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ABSTRACT. 

The problem of theoretical analysis of complex spec­

tra is outlined with attention to various methods available for 

the computation of the Russell-Saunders wave functions, which 

form a bc;isis for most other computations.. In order to investi­

gate intensity anomalies due to interconfiguration perturbations 

in two electron spectra, the non-diagonal matrix elements of the 

electrostatic interaction, between states describable by L-S wave 

functions, are computed by the symbolic '
1
spinor 11 formulation of 

Weyl's group theory as developed by Kramers and Brinkman. A 

closed expression is obtained which embodies the results of what 

would be in the Schrodinger method a sum of integrals over angu­

lar wave functions; the radial integrals are still to be evalu­

ated. A neat graphical method for computing the radial integrals, 

providing Slater1 s approximation to the Hartree wave functions 

can be used, is worked out. 

Transition intensities are computed using this config­

uration interaction, and the effect of introducing as well that 

of the spin-orbit term is investigated. Formulae are derived 

which show that the first-order term in absolute intensity anom­

alies is due to the interconfiguration electrostatic term alone, 

which however leaves relative intensities within a given multi­

plet transition unaffected. The first-order correction term in 

the latter (second-order term for absolute intensities) depends 

upon a product of factors depending on the electrostatic and 

spin-orbit interactions respectively. 



I.. INTRODUCTION AND GENERAL OUTLINE OF THE PROBLEM. 

The problem of analysis of the spectra emitted by 

various atoms, and the corresponding one of accounting theoret-

ically for the particular spectrum observed was first attack-

ed with any degree of success by Niels Bohr in 1913. His 

analyses, based mainly on classical dynamics, brought out the 

conception of the atom as a minute solar system with the elect­

rons revolving about the nucleous in orbits whose energies were 

predetermined and had certain discrete and fixed values. Later 

modifications of Bohr's theory, together with the introduction 

of the wave mechanics of Schrodinger, and the work of Sommer-

feld, made necessary the abandonment of the idea of discrete 

particles revolving about the nucleous, but left intact the con-

ception of the existence within the atom of a set of discrete 

energy levels characteristic of that particular atom. Furthur, 

each of these energy levels was associated with a particular 

state, of the electrons within the atom, which could be describ-

ed approximately in terms of a specific configuration of the 

electrons, having definite values~their angular momentum, their 

spins, and their modes of coupling with the nucleous and with 

each other, but having no definite values assigned to the elect­

ron positions. That is to say, the electrons total energy was 

perfectly described, and the component parts of that energy 

were approximately so, although its position was not. 

Each of these configuration states is describable, 

according to the customary theory of ·wave mechanics, by means 

of a wave- or eigen-function of the spatial coordinates alone, 
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which satisfies the Schrodinger wave equation 

( 1) 

and through it is mathematically connected with a given total 

energy level, or eigenvalue of the equation. According to 

the usual theory this eigenfunction of the spatial coordinates 

alone, describes the complete state of the system, including 

all observable physical quantities, such as momentum, average 

position in space, etc; all these quantities may readily be ob­

tained from the eigenfunction by means of simple quadratures. 

This follows from the conception of the eigenfunction as the 

amplitude function of a standing wave, which symbolically has 

the same total energy (the connection between matter and wave 

is contained in the Einstein equation for the energy associat­

ed with a wave, E=h~) as the particle whose state it describes, 

and the square of whose amplitude (hence the square of the 

eigenfunction) represents the probability of finding the part-

icle at the given point for which the amplitude is computed. 

The basic units from which are built all atomic wave 
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functions for the various complicated cases are the simple 

spherically symmetric wave functions (hydrogenic wave functions) 

,/, ,·,..'f i111L. -v1"'11. .t -2- L:i.1+1 (c) ~ c't) 
1 

.,_ r1 ....... f.t.-1o .. • e s..:.... iY •...e l&P'9) f e 2 
11-+ii ) "";) "' 

= i./J('Yli./i) (j":..r/ria., 
(2) 

which are the solutions of the Schrodinger wave equation for 

the Hydrogen atom (put V = -e 2/r in 1). 

In order to obtain wave functions for the various 

states when we are dealing with atoms having more than one elec-

tron it is necessary to obtain first an approximate function 

which describes the state assuming that no interactions exist 
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between the various electrons, and then, proceeding by one of 

a number of methods, to obtain a more exact function which 

takes account of the interactions. To get the approximate func-

tion we write the wave equation, omitting the interaction terms 

in the potential energy, 

(f v/) ~ + Bf)=. (E t- t ~~J f 
t' ~ I, 2., · - • N (3) 

and since the electrons are then independent, we can separate 

the equation into a series of equations, each of them functions 

of the coordinates of a separate electron, and obtain the sol-

ution as a product of hydrogenic wave functions, each of the 

coordinates (including spin) of a different electron. 

( 4) 

At this point it is necessary to introduce the Pauli 

exclusion principle - which in one form says that only those 

states are permissable in the atom, whose wave functions are 

antisymmetric with respect to the exchange of any two electrons. 

In order to satisfy this it is noted that since the electrons 

are so far independent the coordinates of any two may be permut-

ed in (4) and the result is still a solution of (3); furthur 

any sum of such permutations is a solution. Finally, Slater 

has showri"that the particular sum of such permutations which ls 

completely antisymmetric in all electrons, and hence is the only 

permissable solution, may be represented in the form of a det-

erminant. 

</1("'.,(1) ~(11,/i)··· <f<.11,/N) 

~(11,/1) 

- • J 

' 

( 5) 
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Thia, then, which we shall call the Slater wave function is our 

first, approximate, or zero-order wave function for an atom con-

taining several electrons. 

Now it can readily be shown that these zero-order vmve 

functions form a complete and orthogonal set of solutions of the 

homogeneous wave equation (3) and hence that any solution of the 

inhomogeneous equation 

(which is the exact equation for the multiple electron case, 

and hence whose solution is the exact solution we wish) may be 

expressed as a linear sum of these zero-order functions with 

the proper coefficients 1
• Hence the problem devolves into one 

of finding the proper coefficients in the linear expansion 

which give the particular solution desired. 

In order to find these proper coefficients we may 

proceed in one of a number of ways - one of which is the direct 

method of the Schrodinger perturbation theory. In this we con­

sider the inhomogeneous term of (6) as a small perturbing poten-

tial consisting as it does of a series of small potentials each 

arising from a possible interaction between certain of the sev-

eral electrons present. Hence as we make use of each small in-

teraction potential as a perturbation, we build up as it were, 

a wave function which takes account of each interaction, step 

by step, and thus is at each step a closer approximation to the 

true function which takes into account all interactions which 

may be present in the atomic system. The formal procedure at 

each step is simple enough: we assume a linear combination of 

zero-order functions (solutions of the homogeneous equation), 



substitute it into the inhomogeneous equation, and solve for 

the coefficients by quadratures, obtaining for them certain 

complex integrals involving the perturbing potential which the 

wave function is to take into account. 

Naturally since the total number of possible inter­

actions of different types among a group of several electrons 
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is manifold - furthur all interactions are not of the same or­

der of magnitude - we do not try to take them all into account, 

but simply calculate wave functions which describe the more 

important and spectroscopically distinctive interactions. This 

means that, at best, we have only approximate wave functions, 

and furthur, even these approximate wave functions are sometimes 

extremely difficult to calculate by this direct process since 

the expressions for the coefficients involve integrals which are 

complicated and often impossible to evaluate. 

In almost all spectroscopic problems the first and 

most important interaction which is taken into account is the 

electrostatic interaction of the separate electrons, which serves 

to remove part of the degeneracy present and allows the system 

to be expressed in terms of the total angular orbital momentum 

L which may be thought of as a specific vector combination of 

the individual angular momenta, li , of the separate electrons. 

The next interaction to be considered is that of the separate 

spin momenta, si , to foTm a total spin momentum S; and finally 

the interaction of these total momenta.Land S to form a total 

angular momentum J for the entire system. It would be theoret­

ically possible to build up the wave functions which took into 

account these particular interactions ( these are 1mown as the 
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Russell-Saunders wave functions or the functions for L-S coup-

ling) by the above method, by introducing the various potential 

energy terms 

into the wave equation, but the practical difficulties and com-

putations as mentioned above are almost insurmountable,, For 

this reason then, and since these Russell-Saunders wave functions 

approach very nearly to an accurate description of the states 

in most of the simple atoms, and hence form a starting point for 

the calculations to take into account various anomalies, it is 

necessary to turn to another method of computing the wave func­

t,ions; that is, the proper coefficients in the linear expansions 

in terms of the Slater determinant functions. 

It is perhaps advisable at this point to outline the 

procedure to be followed after these Russell-Saunders functions 

are obtained. It is desired to investigate the anomalies in 

intensities which are produced in the spectra of two-electron 

atoms by the fact that the energy levels are not accurately des-

cribed by these L-5 functions configuration by configuration, 

but rather that each configuration is somewhat distorted by the 

presence of the others. The important perturbing term in this 

case (this has been the consensus of opinion, its veracity will 

be examined later) is that of the electrostatic interaction, the 

non-diagonal elements of whose matrix are neglected in comput-

ing the energy levels of the various configurations when they 

are considered separately and describable by the L-S wave func-

tions. Hence it· is necessary to compute the interconfiguration 

electrostatic interaction, which is 

H,a. = (7) 



where the l/; 0 s are the Russell-Saunders functions, already com­

puted, which describe the levels in any one configuration con-
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sidered separately. Knowing this interaction H it is possible 
l.2 

to build up wave functions which take into account this inter-

configuration perturbation to any desired degree of approxima-

tion by taking additional terms in the series 

H.:J' ~a _ . t- - - . 
Eo- co J 

t ""') (8) 

With these accurate wave functions it is simple to compute the 

theoretical intensities of the spectral lines, which can then be 

compared with those which would be observed if strict L-S coup-

ling were present, i.e. if no interconfiguration interaction 

existed. These intensities, or tnansition probabilities, are 

proportional to the square of the amplitude of the electric mom-

ent between the two states involved. 

r ""- [Aijr·"' [ef i:f/* 11.v tf:i·' J?:-]"2-
(9) 

The essential problem, then, is the computation of the inter-

configuration interaction, and its precursor, the computation 

of the L-S wave functions. It will be seen later how both these 

steps may be accomplished in one process. 

The Matrix Method. 

