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Abstract

This thesis concerns development of efficient high-order boundary integral equation methods
for the numerical solution of problems of acoustic and electromagnetic scattering in the
presence of planar layered media in two and three spatial dimensions. The interest in such
problems arises from application areas that benefit from accurate numerical modeling of the
layered media scattering phenomena, such as electronics, near-field optics, plasmonics and
photonics as well as communications, radar and remote sensing.

A number of efficient algorithms applicable to various problems in these areas are pre-
sented in this thesis, including (i) A Sommerfeld integral based high-order integral equation
method for problems of scattering by defects in presence of infinite ground and other layered
media, (ii) Studies of resonances and near resonances and their impact on the absorptive
properties of rough surfaces, and (iii) A novel Window Green Function Method (WGF) for
problems of scattering by obstacles and defects in the presence of layered media. The WGF
approach makes it possible to completely avoid use of expensive Sommerfeld integrals that
are typically utilized in layer-media simulations. In fact, the methods and studies referred
in points (i) and (ii) above motivated the development of the markedly more efficient WGF

alternative.

v
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Chapter 1

Introduction

Early history. The interest on the propagation of light in presence of materials has re-
mained at the forefront of human inquiry for over two millennia: the study of the phenomena
of reflection, refraction and diffraction of electromagnetic waves dates back at least to the
ancient Greeks [18]. Indeed, Greek philosophers and mathematicians were already familiar
with certain aspects of the nature of light now encompassed within the theory of geomet-
rical optics—such as the notion of rectilinear propagation, the law of reflection and the
phenomenon of refraction. Yet the precise law of refraction was only established (experi-
mentally) by Willebrord Snell in 1621.

Although successful at providing a good description of the reflection and refraction of
light across (locally) planar material interfaces, the geometrical optics paradigm encountered
severe difficulties at explaining the significantly more complex phenomenon of diffraction—
which arises, for instance, as light impinges upon structures containing sharp boundaries
(such as e.g. slits and screens). In fact, the so-called wave theory of light was originally put
forth in an attempt to account for the diffraction phenomenon [34, 62]. In its early stages,
however, this theory could not explain the reflection, refraction and rectilinear propagation
of light. The first two aforementioned difficulties were overcame by Christian Huygens, who,
relying on the famous principle that now bears his name!, was able to re-derive from wave-

based principles the previously (experimentally) established laws of reflection and refraction.

! According to [18, p. xxvi], Huygens enunciated the principle according to which “Every point of the
aether upon which the luminous disturbance falls may by regarded as the centre of a new disturbance
propagated in the form of spherical waves”.
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It took several decades until Augustin Fresnel in his celebrated “Mémoire sur la loi des
modifications que la réflexion imprime a la lumiere polarisée”, published in 1819, demon-
strated that diffraction can indeed be explained by applying Huygens’ principle and Young’s
principle of interference. Remarkably, in that same memoir Fresnel provided the presently
well-known expressions for the amplitude of the reflected and transmitted waves that arise
when a plane-wave impinges on the flat interface between two homogeneous media with
different optical properties. Fresnel’s memoire contains also the formula for the amplitudes
of the multiple reflections that take place between the two parallel boundaries of a single
homogeneous plate of finite-thickness and, furthermore, it describes how these results could
be extended to account for more than one plate [124]. This formula has been re-derived
independently by a number of authors, including George Stokes [120] and George Airy [2],
the former of whom gave the complete solution to the problem of scattering of a plane-wave
by a planar multilayered medium. Fresnel’s analysis of diffraction was later put on a firm
mathematical basis by Gustav Kirchhoff, who around 1882 established an integral represen-
tation formula which expresses a scalar-wave-field at an arbitrary point in terms of the field
values and its normal derivative at an arbitrary closed surface. (This representation formula
was derived earlier in acoustics for monochromatic time-harmonic waves by Helmholtz in
1859.) The corresponding integral representation formulae for (vectorial) electromagnetic
fields were not available until 1939, when Stratton and Chu published their well known
contribution [121].

In the meantime, the seemingly disconnected developments on electricity and magnetism
were unified by James Clerk Maxwell. Maxwell’s works published between 1861 and 1862,
which convey his celebrated system of differential equations, led him subsequently to conjec-
ture that light waves are in fact electromagnetic waves. Maxwell’s conjecture regarding the
nature of light was empirically verified by Heinrich Hertz in 1888 [116]. As is well-known,
Maxwell’s and Hertz’s discoveries turned out to have enormous practical consequences. Ap-
plying Maxwell’s ideas pioneers experimentalists such as Marconi and Braun, who received
the Nobel prize in 1909, started the era of wireless radio communications [115].

The problem of radio wave propagation over the surface of the earth—which relates
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closely to the present dissertation—attracted considerable attention at the beginning of the
20th century in connection with theoretical efforts seeking to explain long-distance trans-
mission of radio signals. Indeed, using a two-layer model that regards the earth and the air
as homogeneous conducting and dielectric half-spaces, respectively, Jonathan Zenneck [138]
studied the possibility that the earth surface could support a surface wave (also known as
lateral wave) with low attenuation. Using this two-layer model Zenneck showed that a sur-
face wave with the aforementioned characteristics (which additionally decays exponentially
away from the planar interface) could exist, yet his work did not consider an excitation
mechanism [131].

The excitation problem was studied mathematically by Arnold Sommerfeld [117], who
obtained expressions for the fields produced by electric and magnetic dipoles located over
the earth’s surface—under the assumptions inherent in Zenneck’s air/earth model. Sommer-
feld’s solution is expressed in terms of certain Fourier-Bessel integrals known as Sommerfeld
integrals, which, unfortunately, cannot be evaluated in closed form. (A detailed discussion
concerning Sommerfeld integrals can be found in the recent review [90] by Michalsky and
Mosig.) Deforming the integration path from real-axis into the complex plane Sommerfeld
identified two contributions—stemming from the branch cuts of the integrand and from the
residue of a pole (the Sommerfeld pole), respectively. Sommerfeld’s 1909 paper [117] also
contains an asymptotic analysis of the solution for large lateral distances which, famously,
turned out to be erroneous. Sommerfeld’s results were eventually corrected and largely
improved in various subsequent contributions, including very recent ones (see [90] and refer-
ences therein). Further extensions of these ideas include studies of surface-waves arising in
multi-layer models of the earth.

Sommerfeld-like methods undoubtedly provided a general understanding of the layered-
media scattering phenomena. They are, however, not suited to directly tackle problems of
scattering involving obstacles and/or surface defects, the latter of which interested Marconi
who experimentally studied the field attenuation when a hill was located between the trans-
mitting and receiving antennas [131]. Separation-of-variables techniques, in turn, can only

produce exact solutions to simple scattering problems involving perfect electric conducting
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(PEC) scatterers. In 1907, for example, Lord Rayleigh [109] obtained a Fourier-Bessel series
solution for the problem of scattering of a plane-electromagnetic wave by a single cylindrical
bump with semi-circular cross-section on a PEC half-space. A year later, Mie [91] presented
the exact solution for the problem of scattering of a plane-electromagnetic wave by a PEC
sphere in free space. These ideas were later utilized to solve the closely related surface-defect
problem for which of a PEC semi-spherical boss (or bump, in our nomenclature) is placed on
a PEC half-space [126]. Unfortunately, however, separation-of-variables techniques could not
effectively deal with penetrable layered media problems, as no series expansions are known
to satisfy the suitable transmission conditions at the planar interfaces between two dielectric
or finitely-conducting layers.

An alternative to separation-of-variables techniques was then considered by Maue in
1949 [85]. Resorting to use of Kirchhoff’s integral representation formula—which he re-
derived from Green’s third identity utilizing the free-space Green function for the Helmholtz
equation—Maue showed that problems of scattering by PEC bounded obstacles in free-space
can be recast as a boundary integral equation (BIE). As was shown in subsequent years by
a number of authors, general problems of scattering—mnot only arising in electromagnetism,
but also in acoustic and linear elasticity—can often by recast in terms of boundary inte-
gral formulations, provided that a suitable Green function is available. When this is the
case, the scattered field can be expressed in terms of an integral representation formula
which contains an integral density function—which can itself be obtained as a solution of
an associated BIE. BIE methods, such as boundary element methods [114] as well as high-
order Nystrom methods [23, 27, 29, 31, 75, 84|, provide several advantages over methods
based on volume discretization of the computational domain, such as finite difference and
finite element methods. For example, BIE methods can easily handle unbounded domains
and radiation conditions at infinity without recourse to approximate absorbing/transparent
boundary conditions for truncation of the computational domain [58]. Additionally, BIE
methods are based on discretization of the relevant physical boundaries, and they therefore
give rise to linear systems of reduced dimensionality—which, although dense, can be effi-

ciently solved by means of accelerated iterative linear algebra solvers [13, 17, 29, 59]. And,
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finally, BIE methods do not suffer from dispersion errors, which is a highly desirable property
in the context of wave propagation problems.

