3 2b3d a4 b4

2b3d 2a3d b4d a4

 ,
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then

h−1ξ(0,±1)u =


−a2

2
∓ b2

2
±a1 ∓ b2s

2
− r a2

2
b1d∓ b2t

2
− sa2

2

− b2
2
∓a2

2d
±b1 ∓ a2s

2d
− r b2

2
a1 ∓ a2t

2d
− s b2

2

−a4 ∓b4 ±2a3 ∓ b4s− a4r 2b3d∓ b4t− a4s

−b4d ∓a4 ±2b3d∓ a4s− b4dr 2a3d∓ a4t− b4ds

 .

(3.58)

Note that

h−1ξ(0,−1)u ∈ K(2n)


−1

2

− 1
2d

−$n
v 2

−$n
v 2d

K(2n)

will give us a contradiction, hence Ia,v(0,−1) = 0.

If h−1ξ(0, 1)u as in (3.58) is an element in

K(2n)


−1

2

− 1
2d

−$n
v 2

−$n
v 2d

K(2n),

then a2 ≡ 1(mod $2n
v ), b2, b4 ≡ 0(mod $2n

v ), a4 ≡ $n
v (mod $2n

v ), a3 ≡

1(mod $n
v ), and b3 ≡ 0(mod $n

v ) are necessary conditions. The matrix h−1

corresponds to the matrixa′ b′

c′ d′

 =

a1 + b1

√
d a2 + b2

√
d

a3 + b3

√
d a4 + b4

√
d

 ∈ GL(2,O)
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so that b′, c′ ≡ 1(mod $n
v ), and d′ ≡ $n

v (mod $2n
v ). Then

h =

a b

c d

 =

 d′

a′d′−b′c′ − b′

a′d′−b′c′

− c′

a′d′−b′c′
a′

a′d′−b′c′


with

a ≡ −$n
v (mod $2n

v ) and b, c ≡ 1(mod $n
v ). (3.59)

Since v(a) = n > 0, we can write

w0h =

 c d

−a −b

 =

 cb$n

a
− d$n d

−b

 1

$n 1

 a
$nb

1

 ,

and for φs,v supported on

B

 1

$n 1

Γ2(2n)

a Γ2(2n)-invariant map as in (3.11)

φs,v(w0h) = χ1,v((cb− ad)$n/a)χ2,v(−b).

Since χ1,v and χ2,v are even characters and trivial on 1 + pn, we get that for h

with entries satisfying (3.59), we get φs,v(w0h) = 1.

Then the integral is just the volume of the elements (h, u) ∈ H̃(Zv) × U(Zv)
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with the property that

h−1ξ(0, 1)u ∈ K1(2n)


1

1

−1

−1

K1(2n).

4. Here we consider the case when v splits into places v1 and v2 of F , and (v, 2) =

1. We have that d is a square of F . We can write

φs = φ(1)
s · φ(2)

s ,

where φ
(i)
s represents the component at place vi, and

φ(i)
s

a ?

0 b

 g

 = χ
(i)
1,v(a)χ

(i)
2,v(b)φ

(i)
s (g).

If fv is the characteristic function of ZvGSp(4,Zv) and χ
(i)
1,v and χ

(i)
2,v are all

unramified, then similar to case 1 above we get that Ia,v(0,±1) = 1.

5. If v is a ramified place such that (v, 2) = 1 then if $F is a fixed uniformizer of

F we have that $2
F = $. We may also assume that v(

√
d) = 1/2.

Just like before, h−1ξ(0,±1)u ∈ GSp(4,Zv) implies h ∈ GSp(4,Zv) and u ∈

U(Zv). If

h =


a1 b1d

a2

2
b2
2

b1 a1
b2
2

a2

2

2a3 2b3d a4 b4

2b3d 2a3d b4d a4

 ∈ GSp(4,Zv),
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then

v(a1), v(b1), v(a4), v(b4), v(a2), v(b2), v(a3) ≥ 0 and v(b3) ≥ −1. (3.60)

We can write

φs(w0h) = φs

d−1 0

0 d−1

d 0

0 d

w0h

 ,

and since d 0

0 d

w0h ∈ GL(2,O),

we get that

φs(w0h) = χ1,s(d
−1)χ2,s(d

−1).

Thus, we conclude that

Ia,v(0,±1) = χ1,s(d
−1)χ2,s(d

−1) ·meas(H0 × U(Zv)),

where H0 is the subgroup of H̃(Qv) with entries satisfying the conditions in

(3.60).

6. If v = 2 and d ≡ 2(mod 4) then 2 ramifies, and using the usual notation

we have v(a1), v(b1), v(a4), v(b4) ≥ 0 and v(b2) ≥ 1, v(a3) ≥ −1 v(a2) ≥ 2,

v(b3) ≥ −2.