A somewhat more elegant method than that of Schrod-

inger for computing these required functions is that followed 

by M. S. Johnson• which takes as its basis a combination of the 

matrix theory of Heizenberg and the operator calculus methods 

of Jordan. It is hardly necessary or possible here to go into 

all the intricacies of these theories~ suffice it to say that 

the operators which are used to represent physical quantities 
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are symbolic in nature and are used as such purely as a mathe­

matical device which serves to simplify the equations and achieve 

the same results as the fundamental Schrodinger theory. These 

operators which symbolize physical quantities are absolute in 

nature (as compared with the representation by means of a matrix), 

and as such are not physically observable. Physiaal quantities 

are also represented by matrices, but in this case we are deal­

ing with a relative aspect of the physical quantity which is 

physically observable. The matrix elements, which may be written 

, are considered the 

only part of the quantity "a," which can ever be observed in a 

physical sense; they are the different aspects of the quantity 

which can be observed when the system is in the state~'' or u.~-

dergoes a transl tion from the state if, i;.o the state cf.'J· , and 

hence may be thought of as playing a role similar to that played 

by the separate Fourier components in ordinary analysis. It is 

obvious that they are relative since their form depends upon the 

particular set of wave functions which is used to describe the 

system, and hence upon the point of view • Since various sets 

of wave functions can be used to describe same system ( all 

that is required is a complete orthogonal set), and all must 

lead to the same absolute results as far as the constants of 

the system are concerned, the so-called transformation theory, 

which consists simply in establishing connections between the 

different points of view , was built up. 

Johnson's method is a sort of composite based upon all 

of the above. In order to compute the wave functions for L-S 

coupling, it is noted that according to the definition of this 
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coupling scheme, heretofore given, L2 , 

and Jz must be constants of the motion, and this in the matrix 

calculus means that the matrices which represent these quantities 

must be diagonal, after all degeneracies have been accounted for, 

when referred to L-S w~ve functions. It is only necessary then 

to compute the matrices of these quantities in terms of the zero-

order, or Slater wave functions, and find the transformation ma-

trix which carries them to diagonal form when applied in the 

usual manner. The elements in this transformation matrix then 

represent the coefficients in the linear expansion of the L-S 

wave functions in terms of the Slater functions. For example if 

R is a hermitian matrix which transforms the matrix A0 into a 

diagonal form 

{a) 

and the matrix A0 is computed from the wave functions t 0 

(b) 

then it is easily shown that the wave functions which make A 

a diagonal matrix are given by ~= R'f 0 • For, 

A'f"' ~ J +, * .Jl, I/Jr d r ; J ~ l/;;* R ~f .Jt f R>.q--fk q ( 

=- r: Rf-:. R,.o-f +,..o*"..A'h_od.~ := [; ~~· Aµ'A R~o- ~ A~f ~t;'<' 
14,X I~ f'1)1 by (a)~ 

The computation of the m·atrices for L2 , S2 , and L•S in the zero-

order scheme is accomplished with the aid of the formulas devel­

oped by Condon3 , and the transformation matrix is determined in 

the manner in which any principle axis transformation is found. 

The procedure is relatively straightforward and is subject only 

to the drawback that is not general and the functions for each 

configuration must be computed individually from the beginning. 
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The Vector Addition Model. 

A more general method~ known as the "vector addition 
II 

model , which allows us to carry out the process of finding the 

wave functions in terms of arbitrary l's, s's, and L, S, J and 

only substitute specific values for these variables in the fin­

al expression, is derived from the processes of group theory4 ' 6 • 

In this connection, it has been shovm 6 ' 7 that the problems in-

volved in wave mechanics are analogous to those of linear orth­

ogonal transformations in a vector space of n-dimensions (Hil-
n ,.,.,'W 6t' 1n,411ik 

bert Space), with the modification that in the wave-mechanical 
" 

analogue the coordinates of a point are considered as complex, 

so th~t the distance between points becomes the sum of squares 

of moduli, rather than of coordinates themselves, and hence 

orthogonal transformations become unitary transformations. In 

particular, Weyl 8 , in his analysis of group theory, studies the 

transformation properties of the solutions of the wave equation 

when the ordinary three dimensiomal coordinate system is sub-

jected to a rotation, and uses them to derive many of the pro­

perties of the atom. 

The wave functions which are correlated with a give~ 

vector 1 and a projection m1 are represented by a variable which 

behaves like this vector 1 when subjected to a space rotation, 

(i.e. to a unitary transformation in two dimensions). This 

means that when we have two variables ~.R,, and %-..... , i.e. two elec­

trons, combined to form a new variable L:::: 'li + 12 , we must 

seek linear combinations of the products of the two original 

variables f..o. t-t..._ which behave like the vector L when both 1:1. and 

1 2 are subjected to the same rotation (the quantity L is to be 
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invariant to a rotation). (In all this work we are dealing with 

the angular parts of the wave function only; the group theory 

provides a representation of certain of the combination and 

transformation properties of spherical harmonics.) The process 

is somewhat as follows. First we seek_ the proper variable to 

represent~;'. The simple unitary transformation in two dimen­

sions which corresponds to a space rotation is 

where 5', '1', ) , ~ are complex 
variables in the unt.tary 
space and o<., ~ are complex 
constants. 
* denotes the complex con­
jugate. 

Now a tensor of order v which is built up out of these 

quantities 5, ~ , has v+l components of the form f'-i ">i ~ 

which transform as follows under the above transformation. 

. . v-i. i. ft C' (v) V'-1< K 5' V-L ~' L = (.x 5 -t- i'5"1) (-flfS + p( ir'1) -=- {;:.:o c.\1< j 4. 

where s~~ is the tensor of the transformation and 

involves a<, ~ , o<."11', l · In order to make this transformation unit­

ary, it is necessary to introduce a constant factor, and choose 

as the variable 

To correlate this with the 

and ml= 1-k, whereupon the 

..( 
s ..l\-t M.o ~' J(- t\t.(' 

i'M.Q. = If ( ..Q + IM .Q) ! (..R- t\ot,e) : 

jv-1<'1",.. 
v (v-t<) ! k! 

wave-mechanical 

variable becomes 

m-R = 

problem put v=21, 

1, ~- t.J. - .. --R+ l, -~ 

It is easily seen that this variable is associated with the 

quantity ~ and has 21+1 components, and thus may be used to re­

present ~~~P in the space span-Ded by the one electron. The 

monomials s-t+IMJ! ,~-°"'.t ' Where ~ and 4_ Undergo a Unitary trans-



formation, constitute an irreducible representation of degree 

2~ +l (--R = '''• 1, ~1-i., - - --· ) of the space rotation group, and except 

12 

for the identity there are no other irreducible representations. 

Thus these monomials represent the desired wave functions 8 • 

When two electrons having momenta 11 and 12 respect-

ively are involved, the variablesrepresenting the separate wave 

functions may be written -

j ,_ .e ... +--.. "1-.. .e ..... ., ... 

f ( .Q,_ +"'-,_)! l.P1- ........ )! 

and the space for the combined system will be spanned by the 

variables -

When we subject b:, and z!~ to the same unitary trans-

formation 

(i.e. each undergoes the same rotation), the variables 

are subjected to a transformation. In accordance with the idea 

of Russell-Saunders coupling, that linear combination of the 

variables Q;,__~!'-., :ts des ired, for which the resultant vector 

L = li+ l 2 remains invariant to the rotation, i.e. it is a con-

stant of the motion. Such a linear combination will result if 

it can be represented by variables which transform in a space of 

degree 2L in the same manner as 1~e did in a space of degree 21. 

This will be accomplished if these variables transform cogredi-

ently with a form of the type 

~ 
{[j+~L)~ (/..-HL-)~ 
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or conversely, contragrediently with a form of the type 
o< J...+ M1- e- .. f>llc.. 

v (/.+Mi..}! (1.-141-): 

In order to obtain this linear combination it is con-

venient to form the invariant expression 

A = < 5,,1"' - '>1, r :J.J A (cc f, -+ 13 i l"' -·\ p( 1"' + P 1:i.i"L-A 

)" W L- X L. Vllher-a L " ~. + ).,_ - A 
~ Mi. "ti.. 
14.._ 

Hence since A is an invariant W~~ must transform contragredient-

ly to X ~ ... and it is easily seen that the coefficients of X ~ .... in 

A, that is 

are the proper linear combinations which give the linear expan-

sion of t./J~... in terms of in the form 

and this is valid for 11, 12, L either integral or half-integral. 

The above expression gives, then, the proper coeffi-

cients to provide for the coupling of l~ and 12 to obtain L. It 

however is perfectly general and is equally applicable to the 

coefficients which are required when any two integral or half-

integral vectors are coupled to give a third such vector. Thus, 

it is only necessary to apply the same formula in order to coup-

le s~ ana s 2 to obtain s. The two functions which are then ob­

tained may be regarded as simple functions and L and S coupled 

to obtain J, by a repetition of the same process. The resultant 

function t~J" is thus expressed as a linear combination of the 

original one-electron functions. 



where the C's are determined as above and ~c.--s.;y is a 

normalization factor for the linear sum (the one electron func-

tions are assumed as already normalized). This process may 

seem somewhat complex, but specific cases may be written quick-

ly from this formula directly, without having to go through the 

entire computation from the beginning for each configuration as 

is necessary when using the Johnson method. 

Although the vector addition model, as has been seen, 

provides a quick and direct means of writing down the linear 

combinations of the unperturbed functions which .provide a des-

cription of L-S coupling, this is only half the problem. The 

14 

matrix elements which measure the interconf iguration interaction 

remain to be computed. It was thought possible to proceed as 

followsi Simply write down the ordinary expression for the matix 

element between two such ~~'s as have been computed above. 

H,z. "" J ~:;,~I., s, e1fA,... i./J ~; L,_ $ ~ cl 1: 

"' p P Z: ..... L; ccT,"" . ..... e,S1 J,J,.f. ~ ... -· et.. .... .. (Ys._ d ?' 
JJ;1-,S, Jr~L._S~ l Jr.,._ 

The integral breaks up into a series of normalization and orth-

ogonality integrals, which simplify the expression somewhat, and 

finally,after a few integrals involving three spherical harmon­

ics of the type considered by Gaunt 9 have been evaluated, re-

duces to a series of finite summations involving the numerical 

coefficients, and a single finite summation, having only a few 

terms, taken over the radial integrals of simple one-electron 

wave functions (this latter sum is independent of the first 

group). If the first summations, involving the coefficients, 
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could be carried out in general, a concise formula for the ma-

trix of electrostatic interaction between L-S wave states would 

be the result. Unfortunately this is impossible, since no mat­

ter what method of attack is used, eventually there appears for 

summation an expression of the type 

A::: -t,-K ; '8-= L -..Li. +i.c 

/>t/ ~ R, 

l-.tl'' A~ ('B+A)!C.' (Dt-A).' £.' 
(R-11)'. (S; >1)~ (C->')! (0-t)J)! (t=-.>1)~ J2! 