To highlight these issues we mention the contribution [40], one of whose authors is also
the author of the renowned FDTD text [122] (finite-difference time-domain). In particular,
the contribution [40] utilizes the FDTD scheme to solve the problem of scattering of a plane
electromagnetic wave by a two-dimensional circular dielectric scatterer. The wavelength of
the incident plane wave in this example is 500 nm and the diameter of the circles is 5 pm—
which makes the circles 10 wavelengths in diameter. Using 100 points per wavelength the
FDTD discretization required around 12 million grid points in the interior of each one of the
circles to achieve errors of 15 percent of the value of the exact solution. The total number of
grid points needed to achieve such errors was, of course, much larger than 12 million, as the
FDTD scheme also required a fine discretization of the exterior domain including the PML
regions, that must be placed at a certain distance from the obstacles to suppress unwanted
features such as frequency-dependent reflections [122]. Comparable errors are obtained in
this thesis for similar problems on the basis of discretizations containing a total of the order
of 100 points. Thus, as is well known, use of integral equation methods enable solution of a
wide range of problems that lie well outside the range of applicability of volumetric methods.

In spite of these advantages, integral equation methods for problems of scattering in
presence of layered media have remained inefficient—in view of the expense required for
computation of the point values of the Green function suitable for layered media—which has
typically rendered BIE treatment of large scale three-dimensional layered-media scattering
problems essentially unfeasible. As discussed in what follows, this thesis provides an efficient

integral-equation alternative for the solution of layered-media problems.

Content and Layout of the Thesis. As discussed above, the classical BIE approach for
layered-media problems is based on use of the layer Green function (LGF) in conjunction
with an integral equation posed on the boundary of each bounded obstacle (Section 2.4).
The LGF, which is in fact closely related to the aforementioned Sommerfeld’s half-space

excitation problem and which can be obtained by means of the corresponding Sommerfeld
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integrals, equals the (total field) solution of the problem of scattering of a point source
embedded in one of the layers. Thus, a scattering solution produced by means of the LGF
automatically enforces the transmission conditions on the planar interfaces.

In the earlier stages of this thesis work an improved and extended high-order LGF-based
integral equation method [104] was introduced which can be used to tackle general problems
of scattering by defects in the presence of layered media in two-dimensional space (Chapter 3).
The proposed method enjoys several advantages: a) it requires evaluation of a minimal
number of integral operators (and, thus, a minimal number of Sommerfeld-integrals); b) it is
based on a highly-efficient procedure we introduced (on the basis of windowing methods) for
evaluation of Sommerfeld integrals; and c) it incorporates a novel algorithm for resolution
of spurious resonances that arise in our minimal integral-equation formulation.

The interest in the problems of scattering by obstacles and defects in layered media
arose from a collaboration with a group of applied physicists at The University of Michigan
seeking to quantify electromagnetic power absorption that arises as electromagnetic fields
illuminate rough conducting surfaces [105]. This collaboration led to the development and
validation of the LGF approach described above. In particular, numerical studies based on
our LGF algorithm revealed that a connection exists between enhanced power absorption
and the existence of certain “pseudo-resonant” frequencies—that correspond to scattering
poles near the real axis—at which large currents are induced near the boundary of the defect;
see Section 3.5.1. As discussed in that section, further, the LGF algorithm was also utilized
to study pseudo-resonance phenomenon in the context of surface plasmons scattering by
micro-cavities in metals.

In view of the aforementioned work on the LGF method it is expected that complex
three-dimensional problems cannot be reasonably treated by means of a method of LGF-
type. In fact it was this very difficulty that led to our development of a novel BIE approach
that outperforms the LGF method by completely bypassing the use of expensive Sommerfeld
integrals. This new approach (Chapter 4 and [24]), which is referred to as the Windowed
Green Function (WGF) method, is based on use of smooth windowing functions and integral

kernels that can be expressed directly in terms of the free-space Green function. The WGF
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method is fast, accurate, flexible and easy to implement. In particular straightforward
modifications of existing (accelerated or unaccelerated) solvers suffice to incorporate the
WGF capability. The mathematical basis of the method is simple: the approach relies on
a certain integral equation that is smoothly windowed by means of a low-rise windowing
function, and is thus supported on the union of the obstacle and a small flat section of the
interface between the two penetrable media. Various numerical experiments presented in
this thesis demonstrate that both the near- and far-field errors resulting from the proposed
approach decrease faster than any negative power of the window size. In some of those
examples the proposed method is up to thousands of times faster, for a given accuracy, than a
corresponding LGF method (Figure 4.14). Analysis and generalizations of the WGF method
to problems of scattering by obstacles in layered media composed by any finite number of
layers in two (Chapter 5) and three spatial dimensions (Chapter 6) are also included in this
dissertation.

This thesis is organized as follows. Chapter 2 presents both previously existing as well as
new background materials concerning problems of scattering in the presence of layered media.
These include the exact solution of the problem of scattering of a plane-wave by (planar)
two- and multi-layer media, a detailed derivation and asymptotic analysis of the layer Green
function in two and three spatial dimensions, a window-integration procedure for the efficient
numerical evaluation of Sommerfeld integrals, and the description of a simple version of the
aforementioned high-order Nystrom-LGF method for problems of scattering by obstacles
in the presence of layered media. Chapter 3 presents our full LGF method for problems
of scattering by surface defects in the presence of layered media, and it includes sample
applications to problems of electromagnetic power absorption and surface-plasmon-polariton
scattering by metals. Chapter 4 introduces the WGF method for the problems of scattering
by defects in a two-layer medium in two-dimensions, and presents a theoretical basis for the
observed algorithmic traits. Chapters 5 and 6 then extend the approach to general multi-layer
structures in two dimensions, and to three-dimensional scattering problems, respectively.
Chapter 7, finally, presents our conclusions along with a description of ongoing and suggested

future work.



Chapter 2

Scattering in planar layered media:
Basic elements

The present chapter concerns three classical problems of scattering by layered media, namely,
1) scattering of a plane-wave by a planar layered medium, 2) scattering of a point-source field
by a planar layered medium and evaluation of associated Sommerfeld integrals, and 3) scat-
tering of a plane-wave by an bounded obstacle embedded in a planar layered medium, under
the simplifying assumption (that is eliminated in Chapter 3) that the obstacle boundary
does not intersect any of the planar interfaces between the layers. In particular, this chap-
ter summarizes certain well-known aspects of the aforementioned problems as well as novel
results concerning the numerical evaluation of Sommerfeld integrals and their asymptotics
(Sections 2.3.4 and 2.3.5, respectively).

The structure of this chapter is as follows: Section 2.1 describes the geometry of the
planar layered media considered throughout this thesis and it presents the relevant par-
tial differential equations and boundary /transmission conditions at material interfaces that
arise in problems of electromagnetic scattering in the frequency domain. Section 2.2, in
turn, presents closed-form expressions for the solution of the problem of scattering of a
plane electromagnetic wave by a layered medium. Subsequently, Section 2.3 deals with the
problem of scattering of a point-source field by planar layered media, whose solution equals
the so-called layer Green function. Finally, Section 2.4 describes the aforementioned LGF
boundary integral equation methods for the numerical solution of problems of scattering by

obstacles embedded in a layered medium, and it illustrates the presentation by means of a



few representative numerical examples.

2.1 Preliminary considerations

Throughout this thesis we consider planar layered media composed by N (N > 1) layers
D; = {—d; < y < —dj_1} of homogeneous dielectric/conducting materials. We let II; =

{y = —d;} denote the plane at the interface between the layers D; and D4y, j =1,..., N—1,

see Figure 2.1), where d;,1 > d; and dy = —o0 and dy = oc.
g J+ J
Y
D,
.
II z/ D,
1
I,
. : D1
N—-2
D
My N

Figure 2.1: Planar layered medium.

Under the assumption that the electromagnetic field is driven by a time-harmonic source

with time dependence given by e~ (where w > 0 denotes the angular frequency), it follows

that the total electric and total magnetic fields E and H satisfy Maxwell’s equations [18, 64]

curlE —iwp;H = 0, (2.1a)
curl H 4+ iwe;E = 0, (2.1b)
within the layer Dj, j = 1,..., N, with material constants p; and ¢; = &} + Z% Here &7,

o; > 0 and p; > 0 denote the electrical permittivity, the electrical conductivity, and the
magnetic permeability of the medium Dj, respectively.

The transmission conditions satisfied at the interface between two dielectric or conduct-
ing media [18, 64] enforce the continuity of the tangential components of the electric and

magnetic fields across II; for j = 1,...,N — 1. Letting E; (resp. H;) denote the limit
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value of the electric (resp. magnetic) field at II; from the subdomain D;, these continuity

conditions can be expressed in the forms

n x [E] — Ej+1] = 0, (22&)

n x [H] — Hj+1] = 0, (22b)

on II;, where n denotes the unit normal vector which points from the dielectric medium
Dj 1 to the dielectric medium D;.

The transmission conditions (2.2) become boundary conditions when one of the media,
say Dji1, is made of a infinitely conducting material. In fact, modeling D;;, as a perfect
electric conductor (PEC), that is, setting ;41 = oo, the transmission conditions (2.2a)

and (2.2b) reduce to the boundary condition
nxE; =0 (2.3)

at the PEC boundary.

2.2 Plane-wave scattering

2.2.1 Maxwell’s equations in TE and TM polarizations

The present section describes how, under certain symmetry assumptions, the Maxwell’s
system (2.1) in three-dimensional space can be equivalently expressed as a decoupled system
of Helmholtz equations in a (two-dimensional) plane.

