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Abstract

The focus of this dissertation is on the theory of the electronic dynamical processes in
semiconductor quantum dots (QDs). The first part of the dissertation introduces the
calculation method of electronic eigenstates used through the dissertation, the sp’s” tight-
binding (TB) method, and the application of the symmetry-adapted linear combination
(SALC) of atomic orbitals to the TB method. The combination of the SALC and TB
method reduces the computational load, and generates reliable electronic eigenstates and
eigenvalues of Wurtzite CdSe QDs. The second part of the dissertation uses the
calculated eigenstates and eigenvalues of CdSe QDs, whose band gap states are removed
by a passivation layer, to calculate various kinds of physical properties, such as the
structure, the permanent dipole moment, the band gap, the molecular orbitals, the density
of states (DOS), and the absorption spectrum. These calculated results are compared with
the respective experimental measurements in further discussions. The last part of the
dissertation focuses on the studies of the size-dependent trend of the Auger electron-hole
recombination process that causes the semiconductor QDs to remain in the dark state,
including the cases of a negative trion, a positive trion, and a biexciton, in semiconductor
QDs. The rates of these Auger processes are expressed in the form of Fermi’s golden rule,
where the Coulombic interaction between the two electrons is the operator. Although the
calculated results shows larger size dependence than that of the experimental findings, the
literature of recent experiments and theories points out potential remedies to the

discrepancy by modifying the current computational setting and theory in the dissertation.
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Chapter 1

Introduction

Background

Semiconductor quantum dots (QDs), also known as nanocrystals (NCs), have
attracted great attention both in academia and industry. They have opened a new
perspective for studying the physics and chemistry of the materials whose scale of size,
ranging from several tens to several tens thousand of atoms,’ is between that of bulk
semiconductors and molecules.? Semiconductor QDs show properties distinctly different
from those of bulk semiconductors, including their adjustable band gaps and their
corresponding optical properties, namely, the absorption and fluorescence spectra®?, the
sparse and discrete energy levels**, and a large surface-to-volume ratio®. The adjustable
optical properties provide potential applications to optoelectronic devices, such as light-
emitting diodes (LED)®”%, solar cells®'*", and labeling or imaging for biological

12,13

applications, " while the large surface area permits QDs to act as the carrier of active

415 or catalysts™.

ligands for probing purposes
However, it has been observed that the photoluminescence (PL) signal of
semiconductor QDs under photo-excitation is not a stable and predictable response’’, and
this unpredictability limits the semiconductor QDs' capability for optical applications'®. A
feature of this phenomenon is that while a QD is being steadily illuminated by light, the
intensity of its fluorescence ranges from no detectable photons to several photons in a

single time interval of measurement and, moreover, the distribution of duration of the

light-dark time periods for the QD follows a power law. This phenomenon is referred to
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as “fluorescence intermittency” (or “blinking”)'®, and the temporal record of the
fluorescence intensity is usually referred to as a “trajectory”. Typically, some value of the
fluorescence light intensity is assigned as the threshold, for describing the fluorescent
event as coming from a “light state” (an “ON” state) when the fluorescent intensity is
higher than that threshold or as coming from a “dark state” (an “OFF” state) when the
fluorescent intensity is below the specified threshold". The “blinking” is attributed to an
Auger process.?**?

A striking property of the fluorescence intermittency is that in the studies of many
different kinds of semiconductor QDs*?**, the distribution of the probability for
different time periods of the light (or dark) states has the form of power law. The power is
the slope of log(—dP(t)/dt) versus log(t) ,where P(t)is the survival probability.
The power is typically about -3/2 for both light and dark state distribution over some
decades of time (as much as 5 decades for the dark state)'”*, but truncated by an
exponential tail in the case of the light state distribution'’. This high similarity across
materials indicates that there should be a universal explanation accountable for the
observations®.

Although the suppression of “blinking”, or even non-blinking QDs*, has been

achieved via different techniques®*

, understanding the physics behind the Auger process
is an interesting topic, especially the type of Auger process that is responsible for the
well-known intermittent fluorescence behavior of these quantum dots. This process is an

2%-3%in which, as one example, the interaction two excited electrons

Auger process
provides a nonradiative alternative to fluorescence, for example by causing an electron-

hole recombination while the other electron is excited to a high-energy state in order to

satisfy energy conservation (an Auger process). Such a quantum dot is then dark rather
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than bright (fluorescent). The focus of the present dissertation is on the dependence of

these Auger processes on the size of the quantum dot. A previous existing calculation of

this dependence for CdSe QDs is by Vaxenburg et al.*'. It employs a non-atomistic
effective mass method, while in the present dissertation an atomistic method, tight-
binding (TB) method, is employed. Comparison is made both with these results and with
the experiments®*** and with the results for other semiconductor QD materials, as

described in Table 1.1.

Role of the Auger Process in Fluorescence Intermittency

Although there is still some debate on the detailed steps of how the fluorescence

3421 it is widely believed that

intermittency (blinking) occurs within semiconductor QDs
the non-radiative Auger process plays an important role in the conversion of light to dark
states and vice versa.*® In this process an electron-hole exciton interacts with a third
particle, such as an electron (negative trion) or a hole (positive trion), or another exciton
(biexciton). In the first two cases the QD has been charged by losing an electron or hole'®

3421 or to the surroundings®”**. The Auger process is governed by the

20 to a surface state
Coulombic interaction® between the various excited electrons and has a matrix element

of the type

MAuger:ff w:(n)w;(rz) 1)

where the ¥s represent the initial states of electron (or hole) while ?’s represent the final

———— " (r)y'y(r,)drdr, |
elr,—r|

states after the interaction and ¢ is the dielectric constant. Compared with the bulk
semiconductor, the rate of Auger process is enhanced in QDs because the confined

volume increases the overlap between the quasi-particles and hence increases the
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magnitude of the matrix element, M., in Eq. (1). This volume-related effect, called

“quantum confinement

, 1s significantly enhanced when the size of a QD is smaller than
the Bohr radius of an exciton in the semiconductor.

Efros and Rosen® pointed out that if an electron or hole has been ejected or
trapped by an excitation of the QD, the next excitation by the light would produce a total
of three particles (electrons and holes). In that case, instead of fluorescing the excited
state of the QD can decay by a rapid (radiationless) Auger process and so QD is then
“dark” when the decay rate is faster than the fluorescence rate, for example, when the
three quasi-particles are two electrons in the CB and one hole in the VB, and an electron
and the hole can recombine and hence not fluoresce, while the third particle, an electron,
is excited to a high energy state in the CB, in order that energy conservation is obeyed,
and even in some cases to a high enough energy state that it is ejected from the QD
(“ionization”).

One form of the Auger processes that was proposed by Frantsuzov and Marcus®®*’
was the formation of a negative trion to account for the transition from a light state to a
dark state. Using CdSe as an example, when an electron in the conduction band (CB) is
generated by photoexcitation in a QD, there is a chance that the electron from an
unpassivated Se* atom (at the surface of the QD) will fill the hole left in the valence band
(VB) by the photoexcitation, so forming a trapped hole (Se’) at the surface, while a CB
electron in the state near the edge of the CB (the 1S, state) is excited resonantly to the 1P,
state, approximately 0.3 eV*"* above the 1S, state, and then relax to 1S, state to complete
this “trapping” process. The electron-electron interaction occurs via Coulombic

interaction. The excited electron will relax to the 1S, state to complete the dark cycle.

The light state can be restored by an Auger-based “detrapping” process, in which



an electron of a subsequent photo-excitation that produces another exciton that
recombines with the hole trapped in the Se’, and the third particle (an electron) in the CB
is then excited to a higher CB state by accepting the recombination energy. It then relaxes
to the 1S, state.*® There are other possible mechanisms to account for the restoration

3439 and further experimental verification might be needed, but these other

process
processes will not be commented on in this dissertation since the restoration is not the

main focus of the thesis.

Role that the Auger Process Plays in the Exponential Tail

The most significant difference between the power law of the light states and the
dark states is that while both have a slope of -3/2 (approximate), the dark state having it
over a wide time range of the off-times, the -3/2 slope of the linear regime for the on-time
distribution truncated by an exponential tail, and the time for the onset of the tail is
shorter at higher excitation intensities and at higher temperatures'”'**°. In Tang and
Marcus' diffusion-controlled electron transfer (DCET) model*'**, both the on and the off
transition were of the resonant type. The -3/2 slope for both the “on-time” and “off-time”
distributions was successfully reproduced, as well as an exponential tail for the light
state, but the tail did not have the above asymmetry for the light and dark states. Kuno et
al.*** also provided another explanation to the log-log slope over several decades of
time. Their model was capable of generating the constant slopes over several decades of
time for both a light and a dark state®, but the setting of the model didn't satisfy all the
experimental constraints®, and the absolute values of the slope lacked the comparability

to the slopes in the experiments®.
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A subsequent study by Zhu and Marcus* remedied this situation by modifying the
DCET model**. Experimentally it was demonstrated by Peterson and Nesbitt* that the
onset of the exponential tail increases with the square of the incident light intensity, so
suggesting a role for biexciton as the source of the exponential tail, a dark state being
formed by the interaction of two excitons. In the reaction-diffusion differential equation
formalism of Zhu and Marcus for light state distribution when a biexciton is formed
(higher light intensity), one electron in the CB now acquires by an Auger process such a
high energy (one band gap above the CB edge), that it may be ejected from the QD via a
Fermi Golden Rule process instead of being involved in a resonant process, thus giving
rise to an additional channel that leads to an exponential decay. In the dark state, the
probability of forming a biexciton is small because the fast Auger-based recombination in
the dark state keeps the biexciton concentration to a minimum, and so no exponential tail
occurs in the dark state. Zhu and Marcus' conclusions are: (1) for dark states, the
recombination of an electron-hole pair via a biexciton still keeps the system in the dark
state, so the change on the exitons doesn't have a significant effect on the system, and (2)
for light states, high incident light intensity leads to a high concentration of biexcitons
that produces by an Auger process a highly excited electron from the core of the QD via a
Fermi Golden Rule process and so leads to the exponential tail for the light state, instead
of the usual resonant transition to form a dark state to a light state.

To summarize this discussion, Auger processes play an important role in the
switching of the QD between light and dark states and in explaining why the light state
has an exponential tail to the linear log-log time-distribution plots while a dark state does

not.



Size-dependence of the Auger process in Semiconductor QDs

Since Auger processes play an important role in semiconductor QDs, and have
high correlation with the size-dependent volume confinement, understanding the size-
dependence of Auger process is of particular interest. Recently there have been
measurements of size-dependence of the lifetime of an Auger process for CdSe®, ZnO*,
and CdS*” QDs. For QDs with a radius of 1 nm to 5 nm, the log-log plot of the size
dependence of these measured Auger lifetimes has shown a linear dependence with a
slope ranging from 2 to 4.3 for negative trions and from 2.5 to 3.1 for biexcitons. A

summary is given in Table 1.1.

Part Theoretical Studies of the Auger Process in semiconductor QDs

Besides the DCET model and other dynamic models*** that account for the
fluorescent intermittency, theoretical studies of QDs that implement electronic structure
calculations have attracted more attention since the 1980s. The calculation methods

include the wave-like approach, such as the effective-mass approximation (EMA)***, and

d°**'2_ the pseudopotential method™>*, and

atomistic approaches, such as the TB metho
density functional theory (DFT)>.

These theoretical studies have been made for QDs of different elements, including
Si**7, CdSe****, CdS*"*°, ZnS”', PbSe®, and many composites™. In this dissertation, the
TB method is chosen among the theoretical methods above as a tool to calculate the
electronic structure of semiconductor QDs. The details of the method are discussed in

Chapter 2. There is existing literature on TB calculations on QDs of various chemical

elements, and the QD radius in those studies ranges from 1 nm up to 4 nm. The
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calculations in the literature have shown that the TB method is capable of yielding
various theoretical studies, including (1) the optical properties of QDs, e.g. band gap'~>*
6! and absorption spectrum®®, (2) the electronic properties, e.g. density of state (DOS)
and molecular orbitals (MOs) of QDs*®, and (3) the size dependence of the rate

57,66

constants of Auger process, such as those involving a negative trion " or a positive

trion®” %,
The results from these theoretical studies have shown that with proper
modification of the details of those computational methods previously used for either

bulk semiconductors or molecules, they can be used to probe the mechanism of the Auger

process in semiconductor QDs.
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Table 1.1 Summary of the Existing Literature of Experiments on the Log-Log Slope of

13

Auger Lifetimes in QDs
. Slope of Auger
Semiconductor Lifetime Reore/Reorershell Reference
CdSe/ZnS 4.3 (colloidal)| Not given |Cohn et al.*
Negative . . 4%
Trion ZnO 2 (colloidal) Not given Cohn et al.
CdSe/CdS 2.6 (colloidal)| 0.74 ~0.88 |Jha & Guyot-Sionnes
Pr})s_itve CdSe/ZnS 2.5 (projected)| N given Cohn et al.*?
rion
CdSe/CdS ~2.5 (colloidal)| 0.74 ~0.88 | Jha & Guyot-Sionnes
CdSe 3.1 (colloidal)| 0.36 ~0.45 | Achermann et al.®®
Biexciton |CdSe/ZnS 3 (colloidal)|  Not given | Cohn et al.*
CdTe/CdSe 2.5/ Notgiven |Qinetal®
CdSe 3 (colloidal)|  Not given | Fisher et al.”

1. The Auger lifetimes listed above contain different charge states: negative trion,
positive trion and biexciton.
2. The slope for the positive trion in the table is projected by using the equation,

1/t =2/1" +2/", % where XX denotes a biexciton, T* denotes a positive
trion, and T' denotes a negative trion.
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Chapter 2

Tight-Binding Method for Quantum Dots

Background

As mentioned in the previous chapter, a particularly useful property of
semiconductor quantum dots (QDs) is the versatility of their optical properties due to the
flexibility in their size, shape and attached organic ligands. The size scale of QDs is
usually around a few nanometers, and so is in between that of bulk semiconductor and
molecules. It is intuitive therefore to adopt either bulk-based methods or molecule-based

methods to study QDs theoretically.

Plane-wave-like methods, such as the effective-mass approximation (EMA)'
whose wave functions are described by modified plane waves?, have their own limitation
in applications to QDs. For example, for an Auger process involving trapping or
detrapping® mentioned in the introduction in Chapter 1, a plane-wave-based description
may not be the best choice because a localized atomic description for the wave function
is required. As mentioned in Chapter 1, the studies using atomistic-based methods have
shown the capability of the these theoretical methods. We have chosen to use the

atomistic-based tight-binding (TB) method for the calculations.

An advantage of TB method is that the two-electron integrals between electrons
on each atomic site are integrated implicitly by entering into simple parameters between

neighbors (namely the V's in Table 2.1). Therefore, the Hamiltonian of a QD using the
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TB method contains the energy of each atomic orbital (AO), i.e. the E's in Table 2.1, and
the interaction between AOQOs, i.e. the V's, which costs low computational demand but still
provides a useful description of the energy diagram®?, as in the TB results of the
electronic band diagrams in bulk semiconductor®. The atomic wave functions for further

applications are the eigenstates obtained by directly diagonalizing the Hamiltonian’.

This chapter will describe how we implement the existing TB method with

various modifications to meet our specific needs for treating the Auger process.

Method of Constructing the Quantum Dots

CdSe QDs have two different major crystal structures: Wurtzite (WZ) and
zincblende (ZB). Experimental measurement show that CdSe QDs have a large
permanent dipole moment®, confirming that the structure of a CdSe QD is WZ. Even
though it has been reported that CdSe QDs with ZB structure can be fabricated with new
synthetic methods®, in this dissertation, WZ is selected as the geometry appropriate for
the usual experiments on QDs. For practical use in experiments, inorganic passivation
layers of another semiconductor, such as ZnS'**'? or CdS", are typically added outside
of the bare core QD to eliminate potential surface traps' and to confine the excited
excitons. QDs with this kind of structure are referred to as core/shell QDs.