· C ~ .(?~ .f. H,_-~ . D:: L-.R, - M...,-ac ~ 
J ~ J 

This function seems to be allied closely with some of the gen-

eralized hypergeometric functions consmdered by Dixon and Whip­

ple:i..0, but the.peculiar relations which exist between A, B, C, 

D, and E do not fit into any of the situations there considered 

which permit summation. Furthur, due to various singularities 

which this function possesses it seems impossible to relate it 

in any usuable fashion to a summable function by the process of 

analytic continuation. This of course means that in order to 

evaluate the desired matrix elements, it is necessary to sub-

stitute into the general formula specific values of the quantum 

numbers from the beginning, and write out the sums term by term. 

This we could have done using the Johnson evaluation of the L-S 

wave functions. It then appears that the introduction of the 

symbolic methods of group theory have gained us nothing when 

they are only used to determine the wave functions, and we rely 

upon straightforward integration between two of the predetermined 

wave functions to obtain the matrix element. 

The Spinor Method of Kramers. 

These difficulties are surmounted by the very elegant 

and general formulation off Weyl's group theory. methods which 



has been developed by Kramersi 1 through the use of symbolic 

representations of not only wave functions but also of opera-

tors with properties which are well known from the theory of 

invariants. It will be remembered that, in evaluating the L-S 

wave functions by the group theory method above, certain invar­

iant expressions (see page 13) were written down which contain-

ed the desired. functions in the form of coefficients of certain 

variables. These coefficients were picked out and set down as 

the proper L-S functions with which to proceed in the evalua-

tion of the matrix elements by ordinary integration. The ess-

ence of Kramer s method is to leave the entire expression as a 

symbolic representation of the whole group of wave functions, 

and to introduce this into the integral for the matrix element, 

after replacing the perturbing operator e 2/r12 by its cor:ees­

ponding symbolic expression derived from its behavior under a 
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space rotation. It is then possible to work out the entire int-

egral (except for the radial part) in general, without substi­

tuting any specific values until the work is completed. Thus 

the two essential steps in our problem (before transition proba-

bilities can be computed) are combined into one process. In 

carrying out Kramers procedure, which is also knovm as the 
11
Spin-

,, 
or Method since the wave functions and operators are represent-

ed in terms of the behavior of spinors (a two-dimensional com­

lex veetor ·with components J , 71_ , i:a), it is convenient to eval­

uate the function and matrix elements bet"ween states defined on-

ly for orbital momentum L at first and later to introduce the 

spin and spin-orbit coupling factors. The method of evaluation 

follows. Brinkmanl. 3 has carried out some similar calculations 



along the same lines, but he dealt with a simpler problem which 

involved only .one configuration .. 

17 



II .. COivIPUTATION OF THE MATRIX ELE1MENTS (ANGULAR PART}., 

We now proceed to the computation, by the direct 

'spinor' method, of the interconfiguration interactions which 

we require in order to compute the transition probabilities 

for the two electron atom in intermediate coupling. This 

spinor method, as we have seen above, precludes the necess-

ity of formally computing the Russell-Saunders, or L-S , wave 

functions for the unperturbed states, since the proper coef-

f icients which are req'til.ired are already contained in the lin­

ear transformations which we use in group theory to represent 

wave functions. Furthur, we may first compute the interac-

tion between states which are described by only the angular 

momentum of their electrons, and latur modify this according 

to their spins and spin-orbit coupling (J). 

Hence vve now concern ourselves with the non-dlagonal 

matrix elements of the electrostatic interaction (e 2/r~ 2 ) 

between states in different configurations, neglecting the 

spin of both electrons. The angular momentum of the electrons 

in configuration I will be denoted by 11 , 12 and in configur­

ation II by A.,~~ ., For our unperturbed wave functions we 

shall take those linear combinations of i/;..1,.f., , and of t/J).,)...._ , 

for which L2 is a diagonal matrix, and denote them by 1li:t..1a.1.. or 

-ifru.J\ , according to the configuration to which they refer. 

The symbolic~l representation methods of group the­

ory as developed by Kramersi~, and Brinkman12 ' 13 enable us 

to represent directly, as space rotations, the transformation 

properties of lf...f.I.. , ~f..J. and their analogues for the A. elec-

18 
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trons .. If we represent 

the 2~. +l wave functions for ..R, by the monomes 'j -f,+.... .f.-.... 
I 1• 

the 2 .e .. +l wave functions for 1,_ by the monomes 5 ... .f.t l'lfo.. ;;;;_ ... ...e ... - ..... 

the 21, +l wave functions for tl I by the monomes = >..~f· :;; ).,-;--· 
~/ I 

the 2 ..:l,_+l wave functions for ,l,_ by the monomes f ,/-'Y'- ; ... rl. ,_--f ... 

then the functions iJ; ,(,)1.. transform like the ( 2 l, + 1 ) ( 2 ll- + 1 ) 

expressions 

and a similar expression may be written for cPJ.;<. .... 

In these expressions (),,7'/, ) , (§,_,¥;.), (j,, ii), (~a-,~ ... ) 

are variable spinors. The subscript 1 refers to a function 

of the first electron, 2 to a function of the second elec-

tron, while the bars are introduced to denote that the radial 

part of the wave function may differ in each case. The ang-

ular parts are all the same intrinsically - the differences 

being taken care of by the powers to which the various spin-

or components occur. 

The transformation properties of the 2L+l functions 

f.f.R.L , and_ the 2/\+l functions ..;p)..>.J\ may be described by those 

of the expressions 

where 
-1,_f, + ;,~ P:i. = - ~5' r'>f, §,_ P2 = (li) 

~l. = - 63, + ~ '1(r Q2 - bJ, + .:( ?r 

Ri = -6$z. +.a.";(._ Rs = -6J .. +~ ~ 

ct, :- -e +,t'l-_ L <;( 2-- ::; .1,+A,_-1\ 

/-'' 
::: J..r ..f,-....t"" fl'- /\+A· -Ai 

~ ~ L -t ,e,_ -...f, t;_ := I\ -r-A2- -A· 

and (a,b) is an arbitrary constant spinor (does not transform). 



Thus P~t...~ is a homogeneous invariant of degree 2L in the 

components of the constant spinor (a,b), and the coefficients 

of the 2L+l monomes a L+M .. b J.-M.. are linear combinations of 

the functions¢~'):~, which, because of the invariance of <jJ, 

transform like the 2L+l wave functions diagonal in L 2 • These 

then are our unperturbed wave functions mentioned above. The 

same may be said of £. ,\,,/\ . 
Thus we may write symbolically in one term the ma­

rix e=l.ements of e 2 /rl.a between the functions ~''"""' and 7:l,,>.,ta 

for all values of Ivia.. and MA • 

(12) 

This expression must obviously be an invariant in a, a*, b, 

b*, or else zero. Now the only invariant built up of these 

quantities which exists everywhere in the space is of the 

form Q(aa¥ + bb~)p J. 2 , so that in (12), a and a*, as well as 

band b* must occur to the same'degree. The condition for 

this is simply that 

or 2L 2/\ '11herefor I\ = JL = L 

= (aa-¥- +bb*' )2L 

In order to adapt our .functions to the operator 

e 2 /r12 which is a symmetric operator we must intruduce sym-

metry considerations into them. We put 

A\ 9 .z=:c(, ,nJ't R, ~ ± ?, o(, ~I Y, '1(,~I 
':/"' -f. .f.;i-.L -::: '"t/ 

where 
p1 = - ,,,,, f,_ + ""?~ ~ 

Q,l. -hJ, + Cl "'tr 
{13) 

R1 = - b J:z. -f- &{ '12.-

and 
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where 
= -:?(, ~ + ;;{3. f, 

Q,2 = - 6 J/ + C( -?/ (13con) 

Ria - 657- +a-{. 

, R2 , are as before, so that these 

functions are then symmetric in the two electrons with the + 

sign and antisymmetric with the - sign. The index S has been 

added since the choice which is made later between the + and 

- signs will depend upon S, the spin. 

Thus far we have not spoken of normalization fac-

tors -- however it is necessary to introduce them at this 

point in order to avoid ambiguity later on since what we wish 

eventually is a matrix element between wave functions which 

are normalized as far as angular momentum is concerned (i.e. 

---f, Ji..., "-· Ai- ,L ; the part for spin, etc., will be introduced 

later). First it will be assumed that the radial part of the 

function is normalized, and that for the angular normalization 

factor the following notation is to be used: 

N :'" ( -f.,fi-) N ,e = N (--f...P-:.; ..P,i... )' 

N :'"(A.A .. ) = NA = N( A,>.i..; >.,Ai-) 

J P;,R.,,L PP.-R-.J.. dr 

J ~J,,\L/.. ~.A,,t d-c 

N(l2;12) 

N(l.2;21) 

= J if *" £, d t "' {\{(12.) l,.Z.,4. 1,i, 1. 
(14) 

J ft.:1- £.,1,~ d 1" 

and both the latter may refer to either the .-f or A electrons. 

In order to introduce these properly we note that in arriv­

ing at the expression ftor the matrix element with the symmet­

ry functions (13) we write, 

~j~l, 
1JVtijJ 



S' .Jf /, 

so that after multiplying through by ~..t ... t./~ and integrating 

we have 

* Si!'E' below. 

The right hand side becomes 

...n.. t:.f'z J-{'P,"t:(, e;tfl· k:·u; ± trlt·.r, f*li ff,~fl)vr-·cr/·K,rl-i -:1:: if_,,,Q,~1r/'') 4 c: 
,1,A,.t. ~ VN; 

_o..·f.l'L (~/{{/2;1.iJ +- l'l{z.1;:z.1) :I: tV{t:z.;.2.t) ± N(.zt~·tz/j 
,4,,A .. L. N-e . 

since N(l2;12)=N(21;21) 
N(l2;2l)=N(21;12) 

since if electrons ,/, and./:i.. are not equivalent N{21;12)=0, 
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and if they are equivalent we have only one initial wave func-

tion as the one with the - sign is zero and has no meaning. 

Thus, 

is the element between completely normalized wave functions, 

and can be axpressed in terms of the sywJnetry functions (13) as 

.Q..f,~ 
A,,\.,l. 1/2/N,t NA (J l. + J:e ± (J 3 + J4) ) 

where I i',,(, ~1i - i<J'; Pe<.. u*'"-R ,,.-.._ J:I. p Q 'R a2/ri2 :!. 1. 1... 2 ""2 2 

J2 I 'Pt'', r:;,;r.Rt' e2/r:1.2 p °"'-Q O...R fJ... 
2 2 2 (15) 

J3 j ~ Q wr, R*'I• 
:I. :I. l. 62 /r::i.2 

P~ ... Q' ... Rr ... 
2 2 2 

J4 f P~d, Qi' a;tr. e2/r:1.2 p ..,,,_ Q .r ... R tJ~ 
2 2 2 

We must now compute these separate integrals. 