Consider an electromagnetic field (E, H), solution of (2.1), which remains constant along

the z-axis:

E(T> = Ex(l', y)ex + Ey(xa y)ey + Ez(xa y)eza

H('l“) = Hx(% y)ex + Hy(fa y)ey + Hz(xa y)ezw

where e, = (1,0,0), e, = (0,1,0) and e, = (0,0, 1) denote the canonical basis vectors. It is
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easy to check that the field (E, H) is a solution of Maxwell’s equations (2.1) if and only if

the equations

a;;z i H, = 0, (2.4a)
_56% i H, = 0, (2.4b)
and
85? tiwe, B, = 0, (2.52)
_%sz +iwe; By = 0, (2.5b)
(%ny — 88'?5) +iwe,; E, = 0, (2.5¢)

are satisfied. It follows from (2.4) and (2.5) that the electromagnetic field is completely
determined by F, and H,:

i OH, i OH,
E - %%, - E.e., 2.6
we Oy 0 we gz v T Ree (2.62)
, OF, , OF,
H = - ! ——e, + He,. (2.6b)

wi Oy wi 0x

Substituting these expressions into (2.4c¢) and (2.5¢), and defining the wavenumber k; by
10
kf = Wiy = w’ (59 + UJ) 0, (2.7)

we obtain the Helmholtz equations

B, PE,

gt g THE =0 (2.8a)
°H. 0°H,

OH O ey~ (2.8b)

12 Y2 J
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for the z components E, and H,. It is easy to check that equations (2.6) and (2.8) are
equivalent to (2.4) and (2.5).

The electromagnetic field (E, H) obtained by solving (2.8a) for E,, assuming H, = 0, is
known as the transverse electric (TE) field, while the solution obtained by solving (2.8b) for
H,, assuming E, = 0, is known as the transverse magnetic (TM) field.

Noting, on the other hand, that at the interface II,; the z-coordinates of the tangential

components of the fields are given by

.  OH,.
(nxEj) e, = _LVsz.n:_La_J7
WE wej On
(nxH;) e, = LVEjz-n: La_ﬂ7
W wp; On

it follows that the transmission conditions (2.2) can be expressed (in terms of E, and H,

only) as

an - VE 8Ej+1,z

E] = 41,2 8” - Y an ) (29&)
OH,, OH; 1.
Hj. = Hjy1., 5y = Vfl—aj:’ , (2.9b)
at the interface II;, where
vE =t and vil = S (2.10)

Hj+1 €j+1

Similarly, the boundary condition (2.3) at the boundary of a PEC leads to the following

boundary conditions for the transverse components of the electric and magnetic fields:

E. = 0, (2.11a)
0OH,
on

— 0. (2.11Db)
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2.2.2 Two-layer medium

Consider a layered medium composed of two half-spaces Dy = {y > 0} and Dy = {y < 0}
characterized by their respective wavenumbers, k; and ko, and let II; = {y = 0} be the inter-
face between the half-spaces. Further, let an incident electromagnetic plane-wave (En¢, H™)
of the form

. . . 1 .
Einc — (p % k) ezk-r and H = —— Kk x EmC’ (212)
Wiy

be given, where p = (p,, py, p.) is a constant vector parallel to H, and where, without loss of
generality, a wavevector of the form k = (ky,, —k1y, 0), k1, > 0, with |k| = /k7, 4+ k3, = ky is
assumed. Clearly, the z-independent plane-wave (2.12), which is determined by its transverse
components B¢ = Fj eilker—kuy) (F, = —pykiz — puk1,) and HM = H elkee—kyy) (H, =
kip.), is a solution of (2.1) in D;.

Similarly, the total electromagnetic field (E;, H;) in D;, which equals the incident plus
the reflected field in Dy, and equals the transmitted field in D,, is completely determined by
E;, and Hj,, which satisfy homogeneous Helmholtz equations (2.8a) and (2.8b) in D; with
k = k; and transmission conditions (2.9a) and (2.9b) with j = 1.

Applying the method of separations of variables and using the continuity of total trans-
verse fields across I1;, we get that the physically meaningful solutions F, and H, of (2.8a)
and (2.8b) respectively, are given by

e~y + RTE etk in Dy,

E.(z,y) = Eye** ‘ (2.13a)
TEE e~iky in D,
and
4 e~Fwy L RIM ey in Dy,
H.(z,y) = Hyes 12 ' (2.13b)
TEM e~ tkayy in Dy,

where ko, = \/k3 — k}, with the complex square root defined such that Im ks, > 0 and
Reks, > 0. Note, in particular, that ko, equals \/kZ — k%, if k3 > ki, and it equals

lx»

ik?, — k2 if k3 < k%, in the case Imky = 0. Thus, enforcing the transmission condi-
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tions (2.9a) and (2.9b), we obtain the following systems of equations:

1+ R1T2E - TlgEﬂ kly(l - RlTQE) - kaVFTlgEa

L+ Ryt =T33 k(1= R = kayi T,

whose solutions are the Fresnel coefficients [18]:

ko — Pk ok,
RIE U Vi Nivy e 2Ry 2.14a
P Ky + vk P Ky vk (2142
kj, — vik; 2k;
RIM, = 0 0y T ! (2.14b)

=7 Hy.. ) Jd+l T HI.. :
kjy + v; Kj+1y kjy + v; Kjt1y

The fields EgRIY e*eetiby and HyRIM etf1=2Fik1uy i (2.13) are referred to as reflected
fields, while the fields EyT5LE oo~y and HyTHM etF1e2=#2 are referred to as transmit-
ted fields. The physical interpretation of the reflected fields and the transmitted fields in
the case Im ky = 0, k3 > k?_, corresponds to plane-waves that propagate upwards and down-
wards, respectively, whose directions of propagation are determined by Snells’s law [18]. The
transmitted fields corresponding to wavenumbers k3 < k%, or Im ks > 0, in turn, correspond
to evanescent waves that decay exponentially towards the lower half-plane, and thus they do
not propagate.

Finally, we note that in the presence of a PEC half-plane D5, the total transverse electric
and magnetic fields are given by

e~y _ek1y in Dy,

E.(z,y) = Eyeke® . . (2.15a)
m 25

and

" e FwY 4oty in Dy,
H.(z,y) = Hye™=" (2.15Db)
0 in DQ,

in TE and TM polarizations respectively.
The final expression for the electromagnetic field (E, H) solution of (2.1) is obtained by
replacing (2.13) or (2.15) in (2.6), depending on whether a penetrable or PEC layer D, is
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considered.

2.2.3 Multi-layer medium

Utilizing the physical nomenclature considered in Section 2.2.2 we now derive the solution of
the problem of scattering of a plane electromagnetic wave by a layered medium composed by
N layers, with planar interfaces II; determined by positive numbers d;, j = 1,..., N—1. The
derivations presented in this subsection are based on the waves-tracing arguments presented
in [41], which date back to the seminal work of G. G. Stokes [120]. Similar derivations can
also be found [20, 124].

For the sake of brevity in the exposition only the TE-polarization case in presented in
this section. The TM-polarization case is completely analogous. Letting k;, = , /k;]z — k%y,
Jj =2,...,N, where once again the complex square root is defined such that Imk;, > 0 and

Rekj, > 0, the total transverse electric field is expressed as

e tky 4 RTE gikiy (y+2d1) in Dy,

oo (2.16)
ATE Lot 4 FIB, ebur20) L in Dy 2 < j <N,

E.(z,y) = Eye*e®

in terms of the generalized reflection coefficients éijH and amplitudes A", Clearly E.
in (2.16) satisfies the Helmholtz equation with wavenumber k; in each one of the layers D;,
j=1,...,N.

In order to determine the unknown coefficients RTE

15 and ATP we observe that the down-

going wave within D;, which equals AJF e™v%-1 at II;_;, is given by the transmitted wave
from the layer above, which equals TJ-T_]‘JIJ-AJ-TP1 eki-1wdi-1 at I1;_y, plus the reflected wave by
the layer below that is reflected by the layer above, which equals sz_lA]TEé;f;E+l ethiy(2d;—dj—1)

at II;_1. Therefore, it follows from (2.16) that the down-going wave at II,;_; satisfies

AT vty — T8 4T gityosadss | {TE ATERTE | ik Ci—din)  (2.17)

On the other hand, the up-going wave within D;_;, which equals AT }A%]TPLJ. eiki-1,ydj—1

at II;_1, is caused by the reflection of the down-going wave reflected by the layer below,
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which equals ATF RTY, ;ei-tvdi-1 at II;_;, plus the transmission of the up-going wave in
layer below, which equals ZﬁE_lA;fEﬁ;fﬁrl ekiv(2di=di-1) at TI; ;. Thus, from (2.16) we obtain

that the up-going wave at II,_; satisfies

TE BTE  ikj 14dj1 _ ATE pTE _ikj 1,d; 1 ATERTE _ik;,(2d;—d;_1)
AR5 et = AST RS e v T T (AR, e T (2.18)

From Equations (2.17) and (2.18) we then obtain the following recursive relations for the

amplitudes and generalized reflection coefficients:

T jA]T—E1 eikj—1,y=kjy)dj—1

TE __ J—1,
AJ' o TE DTE A2k, (dj—d;_1)’ (2.19a)
L= Ry Ry et am
TE pTE TE 2k, (dj—d;_1
FTE  _ pIE +Tj,j—1Rj,j+17}—1,je s dim) (2.19h)
gmbi TL Ty L RTE RTE (2ikj,(di—di1) | '
J3,J—17"5,5+1

where RI" and T;'" are defined in (2.14a).

