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ABSTRACT ,

The problem of theorsitical anélysis of complex spec-
tra 1g outlined with attention to various methods available for
the computation of the Russell-Baundsrs wave functions, which
form a basis for most other computations. In order to investi-
éate intengity anomelies due to interconfiguration perturbatlions
in two electron spectitra, the non—diagonal matrix elements of the
glectrostatic interaction, between states describable by L-8 wave
functions, are computed by the symbolic “spinor"formulation of
Vieyl's group theory as developed by Kramers and Brinkman. A
closged expression is obtained which embodles the results of what
would be in the Schrodinger method a sum of integrals over angu-
lar wave functions; ©The radial 1integrals are stilll to be evalu-
ated. A nealt graphical method for computing the radial integrals,
providing Slater's gpproximation to the Hartree wave functions
can be used, 1ls worked out.

Trensition intengities are computed using this config-
uration interaction, and the effect of Introducing as well that
of the sgpin-orbit term 1lg investigated. Formulas are derived
which show that the first-order term in absolute Intensity anom-
alies ig due to the interconfiguration electrosgtatic term alone,
which however lea&es relative intensities within a given nmulti-
plet trangition unaffected. The first-order correctlon term in
the latter (second-order term for absolute intensities) depends
‘upon a product of faclors depending on the electrostatic and

gpin-orbit interactions regpectlively.



I. INTRODUCTION AND GENERAL OQUTLINE OF THE PROBLEW,

The problem of analysis of the spectra emitted by
various atoms, and the corresponding one of accounting theoret-
ically for the particular sgpectrum observed wag First attack-
ed with any degree of sguccess by Niels Bohr in 1913, His
analyses, based mainly on élassical dynamics, brought out the
conception of the atom as a minute solar system with the elect-
rong revolving about the nucleous in orhitsg whose energles wers
predetermined and had certain discrete and fixed valued, Later
modifications of Bohr's theory, together with the introduction
of the wave mechanics of Schrodinger, and the work of Sonmer-
feld, made necesgary the abandonment of the idea of discrete
particles revolving about the nucleous, but left iIntact the con-
ception of the existence within the atom of a set of discrete
enérgy levels characteristic of that particular atom. Furthur,
each of these energy levels was assoclated with a particular
state, of the electrons within the atom, which could be describ-
ed approximately in terms of a specific configuration of the
electrons, having definite valuesﬁ%heir angular momentum, their
spinsg, and thelr modes of céupling with the nucleous and with
each other, but having no’éefinite values assigned to the elect-
ron positions, That 1s to say, the electrons total energy was
perfectly described, and the component parts of that energy
were approximately so, although its position was not.

Hach of these configuration states is déscﬁibable,
according to the customary theory of wave mechanlcs, by means

of a wave- or elgen~-function of the spatial coordinates alone,



which satiegfies the Schrodinger wave equation
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and through it 1s mathematically connected with a given total
energy level, or eigenvalue of the eguation. According to
the usual theory this.eigenfunction of the spatial coordinates
alone, degcribes the complete state of the system, including
all observable physical duantities, such as momentum, average
position in space, etc; all these guantities may readlly Dbe ob-
tained from the eigenfunction by meansg of simple quadratures.
This follows from the conception of the eigenfunction as the
amplitude funcition of & standing wave, which symbolically has
the same total energy (the connection between matter and wave
is contalned in the Einstein equation for the energy assoclat-
ed with a wave, E=hy) as the particle whose state it describes,
and the square of whose amplitude (hence the square of the
eigenfunction) represents the probability of finding the part-
icle at the gilven point for which the amplitude is coumputed.
The basic units from which are built all atomic wave
functions for the various complicated cases are the simple

gpherically symmebric wave functlons (hydrogenic wave functions)
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which are the solutions of the Bchrodinger wave edquation for
the Hydrogen atom (put V = -e®/r in 1).

In order to obtain wave functions for the various
states when we are dealing with atoms having more than one elec-
tron it is necessary to obtain first an approximate function

which describes the Btate assuming that no interactions exisgt



between the various électrons, and then, proceeding by one of

a number of methods, 1o obtain a more exact function which

takes account of the interactions. To get the approximate func-
tion we write the wave equation, omitting the interaction terms

in the potential ensrgy,
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and since thé electrons are then independent, we can separate
the egquation into & series of equatlionsg, each of them functions
of the coordinateg of a separate electron, and obtain the sol-
ution as a product of hydrogenic wave functions, each of the

coordinates {(including epin) of a different electron.

T Qo il - flwin) (4)

At this point it isg necessary to introduce the Paull
exclusion principle - which in one form says that only those
states are permissable in the atom, whose wave functions are
antisymmetric with respeclt to the exchange of any two electrons.
In order to satisfy this it is noted that since the electrons
are so0 far independent the coordinates of any two may be permut-

ed in (4) and the resuit ig still a solution of (3)s furthur

any sum of such permutations 1s a solutlon. Flnally, Slater
has showr’ that the particular sum of such permutations which is
completely antisymmetric in all electrons, and hence is the only
permissable solution, may be represgented in the form of a det-

erminant,

ﬁ[/(u. i) lﬁ(m/z) o ‘/’(M!\Q \
o by - -, (5)
‘P (nn,nl‘“hﬁr/')zl"’N) = : ' e

“#wdd e )

* Dwne has shewn Thet Slaten hes ouly made use 07[ Thes Fhieoren .



This, then, which we shall call the Blater wave functlon isg our
first, approximate, or zero-order wave functlion for an atom con-
taining several electrons.

Now it can readily be shown that these zero-order wave
functiong form a complete and orthogonal set of golutions of the
homogeneous wave equation (3) and hence that any solution of the

inhomogeneous equation
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(wvhich is the exact equation for the multiple electron case,
and hence whose solution 1s the exact golution we wish) may be
expressed ag & linear sum of thesge zsro-order funcitlons with
the proper coefficlents™, Hence the problem devolves into one
of finding the proper coefficlents in the linear expansion
which glve the particular'solution degired.

In order to find these proper coefficlents we may
proceed in one of a number of ways - one of which is the direct
method of the Schrodinger perturbatlion theory. In this we con-
gider the inhomogeneoug term of (6) as a gmall perturbing poten-
tial consisting as it does of a series of small potentials each
arising from a poseible interaction between certain of the sev-
eral electrons present. Hence asgs we make use of each small in-
teraction potential as a perturbation, we build up as it were,
a ane function which takes account of sach interaction, step
by step, and thus is at each step a closer approximation to the
true function which takes into account all interactions which
may be present ih the atomic systém. The formal procedure at
each sgtep 1s simple enoughs we assume a linear combination of

zero-order functions {(solutions of the homogeneous equation),



substitute it into the inhomogeneous equation, and solve for
the coefficients by guadratures, obtaining for them certain
complex integrals involving the perturbing potential which the
wave function is to take into account.

Naturally since the total number of possible inter-
actions of different types among a group of several electrong
is manifold - furthur all interactions are not of the same or-
der of magnitude - we do not try to take them all into account,
but simply calculate wave functions which describe the more
important and specltroscopically distinctive interactions. This
means that, at best, we have only approximate wave functlons,
and furthur, even these approximate wave functlons are sometlimes
extremely difficult to calculate by this direct process since
the expresggions for the coefficlents Iinveolve integrals which are
7complicated and often imposgible to evaluates.

Inalmost all spectroscoplc problems the firsﬁ and
most lmportant interaction which is taken into account is the
electrogtatic interaction of the separate electrons, which sgerves
to remove part of the degeneracy present and allows the system
to be expresged in terms of the total angular orblital momentum
L which may be thought of as a gpecific vector combination of
the individual angular momenta, 1;, of the separate electrons.
The next interaction to be consldered is that of the separate
spin momenta, &;, to form a total spin momentum 83 and finally
the interaction of these total momenta L and 8§ to form a total
angular momentum J for the entire system, It would be theorst-
lcally posgsible to bulld up the wave functions which took into

account these particular interactions ( these are known as the



Russell-BSaunders wave functions or the functions for L-8 coup-
ling) Dby the above method, by introducing the various potential
energy terms Z;‘ea/x}-j . ka(r‘l) (Be8; ), Z:' 1{2(1*,- ) (T -3:)
into the wave ;quation, bué the practical difficulties and com-
putations as mentionsed above are almost insurmountable, For
this reason then, and since these Russell-Baunders wave functions
approach very nearly to an accurate description of the states

in most of the simple atoms, and hence form a starting point for
the calculations to take into account various anomalies, it is
necesgsary to turn io another method of compulting the wave func-
tions; that is,’the proper coefficients in the linear sxpansions
in terms of the Blater determinant functlons.

It is perhaps advisable al this point to outline the
procedure to be followed after these Rusgsell-Saunders functions
are obtained. It 1s desired to investligate the anomalies in
intensities which are produced in the spectras of two-electron
atoms Dby the fact that the energy levels are not accurately des-
cribed by thesge L-5 functions configuration by configuration,
but rather that each configuration is somewhat distorted by the
pregence of the others. The important perturbing term in this
case (this has been the consensug of opinion, its veracity will
be examined later) is that of the electrogtatic interaction, the
non-dlagonal elements of whose matrix are neglected in comput-
ing the energy levels of the various configuratlions when they
are consldered separately and describable by the L-5 wave func-
tions. Hence it 1is necessary Lo compulte the interconfiguration

eglectrostatic intseraction, which 1is

o ¥ z L
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where the gpos are the Russell-Saunders functions, already com=-
puted, which describe the levels in any one configuration con-
sidered separately. Knowing this interaction Hla it is possible
to bulld up wave functions which take into account this inter-
configuration perturbation to any desired degree of approxima-

tion by taking additional terms in the series

‘Pdl S /R S A AL 5° E° g[» ; ES Ee-Hu

g (8)
With these accuralte wave functions it 1is simple to compute the
theoretical intensities of the spectral lines, which can then be
compared with those which would be obgerved 1f gtrict L~2 coup-
ling were present, i.e¢. 1f no interconfiguration interaction
exigted. Thege intensities, or transition probabillities, are

proportional to the square of the amplitude of the electric mom-

ent between the two states involved.

I« [A;]" = (e J\; 72 J?] (9)

- The essentlal problem, then, is the computation of the inter-
configuration interaction, and its precursor, the computation
of the L~ wave functions. It will be seen later how both these
steps may be accompliéhed in one process.

The ¥Matrix Method.