There are four atoms, two anions and two cations, in a unit cell of the WZ
structure, and their basis vectors are (0,0,0) , (a/V3,0,¢/2) , (a/V3,0,c/8) ,and

(0,0,5 cl 8) , respectively, where a and c are the lattice constants.* The QDs for the
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calculation in this dissertation were constructed with alternative layers of cations and
anions with an Se as the central atom at the origin. Starting from the central atom, all four
cation atoms connecting to it in the next layer was built along the following four basis
vectors iteratively, (a/2,— 3a/6,—/8) , (—a/2,—3al6,—/8) ,
(O,v“c 3al 3,—/ 8) , and (0,0,3 cl 8) , until the desired size was achieved, where a =
4.2999 A and ¢ = 7.0109 A for CdSe. Since the major shape of the QDs observed in

experiments is ellipsoidal™

, after the above construction, a smaller ellipsoidal QD with
the desired aspect ratio and size was cut out from the WZ atom collective. To conserve
the charge neutrality in each QD, both locally and globally, the center of the ellipsoid was
chosen at the middle of an anion's and a cation's positions, and the total number of anion
atoms added to the ellipsoidal QD is equal to the number of anion atoms in both core and
shell layers, respectively, in a way that preserves the stoichiometry.

Typically, the semiconductor in the shell layers has different lattice constants (a &
¢) from the core semiconductor. To simplify the problem and to focus on the physical
property of interest, the geometry (WZ) and the lattice constants for the shell material

were assumed the same as those of core semiconductors. That is, the lattice mismatch

was also neglected in the core/shell QDs.

Symmetry-adapted Linear Combination of Atomic Wave Functions

Once the spatial positions of each atom in the core/shell QD were determined, the
atomic orbitals (AOs) on each atom form the basis set of the wave functions of the whole

QD. The WZ structure belongs to the Csy symmetry group w.r.t the c-axis in its crystal
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structure. The molecular orbitals (MOs) of a QD can be expressed in terms of the
combination of the irreducible representations in the group. By using the concept of
symmetry-adapted linear combination (SALC) of atomic wave functions, as discussed,
for example, by Cotton", those irreducible MOs can be constructed from a complete set

of AOs with the complete projection operators as defined in Cotton's book",

A~ N (1)
PL=pXINRLIR

where [; is dimension of the j-th irreducible representation, h is the order of the group,

A

R s any given operator in the group, and T'(R)!,. is the matrix element at the s'-th

s't’

row and t'-th column of the operator R." The definition in Eq. (1) can be further

simplified using incomplete projection operators, in which T'(R).,. is replaced by the

s't’
character of the operators, x (R) . Thatis,®

};j:%ZR:X(R)jk (2)

For the sp’s* TB method, the complete set of AOs was formed by the valence s, p
and s* orbitals on cations and anions. By employing the SALC, only 1/6 (namely the fan-
shape region between two red solid lines, 6, and o, in Fig. 2.1) of the atoms (or AOs) in
a QDs are needed, as shown in Fig. 2.1, where the o,, 6 and o, are the reflective planes,
and the angle between any of the two planes is 120°. The AOs within the fan-shaped area
are used to form the irreducible representation of MOs, which were used to construct the
TB Hamiltonian. The atoms in the 1/6 QD were divided into four categories: the

symmetry axis, the o, plane, the o, plane, and the fan-shaped region between but
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not including o, and o, .Applying the incomplete projection operators for each

irreducible representation to every AO ¢,

N . 3
bj¢i=%(x(E)jE+k§,2 x(C) 2 x(o,) 0,09, - ®
A set of irreducible MOs can be obtair;ed as the basis set for the TB Hamiltonian. The
Hamiltonian matrix of the interactions between those MOs can form three block-diagonal
matrices because of the orthogonality between different symmetries. The smaller
dimension of those block-diagonal matrices reduced the computational loading and time
for solving the full TB matrix when doing the matrix diagonalization. The diagonalization
of the Hamiltonian matrices through this dissertation were calculated by the software
library LAPACK (Linear Algebra Package)'®.

For QDs with C3y symmetry, every eigenstate generated from the Hamiltonian can

be categorized by its irreducible representation (Ai, A, or E). The categorization helped

the identification of the states near the band edge, which are discussed in later chapters.

Parameters for Calculation

The TB parameters used in this dissertation are a set of quantities that include the
energy of each AOs on the cation and anion (diagonal terms) and the interactions between
each AO (off-diagonal terms). A model with a physically reasonable set of these
parameters for the semiconductors, as Vogl et al. suggested in their study®, should have
the following properties: (1) the nature of the sp® bonding for the elements in those
semiconductors is preserved, (2) the choices of the AO energy of the elements should

preserve their original relative chemical trend, the properties of the compounds, and the
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theories of semiconductor with defects, (3) the value of off-diagonal terms scales
inversely with the square of the distance between two adjacent atoms,'”'*'* and (4) a
minimum number of parameters, among which only those of the nearest neighbors are
considered, should be required to reproduce the band structure, including the valence
band states and the edge of the conduction band, of the semiconductor.

Vogl et al.” introduced an excited s-like orbital, s*, on each atom to the traditional
sp*>-basis model. This newly-introduced parameter of excited state better reproduced the
band gap of semiconductors with an indirect band gap, such as silicon, by pushing the CB
states below it lower in energy and providing a better description of the edge of CB®. The
high similarity between the calculated band diagram using TB parameters and the band
diagram using pseudopotential calculation has shown the validity of the NN description.®
In Vogl et al.'s work®, a few direct band gap semiconductors, such as GaAs and InAs,
were also studied in additional to the indirect band gap semiconductors, and the
calculated band diagrams for those direct band gap semiconductor have reasonable
agreement with the results obtained using the pseudopotential method. Therefore, the
sp®s” method is a reliable TB method for both direct and indirect band gap
semiconductors, and it was later applied to other direct band gap semiconductors that are
popular in the fabrication of QDs, such as CdSe**! and ZnS’.

There are 13 independent matrix elements in this sp’s” method, including 6
diagonal terms, such as the orbital energy of s, p and s, as shown in Table 2.1, and 7 off-
diagonal terms, such as the combination of the interaction between the three AOs on

adjacent atoms, as shown in Table 2.1.” The The diagonal terms were determined by
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Hartree-Fock calculations (s and p) or from spectroscopic data (s”), while the off-diagonal
terms were obtained from the significant band points from the valence band (VB) and CB
in the reciprocal space.’

Unlike bulk semiconductors, QDs studied in this dissertation preserve partial
periodic potential only until the surface is reached, so the Hamiltonian for a single unit
cell provided by Vogl et al.” is not suitable for QDs. For all the atoms in QDs, the
knowledge of both the relative position of every atom and its neighbors are necessary to
build up a TB Hamiltonian because the connection between any two atoms determines
the position of off-diagonal terms in the Hamiltonian. Moreover, the parameters
mentioned in the previous paragraph are required, while % of the listed values of V's in
Table 2.1 were used for the off-diagonal terms of the atomic interactions because the
original values are four times of the atomic interaction.”

As can be seen from the phase vectors (g(k)) in Vogl et al.'s work®, the orientation
of interaction between AOs was defined along the bonds in a zinc blende (ZB) unit cell,
and the signs of the parameters therefore determined the orientation of the three p
orbitals. However, for the Wurtrzite (WZ) structure, it is more symmetrical to define the
p. orbital along the c-axis in the WZ unit cell. It generates a set of Euler angles between

the two definitions, this definition and the one used by Vogl et al., of the Cartesian

coordinates. Throughout this dissertation, the p orbitals used, { plWZ,i =x,y,z} ,are

defined as
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where {p,,i=x,y,z} represent the p orbitals defined by Vogl et al.. Following the
definition in Eq. (4), all the off-diagonal terms of interaction between AOs on adjacent
atoms need to be re-calculated from those used by Vogl et al.. Unlike the original set of
matrix>, the orientations of the bonds on the four atoms in a WZ unit cell are distinct (as
provided in Fig. 2.3), and because of the choice of central atom (namely an Se) in this
thesis, as mentioned above, Se atoms belong to either orientation 1 or 4 (Fig. 2.3) while
Cd atoms belong to either orientation 2 or 3. The corresponding off-diagonal matrices for
each orientation can be found from Tables 2.2 to 2.4.

For the convenience for applying the SALC method to the calculation in this
dissertation, the Cartesian coordinates in different regions of the QD (Fig. 2.2) are
defined accordingly. The only pre-determined Cartesian coordinates are for (1) the atoms
in Area I, (2) the atom on the rotational smmetry axis (i.e. the center of the QD), (3) the
atoms on the ¢, between Areas I and II, and (4) the atoms on the ¢,. between
Areas I and VI, and their respective coordinates are shown in Fig. 2.2. The off-diagonal
matrix in cases (1), (2), and (3) are defined in Table 2.2 while the off-diagonal matrix
between the AOs in the fourth case and the AOs in case (1) are defined in Table 2.3. For
the coordinates in the rest area, they were determined by applying the symmetry operator

to the two pre-determined coordinates. Therefore, for example, the orientation of the p
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orbitals of the atoms on &, (between Areas IV and V) are obtained by applying the

C, operator on the coordinate on o, (between Areas I and IT). Therefore, another set
of the off-diagonal matrix is needed to describe the interaction of the AOs for the
example above, as shown in Table 2.4.

Even though the matrices in Tables 2.2 to 2.4 were originally fitted from
semiconductors with a ZB crystal structure, it can be found in the literature® that those
parameters for ZB were used for the calculations of WZ QDs because the local
environment at each atom is approximately the same for both ZB and WZ, especially
when only nearest-neighbors are taken into account. Moreover, a calculation® using TB
method on CdSe QDs has concluded that for the various sizes of QDs they considered,
there is no significant difference in the energy levels regardless of whether their crystal
structure is WZ or ZB. Therefore, I believed that it would be a reasonable approximation

to apply the parameters for ZB to WZ.

Generating Surface States

A source of surface states in semiconductor QDs is the dangling bonds on anions
in the surface of the core, especially when those anions are not properly passivated by
organic ligands or by layers of another semiconductor shells. QDs with core/shell
structure have been introduced to reduce the strains, and so reduced a source of surface
state. The core/shell QDs have attracted most of attention and have been widely studied.

For them, traps due to the lattice mismatch occur at the core/shell interface.

Since a purpose of this dissertation is to obtain an understanding of the various
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electronic dynamics within QDs that lead to the Auger process, the balance between an
accurate treatment of the experimental setting and computational feasibility played a role
in choosing a computational procedure. To reproduce traps due to the lattice mismatch,
no cation in the shell was removed and the geometry of the shell also remained
unaffected. Instead, a single (or multiple) anion(s) at the core/shell interface was selected,
and the atomic interactions with its NNs (cations in the shell) were set equal to zero to
create a “dangling-like” atom. Moreover, its on-site TB parameters (namely the E's in
Table 2.1) were adjusted to generate surface states that were isolated from the band of
bulk states.** The atomic TB parameters of the five s, p and s* orbitals on the picked
anion were all adjusted to generate five new bases that preserved the hybridization of sp?
orbitals. The values of parameters in the adjustment needed to be such that the energy
difference of the trap and the VB edge was equal to the energy difference between the 1S.
state and 1P, state in the conduction band, thus satisfying a requirement that there has to
be an energy resonance for the Auger transition to occur®, and keeping consistent with

26,27

experimental results of Guyot-Sionnest and co-workers™*" on this Auger based resonance

charge transfer.

The result in Chapter 4 doesn't use the technique here to generate surface states,
but it can be applied in future work when studying the Auger process involving a trapping

process.

Removal of the band gap states
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In principle, there may be dangling bonds at the surface of QDs. During the
process of the fabrication of QDs, the process is used in solutions containing the
necessary organometallic precursors'®*®, for example, dimethylcadmium (CdMe,),
trioctylphosphine selenide ((TOP)Se), and in a solvent, trioctylphosphine oxide (TOPO).
The surface of the colloidal QDs fabricated by this process is capped by the TOPO in the
solution even though the surface cannot be fully passivated by it, especially for large
QDs”. In theoretical calculations, the unsaturated dangling bonds at a surface are usually
undesired, in part because the energetic position of the dangling surface states (within the
band gap) makes it difficult to identify the edge of VB.

Accordingly it was decided to remove the dangling surface states in the
theoretical calculations. To do so, a layer of atoms, used to mimic the effect of organic
ligands, like TOPO, was added onto the outermost surface of QDs. In this dissertation,
instead of the commonly-used hydrogen* or oxygen®, a layer of artificial atoms, whose
TB parameters (as shown in Table 2.1) are defined by the author, is used to facilitate the
calculation and analysis. The advantage of using self-defined artificial atoms is that one
can easily obtain a complete set of interactions between the artificial atoms and the
anion/cation in the QD, preventing from suffering of lacking parameters in the literature.
The off-diagonal terms (namely the V's) in Table 2.1 have been optimized by scanning
around their respective neighboring values to ensure that the band gap states are removed.
The value of Vs, Ve and Vs for the artificial atoms (AA or AC) in Table 2.1 are size-

dependent: the larger the size of QD, the smaller those values.

Using the SALC method, however, adds a subtlety to the full passivation of QDs:
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for the artificial atoms on the oy~ plane in Fig. 1, which have two nearest neighbors on
either side of the o,- in a complete QD, it needs to be ensured that the AOs on the
artificial atom can generate bases with all kinds of symmetry (namely A, A, or E). In the
dissertation, for all the artificial atoms, five AOs (namely s, p, and s*) are included on the

artificial atoms on the o,

Robustness Test of the SALC Method

The SALC methodology mentioned in the previous section reduces the
computational effort and time as well. To test the robustness of the method and the
accuracy of the results generated by the author's code and compiled programs, the
comparison between the calculated results using the Hamiltonian of SALC method and
using the Hamiltonian of a control group, including the eigenvalues (E) and
eigenfunctions, is required. The control group is for a complete QD whose geometry is
identical to that of the reconstruction of a 1/6 QD and is obtained from the latter using the
symmetry operators in the Csy group. The same set of TB parameters is applied to the
control group. The diagonal terms in the Hamiltonian of the control group are the site
energy of each atom and off-diagonal terms. They are non-zero only between an atom
and its nearest-neighbors. The diagonalization of the Hamiltonian generated the
eigenvalues and eigenstates for comparison of the complete QD and the calculation based
on 1/6 segment of the QD, using symmetry argument in the latter case to construct the
entire QD.

Instead of comparing all of the states of the complete QD method obtained from a
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1/6 portion of it, the neighboring states in the following three categories were chosen for
comparison: (1) the states at the CB edge and VB edge, (2) the states in the CB whose
energies are about one-band-gap above the CB edge, and (3) the states in VB whose
energy are one-band-gap below the VB edge, as shown in Table 2.5. The comparison is
shown in Table 2.5: the relative deviation of eigenvalues, AE/E, of the chosen states
between the two methods is around the order of +0.01 % or even less, which is negligible.
Moreover, when one compares the coefficients of each AO for states of interest, the
relative deviation, AC/C, of coefficients C (for |C|=0.01) for those states is no larger than
1.82%. Accordingly, the program and the calculated eigenstates and eigenvalues used

through the thesis, based on using 1/6 of the QD plus symmetry, are regarded as reliable.