The condition that there is no up-going wave in the lowermost layer, i.e., EJTVEN =0,
allows us to find the generalized reflection coefficients ]A?:ETZH, j=1,...N — 1, recursively.
Having obtained the generalized reflection coefficients, the amplitude coefficients AJTE, j =

2,..., N are determined from (2.19a) using the condition that AT® = 1.

2.3 The Layer Green function

2.3.1 Line source in a two-layer medium

In this section we consider the problem of evaluation of the electromagnetic field produced
by a line source along a straight line parallel to the planar interface contained in a two-layer
medium. In view of the discussion in Section 2.2.1 above, this is a two-dimensional problem.
Thus, it can be equivalently formulated as the problem of computing the Green function for
the Helmholtz equation in a layered medium composed by the half-planes Dy = {y > 0} =
Ri and Dy = {y < 0} = R%, with wavenumbers k; and ks, respectively, whose common

boundary is II; = {y = 0}.
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The desired Green function, G(-,7') : R* — C, satisfies

AG(r,r) + kG (r,r) = =0y in Dj, j=1,2,
G(Tv ’l"/) |y:0+ = G(’l", 'rl) ‘yzo— on Iy, (2.20&)
oG 0
.- (T7 7‘/) = V_G(r> Ir/) on Hla
dy =0+ dy =0~

and the Sommerfeld radiation condition [45] at infinity:

-
— e D;,

lim /|7 {%(r, r') — ik;G(r, r’)} =0 uniformly in all directions =
(2.20b)

|r| =00
where the constant v equals v¥ in TE-polarization and v in TM-polarization (see defini-
tion (2.10)), and where §,» € S'(R?) denotes the Dirac delta distribution supported at the
point 7' € R% Throughout this section, we refer to ' = (2/,%) as the “source point”, and

to r = (z,y) as the “observation point”.
As is known, G can be computed explicitly in terms of Fourier integrals [20], sometimes

called Sommerfeld integrals. To obtain such explicit expressions, given a fixed point ' € D;,

1 = 1,2, we define the functions gj(»i)(r) = G(r,r"), r € D;, j = 1,2. Expressing g]@ as
inverse Fourier transforms

(0 L™ (oo’

g9; (v,y) = g/ 9, (& y) e dg (2.21)

and replacing (2.21) in (2.20a), a system of ordinary differential equations (ODE) for the

(%)

unknown functions ﬁji is obtained which can be solved analytically. Two cases arise. For
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r’ € Dy, the ODE system is given by

( ~(1)
82g( R .
8y12 -9 = —dy if y>0,
a2§(1) N '
o %9 = 0 if y<0,
36,0 = 37(6,0),
95;" 955"
9 O = 7 0 9
| 560 = v
whose unique physically admissible solution is
-7nly=vy'| -7ly+y’|
(1) e " e
= >0
9 (&) 27, + i1 ™ (y ),
() _ 7 ev2y—ny’ ~ 0
9 (&) 12 27, (y ),
where
—v 2
Ry = u’ Ty = ¢,
Y1+ VY2 Y1+ VY2

(2.22)

(2.23)

and v; = v;(§) = /&% — k? The determination of physically admissible branches of the
functions v;(§) = /& — kj\/& + k; require selection of branch cuts for each one of the two

associated square root functions. The relevant branches, which are determined by consider-
ation of Sommerfeld’s radiation condition, are —37/2 < arg(¢ — k;) < w/2 for \/€ — k; and
—n/2 < arg(§ + kj) < 3w/2 for /& + k;. In particular, for real values of £ and a positive

real wavenumber kj, we have that v;(§) = /&2 — k7 > 0/if [{] > k; and ~;(€)

i e

if || < k; with /k? —&2 > 0. The domain of definition of the function ~; is depicted in

Figure 2.2.
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Im¢

Figure 2.2: Branch-cuts and domain of definition for the function v; = , /€2 — ka

Similarly, the ODE system for v’ € D, is given by

( ~(2)

829( ~2 .

%3 o .

oy — %0 = —dy if y<o,
326,00 = 37(€,0),
93 95"
0) = 0

L ay (57 ) 14 ay (57 )7

whose solution can be expressed as

) e*’Yly+’YQy/
9 &y = Tle (y >0),
’ ? / (224)
@) (€.y) — e 2ly—v| TR e~ 2ly+y| (v <0)
gQ Y - 272 21 272 ) )
where
_ Ve g e (2.25)
vye + v’ VY2 + M

Taking the inverse Fourier transform (2.21) of §§1) in (2.22) and /g\](-z) in (2.24), and utilizing
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the well-known expression of the free-space Green function [41, 134]

: %0 o=ily=y|

v (1) / 1 e i€(z—a')
“HWY (kr — = _— d
4 0 ( J|T r |) 47'(' /_ ’7] € 57

we obtain the following form of the Green function

( 1 [ “nly+y'l ,
3H(()l)(kﬂ"" — ') + —/ Rlze—ezg(zfx) d¢, o',y >0,

4 dm J_ 1
1 o en2y—ny ,
— 9 o= g, y >0,y <0,
G(r,r') = AT J o n
o 1 [ e mytmy )
o T21— ezf(a:—x) d£7 yl < O7y > 07
dm —00 2

1

\ 4

1 [ e~ 2lvyl
H(()l)(k2|"" - "'/|) + E/ 321—625(1 =) d¢, v,y <0,

—0o0 Y2

(2.26)

(2.27)

where R12 = Ru(f) and T12 = Tlg(g) (resp. R21 = Rgl (f) and T21 = T21 (5)) are defined in

(2.23) (resp. (2.25)).

The fact that the expression in (2.27) satisfies the Sommerfeld radiation condition (2.20b)

is shown in Section 2.3.4 below.

Remark 2.3.1. [t is easy to see from (2.27) and the definition of Ria, Ti2, Ro1 and Ty that

the layer-Green function G(-,7"), solution of (2.20), satisfies

(
G(r',r), y,y >0,

vG(r',r), y>0,y <0,

1
—G('I"/,’l"), y < O7y/ >0,
14

G(r',r), y,y <O

Thus, taking the limits as y' — 0% in (2.28) we obtain

!/ / / 1 /
G('I”, r ) y' =0t G(’l" 7T) =0+ G(T ,’I”)ly,:07 - —G('I", r ) )
oG , oG |, [CN oG ,
T - T = v —\r,r = ) 5
6y/ ( ) y/ O+ a / ( ) y, 0+ ay/ ( ) y, - a / ( ) y/707

(2.28)

(2.29)
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for an observation point v = (x,y) € Dy (y > 0), where the identities G(r',r)| =

y'=0+
G(r',r) and g—g(r’, 7‘)}y,:0+ = 1/2—5(7", T)

=0 =0 follow from the transmission conditions

in (2.20a). Similarly, for an observation point r = (x,y) € Do (y < 0) we obtain

/ 1 / 1 !/ 1 !/
G(r,r )|y,:OJr = ;G(r ,T) g0t = ;G('r‘ ,r)|y,:O_ = ;G(r,’r) ym0
0G| 109G N 06, L _0G (230
ay/ ) i v ay/ ) i ay/ ) o ay, ) o .
Therefore we conclude that the function G(r,-) : R? — C satisfies
ApG(r,r) + kiG(r, ") = =6, in Dj, j=1,2,

vG(r,r') g0t = G(r,r)|,,_,- on I,
8_67:(,’,,, ’I",) = a_Cf('r‘7 ’I"/) on Hla
8y y' =0+ ay y'=0~

and the radiation condition

lim /|7 {(‘jfﬂ (r,7") —ik;G(r, r’)} =0 wuniformly in all directions

|| =00
(2.31)

In order to improve the rate of decay as |{] — oo of the functions that define §J(Z) &),

so that the spatial derivatives of G can be computed differentiating under the integral sign

of the inverse Fourier transform even in the case y = ¢y’ = 0, we express (2.22) and (2.24) as

1 e Mly=vl 1=\ e Mmlyt+y| v(k2 — k?) e~ y+y)
iy = + — (y > 0),

27 1+4+v 21 (I+v)(n +vy)(n +72)n

71y’ —y) T2y—"Y 71y —y)
(1) 1 e M {e ( 1 ) e }
) = + - <0),
95 (&) (1 1/) - "+ 1+ " (y )

(2.32a)
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for ¥ € Dy, and

) v e~ 2ly=yl v e~ ny+r2y’ v e 2l—y)
e = (1) v - (>0,

1+v Yo Y+ VYe I+v 7
N e 2y v—1\ e elytyl v(k2 — k2) er2(y+y)
30y = ( ) p o vk (y < 0),
272 v+1 279 1+ v)(n +vy2)(v2 + 1)
(2.32b)

for ' € Ds,.
Note that the following asymptotic estimates hold for the last term in each of the formu-

lae (2.32) above:

e~ Nty i) 113 .
'(71 +vy2) (1 +72)n = O0(e MWL), (v, > 0),
e2y—ny’ 1 e mW-v)

= O(e W= 1678 (y <0,y >0),

Mm+vye 1+v m
v ety v e n2—y)

(2.33)

— — O e—\fl(y—y’) -3 , > 0’ / <0 ,
S 0 ), (> 0.y <0)