In the usual manner we expand e2/ri 2 into a sum 

of Legendre polynomials, 

:::ir 
Kramers 1

.:i. has shown that ..a-c transforms like Cz--(-x:i.y2 + x2y1) , 

where (x1 y1 ) and (x2 y 2 ) are spinors depending on the compon-

~ Afhr re•f>lo.c1n.y e~, .. 6:1 +lie oj>er .. -lorS Az:, wi,~4 do~,,&,':! -fo ""ffed -/-hr- raloe a/ "'1,, 
we 'J'"'f ,,.,.._.,/,-,,,_,;1-,-.,., ,;,-1-,,.y,..,,/.s ,,., ::1-k &r/r s,.;I;;- ..,A,d; ;i-,sore ~:/ -1Zf /s ,,/,;,qa,,<1/ ,,;, .M',. as 
tv<:// 4$ ,.; .<. • 
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ents of either the first or second electron, and hence trans-

forming like these components. cL is a constant equal to 

& This symbolical expression is now substituted into 

(15) and a new notation for thw wave function is introduced. 

')I f p*"'• r.-lt'fl, R ;rr; p"" .. Q p ... R- Y .. 
~ . i "t:.l. 1 _a_i: 2 :a a 

l] f [at,(3,o',] Jl.-r;[c1 .. p .. .Y..] U-6) 
?-

'l) J (P...f3,'I. )(-xiy2+xay1)~i: (« .. jl .. ([ ... ) R't"(,q.tY'.joi._p .. 'K'.) 
'r 

So that [ Q', _,g tJ = entire wave function with the electrons in 

the first order - definition of symbols (11). 

(o1'J13J::: entire wave function with electrons in re­

versed order - definition of symbols (13). 

( 0( ra' ) = angular part of wave function - first order. 

{ot ~ f3 ) .,. angular part of wave function - second order. 

R7 (a J,c. id e f ) = integral over c i- of the radial parts 

of the wave functions. 

It is now convenient to replace the operator11 , 12 

for .n.1:. by a homogeneous one of degree 4-i- in the variables 

JI<, '71<, 5~,.. 1 71~ by means of the substitution 

(17) 

so that. we then have all parts of the integral in terms of 

the same variables. Furthur we can now drop all the bars 

which were used over the spinor variables in the wave func-

tions to denote differences in the radial parts since we have 

separated the angular and radial parts of the integral, and 

the differences in behavior of the angular parts are complete-

ly determined by the coefficients "'-1,f, 1 ¥,~o<~ , (1 .. , i.._ • 
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After introducing the substitution (17) it is poss-

ible to subdivide .1l..z: in terms of certain invariants which can 

be built up out of the ).~ spinor components. 

_()....(;; -:. ~-r [ [3] + f4} - 1s} + f <.f ] :J..?;" 

where [1].,, 3, 'f, ~ +-1., ?J,-i- i-41 ~ -'>'!,_~,."*'+'>it r~ 

{;.J "' 
-lr ,.. 

; ... 7,,__ + 71,_ 71"- 'f.sl-= 
-l' f 

-~. ~ .. + t>'f·<7f.,_ (18) 
l3J = -'1{?.j, -+"'115-i.. fr..] = J2J/ + 'YI 1. ,,* 

The integral (16) is simplified somewhat when we 

introduce the operator (18) since many of the terms which re­

sult after multiplying out the integrand turn out to be zero. 

This is readily seen from an examination of the typical term 

from which is bull t up the integral. 'I'he term is of the type 

J <? 1 I I I s \' -r + l'>f '7. .. ./-YH 5 ./ + l'lf "? f-IA1 

which is equal to zero unless 1 1 
3 1 and m' = m(it is equi-

valent to the orthogonality conditions on the spherical har­

monics~. Hence in each non-zero term j: and~: must occur 

to the same power as SK and ~K • This gives us certain con­

ditions between the relative powers of l3J, f4}, [5}, [6}, 

and the coefficients ~~,o occurring in the integral which 

must be satisfied in order to obtain a non-zero result. For 

example, in the case of Jf, one obtains from ( 15l,(13) , and (11) 

that outside of the term -11...'t" 

~.Jo. -I< • J IY[, occur to the pov11er 2 -f, 

J.~ * 2,q'.1- occur to the power 2 .),__ 

.51 I '"1 f occur tb the power 2 A1 

5)., "l-i. occur to the power 2 Ai. 

But in the term _a.~ powers of, 



}t and fr/,+- are obtained from f4~ and f61 

j; and 'Yfa."' are obtained from (41 and f5J 

s; and IY/1 are obtained from[3} and[5'f 

fa. and '7'/1. are obtained from'f.3} and f6 J, 
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and hence if Pl· denotes the power to which l d occurs in the 

integral, the condition that the powers of ,,..,.., <YJ,+< be equal 

to those of s.' <f/1 gives 

{ : -P, + P4 + Ps = 2 .>i, + Ps + Ps 

.-f I. + P4 + Ps = 2 Al. + Ps + Ps 

and thus 
= ( >. , -t A't. ) - ( ..f , + -f 1. ) = &>( ... - CJ{, = r 

(19) 
= ( >.., - >-.-... ) 

These equations will serve to define the quantities r and s, 

and we may furthur add a definition of a similar quantity q 

Be~ore substituting these conditions into the ex­

pansion of (18) we shall examine certain other conditions 

which serve to furthur limit the number of terms which actual­

ly contribute to _D.f,L .. Since each of the J 1: integrals (16) 

represents an integral over the entire range of variables for 

each electron, the integral will be zero if the integrand is 

an odd function in terms of the coordinates of any one elec-

tron, i.e .. , if it changes sign with the substitution 

X
I 

I<- y ~< = -yjf. (20) 

where k refers to the coordinates of the k 1th electron. Now 

if this substitution is introduced into the symbolical int-

egrals J~ , the corresponding substitution in terms of the 

spinor components is 



rotation of the axes through an angle rr (to which 20 corres­

ponds) is equivalent to multiplying the spinor components by 
iJr . e.... = J.. If this is done we obtain for the product of the 

wave functions -
1: "'' + 9.1 + ''"· + 1'3:i. in Ji ---- F("j,' ,71,1 )=(-1) i:: ~ i:"" ~ · F ('f.//,) 

oe, "" + "''-. ?[_ ... 
F(i~1~.J. )=(-1)1: +.it t.: +- .... F ( 'j.,'lf~) 

'l- ..:. +-ir\ -r-o(.._ -r-1(.._ 
in J 2 ---- F(5;,-?1{ )=(-1).,_ .:: ~ .:: F ( ~.,11),) 

( I') ( ,~,-f-~• ( ) F 'f.,,, 'Y/i, = -1 F ~,..1._ 

in J~ -----F ( ).' ,'11.' ) = (-1 )-e~+>.• F ( <;,,"!,) 

F ( cr,;, 11~) 

in J 1:' 
4 -----F( 7,','Yl,' ) 

F( 1~,"1;) 

= 
= 
-· 

( -1) ..f' + >... F ( 5 ... , "tJ 

( -1) ~.+ -\-... F ( ),
1

71,) 

(-1)-Pz.+,\' F( 7
11

71,) 

Furthur the operator becomes, 

-0.r ( 111
/f/,

1
) = (-1) 1:'..12.r ( 'fo1'1'l•) 

~ ( .,~. t]i ) = (-1) ~ __().~ ( 1~.71,_) 

= (-1 )-f.+>., F ( )., 71,) 

= (-1) ~,.+>.-.. F ( -, .. ,17J 

= (-1 )...P ... +hF («,,, ?], ) 

since P~( rr-El) = (-1 )'t" P-r-(e) a.nd the r..: and r,. functions are 

simply absolute lengths and do not change sign. 

When these results are combined the result is ob-

tained that the entire integrand of the various JY's will be 

odd, and hence the corresponding integral will vanish, unless 

the following conditions are satisfied. 

For J l. 'l'" and J 2 "?: 

For J :t and J 4'1: 

_f}, + ). I + 'C } = even integer. 
_f .,_ +- ;tl. +- ~ 

~1.. + ,t I + 'C J 
_,f, + A.'2. + "l:-

= even integer. 

These conditions are simply the mathematical statement of the 

condition that the interaction is restricted to between con-

figurations of the same parity. If this is applied to (19) 
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it is quickly evident that s, q, and r must. always be .§.Y.fil1 

integers. 

We now proceed to the expansion of (18) in.the us-

ual manner by means of the binomial theorem. When account is 

taken of condition (19), the only non-zero terms are those 

included in the expression 

At this point it is necessary to distinguish be-

tween two cases, s positive and negative respectively, since 

either [5/ or ~6} , which ever exists to the lower power, is 

to be eliminated by means of the relation 

{3}[4} = f 5/[6} 

For the case -- §l_J2_ositive we eliminate [5} and obtain, 

r-- /JI !l. !l '!"- t.f! ;t 1--~'- ).( ?" - ·~' ~ )<) A.-)'-
J). - c ) .. K [3],.,._2.f4}µ+~{f..] 5 [ (f3H.+J) -14(f1Jf2l) ,_ >--~ j(-1) 

i: - 1: t.,. ;.!'- A -:f'- ./ 
,.u~~ 

Now put /J.- = <r + ~ and collect terms, 

__[Lx = c:-t'~ K<r'+~ f 3J""'f-t(+Af <oj5 £:-',g(E3J~4J/-r{f1}{i]) 't-f!:- ·~ -y ?--;~'~- ir) l-1)>.-<r 

O';.o 

= c;t-'t'f3/' f4f+rp .. J5'(f 1Hi.J f~- '{'-"( ;;_,~ )(-•t~-\¥+~""£ (~ ;~;-;r-~~:~)(t~;~·~J 
A.,,_o 

after the order of summation is interchanged. But 

t (T-,;_-;~-cry(rc--~l{lJc·~~~~) = ? (?--~ -'t!)(~-~)(~;,::•£) 
<n.o ~o 

=. ( ?--~ - 'I-'\ -z: ( ~~ ~)( ?-;_~::_'fJ = (?--~ -'~')( 1'-+1-t~~+A.) 
). J ~o } 

So finally, 

(22) 



For the case -- s negative we eliminate {61 and get, in a 

(23) 

since s is always an even integer. 