Summary

The integration of SALC method and TB method has shown reliability and
accuracy for the computational purpose of obtaining eigenvalues and eigenvectors of
semiconductor QDs. The eigenvectors are used further in the following chapters for the
calculations, such as those for band gap, absorption spectrum, and the matrix elements of

Auger processes.
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Fig. 2.1 The Top view (looking down from the symmetry axis, or ¢ axis) of a CdSe QD
with its radius about 1.17 nm (aspect ratio ~1.1). The geometry of the QD is
plotted by the molecular visualization software Avogadro.’' Some bonds in the
firgure are absent in the figure because they are not recognized by the graphic
software, but in reality, those bonds actually exist.
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Area II1

Area IV \ Area V

Fig. 2.2 The pre-defined Cartesian coordinates, which determined the sign of the p
orbitals on each atom, on Areas I to VI and on the three reflective ¢ planes in
the QD. These coordinates determine the sign and the value of the TB
parameters between different region. The geometry of the QD is the same as the
one in Fig. 2.1 and is plotted by the molecular visualization software
Avogadro.’' Some bonds in the firgure are absent in the figure because they are
not recognized by the graphic software, but in reality, those bonds actually
exist.
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Table 2.1 The TB parameters for Cd, Se, and the artificial atoms

Diagonal Terms (eV)

Compound E; E, Eq
Cd 0.030 4.730° 5.720
Se -9.630 1.326° 7.530
AA -20.0 -40.0° -40.0
AC 20.0 40.0° 40.0
Off-diagonal Terms (eV)
Compound Ve Vix Vi Vsape Vpase Vrape Viaste
CdSe -1.160 0.660 1.340 1.143 -1.385 0.623 -0.763
Cd(AA) -55--6.0 0.0 0.0 55-6.0 -5.5--6.0 0.0 0.0
(AC)Se -5.5--6.0 0.0 0.0 55-6.0 -55--6.0 0.0 0.0

1. The unit of the values in this table is eV.

2. AA and AC are defined by the author. AA represents the artificial atom of anion, and
AC represents the artificial atom of cation.

3. An additional -40 meV** were added the diagonal terms for P, orbitals of all Cd, Se,
AA, and AC atoms to reproduce the A-B splitting in a hexagonal lattice structure.
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(c) Orientation 3 (d) Orientation 4

Fig. 2.3 The definition of the four orientations used in the thesis. The z axis of the
defined coordinate system is pointing outward from the paper, and the x axis is
pointing toward the top of the page.
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Table 2.2 The matrix of off-diagonal coupling terms for the atoms in Area I, on oy and
the rotational axis in Fig. 2.2

Orientation 1 (anion centered)

wz wz wZ wZ *WZ
S¢ px,c py,c pz,c Se¢
= -2 -1
wz V V2v, —V, —V, 0.0
Sa Ss WP \/6 aPe \/3 aPe
N T AT AR R
-2 —4 1 2 -2
wz —V_ . —V.. V.—=V —V, —V.
Py.a J6 P J12 w3y Jig ¥ J6 s
-1 -2 2 2 -1
wZ —V,. —V, —V, V. -V —V.
Pz.q J3 P Je v Jig ' ¥ ooy J3 s
. = -2 -1
s 0.0 2V, Ve | [V V.
Orientation 2 (cation centered)
wz wz wz wz *Wz
S¢ px,c py,c pz,c Se¢
wz — —
Sa Vss - 2V5up( \/—EVSUPE \/_;Vsnp[ 0.0
Pl V2V | VetV 1 4y 2y | vy,
Viz v V6
wz -2 4 1 2 -2
Py.a —V —V V.—=V —V —V
Ve " V2 ™ vz 18 " V6 P
wz -1 2 2 2 -1
Pz.a —V —V —V V.—=V —V.
B T | T | e e
*Wz — —
S, 0.0 — 2Vsapc —EV __lv Vs*s*
\/ 6 Sebe \/ 3 SP

1. The definitions of the V's are defined in Table 2.1
2. The definition of the orientation is described in Fig. 2.3. The @ and c in the subscript
represent anion and cation, respectively.
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Table 2.2 (contd.)The matrix of off-diagonal coupling terms for the atoms in Area I, on
ov and the rotational axis in Fig. 2.2

Orientation 3 (anion centered)

Wz wZzZ wZzZ wz *WZ
S¢ px,c py,c pz,c Se¢
4 —1
i 14 0.0 —V, —V, 0.0
Sa ss \/g o Pe \/3 aPe
P 0.0 V=V, 0.0 0.0 0.0
wz 4 5 —4 4
—V Vat=V - =V
py,a \/6 DaS 0.0 x gty \/ﬁ Xy \/6 s.p,
—1 —4 2 -1
w2 —V,, 0.0 =V | Vua3Ve | RV
D;:.a \/3 Pa \/1_8 y w3y \/3 s.p
*WZ 4 -1
—V. —V. V.
Sa 0.0 0.0 \/E sip \/3 s.p. s's
Orientation 4 (cation centered)
wZ wZ wZzZ wz *WZ
SC pX,C py,c pZ ,C C
57 V., 0.0 0.0 V3V, 0.0
ps 0.0 V=V, 0.0 0.0 0.0
p" 0.0 0.0 V.=V, 0.0 0.0
p"’ J3v, . 0.0 0.0 V2V, Vav,.
s, 0.0 0.0 0.0 \/§Vs*p‘ V.

1. The definitions of the V's are defined in Table 2.1
2. The definition of the orientation is described in Fig. 2.3. The a and c in the subscript

represent anion and cation, respectively.
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Table 2.3 The matrix of off-diagonal coupling terms between the anions on 6y~ and their
neighbors in Area I in Fig. 2.2.

Orientation 1 (anion centered)

wZzZ wzZ wz wz *WzZ
S¢ px,c py,c pz,c Se
- -2 -1
SZVZ Vss \/zvsup( \/—évsapr \/_E SaD, 0.0
= 1 3 -3 1 -2 =
Wz 2 —v +2v VvV ———V 2y V2v.
Pl V2Vas 2 Tt Jiz' ™ V12 Ve Y SePs
2 3 1 1 7 —2 2
we o v —V +—V, -V, —V —V, —V.
DPy.a J6 P J12 Ji2 ¥ 5 ey Ji8 ¥ 76 sp
-1 -2 2 2 -1
wZ |y —V, —V, V.—=V —=V.
D:.a \/3 PaS \/6 % \/E y x 3 X \/3 S.p
— -2 -1
*WZ
s, 0.0 V2v,, ﬁvszpc =V V..,
Orientation 2 (anion centered)
wzZ wZ wz wZ *WZ
S¢ px,c py,c pz,c Se
wz vV -V -2 -1 0.0
sa SS sap( ——V ——V
J6 P NERRL
wZ
px,a 00 lvxx_lvx OO 00
2 2 Y
Wz | —4 3 5 1 5 4 —4
Pya| Zv —V +——=—V -V +=V —V —
\/6 PaS \/ﬁ XX \/E Xy 2 XX 6 Xy \/E Xy \/6 s.p
Wz —1 2 2 2 -1
Pia | —V =V =V V. -2V —V.
B T s MR
S0, 2, 1 V..
V6 P V3 P

1. The definitions of the }'s are defined in Table 2.1
2. The Cartesian coordinates are defined in Fig. 2.2
3. The definition of the orientation is described in Fig. 2.3. The a and ¢ in the subscript

represent anion and cation, respectively.
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Table 2.3 (contd.)The matrix of off-diagonal coupling terms between the anions on Gy~
and their neighbors in Area I in Fig. 2.2.

Orientation 3 (anion centered)

wz wzZ wZ wZ *WzZ
Se¢ px,c py,c pz,c Se
4 -1
wz V 0.0 —V, —=V 0.0
Sq N NERR
1 1 -3 5 2
wa —?2 -V —=V —V —V —V —V2V.
Px.a V2V, 2 % 2w Viz©' ™ V12 Y Ve ¥ P
2 3 3 1 5 —4 2
wz —V_ . —V . —V, ~V +=V —V, —V.
Pra ] 7pe | 120 Y120 26 Y Jisg ¥ | 6 *r
-1 —4 2
wz —V —_— Vv .—=V
pz,a \/3 PaS 0.0 /18 Xy XX 3 Xy
4 -1
*WZ
0.0 0.0 —V. - Vo
Sa \/6 SaPe \/3 S,
Orientation 4 (anion centered)
wz wz wz wzZ *WZ
Se¢ px,c py,c pz,c Se
sz v, 0.0 0.0 V3V, 0.0
wz
Pxa 0.0 1y 1y By + 3y 0.0 0.0
2 XX 2 Xy \/ﬁ XX \/E Xy
wz
Dy 0.0 1., 1 0.0 0.0
Y 2Vxx 2ny
p¥ | V3V, 0.0 0.0 Va*2V, BV
sz 0.0 0.0 0.0 V3V, Ve,

1. The definitions of the Vs are defined in Table 2.1
2. The Cartesian coordinates are defined in Fig. 2.2
3. The definition of the orientation is described in Fig. 2.3. The @ and ¢ in the subscript

represent anion and cation, respectively.
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Table 2.3 (contd.)The matrix of off-diagonal coupling terms between the anions on Gy~
and their neighbors in Area I in Fig. 2.2.

Orientation 1 (cation centered)

wz wz wz wz *WZ
S¢ px,c py,c pz,c Sc
- 2 -1
sy Vi V2v, , Ve 73V 0.0
= 1 3 3 1 -2 -
wZ 2V ZV +2V —V +—V —V \/2V
Pl V2Vas 2 MW Vizo oy Y Ve o
—2 -3 1 1 7 2 -2
W Zfy oo 2y ———V o =V, “fv.
Py.a J6 P J12 J1i2 Y 7w g Jis ¥ J6  sp
-1 -2 -2 2 -1
wz ——V . __VX —V, V. - =V —V.
D;a \/3 Pa \/6 y \/E ¥ x 3 X \/3 ScPa
— 2 -1
*WZ
s, 0.0 V2v,, ﬁvs;pc Ve V..,
Orientation 2 (cation centered)
wz wz wz wz *WZ
Sc px,c py,c pz,c c
s Vi 0.0 jV -1 0.0
\/é SqPe \/3 SqDe
Wz
px,a - 2VPUS lv _lv iv +iv l - 2Vs:pa
2 XX 2 Xy \/E XX \/E Xy \/g Xy
Wz -2 -3 3 1 5 2 -2
\/6 P.S \/ﬁ XX \/E Xy 2 XX 6 Xy 18 Xy \/6 S.Pa
w1 0.0 4 2 —1
Pia| —vV —V V,—=V —V.
\/3 Pas \/ﬁ Xy x 3 Xy \/3 ScPa
*WZ _ _
s 0.0 0.0 —4y “1y V.
\/6 SaPe \/3 SqDe

1. The definitions of the V's are defined in Table 2.1
2. The Cartesian coordinates are defined in Fig. 2.2
3. The definition of the orientation is described in Fig. 2.3. The a and ¢ in the subscript

represent anion and cation, respectively.




(contd.)

39

Table 2.3 (contd.)The matrix of off-diagonal coupling terms between the anions on Gy~
and their neighbors in Area I in Fig. 2.2.

Orientation 3 (cation centered)

wz wzZ wz wz *WzZ
Se¢ px,c py,c pz,c Se
2 -1
SZVZ VSS - 2 VSGPE % VSaPr ﬁVsapc OO
wz 1 1 3 3
0.0 V.3V, — V.V, 0.0 0.0
Pra 27 2 V2
4 -3 5 1 5 —4 4
wz —V_ . —V . —V, ~V +=V —V, —V.
DPy.a J6 P J12 Ji2 ¥ 7 'y Jig ¥ J6 P
-1 2 -2 2 -1
wz ——V . _VX —V, V. —-V —V.
Pz.q \/3 Pa \/é y \/E y Xx 30X \/3 Scp
2 -1
*WZ _ i JE—
Sq 0.0 \/EVSZPC \/avs*p NEREL, Vs
Orientation 4 (cation centered)
wz wz wz wzZ *WZ
Se¢ px,c py,c pz,c Se
sz v, 0.0 0.0 V3V, 0.0
wz
Pia 0.0 Yv.-Lv, Sy -3y, 00 0.0
2 2 12 V12
wz
Py 0.0 -3 a 3 v lV —lV 0.0 0.0
12 XX \/ﬁ Xy 2 XX 2 Xy
ps | 3V, 0.0 0.0 Vat2V, | V3V
s, 0.0 0.0 0.0 ¢§Vs‘p V.,

1. The definitions of the }'s are defined in Table 2.1
2. The Cartesian coordinates are defined in Fig. 2.2
3. The definition of the orientation is described in Fig. 2.3. The a and ¢ in the subscript

represent anion and cation, respectively.
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Table 2.4 The matrix of off-diagonal coupling terms between the anions on the rotation
axis and their neighbors, the atoms on 6y~ and on 6y, in Fig. 2.2

Orientation 1 (anion centered)

wz wz wz wz Wz
Se¢ px,c py,c pz,c Se
4 -1
Wz 14 0.0 =V, =V 0.0
Sg ss \/g aPe \/3 o Pe
- -1 1 3 5 -2 =
wz 2 —V_ +-V —V +=V —V 2V .
pe | V2V 2 M2 V2o 12 Y Ve Y 2V,
—2 -3 3 -1 5 2 -2
wz —V —V +—=—V —V —=V —V —=V.
py,a \/6 PaS /12 XX /12 Xy 2 XX 6 Xy /18 Xy \/6 S.Pa
-1 —4 2 -1
ve =V, 0.0 =V Va—3Ve| Vs
D;.a \/3 Pa 18 y x g Xy \/3 S.Pa
4 -1
Wz
0.0 0.0 —V. = V.,
Sa J6  sepe 3 P
Orientation 2 (anion centered)
wz wz wz wz *WZ
Sc px,c py,c pz,c c
wz vV 0.0 4 -1 0.0
S
a s —V —V
\/g SaPe \/3 SaPe
wz
Dx.a _\/EVps __1V +lv __3V _i_v i - 2Vs:pa
2 XX 2 Xy \/E XX \/12 Xy \/g Xy
wZ -2 3 3 -1 5 2 -2
Py.a — —V —V —V —=V —V —V.
Ve Pt Y12t Y12 2 e 187 | V6 P
wz |1 0.0 —4 2 —1
Pia | —V —V V,—=V, | —V.
\/3 PaS /18 Xy XX 3 Xy \/3 SDa
s:WZ 0.0 0.0 i * _—_1V * V..
\/6 SqP \/3 SaP

1. The definitions of the V's are defined in Table 2.1
2. The Cartesian coordinates are defined in Fig. 2.2
3. The definition of the orientation is described in Fig. 2.3. The a and ¢ in the subscript

represent anion and cation, respectively.
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Table 2.4 (contd.)The matrix of off-diagonal coupling terms between the anions on the
rotation axis and their neighbors, the atoms on 6y~ and on oy, in Fig. 2.2

Orientation 3 (cation centered)

wz wz wz wz *WZ
Se¢ px,c py,c pz,c Se
- —2 —1
SZVZ Vss \/ZVSHPC \/—gvsapr \/_EVSGPC 0.0
B VA v =V 4V
px)a 0.0 2 XX 2 Xy \/ﬁ XX \/E Xy OO OO
4 3 5 ~1 5 —4 4
we | 2y o 2y 42y | 1y _2y —v, .
DPy.a J6 P J12 Ji2 Y 7 gl Jis © J6 P
-1 -2 2 2 -1
wz B v <V —V V.—=V —=V.
Pz.a \/3 PaS \/6 xy \/ﬁ Xy x g X \/3 Sep
- -2 -1
*WZ
s, 0.0 2v. Tgvs:m =V V..
Orientation 4 (cation centered)
wz wz wz wZ *WZ
Se¢ px,c py,c pz,c Se
wz vV —-2v -2 -1 0.0
Sa ss s, P, ——V ——V
V6 = | Ja
\1/4
P 0.0 -1y L1y 3y -3y 0.0 0.0
) Xx 2 xy \/E XX \/12 Xy
w4 -3 5 —1 5 —4 4
Pya | = Py -2y | vy -2 - .
\/6 PaS \/ﬁ XX \/ 1 2 Xy 2 XX 6 Xy \/Tg Xy \/6 s.p,
wz -1 2 2 2 -1
Pra | vy ‘v B 74 vV -ty | =
\/3 Da S, \/6 Xy \/E Xy XX 3 Xy \/3 s.p
Sa 0.0 -2V, 2y 1y Ves
\/6 SaPc \/3 SaP

1. The definitions of the V's are defined in Table 2.1
2. The Cartesian coordinates are defined in Fig. 2.2
3. The definition of the orientation is described in Fig. 2.3. The a and ¢ in the subscript

represent anion and cation, respectively.
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Table 2.5 The comparison between the calculated result between the SALC method and
the direct diagonalization of a complete QD.