A gomewhat more elegant method than that of Schrod-
inger for computing these required functions is that followed
by M. 8. Johnson® which takes as its basie a combination of the
matrix theory of Helzenberg and the operator calculus methods
of Jordan. It is hardly necesgary or possible here to go into
all the intricacies of these theorles; suffice it to say that

the operators which are used to repregent physical quantitiesg



are symbolic in nature and are used as such purely aé a mathe-
matical device which serves to simplify the equations and achieve
the same results as the fundamental SBchrodinger theory. These
operators which symbollize physical guantities are absolute in
nature (as compared with the representation by means of a matrix)
and as such are not physically observable. Physieal quantities
are algo represented by matrices, but in this case we are deal-
ing with a relative aspect of the physical guantity which is
physically observable. The matrix elementeg, which may be written

a = fag;l a; :‘f¢Q¥a&9%[dt , are consldered the
only part of the guantity “a" which can ever be observed in a
physical sense; they are the different aspects of the quantity
which can be observed when the system is in the state ¢, or un-
dergoes a transition from the state ¢, Ho the state ¢g , and
hence may be thought of as playing & role simllar to that played
by the separate Pourier components 1in ordinary anslysis. It is
obvious that they are relative éincextheir form depends upon the
particular set of wave functione which is used to describe the
system, and hence upon the point of view . Bince variousg sels
of wave Ffunctions can be used to describe the same system ( all
that ie reguired is a complete orthogonal set), and all must
lead to the same absolute results as far as the constants of
the system are concerned, the so-called transformation theory,
which consiste simply in establishing connections between the
different points of view , was buillt up.

Johnson'’s method is a sort of composite based upon all

of the above. In order to compute the wave functilons for L-S

coupling, it 1s noted that according to the definition of this



coupling scheme, heretofore given, L®, 8%, either L°8 or J%,

and J, must be constants of the motlon, and this in the matrix
calculus meane thalt the matrices which represent these quantities
muet be diagonal, after all degeneracies have been accounted for,
when referred to L-5 wave functions. It 1s only necessary then
to compute the matrices of these quantitises in terms of the zero-
order, or Blater wave functions, and find the transformation ma-
trix which carries them to diagonal form when applied in the
ugual manner; The elementsg in this transformation matrix then
repregent the coefficlients 1n the linear expansion of the L-H
wave funcitions in terms of ‘the Slater functions. For example if
R is a hermitian matrix which transforms the matrix A® into a
diagonal form

=L 5 O — —
(RTIAPR )= Age = 4 g Soo (a)

and. the matrix A® is computed from the wave functions‘PO

8 = A%l = If ¥ A b ) (b)
then it is easily shown that the wave functions which make A
a diagonal matrix are given by Y= RY®, For,

Mg = Sy Rbede = JE TR AT Rty oo

by (aj D

The computation of the matrices for L®, 5%, and L+8 in the zero-

ot ° - o
= ;‘—‘; Rep Rio [$IAlde - BR‘“" A Ria = Ace Sge

order sgcheme is accomplished with the aid of the formulas devel-
oped by Condon®, and the transformation matrix is determined in
the manner 1in which any prinoiple axis transformation is found.
The procedure 18 relatively gstraightforward and is subject only
to the drawback that is not general and the funetions for sach

configuration must be computed individually from the beginning.



10

The Vector Addition Hodel,

A more general method, known as the 'vector addition
model" , which allows us to carry out the process of finding the
wave functions in terms of arbitrary l's, s's, and L, 8, J and
only substitute gpeecific values for these variables in the fin-
al expression, is derived from the processes of group theory*’®,
In this connection, it hag been shown®’? that the problems in-
volved in wave mechanics are analogoug to those of linear orth-
ogonal transformations in a vector space of n-dimensions (Hil-
bert %%S%éﬁfﬁgﬁkh the modification that in the wave-mechianical
enalogue the coordinates of a point are considered as complex,
g0 that the distance between polnts becomes the sum of sguares
of moduli, fathér than of coordinates themselves, and hence
orthogonal transformations become unitary transformations. In
particular, Weyl®, in his analysig of group theory, studies the
transformation properties of the solutions of the wave egquation
when the ordinary three dimensiomal coordinate system 1is sub-
jected to a rotation, and uses them to derive many of the pro-
perties of the atom.

The wave functions which are correlated with a gilven
vector 1 and a projectlion mq are represented by a varlable which
behavesg like this vector 1 when subjected to a space rotation,
(ise. to a unitary transformetion in two dimensions). This
meang that when we have two variables %%; and ¢h~, i.e. two elec~
trons, combined to/form a new variable L = I, + 1., we must
gseek linear combinations of the products of the two original
variables \b}hm which behave like the vector L when both 1, and

lp.are subjected to the same rotation (the quantity L is to be
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invariant to a rotation).' {(In all this work we are dealing with

the angular parts of the wave functlon onlys the‘grou@ theory

provides a representation of certain of the combination,and
transformation properties of spherical harmonics,) The’procesg
is somewhat as follows., First we seek the propér'variable t5
represent dﬁu. The simple unitary transformation in two dimen-

glons which corresponds Lo a space rotatlion is

l:eL +
5 9 (5* where 5gcf, § s, N are complex
m' = ~€6-fd*n variables in the unitary
space and d,f& are complex
constants.
u¢*+PPﬁ'=i * denotes the complex con-
jusate.

Now a tensor of order v which is built up out of these
P o v~ ,
guantities 52 » has v+l components of the form 5 ‘ 7L ’

which transform as follows under the above transformation.
| Lot -¢ ( s ™) e
5/\!—(_%10. = (45 1_@”‘)" L (,F¥S+ ’(x,,l)t - é_‘l S(‘K 5“4:4

o . N .
where Su?lﬁ the tensor of the transformation and

involves «, @ ,d*,F?. In order to make this transformation unit-

ary, it 1s necessary to introduce a constant factor, and choose

VoK o K
v =
?K Cv- ) !

To correlate this with the wave-mechanical problem put v=21,

as the variable

and m, = 1-k, whereupon the varigble becomes
q«‘—(»hu ry\'Q"NP

4 2
z"% m m’Q:&, Q’i,“""/?“j,"/Q

It is easily seen that this variable 1s associated with the

guantity % and hag 2%+1 components, and thus may be used to re-
present Q;? in the gpace spanned by the one electron. The

monomials 54+““q*“‘ , Where 5 and “| undergo a unitary trans-
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Tormation, constitute an irreducible representation of degree
24+1 (£ = %41,3A,~~*-) of the space rotation group, and except
for the identity there are no qther lrreducible repressntations.
Thus these monomials represent the degired wave functions®,
“When two electrons having momenta 1i and ls respect-
ively are involved, the variablesrepresenting the separate wave
functions may be written -
5 e+, L~y
0, : < Le.& - S

wedy Y (2, +ma)! Ra- )

and the space for the combined system will be spanned by the

variables -
‘e 1 ‘Q(‘ [ ’(1"""\\. e e
E' -+ 'yl‘ w ?71 11} 2

9 ¢ -
Q“’t = 7..“3.‘1\ = 0 rw)t (B w)) (O k) (- win)!

e, e,

When we subject 2ﬂ' and Zﬁ;'to the same unitary trans-

formation

502 A5 giiw‘ﬁwﬁm
"/ = - S+, n, -p*gh+x*qk

\u

(1.e. each undergoes the same rotation), the variables (Qi;ﬁ
are subjected to a transformation. In accordance with the idea
of Rusgell-Saunders coupling, that linear combination of the
variables Chﬂfk is desired, for which the resultant vector
T = 11+ 1l remains invariant to the rotation, i.e. 1t is a con-
stant of the motion. Huch a linear combination will result if
it can be represented by varlables which transform in a space of
degree 2L Iin the sgame manner as %& did in a space of degres 2l.
This will be accomplished if these variables transform cogredi-
ently with a form of the type

Lt Mo Y L-Me
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or conversely, contragrediently with a form of the type
5 Lo o At M. L-Me
ML - /A st),’ (‘—ML).'
In order to obtaein thisg linear combination it is con-

venlent to form the invariant expression

T R A M CH L Ve B A D
= ) We Xn where L= B+ 4, =X
Hence since A 1is an&invariant'wgb muet transform contragredient-
ly to Xy and it is easily seen that the coefficients of Xj in
&, that is

p(ﬁl M = Wy, + g,

[
Wr‘;‘, = & P € g, QWI.WA;

Py, Mg, F‘-: V\OV"MQ’IZM“? (mc-l-ur

are the proper linear combinations which give the linear expan-

N [ .
sion of Y, in terms of ﬁi| 2 in the form

"PL A fLc ol b ffe. ‘Pf&zez

My LTPR72Y g, wegy
N o S (Ora) () ot ! (frvs)! (v LMD,
e L O e e n ) (GO (10)

Mp= W+ A= ,Q\‘\-’et“—

and this is valid for li, lz, L sither integral or half-integral.
The above exXpregslion gilves, then, the proper coeffi-
clents to provide for the coupling of 1; and 1, to obtain L. It
however 1s perfectly general and 18 equally applicable to the
coefficlients which are requiredkwhen any two integral or half-
integral vectors are coupled to give a third such vector, Thus,
it is only necessary to apply the same formula in ordef to coup-
le g, and s, to obtain 3. The two functions which afe then ob-
tained may be regarded as simple functions and L and 3 coupled
to obtain J, by a repetition of the same process. The resultant
function ‘P:Q is thus expressed e a linear combination of the

original one~-electron functions.
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T L, S £, Ls 5 3,5, 4/ n
7 Z‘n C ‘ Z M wMg Wy uq ms,_
2 = My ' M, Ms L, WM L HS S, e Y
q)“l' ﬁ‘-& Mg I, ey Me, Ns S
My ~ M+ Mg L Mps Wk WLy 3 g = g »MSy

where the C's are determined as above and Qusz is a
normalization factor for the linear sum (the one electron func-
tions arekaseumed as already normalized). This process may
geem somewhat complex, but specific cases may be written quick-
ly from this formula directly, without having to go through the
entlre computation from the beginning for each configuration as
is necessary when uSing the Johnson method.