It is necessary to make one more change in the op­

era tors (22) and (23) before introducing them into the inte­

gralo Since the meaning of the spinor components ~~and nc_~ , 

28 

when used to operate on a wave function is rather ambiguous, 

we replace them by the operators %.; and '0~1( which transform 

in the same manner, --- and then write each of the operators 

so that 5 occurs before~~~' etc.,this is done to preserve the 

relation that s¥commutes with~ and should not operate upon 

it). 1I1his substitution does not impair in any way the gen-

erality of the operators. Furthur it is necessary to arrange 

the ord.er of the separate terms so that they do not operate 

upon each other but only consecutively upon the wave function, 

(this would not have been possible if either [51 or ~6J had 

not been eliminated). It will also be notice.a/that the indi­

vidual operators [l] do not operate upon themselves except 

in the case of llJ and f2}. To eliminate the spurious terms 

of degree less than 4T (the entire operator must be homogen­

eous of degree 4'C" ) which occur because of the self-operating 

character of (lJ and {2} , it is necessary to make the foll-

owing replacements, 

{i]f' ~ (U.J-f'+t)(l1J ~'fo) .... ((1J- 1)(DJ) [tif' 

{.zJ% - ([zJ - t+ I )([2J - b} · · ·· ([-z.] - I )((2.]) f?-J 'b 

[3}t~ [?J]f' [jll'-'> [s]-f' 

["f]P _:;. [4J t' {LJf ~ [t:.Jf 
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where [1.'] denotes the operator after J-'rhas been replaced by %5, 
and '>£-v- by -ah'>l • 

After the above change has been made the operators 

(22) and (23) become, 

C 't' '!'"~-1~):.. [3]).. ui t--1:- I~-;\ [<-isl [:>..f 1:-~- r~I_). [_4] ;t+A.--

l\"'o 

c1- t-f:-'£ K,., ['3] >. [2J1 ?--~ - '~'-"" [s] 1s1 [t]' '?-- i:-'~'-'>.. ["4] "A.-M .. 
~-;O 

(24) 

~hese operators containing s apply to J( and J;, similar oper­

ators can be worked out where q replaces s to apply to JJ and 

J%. 
The next step is to apply these operators to the var­

ious wave functions. First of all, the result of applying the 

separate ['] operators to the functions (notation defined in 

(16) ) will be computed. A summary of the results follow. 

'd Q 
(~.J ,,,. s, 8j. + 71, fJ"l.1 

';;\2. 'da.. 
--- -+ --G),.,';>j, 'dj .. 'C>"(1 

(2J = 5~~ ... + ''h~~ 

L~J .. - "l:r.)1 4- ),_,, [<..] "' f ,_~I .f- ,,_~"1• 

toli8i)-:: (-71:i.'Tj, +),_71,)o1 (-b5,+cl'~,)P(-b)'l.-t q~""/ 

(c< f(!>) == (-~.,i. -t '1,_),)o{ (-h1. + a.'l?,/' (-l:.5,_+.a.'1'f~) 13 

[I] ( rl.,(3/) "' (d.-1--f) (o<,p,b-) 

[2] (r.<,p,~) -=. (o(+i)') (~,~l) 

r~1 (~~r> '"' (o<+1, r-> J "lf) 

[4] (r1.,p,r) "' 
o( (8+1.) (c<-!, /3 1 .?) 

tsJ (tJ.,(J,b') " lJ'(oli(3+1.J ~-1.) 

[G] (c<.,(3,ff') ~ (o!, ~-t) l(-1-1) 

(25) 



[1.J{d,Y,f) = (ot-t-d' )(«, ~.[3) 

(2J (o(,<f,f) " (ol. + [3) ( o1., f, p) 

[3] (<X,Y,f) =- - (of+:;):; (3) 

[1] (ot,¥,f) = -OI. 0 («-1,i,f) 

LsJ (oc'.,~1f) = p (o<1i+i. 1 ~-V 
[6] (r:J.'i,f) = "?$' (« . .Y-11f3+1) 

(25) 

These results are now combined into the Sl(±:-) oper-

ators, and we compute the result of operating with them upon 

the two wave functions [<1.~,.,~ and [d~i .. ,~J . 
..0.}fr) [~p, /,.] = c'l' Q~ (~ .. / .. ) [ o1 .. -n.., ~ .. - 1~1, .Y., + isl] 

..{)_S'l-(-) [eic~f. ,t,._] = C 'l;' Q~ (82,~ [ <>("l. - h_ I ~\. + f51 ,7?,_ - ISi] 

_n.~(+)~a,'2,p"JJ::::: C-c ·~l2-((~i) [o1.1.-l'l.1 (/.,_-ISi ,~ .. ~Is!} 

where 

Q~(@~l-.) 

Q~(t~.~J 

and the notation E£~J = E(E-t) · · · · (E-)1+1) 

(26) 
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The next step is to introduce these results into the 

integrals for J~ (16). We obtain, 

J 'C" ::::: 
1.. 

= 

where the upper expression in the bracket applies when s = +, 

and the lower when s = - Condition ( 19) gives for this inte-

gral, 
( It r +Ai..) r = (-\7,+it) ::::: ~ ... -d., 

s ::::: (f-,- )_.._) (.f.-K) ::::: ~'- - ~I ::::: ,i, - t?._ 



so that the integral becomes 

J,..,.. 
1. 

and it will be noted that a slightly different notation for the 

radial integral is introduced; the meaning is obvious. 

Similar results are obtained for the other J~'s. 

J ~ = Jr o<. t. ~·~ _nr (±) l o(L ~._ fJ 

s'5(<r._p. .. )( ?:( 0. . ) jJC<.>'.J";f>,)("'L-"'-,;t"'L-1£1,13~+1r()} 
= Qt l Cp.&"'-)J R "". 1f· :..<.o.._p .. z j(cl,"{';(3.) (ol.:..-"'-,ir~.fl<;'i, ~ ... -Id) 

= Q~' ) (l',_/h) J R'C( _Q ,P , A ~ ) f SC?irti ~' )(ot, )(1 13•)] 
C-LC~.o..,J l.. ', ~' ( )C-<._!J;p.J(a,r,13.) 

= N:L{f._2,) Q; I ~~~3] R?-( f._Jl~ ) ... ).;) 

since (19) gives s' =(Ai-A..) - (.pL_--f,) = p.-(3 ..... =l' .... -0', = -s 

J; = f [r:<, '(, ~ J fl~(:£-) [ ct,_f~«-:J 

= 1;/) (~,O.)f Ri-(c<,2$',~,.o1.p.r .. )) Jfo1, 0,~.)(«,_..,_,~L-1~1,a-..+1y,1Y.z 
1:: l {r~.~2) , l .5(.1.a-;M (o1.,-J1) p.+1i1,o .. -f)J 

= (li ) (p.,,(),,)J RC-(.,e p ',A ~ ... ) ) Sfl..Y,~,)(d..<J',;,JJ 
~t I (o-.._r.) .,_, 'J ' Zs (ol.(J.f.) c.1. .o,p.J 

-- ·1~ ( n n ) ,,,Z ) (~~0--)J ·~2-( 0 () I\ ) 
J:~ L -l'2..t'1 '<G't l {_().fi-) J:i: '\.~£,; /l1 th. 

since (19) gives q = (A.->.,_) + (_p,,...£7~) = pi.-~1 = f.-~... , and the 

upper expression prevails for q = +, the lower for q = -. 

J "C = 4 

i' ) (Q'._ p._)] , ~ 1 f~.p.d'1) ( o/,_Jt., 01.- l'f) I (S"L+ 1g'f)] = Qc-1_ (~a,,) Rt (oL,~,cr; ;<><.1"-..f,_) j(D<,13.ir.){<>',_,f'.J .. +('l,'I, p .. -1'{1) 

= NMc.(..P..J._) ,,,f \(a,~,)] 't t nf.. ' \ ) 
L '<(,z- [ (p.r.) R '.-v. ... ~rt•/\• 

since (19) gives q' = (,\'--,,\,) + (-P ... ~R.) = 0,-p ... ='ts'-.-p, = -q. 
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If we now note that since it makes no difference how 

we label the electrons, 

and furthur that we may eliminate the use of s' and q' if we 

ns ' ~ ' remember that the signs contained in the -''-'t .s and _[},{ s must al-

ways be opposite as between Ji and J~ , and opposite as between 

Jf and J; , and furthur that ~ has the same range of summation 

in J; and J~ , and the same range in JJ and J.i , we may combine 

the integrals as follows. 

J't' ... 
I 

Jr 
'I- = 2N~'-(.P. R.._) 

[ Q~ <~· .-.) J 
~;_ (6. µ .. ) R 'tl-P..P"l.; ,\J,~ 

J?: + J'l" = 21'{:~ u. Q.__ ) I q~ (fb.O-.) J Re- ( .. (\ i~: ,\ .,_>.,J 
0 4- Gil ca-1.~)>) 

where the upper expression is used when s or q is positive and 

the lower if they are negative. 

li'urthur combining and ·we have, 

Finally we carry out the summation on T(noting however that the 

range on ~ in J; and J~ is not necessarily the same as in Jj and 

J;, so that we use another summation variable~to avoid ambiguity) 

and introduce the expression into (15). 

+ /1 Qi ( fv<h. ) RO" ( n f, , \ \ )] - ~ Qi ( oi~l-) -<' ~,t1-,.A, 

(27) 
These summations on ~ and ~ are restricted to a few 

values of z- and a- due to the fact that there are only certain 

values of these variables for which Q~ and Q~ are not zero. 



These conditions are, 

l!"or -r ( ~"ir~) and Q;5, ( a'.,_f?> .... ) 

' '. 

r/2 + s/2 ~ ?: =- oli. + (3-....,,. r/2 - \Sf2 

't ~ olL.+ OL. - r/2 + tst/2 

I ).I ---e, I ~ 1:- ~ A I + R, 
l A-i.-R-i-I ~ -t- ~ >..-z.+.-fl.. 

For Qi(61.,~) and Qi(a-... pl.) 

r/2 + q/2 ~ a-'- t::1i.. + ~i..:.. r/2 - 1q1/2 

~ ~ « ,_ + tYi.- - r / 2 + 1:1v 2 

, 
t ' \ i\ I -..e .1 :::=__ a- ~ A I + 2 "L 

lA .... -A, I ~ v- ~ ,A,_+~. 

(28) 

These conditions then, together with (21) must be satisfied if 
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n ...f, R~ • t t i h 
~'->-·~··LM~ is no o van s • It is to be noted that in the second 

I 

part of (21) ~ is to be replaced by CJ'- • 

It is seen then that the matrix element, which is dia-

gonal in both L and ML, is only dependent on ML through the norm­

alization factors. From Brinkman12 (page 55) it is obtained that 

N~L( -P.A) is the coefficient of (aa*") '-~~ (bb*-)L-t-N._ in the expres-

sion 

( t}MJ
2 s (P1P! )°'' (Q:1.Q!)f 1 (R:1J1r{1 

This is simply the normalization integral which corresponds to 

the process that has been used to evaluate the matrix element. 

The result is, 

= (L+Mi,.)! (L-/\fc.) ! (5, + I) ,1 
o£, ~ ~, ~ t, ! 