State # in State # in Symmetry ||AE/E| (in %) Relative coefficient
mixture of |symmetry | group between two diff. between (AC/C,
symmetries | group methods in %) for |coefficient|
=0.01

1216 234 Al 2.7x10° <0.1/<0.1

States in 1215 805 E 3.9x10° <1/<1

the band | 1214 806 E 3.9x10° <1/<1

edge 11213 233 Al 0 <1/<1
1212 176 A2 1.8x107 <1/<1
866 571 E 0 <1/<1

States in | 867 572 E 5.5x10* <1.48/<1.52

VB 865 122 A2 8.2x10™ <1.15/<1.38
864 173 Al 8.2x10* <1.25/<1.34
1550 311 Al 5.2x10* <1/<1

States in | 1551 1025 E 5.2x10* <1/<1

CB 1552 1026 E 8.6x10" <1.55/<1.82
1547 215 A2 3.5x10* <1/<1

The radius of the CdSe QD in this table is around 1.3 nm. The degenerate pair of E
states of one method needs to rotate w.r.t. the rotation axis to compare with another
method.




43

Chapter 3
The Calculated Properties of Semiconductor Quantum

Dots

Background

The physical properties of QDs of different sizes using SALC method mentioned in
Chapter 2 can be further compared with various calculated results in the literature. It has
been reported that the aspect ratio of WZ CdSe QDs is between 1.1 to 1.3, depending on
the size*?, and there are also certain significant facets® on the surface of the QDs.
Therefore, to have a solid basis for the comparison that involves electron dynamics to
compare with experimental measurements, the geometry of QDs should be as similar to
the realistic QDs generally used in experiments. To meet the needs mentioned above,
several calculated results, such as the structure of QDs used in this dissertation, band gap,
density of states (DOS), and absorption spectrum, are discussed in this chapter and

compared with experimental results.

Structure of Semiconductor Quantum Dots

The foundation of all the further calculations in this thesis is the structure of a WZ
QD, in particular the connections between atoms and the facets of the crystal. Wide-angle
X-ray scattering (WAXS) is a common X-ray diffraction (XRD) technique used to

determine the crystal structure. The measured WAXS result of WZ CdSe QDs in C.B.
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Murray's dissertation' has shown several significant features of having different facets,
such as (100), (200), (110) (or (1120)), (103), (002) and (101) surface, and the relative
intensities in the dissertation for those peaks are shown in Table 3.1. A curve of WAXS to
an ellipsoidal geometry has shown in the same dissertation a better result than to a
spherical geometry." It would be challenging to programmatically generate a WZ QD
fitting all the facets mentioned above because there would be many parameters for
controlling the shape of a QD. Therefore, the aspect ratio (1 = 1.1 — 1.3) and one of the
significant facets observed in the WXAS, (002), were chosen as the criteria for building
up the structure of a WZ QD. Among the significant peaks observed in the WXAS

pattern™**

, the (002) plane is easier to characterize in the program. An example of the
outcome of the author's program, a CdSe QD shown in Fig. 3.1 whose radius is around
3.73 nm and aspect ratio is around 1.3. In each figure in Fig. 3.1, the significant planes
are labeled with colored solid lines, and their respective numbers in the whole QD are
noted in the bottom right corner.

To examine if the structure is close to the experimental findings, the structure factor
(F) is used as a measure to the WAXS data, since the diffracted amplitude is the

proportional to |F|?, which is the sum of all diffractions from each atom in the crystal. F is

defined as®,

N
crystal _ —2mi(Q-r)) —2miQ-R, (1)
F Q=21 Qe De :
1= n
where N denotes the number of atoms in a unit cell, Q is a scattering vector (the vector

difference between the incident and diffracted rays®), R, is a lattice vector in a crystal, r;

is the local position vector of an atom j in each unit cell, and f; is the scattering factor® of
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the reflection from an atom j. As can be seen in Eq. (1), the structure factor is the product
of two sums, the sum over the unit cell structure factor and the lattice sum*. One can
achieve a non-zero F™** if and only if the condition Q = G is fulfilled, where G is a
lattice vector in the reciprocal lattice.” If G = Q, the product of R, and Q in the lattice

sum in Eq. (1) is an integer, and Eq. (1) becomes

crystal MZ f 72711 (Gr) (2)

where M is the multiplicity of the number of unit cells in the crystal. For the convenience
of comparing the estimated x-ray diffraction intensity using Eq. (2) with experimental
data, the M is approximately replaced by the number of atoms on a plane of Miller index
G in the crystal, which is proportional to the number of unit cells. To determine the
number, the following assumptions were also made: (1) the structure of the QD is a
perfect sphere with radius, r, and (2) the density of atom, D, within the volume of the
QD is homogeneous. By using the assumptions, the total number of atoms on the surfaces
with the same Miller index can be determined. For the case of (002) surfaces, the total
number of atoms, N2, is expressed as the sum of number of atoms on a set of parallel

circles, which belong to the group of (002) surfaces,
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where d, is the perpendicular distance between the m-th circle and the circle passing
through the center of the sphere, n is the total number of circles. Similarly, if the
expression of d,, for the (hkl) plane is known, the N can be calculated using Eq. (3).
The results of a few planes are shown in Table 3.1, and compared with the measured
result in the literature'.

The Table 3.1 shows the calculated results, which are needed for the comparison with
the WAXS data deduced from Murray's thesis', of the CdSe QD shown in Fig. 3.1. The
table contains (1) the number (in the unit of Ngy/Dar?) of each significant plane
mentioned earlier, (2) the calculated unit cell structure factor, (3) the calculated intensity
of x-ray diffraction using Eq. (2), and (4) the experimental data of Muray's', where the
QD contained about 10000 atoms, and its aspect ratio was 1.3. The diffraction intensities
of each facet in (3) and (4) are normalized w.r.t. the intensity of the (110) plane. The ratio
of fse/fca for the unit cell structure factor in Table 3.1 is approximately selected as the
ratio of their atomic number’, namely Z./Z.4, which is the value of atomic scattering
factor at zero scattering angle. It can be seen in Table 3.1 that although the ratio of the
calculated intensities for each peak is different from that of the measured intensities, the
ratio between (100) and (200) is similar to that in experiments. Among the measured
values', (103) has a comparable intensity with (101), while in the calculated values (103)
is twice larger than (101). This unexpected phenomenon can be caused by the stacking
fault® in (103) in CdSe QDs?, which makes the measured (103) peak broaden in
diffraction angles and lower in intensity®, while the calculated structure in Fig 3.1 is a

perfect Wurtzite.
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In summary, ellipsoidal CdSe QDs can be generated by using the author's program,
and their shape are created partially based on some of the experimental findings.
Moreover, an approximate method is used to determine the facets in a calculated QD
structure. Although the experimental results are not completely reproduced, further
modification to the approximation made in this section, such as the ratio of atomic

scattering factors, could help identify the structure of QDs.

Permanent Dipole Moment in Semiconductor Quantum Dots

Since the structure of generated QDs is approximately a prolate ellipsoid, as shown in
Fig. 3.1, there should be a permanent dipole moment along the c axis of the QDs, as
suggested in the literature®’. The calculation of the dipole moment P is approximated by
the formula:

P:Z 4 cation ri+z QanionT'j > ()
where r are the position vectors, {x, y, z}, of ejach atom, q is the formal charge of the
atom. As an approximation, the qeaion is assumed to be +2 while the ganion is assumed to be
-2. The calculated result of P of a WZ unit cell, which includes two anions and two
cations, a QD with the structure in Fig. 3.1, and the structure composed of the complete
unit cells within the structure in Fig. 3.1.

Even though there is no measured dipole moment reported in the literature of the size
of QD shown in Table 2, the absolute value of calculated value of P, in the second
column is slightly larger than that in the third column, which suggests that P, in the

second column should be a correct estimate since the atoms in the incomplete unit cells
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(2636 atoms in total) should add more contribution to the P,.

The dipole moment of QD in Fig. 3.1 can also be estimated by extrapolating the

volume dependence, w(V)~17.14V ¥ (fitted by the author), in the literature®. Using
the equation above, the upper limit of the dipole moment of 156.9 Debye was obtained,
which is about 32.09% of the value in the estimated value of 489 Debye. The volume
used to calculate the upper limit was using the c axis of the QD in Fig 3.1 as the radius.
The discrepancy between the two dipole moments could come from (1) that there are
organic ligands, TOPO, capping the surface of the QDs, which could compensate the
extra charge, (2) the structure relaxation was not taken into account for the QDs in Fig.
3.1, and (3) the formal charges (+2) used earlier to estimate the dipole moment too large
for the actual situation.

Therefore, to better estimate the dipole moment of a QD, the author plan to look into
the charge distribution of a QD, such as the Mulliken charge distribution'. For the
Mulliken charge distribution, in the current TB scheme, for a given atom in a QD, one
could sum (1) the coefficient square of all the AOs on that atom (the “net atomic
population”'’) and (2) the overlap integral of the AOs between that atom and its adjacent
atoms (the “overlap population”'?), and deduct the sum of (1) and (2) from the nuclei

charge of that atom to obtain the charge distribution on each atom.

Band Gap of Semiconductor Quantum Dots

Another important property of the QDs used in this dissertation is the band gap,

which decreases as the size of a QD increases due to the decrease of the quantum
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confinement until some limiting value is reached for the bulk crystal. The band gap can
be used to estimate the first peak of the absorption spectrum.

The values of TB parameters given in the previous chapter are the same as Albe et
al.'s work", so their calculated band gaps provide a good benchmark to compare with.
The values of the band gap of QDs in Fig. 3.2 are obtained by calculating the energy
difference between the first CB state above the band gap and the first VB state below the
band gap. It can be seen in Fig. 3.2 that the calculated values (filled magenta circles) of
band gap in this dissertation show a similar trend as that of Albe et al.'s work'' (dashed
black line) within the range of interest even though the geometry of the QD in Albe et
al.'s paper is ZB instead of WZ. However, it can be seen that the energy difference
between the two curves is not negligible, and the deviation ranges between around 0.48 to
0.58 eV. There is another calculated curve of CdSe QDs done by Lippens and Lannoo'
(filled green triangles) shown in Fig. 3.2 for comparison, and it has a difference from
experimental values, caused by lacking of spin-orbit coupling™.

One of the sources of the difference between the author's value and Albe et al.'s
work" could be that to better compare with the experimental value, the Coulomb

interaction within exicton was taken into consideration as a perturbation in their work"?,

and the size-dependent interaction was modeled by E',(d)=E,(d)—(3.572¢°/ed) ™5,
where E, is the unperturbed band gap, d is the diameter of the QD, and ¢ is the dielectric
constant of the material. If the equation above is applied to our calculated values and the
dielectric constant of bulk CdSe (¢ = 6.25)" is used, the adjusted curve (filled wine

diamonds) is obtained. The deviation between the olive line and the black line in Fig. 3.2
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then reduces to 0.33 eV. This difference is further reduced by introducing another source
of the difference, the spin-orbit coupling, which is not included in our calculation.
According to Albe et al.'s calculation', for a 2-nm-diameter CdSe QD, its band gap is
reduced by an amount of 0.28 eV when considering the spin-orbit coupling. A much
better agreement with Albe et al.'s work is obtained if the same spin-orbit coupling is
applied to all sizes of the QD, as shown in Fig. 2 (filled red down triangles).

One notices in Fig. 3.2 that the measured bang gap by Katari et al.” approaches a
constant value around 2 eV, but still 0.2 eV higher than the bulk value. The small energy
difference indicates that for CdSe QDs with a diameter larger than the exciton Bohr
radius (5.4 nm for CdSe)', the quantum confinement still has an intermediate effect.

To summarize the above discussion, the size dependence of the band gap in our
calculated result has a qualitative agreement with other calculated results. Although there
is a deviation on numerical values, the difference could be adjusted by including the more
special effects, which are not expected to be important to the present focus, the

calculation of the Auger lifetimes.

Molecular Orbitals of Semiconductor Quantum Dots

A widely-used model to describe the electronic structure of QDs is the particle-a-
sphere model, and it has been providing a simple but good qualitative description, such as
the discrete electronic states and the effect of quantum confinement.'”'®* In this
description, the wave functions are expressed in terms of the product of the spherical

Bessel function (radial part) and the spherical harmonics (angular part)'” %, i.e.
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Yo rm(r)=ji(k, ;r)YT(0,4) , which is usually referred to as “envelope functions”.'**

It would then be expected that the frontier states can be characterized by the
combinations of quantum numbers, i.e. n, I, and m, in those functions.'” For spherical
Bessel functions, each n permits many choices of I, so unlike hydrogen atom, the labeling
of molecular orbitals (MOs) could have more varieties, such as 1S, 1P, 1D, 2S. This
terminology is now accepted as the common language to refer electronic states in QDs.?
When atomic orbitals (AOs) of atoms are introduced into theoretical models, like

2022 the electronic

effective-mass-approximation (EMA) method, as Bloch functions
wave functions are expressed as the product of the envelope function and the Bloch
functions®**. However, for the TB method, the one used in this dissertation, the
description of the envelope function is not explicitly used: the wave functions are instead
described only by the linear combination of AOs (LCAO), and the coefficient in each
atomic basis is the approximate value of the envelope function by each AO at that atom.

An example of the frontier MOs of a CdSe QD (radius ~1.75 nm) is shown in Fig.
3.3: the first five states above the edge of CB (C; to Cs, C, has the lowest energy) and the
first five states below the edge of VB (V; to Vs, V; has the highest energy) are calculated
by the basis set STO-3G?*, and the parameters of the Gaussian functions for the

calculation are shown in Table 3.4. The MO of the CB states (from lower energy to

higher) starts with an s orbital, followed by a p, orbital, then a p, orbitals (the degenerate
pyis not shown),a d,. , and one of the four other d orbitals (the other three degenerate d

orbitals are not shown). This result is consistent with the theoretical prediction of

envelope functions in the particle-a-sphere model.
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As for VB states, it is seen in Fig. 3.3 that the valence states are highly oscillating
with many nodal planes, while the conduction states are not. The reason behind the
oscillation of the envelope function is because the highest state filled with electrons
should have the most number of nodal planes among valence eigenstates, for example, if
one considers a one-dimensional case of linear combination of atomic orbitals, where the
state with the highest energy should be the one with all possible nodes. The envelope
function of V; (A, symmetry) can hardly be categorized into any orbital symmetry, while
V, and V3 are likely categorized into S-like state, V4 is P-like, and V5 is D-like. This
result is not similar to the spatial distribution of the five lowest hole states for a spherical
CdSe QD in Schulz and Czycholl's study** (Fig. 8 in their work), where the first four hole
states cannot be classified into any S-like or P-like state, while the fifth state is P-like.
Schulz and Czycholl suggested that the intermixing between states in the VB makes it
difficult to identify the state symmetry.