' v(k? — k) er2(y+y’)
(L4 v)(n +vy2)(v2 +71)72

= O(e FIW*H1g]=%), (y,y' < 0),

as |{| — oo. Thus, taking the inverse Fourier transform (2.21) of /g\]“) in (2.32) using the

identity in (2.26) we arrive to

o

?f(mv—r|+1 ) (kalr 7)) + @3 (r), g,y >0,

oF (1) )
1—|—I/ Hy” (ky|r — ') + @3 (r, 1), y <0,y >0,

G(r,r") = <
%(%> 5 (k2|r—r’|)—|—<1>§?)(r,r’), y >0,y <0,
1%
H Vko|r — 7)) + tfr=1 H VY (kolr = 7)) + P (e, 7'), y,y/ <0
L 4 2 4\p+1) 0\ RADLT D ’

(2.34a)
where 7 = (2/, —y') denotes the image of the source point ' = (2/,y’) with respect to the

plane I} = {y = 0} and where, taking advantage of the parity of v;, the functions CID%) and
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CDgf), 1 = 1,2, are explicitly given by

(I)(l)(,r ,r,/) V(k% B k%) /oo e—'yl(y—i-y/) COS(S(:L’ - xl)) d
’ m(14+v) Jo mn+r)(n+vyn)

1) 1 [ ( er2v—mny eny—y)
o) = 1 [] - beosteta = a1 e
mJo mtve (Q+v)n

00 —11y+2y’ —y2(y—y’)
o) = L[] - beos(ele — ) g
™ Jo Nn+vye  (V+1Dr

(2.34b)

Oy~ M ED) /°° ) cos((e = o) |
(v +1) Jo 20z+n)n+rpe)
The expressions in (2.34) are utilized in Section 2.3.5 to numerically evaluate the layer Green
function.
In view of the enhanced decay (2.33) of each one of the integrands in (2.34b) together with
the Lebesgue’s dominated convergence theorem, the gradient of the Green function (2.34a)

can be evaluated from the expressions above by differentiation under the integral sign.

2.3.2 Point source in a two-layer medium

In this section we consider the full three-dimensional problem of finding the layer Green
function for the Helmholtz equation in a two-layer medium. Letting 6,» € §'(R?) denote the
Dirac delta function supported at the source point ' = (2/,%/,2') € R3, we have that the

sought Green function, G(-,7') : R® — C, satisfies

AG(r, ") + EG(r, ) = — Oy in D;, j=1,2,
G(’f‘, 'r')|y:0+ = G('r‘7 'r">|y:0_ on I, (2'35a)
oG oG

—(r,7") on Iy,
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as well as the Sommerfeld radiation condition [45] at infinity

lim |r| { oG (r,7") —ik;G(r, r’)} =0 uniformly in all directions T e D; C R’
|| —o00 8|’I’| |’I"|
(2.35b)

As in the two-dimensional case, G can be computed explicitly by means of the Fourier
transform. To obtain such explicit expression, given a fixed point source point ' € D; we
define the function g](-i)(r) = G(r,r’) for an observation point r € D;, and we express it as

the inverse two-dimensional Fourier transform

g (x,y, 2) = / / V(& &, y) @ ENEGE=) g, de,. (2.36)

Taking advantage of the cylindrical symmetry of the problem, we make the following change
of variables:

r—12 =pcosa, z-—2 =psina,

for the spatial variables, where p = v/(z — /)2 + (y — ¢/)? and 0 < o < 27, and

& =EcosfB, & =Esinf, (2.37)

for the spectral variables, where £ = /&2 + &2 and 0 < 8 < 2.

Note that since g@

; (x,y,2) is axisymmetric, i.e., does not depend on the angle 6, its

Fourier transform 5](1) (&1,&,y) does not depend on «. Therefore, we can simply write
’g\](i) (&1,&,y) = ﬁj(l) (&,y). Then, using the change of variables (2.37) and the integral repre-

sentation of the Bessel function [134]

1 2 ” 5
1) = — itcos B g
Bt =5 [ e as

we obtain that (2.36) can be equivalently expressed as a Hankel transform

o2 = o [T e de (2.3%)
0
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Replacing (2.38) in the partial differential equation (2.35a), we obtain the same system

of ODEs for Z]\J(Z) (&,y) obtained in the previous section, whose solution is given in (2.22) for

r’ € Dy, and in (2.24) for ' € D,.

Subsequently, taking the inverse Hankel transform as defined in (2.38), of ’g\J(Z) (&,y) and

using the identity

oikilr—rl 1 oo gmuly—y]
1 | s (2.39)
0

47?]7“—7"[:E j

we obtain that the Green function is given by

G(r,r") =

( eik1 |r—r’| 1 0 e M ly+y'| q ,
— + — Rig——J .,y >0,
et | et iends. vy

1 [ erv—mny

- TlZ—JU(gp)fdga ) < 0;?// > 07

A Jo n (2.40)
1 [® e mytry '
4_ TQl—‘]O(gp)f dga ) > an/ < 07

T Jo Y2

eikz\r—r’| 1 o0 R e—’YQ\y'H” 7 q , 0
- 4 = - <
\ 47T|’I" — ’l",| + An /0 21 Yo U(§p>£ 57 Y,y )

where Ris = Ri2(§) and Tio = T12(§) (resp. Ro1 = Ro1(§) and Ty = T91(§)) are defined in
(2.23) (resp. (2.25)).

As in the two-dimensional case, the Green function can be equivalently expressed as

( ik1|r—r/| 1— ik1|r—7|
€ 1% €
T ( ) q + o (rr), yy >0,

Ar|r — 7| 14+v) 4dnlr — 7
1 gikalr—r| 1
(1 n u) a7 T 2 (), y <0,y >0,
ikalr—r/| (2.41a)
i e ) ! ,
1+v 27T|r—'r’|+q)T (r,7), y >0,y <0,
iha|r—r'| -1 ik |r—7|
¢ — v © (2) / /
® <0
\ 47‘T_7'/‘+(V+1) 47r\7‘—F’\+ R (rr) vy ,

in terms of improper integrals that can be differentiated for all observation and source points,

where 7 = (2/, =1/, 2’) denotes the image of the source point ' = (2/,y/, 2’) with respect to
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the plane II; = {y = 0} and where the functions CI)S? and @§f), 1 =1, 2, are given by

@%) (r,r)
o) (r, 1)
o (r,7')

o (r,v)

i A

2r(1+v) Jo m(n+7)(n+ve)

) {7+7 - <1+(>v) } hlepeds (2.41b)
= {‘;;W - fy;l); bn(epeac

fofff)) | e 7()(7)+ ) O EP)AE

In view of the asymptotic expansion for the Bessel function Jy(z) as |z| — oo [76, 134], the

integrands in (2.41b) above decay more slowly than their two-dimensional counterparts (2.33)

as || — oo. However, they and their gradients with respect to r and 7’ are still absolutely

integrable for all source and observation points.

2.3.3 Line and point sources in a three-layer medium

This section deals with the problem of computation of the Green function for a three-layer

medium in two and three dimensional spaces. Both Green functions are given by the solution

of the transmission problem:

AG(r, ") + kG (r,r") — O in Dj, j=1,2,
G(T,r’)|y gt G<r7r,)‘y=—d1_ on Iy,
/ /
G(r,r )| b G(r,r )‘y:_d; on Iy, (2.42)
oG oG
—(r,7') vi—(r,7") on Iy,
oy y——df oy p—
oG oG
—(r,r") vo— (7, 7r') on II,
oy y=—dJ Oy y=—d;
where d,» denotes a line source d,, = 6,79, in the two dimensional case, and it denotes a

points source 6, = 0,,0,/0,, in the three-dimensional case. The suitable radiation condition
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at infinity follows from the far-field form of the physically correct solution G obtained by
Fourier transformations techniques.

As in the previous sections, we start by expressing G as an inverse Fourier trans-
form (2.21) in the two-dimensional case, and as an inverse Hankel transform (2.38) in the
three-dimensional case. Replacing the resulting expressions for G in (2.42) and applying the
corresponding inverse transform we then obtain a system of ODEs for G = G(r,r’) in the
spectral form, which is denoted by @(2) (€,y) for observation and source points r € D, and
r’ € D, respectively. Solving the ODE system, eliminating all the exponentially growing
solutions (as |£] — oo) and enforcing the transmission conditions at the planar interfaces II;
and II,, the functions EJ(Z) (&,9), 1,7 = 1,2,3 are obtained in closed form. In detail, we obtain

that for a source point ' € Dy, the solution of the ODE system is given by

272 (dy—d
/g\(l)(g y) = L e mly=y'l 4 Riy + Ry e®2( %) o1 (yHy +2d1)
L 2m 1+ Ryg Ry e22(d=d2) 7
di(y2—71)
~(1) _ 1 Tye { Y2y—y1y’ —wz(y+2d2)—'y1y’}
9 (&y) = 291 L+ RypRas 272142 e +Rase ) (2.43a)

1 T23T12 edl('YQ—’yl)J,-dz(,yS_,yQ)

~(1) _ Y3y—71y’
G5 (&, 9) 271 [1 + RigRog e?r2(di—d2)] ’ ,

where
T — Vi . . .
Yi + Vi
Rij = and T;'j =1+ R”
Vig — Vi .. . .
— — if > 7,
vij + i