GzL-) ! -(~-, +-6:-,.,_-, )-!c-o1-'. +-~ ...... ,)-~ ..,..l"'-_0 _+;......r1~) !,__ 

where C,;U.: is a constant which depends upon f;. alone and its form 

is determined by the form of the initial wave function for 

ordinary hydrogenic angular wave functions it is 
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The part depending on ML is seen to be independent of ~ and../.._ 

and entirely separate from the rest. Hence when we form the 

"' .. ( ·1 ~ . expression N /- J,,.P .... ) ~~.A-...) which occurs in the matrix ele-

ment the part depending on ML cancels out and leaves the matrix 

element entirely independent of ML. 

(S',+1)! ol, ! ~· ! ~ ! 
(f;.!. ,,_ 1.) ! p( >- ! fh ! ct,. ! 

(29) 

I-t ""~ b~ v-eqcf,,dy :slrovvtt, by .,.,;,..,-/t'"f ooi- -ff.e <:o.<>{facre~ of f/,c 7? s, +/.cf _af,i..;: ...a~,I.., TJ.1s-se,.ves ¢S <>-cl.eek. 

In this expression the Q's, the numerical coefficients of the 

radial integrals, are defined by (26), and in order for a non-

vanishing matrix element to exist 'l:: and <f'-' must be restricted 

by both conditions (21) and (28). 

The Introduction of the S~in. 

have obtained a result for the matrix element of 

electrostatic interaction between two states, which were speci-

fied in terms of wave.functions diagonal in L, from different 

configurations (11 1 2 ) and (A1 A2 ), which depends upon the values 

of 1 1 , 1 2 , A :i., ). 2 , and L. If we take into account the electron 

spin we can build up wave functions diagonal in S which are 

formed of linear combinations of individual electron spin func­

tions. These will be denoted by -,v;' and they will be, for the 

case of two electrons, symmetric if S=l, and antisymmetric if 

Now the final atomic states are specified by values 

of J, L, S, MJ, where J is the result of the vector addition of 

·Lands. We can build up the function for these final states 



by taking linear combinations of products of wave functions of 

'Tr-~1..,rr:5 ~T/k ...,r;..Ms the form ~~ ~~ where~~ and ~s are normalized wave functions 

for L and 8, and~ + = MJ (see page 13). We may suppose 

this to have been done so that there is obtained 

The matrix element of e~/r~~ between two of these 

states will be 

H :r, 1<(7, L,S, 

.T.,,M;,.,L,.'?.-.. 

Jt,},~~ 
f 1][*-,t 

But e2 /r1 2 does not involve spins so the integral over the wave 
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functions for spin becomes merely a normalization integral. Also 

fi.T-Mw¥<_;3 -zli:.N~~ .f 
'£, is just ..fl. ',L which has already been worked out, and L 1 /l1.._ /...., " 

is diagonal in both L and ML. 
r Cl'{T,M'-, + 0 t•t;,,.H .. , 
N._, .;r, I.., S, .7i_ L. 15 1 I H ;r, M:r. L,S' 

I ' J, i''l;:r~ L').. Si.. * Q ~;r, "11,., 0 M;r, H.<.r 
;r, t.., S, .T.,_ L., S 1 

But since J 2 is a constant of the motion when we use these wave 

functions, (it is invqriant to a space rotation as is e 2/r12 ) 

the operators J 2 and e 2 /r12 commute and hence it can easily be 

shown that the matrix elements of e 2/~ 12 are diagonal in J. 

H.r, M.r,L,s, 
J"'M;rLS 

fJ",J~M,,M:rdL1..,di:.s, k Q;i..~-4< Q;~~'- ..n.:, L,N ... 

z: c M:rM1..*° c ,..T ,.. .. 
14'._ .TL-S :f L.5 

N ow furthur we have shown that ..n1,1.,N1.. is independent 

of M- so that we may take it outside of the summation, and the 
L 

sum of constants cane;el out, leaving, 

H ~ M,, 1.,s,IJ...\) = H :.::. b. 'S & S fl_~ 
J"' 1'<;rl-S \•1 12. ;JJ, l"i7M;;, L.L.1 SS, ).., I... (30) 

It is thus independent of J and MJ, but depends upon S through 

the choice of the ± signs in .Jl.),L • 
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III. COMPUTATION OF rrHE MATRIX ELEMENTS (P..ADIAL PART). 

In attempting to evaluate the non-diagonal matrix ele­

ments of the electroststic interaction the elements have thus 

far been reduced to a numerical fact~r times a radial integral. 

'rhe typical radial integral, expressed in the previous section 

. as R't"(J;~;AJ ... ), or 

-
R 1-( .I?~ ;A.A .. ) = e2 J J~:R (n11 1 /l )R (n 9 1 2 /2 )R(n3:A 1 /1 )R(n4 A2 /2) r~r~c.bt,"'1. .. 

0 

in the more famil-

iar notation, where R(nl/i) is a normalized radial function of 

the 11 th electron having quantum numbers n and 1, must now be 

evaluated .. 

In order to obtain results which will not be limited 

to two electrons, we shall ckoose as our radial functions, Slat­

er's approximation to the Hartree functions. 

R(nl/i) = l/N.,.p 
(31) 

[ 
(.271"*'-;;:J,' ] 1,_ 

[ ~]~""-1. is the normalizing 

factor, and n~ and s are parameters which are fixed when we are 

considering any given configuration in any given atom, and Z 

is the atomic number. The rules for finding n~ and s are as 

follows. If n = 1, 2, 3, 4, 6 

then n*= 1, 2' 3, 3.7, 4.o, 4.2 

s is ob~ained as a sum of terms contributed as follows -

a) Nothing from a shell outside the one considered. 

b) 0.35 from each other elecnron in the group considered -

(except for the ls group, where it is 0.30). 

c) If the shell considered is an .§. or a J2 shell, an amoum.t 
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0.85 from each electron with quantum number less by 

one, and an amount 1.00 from each electron still 

furthur in; for a d or f shell, an amount 1.00 from 

each electron inside it. 

Using these radial functions we have, 

. e2 

If we now place 0: n-¥- + 
I n*" 3 ' 6'"'"2. *'" n"l. + n;!f. 

'f 

z-s, Z!-s~ :;?'-s.._ ~-~t 
(32) 

~I = _,, ,-i. + --;v 'Yf.3. = >1:z.* + '11+ 11:, 

we can write - (after interchanging the name of the integration 

variables in the second term), 

where I (01?1;) Gj ~) = 
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" ,, 
We now proceed to an evaluation of the I integral. 

"" I d-61-1"- t e -"'1 · '19-(IY{ .. 6':2. ~) ~ 
0 

0 

This result is of course the ordinary incomplete Gamma function 

integral, and holds as written only for values of 0( which are 

integral .. We shall limit ourselves to this case for ~he moment. 

Now, 

(the interchange of summation and integration 
being allowable by an application of Dini s 
theorem.) 

We can write this in a slightly different form by taking out a 

term [' ( <r:- ?-) 
{.., .+~h)G';-'?- and then have, 

(~-t-?-)! J1(<Ti-?-) [ ('l?dlh .. )cr;-~ - l:"t" I1 (cT;-C-+.J.) ..J,. 
4(}.=i .. -1- ?'"+I (-¥11 t ").,_)~ - (- N{, th 0 J1 (er, - ~) o/ ' 

and furthur if we introduce the notation 

(34) 

This result, it will be remembered, was obtained under 

the condition that U""...._ be an -integer. Since however I(u;fl,;<1'11(1..) ·is 

quite obviously a continous function of O'i , at least for small 

values, it is reasonable to generalize the expression for arbi-
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trary values of ~ by writing 

(35) 

where, by this sum terminating at a non-integral value of r .. +?: , 

we shall understand an interpolated value between values corres-

ponding to the two integers nearest to ~~~~ • 

Various other methods were experimented with in the 

attempt to evaluate R?"'(..f.f?.;tl.), and it was found possible to ex­

press the radial integral as a remainder after a given number 

of terms in a Taylor series, or as a hypergeometric function of 

certain of the quantum numbers, both of course with appropriate 

coefficients depending on the quantum numbers, but neither seem-

ed as readily adaptable to practical computation as the above. 

In order to evaluate numerically the expression for I 
['( r,-t--+.i} w (]:;2! </. 

it is necessary to plot the function at>-• I'C<r,-c- ~ 

for different values of CG"~-z- and w as a function of r,...+--c , i.e. 

of the number of terms we take in the series. We will have 

then a family of curves, each of which has a fixed ~-~ and w, 

along which can be read off values corresponding to non-integral 

" For values of ~-~ and w for which curves are not drawn 

we may interpolate between various curves of the family. 

A standard set of cvwes was computed for £~-"?"" [<1''1-+-~), 

using values of ~-~ from 2 to 5 and w = o.4, 0.5, and 0.6, it 

being found that most practical cases had values of these vari­

ables lying between the above values. These curves are plotted 

as functions of ~+t on the next page. 

The procedure will then be to compute the term (l-w)~-~ 

and measure graphically the distance between the straight line 
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corresponding to the ordinate y=(l-w)~-~ and the point fixed in 

our family of curves for F~-1"('1;+?:) • This value when multiplied 

by the term 
('(<fi.1-T°-f-I) rl<J'.-7) 

"1f1-1-'t"+-I ("'11 t ">?-.JO'j-'"t will give I (o-;- '1·i(1:,'YJ2.). 
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The other integral necessary, I (cr:i.? ... ;V711,), may be worked 

out in an identical manner since it is of the same type with the 

roles of 01:. "Yj .... and V,,'?_, reversed. We obtain 

(36) 

In this case the interpolation is to be taken for non-integraf 

values of G'; + r- , and the same procedure will be followed in ob-

taining a numerical result for the integral (it is noticed that 

the same family of standard curves may be used here, as in the 

former case, since we are only interested in numerical values. 

A b 0.:-1" ( ) ) lge raicly we wish F ,:"' <r, -+1: .. 

The two I integrals are then combined as in (33) to 

give the desired radial integral. Once the standard curves are 

computed it is only a short procedure to evaluate almost any 

required radial integral of the type considered here. 



IV. TRANSITION INTENSITIES. 

The matrix elements of the electrostatic interaction 

between configurations have been obtained in the form (30), 

HJ.fl1.r.l.• 5 • (l•l.,,,.X1)..n) = Hio = ~<J,/Vt;,.,J,.,s, _a-f..Rz. 
;r I'( ';J L s ... "' ., "' T I'-( 7 L '5 A. A>. : L.S 

h rl.j),Ri d t f w ere ~L,>...A..it.s is in ependen o J, M J, and ML. 
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To proceed with computations concerning the transition 

probabilities the proper wave functions for the system which in-

eludes the above interaction.as a perturbation are built up, in 

the usual manner of the Schrodinger perturbation theory, out of 

linear combinations of the ffe"01
s ( the Russell-Saunders wave func­

tions describing the separate configurations) in which the Hij' s 

enter as part of the coefficients. 