Analyzing the composition of AOs in these MOs, one would find that for the states
near the edge of the CB, the primary contribution is from the s orbital on Cd's, ranging
from 54.8% to 68.2%, while for the VB states, the primary contribution is from the p
orbitals on Se's, ranging from 69.6% to 72.4%, and partially from Cd's s and p orbitals,

which is consistent with the conclusion from other calculated results®.

Density of States of Semiconductor Quantum Dots

It has been noted that the electronic states of semiconductor QDs are discrete due to

the quantum-size effect.” The large spacing between states increases the significance of



53
phonons in the electronic dynamics. Therefore, understanding the distribution of the
electronic states in CB and VB would benefit the treatment of the detailed dynamics,
especially when the Auger process we are interested in this dissertation involves states
deep in the CB/VB.?**

The calculated result of the density of states (DOS) of a CdSe QD of radius ~1.17 nm
is shown in Fig. 3.4(a), (b) and (c). Each bar in Fig. 3.4(a) and (b) represents the number
of states within a 50 meV energy window. It can be seen in Fig. 3.4(b) that adding an
artificial layer removes the band gap states in Fig. 3,4(a). The fitting curve (red solid line
in Fig. 3.4(c)) is obtained by convoluting a Gaussian function (FWHM =50 meV) with
each bar in Fig. 3.4(b) and by adjusting the height of the peak around 2.2 eV to the peak
of Pokrant and Whaley around 2.5 eV. This fitting curve is compared with two other
calculated results in Fig 3.4(c), one using TB* (the black dashed line) and the other using
density functional theory (DFT)* (the blue dot line). The FWHM of the Gaussian
function is selected by estimating the FWHM of the peak near 2.5 eV in Pokrant and
Whaley's work® because that peak should represent the single 1S. state. The calculated
result in Fig. 3.4 contains 350 atoms, including Cd's and Se's, while the QD in the TB
result by Pokrant and Whaley has 384 atoms.

The similarity between the two TB results in Fig. 3.4(c) suggests that the calculated
eigenstates and eigenvalues in this thesis can be regarded as reliable. One item to notice
is that although the QD in the DFT result only contains 66 atoms, there is still a
significant discrepancy between the two TB results in Fig. 3.4(c) and the DFT result: (1)

the relative amplitude of CB to that of VB has a different trend and (2) there is no
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obvious energy gap in the deep band in the DFT result. Considering that the FWHMs of
the first peak in the DOS in the three calculated results are similar, the possible
explanation is that there are only valence orbitals considered in the TB method while
there are more electronic states considered in DFT method and the repulsion between

states makes the gaps not obvious.

Absorption Spectrum of Semiconductor Quantum Dots
One essential parameter to obtain a calculated absorption spectrum is the
dimensionless quantity, the oscillator strength fa,, between the initial state a and the final

state b, and it is expressed as,

2 me ) A~
fab:__z(Ea_Eb) Z ‘<wa|rk|wb>
3 h k=x,y,z

where m. is the electron mass, e is the electron charge, E, and E, are the energy of state

‘2 (6)

b

y, and 1, ,respectively, r, is the position operator in x, y, or z direction, and

(YT Wp) s the transition dipole moment, which can be expressed as the sum of

atomic transition dipole moments,

rlob ) (7)

when 1, and v, are expressed in term of LCAO fashion, where ¢, ; and

ol T [s)= 2 2 el (00,

m,m' i,j
cf’n,, ; are the coefficients of the atomic orbital ¢, ; and ¢Z1,, j »respectively (m
denotes the m-th atom). In this dissertation, the transition dipole moment is calculated
using Eq. (3) in Pokrant and Whaley's work, and using the x component of Eq. (7) as an

example,®
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where An is the nearest neighbor of atom m, ry, is the x component of the coordinates of

rX

atom m, and the rest of the notation has been defined in Eq. (7). An approximation® is
made for an atomic transition dipole moment between two different sites that this kind of
dipole moment can be interpreted as the sum of the local matrix element for each atom
(namely the second term in Eq. (8)) because the off-site atomic transition dipole moments
have translational invariant, and the selection of An is further limited to nearest neighbors.
Pokrant and Whaley's work® suggested that the first term in Eq. (8) can be neglected
because for a given excitation of electron (e.g. VB state a — CB state b), the primary wave
function of the state a is on Se's, while that of the state b is on Cd's, so the transition
dipole moment on the same atom should be small. In this dissertation, the author chose to
keep all of terms in Eq. (8) to see if the inclusion of the first term still provides a reliable

absorption spectrum.

The local atomic transition dipole moments, such as <¢;f,- T k\qﬁ ) j> in Eq. (8), in the

three Cartesian coordinates were calculated separately using the adaptive Simpson

method, where ¢5,; and ¢, used 4 sp’ lobes and 1 s” orbital as the bases. The

* A b * [~ b _ .
calculated values of <¢fn’i‘rk|q)m,j> and <¢;,i‘rk|¢An,j> (k= x, y, or z) are shown in
Tables 3.5 and 3.6. The on-site atomic transition dipole moments in Tables 3.5 and 3.6
are for Se atoms of orientation 1 and Cd atoms of orientation 2 (the orientations are

defined in Fig. 2.3 in Chap 2), so for Se atoms of orientation 4 or Cd atoms of orientation
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3, the on-site values need to be multiplied by -1. To use the pre-calculated values in
Tables 3.5 and 3.6, for both 1, and 1, ,the5AOs on each atom and their

respective coefficients were transformed into 4 sp’ lobes and an s” orbital..

By using the values in Table 3.5, Table 3.6, and Eq. (8), the transition dipole moments
for the selected pairs of 1, and 1, fora CdSe QD (radius~ 1.17 nm) were
calculated. In the theoretical scheme of EMA for a spherical QD?*, an intraband transition
is allowed only when the envelope functions of the initial and the final states have the
same quantum number L, e.g., an S hole state in the VB to an S electron state in the CB.
In a prolate QD with the Cs, symmetry in this thesis, an analogy is made that only a
transition, which involves two states belonging to the same irreducible representation, is
allowed, i.e. A;to Ai, A, to A, or E to E. The calculated absorption spectrum is plotted in
Fig. 3.5 and is compared with that of an experimental measurement by Katari et al.".
Each allowed transition is convoluted with a Gaussian function (FWHM = 0.15 eV),
whose FWHM is chosen to fit the first peak of the measured spectrum of CdSe QDs
(radius = 1.14 nm)®. There is a displacement of 0.84 eV between the first peaks of the
calculated and measured results, and taking the interaction between electron-hole pair and
the spin-orbit coupling into account, as discussed earlier in the band gap section, reduces
the difference to 0.30 eV, which is more consistent with the result shown in Fig. 3.2.
Further, if the amplitude of the calculated spectrum was modulated by a constant of 1/6,
the intensity of the first peak of the calculated spectrum is able to match the scaled optical

intensity of the first peak of the measured spectrum in Katari et al.'s study®. It can be

seen in Fig. 3.5 that the major peaks of the measured spectrum (solid red line) are
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qualitatively reproduced by the calculated one (solid black line), except that the relative
energy difference between the first peak and the rest peaks in the calculated result is
larger than that in the Katari et al.'s result™. A possible reason is because the interaction
between electron and hole in the exciton is omitted in the current model.

In principle, applying a selection rule to the pair of the states in a transition dipole
moment has generated a reasonable absorption spectrum to compare with experimental
measurement. The similarity between the two spectra indicates that the calculated
eigenstates using the TB method mentioned in Chapter 2, not limited to band edge states,

have qualitative consistency with the states in real QDs.

Summary

The results and their comparison with the results in respective literature suggests that
the QDs generated by the author's program could provide a reliable basis for other
theoretical calculations, such as the rate constants of the Auger processes in the next

chapter.
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Fig. 3.1 The geometry of a CdSe QD with its radius ~ 3.73 nm (aspect ratio ~1.3). (a) &
(b) side view (c) top view (looking down from c axis). The legend in each figure
represent the Miller indexes for different surfaces, and the number represents
total number of that surface. The structures of QD are plotted by the software
Avogadro.*
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Table 3.1 The comparison between the calculated and measured x-ray diffraction

intensity
. Average . .

Miller number of | calculated unit cell structure | Prediction of Re?latwe Intensity
Index of a . . in the WAXS

surface atoms factor by Eq. (2) the intensity Jata!

(Nuay/Dar?)

(100) 13.90 |fSe |2+ |de ’2+2fSede 0.27 0.67

Q00) | 1332 Pl e e 0.26 0.60

110 | 1293 | alfufralic+8f s 10 L0

(1120)

(103) 6.364 3Ifo F+3Ifcal +4.24 f oo f ca 0.32 0.40

(002) 12.71 Alf f+4|feal 0.52 0.80

(10 | 1223 3fff+3|feuf-424fcfe) 014 047

The comparison between the calculated x-ray diffraction intensity and measured
intensity of WXAS' for the significant facets in a CdSe QD. The values in the fourth and
the fifth column were normalized w.r.t. their respective intensity of (110)
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Table 3.2 Calculated dipole moment in the unit of Debye for different CdSe Crystals in
each dimension

Collection of

A single unit CdSe QD in complete unit

C:tliu(fcuvrvez Fig. 3.1" cells in QD
in Fig. 3.1
Number of atoms in the crystal 4 8378 5724
4
Calculated [Py 0.00 2.14x10 0.00
Dipole Moment |Py| 0.00 7.11x10%* 0.00
(Debye) IP,| 0.274 489 391

" Py and Py of the QD in Fig. 3.1 are almost zero while P, is as the same order as that in
the third column, which is the expected result.

":The collection of complete unit cells in the QD in Fig. 3.1 (the fourth column) has
5724/4 = 1431 complete unit cells, and its dipole moment is 1431 times that of a
single unit cell.
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Fig. 3.2 The results of the band gap vs. radius of CdSe QDs of this dissertation: (1) the

energy difference between the edge of CB and VB (filled circle and solid
magenta line), (2) applying the perturbation introduced by Albe et al."' to the
values in (1)(filled diamond and solid wine line), and (3) the values in (1)
modified by the perturbation and the spin-orbit coupling' (down triangles and
solid red line). The calculation of Albe et al.'* (dash black line), the calculation
of Lippens and Lannoo" (filled triangles and dash green line), and the measured
absorption spectrum of Katari et al.” (dash blue line) are shown as the

comparison. The band gap of CdSe bulk (1.8 eV) is shown as the solid black
line.
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Table 3.3 Parameters used for Slater-type orbitals (STO) used in this dissertation.

Cd Se
orbital A n Z orbital A n Z
5s 0.0463662 4.0 4.35 4s 0.685560 3.7 6.95
5p 0.112687 4.0 4.00 4p 2.43025 3.7 6.95
6s |9.72143x10%| 4.2 0.29988 5s 3.86448x10° 4.0 | 0.900

The definition of n and Z can be found in Slater's study™.
“: A is the normalization constant.
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Table 3.4 The exponents and the contraction coefficients of the STO-3G basis for Cd

and Se
Atom VEIIEI:ICE Exponent Contraction Coefficient
Orbital

0.5949150981 -0.3842642607

5s 0.3203250000 -0.1972567438

0.1414931855 1.3754955120

cd 0.5949150981 -0.3481691526
S5p 0.3203250000 0.6290323690

0.1414931855 0.6662832743

1.2146442970 -0.3088441215

4s 0.4482801363 0.0196064117

0.1979652346 1.1310344420

>¢ 1.2146442970 -0.1215468600
4p 0.4482801363 0.5715227604

0.1979652346

0.5498949471

The values are from EMSL Basis set exchange (https://bse.pnl.gov/bse/portal)**.
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Fig. 3.3 The molecular orbitals of the first five states in the conduction band above the
edge of CB and the first five states in the valence band below the edge of VB,
respectively. The isoValue for the CB states is 0.015 A~® while that for the
VB states is 0.005 A~* . The molecular orbitals are generated by the software
Visual Molecular Dynamics (VMD).*
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Table 3.5 The matrix of atomic transition dipole moments of Se

An Se atom as the center atom (x component)

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| 0913 | 0000 | 0456 @ 0456 | 0.0186
The two atomic | Lobe2 | 0.000 | -0.913 | -0456 @ -0.456 | -0.0186
Orsb;rtisazgrghe Lobe3| 0456 | -0.456 | 0.000 | 0.00 | 0.000
(on-site) Lobe4 | 0456 | -0.456 | 0.000 | 0.00 | 0.000
s | 00186 | -0.0186 | 0.000 | 0.00 | -0.00043
Lobel| 0537 | 0568 | 0.132 | 0133 | 0.00016
The Nearest | Lobe2 | -0.877 | -0.0750 | -0.0830 | -0.0833  -0.00031
neighbor (Cd)in | Lobe 3| 0.0201 | 0293 | -0.143 | 0.709 | -0.00009
Vector 1 Lobe4 | 0.0200 | 0293 | 0.0708 | -0.143 | -0.00009
s | -0236 | 0473 | 0149 | 0149 | -0.155
Lobel| 0.0750 | 0.877 | 0.0830 | 0.0833 | 0.00031
The Nearest | LObe2 0568 | 0537 | -0.132 | -0.133 | -0.00016

neighbor (Cd) in | Lobe 3 | -0.293 -0.0201 0.143 -0.0709 | 0.00009

Vector 2 Lobe4 | -0.293 | -0.0200 | -0.0708 | 0.143 | 0.00009
5* -0.473 0.236 -0.149 | -0.149 0.150

Lobe1 -0.0682 | 0.376 0.897 0.154 | 0.00022

The Nearest | Lobe2 0376 | 00682 | -0.897 | -0.154 | 0.00022
neighbor (Cd) in | Lobe 3 | -0.436 0.436 0.000 0.000 0.000
Vector 3 Lobe4 | -0222 | 0222 | 0000 | 0.00 | 0.000

5* -0.324 0.324 0.000 0.000 | 0.00264

Lobel 0.376 | -0.0681 | 0.154 0.897 | 0.00022

The Nearest | Lobe2 | 0.0681 | -0376 | -0.154 | -0.897 | -0.00022
neighbor (Cd) in | Lobe 3 |  0.222 -0.222 0.000 0.000 0.000
Vector 4 Lobe4 | 0.436 -0.436 0.000 0.000 0.000

5* 0.324 -0.324 0.000 0.000 | -0.00264

The values (in atomic unit) in the table are for various combinations of sp* lobes/s*
orbital of a Se atom and the matrices of the Se and its neighbor Cd's in the three
Cartesian coordinates.




69

(contd.)