Although the vectdr addition model, asg has been seen,
provides a qulck and direct means of writing down the linear
combinations of the unperturbed functiong which provide a deg-
cription of L-8 coupling, this is only half the problem. The
matrix elements which measure the interconfiguration intéraction
remain to be computed. It was thought possible 1o proceed asg
followss SBimply write down the ordinary expression for the matix
element between two such ¢3's as have been computed above,

SR The BT

e 0’,* Sf ‘P',..‘__—Q‘:._..‘, sz.dr
rj:lﬁslﬁ:v‘-tsb ) Z’ ¢ ’ * y) Rz ¢

The integral breaks up inlto a series of normalization and orth-
ogonality integrals, which simplify the expression somewhat, and
finally,after a few integrals involving three spherical harmon-
ice of the typs considered by Gaunt® have been evaluated, re-
duceg to a series of Tinlte summations involving the numerical
coefficients, and a single finite summatlon, having only a few
terms, taken over the radial integrals of simple one-glectron
wave functiong {(this latter sum 1s independent of the first

group). If the first summations, involving the coefficilents,



15

could be carried out in general, & concise formula for the ma-

trix of electrostatic interaction between L-5 wave states would
be the result. Unfortunately this is impossible, since no mat-
ter what method of attack 1s used, eventually there appears for

summation an expression of the type

g ” A (B+A)C!(DrA) E!
g:’ %Q“Q‘Q‘LH"”) = yz" (A-w' (B4 M (C-»)T (Diw)! (E-M' A!

Az 4w N B=L-ALy +n J C= L eMH-n J D=z L-£~ Meu, E= 4+4-L
Inl € 2,

This function ceems to be allled closely with some of the gen-
eralized hypergeometric functions consihdered by Dixon and Whip-

ple*®

, but the peculiar relationsg which exist between A, B, C,
D, and E do not f£it into any of the gituations there considered
which permit summation. Furthur, due to various singularities
which this function possessges it scems impossible to relate 1t
in any usuable fashion to a summable function by the process of
analytic continuation. This of course means that in order to
gvaluate the desired matrix elements, it is necessary Lo sub-
stitute into the general formula specific values of the guantum
numbers from the beginning, and write out the sums term by term.
This we could have done using the Johnson evaluation of the L-3
wave functions. It then appears that the introduction of the
symbolic methods of group theory have galned us nothing vhen
they are only used to determine the wave functions, and we rely

upon straightforward integration between two of the predetermined

wave functions to obtain the matrix element.,

The Bpinor Method of Kramers,

Thege difficulties are surmounted by the very elegant

and general formulation oﬁ‘Weyl’s group theory. methods which
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has been developed by Kramers®? through the use of symbolic
representations of not only wave functions but also of opera-
tors with properties which are well known from the theory of
invariants. It will be remembered that, in evaluating the L-§
wave functions by the group theory method above,Acertaiﬂ invar-
iant expressions {see page 13) were written down which contain-
ed the desgired functions in the form of coefficients of certain
variables. Thege coefficients were picked out and set down as
the proper L-5 functiond with which to proceed in the evalua-
tion of the matrix elements by ordinary integration. The ess-
ence of Kramer s method 1g to leave the entire expregsion as a
symbolic representatioa of the whole group of wave functions,
and to introducs this into the integral for the nmatrix element,
after replacing the perturbing operator e®/r,, by its corees-
ponding symbolic expregsion derived from 1its behavior under a
space rotation, It ls then possible to work out the entire int-
egral (except for the radial part) in general, without substi-
tuting any specific values until the work ig completed. Thus
the two essential steps in our problem (before transition proba-
bilitiss can be computed) are combined into one process. In
carrying out Kramers procedure, which 1s algo known as the "%pin—
or Method " since the wave functions and opsrators are represent-
ed in terms of the behavior of spinors (a two-dimensional com-
lex vector with componente § » M ,*2), it is convenlent to eval~-
uate the function and matrix elements between states defined on-
ly for orbital momentum L at flrst and later to introduce the
spin and spin-orbit coupling factors. The method of evaluation

follows. Brinkman®® has carried out some similar calculationsg
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along the same lines, but he dealt with a simpler problem which

involved only one confilguration.



II. COMPUTATION OF THE MATRIX ELEMENTS (ANGULAR PART).

We now proceed to the computation,by the direct
‘spinor' method, of the interconfiguration interactlons which
we reguire in order to compute the transitlion probabilities
for the twé celectron atom in intermedliate coupling. This
soinor method, as we have seen above, precludes the necess-
ity of formally computing the Russell-Saunders, or L-5 , wave
functions for the unperturbed states, gince the proper cosefl-
ficients which are reqguired are already contained in the lin-
gar transformations which we use In group theory to represent
wave functions. Furthur, we may first compute the interac-
tion between states which are described by only the angular
~momentum bf their electrong, and latsr modify thisg according
to their spins and spin—orbit coupling (J).

Hence we now concern ourselves with the non-diagonal
matrix elements of the electrostatic interaction (e®/r,.)
between states in different configurations, neglecting the
gspin of both electrons. The angular monentum of the slesctrons
in configuration I will be denoted by 1, lg and in configur-
ation II by A,,A, . For our unperturbed wave functions we
shall take those linear combinations of ¢Zﬁ_ , and of JL;,,
for which L® is a diagonal matrix, and denocte than?mrgﬁaL or
1PXLA , according to the conflguration to which they refer.

The symbolical representation methods of group the-

12533 gapnable us

ory as developed by Kramers™*, and Brinkman
to represent directly, as space rotationg, the transformation

properties of Yo ’4§£4 and their analogues for the A elec~-

18
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trons. If we represgent

the 24 +1 wave functions for £ by the monomes j."p'm'"z.p"m'

the 24, +1 wave functions for 4 by the monomes g;ﬂ*”“ﬂI“NL
the 2 A4 +1 wave functilons fér A, by the monomes % )7# %'\ﬂ
the 2 A+l wave functions for A, by the monomes §Lk”f°ﬁ?h7”

then the functions gy, transform like the (24 41) (2.4 +1)

expresgsions ¢mm_ j+m. A, = btimy S -

TS e

and a similar expression may be written for ¢ﬁx, o

In these expressions (9,,7 ), (5.0 ), (5,7 ), (55,,‘;22_;)
are varlable spinors. The subscript 1 refers to a function
of the first electron, 2 to a function of the second elec~-
tfon, while the bars are introduced to denote that the radiasl
part of the wave functlion may differ in each case. The ang-
ular parts are all the same intrinsically - the differences
being taken care of by the powers to which the various spin-
or components occur.

The transformation propsriies of the 2L+l functions
ﬁ%AL , and the 2A+1 functions iaam may be described by those

of the sxpressions

' t TN Xn
Proy = P Al R
=%
fum = P ‘%z Re
whers _ _ = = =
PJ. oo ‘%_3,*7/?:. PS = "’72.;1 + '7152_ (1_{)
Qo = ~45,+ 27 Qe = —65 + 47
}—:{i; = -5, +aTle Ry = -—65—:; +2 7
o = —g—#/—,,—-L Ay = lr'/’;))—'
o= L b-tr ,3:. = A +A - A
al/ = 4 % .K,~,/, d; - A -/-AL -’l'

and (a,b) is an arbitrary constant spinor (does not transform).



Thus ék&ll is a homogeneous invariant of degree 2L in the
components of the constant spinor (a,b), and the coefficients

of the 2141 monomes are linear combinations of

gLt 3 LM
the functions ¢,z -, which, because of the invariance of & ,
transform like the 2141 Wave,functions’aiagonal in L®. These
then are our unperturbed wave functions mentioned above. The
game may be said of jaij o

Thus we may write symbolically in one term the ma-

rix elements of e®/r,; between the functions ¥z, , and ¥ ,,
142 i AL

for all values of M, and M, .

R ffx,:; €2 Bl A7 (12)

Lt b ">
This expression must obviously be an invariant in a, a*, b,
b¥*, or else zeroc. Now the only invariant built up of these
quantities which exists everywhere in the space is of the
form G(aa* + bb*)F 12 go that in (12), a and a* , as well as

b and b® must occur to the same'dezgree. The condition for

this is simply that Bv¥ = ol
or 2L = 2N Therefor N = L = L
_Qj,,}:f = 0221 SLA (aa¥ +bb* )2

In order to adapt dﬁr-functions to the operator
e®/ris which is a symmetric operator we must intruduce sym-
metry considerations into them. We put

— ==, /) '
FS - EBYQIR vy BN RS
£l ! ’

wnere —_

B, = - 75 7.5
B — _ (13)
Qu = -85 + 97
and S o s L PO < B
-ZJA)/\L - ?2. @" Rl *= Lo 2

20
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where — - = = =
?g = ”’-'?lft'f/)?;;l
Qe = —65 *47 (13con)
R'g = —Af:*ﬂ'f_?—

end P, Qu , R, Py, @z, Rg, are as before, so that these
functions are then symmetric in the two electrons with the +
sign and antisymmetric with the - sign. The index § has been
added since the choice which is made later between the + and
- signsg will depend upon &, the spin.

' Thus far we have not spoken of normalization fac-
tors -- however it 1g necessary to introduce them at this
point in order to avoid ambigultly later on since what we wigh
eventually is a matrix element between wave functions which
are normalized as far as angular momentun is concerned (il.e.
AL, XA L 3 the part for spin, etc., will be introduced
1ater). First it will be assumed that the radial part of the
function is normalized, and that for the angular normalization

factor the following notation is to be ugeds

NCLC&&) = Ny = N(htas b)) = [Eoor feorde
NI(AA) = Ny = N(AdgAd) = [EFas Foa de
N(12312) = [&f. 5?:,2,1; 47 = N(2) (14)
N(12s2l) = S &, dc |

and both the latter may refer to either the £ or A electrons.
In order to introduce these properly we note that in arriv-
ing at the expression flor the matrix element with the gymmet-
ry functions (13) we write,

g 2

s
3 o

e éAIALL - (Z_; "Q,{.ALL —f

Y7 S YN
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*
g0 that after multiplying through by @isz and integrating

we have S¥ &2 5 5*¥ -
‘/9;%4‘ Zin Lianede .(Z{’f‘/./’ rene $rac T
Ie /A A Yo Mg

* See below.

The right hand side becomes
2%t /(ﬁ*d'o*ﬁ'é*”f PG gl (ol R+ BPT5 TRP) 4o

AcAy A Vi
= 8 N1z 12} N(zrp2r) £ Niz;21) £ N Cer:
= _Q_A‘/\‘L /2,/’ + 2/ ,/ZY{ 2;21) £ N(Czr /z{/
_ L8, N(rz72) = N(2/:42) ‘
- IZ—Q/LA;L [ Nz
Py since N(1l2:;12)=N(21;21)
= 2L - 4 | . N(12;21)=N(21312)

gince if electrons J/, and ./ are not equivalent N(21312)=0,
and 1f they are equivalent we have only one initial wave func-

tion as the one with the - sign is zero and has no meaning.