It will be noted that ,..,r;o/ the coefficients of the ~ s are entirely 

independent of J; the 
I 

Hij shave been found so in II, while the 

E01s represent the energy levels before they are corrected with 

the diagonal elements of the perturbing matrix, i.e., the elec­

trostatic energy which serves to split the configurations into 

multiplets, and hence are the centroid energies of the configur-

ations which are obviously independent of J. 

The transition intensity between two states is prop­

ortional to the square of the amplitude of the electric moment 

between the states, which in the quantum mechanical analogue of 

classical electromagnetic theory is expressed as e~ir:r~dt =A. 

We first compute the matrix elements of the components of this 
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quantity which will be associated ·with the various Zeeman com-

ponents of a spectral line.. The procedure for this is analogous 

to that used in evaluating the interaction matrix elements in 

the preceding section, in that symbolic spinor functions, trans-

forming under a space rotation in a similar fashion, are substi­

tuted for the angular part of the factors~-* ,lfi-x 'and r occur­

ing in the integral, and the integration worked out using the 

operational character of these functions. The method has been 

used by Brinkman12 in evaluating the ordinary Russell-Saunders 

intensity relations. In writing out the expressions we shall 

use only the first order perturbation term in the proper wave 

functions, although it will be seen later that this is an unneces-­

sary restriction and that the same type of a result is obtained 

no matter how many terms we take in the expression :!:'or fr . 
:I'he components of er which are desired for intensity 

relationships, Ax+iAy, -Ax+iAy, Az, transform like the quantities 

X2
, Y2 , and -XY

1 
t4 J, where X and Y are the components of a spin­

vector, so that by introducing the operator (-BX+AY)~, (A,B a 

constant spinor), for er, the requisite components are obtained. 

'l'he same expressions are used for the wave functions as in sec-

tion II, except that J,L,S replace the vectors·L,l~,1 2 • The 

details of the procedure are much the same as before, in that 

different~al operators are substituted for the X's and Y's and 

the indicated operations performed.. 'fhe results for the case 

J+l ---:.- J may be expressed as follows (the primes denote that the 

matrix elements have been computed between unnormalized wave 

functions). 



where Rij = H /E0 + E0 

ij i. J 
( ik) means that the function shown is taken between i· 4,.11 t ... 
(ik) 0 

C~(ij) 0 =result of integrating the particular 1]! 0 ~ shown 

over the operator (-BX+AY) sand does not depend upon M. 

f f J-t-l M-1 
(-A +iA )_ <frcJ = 

X y I) M 

( A~ )~+I ~ (1'1<) = 

In order to obtain the matrix elements between normal-

ized wave functions it is noted that the normalization integral 

may be written 

Jv1 
J ( 

J )-' 
c J :+-"" (39) 

where OJ is th.e part of this integral independent of M. 

Hence if each ?[r0 

ia divided by the proper INj and the entire ex­

pression f"or the matrix element is divided by IN =Jc1~yR.f}(1+fR,d-) 

(the normalization factors for the linear expansion), the matrix 

elements between nprmalized wave functions will be the result. 

(<TTM+2.) (<r+MTI) 
(1.T-rl) (2;r..-2.) N 

if I I< 

[ 
C J+-1 l • )C> 

(40) 

;- l, RM C~'U~ ~ J:t.: 'R,4·R1a C~ 1(J'-')j 
~ vc7 ,.,(.i)°CJ'<.Jtf" .i ~ if C;;+t(fJ'"C;;<.i;) 0 
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;r ... 1 M-1 (ii- M +2~(J'-N'l+tl { above j (-.Ax+iAy )T M tu<) -- (::Z.;T+~) ('l..'/'+f) "' 
same as 

r .... 1"" f (Az ).,- ~ (t' t<J (.T+l"l+I) (J"-r<l-+t} same as above} 
6.J""+ 2) (::L::T-r 1) N 

It will be noted that the expression in the bracket is entirely 

independent of M since both the vf:_' sand the R1 j's are indepen-
r> .:r..-1 0 dent of IVI; 1 t will hereinafter be denoted by 1.)1, :r 0 1<> • 

'I'o obtain the total intensity (total radiation in all 

directions) of a line J+l ~ J which is not split into Zeeman com-

ponents, the squares of the above matrix elements for the ampli­

tudes of the components of the electric moment are integrated 

over all directions in space and the results summed ( a factor 

J c2 ;_':/f, which comes from the fact that the true amplitude squared 

is a time average of the energy flow, must also be added). This 

gives the total ,intensity of a line J+l~J which goes to the 

final state J .. This result turns out to be independent of M, 
fl.T+• 

since this factor cancels out in the coefficients and ...n,J is al-

ready known to be independent. Hence the sum over all end states 

M, to give the total intensity of the transition J+l to J, in-

traduces simply a factor of 2J+l.. 'l'he resultant total intensity 

denoted by I ,;=..-• is 
S'L.' J"+I .2:. (:271->')4 (2.;;_:;-3) [Jl~'Uic)o]z. 

Is /. J = 3 --& ,, (41) 

By a similar procedure the corr·esponding intensities for tran-

sitions J-J ana_ J-1 --J are obtained. 

- s' '-' ::r z (2n:Y)4 (2.J"'*' r)(iTrf) [ Jl; (t'f<}]L 
I. :s· i.· ;; = 3 -0 ::lJN 

5 1 1.';J-1 2. (2.JTJ'.JI (.2 or+O {Jl~-1 (1'1<) 0]~ 
I s '" " = 3 C3 N 

These intensities have been denoted as occu~ring for transilbns 
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s',L', to s,L since the factors .Jl3:- are still dependent, through 

the expressions cg:-1 
and CT , upon Sand Las well as upon J. The 

next step is to obtain this dependence , and separate the factors 

depending on J., 

The fae:tors CJ(i) 0 resulting rfi'.rom the normalization 

integral {39) may be separated into a product of two factors, 

UJ(i) 0 = f(J,L,6) CL(i)~ where f is independent of the values l~, 

la, etc., out of which the state i is built, while CL(i) 0 con-

tains this dependence 

The factors 

but is independent of J. 

CJ
1

(ij )'" are simply the results of integrat­
J 

ing the Russell-Saunders wave functions .,P/ (J"'t..'s') and 1/i/ {:rLS) over 

the operator t~BX+AY) 2 and have been evaluated partially by Brink­

man:i.2 .. They may be written as a product of two factors 
J' u 

CJ(ij) 0 = g(J,J' ,L,L' ,s,s') CL(ij) 0 (42) 

where g is completely independent oft the factors lJ,,,1 2 ,~;i.,>. 2 ,etc, 
f . I as well as the manner in which the states L,L , ana S,S , are 

built up out of them, while cf(ij) 0 contains this dependence but 
ri.::r' 

is comp~ely independent of J. Now the function ..JV:r U")° into 

which the values of cg' and CJ are to be substituted consists of 

four terms, three of which involve sums over certain L-S wave 

.functions. However it will be remembered that the matrix element 

Rij (or H1j) was found to be diagonal in J,L,and S, so that all 
I ' ' 

the L-S wave functions associated with the initial state f/r,L,s 
have the same values J ', L', S ', and all the L-S functions asso­

ciate a_ with the final state 1[r1<.J,t,s have the same values J, L, s. 

This means that when we put the above expressions for C~
1

and CJ 

into Jl'(;.1
, the part F(J,J~L,L',S,S/)=*(.J,J"',L,J..'1 s.s') is not only 

~f!(;r,1.,:S) f (.r;1..~S') 
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independent of the inner summations but is also the same for 

each of the four terms. The result may be written, 

nT' If this form of .tt.:r is introduced into (41) and the 

particular values of F(J,J~L,L:s,s') are written out {these coef­

ficients have been evaluated numerous times 4
'

5
'

8
'
12

) for the only 

cases of L1 ands' for which the intensity is not zero, we obtain 

for the transition probabilities, 

I s L+l J+l bn~r 
S L J = ~ 
s L+l J Is L J 

I~ L+l J-1 
L J 

S L J+l 
Is L J 

I.S L J 
S L J 

IS L J-1 
S L J 

= ~:ffe'/ 
,3c3 

= (c:Jx# 
3c3 

= 

= 

= 

0<J.+tJ~-t;~+tJ+ :i-)(c,t +I) ({3 +r) d" 
<T[.T+ I) l;u. +..2) {.::2,i:. ·N) IY 

{cl+,:i.)(e.{-r;) cY ( r-(} 
J ( .:L.L.+-;'J;}[.:thrt) l'V" 

(<:<~~ -nJ--; . .2) d (/3-r I} {rY-,.1) 
<f;r+I) (i;u. ... ) 2.- /V 

1-+-f 12. [ .Jl J.- ( i K} • 

{A ~r1 {h:JO) 2-

where o( = L+S-J , f3 = J +L-S , Y = J+S-L 

(43) 

(44) 

and the transl tion probabilities for L-1-? L can be obtained 

from (43) by interchanging initial and final states. 

are entirely independent of J but depend upon L and s. 
of the form, 

Li 
--zf21.. { 11<)

0 = + z J?,y cirJ1<J 0 

,/ IC~ I (/J° C,J /< )" 

L1 I 
The Jl.1- (11el' s 

They are 

(45) Z' z ~,·R;~ c:t-//Jo 
) <' f 0., 0) 0 G (// 0 

+ - ... - ... -



Now it will be noted that in this entire process the 

first term which appears in the matrix elements (3$(40) and in 

the expressions for ,A:/. and .Jlf' corresponds to the transition 
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intensity which would be obtained had there been no interconfig-

uration perturbations. 'fhe various multiplicative factors which 

were obtained in (38), (40), (41), and (43), (44) and are depen-. 

dent upon J, L, S, are independent of the fact that the extra 

terms arising from the perturbation are present in the matrix 

element of the electric moment. Thus, the only difference between 

the above intensity expressions and those which would be obtained 

for the unperturbed case of strict L-S coupling is. the presence 

o:f the extra normalizing factor N and the additional terms in -Jl.f'. 