Table 3.5 (contd.) The matrix of atomic transition dipole moments of Se

An Se atom as the center atom (y component)

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| -0.527 | -0.527 | 0264 | -0.264 | -0.0107
The two atomic | Lobe 2 | -0.527 | -0.527 | 0264 @ -0.264 | -0.0107
Orgrtgfa‘zgr;he Lobe3 | 0264 | 0.264 1.05 0.527 | 0.0215
(on-site) Lobed | -0.264 | -0264 | 0527 | 0.000 | 0.000
s | -0.0107 @ -0.0107 | 0.0215 | 0.00 | -0.00043
Lobel| -0.310 | 0175 | -0.580 | -0.0765 | -0.00009
The Nearest | Lobe2 | 0530 | 0.22 | -0.386 | -0.130 | -0.00008
neighbor (Cd)in | Lobe3 |  1.02 0.265 | 0.00395 | 0.137 | 0.00031
Vector 1 Lobe4 | -0.0115 | 0.0874 | -0.297 | 0.0827 | 0.00005
5* 0.136 | 0101 | -0.459 | 0.0858 | 0.0856
Lobel| 0122 | -0.530 | -0.386 | -0.130 | -0.00008
The Nearest | Lobe2 | 0.175 | 0310 | -0.580 | -0.0765 | -0.00009
neighbor (Cd) in | Lobe 3 | 0.265 1.02 | 0.00395 | 0.137 | 0.00031
Vector 2 Lobe4 | 0.0874 | -0.0115 | -0.297 | 0.0827 | 0.00005
5* 0.101 | 0136 | -0.460 | -0.0858 | 0.0856
Lobel| -0.126 | 0.121 | -0.495 | -0.00714 | -0.00023
The Nearest | LOPe2 | 0.21 | -0.126 | -0.495 | -0.00714 | -0.00023
neighbor (Cd)in | Lobe 3| 0.404 | 0.404 | 0621 | 0.153 | 0.00018
Vector 3 Lobed4 | 0.210 0.210 0.0231 | -0.165 | -0.00010
5* 0359 | 0359 & 0272 | 0172 | -0.179
Lobel| -0217 | -0217 | 0.168 | -0.518 | -0.00013
The Nearest | LODE2 | 0217 | 0217 | 0.168 | -0.518 | -0.00013
neighbor (Cd)in | Lobe3| 0.0497 | 0.0497 | 0.435 1.04 | 0.00026
Vector 4 Lobe4 | -0252 | -0252 | 0504 0.000 | 0.000
s | -0.187 | -0.187 | 0374 | 0000 | -0.00264

(contd.) The values (in atomic unit) in the table are for various combinations of sp?
lobes/s* orbital of a Se atom and the matrices of the Se and its neighbor Cd's in the three
Cartesian coordinates.
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(contd.)

Table 3.5 (contd.) The matrix of atomic transition dipole moments of Se

An Se atom as the center atom (z component)

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*

Lobel | -0.373 -0.373 -0.373 -0.373 -0.00759

The two atomic | Lobe2 | -0.373 -0.373 -0.373 -0.373 | -0.00759

orbitals on the Lobe3 | -0.373 -0.373 -0.373 -0.373 | -0.00759

same atom
(on-site) Lobe4 | 0.373 0.373 0.373 1.12 0.0228
s* -0.00759 | -0.00759 | -0.00759 | 0.0228 | -0.00043
Lobel | -0.219 0.124 0.124 -0.588 | -0.00006

The Nearest Lobe2 | -0.374 0.0862 | -0.00102 | -0.364 | -0.00005

neighbor (Cd) in | Lobe3 | -0.374 | -0.00102 | 0.0862 -0.364 | -0.00005

Vector 1 Lobe4| 1.09 | 0250 | 0250 | -0.0248 | 0.00031

s* 0.0964 0.0718 0.0718 -0.458 0.0597

Lobe 1 | 0.0862 -0.374 | -0.00102 -0.364 | -0.00005

The Nearest Lobe2 | 0.124 -0.220 0.124 -0.588 | -0.00006
neighbor (Cd) in | Lobe 3 | -0.00102 | -0.374 0.0862 -0.364 | -0.00005
Vector 2 Lobe4 | 0.250 1.09 0250 | -0.0248 @ 0.00031

g* 0.0718 | 0.0962 | 0.0718 -0.458 0.0597
Lobel | 0.0862 | -0.00102 @ -0.374 -0.364 | -0.00005
The Nearest Lobe2 | -0.00102 | 0.0862 -0.374 -0.364 | -0.00005
neighbor (Cd) in | Lobe 3 | 0.124 0.124 -0.219 -0.588 | -0.00006
Vector 3 Lobe4 | 0.250 0.250 1.09 -0.0248 | 0.00031

s* 0.0718 0.0718 0.0964 -0.458 0.0597

Lobel | 0.202 -0.0602 | -0.0602 -0.342 | -0.00020

The Nearest Lobe 2 | -0.0602 0.202 -0.0602 -0.342 | -0.00020

neighbor (Cd) in | Lobe 3| -0.0602 | -0.0602 @ 0.202 | -0.342 | -0.00020
Vector 4 Lobe4 | 0.340 0.340 0.340 0.657 | 0.00019
- 0.314 0.314 0314 | -0289 | -0.189

(contd.) The values (in atomic unit) in the table are for various combinations of sp?
lobes/s* orbital of a Se atom and the matrices of the Se and its neighbor Cd's in the three
Cartesian coordinates.
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Table 3.6 The matrix of atomic transition dipole moments of Cd

A Cd atom as the center atom (x component)

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| -1.75 | 0000 | -0873 | -0.873 | -0.00447
The two atomic | Lobe2 | 0.000 1.75 0.873 | 0.873 | 0.00447
Orl);:zlesa‘zgrghe Lobe3| -0.873 | 0873 | 0.000 | 0000 | 0.000
(on-site) Lobe4 | -0.873 | 0873 | 0.000 | 0.000 | 0.000
s* | -0.00447 | 0.00447 | 0.000 | 0.000 | -0.0231
Lobel| -0.105 | -1.79 | -0893 & -0.893 | -0.271
The Nearest | LODE2| 0250 | 0493 | -0.0967 -0.0966 & 0.357
neighbor (Se)in | Lobe3| -0.186 | 0472 | 0425 | -0319 | 0.0323
Vector 1 Lobe4 | -0.186 | 0472 | -0319 | 0425 | 0.0323
s* | 0.00018 | -0.00052 | -0.00030 = -0.00030 | -0.603
Lobel | -0.493 | -0.250 | 0.0967 | 0.0966 | -0.357
The Nearest | LObe2 | 179 0.105 | 0893 | 0893 & 0271
neighbor (Se)in | Lobe3 | 0.472 0.186 -0.425 0.319 -0.0323
Vector 2 Lobe4 | 0473 | 018 | 0319 | -0.425 | -0.0323
s* | 0.00052 | -0.00018 | 0.00030 A 0.00030 | 0.603
Lobe1| -0.0682 | -0.376 | -0.436 | -0.222 | -0.323
The Nearest | LOD€2| 0376 | 00682 | 0436 | 0222 | 0.324
neighbor (Se)in | Lobe3  0.897 | -0.897 | 0.000 | 0.000 | 0.000
Vector 3 Lobe4 | 0.154 | -0.154 | 0.000 | 0.000 | 0.000
s* | 0.00022 | -0.00022 | 0.000 | 0.00 | -0.00001
Lobel| -0.376 | -0.0681 | -0.222 | -0.436 | -0.324
The Nearest | LObe2| 0.0681 | 0376 | 0222 | 0436 | 0.324
neighbor (Se)in | Lobe3 | -0.154 | 0.154 | 0000 | 0000 | 0.000
Vector 4 Lobe4 | -0.897 0.897 0.000 0.000 0.000
s* | -0.00022 | 0.00022 | 0.000 | 0.00 | -0.00001

The values (in atomic unit) in the table are for various combinations of sp® lobes/s*
orbital of a Cd atom and the matrices of the Cd and its neighbor Se's in the three
Cartesian coordinates.
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Table 3.6 (contd.) The matrix of atomic transition dipole moments of Cd

A Cd atom as the center atom (y component)

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| 1.01 1.01 0504 | 0504 | 0.00258
The two atomic | Lobe2 |  1.01 1.01 -0.504 | 0504 | 0.00258
Orgrtgfa‘zgr;he Lobe3 | -0.504 | -0.504 | -2.02 1.01 | -0.00516
(on-site) Lobe4 | 0504 | 0.504 -1.01 0.000 | 0.000
s* | 0.00258 | 0.00258 | -0.00516 | 0.000 | -0.0231
Lobe1| 0.0605 | -0.00252 | 1.55 0516 | 0.157
The Nearest | Lobe2 | 0359 | -0.206 | 0490 | 0312 | 0.169
neighbor (Se)in | Lobe3 | -0.396 | -0.161 | -0.324 | -0.0724 | -0.393
Vector 1 Lobe4 | 0.107 0.0951 0.362 -0.245 | -0.0187
s* | -0.00010 = 0.00004 | 0.00043 | 0.00017 | 0.348
Lobel| -0.206 | 0359 | 0490 | 0312 | 0.169
The Nearest | Lobe 2 | -0.00252 | 0.0605 1.55 0516 | 0.157
neighbor (Se)in | Lobe3 | -0.161 | -0.396 & -0.324 | -0.0724 | -0.393
Vector 2 Lobe4 | 0.0951 | 0107 | 0362 | -0.245 | -0.0187
s* | 0.00004  -0.00010 | 0.00043 | 0.00017 | 0.348
Lobel| 0530 | -0.329 | 0.0370 | -0.240 | 0.225
The Nearest | LObe2 | 0320 | 0530 | 0.0370 = -0.240 | 0.225
neighbor (Se)in | Lobe 3 | -1.55 155 | -0.121 | -1.03 | -0.313
Vector 3 Lobed | -0.457 | -0.457 | -0.215 0.490 0.0373
s* | -0.00048 | -0.00048 | 0.00021 | -0.00035 | -0.696
Lobel| 0217 | 0217 | -0.0497 | 0252 | 0.187
The Nearest | LODE2 | 0217 | 0217 | -0.0497 = 0252 | 0.187
neighbor (Se)in | Lobe3 | -0.168 | -0.168 | -0.435 | -0.504 | -0.374
Vector 4 Lobe4| 0518 | 0518 -1.04 0.000 | 0.000
s* | 0.00013 | 0.00013 | -0.00026 | 0.000 | -0.00001

The values (in atomic unit) in the table are for various combinations of sp* lobes/s*
orbital of a Cd atom and the matrices of the Cd and its neighbor Se's in the three
Cartesian coordinates.
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Table 3.6 (contd.) The matrix of atomic transition dipole moments of Cd

A Cd atom as the center atom (z component)

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| 0713 | 0713 | 0713 | -0.713 | 0.00182
The two atomic | Lobe2 | 0.713 | 0.713 | 0713 | -0.713 | 0.00182
Orgrtgfa‘zgr;he Lobe3| 0713 | 0713 | 0713 | -0.713 | 0.00182
(on-site) Lobe4 | -0.713 | -0.713 | -0713 & -2.14 | -0.00547
s* | 0.00182 | 0.00182 | 0.00182 | -0.00547 | -0.0231
Lobe1| 0.0424 | -0.00220 | -0.00220 |  1.46 0.1
The Nearest | Lobe2 | 0254 | 0145 | 0.58 | 0409 | 0.119
neighbor (Se)in | Lobe3 | 0.254 | 0158 | -0.145 | 0409 | 0.119
Vector 1 Lobe4 | -0.458 | -0.205 | -0.205 | -0.256 | -0.410
s* | -0.00007 = 0.00003 | 0.00003 | 0.00040 | 0.246
Lobel| -0.145 | 0254 | 0158 | 0409 | 0.119
The Nearest | Lobe2 | -0.00220 | 0.0424 | -0.00220 |  1.46 0.1
neighbor (Se)in | Lobe3 | 0.158 | 0254 | -0.145 | 0409 | 0.119
Vector 2 Lobe4 | -0.205 | -0.458 | -0.205 | -0.256 | -0.410
s* | 0.00003  -0.00007 | 0.00003 | 0.00040 | 0.246
Lobel| -0.145 | 0.158 | 0254 | 0409 | 0.119
The Nearest | Lobe2 | 0.158 | -0.145 0254 | 0409 | 0.119
neighbor (Se) in | Lobe 3 | -0.00220 | -0.00220 = 0.0424 |  1.46 0.111
Vector 3 Lobe4 | -0.205 -0.205 -0.458 -0.256 | -0.410
s* | 0.00003 = 0.00003 | -0.00007 | 0.00040 | 0.246
Lobel| -0.666 | 0244 | 0244 | -0.0493 | 0.172
The Nearest | LODE2 | 0244 | 0.666 & 0244 | -0.0493 | 0.172
neighbor (Se)in | Lobe3 | 0.244 | 0244 | -0.666 | -0.0493 | 0.172
Vector 4 Lobe4 | -1.46 -1.46 146 | -0126 | -0.332
s* | -0.00046 | -0.00046 | -0.00046 | 0.00022 | -0.737

The values (in atomic unit) in the table are for various combinations of sp* lobes/s*
orbital of a Cd atom and the matrices of the Cd and its neighbor Se's in the three
Cartesian coordinates.
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Fig. 3.4 Density of states (DOS) of a CdSe QD (radius ~ 1.17 nm) and the comparison
with other calculated results.
(a) The original calculated DOS without a passivation layer of artificial atoms.
(b) The original calculated DOS with a passivation layer of artificial atoms. The
height of each bar in the (a) and (b) represents the number of states within the
energy window of 0.05 eV.
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(contd.)
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Fig. 3.4 (contd.) (c) the convolution of the bars in (b) with Gaussian functions (FWHM
=0.05 eV) and its comparison with Porkant and Whaley's result®* and Kilina et

al.'s result”.
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Fig. 3.5 The comparison between the calculated absorption spectrum of a CdSe QD and
the measured spectrum by Katari et al.".
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Chapter 4

Studies of the Size-dependent Auger Processes in

Semiconductor Quantum Dots

Background

As discussed in Chapter 1, the Auger processes play various kind of roles in QDs,
such as conversion of light to dark states and vice versa', or quenching the fluorescence
of an exciton when the third quasi-particle is excited to high energy state to conserve the

energy' . Recent experimental findings*** discovered that the size-dependence of the

Auger lifetime obeys a power law, namely t,ocr’ , of over a large radius span, from 1
nm to 5 nm, across semiconductors. The summary of experimental results on different
kinds of charge states can be found in Table 1.1. The previous>® and recent” theoretical
works that have studied the size dependence of the Auger process inspired author's
interest in studying the size-dependent trend using tight-binding (TB) method described
in Chap 2. In this chapter, the calculation of the rate of a few kinds of the Auger process
in various size of CdSe QDs were performed: (1) negative trion (two electrons and one
hole), (2) positive trion (one electron and two holes), and (3) biexciton (two electrons and
two holes). The author also compared these results with the existing literature, including

both experimental®>* and theoretical®’ studies, whose focus was on CdSe QDs.

Methodology for Calculations
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I. Theoretical Expression of the Auger Processes for a Trion
As mentioned in Chapter 1, the source of the Auger process is governed by the
Coulombic interaction®. Therefore, for the case of a negative trion (two electrons and one
hole) in a quantum dot (QD), the wave functions of the initial and final states are
expressed below®:

(1) the initial singlet state is

@(rro)= W r) W) a(r)B(r) —a(r)B(r) @

and (2) the final singlet state is

D11 =2 (a0 W, (1) + Wy (1) W, (1)) (alr )B(r)—alr)B(r)) , @

where W, (r Z cX¥¢>(r) is the electronic state at the conduction band (CB) edge,

ZZ c;/B q)ZB(r) is the state in the valence band (VB), and
Y

r)=>.cs¢¥(r) isthe final state in the CB to which the second electron is excited
d

after the electron-hole recombination. The spin state of the two states in Eq. (1) and (2)
are assumed to remain singlet. The matrix element of the Auger transition for a negative

trion is therefore written as,

Mif:<q)i<r1,r2)| Ir 12||CI)f(r1 r2)> v
:%(<W58(r1)1¥58(r2)| E 12||lII va(r )We[(r2)> ’
{ratnprate g i)

where ¢ is the dielectric constant. The Coulombic operator in Eq.(3) can be expressed in

terms of the coordinates of the nuclei, R, and the local orbital coordinate, r,, where « is
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the label of atomic orbital s, p and s™. That is, for a pair of atom A and B,. Using multipole

expansion for Cartesian coordinate on the operator, the leading term is

1 1 4)
‘r12| ‘RA(]')_RB(Z)‘ ’

where the assumption  |R,(1)—=Ry(2)[>|r,,(1)—=rp,(2]| is valid when one introduces

Eq. (4) into Eq. (3) for the inter-atomic interactions. When the restriction of A <B
restriction is applied to Eq.(4) to account for the indistinguishability of identical particles.