If v = 2 and (d, 2) = 1 and 2 is inert or ramified, which corresponds to d ≡

3, 5(mod 8), we have v(a1), v(b1), v(a4), v(b4) ≥ 0 and v(b2) ≥ 1, v(a3) ≥ −1

v(a2) ≥ 1, v(b3) ≥ −1.
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If v = 2 and (d, 2) = 1 and 2 is split, i.e. d ≡ 1(mod 8), then we have that
√
d ∈ Z2 and v(a1), v(b1), v(a4), v(b4) ≥ 0 and v(b2) ≥ 1, v(a3) ≥ −1 v(a2) ≥ 1,

v(b3) ≥ −1.

In all cases, φs,v(w0x) = χ−1
1,v(2d)χ−1

2,v(2d) from which the conclusion follows just

like before.

3.6.2 Non-archimedian computation of Ib,v(0,±1)

Recall

Ib(0,±1) =

∫
Cξ(0,±1)(A)\(H̃(A)×U(A))

f(h−1ξ(0,±1)u)ψ(u)×

×
(∫

N(A)

φs(w0nw0h)dn

)
dh du

=
∏
v

∫
Cξ(0,±1)(Qv)\(H̃(Qv)×U(Qv))

f(h−1ξ(0,±1)u)ψ(u)×

×
(∫

N(Qv)

φs(w0nw0h)dn

)
dh du.

The inner integral is given by (see Section 3.2.5)

∫
N(A)

φs(w0nw0h)du = M(s)φs(w0h),

and hence

Ib(0,±1) =

∫
Cξ(0,±1)(A)\(H̃(A)×U(A))

f(h−1ξ(0,±1)u)ψ(u) ·M(s)φs(w0h)dhdu.
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At place v, we have

∫
Cξ(0,±1)(Qv)\(H̃(Qv)×U(Qv))

f(h−1
v ξ(0,±1)u)ψv(uv) · Av(s)φs,v(w0hv)dhvduv.

We saw in Section 3.2.5 (see eq. (3.14)) that

Av(s, w0)φs,v(g) =
L(2s, χ1,vχ

−1
2,v)

L(2s+ 1, χ1,vχ
−1
2,v)ε(2s, χ1,vχ

−1
2,v, υv)

φ̃s,v(g).

Thus, we get Ib,v(0,±1) equals

Ib,v(0,±1) =
L(2s, χ1,vχ

−1
2,v)

L(2s+ 1, χ1,vχ
−1
2,v)ε(2s, χ1,vχ

−1
2,v, υv)

×

×
∫
Cξ(0,±1)(Qv)\(H̃(Qv)×U(Qv))

f(h−1
v ξ(0,±1)u)ψv(uv) · φ̃s,v(w0hv)dhvduv,

and we can replicate the computations in Theorem 3.4 for this integral.

3.7 Conclusion

We can summarize the results obtained thus far as follows:

Theorem. For an appropriate choice of test function f and character ψ of U(Q)\U(A),

the spectral side of the relative trace formula considered gives

I(f) =
∑
π

mπ

∑
ϕi∈π

1

〈ϕi, ϕi〉
L(ϕi,Φ, µ, ν, s)ϕi,ψ

∏
p∈S

ai, p,

where ϕi,ψ is the Fourier coefficient of ϕi with respect to character ψ (see eq. (3.10))

and ai,p is such that ρ(f)ϕi,p = ai,pϕi,p for p ∈ S, with S a finite set of places. The

outer sum is over π cuspidal representations in the space ASk (N), and the inner sum
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is over an orthogonal basis of π.

The corresponding geometric side is given by a sum

I(f) = Ia(0, 1) +
∑
ρ∈Z

Ib(ρ, 1),

with Ia,v(0, 1) 6= 0 and Ib,v(0, 1) 6= 0 at all non-archimedian places v, as the prime

level N →∞. The elements Ia(ρ, µ) and Ib(ρ, µ) represent the contribution from the

coset representative ξ(ρ, µ).

The terms Ib(ρ, 1) corresponding to double coset representatives ξ(ρ, 1) with ρ ∈

Z \ {0} are equal to

∫
Cξ(ρ,µ)(A)\(H̃(A)×U(A))

f(h−1ξ(ρ, µ)u)ψ(u)×

×
(∫

N(A)

φs(w0nw0h)ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ))dn

)
dh du.

In this case, the interior integral exhibits an oscillating behavior due to the factor

ψ(ξ(ρ, µ)−1w−1
0 nw0ξ(ρ, µ)) which is not trivial unlike in the case when ρ = 0, µ = ±1.

It is our hope that we can use this fact to get a bound on these terms and show

nonvanishing of I(f).

On the spectral side it is enough that characters χ1, χ2 have just one prime place p

(which we may assume is inert in F ) where χ1,p and χ2,p are ramified. A computation

similar to that in part (3) of Theorem 3.4 also shows that we can make some of the

terms Ib(ρ, 1) to be zero. Indeed, if we have a finite place p where χ1,p and χ2,p are

ramified, then I(ρ, 1) with ρ a multiple of p is zero.
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