It will be remembered that in carrying out the above 

calculation only the first order correction to the wave function 

was used. However the same sort of a result is obtained no matter 

how many terms we take in the expression (37) for the proper wave 

functions, since the coefficients are built up out of H1j's which 

are diagonal in J, L, and S and all the Jj/-01 
s in the expansion of 

any 1f/;,. have the same value of J, L, and Sand hence give rise to 

identical factors as far as the dependence on these variables is 

concerned. The only ne~ thing which is introduced is the pres-
/J L' ence of additional terms in the expression for vi~~~: 

Since when we deal with the relative transition inten-

sities within a given multiplet transition L'~L, S ~s, the fac­
/J.t.' tors N and -v-t." {/l'f/

0 cancel out (they are independent of J), the re-

sult is obtained that these relative intensities are unaffected 

by the interconfiguration perturbation of the electrostatic int-

eraction, a result which is true no matter how accurate an approx-
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imation to the perturbed wave functions is used. (This, of course, 

is with the neglect, as far as the energies are concerned, of the 

spin-orbit term in the Hamiltonian.) However the absolute inten-

sities, and the relative intermultiplet intensities, may be af~ 

fected considerably, especially if two interacting configurations 

happen to lie close to one another and thus give rise to small 

values for some of the denominators occurring in the expressions 

This rule is of course subject to the slight error due 

to the factor )I" which occurs in the expression for intensity. 

However this same factor affects in like order of magnitude the 

intensity relations in strict L-S coupling, and in general is 

quite negligible when relative intensities for a given multiplet 

transition are dealt with .. 

'rhis result is dependent upon two factors -- first, the 

fact that the matrix element Hij is independent of J, and sedond, 

the fact that· the expressions which arise in the application of 

group theory to quantum mechanics involving two vector quantities 

and their sum (e.g. J = L + S) may be written as a product of two 

terms one of which contains the entire dependence on the sum {J) 

and is entirely independent of the subconstituents of the other 

two (i.e. 11 •••• lj, a1 •••••• sj)" 
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v. DISCUSSION .. 

The result which has been obtained, namely, that the 

relative intensities of the lines within a given multiplet tran­

sition are independent of the interconfiguration perturbation of 

the electrost.atic interaction, no matter how accurate an approx-

imation is taken for the proper wave functions describing the per­

turbation, is consequent upon the following general process of 

building up the atomic system of energy levels. .F'irst of all the 

ordinary wave equation is solved in its elementary form which 

takes into account onl) the interaction of the individual elec­

trons with the central field, and values are obtained for the so­

called centroid energy levels of the different configurations. 

~ext, the electrostatic interaction is introduced and the consid­

eration of the diagonal elements of its matrix serves to split the 

configurations into multiplets which still possess the degeneracy 

that is to be later removed by the introduction of the spin-orbit 

intera,ction.. 'l'he formal introduction of this interaction which 

splits the multiplets into J-energy levels is omitted for the time 

being, but the results of it are assumed in so far as we pick out 

of the various wave functions for the multiplets those particular 

ones associated with the J-levels, for purposes of computation of 

the non-diagonal matrix elements of the electrostatic interaction. 

When these non-diagonal elements between configurations are intro-

duced, and the consequently modified wave functions used to com­

pute transition intensities, the above theorem is obtained. 1l'he 

compJete nuclear(eentral field}, and electrostatic interactions 

have then been introduced into the energy levels, but not the spin-
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orbit interaction. 

If now the diagonal elements of' the spin-orbit term in 

the Hamiltonian are taken into account the usual system of ener­

gy levels in terms of configurations, L 1s, S's, and J's, is ob-

tained, except that furthur the energy perturbations due to inter­

configuration interactions of the electrostatic term are already 

included. However, the relative intensity theorem above is still 

valid, since the E01 s appearing in the expressions from which it 

was derived are those present before the diagonal elements of 

whatever interconfiguration term we are considering h~ve been tak­

en into account, and the interconfiguration part of the spin-

orbit term is as yet unintroduced. 'l'his requires some amplifica-

tion --- since the strict division into definite configurations 

has already been scrambled by the interconfiguration terms of 

e2 /r12 , the complete diagonal elements of the spin-orbit term con­

tain some of the interconfiguration part, but we may think of con­

sidering first only that part of the complete diagonal elements 

which is strictly diagonal in terms of the L-S wave functions, 

and then later the part which is ''interconfiguration" in terms of 

these functions. 

When the "interconfiguration" interaction caused by the 

non-diagonal matrix elements of the spin-orbit term in the Ham­

iltonian is taken into account, together with that binterconfig-
h ' uration part of the diagonal elements mentioned above, two new 

features are introduced. E'irst, if it is assumed that 'these non-

diagonal elements are negligible either in absolute magnitude or 

in comparison with similar terms of the electrostatic interaction, 

then the same form is obtained for the perturbed wave functions{37) 
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as beffore(since there are no new or additional Hij's), with the 

difference that now the 1s which appear in the denominators of 

the R.j' s are the energy levels before the diagonal elements of 
1 ' 

the spin-orbit term are introduced, but after the diagonal ele-

ments of the electrostatic term are taken into account. Hence, 

they are the centroid energy levels of the separate multiplets, 

and as such '· are still independent of J; thus the theorem ·is 

still valid. Secondly, if these non-diagonal matrix elements are 

not neglected they will introduce certain additional terms in the 

expression for the perturbed wave f'unctions(37). Since the ma­

trix elements are diagonal in J but not in L and si 3 ' 1 ~ as were 

the corresponding elements of the electrostatic interaction, the 

additional terms which are introduced involv.e multiplets of diff-

erent types than the original. 'l'his destroys the simple form of 

the intensity expressions and makes impossible the step in which 

a common factor depending on J, F(J ,J-',L,L',S,S'), was taken out of 

all the or 1s.. Hence, the dependence on J- does not cancel out 

when we compute relative intensities within a given multiplet 

transition, and these relative intensities are distorted from 

their normal values .. 

Before proceeding furthur in the effort to obtain an 

estimation of the magnitude of these anomalies, we must consider 

a few facts concerning the spin-orbit interaction between config­

urations. Shortley15 has investigated some phases of this inter­

action and found that terms existed only between configurations 

which differ only in the u of one electron. Such configurations 

can be considered as two members of the same series, and in gen-

eral lie far apart in the spectrum. Because of this, and the 



53 

fact that it is not true of the interconfiguration electrostatic 

interaction, we must come to the conclusion that as far as energy 

perturbations are concerned, the electrostatic interaction is al-

one of importance. In the case of intensity anomalies, however, 

it has been seen that the electrostatic term alone, even when the 

energies of the configurations involved overlap, can have no effect 

on certain of the relative intensities. It is only when the two 

interactions are combined that the anomalies may be accounted for .. 

The method of introducing the various interactions that 

has been outlined above served to make this clear. At the end it 

was apparent that only the introduction of' the interconfiguration 

spin-orbit interaction yielded anomalies, and hence since it was 

the only term present it could not be neglected. Nevertheless, 
\' the above restriction on it, to between members of the same con-

figuration" series, makes all of its terms small. In order to av-

oid computing and introducing all these small terms (which serve 

to connect different types of multiplets, and thus destroy the 

simple separation into multiplet types which existed previously), 

it is desirable to examine an alternative order of introduction of' 

the various interactions which makes possible a more practical 

computation of the intensity anomalies. 

11he alternative procedure is as ttollbws. After the cen-

tral field interaction with the electrons is taken into account, 

the diagonal and non-diagonal elements within a configuration of 

the spin-orbit term are introduced. Next the diagonal elements 

of the electrostatic interaction are taken into account, so that 

thus far each configuration is independent.. .1rinally we compute 

the interconfiguration interaction caused by the perturbing terms 
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in the Hamiltonian (both e2 /r:1. 2 and spin-orbit).. '.L'his will con­

sist of two parts, one f'rom e2 /r12 and one from the spin-orbit 

term; however the latter is small\see above) and can be neglected 

here in comparison to the electrostatic term. Hence we obtain 

for the entire interconriguration interaction . .Just those terms 

which have already been computed, which are diagonal in J, , L, 

ans S, and hence connect only multiplets of identical type. How­

ever, in this case, the E 0 's which appear in the denominators of 

the expansion coefficients, Rij's, are no longer independent of 

J, but are just the ordinary energy levels specified by J, L, and 

S. 1I'he intensity anomalies exist then because of the combination 

ll '-'I of both spin-orbit and electrostatic interaction. The v~~ s do 

not cancel out since they are not independent of J due to the 

presence of the spin-orbit term; but there would be no anomalous 

terms to be cancelled out were it not for the presence of non-zero 

interconfiguration elements of the electro.static term. 

The expressions which are obtained for the intensities 

are identical with (43) and (44) except that the R1 / s which oc-
L' I 

cur in the -A'" Ct1</'s (45) must be written, 

R = 
ij E? - E'? 

where E? = E. + Ll~(Ji) 
1 1 

]. J 

E. = centroid energy of multiplet(independent of J) 
1 

This may be written, 

+ 

since L\c:-A.,i <<. E. - E 
l. j 

Hi,; [£1~(J i )-4'·(J j il 
(Ei - Ej)a 

in general. 
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/J"', 
When this value of H1 j is substituted, v-tL may be con-

veniently separated into two parts, the first of which is the 

same as we had previously and the second of which is a second or-

der term depending on J and containing factors which measure ~he 

spin-orbit interaction. 
/}"-' 

7/t~ (-t'K/o 

When this is put into the expressions for intensity and squared, 

the square of -v'l:~ may be neglected and we obtain, 

SL'J' ( 2rr J>-) 4 

IsLJ = 3cs-
K ( J , J', L, L', S ) 

N 

where K is given in (1+3) and (44), and 

e: ~-"i'CI .. 
#'C~, 11,1°c~f,e/<> 

r .z' #KR c,f'?, 'f/9 7-

,,f tE..:-,::-.e JJ/c; ,(-< 'l"t:;. ('.t'.Jo 

Z' H:j[A·fJ"'J-AJ{J)jc;!.L(,•k)° f- Z' //K-e[.oKr..rJ-.A_,{.T)jc/·'t:.-';./Jo-f-
,/ (.s,. -.Ef/) ,_yC''-' t:.J'lo C,l'#o ~ [c1<-£e),__/~'t" .. ·1ct:l /'<'/"' 

Z' Z7 ll1j'lfKe [A,.-c'.rJ-.A,/UJ.][L.xf.J')-..a~(JjJC:'c/.t'). - - -
j ,.(' ($,-&;/)2.(E1e--E.-P·vc,t..1 vJ"C.1.J·0° f-

(47) 

(48) 

'rhe first term in (47) then is entirely dependent on the 

electrostatic interaction and is the first-order-term as far as 

anomalies in absolute intensities and in relative inter-multiplet 

intensities are concerned. It leaves relative intensities for a 

a given multiplet transition unchanged. The second term in (47) 

is the second-order term in absolute intensity anomalies and in-

volves a product of factors depending on the electrostatic and 

spin-orbit interactions respectively; it is the flirst-order term 

as far as anomalies in relative intensities within a given mul-

tiplet transition are concerned. 
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