Eq.(3) then becomes

Mi~T7 2 Z { v
X eraraleilodin )>¢S;<r.3(2))lm\¢ i (r,(2))
* Z cirep ey’ e 0% (r(2)) o3 (ry(1)) I ) =EY )|¢A 2)) 0 (rs( 1))}
@hyd Se s
;B{%éczecgcmcg<m \me'R §<;( a (2)]ofa(rs(2))
L s g O, )><¢B(rﬁ(1))\ (n()

C, C
whye 0V €|RA —R;(2)|

An expression of the Auger rate similar to the above equation is given in Schulz et al.'s
study'. The first summation on the RHS of the approximate sign in Eq. (5) is the
Coulombic interaction between atomic orbitals on the same atom (A = B), and the
evaluation of the two-electron integrals uses the numerical values calculated by Lee et
al."!, where the two-electron integrals for the summation of A = B were unscreened, so €

was chosen as unity™. On the other hand, the overlap integrals between atomic orbital in

the second summation in Eq. (5), i.e. the terms with the form <¢ A |¢ A >

(or (¢5(rg(1))]dg (rs(1))) ), have the following properties:
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<(|)A(r<x) ¢A'(ry)><¢B(rﬁ)|¢3'(r5)> (6)
9,95 ifA=A'and B=B'
84y 0s(rg)| s (ry)) if A= A'but B'is B's nearest neighbor
O.5(0a(r,)|04.(r,)) if B=B"but A'is A's nearest neighbor
0 Otherwise,

where the values of the overlap integral can be found in Table 4.1, where ¢.(r) are
represented in terms of sp® lobes, composed of s and 3 p orbits, and s”. The dielectric
constant of bulk CdSe, 6.257, was chosen for € in the summations of A < B in this
dissertation as an approximation. The overlap integrals were calculated by the author
using the composite Simpson's rule.

For the expression for the Auger process within a positive trion, one can simply

replace the initial singlet states in Eq. (1) by’

1 7
Dy (1, 12)= 2 (W (1) W, (1) + W (1) W, (1)) (a(r)B(ry) —au(ry)B(ry)) )
where ‘I’Sﬂ(r) is the electronic state at the CB edge, as defined in Eq. (1), and
W, (r)=2, cl¢l(r) isastate deep in the VB, while the final singlet state is replaced
' Y

by

D1, ) =2 (W (1) W (1,4 W (1) W (1)) (B )= a(r B (), ©)

where lI",Bl(r) and ‘PVBZ(r) are the two electronic states in the VB and they both

have the form of IPVBl(r):Z c?¢vP(r) , {i=1or2}. The choices of VB, and VB,

are determined by the Fermi-Dirac distribution mentioned in the section II.

Using the matrix element defined in Eq. (5), the Auger process of a pair of initial

and final states, @, and & s has the form of Fermi's Golden rule®,
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kAzz%|Mif|2pf ) ©)
where pyis the density of states (DOS) for the final state. Due to the sparse and discrete
nature of the state distribution in semiconductor QDs, as the examples shown in Fig. 4.1,
the electronic transitions, such as the Auger transition of interest, need phonons to
achieve an energetic resonance. Although the literature'*'* has suggested that the more
dense states near the edge of VB mitigates the phonon bottleneck, the treatment of
phonon density is not included in this dissertation because the phonon contribution is a
second-order contribution’. Instead, an approximation was made to account for the
resonance issue: a fixed energetic window around resonant final state, AE,, is chosen, and
all the states within the window have equal contribution to the square of the matrix
element of the Auger transition. As an approximation, p,is defined as 1/|24E, which

means including all of the states within 24FE;. In this chapter, 4E; was chosen as +kT.

I1. Statistical Means for the Summation of Rates
For both negative and positive trion, there is at least one hole in the VB, and due
to the more dense states around the edge of VB, the location of the hole(s) should follow
a distribution in each case. For a negative trion, the Boltzmann distribution,

N

M
py(E, )=e P51 > e P is applied to calculate the probability of finding a hole

i=1 m=1
at the state VB, ,,, where E,,, is the energy of the VB, ,, state and M represents the number
of degeneracy of VB;,, because there is only a single hole in VB. For the cases involving

a positive trion, there are two holes in VB, so the Fermi-Dirac (F-D) distribution for a
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hole, f,(E)=1—f,(E)=1/(1+e"""")) s used to account for the average number of

holes in state VB;, where u; is the chemical potential for the two holes. The probability of

finding the two holes in a given state(s) is defined as

ph(Ei’m,Ej,n): - ]Ch]SEi,m)fh(E',n) , (10)
)3 Z fu(E ) fA(E; )

where E;,, (E;,) is the energy of the VB,,, (VB_,—,n) state and M (N) represents the number of
degeneracy of VB,,, (VB;,). In this dissertation, the states VB, to VB, were all the states
within an energy range of SkT from the edge of VB, and value of 0.026 eV was used for
1/B (or kT).

For the electron(s), the probability to find the two electrons in a negative trion has

the same form of Eq. (10), except f; is replaced by the F-D distribution for electrons,

f e(E,.”)= 1/(1+ eB(E“”*”P)) , where m represents the m-th degenerate state with the

energy £;, while for the electron in a positive trion, it is assumed to locate at the edge of
CB. The probability of finding an electron at the CB edge is essentially unity because the
energy difference between the two states with the lowest energy is large (about 300

mev)ls,lé

compared with thermal energy.
The chemical potential of the two holes in a positive trion is calculated using the

equation below:

ZZZAi\[(l_fh(Ei,m) 1 fh Z z 1 fh 1 fh( )) ) (n

i,j m,n V(i<j) m,n

where 2 on the LHS means that the summatlon of the RHS equals to two quasi-particles,
and the subtraction of the second summation on the RHS eliminates double counting and

accounts for the Pauli exclusion principle. Similarly, the chemical potential of the two
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electrons in a negative trion is calculated using the equation,

2=3 3 f.(E)f(E -z S B LLE,) . (12

i,j m,n 1<J m,n

where E;,, (E;,) is the energy of the CB state CB,»,m (CB;,) state and M (N) represents the
number of degeneracy of CB,,,(CB;,). The calculated chemical potential of (1) electrons
in a negative trion and (2) holes in a positive trion for various sizes of CdSe QD are
provided in Table 4.2

Applying the statistics described in this section to Eq. (9) converts it to

K= k= zphl M, F(AE,)) | (13)
1

where p,,; stands for either the P,(E, 1,,,,) or P,(E,,, E;,) mentioned above.
I1I. Debye Shielding
When considering trions, there is always some shielding of the two of them by the
third. For example, in the case of a negative trion, the hole shields the interaction of the
two electrons. Shielding is often invoked in bulk semiconductor when the concentration
of the charge carrier, often photo-induced, is high. (ref) One way to model the shielding is

to introduce the Debye shielding,

e i, (14)
e

CI)(r):4ner ’

where e is the electronic charge, ¢ is the dielectric constant, and the Debye length, 4p, is

defined as \/ ekpT/ Z n.e’ , where ks is the Boltzmann constant, #; is the concentration

of charge. In this dissertation, the Coulombic operator in the Auger matrix element in Eq.
(5) is replaced by Eq. (12). However, because of the small number of carriers and hence

the length approximation of Eq. (14), the Debye length is not calculated using the
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definition above, but instead, a series of calculations of the Auger process is made with

different values of A are performed to study the effect of various on the rate.

IV. Expression of the Auger Rate for a Biexciton
The wave function of a biexciton in a QD with 2N electrons can be written in a

Slater determinant'’,

wBX(rl""’rZN):‘q)l(rl)(T)l(rZ)“'¢VB—1(r2N—3>(T)VB—1(r2N—2)¢CB(r2N—1)(T)CB(r2N)> (15)

where ¢, is the eigenstate with the lowest energy among all electronic states, ¢5_,
is the second to the last VB state to the VB edge, ¢ is the state at the CB edge, and
the states with an overhead bar, e.g. ¢, , are the states of opposite spin to states without
a bar. In Eq. (15), the state at the VB edge ( ¢, , not present in Eq. (15)) has no

electron because they are excited to ¢, . Similarly, a negative trion is

wr-,l(rp-“’rZN):|¢1(r1)(_')1(r2)"'¢VB—1(er—3)q_)VB—1(rZN—2)¢VB(r2N—1)(T)f,T-("ZN)> (16)

or

wr-,z("p-“:rZN):‘¢1(r1)$1(r2)"'¢VB—1(er—3)(T)VB—l(FZN—z)(T)VB(er—1)¢f,T»(r2N)>- (17)

And for the case of positive trion, the final state is

wT*,l(rl"'"rZN):|¢1(r1)a)1(r2)“'q)f,T*(rk)“'¢VB(r2N—2>(T)VB(r2N—1)¢CB(rZN)> (18)

or

wT*,z(rl:---JFZN):|¢1(r1)(T)1(r2)”'(T)f,T*(rk)"'q)VB(rZNfZ)q_)VB(rZN—l)q)CB(rZN)>' (19)
Assuming the cases in Eq. (16) to (19) have equal probability, and the electrons and holes

in the biexcton are uncorrelated, by introducing Egs. (16) to (19) into Egs. (3) and (9), the

. . . BX .
expression of the Auger rate of a biexciton, k,"  ,1is
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2 0)
~7“<\<ng|,;|%,1>2%+<wsx|il%uz>2pf:r-
S 1>2pr Sl )
_2n <¢C3(r1)¢CB |q>fT r)dys(r )>pr,T-
X <¢Cg<r1>q‘>CB<r2>\r—H>f,T<rl>¢VB<r2>> r
o (Gaalrioca(ra) oy (r)ualr o
2 <¢CB<rl>a>CB<r2>\,;\<‘pm<r1>¢w<rz>> 00

=kl +k.+k) +kL =2k +2k"

where kZ / ki is the rate constant of the Auger process of positive/negative trion,
respectively, ¢, ., ¢, , ¢c .and ¢y aredefined earlier,and p; gy is the

density of final states of biexciton, while p, ;. / p, . 1is the density of final states of

the positive/negative trion, respectively. This relationship in Eq. (19) has been used in

18,19,20

literature as an approximate relationship between the Auger rate of a biexciton and

those of negative and positive trions. Although the assumption of equal probability of the

four channels is made in the relationship in Eq. (20), k& ~2 kj+2 kz , it has been

found in experiments?®' that even if the Auger rate of a positive trion is much faster (about
10 times)*' than that of a negative trion, Eq. (20) still provides a reasonable estimate of

the Auger lifetime of a biexiton.

Results and Discussion
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The calculated results of the size dependence of the Auger lifetime of a negative
trion and a positive trion are shown in Fig. 4.2. The comparison between the results of
this thesis and the existing literature are provided in Table 4.3. The data points were
calculated using Eq. (13) and the details discussed in the section on the theoretical
expression for the Auger processes for a trion. It can be seen in the figure that the
behavior between negative trions and positive trions is different, especially in the case of
large Debye shielding length (Ap), 100 times of lattice constant (i.e. 100a in the figure), or

effectively no shielding between quasi-particles. For the negative trion, the size

dependence of the Auger lifetime follows the trend of rioc r’ , and the power p ranges
from 7.21 to 8.48. This power is comparable to the power of the TB calculation (p =
8.25, deduced from the data reported by Delerue et al.?) of Delerue ef al.® on the Auger
process of a negative trion in Si nanocrystal. However, unlike the relatively constant
slopes for the negative trions, for the positive trion, the slopes of the three cases of
smaller Ap is different from that of Ap=100a: for the later one, a turning point of the slope
shows at the radius of 2.03 nm. The turning point is caused by the treatment on the matrix
element of the Auger process in Eq. (5), where each atomic matrix element is categorized
into (1) the interaction on the same atom, and (2) the inter-atomic interactions. The
number of terms in (1) is proportional to the volume (or (size of a QD)?*), while the
number of terms in (2) is roughly proportional to the volume square (or (size of a QD)®).
Therefore, the terms in (1) have a more significant contribution to the lifetime in the

region of smaller sizes of QD, while the terms in (2) is more important in the region of

larger sizes. The slope of the linear fit in the log-log plot (namely, p in 'cgoc r’ )of
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Ap=100a (magenta triangles) in Fig.4.2(b) is 18.7, while the second part is 6.43, where
the second slope is comparable to that in Delerue et al.'s work® on the Auger lifetime of
positive trion (4.95, deduced from the values reported by Delerue et al.®). This
comparability between the slopes in the larger sizes suggests that the shielding plays a
minimal role in the Auger process of positive trion, while the case of strongest shielding
(Ap=0.5a) in a negative trion gives the closest slope (p = 7.21) to the experiment findings
(p = 4.3)*. This observation is consistent with the well accepted idea that the wave
functions of the holes are more localized than those of electrons, and applying shielding
on positive trions restricts the Coulombic interaction between holes.

The comparison between the calculated values of negative and positive trions and
the findings in Cohn ef al.'s experimental work® and the single-molecule results in
Vaxenburg et al.'s theoretical study’ is provided in Fig. 4.3 and Fig. 4.4. In Fig. 4.3(a), it
can be seen that the absolute values of the calculated Auger lifetime by the author is
around one-order-of-magnitude larger than Cohn ef al.'s values® (dashed blue line), or
within this ratio when the Debye shielding length (Ap) is chosen as 100a (olive
diamonds), while the Ap is made smaller, such as Ap = 0.5a (red squares), the absolute
values of the Auger lifetime become smaller also. Although the calculated values of the
Auger rate (at Ap = 100a) is comparable to the measured ones, the size dependence of the
former one is much larger than the later, and even larger than the calculated slope of the
single-molecule calculation in Vaxenburg et al.'s study’ (namely, 6.5).

There should be a similarity in the results between the TB method and the

effective-mass-approximation (EMA) method, but as shown in Fig. 4.3, the size
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dependence between the author's calculated results (red squares and olive diamonds) and
the EMA result of the single-molecule calculation by Vaxenburg et al.” (black dashed
line) are different. Although Vaxenburg and coworkers’ also applied the multipole
expansion on the Coulombic interaction, 1/|ry,|, they expanded the operator in spherical
coordinates and up to 36 terms, while in this disseration only the leading term of the
expansion in Cartesian coordinates was considered, so the number of terms of expansion
could be one of the sources of the discrepancy in the slope and the absolute values of
lifetime between the two theoretical results. There are two other distinct differences
between the method used in this dissertation and Vaxenburg ef al.'s work’: (1) the nature
of the wave functions at the boundary/interface between the interior of a QD and the
exterior environment and (2) the region of the occurrence of the Auger processes.
Regards the first difference, Vaxenburg ef al. applied various boundary conditions and
parameters to allow the electron wave functions within the QD to extend across the
boundary and to conserve the probability current density at the boundary’. However, for
the eigenstates calculated by the present TB method, the wave functions terminate at the
boundary/interface of a QD, and moreover, the exclusion of the contribution of the layer
of the artificial atoms from the Auger matrix element further creates an abrupt
disappearance of the wave function at the boundary. For the discrepancy (2), Vaxenburg
et al. suggested that the Auger processes have a higher chance of occurring at the
boundary of QDs’, and Efros* also suggested that only the surface part of the core
boundary of QD has significant contribution to the matrix element of an Auger ionization

process. However, for the calculation of the Auger matrix elements in this dissertation,
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the full spatial distribution of the wave function was included, which could introduce
some ineffective contribution to the matrix elements. To alleviate the two discrepancies,
an ad hoc approach was applied to the calculated result: a set of effective radii of the QDs
were obtained by reducing the actual radii by one monolayer in the log-log plot, so the
wave functions within the QD would not terminate abruptly at the boundary. It can be
seen in Fig. 4.3(b) that this change made the slopes of the TB results, both A, = 0.5a and
Ap = 100a, is comparable to Vaxenburg ef al.'s result’.