Thus Fii _ci‘i Eide
? ’ij'L = Z‘/‘ ——’/fy.f;&é 4]» ﬁ—,-‘—.—“ 6(?

ig the element between completely normalized wave functions,

and can be expressed in terms of the symmetry functions (13) as

G0, = 1/2/TTr (J1 o+ Je + (Js + Ja) )
where ¥, _x 5
g, = /?1 Q7 R, e®/rie PEQS R,

e, — %] " : pral (Sal: SUN- 1

Jo = ) Pi Qi R e%/rys Pa Ga R (15)

e d; [} . L 1 P

Jg = /?I‘(Q; R:/ 6®/ry 4 P:z Qg R:ar

1 Ty ¢ hord ;,‘—b';‘ ~
Je = [ PYQTRyY /vy, Pa s RE

We must now compute these separate integrals.
In the usual manner we expand €®/ri;sz into a sum

of Legendre polynomials,

e h L
es/rlg = rz'—l[ = rz' /ly:J-I "?? /c@ﬂ/,;J

. 2z
Kramers*® has shown that -2, transforms like c,.(-xiyz + Xsyi) ,
YA

where (%,y,) and (x,y,) are spinors depending on the compon-

"A,/ﬁr I‘t.“/b/ac‘lnj e%:z 6‘7 +he ‘,}berg'/or.s‘ .az, n///(4 o Ilo?%ll:‘j + d‘,/%"(% —/4‘0 Valoe q/,q‘l

:;; /7;:‘;::»:2?':4:‘,},” integrals ow Fthe lefit sof- whih insvre 2 QY /s diagomal i M as
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ents of either the first or second electron, and hence trans-
b4

forming like these components. c, is a constant equal to

e~ rt

o ¢ This symbolical expression 18 now substituted Iinto

(15) and a new notation for the wave function isg introduced.

¥of, ¥4, o ‘7 (9 L*l" -
Jdy = §J§ = é'f P Qy R: . Py Qa‘, B-;
= ;z:'f [«/6.2] o (g ] te)
E.‘ j (d.ﬂ.b/. )(—mes+Xzyl)2z (apude) R* (@pd, A pur)

i

i

So that [« 3]z entire wave function with the electrons in
the first order - definition of symbols (11).
[«¥p]= entire wave function with electrons in re-

versed order - definition of symbols (13).
(oqef )= angular part of wave function - Tirst order,
(d~Xp ) = angular part of wave function - second order.
R¥(abc ;def ) = integral over ¢, of the radial parts
of the wave functions.

Ii is now convenient to replace the operatort®s*?
for ¢ by a homogeneous one of degree 42 in the variables
5“;7K’3§37§ by means of the substitution

K= S~ "

{ﬁn = e+ GF (17)
. 80 that we then have all parts‘of the integral in terms of
the same variables. Furthur we can now drop all the bars
which wére usged over the spinor variables in the wave func-
tions to denote differences in the radlal parts since we have
separated the angular and radial parts of the'integral, and
the differences in behavior of the angular parts are complete-

ly determined by the coefficients =3 ¥« 6 p ¥, -

A
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After introducing the substitution (17) it is poss-
ible to subdivide £ in terms of certalin invariants which can

be bullt up out of the $,~ epinor components.

0o = eo [§3] « 14F - 25F + 19]°

where j1f = 55 +1.7* 343 = ~rgFem* 5l
{23 = 5+ BT §s7 = S5+ o (18)
233 = 7§, +n7l5"- {6} = 525‘4¥+ “'1:.'71*

The integral (16) is gimplified somewhat when we
introduce the operator (18) since many of the terms which re-
sult after multiplying out the integrand turn out to be zero.
This is readily seen from an exXaminatlon of the typical term

from which ig bullt up the integral. The term is of the type

‘/5\‘4"/""’7*—{{-’"' 5—/+m 7(’—»«

wnich is equal to zero unless 1’ = 1 and m’ = m(it is equi-
valent to the orthogonality coﬁditioms on the sgpherical har-
monics). Hence in each non-zero term 5. and %& must occur
to the same power ag 5K and %k . This gives us ceriain con-
ditions between the relative powers of {3}, §4}, {5}, f6},
and the coefficients «A3,4§ occurring in the integral which
must be satisfied in order to obtain a non-zero result. For
example, in the case of Jf; one obtains from (lSixlj),aﬁd’(ll)
that outside of the term v ,

ﬁf,ﬁf occur to the power 24,

JahmF occur to the power 2 A

5. occur th the power 2 A

9.,%> occur to the power 2 \.

But in the term L, powers of,
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¢¥ and @* are obtained from {4 and {61

§Fand #¥ are obtained from {4}and 5]

5, and 7, are obtained fromj3}andf5;}

%, and 7. are obtained from{3} and {6
and hence if P,» denotes the power to which f¢} occurs in the
integral, the condition that the powers of 7f;‘m* be equal

to those of §,,% gives

24 + Py 4+ Pg = 2X + Py + Pg
{21L+P4,+P5=2«\»+P3+;?5
and thus '
Pp =Py = (AitX) = (£, #4402 ) = oa-et, = 1
Py =By = (A=A ) - (f-4 ) =Ptz s (197

These eguations will serve to define the quantities r and s,
and we may furthur add a definitlon of a similar quantity ¢
(AA) 4 (ALl ) =.-¥ = p-Ye = g (19)

Before substituting these conditions into the ex-~
pansion of (18) we shall examine certain other conditions
which serve to furthur limit the number of terms which actual-
ly contribute to JliL . Bince each of the J° integrals (16)
represents an integral over the entire range of variables for
gach electron, the integral will be zero if the integrand is
an odd function in terms of the coordinaﬁes of any one elec-
tron, i1.e., if it changes sgign with the substitutlon

Xje = =X Vi = =¥ 2’ = =Zg (20)
where k refere to the coordinates of the k’/th electron. Now
if this substitution is introduced into the symbolical int-
egrals J¥ , the corresponding substitution in terms of the

gspinor components is (jé = 1% '7é = i7¢ , since a
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rotation of the axes through an angle 7 (to which 20 corres-
ponds) is equivalent to multiplying the spinor components by
ei'?-I = 1. If this is done we obtain for the product of the

wave functlionsg -

in 3F oo B(5g)=(-1)E T EIT R pc iy o (PN E(s, )
(s )=(-1)EHE T ) o (L) g

in 37 —emm B )=(-DT T TEE 5o = (1))
P57 ) =1 ) F (g

in Jg ~---- F(§' ') = (-1)% F(s,m)
Flgim) = (-1)F"" p(s, 4

in 3% —eem- Pl ) = (-1)7"* F(s,,2)

F(iml) = (-1 Fe,m)

Furthur the opsrator becomes,
(')
Ay (4 00)

since Po(m=6) = (-1)° P.(@) and the r. and r, functions are

(‘1 ) t‘-at ( .;"?l)
(-1)" 9 (S70)

Il

gimply absolute lengths and do not change sign.

When these results are combined the result is ob-
tained thaf the entire integrand of the various J" s will be
odd, and hence the corresponding integral will vanish, unless

the following conditions are satisfied.

For Ji° and Ja° b+ A, +E )
Py e } = even integer.
3 + 2
For Jg and Jg S+ A, 7
ok Aas = even integer.

These conditions are sinmply the mathematical statement of the
condition that the interaction ig restricted to between con-

figurations of the same parity. If this is applied to (19)
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it is quickly evident that s, g, and r must always be even
integers., Furthon ¥-%2/g s always even.

ie now proceed to the expansion of (18} in the us-
ual manner by means of the binomial theorem. When account is
taken of condition (19), the only non-zero terms are those

included in the expression

| = PR U o BTSN St
2y =ce Zy Kul3]T T4 ST 9
/l
where K 2T -4~ 2‘4—{««%) T Eoms
( (SFE — }""/‘/z—)( o+ -0

At this point it is necessary to distinguish be-
tween two cases, s positive and negative respectively, since
either f5{ or 56} , which ever exists to the lower power, is
to be eliminated by means of the relation

wilep - {3}4} = {5}{6}

For the casé‘—— g _positive we eliminate [5} and obtain,

-4 _-,\ st
0g = GTZ K, {377 Srapr i’ Z (is}m) M e3eay) /7(1)”*

med

Now put M= o+2 and collect terms,

%:%ilﬁﬂmwaE<MW(mw rr)er”

- C?ZT {33 ;4},\”-{‘}5}({'}{1} % A(7':1 'Sl)( i te Zx‘('&f_’g'a)[f'%;%)(t;ﬁ;!sy

O=o

after the order of summation is interchanged. Bub
BRI - zr<)(k)()

?- a-ts! Tty - - Isl)(t-+1 1+ A
S 2.)2.1 (l 0"') G+ 2 A +n

5o finally,

T."%‘N Py ) -
Q3¢ = c.c.AZ, K, 1334 53 5 (D12) .
- 22
5 NP N [] | +2 lsJ+A
vhere Ky = ¢t (25 )(TRENT 13; )

Z
Y /e ?__4_[%1 'a--p-%,lg.;.k
- (S (TEENCR
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For the case -- 8 negative we eliminate {6} and get, in a

similar manner,
2.__& ist

% .._~ 9 +"'+ A _a il L2t} 2tk
Bo= op i I i) e ) g (T4 ey

(-]

1%

Ky 33 4P 53 (e TR (23

g
= CT AZ:TQ
since g is always an even integer.