The square root branches in the definition of y3 = /&2 — k3 = /€ — k3\/€ + k3 are the same
that were previously utilized in the definition of the functions v;, j = 1,2. For a point source

in the middle layer " € Dy, on the other hand, we obtain

1 To [1+ Ros 6_272(d2+y/)} eny
27 [1 — Rgy Rog e272(d1—d2)]

jq\f) (& y) = e~ hn=mn) gy

BN 1 / / /
952) (€,y) = 5 {eﬂzly*y | L Ae”2WY) LB a2y )} 7 (2.43b)
2

§(2) (€,y) = LTQB [1 + Ry eQW(dlﬂ/)}
3 ’ 2’72 [1 - R21R23 6272(d1—d2):|

_ _ !
ed2(13=72) o 13Y—12y 7
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where

Ro1[1 + Ry3 e 202(d2+y)] g2n2(di+y) 4 Ras[1 4+ Ry 22(i+y)] e=22(d2+y)
—= an =

A 1 — Ro1Ros e2r2(di—d2) 1 — Ro1Ra3 e272(d1—dz2)

Finally, for a point source r’ € D3, we have

1 Ty Typ er(r2=m)+d2(r3-72)
2_’}/3 [1 4+ R3oRoq 62’72(d17d2)]

/_
e’YBy ’Yl?/’

3y 6) =

da(v3—2)
~(3)(, . _ 1 Iye { —v2y+y3y’ 72(y+2d1)+73y’}
9 (y;€) = 2 1T BapFiyr @] +Ry ¢ : (2.43c)
2v2(d1—d:
§(3) (y;6) = 1 e mly=y'l 4 Ryp + Ry 2l ) ey +2d2)
3 ’ 273 14 RasRoy e272(d1—dz2)

The layer Green function G is then obtained by evaluating the corresponding inverse
integral transform ((2.21) in the two-dimensional case and (2.38) in the three-dimensional
case) of the expressions in (2.43). Note that the point source term is explicitly obtained in
both cases utilizing the identities (2.26) and (2.39) in the two- and three-dimensional cases
respectively.

In order to improve the decay of the integrands in the resulting integral representation
of G, the functions §§i), i,j = 1,2,3, are expressed as [@(z) — @ﬁz)] + §§i), where §§i) denotes

the leading order asymptotic expansion of /g\]m as |£] — oo, which is obtained utilizing the

relations

+0(El™) (G >1),

Rij =

1—Vz‘+ 2v;(k} — k7) 1=y
1+, (L+v)v+vy)(u+y) 1+u
2

2 N 2vi(k5 — k7) 2
1ty A+w)itey)(i+y) 14w
e VY — VY {1 + (9(|5|—1)}

+o(g (=i, (24

ij

as |£] — oo. In view of (2.26) and (2.39) the inverse transform of ﬁj@ admits an explicit

)

expression. Clearly, 'g\y _§§¢) decays faster than @w as || = oco. Thus, the improved integral

representation of (G, which can be numerically evaluated for all source and observation points,
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follows by taking inverse transform of [ZJ\](Z) — ﬁj(l)} + ﬁj(l) for i, =1,2,3.

2.3.4 Far-field pattern

The present section is devoted to the asymptotic analysis of the two- and three-dimensional
two-layer Green function (which were obtained in Sections 2.3.1 and 2.3.2), as |r| — oo, for
a given point source 7’ in space and fixed wavenumbers k; and ko (k; > 0 and Im ky > 0).
The analysis presented here is based on the method of steepest descent for which we refer to
[15, 20, 21, 41, 51]. The relevant steepest-descents formulae are summarized in Appendix A.
Some of the results obtained in this subsection follow directly from the analysis provided by
Bleistein [15, Section 8.1] for the asymptotic approximation of layer Green function in the
limit when k; — oo for fixed spatial variables and a fixed index of refraction n = ky/k;.

In detail, this section provides the leading order asymptotic expansion of the reflected
and transmitted wave fields produced by point sources at v’ € D;, j = 1,2, respectively,
at an observation point r» € D; (y > 0) where |r| > 1. The leading order asymptotic
expansions for the transmitted and reflected fields produced by point sources at ' € D;,
j = 1,2, respectively, at an observation point » € Dy (y < 0), |r| > 1, can be obtained

following a completely analogous procedure.

Polar coordinates. FExpressing both the observation and source points in polar coordi-
nates (r = |r|(cosf,sinf), 0 € [0, 7], ¥ = |r'|(cos@,sinf’) for § € [0,2x]), the relevant

reflected and transmitted fields in (2.27) for the present y > 0 case become

1 ) ef|'r’|(i§ cos 0’ +~1 sin0’) ] _
GR(T‘,’I‘,) _ _/ Rys e\r\(lﬁcos@—'n sin 0) df (,r,/ €D, = Ri) ’ (245&)
4m —00 4!
and
1 00 ef|r’|(i£cos9’7’yg sinf’) ) )
GT<1‘, ,r/) _ 4_/ Ty, elrl(zécose—% sin 0) dé (,r./ € Dy, = R%) , (2_45b)
T J -0 Y2
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respectively. For notational simplicity we introduce the change of variables & = k;(; we thus

obtain
Galr,) = o= [ an(Q)e" . (2.460)
Gr(r, ') = g%t/i:gT<<>a”¢“>d<, (2.46D)
where

\/<2 —_1— V\/CQ — 12 eilr' k1 (Ceos 0 —in/(?—1sin ")

9r(C) = N N = : (247a)
efikl|T’|(Ccos€’+imsin€’)
gr(Q) = (2.47b)

NS EON
o(C) = ik1(Ccosh +ir/(?— 1sinb), (2.47¢)

and v/C2 — 1= 71 (Chr)/ky and /% — 12 = 5(Ch)

Saddle points. In view of (2.47c) it follows that the first two derivatives of the phase

function ¢ are given by

. (sinf k1 sin @

"(¢) =ik | cos +i———= )
#) ( Vo1 (@ -0V -1

From the saddle-point condition ¢’({y) = 0 we see that there is only one saddle point, given

) and  ¢"(() =

by (o = cosf € R, at which

ks

sin? 6’

#(Co) =tk and ¢"(() = —

With reference to equation (A.2) it therefore follows that the directions of steepest descent at
the saddle point are given by o, = —a/2+(2p+1)7/2, p = 0,1, where a = arg ¢"({y) = —7/2
(here we select arg z € (—m, 7]). Clearly, ag = 37/4 and oy = —7/4.

In oder to asymptotically determine the path of steepest descent passing through ¢, we

observe that for large values of |¢| with ¢ in the first or fourth quadrants we have /(% — 1 ~ (.
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Consequently, the phase function satisfies

$(¢) = k1 (—sin 6 +icos ) + O(I¢] ™)
= — ki {sinf@Re ¢ + cos Olm ¢} + ik; {cosORe  — sin Alm ¢} + O(|¢] 7).

Since on the path of steepest descent, which is denoted by D, the imaginary part of ¢ remains

constant and equal to k1, we conclude that D approaches the line

cos

Im ¢ = inf

1

e(——— as |[(|] — oo,
sin 0

for Re( > 0. For large values of |(|, with ¢ in the second or third quadrants, on the other

hand, we have y/(? — 1 ~ —(. Thus, in this case we obtain that the steepest descent path

approaches the line

Im ¢ = _COSH
sin 6

1
Re C+—9 as |C] — oo,

for Re( < 0.
This analysis implies that D intersects the real axis at two points; at the saddle point
¢ = cos b, of course, and at ( = 1/ cosf, where the latter was obtained by noting that

1 in” §
¢( ):—hﬂi—+mL

cos

The paths of steepest descent for the cases x > 0 and x < 0, are depicted in Figure 2.3.
From (A.2) it follows directly that, provided gr and gg are continuous and do not vanish
at the point ¢ = (p, the saddle point contribution to the asymptotic expansion of (2.46a) as

|r| — oo is given by

G%)(r, r) = 1 sinf — ivv/cos? 6 — n? /k . oilr s cos(0-+07) ik |- m/4 (2.482)
1|7

47 sin +ivv/cos2 ) — n2

while the saddle point contribution to the asymptotic expansion of (2.46b) as |r| — oo is
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given by

iv sin @ e~ik117'|(cos O cos 0" +iv/eos?G—n?sin0) | o , -
IO P L L i T (2.8))
2m sin 0 + ivv/cos? 0 — n? Ky|r|

There are, however, four potential saddle points which are concurrently branch points at
which this assumption is certainly not true. These are (y = £n and (, = +1.

In the case of a saddle point given by (, = +n it can be shown that the integrands gg
and g can be expressed as p(¢) + q¢(¢)(¢ — {)"/?, where p and ¢ are analytic functions in
a neighborhood of (y. Thus, from (A.3) we readily check that formulae (2.48) still remain
valid in this case.

A saddle point given by (; = cosf = =+1, on the other hand, presents an additional
difficulty, as the phase function ceases to be analytic at those points. Nevertheless, formulae
(2.48) remain valid for # = 0,7 for as a long as ¢ # 0, 7. This can be proved by applying
the steepest descents method to obtain the leading order terms of the expansions of Gy
as |[r — 7| — oo and Gr as |r — | — oo first, and subsequently using the fact that
r—pl=1Ir[-FF+0O (h%') as |r| — oo, where p = 7 in the case of Gg and p = 7’ in the

case of Gr.