The same change in radius was also applied to the Auger lifetime of positive trion,
and the comparison between the new results and the projected result of Cohn et al.'s
study? is shown in Fig. 4.4(b). Although it can be seen that the new calculated slope and
the absolute values still deviate from the projected curve, similar to the case in Fig.
4.4(a), the slope on the larger-size side of Ap = 100a curve is more comparable to the size
dependence of the positive trion Delerue ef al.'s study® mentioned above, i.e. 4.95. The
biexciton lifetimes of various sizes of CdSe QDs was also calculated using Eq. (20) and
were shown in Fig. 4.5(a) and (b) for both cases of Ap = 0.5a and Ap = 100a. The size
dependence of the two cases was compared with Robel et al.’s experimental work® (the
slope of the dashed blue lines in Fig. 4.5 was deduced from the data reported by Robel et
al.). The size dependence of Ap = 100a is closer to the results in the experimental findings
(the slope p ranging from 2.5 to 3.1)>"** than that of Ap = 0.54, but there is still a large
discrepancy from the measured result due to the propagation from the size dependence of
positive trion and of negative trion.

Even though the characteristics of the dynamics of positive trion have not been
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well understood”, the ratios of the Auger lifetimes (Ap = 100a) of a positive trion to that
of a negative trion for different sizes of CdSe QDs are summarized in Table 4.4 for
further discussion. Due to the different size dependence between positive trion and
negative trion, the ratio is not a constant, and the ratio changes from less than unity to
large than one. The Auger lifetime of positive trion is expected to be smaller than that of
negative trion because the DOS of the hole is higher due to the heavier effective mass.
However, as shown in Fig. 4.6, the DOS of around the final state of an Auger process of a
positive trion is smaller than that of a negative trion in the size region of the data points in
Table 4.4. Moreover, the Auger lifetime of a positive trion in other theoretical studies®*°
1s not necessarily shorter than that of a negative trion. The information noted above
indicates that further study is needed to better understand the dynamics of positive trion.
Even with the puzzles, a simple comparison between the calculated ratio of the Auger

lifetime of the positive trion to that of the negative trion is shown here: for the CdSe QD

with the radius = 1.76 nm, the ratio of ‘CZ; / T, is 0.68, which is larger than the

measured ratio of CdSe/CdS QD (the core radius = 1.5 nm), 0.15, in Park et al.'s study?.

Although the calculated ratio is larger, the calculated rTA+ (68.5 ps vs. 1.5 ns) and rf\-

(100 ps vs. 10 ns) are both shorter than the measured values, respectively.

Summary

The size dependence of the Auger lifetime of negative trions, positive trions, and
biexcitons were studied using TB method in this chapter. Although the absolute values

and the size dependence of these lifetimes didn't reproduce the experimental value, the
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modification of the radii of QDs pointed out a potential path to improve the calculation
method, but a method that allows the wave functions to be finite outside the core, such as
adding a layer of shell instead of terminating abruptly at the core boundary, would be the

next step to explore.
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Table 4.1 The matrix of overlap integral of a Cd atom and a Se atom

A Cd atom as the center atom

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| 1.0 0.0 0.0 0.0 | 0.00045
The two atomic | Lobe 2 0.0 1.0 0.0 0.0 0.00045
orbitals on the 7 5 1 0.0 1.0 0.0 | 0.00045
same atom
(on-site) Lobed | 0.0 0.0 0.0 1.0 | 0.00045
s* | 0.00045 @ 0.00045 | 0.00045 | 0.00045 | 1.0
Lobel| 0299 | 0425 | 0425 | 0425 | 0.0163
The Nearest | LODe2| 0.148 | -0264 | 0181 | 0.81 | 0.0541
neighbor (Se)in | Lobe3 | 0.148 | 0181 | -0.264 | 0.181 | 0.0541
Vector 1 Lobe4 | 0148 | 0181 | 0181 | -0.264 | 0.0541
s* | -0.00001 | 0.00010 | 0.00010 | 0.00010 = 0.212
Lobel| -0264 | 0148 | 0181 | 0181 | 0.0541
The Nearest | LODE2| 0425 | 0299 | 0425 | 0425 | 0.0163
neighbor (Se)in | Lobe3 | 0.181 0.148 -0.264 0.181 0.0541
Vector 2 Lobe4 | 0181 | 0148 | 0181 | -0.264 | 0.0541
s* | 0.00010 | -0.00001 | 0.00010 | 0.00010 0.212
Lobel| -0264 | 0181 | 0148 | 0181 | 0.0541
The Nearest | LoPe2 | 0.181 | -0264 | 0148 | 0.81 | 0.0541
neighbor (Se)in | Lobe 3 | 0.425 0.425 0.299 0.425 0.0163
Vector 3 Lobe4 | 0181 | 0181 | 0148 | -0.264 | 0.0541
s* | 0.00010 | 0.00010 | -0.00001 | 0.00010 A 0.212
Lobel| 0330 | -0.116 | -0.116 | 0.148 | 0.0541
The Nearest | Lobe2 | -0.116 | 0330 | -0116 | 0.148 | 0.0541
neighbor (Se)in | Lobe3 | -0.116 | -0.116 | 0330 | 0.148 | 0.0541
Vector 4 Lobed | 0.425 0.425 0.425 0.298 0.0163
s* | 0.00010 | 0.00010 | 0.00010 | -0.00001 0.212

The values (in atomic unit) in the table are for various combinations of sp® lobes/s*
orbital of a Se atom and the matrices of the Cd and its neighbor Se's in the three
Cartesian coordinates.
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An Se atom as the center atom

Lobe 1 Lobe 2 Lobe 3 Lobe 4 s*
Lobel| 1.0 0.0 0.0 0.0 | 0.00551
The two atomic | Lobe2 | 0.0 1.0 0.0 0.0 | 0.00551
orbitals on the 7 ) "3 1 0.0 1.0 0.0 | 0.00551
same atom
(on-site) Lobe4 | 0.0 0.0 0.0 1.0 | 0.00551
s* | 0.00551 | 0.00551 | 0.00551 | 0.00551 1.0
Lobel| 0299 | 0148 | 0148 | 0.148 | -0.00001
The Nearest | Lobe2 | 0425 | 0264  0.81 | 0.81 | 0.00010
neighbor (Cd)in | Lobe3  0.425 | 0.181 | -0264 | 0.181 | 0.00010
Vector 1 Lobe4 | 0.425 0.181 0.181 -0.264 | 0.00010
s | 00163 | 0.0541 | 0.0541 | 00541 | 0.212
Lobel| -0.264 | 0425 | 0181 | 0181 | 0.00010
The Nearest | Lobe2 | 0.148 | 0299 | 0.48 | 0.48  -0.00001
neighbor (Cd)in | Lobe3| 0.181 | 0425 @ -0.264 | 0.181 | 0.00010
Vector 2 Lobe4 | 0181 | 0425 | 0.181 | -0.264 | 0.00010
s | 00541 | 00163 | 00541 | 00541 | 0.212
Lobel| -0264 | 0.181 | 0425 | 0181 | 0.00010
The Nearest | LObe2| 0.181 | -0.264 | 0.425 | 0181 | 0.00010
neighbor (Cd)in | Lobe 3| 0.148 | 0.148 | 0299 | 0.148 | -0.00001
Vector 3 Lobe4 | 0.181 0.181 0.425 -0.264 | 0.00010
s | 00541 | 00541 | 00163 | 00541 | 0.212
Lobel| 0330 | -0.116 | -0.116 | 0425 | 0.00010
The Nearest | LObe2| 0.116 | 0330 | -0.116 | 0425 | 0.00010
neighbor (Cd)in | Lobe3| -0.116 | -0.116 | 0330 | 0.425 | 0.00010
Vector 4 Lobe4| 0.148 | 0148 | 0148 | 0298 | -0.00001
s | 00541 | 00541 | 00541 00163 | 0.212

The values (in atomic unit) in the table are for various combinations of sp* lobes/s*
orbital of a Se atom and the matrices of the Se and its neighbor Cd's in the three
Cartesian coordinates.
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Table 4.2 The calculated chemical potentials of CdSe QDs with different sizes.

Chemical Potential (eV)

Negative Trion Positive Trion
Radius (nm) Electron Hole
1.76 2.623 -0.3349
1.85 2.556 -0.3074
2.03 2.484 -0.2747
2.17 2.418 -0.2503
241 2.370 -0.2317
3.34 2.162 -0.1550
3.81 2.103 -0.1325

The values are for the electrons in a negative trion or the holes in a positive trion.
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Fig. 4.1 Density of states (DOS) around the state of band gap above (below) the
conduction (valence) band edge in various sizes of CdSe QD. AE in each graph
indicates the energetic difference (in kT) of a given state from the resonance
energy. The figures are plotted by SciDAVis.*
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Table 4.3 The Comparison of the Log-Log slopes between the Different Calculated

Auger Lifetime in the literature

. Calculation | Log-Log slope of the | Range of
Semiconductor method Auger lifetimes radius (nm) Reference
. ) o T 4.95°
Si Tight-binding 1.10 — 2.00 Delerue ef al.’
T 8.25
CdSe Effective-mass | T 6.5° 1.20 — 8.00 | Vaxenburg et al.’
T | 6.44-18.7"
CdSe Tight-binding | T 7.17-8.53* | 1.76 —2.41 | This dissertation
BX | 7.89-11.5*

1. T+ denotes a positive trion, T- denotes a negative trion, and BX denotes a biexciton
2. Deduced from the data reported by Delerue ef al.®
3. The single-molecule result in Vaxenburg et al.’.

4. The radii of the QDs are the original radii.
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Fig. 4.2 The log-log plots of the Auger lifetimes of (a) the negative trion, and (b) the
positive trion for various sizes of CdSe QDs at different Debye shielding

lengths (Ap). The figures are plotted by SciDAVis.*
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Fig. 4.3 The comparison of the Auger lifetimes of a negative trion between theoretical

and experimental results. The results contains the QD sizes of (a) the original
radii and (b) one-monolayer less than the original radii. For the case of Ap =
100a (olive squares), the point away from the other four points, namely the
point around 1.85 nm in (a) or around 1.7 nm in (b), was not considered in the
linear fitting of the slope. The figures are plotted by SciDAVis.*
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Fig. 4.4 The comparison of the Auger lifetimes of a positive trion between theoretical
and experimental results. The results contain the QD sizes of (a) the original

radii and (b) one monolayer less than the original radii. The figures are plotted
by SciDAVis.*
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Fig. 4.5 The comparison of the Auger lifetimes of a biexciton between the calculated
and experimental® results. The results contain the QD sizes of (a) the original
radii and (b) one-monolayer less than the original radii. The figures are plotted
by SciDAVis.*
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Table 4.4 The size dependence of the ratio of the Auger lifetime (Ap = 100a) of a
positive trion to that of a negative trion.

Radius (nm) .A'uger. lifetimg Auger 'lifetimeT _ I
of positive trion, T, ,(ps)| of negative trion, T, , (ps) A A
1.76 68.500 100.38 0.68
1.85 212.10 116.60 1.82
2.03 1029.6 242.89 4.24
2.17 1252.2 544.80 2.30
2.41 3006.4 914.14 3.29
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Fig. 4.6 The log-log plot of the size dependence of the density of states (DOS) around
the state one-band-gap above the edge of CB (black circle) and the state one-
band-gap below the edge of VB (red squares). The figure is plotted by
SciDAVis.*
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Chapter 5

Summary and Perspectives

Summary

This dissertation used the concept of the symmetry-adapted linear combination
(SALC)' of atomic orbitals to construct various sizes of Wurtzite? CdSe quantum dots
(QDs). The electronic wave functions of those constructed CdSe QDs were obtained by
direct diagonalization® of the tight-binding (TB) Hamiltonian*>*° of the whole dots.
Modifications have been made to the original TB method to meet the author's need for
the calculation of Auger rates in the QDs, and the details are given in Chapter 2.

The calculated QDs and their electronic wave functions were used to calculate the
basic properties of QDs, such as the structure, the dipole moment, the electronic band
gap, the molecular orbitals (MOs), the density of states (DOS), and the absorption
spectrum, as discussed in Chapter 3. The comparison of the above calculated results and
the literature, including both experimental”® and theoretical®®*'*" findings, suggested
that the calculated wave functions in this dissertation can be considered as reliable.

In Chapter 4, the size dependence of the Auger process of negative trion, positive
trion and biexciton were calculated using the calculated TB wave functions. In this
dissertation, the nature of the TB wave functions was set to terminate at the boundary of
QDs, while the other reference', using an effective-mass-approximation (EMA) other
than an atomistic treatment, allowed the wave functions to extend beyond the boundary.

This restriction on the TB wave functions could be one of the sources of the discrepancy
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between the calculated results and experimental*

findings, in both the size dependence of
the Auger lifetimes and the absolute values of lifetimes. Although the calculation settings
in Chapter 4 didn't reproduce the experimental results'?, the ad doc approach of reducing

the effective radii of QDs pointed out a potential path to improve the calculation

methodology, as discussed before. The second route to be explored for the Auger

computation involves a surface state mechanism'.

Perspectives

To improve the calculated results of the Auger process in Chapter 4, modifications
to the TB wave functions, especially to the excited electrons, to allow them extend
outside the boundary of QDs, such as adding a layer of shell outside the core of a QD, is
necessary so the calculation setting would be closer to reality. Moreover, the multipole
expansion used in Chapter 4 only considered the leading term, while the multipole
expansion in Vaxenburg et al.'s work'" in their effective mass study contained up to 36
terms. Therefore, including the contribution from higher-order terms to the current Auger
matrix elements is a focus of future TB studies.

The calculation method mentioned in Chapter 4 can be further applied to the study
of other types of Auger process occurred in semiconductor QDs, listed as follows:

L. the Auger-based trapping and “detrapping” processes in semiconductor QDs

The specific Auger-type processes of trapping and “detrapping” mentioned in
Chapter 1 were proposed in an article by Marcus'®. These two processes are involved in

the transition from a light state to a dark state, and the restoration of a light state from a
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dark state'’. The calculation of the Auger rate could help us understand the detailed
dynamics of the QD blinking.
IL. the Suppression of Blinking due to in CdZnSe/ZnSe QDs

The suppression of blinking was reported by Wang et al.” in CdZnSe/ZnSe QDs.
By controlling the deposition process and the processing temperature, a layer of alloy was
able to form, and the sharp boundary was able to blur between the core and shell in the
typical QDs." Wang et al. suggested that the smoothly changing potential of confinement
due to the blurring of the boundary significantly reduces the chance of the Auger process
because the conservation of the momentum is hard to achieve'®. A further explanation to
this phenomenon was provided by Cragg and Efros'® with a one-dimensional model. On
the other hand, however, the calculation of the Auger rate could provide a three-
dimensional atomistic perspective to understand the role of the composition-gradually-

changed shell in reducing the Auger rate.

III.  the B-type Blinking Occurrence in the Giant QDs of CdSe/CdS

The “B-type blinking” is observed in Galland et al.'s study in CdSe/CdS giant QD
(g-QD)". The distinction between the B-type blinking and the typical blinking (or
referred as the A-type blinking in Galland et al.'s work") is the lifetime: the lifetime of
the B-type blinking (around 15 ns) is longer than that of the A-type blinking (around 5
ns). Although the lifetime of B-type blinking is comparable to that of a light state (the
fluorescent state), its photoluminescence (PL) intensity is only about Y4 of a light state.

Moreover, the B-type blinking was significant suppressed when the thickness of the CdS
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shell increased from 7 monolayers (MLs) to 15 MLs". Galland et al. proposed a model of
electron trapping to explain the phenomona.'” The calculation of the Auger lifetimes for
the both A-type and B-type blinking could help explain Galland et al.'s proposed model"’

in more molecular-level detail.
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