It is neéegsary to make one more change in the op-
erators (22) and (23) before introducing them into the inte-
gral. BSince the meaning of the spinor components j*and ¥
when used to operate on a wave functlion is rather ambiguous,
we replace them by the opsrators %é; and’§é% which trangform
in the same manner, =--- and then write each.of the operators
go that j occurs before %%, etc.(this is done to presgerve the
relation thatkg*commutes with § and should not bperate upon
it). This substitution does not impalr in any way the gen-
erality of the operators. Furthur it is neceSSary to arrange
the order of the separate terms so that they do not operate
upon each other but only consecutively upon the wave function,
(this would not have been possible if either {53 or {6} had
not been eliminated), It will also be noticedfthat the indi-
vidual operators {c} do not operate upon themselves sxceph
in the case of §1j and {2} . To eliminate the spurious terms
of degree legs than 47 (the entire operator must be homogeﬁ—
eous of degree 47 ) which occur because of the self-operating
character of {1} and {2} s 1t is necessary to make the foll-

owing replacements,
(gF — (Ld=p+)@I-#) - (C]-1)(1)
28— (L3 - g+0(T1-g) -~ (21 - 1)(2D)

[17'#
21'%

"

h

{3}1’—? La]"g &-Zl’ —_— [s‘]’fo
g3t 1437 fop — eIt
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where [v] denotes the operator after ﬁ*has been replaced by 365,
and M* by %bu -

After the above change hag been made the operators
(22) and (23) becons,

T—’r‘_"ﬁ—} s (A _s) A+
N = cp X Ky 53-7'1DJI?_%"“"“)[CJ'S'@] 282 a7
A=O

- P T, S {1 .4 _ist_ l"/‘. (24)
-‘Q?&(”: c, EK;\ [?JXLZI -2 ‘;'..k [s]m [1]'? 3 x@]
ATO

these operators containing s apply to Jf and Jf, similar oper-

ators can be worked oult where ¢ replaces s to apply to Jf and
*
Iy o :

The next step is to apply these operators to the var-
lous wave functions.

First of all, the result of applying the
separate [t] operators to the functions (notation defined in
(16) ) will be computed.

A summary of the results follow.
) P
1 = 5:55 * s,

a7 = '—;ibﬁ *-;;p%
1 - 5ok, + L& 51 = §.&, + 5%
(3 = =150+ 527, ] = T8, + mBu,
wp?) =

(= 150 + G271V (b5, @) P (- b+ ans)”
@Pp) = (M5 + 5 (-b5.+am,)” (~b5urans)®

e 1

(< p¥)

’ L] t

T'—ee oJaG roations on

Y

(7 (*e¥) = (arp) (3ApF)
[2] @par) = (r¥) («p¥)
[3] (3ar) S capsd
[4] («p.¥) « (5+9) (=L %)

[s] @px) = &(4p+1 ¥-0)

[o] (pe) = @ (% gL, 8+1)

(25)

"

(x+1, @, %)

W
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The ofar'qf:ons on (4,4’,,5) :

LI@5E) = @rd)(« 2 E)

L] @Fp = @+p)(PF)

B] @5A = — (@+1)p)

[1]@p) = ~=8 (x-1,8,p) (25)
[ (<) = p (=,9+1,8-9

] @Yp) = ¥ (= 2-1,6+)

These results are now combined into the. (2(¥) oper-
atorsg, and we compute the result of operating with them upon
the two wave functions [4p.¥] and [a',,b’,,(-’»,].

03w A] = op QL) [a-n, proisl, s 6]
D50p,8] = cp Q3 (Bp) [%a-n, prist Du-is(]
DWBAP] = cp QUK [xamn Faoist Bril]
.J’fz_w[d._,bf,pg: c, Q3 (pd) [o(,__,":},;, & 4151, Bo-is|]

(26)

where i
bl A -1l (-3 E1)
Slad) = & Ky @) Vlurdimd- freot )@Sso(dL%_A 12

’ A=o
?'-‘Y;Jg + x At _ ot A
Qslep) = 2Kyt Yarsrpr-n) EEEN plo) ¢y Ry LY

A=o

and the notation £W=gisg) - (-»+2)

The next step is to introduce these results into the

integrals for J¥ (16). We obtain,

30

il

f[d.,p.,r.] 23 (0 [, B V2]

s [(pa83) | o2 oy SEpEIC g, 1)) ) '«
QZ‘ 2’ (6,2./3»)} R (d.(z.f, i sz’) { y(a(,/g,r,) (cts-n, ﬁ;dsl’}'("ﬂ,—!si)

where the upper expression in the bracket applies when 8 = +,

and the lower when & = -, Condition (19) gives for this inte-

gral,
o= (A(+1L> - ('?.*'«ez)

g = (1./11,) - ('0,— P—._) = p\—ﬁ, = Xl-b;a_

i
%
|

e
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go that the integral becomes

N (N e p ) @ BT
d: = 5(&_@ )} R (o, ALY % gcd,l;;.m)(d.(&-ﬁ)

N -
= W(en) Qi{ﬁiﬁjfﬁ‘(u;,\.u

and it will be noted that a slightly different notation for the
radial integral ig introduced; the meaning is obvious.

SBimilar results are obtained for the other Jt’s.

5t = f[o«,mq,ng’ ) [« 5. p.]

_ 5p) 7 o2 - IR DICHN R )
= QS i (F,,{;, R (ﬂ‘”‘[g ,'d;‘ﬁﬁé) [YZRTY (& -, &2 I, fo-lsh

_ oY Jap) } 2 , @i p)(a K g
— Qra" {(6:5\‘) R (,Q‘_j' ,/\7, XI) 2 f(v(,pﬁp')(d.)’.ﬁ-)
(@ p) '
= (ﬁ 4) Qt { (@,P:) RE(L AL AN)
since (19) gives s/ = (A-A ) = (£,.0,) = p-po =¥-0, = -8

35 = [l X p Y 2B [ap0]

- (91 d/.)} - € [ [ » ;B‘L {5(&,?#)(«;-4 p" ‘31 (1'-}-‘%))
= ?(hp) R (.X,{Sy'dF ) \5(“0’?) (J—J\)f’*'i':d/l'g)

= 0p ™0 b, p) (4.5 o)
- Qg%%@l(«h) ’gv‘)’pl J A' e ) g}(d &P)(d &’Pp,)
(p¥)

gince (19) gives q = (A - ) + (Lwf. ) = %f& = p-¥s , and the

‘upper expregsion prevails for g = +, the lower for g = -,
5% = [lLaen] oL@ ]
- AT 5o o DG )
- wen & {GR) R e

since (19) gives g/ = (A=A ) + (Def) = 6-f0 =82-p = ~Qo
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If we now note that gince it makes no difference how
we label the electrons,

RT(461A0)

it

NMe ) = W0 L) RE(e.g;0N)
RY(2.0 v = R (220s X\)
and furthur that we may eliminate the use of g’/ and ¢’ if we
remember that the signs contalilned in the -Q% s and.ilg{s must al-
waye be opposite as between J7 and I , and opposite as between
J¥ and Ji , and furthur that ¥ has the same range of summation
in J¥ and J; , and the same range in Jf and J¥ , we may combine

the integrals ag follows.

QT (B %)

Q% @ pV) } RE(LL MM

IT 4+ JT = 2N(e4) i

z—
I + JF

i

2o, ) ZQ% (p) } RT (0,4, 00
Q% (npy) '

where the upper expregslion 1s used when 8 or g 1s posgitive and
the lower if they are negative.

Furthur combining and we have,

T T (1T S Qo (pd) o PG _ 4 '
JE+ IF + (37 + J7) = 2w (L&) [Qi(%) R (06 0Mh) & (£6:2)

Finally we carry out the summation on T{noting however that the
range on t in Jf and JY is not necessarily the same ag in J¥ and
Jf , 80 that we use another summation variableeto avoid ambiguity)

and introduce the expression into (15).

%
Y YA ) G (Be®) gy, Q3 (Bl )0 gy,
LNy = ?;*(A\ﬁi ¢ azlamp) © (00 3h) *JZS Q%—(ﬁf»)R (L8300

(27)

These summations on T and 6 are restricted to a few
values of ¢ and 0 due to the fact that there are only certain

values of these variables for which Q. and Q, are not zero.
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These conditiong are,
For Qy(p.%) and & (%mp.)
r/2 + 8/2 2 T = it Bu= /2 -\8/2
T & A+ dr- r/2 + 182
R P A P AP T T/
[Xa-2] = & = Aot by
For Qi(¢.5) and QE(5p.) (28)
r/2 + q/2 € 02+ - /2 - 2
o= Ao 4 & - 1/2 . Y2
(ALl = o= A+ Lo
(’\L"'/@“ = o< A+ 4 |
Thege conditions then, together with (21) must be satisfied if
Slffguﬁis not to vanish. It is to be noted that in the second
part of (21) ¢ is to be replaced by o .
It is seen then that the matrix element, which is dla-
gonal in both L and M;, is only dependent on mL through the norm-
alizetion factors. From Brinkmanla(page 55) it ig obtained that

(5

& +Me
N™ £4.) is the coefficient of (aa*) ™ (bb*)™™ in the expres-

sion

25) 5 (2222 (@aad)f (R.ED
This 1is simply the normalizatlion integral which corresponds to
the process that hasg been used to evaluate the matrix element.

The regult is,

M v (NN (Ban)! ot gt Y]
NARL) = g T melwap) Gy C22, Ca

where Cgy; 18 a constant which depends upon 4 alone and ite form
ig determinéd by the form of the initial wave functlon ( for

ordinary hydrogenic angular wave functions it is ?f(2¥9[~).
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The part depending on HL is seen to bhe indepan@ent of £ and £
and entirely separate from the rest. Hence when we form the
expression mb(ﬁ/ﬂj/ﬁ&AAu) which occurs in the matrix ele-
ment the part depending on ML cancels out and leaves the matrix

clement entirely independent of HLe

— /(X','f'd).’ dl-’ /3’-, N
Qi = -QA/» T VGl a5 -

{ A ‘;: fgp”))ﬁ?(m,a.) Jz X g‘i((",’f‘))ﬂ‘f(w Aa.)} (20)

It may be V\sqcl(/), shown, by vv'mﬁn'? oot Yhe cae%(e,}/s é/ﬂc R, thet Af,:. = _O.ﬁ,;_ . Thisserves as acheck.

)

In this expression the %'s, the numerical coefficients of the
radial integrals, are defined by (26}, and in ordef for a non-
vanishing matrix element to exist T and ¢ nmust be restricted
by both conditions (21) and (28).