Polar singularities. We next consider the possibility of contributions to the asymptotic
expansions of G and G due to poles of the functions gz and g7, respectively, which could
arise when such poles happen to lie inside the region bounded by the (-real-axis to the path
of steepest descent D. From (2.47) it follows that the possible poles of gr and gr must be

given by the solutions of the algebraic equation
(¢ —=1)=1v**-n*)=0. (2.49)

Clearly, solutions to this equation exist only when v # 41 and are given by

2 2_1
(=40 (2.50)

2 —1
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Thus, in view of (2.50), in the case of a real wavenumber ks the solutions of (2.49) are either
real or imaginary.

Assume for the time being that both poles are real. In order for the denominator
V= 140/ —n2 = [11(Ck1) +vy2(Ch1)]/k1 to vanish, both 1 (Cky) and 72(Ck:) have to
be either purely real or purely imaginary. If both are real, we have, by the definition of the
functions v;, j = 1,2, that v,(Cky) > 0. Therefore, they can not cancel each other. If both
are imaginary, in turn, we have that Im~;(Ck;) < 0, and thus, again, they can not cancel
each other. Therefore, the functions gr and gz do not have poles on the real axis.

Let us now consider the possibility of imaginary poles. By the definition of 7;, j = 1,2, we
can easily check that —37/4 < arg~y;(+itk,) < —n /4, t > 0, which means that both complex
numbers 7;(£itky), j = 1,2, lie on the same half-plane in the complex plane. Therefore, we
conclude that gg and g7 do not have pole singularities in the complex plane when £y € R.

We now consider the possibility of pole singularities of gg and gy for a complex wavenum-
ber ky € C, Imky > 0 in TM polarization in the case of a non-magnetic medium, i.e.,
f1 = p2 = pp. (Since v = 1 in TE polarization, there are no poles of gr and gg in this case).
Note that we are allowing the permittivity of the lower half-plane to be such that Rees < 0,
which, as matter of fact, corresponds to feasible physical values for highly conducting metals
at low frequency [83].

Under the aforementioned assumptions we have that v = &1 /g5 = 1/¢, and n? = k3 /k} =
g2/e1 = 1/v = &,, where €, = &3/e1 = |&,| ", @ € (0, 7). Replacing these identities in (2.50)

we obtain that the solutions of (2.49) are given by ¢ = £(,, where

1 €9 Er
Cp: = p— .
v—+1 €1+ &2 5r+1

Since 1 +¢, = |1 +¢,.]e”, B € (0,a), we obtain

Er || i(a—pB)/2
—_= = — e
% Vite  V\1+e] ’

which implies that ¢ = ¢, and ( = —(, lie in the first and third quadrants respectively. In
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order for ¢, to be a pole of gr and gr then, we need the condition v ((pk1) + v7y2(Gpk2) = 0
to be satisfied. Under the present definition of the functions v;, j = 1,2 we have

iky S if . € R,

Y1(Gpkr) = kiy /(2 — 1= \/Z_r (2.51)
—Zk’l\/z_r if Er GRl_,

and
iki(p\/2r  if &, € Ry,

V2 (Gphr) = ki /(G — e = (2.52)

—ikyC /e if e € Ry,

where the connected regions R;-t are such that Rj NR;, = 0, Rj UR; ={z€C:Imz > 0},
j=1,2.

Thus, in order for ¢, to be a pole of gr and gr, it is necessary that ¢, € Rf N Ry or
¢, € Ry N R . Clearly, such conditions lead to
gp Z‘]{71

- — er = 0.
\/5— Er gp\/_

r

Y1(Gpk1) + v12(Gk1) = ik

As is well-documented [90, 131], the poles £(, of the layer Green function in spectral form,
which are known in the literature as Sommerfeld poles, depend on definition of v;, 7 = 1,2.
When present, a Sommerfeld pole may give rise to a surface-wave of the form wuc,(r) =
cef1Golzl=tk1G/vEry i the asymptotic expansion of Gz and Gp. In order for this surface-wave
to be physically meaningful, it is necessary that ¢, € R{; otherwise u¢, does not satisfy the
radiation condition. This surface-wave has historically received various names (Zeneck wave,
surface plasmon polariton, Brewster mode, or Fano mode) depending on the values of the
real and imaginary parts of €, [90]. In any case, it is clear that uc, decays exponentially
fast as |r| = /22 + 42 — oo, in virtue of the fact that Tm¢, > 0 and Im (Gp//Er) < 0.
Therefore, these poles do not give to rise to contributions to the leading order asymptotic

expansion of the layer Green function as |r| — oco.
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Branch points. In order to assess the asymptotic contribution of the branch points to the
overall value of the integrals in (2.46), we distinguish three cases: Case (a): | cosf| < Ren <
| cos 7!, Case (b): Ren < |cosf|, and Case (c): Ren > |cosf|~'. The integration paths
for each of these case are shown in Figure 2.3.

It is clear that Case (a) leads to no additional contributions from the branch points, as
the path of steepest descent D does not cross the branch cuts stemming from the branch
points at ( = +n.

In Cases (b) and (c), in turn, the steepest descent path may or may not cross the branch
cut starting at the branch point ¢ = n (resp. ( = —n) when cosf > 0 (resp. cosf < 0),
depending on how large Imn is. When it does, D has to be locally deformed around the
branch cut, as it is shown in Figure 2.3b and 2.3c. The new path encompasses two new
critical points, A and B, and an additional finite-length path around the branch cut. Since
A and B lie in the valley of the phase function, it is easy to show that their contributions to
integrals over the paths to left of A and to the right of B result in exponentially decaying
terms as |r| — oo. As is pointed out by Bleistein [15, Section 8.1, page 249], on the other
hand, it can be shown that the paths from the branch point ( = n, which are parallel to the
branch cut, are paths of descent. Therefore, the path integrals around the branch cut can
be analyzed by considering the branch point as an additional critical point (since paths of
descent and paths of steepest descent are asymptotically equivalent).

In order to evaluate the integrals around the branch cut from { = n, we need to first
determine the jumps of gg and gr across the branch cut stemming from ¢ = n. Letting
(F=n+it+0"and (" =n+it+ 0", t > 0, denote points on the right and on the left of

the branch cut respectively, it follows from the definition of v, (cf. Figure 2.2) that
(CF)? =n? = =/(C7)? = n?,

thus, setting ¢ =n + 0" +it, t > 0, the jumps of gr and gy at the branch cut are given by

4vi /C2 —n2 efi|r’|k:1((cos€’fi\/(271 sin6’)

C(l—v?)+rv2n2—1

l98](¢) = gr(CT) — gr((T) =
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Im ¢
(z>0)

1 \
cosemcosﬂ s Rec
cos GW 1

cos 6

(a) |cosf| < n < |cosB|~L.

(z <0)

Im ¢
(z >0)

-1 -n L\_ S
/\_ cos 0 cos > Re(
1 cos Bw n \/
cosf

(z <0)
(b) n < |cosb|.

Im¢
(z >0)

1
- A
—-n /\_ \cos 0 cos 9.% B Rec
V 1 cos 6 \/ n
cos

(z <0)

() n>|cosf| L.

Figure 2.3: Paths of descent for the integrals (2.46). The saddle points are marked by red
dots.
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and

l97](C) = g(CT) — gr(¢7)
efik1|r’|i\/c27—n25in9’ eih|'r"|iﬂsin9’
NN RN N1

respectively. Clearly the jumps satisfy

—ik1|y|¢ cos 0’

4viv/2n e—i|y|k1(ncos9’—i\/n2—1 sin ')

n?—1
2viv2n e—ikl\y\ncose’
n?—1

[9r](C) ~ (C—n)"? and
(2.53)

(g—n)l/2 as ( —n,

gz ](C) ~

Thus, the contribution of the branch point can be evaluated using formula (A.4) with

oo 3 B . ;o ., sin(f0, —0)
a=c, g = 3 = cosf., ¢(n)=ikycos(f.—0), ¢'(n)= ZleOC
which yields
Gg) (’l", ’I"/) _ i/ cot Qc efi\r’\k:l cos(fc+6") eik1|r\ cos(0.—0)—im/4 (254&)
V27 [k |7|| sin(6, — 0)[]*"2
and
-2/ —ik1|r’| cos @, cos @’
Gg—?) (’I‘, T/) _ i y/cot b, e ™ eik1|r|cos(9079)+i7r/4 ) (254b)

V27 k||| sin(6, — 0)[]*

Similarly, it can be shown that formulae in (2.54) remain valid when cosf < 0, except

that in this case 6, is such that cos8, = —n.

Source and observation points at the interface. There is only one case left to be
considered, which corresponds to the situation for which the observation and source points lie

at the interface between the two half-planes. In this case the integrals (2.46) with r» = (x,0)



38

and ' = (2/,0) coincide with the Fourier integrals

Cnl / VO Tony/@ ek
R, " 4r VE—1+v/C—n2 /-1 7 (2.55)

ezlﬁ((x z')
N N

A direct application of Jordan’s lemma yields that the integration contour (the real axis) can

Gr(r,r') =

be deformed into the paths depicted in Figure 2.4, depending of the sign of = — 2/, without

changing the value of the integral. By doing so we obtain

Gr(r,7) =

—z e”@‘ﬂ” | > mw e*k1t|zfx’| dt
T 1)(t—m) + n2? —1
Zk1|x ! / t—Z) —|—1+n klt‘x $|
0 1_1/2 t_Z)+1—n2I/2\/22—\/_
G / _ zk2|ac /| > M\/E
T(r’ " ) 2,,2
0 1)(t —in)? +n?v? —1

1k1\m x| /OO t - 21\/— e—k1t|m—m/| dt
0

1—v?)(t—i)?2+1—n?v?