The Introduction of the Bpin,

We have obtained a result for the matrix element of
electrostatic interaction beltween two states, which were speci-
fied in terms of wave,functilons diagonai in L, from different
configurations (1,;1,) and (A )\;), which depends upon the values
of Li,lp, Ay, Ap, and L. If we take into account the electron
spin we can builld up wave functionse diagonal in 9 which are
formed of linear combinations of individual selectron spin func-
tions. These will be denoted by ﬂhf and they will be, for the
casge of two’electrons, symmetric 1if £=1, and antisymmetric if
5=0,

How the final atomlc sgtates are speciflied by values
of J, L, 8, M_, where J 1s the regult of the vector addition of

J
L and 2, Ve can bulild up the function for these final states
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by teking linear combinations of products of wave functions of
Mo M5
the form @{#uﬁf where ih.anﬂfié are normallized wave functions
for L and 8, and ML 4 mS = MJ (see page 13). Ve may suppose
this to have been done so that there ig obtained
&y My H;r o ML M- Mo
w:]'ls = N. J’LS 7# ‘4}-
The matrix element of e®/r,, between two of these
states will be
x M MLE Mg M Ns *or oM g
gAMnLS j'ﬂizlk - E»%‘: A T»L»“f Z,‘;ﬂ f
Aaiis = P, 7 g ol o [U T

~ Mo I L‘I.S’L
(%] -~

But es/rlg does not involve spins so the integral over the wave

functionsg for sgpin becomes merely a normalization integral. Algo

Jﬂ Mﬂjﬁ M is just.flfL which has already been worked out, and

‘»

is diagonal in both L and ﬁL‘

- My M, M Mo, & Mg, S, f My e,
2. ¢ [ B Ml S“ML‘_,L,_ Ms.:'SL &[J (4’?;)4, 7} (AAy)

, e Mz LS Mo, F LS, 72, &S,
o N Z1 CN‘T' M o M My
M:.( 7—, L,Sl J.;,L-tsl

But since J® ig a constant of the motion when we use these wave
functiong, (it is invariant to a space rotation as is e®/rya)
the operators J® and e®/riz commute and hence it can easily be

shown that the matrix elements of €®/ris are diagonal in J.

My M. ¥ My M 4
HJTMJ.L,S.( - E\:;,JS'H,,M,SL,_,SSS, Caf"_s Rz _Q)‘J L, Me
TFMzLS Z—, CMIHLA‘ e
G, IS QLs

N ow furthur we have shown that Jlfﬁmu ig independent
of mL go that we may take it outside of the summation, and thek
sum of constants cancel outl, leaving,

HIMSS = H = S, Supug 80, S5, 24 (30)
It is thus independent of J and mJ, but depends upon & through

the choice of the % signs in D5..
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III, COMPUTATION OF THE MATRIX ELEMENTS (RADIAL PART).

In attenpbing to evaluate the non-diagonal matrix cle-
ments of the electroststic interaction the elements have thus
far been reduced to a numerical factdér timeg a radial integral.

The typlcal radial integral, expressed in the previous sgection

as RE(£4;0A), or

R (44, :44)

/anﬂi nill/l)R(nglg/2)R(ngl1/1)R(n4Ag/2)r§rZoﬁﬂﬁ‘
= R¥(nilingleg,nshangls) in the more famil-
iar notation, where R(nl/i) is a normalized radial function of
the i/th electron having quantum numbers n and l,lmust now be‘
gvaluated., ‘ |
In order to obtain results which will not be limited
to two electrohs, we shall choose as our radial functions, Slat-

er’s approximation to the Hartree functions.

#* - Z=5,
B(nl/i) = 1/N, - eV 1. o T K
(31)
. (zn*-z)/ % | .
where N,p = zgzs;]qu_] is the normalizing

factor, and n*¥ and & are parameters which are fixed when we are
considering any glven conflguration 1in any glven atom, and &
is the atomic number. The rules for finding n* and s are as
follows. Ifn= 1, 2, 3, 4, 5, 6
then n*= 1, 2, 3, 3.7, 4.0, 4.2 .
5 is obtained as a sum of terms contributed as follows -
a) Nothing from a shell outside the one considered.
b} 0.35 from each other elechkbron in the group considered -
(except for the 18 group, where it is 0.30).

¢) If the shell considered ig an g or a p shell, an amount
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0.85 from sach slectron with quantum number less by
one, and an amount 1.00 from each electron still
furthur ing for a d or f shell, an amount 1.00 from
each electron inside it.

Using these radial functions we have,
2]

2 Z-5, =-5,
R? . € ¥ + A
R (nillnglg ,nsklné /\g ) = N,,)p Nn jNM | an4Az ﬁf<t A, TN e = n* 4.

[-4

E-S, Zz= —
pY _ e S¢
/‘L:’;F*"4 e FF " Tme) e 4y dine

— : K] +h4 +é‘- rth. l'z;,/;,~ wFim_
TN, N %2 * ISR AT S 4
I\in‘{l z\z"tﬂz_ﬁlﬁ/\t Nﬂq)l— { f /2/ J’l.%z

,7/l'b

¥4 ux* Fou-tL k. T
J’f R +u3 4/&}?:7 + 1q e % R . o(,‘cbtf
(-

Z7h

nl"""}-?'/ 74'5& J ‘m+"4 +Z —"Z 2o
Y‘n( Nn,, n,A.Nlu)\n {‘l

+fa“we "2l B, f/z“' g ”?-"'AA}

*®
If we now place ¢ =nf +ny , 67 =mn; +nf
(32)
- Z -5 Z~53 = Z~%a, Z’Sf
/)Zl - E Tnd +, 5 £} /)Zz. - ny¥ ;+ Ng

we can write -'{after interchanging the name of the integration

varisbles in the second term),

| o o
704400 = Mﬂi%ml [ [r.o B, fa T gt g,
o [areie i, [ f
2 | (33)
= N,,J‘Nipﬁ,,z,\ TN g (e, G) + I(G%,“’T“Z.)j

where I(o7n;; GH) = fy- c-T-L o ”2#47/ '”[JxaL,c
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N o
We now proceed to an evaluation of the I integral.

(6, @) = Lg“""e“‘f'ﬂdﬂ'ﬁ“*?e"’l"‘d,{ - jjﬂ—tlc%yﬂ(mqg)dy

XK+
&}@i"lta) = fx""‘”e’"‘xﬂ‘# - (Z}:g,[ 1 - et (__2!)”21 ]
=0

This result is of course the ordinary incomplete Gamma function
integral, and holds as written only for values of & which are
integral., We sghall limit ourselves to this case for the moment.

Now,
Ty +el-T~)

£ .' -~ -7, —-(”‘,‘PVI'I.) ___4_1_&-_&7_____*
Hom e = rdbf (rere i, - f )3 c

( 3 +2)! -2 ,‘ T - ‘(”h""’h«) Y
::é%ﬁ% %%;5 2 q jg et CH}

(the interchange of summatilon and integration
being allowable by an appllcation of Dini s

theorem. )
_ (%)) ) (oi-2) Gzt‘? S [T )
T o (e T b %1 epee) s

VWe can write this in a slightly different form by taking out a
~herm ~Lferr) and then have,

Pq+n)¢“? %
L) = S e - 2 %%%z-;‘) a7 Gow) |
and furthur if we introduce the notation
W= HE 1 -w= R
na+ng - Datha
teer) = SRALOY et ¥l 1] o

This result, it will be remembered, wag obtained under
the condition that ¢, be an integer. Since however I(ae,;67) is
guite obviously a continous function of 0d1 , at least for small

values, it 1g reasonable to generalize the expredsion for arbi-
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trary values of Gr by writing

o+t o<
D(ozez+) (G-2) U IWGETI T

(35)

where, by this sum terminating at a non-integral value of M+ ,
we shall understand an interpolated value between values corres-
ponding to the two integers nearest to vt

Various other methods were experimented with in the
attempt to evaluate R (4.4;))), and it was found possible to ex-
press the radial integral as a remalinder after a given nunmber
of terms in a faylor series, or ag a hypergeometric function of
certain of the quantum numbers, both of course with appropriate
coefficients depending on the quantum numbers, but neither seem-
ed'as readily adaptable to practical computation as the above,

In order to evaluate numerically the expression for I
it is necessary to plot the function ;iiﬁ}?;?: %? = fj?;?éﬂﬁ%)
for different valueslcf -7 and w ag a function of i+ , l.e.
of the number of terms we take in the series. e will have
then a family of curves, each of which has a fixed 6-2 and w,
along which can be read off values corresponding to non-integral
G+T o For valuesg of 0~ and w for which curves areg not drawn
we may interpolate between various curves of the family.

A standard set of cuwes was computed for Efzf@x+t),
uging values of 0-v from 2 to 5 and w = 0.4, 0.5, and 0.6, it
being found that most practical cases had values of these vari-
ables lying between the above values. These curves are plotted
ag Ffunctlions of e+t on the next page.

The procedure will then be to compute the term (1.-\;?»2)%"07

and measure graphically the distance between the stralght line
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)*"

corresponding to the ordinate y=(l-w " and the point fixed in

our family of curves for Fﬁf%n+t) . This value when multiplied

M(aieT+1) Mo,-7)
NI+ (1 12) T

The other integral necessary, I@a%JWqJ, may be worked

by the term will give I(% ¢, %),

out in an identical manner since it is of the same type with the

roles of ojn. and ¢,7, reversed. We obtain

(& s+ [Coy-2) 0% %*? Liomeeg (F 6)
rrz\o'}vp’;_\-f-l (’yll*"ylv)ﬂh? ‘x:'o P(G—?) ! 3

I (0;(7:;6\"”(» ) -

In this cage the interpolation is to be téken for non-integral
values of i+t , and the same pfocedure will be followed in ob-
taining-a numerical result for the integral (it is noticed that
the same family of standard curves may be use& here, as in the
former case, since we are only interested in numerical values,
Algebraicly we wish Ffﬁf(¢1+%) Jo

The two I integrals are then combined asg in (33) to
give the desired radial integral. Once the standard curves are
' computed it is only a short procedure to evaluate almost any

required radial integral of the type considered here.
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IV, TRANSITION INTENSITIES.

The matrix elements of the elesctrostatic Interaction
between configurabtions have been obtained in the form (30),

T Myhs Sy : T M, S, oy
15 Mk (lale,dare) = Hiz = 7 mite Qs

TMZLS
Wherejﬂﬁﬂlus is independent of J, MJ, and ML.

To proceed with computations concerning the transition
probabilities the proper wave functions for the system wnich in-
cludeg the above interaction.as a perturbation are bullt up, in
the usuval manner of the Schrodinger perturbation theory, out of
linear combinations of the ﬂ?da ( the Russell-Saunders wave func-

tlons describing the separate configurations) in which the Hij's

enter as part of the coefficients,.

)[/ Zp: % _ {rjo M Z {m H”: 3?5 5)}

J#

< Mg Hse -, .. 31
)ZF ?lrk .H—k E - E-€ 71; (’%{c?g‘:? (Ex- ES?XEOS“E‘:?)fi |

It will be noted that the coefficients of the y@ag are entirely
independent of’J; the Hij's havs been found so in II, while the
%'y represent the‘energy levels before they are corrected with
thé diagonal elements of the perturbing matrix, i.e., the elec-
trostatic énérgy which ser?esfto split the bqnfigurations into
multiplets, and hence are the centrold energies of the configur-
ations which are obviously independent of J.

‘The traﬁsition intengity between two states is prép—
ortional to the square of the amplitude of the electric moment
between the states, which in the gquantum mechanical analogue of

clasgical electromagnetic theory is eXpressed as ejgﬁfﬁlﬁﬁt =

We first compute the maitrix elements of the components of this
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quantity which will be assoclated with the varlous Zeeman com-
ponents of a spectral line. The procedure for this 1s analogous
to that used in evaluatihg the interaction matrix elements in
the preceding section, 1n that symbolic sgpinor functions, trans-
forming under a sgpace rotatlion in & simllar fashion, are substi-
tuted for the angular part of the faotors gﬁ*,yﬁk , and T occur-
ing in the integral, and the integratlion worke@ out using the
operational character of these functiong. The method has been
used by Brinkman*® in evaluating the ordinary Rusgell-Sauhders
intensiﬁy relations. In writing out the expressions we sghall
use only the first order perturbation term 1in the proper wave
functiong, although it will be seen later that this 1s an unneces-
sary restriction and that the same type of a result 1is obtained
no matter how many terms we take in the expression ror yg o

The components of er which are desired for intensity
relationships, AX+1A s —AX+iAy, A,, transform like the quantities
X®, ¥®, and -XYJ%L where X and Y are the componentis of a spin-
vector, sgo that by introducing the operator (-BX+AY)*, (A,B &
constant spinor), for e¥, the requisite components are obtained.
‘ihe same exXpregsions are used for the wave functions as in sec-
tlion II, except that J,L,5 replace the vectors L,l.,lz. The
details of the procedure are much the same as before, in that
differential operators are substituted for the X's and Y's and
- the indicated operations performed. The results for the case
J+1l —=> J may be expressed as follows(the primes denote that the
natrix elements have been computed between unnormalized wave

functions).
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Fi Ml

(.ﬁ’ «%-J.ﬁ ) m CiK) = f Tl (Ax+iAy) 'Z[f

x J

JRVY IR T+t M) o
(Airiag) 7 et 2Ry (i)

¢ 2 Ry (i Al o - T RejRea (RE0iy )3 G2
4

2 1 .. T+, - ve 57 J‘-r "““" (38)
= (;—rjl:-f-z) iCJ_(,k) + Z ’RU C:’__"r (JK) + % RKQ C (o) +J20% R RKQ C‘Tﬂ(e)j

1 — mo_é. o
where Rij = Hi,/m, Ej

{ik) means
(1k)°

0 (13)° =

that the functlon shown is taken between ﬁ‘md@'

Fla g

result of integrating the particular ¥°%s shown

-

over the operator (-BX+AY) ®and does not depend upon M

§ M-t
("‘A, "f‘iA )J:’ (lk):'-‘ (;f‘:l) { Samé e:Pr—ess:ou as abow} :

Femiei

(. AZI )‘5;"' ::“ (t«) : (20‘1“2« )~ { Sawme cxpression &S a‘ouef ’

In order to obbtain the maltrix elements between normal-

ized wave functlons it 1s noted that the normalizaﬁion integral
may be written

. 25 Y! .
= [ e = oy (32) (39)

where GJ is the part of this integral independent of M.

Hence if each Y ia divided by the proper yN© and the entire ex-

pression for the matrix element is divided by /N = /o TR~z Rl
(the normalization factors for the linear expansion), the matrix

glements between normalized wave Ffunctions will be the result

(A *:LA )‘T-H M-(-IC'k) - @__'_M+z) (?+Mf’) C;r.'.'(('l()b .
T .M (2= (23+2) N ﬁj‘f)——c—:ﬁ—)‘—
(40)

o RuCTesr | 7 ReeCFCN | sy Ry R C G4
J m £ \}cy,,.(.t)"CJa) J 2 m
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N s Jri M-t .‘ _ JT=m+2)T—M+1)_ :
(“Ax*lAy)r M ()= Corea) I N same as above

\ Fal 01 A T{oem+1) G-ra+1) -
(A); 4 G0 = [Crn G same as above

It will be noted that the exXpression in the bracket ig entirely

independent of M since both the Cgllg and the,Ri '3 are indepen-

J
dent of M; it will hereinafter be denoted by 1}2iﬂﬂmf.

To obtain the total intensity (total radiation in all
directions) of a line J+1 — J which 18 not split into Zeeman com-
ponenteg, the sguares of the above matrix elements for the ampli-
tudesg of the components of the electric moment are integrated
over all directions in space and the results gummed ( a factor
f‘G%%Ef, which comes from the fact that the true amplitude squared
is a time average of the energy flow, must also be added). This
gives the total intenegity of a line J+l —J whilich goses to the
final state J,ll, This result turns out to be independent of I,
since this factor cancels out in the coefficlents and AT 18 al-
ready known to be independent. Hence the gum over all end states
M, to give the total intensity of the transition J+1 to J, in-
troduces simply & factor of 2J+1l. <The resultant tdﬁal intensity
denoted by I;? is

k5
fu 3y 7o)t 25+ 3) T”'"- ° .
ez oamt @) [ AT (41)

ISLJ‘ = 3 c3

By a gimilar procedure the corresponding intengities for tran-

gitions J —+J and J-1 —J are obtained.

) 2
w8 T 2z czmw)? (N CLD) [Zﬂa ;: (,‘K)i]
Isos = 3 "o 2aN »
x
S 1! T 2 (zrrl 27+1) [ T=1 (,-.<)°]
I S &V - 3 c3 'Y ’VQ‘ J

These intensities have been denoted asg occufring for transibns
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8',L', to 8,L since the factors AJ are still dependent, through
the eXpressions 657 and C, , upon 5 and L as well as upon J. The
next stéep is to obtain this dependence , and separate the factors
depending on J.

The Taetors GSfi)o resulting from the normalization
integral (39) may be Separaﬁed into a product of two factors,
C;(1)° = £(J,L,8) G (1)° where £ is independent of the values 1,,
1y, etc., out of which the state 1 is built, while Oy (1)° con- 9
taing this dependence but 1s independent of J. |

The factors Cgkij)u are simply the results of integrat-
ing the Hussell-Baunders Wavé functions ﬁﬂﬂwzsvanxiyﬁfai$ over
the operator (-BX+AY)® and have been evaluated partially by Brink-
man*®, They may be written as & product of two fadtors

@:;/(ij)‘b = g(J,7",L,L ,5,87) c%,’(ijﬂ “2)
where g lsg completel& independent of the factoré lislasAa.dg,ebe,
as well as the manner in which the states L,L', and 8,8", are
built up out of them, while C%&ij)c contains thls dependence but
is completely independent of J. Now the function 19510Kf into
which the values of Cg’and Cy are to be substituted consisﬁs of
four terms, three of which involve sums over certain L-5 wave
-funetione. However it will be remembered that the matrix element
Rij (or Hij) wag found to be diagonal in J,L,and 8, so that all
the L-5 wave functions asgoclated with the initlial state QFﬁZiS'
have the same values J’', L', 87, and all the L-8 functiong asgso-
cisted with the final state ¥ ™° have the same values J, L, s.

/
This means that when we put the above expresgsions for Cg and CJ

g (3,7, LL.S,S)
VEG.LS) FGasD

f
into ~AF , the part F(J,J.L,L,8,5)= is not only
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independent of the inner summaltions but is also the game for

each of the four terms. The resgult may be written,
£ ﬁ‘lf ] . ' L’ ’ () ."': [/ L. P
.ﬂ;(;gf = A, el = P(IILIBE) A, {Cﬁukr-;_; i= F(JJLLEE ) A tiw

If this form of Ry 1is introduced into (41) and the
particular values of F(J,J°L,L,8,5) are written out (these coef-
ficients have been evaluated numerous times®*’5°2°%2) for the only
cases of L’ and 8’ for which the intensity 1e not zero, we obtaln

for the traensition probabilitiles,

B Lel J+1l YoM [d¥ﬁ+ﬂ3zxaf+ﬂ*ﬂo7)(6+2)ﬁﬂ/) [1/2/.#, 0 -

s g = 55 (Tep) (=er2)(RAr 1) N

S L &@?%Ziféff? T [ Rl
nig % g«f-l — Qj}fj? /’(’ijij(zﬁﬁ)(ﬁu [ngf)‘)fiz

1I§ % g = %%%f "éééfﬁizfiijfﬂfyz%g [JQ:(mﬁ]L (44)
LT = e smemigapr [ g

where o = 148-J , @ = J4L-B , ¥ = J+8-L
and the transition probabilities for L-L— L can be obtained
Trom (43) by interchanging initial and final states. Thezﬁf(mfjs
are entirely independent of J but depend upon L and B8, They are

of the form,

L’ ° Al
Vi C (1K) ‘P. ', 57 )8
7ﬂ (x)° = = * Z Y LO a + 2 N___MC,_ wy
e Ye.a)ec tes®

VCortrs*Ctrr® Colg)® Cutr)”

Z"Z’ F; Ke C (:///
J e Ve GJ® G @l®

(45)
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Now it will be noted that in this entire process the
Tiret term vwhich appears in the matrix elements (38(40) and iﬁ
the expressions fér u%? amd;QQf corresponds to the transition
intengity which would be obtained had there been no interconfig-
uration perturbations. The various multiplicative factors which
- were obtained in (38), (40), (41), and (43), (44) and are depen-
dent upon J, L, B, are independent of the fact that the extra
terms arising from the perturbation are present in the matrix

element of the electric moment. Thus, the only difference between

the above intenslty exXpregsions énd thoge which would be obtained

for the unperturbed case of striect L-£ coupling is the pregence

of the extra normalizing factor N and the additional terms in m@fﬁ

It will be remembered that in carrying out the above

- calculation only the first order correction to the wave function
was used, However the same sort of a;result is obtained no matter
how many termg we take in the expression (37) for the proper wave

funetions, since the coefficients are built up out of H,. s which

1]
are diagonal in J, L, and 5 and all the yﬁ"s in the expansion of
any yﬁ- have the same value of J, L, and 8 and hence give rise to
identical factors as far as the dependence on these variables is

concerned, The only new thing which ig introduced lg the preg-

ence of additional terms in the expression for vﬂﬁw:

Bince when we deal with the relative transition inten-
gities within a given multiplet transition L'—L, 8 —>8, the fac-
tors N and vgfkhf’canoel out (they are independent of J), the re-

gult 1e obtalned that thesge relative intensities are unaffected

by the interconfiguration perturbation of the glectrogtatic int-

eraction, a result which ig true no matler how accurate an approx-
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imation to the perturbed wave functionsg is used. (This, of course,

ig with the neglect, as far as the energies are concerned, of the
spin-orbit term in the Hamiltonian.,) However the absolute inten-
sities, and the relative intermultiplet intensities, may be af=
fected conglderably, especially 1if two interacting configurations
happen to lie close to one another and thus give rise to small
valﬁes for gome of the denominators occurringtin the expregsions
for Rij'

This rule is of course subject to the slight error due
to the factor ﬂﬂ which occurs in the expression for intensity.
However this same factor affects in like order of magnitude the
intengity relations in strict L-5 coupling, and in general ig
gulte negligible when relative intensities for a given multiplet
transition are dealt with.

This result ig dependent upon twoe factorg -- first, the

fact that the matrix element Hi is independent of J, and sedond,

J
the fact that the expressions which arise in the application of
group theory to quantum mechanics involving two vector quantities
and their sum (e.g. T =1 + §) may be written ag a product of two
terms one of which contains the entire dependence on the sum (J)

and i1s entirely indspendent of the subconstituents of the other

tWO (i'e. 11...'13, Sioano.on)v
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V. SUMMARY AND DISCUSSION.

The result which has been obtained, namely, that the
relative inteﬁsities’of the lines within a given multiplet tran-
gition are independent of the interconfiguration perturbation of
the electrogtatic interaction, no matter how accurate an approx-
imatlion is taken for the proper wave functions describing the per-
turbation, is consequent upon the fcllowihg general procegsg of
building up the atomlc system of energy levels. First of all the
ordinary wave equation is sblved in its elementary form which
takes into account on%g the interaction of the individual elec-
trons with the central field, and values are ébtained for the s0-
called centroid energy levels of the different configurations.
Next, the electrostatic interactlion ig introduced and the consid-
eration of the diagonal elements of its matrix serves to split the
configurations into multiplets which still possegs the degeneracy
that is to be later removed by the introduction of the spin-orbit
interaction, The formal introduction of this interaction which
splits the multiplets into J-energy levels 1s omitted for the time
belng, but the results of it are assumed in so far ag we plck out
of the various wave functions for the multiplete those particular
onesg assoclated with the J-levels, for purposes of computation of
the non-diagonal matrix elements of the electrostatic interaction.
When These non-diagonal elements betwsen configurations are intro-
duced, and tﬁe consequently modified wave funections used to com-
pute translition intensities; the above theorem is obtained. - The
complebe nuclear(central fleld), and electrostatic interactions

have then been introduced into the energy levels, but not the spin-
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orbit interaction.

It now the diagonal elements of the gpin-orbit term in
the Hamiltonian are taken into account the usual gystem of ener-
gy leveles in terms of configurations, L's, 8's, and J'’s, is ob-
tained, except that furthur the energy perturbations due to inter-
conflguration interactions of the electrostatic term are already
included. However, the relative intensity theorem above isg gtill
valid, since the B9 g appearing in the expregsions from which it
was derived are th&se present before the diagonal elements of
whatever interconfiguration term we are considering have been tak-
en into account, and the interconfiguration part of the spin-
orbit term is ag yet unintroduced. This requires sgome amplifica-~
tion --- gince the sirict division into definite configurations
has already been scrambled by the interconfiguration terms of
ea/fle, the complete diagonal elements of the spin-orbit term con-
tain some of the interconfiguration part, but we may think of con-
gidering first only that part of the complete diagonal elements
which is strictly diagonal in terms of the L-B wave functions,
and then later the part which is'interconfiguration’ in terms of
thesge funetions.

When the “interconfiguration” interaction caused by the
non~diagonal matrix elements of the spin-orbit term in the Ham-
iltonian is taken into accodnt, together with that “interconfig—
uration” part of the diagonal elements mentioned above, two new
features are introduced., HFirst, if it is assumed that thege non-
diagonal elements‘are negligible either in absolute magnitude or
in comparigon with gimilar termsg of the electrostatic interaction,

then the game form is obtained for the perturbed wave functions(37)
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ag before(since there are no new or additional Hij's), with the
difference that now the 897y whieh appear in the denominators of

the Ri ! are the energy levels before the diagonal elements of

J
the gpin-orbit term are introduced, but after the diagonal ele-
ments of the electrostatic term are taken into account. Hence,
they are the centroid energy levels of the separate multiplets,

and as such , are still independent of Jy¢ thus the theorem isg
gtill valid. ©Secondly, 1f these non-diagonal matrix elements are
not neglected they will introduce certain additional terms in the
expregsion for the perturbed wave functions(37). Since the ma-
trix elements are diagonal in J but not in L and £*2°%*% as were
the corresponding elements of the electrostatic interactlon, the
additional terms which are introduced involve multiplets of diff-
erent Uypes than the original. This destroys the simple form of
the intensity expressions and makes impossible the step in which
a common factor depending on J, ¥(J,J,L,L,5,58), was taken out of
all the ngé. Hence, the dependence on J doeg not cancel out |
when we compute relative intensities within a given multiplet
transition, and thesge relative intensitles are distorted from
thelr normal values.

Before proceeding furthur in the effort to obtalin an
estimation of the magnitude of these anomalies, we must consider
a few factg concerning the spin-orbit interaction between config-
urations. Shortley®® has investigated some phases of thisg inter-
action and found that termg exlsted only between configuratlons
which differ only in the n of one electron. Huch configurations
can be considered ag two members of the same series, and in gen-

eral lie far apart in the gpectrum. Becauge of thisg, and the
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fact that it 1s not true of the interconfiguration electrostatic
Vinteraction, we must come to the conclusion that as far as energy
perturbations are concerned, the electrostatic interaction is al-
one Qf importance. In the case of intensity ancmalles, however,
it has been geen that the electrogtatic term alone, even when the
energles of the configurations involved overlap, can have no effect
on certain of the relative intensities. It is only when the two
interactions are combined that thevanomalies may be accounted for.

The method of introdubing the various interactions that
hags been outlined above served to make this clear. At the end 1t
wag apparent that only the introduction of the interconfiguration
spin-orbit interaction yielded anomalies, and hence since it was
the only term present it could not be neglected.' Nevertheless,
the above restrictlion on it, to between members of the same ' con-
figuration"series, makes all of its terms small. In order to av=-
0id computing and introducing all these small terms (which serve
to connect different types of multiplets, and thus destroy the
gimple separation into multiplet types which existed previously),
it 1is desirable to examine an alternative order of Introduction of
the various interactions which mekeg posgsible a more practical
computation of the intensity anomalies.

- The alternative procedure is as follows. After the cen-
tral field interaction with the electrons isg taken into account,
the diagonal and non-diagonal elements within a configuration of
the gpin-orbit term are introduced. Next the diagonal clements
of the electrostatic interaction are taken into account, so that
thus far each configuration ls independent. winally we compute

the interconfiguration interaction caused by the perturbing terms
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in the Hamiltonian (both e®/rig and spin-orbit). This will con-
gist of two parts, one Trom ea/rxg and one from the spin-orbit
terms however the latter ls smalli{see above) and can be neglected

here in comparison to the electrostatic term. Hence we obtaln

Tor the entire interconriguration interaction Just those terms

which have already been computed, which are diagonal in J, ¥,, L,
ans 9, and hence connect only multiplets of identical type. How=-
ever, in this case, the E°’'s which appear in the denominators of

the expangion coefficients, R,,'s, are no longer independent of

1d
Jd, but are Jjust the ordinary energy levelg sgpecified by J, L, and
S. The intensgity anomalies exist then because of the cdmbination
of both epin-orbit and electrostatic interaction. The :{% do
not cancel out siﬂce‘they are not independent df J due to the
pregence of the gpin=-orbit terms but there would be no anomalous
termé to be cancelled out were it not for the presence of non-zero
interconfiguration elements of the electnﬂtaﬁié term.
Theféxpressions which are obtainedkfor the intensities

are identical with (43) and (44) except that the Rij’s which oc-

’ /
cur in the ALess (45) must be written,

R = __..__.:f'_.’.j...-«_..... k E® = H, :
1] - mhere EY = H; 4 Z&JJi)
1 J
Ei = centroid energy of multiplet(independent of J)

i

spin-orbit splitting factor ‘ “¢)

This may be written,

Ryq = 11g = iy Hig [Ads)-Ana3)]
V=3 E [Ada)-4ia;)] E g, " E, - &,)°
irEgtAddy ) -atd 17 By (B - 35)
since A-4;, << E, - E. in general.

+ J
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T - a ) i 3 - 2 "

Wnhen thls value of ﬁij ig substituted, AL may be con-
venlently separated into two parte, the first of which is the
came ag we had previously and the gecond of which is a second or-
der term depending on J and containing factors which measure the
spin-orpit interaction.

e’ - A4 e!
Al e = Aip *vlip
When this is put into the expressions for intensity and squared,

the square of w42; may be neglected and we obtain,

sig'  (2mM* K(J,dL,I,8) Lt 7* Al
Long = 3 [ﬂu] 1+ S (47)
3¢ N LT
where K is given in (43) and (44), and
. e e/ £ ires i s C’“'gw/’ 27 Ko CE )
rdQ tew/® 36’"/‘/’4/‘/0 s J Gk ‘/CZ’(/TQ(FP * 4_(/2/ ,K«/’Q(—!_/o

;—r // A/k-e Cz. C{///
(Eo- &y J - £ T2 )

A e - T Hy [ ()~ 45 (Tl et o "'J"F 7 e [A W53 ﬂ//
L7~ s [5“—,5/} C“,gla(‘-/k/ & (CK-—E‘?/' W (48)

A Hey Hrce [A,‘ﬁi‘,’/—A/'WJ[A/r{J—'J—A.p(JZ/ 72 ./// .
J £ (Eo-&) L(fk-fejzm

The first term in (47) then is entirely dependent on the
electrostatic interaction and 1ls the Tirst-order term asg Tar as
anomalies in absolute intensities and in relative inter—multiplét
intensities are concerned. It leaves relative intensities for a
a given multiplet transition unchanged. The second term in (47)
ig the gecond-order term in absolute intensity anomalies and in-
volves a product of factors depending on the electrostatic and
gpin-orbit interactions respectively; it is the first-order term
ag far ag anomaliss in relative intensities within a given mul-

tiplet transition are‘ooncerned.
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