_ !
e kitlz—a/| dt

Im ¢
A
(x >a')

(xr <)

Figure 2.4: Integration paths used in the evaluation of the integrals (2.55).

Each one of these Laplace integrals can be analyzed in the light of Watson’s lemma [15],
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which yields

o0

/ 3/2) / b, I( 1/2
GR(T‘,T',) _ zkg\x z|Z kl n+ / zk1|$ a:|z n+ /)

|m_mz| n+3/2 (ky|z — /| r1/2”

o0

N gikzle—a] I'(n+3/2) kil d,'(n+3/2)
Gr(r,r') = Z kl\x—a:/| n+3/2 Z (kr|z — 2/[)n+3/2

as |r — /| — oo. In particular, the leading order asymptotic expansions of the integrals

in (2.55) are given by

; iko|z—1'|+im/4 : ) L
GR<’)", 'I‘l) ZV\/ﬁ € o ? ezkﬂm—x |—17r/4’ (256&)
V21 (1 —n2) (k| —2'[)32 \ rky |z — 2|
2 iko|z—a'|+im/4 ; tki|z—a'|+im /4
Gr(r,v) wyn e ! ¢ (2.56b)

V(1 —n2) (ke — /32 vy2m(n? — 1) (ko — /)32

as |x — 2’| — 0.

Far-field form of the layer Green function in two-dimensions. The analysis carried
out above in this section demonstrates that whenever either the source point or the obser-
vation point is away from the interface, the leading order asymptotic expansions of G and
G are given by the sole contribution of the saddle point at & = k( = k; cos 0—since all
contributions arising from the deformation of the steepest descent path around the branch
cuts decay faster than |r|~1/2 as |r| — oco. (In view of (2.54) the contribution of the branch
point decays as |r|~3/2 for n > 0 and it decays exponentially fast for n € C, Imn > 0.) Addi-
tionally, it is easy to check that for » = (x,0) and ' = (2/,0), the expressions G%)(r, r’) and
G(Tl )('r, r’) in (2.48) coincide to leading order with the expressions (2.56). We thus conclude

—ivcos2 0 — n2
Gr(r. 1) ~ sin @ — ivv/cos?0 —n ik (Il =77 i /4
Y
sin @ + ivy/cos?  — n2 87T7<51|’l“

{1—|—(9<| |>}, r. v € D,

that

(2.57a)
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and
: ik1 (sin 8—iv/cosZ 0—n2)y’
Gr(r, vy ~ V500 i, " L ikl 7o) im/a
sin @ 4 ivv/cos? 0 — n? 27k ||
(2.57b)
1
X{l—f-O(ﬂ)}, T€D17T,ED2,
r
as |r| — oo, where r = |r|(cosf,sinf) = |r|r, 0 € [0,7], ' = (2/,¢), 7 = (2/,—y') and
n = ]{?2/1{?1.

Applying a similar analysis to each of the derivatives of G and G, we obtain

VuGr(r,r') ~

e

sin @ + ivy/cos?  — n? \| 8m|r| _sing ]
(2.58a)
for .7’ € D;, and
: ik1(sin #—iv/cos2 H—n2)y’
Vo Gr(r, ') 08 ! R gri-ran i
sin @ + iv+v/cos? 0 — n? 27|7|
(2.58b)

cos 1
X 1+0(— )¢,
iv/cos? 0 — n? Id
for r € Dy and v’ € Ds, as |r| — oc.

Therefore, the far field of the layer Green function and its gradient in the direction

7 = (cosf,sinf), 6 € (0,7) are given by the expressions

0 20 _ 2
ok +sm9 iwvcos?l —n N
. . . )
G (i) im/4 sin 6 + ivv/cos? § — n? (2.59)
(T, T) = —— o '
/87.‘.]{1 21 sin 6 etk (sin @—iv/cos2 6—n2)y’ ik e D
T 25

. . M
sin @ + 1wy cos? § — n?

r’ € Dy,
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and
( . . 2 3
Cibaa . SINO —ivycos?0 —n? -,
e k17T A : . e k17T
sin @ + ivv/cos? 0 — n?
cos ,
X ) T c Dl;
]{? — Sin 0
A 1 _ 4
HOO<T7 ’l"/) = -—¢€ i/ , . . (2 60)
: ik (sin 0—iv/cos? 0—n2)y’ .
8 2v sin 6 e?F1( ) kg
sin @ + 1vv/cos? § — n?
cos 0 ,
X ) rc DQ,
{ 1\/cos2 0 — n?
respectively.

The corresponding far-field patterns of the layer Green function and its gradient in a
direction 7 = (cos,sinf), § € (—m,0) can be easily obtained from (2.59) and (2.60) utilizing
the identity in (2.28).

Remark 2.3.2. Note that in view of formulae (2.57) and (2.58), both terms Gr and Gr
satisfy the Sommerfeld radiation condition at infinity (2.20b) for observation points r € Dy
in the upper half-plane. Since the free-space Green function satisfies the radiation condition,
it follows from (2.27) that the layer Green function G satisfies the radiation condition at
infinity for observation points r € Dy. Similarly, it can shown that the layer Green function

satisfies the radiation condition for observation points v € Dy in the lower half-plane.

Far-field form of the layer Green function in three-dimensions. We now extend the
asymptotic analysis presented above in this section to derive the leading order asymptotic
expansion of the layer Green function in three-dimensional space. With the exception of
of a few details, the asymptotic analysis carried out above for the two-dimensional case is
re-utilized here; once again, and without loss of generality, we provide explicit formulae for
the reflected and transmitted fields in the upper-half space.

In view of the identity Jo(z) = 3 (Hél)(z) + Hé”(—z)), —m < arg z < 7 [76], the Hankel
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transform of an even function g can be expressed as

| a@nensas=; [ aon e (2.61)

where the integration path C' is depicted in Figure 2.5.

Therefore, from the uniform asymptotic expansion of the Hankel function [76],

1/2 n 2
Wy (2 i(z—m/4) Ik +1/2) —n—1
Hy'(2) ( ) e [ E TrEI(Zei)E + O(]#| )| as |z] = oo,

Tz
k=0

it follows that the Hankel transform (2.61) satisfies

| aenencas =5 [ a0y @ eac{i+ 067w poe (26

—00

Note that the branch cut in the domain of definition of the square root is selected as the
negative real axis in the &-plane.

Subsequently, letting
x—a = Rcosfcosa, y+|y|=RsinB, z—2 = RcosfBsina (2.63)

with p = Rcos 8 and a € [0,27], 5 € [0,7/2), and using (2.62) we obtain that the reflected
and transmitted fields in the upper half-plane satisfy

[ = 7171'/4 71—V (iécosﬁf’n sin 3) d 2 64a
WRCOSB /m71+V72 ’71 : ( )

and

(v2—71)y
—in/4 e R(i& cos f—1 sin 3) d 2.64b
i LS S

as R — oo. Note that R = |r — 7| for ¥ € Dy and 7 = (2/,—¢/,2’) in the case of the
reflected field, and R = |r — 7/| for ' € D, in the case of the transmitted field. Note also
that 8 # m/2 in the definition above, so that p = Rcos 8 > 0 and thus p — oo as R — oo.
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Making the change of variable £ = k1(, the integrals in (2.64) can be expressed as

AR L S AL L S
Gr(r,m) 8 \| TR cos 3 " r(R) and Gr(r,r') 4r \| TR cos 3 " fr(R),
(2.65)
where, letting
VEI-v /@ N A
9r(C) = ,ogr(Q) = ,  (2.66)
VCE—1+v/C2—n2 /-1 V- 140/ —n?
and
&(C) = ik1(C cos B +ir/(% — 1sin f),
the functions fr and fr are given by
FrlB) = [ n(©e™© ¢ and fo(R) = [ g2(C)e"O dc. (267
c c

Im(

% -1 —n \
> Re(

\

Figure 2.5: Integration path C used in the evaluation of the Hankel transform (2.61) and
steepest descent path through the saddle point ¢ = cos 8 utilized in the asymptotic approx-
imation of the integrals (2.67).

In order to find the leading order asymptotic expansion of the integrals in (2.67) as

R — oo, we apply the method of steepest descent summarized in Appendix A. Since, with
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the substitution 8 = 5, ¢ = ¢() coincides with the phase function in equation (2.47c), we
find that, as in the two-dimensional case considered above in this section, we have 1) The
only saddle point occurs at ( = cosf3, and 2) The steepest descent path D that passes
through the saddle point is the one depicted in Figure 2.5. The additional branch cut along
the negative real axis in the (-plane that arises in the present case on account of the /C
term in (2.66) presents no difficulties—since, as cos f > 0, the steepest descent path does
not intersect the negative real axis. Thus, the leading order asymptotic expansions of fr
and fr are determined by the saddle point contribution that can be evaluated utilizing

formula (A.2); the results are

sin 8 — ivy/cos2 B —n? [2mcosB { <1>}
R) = ghifi=im/4 21 L o0 =)},
Ir(R) sin 8 + ivy/cos? § — n? k1R R

(2.68)

sin 5 etk (sin B—i4/cos? B—n2)y’ 2T COS B iy i 4 1
fT(R) = : - e 1+ Ol = s
sin 8 + ivy/cos? § — n? R
as R — oo.

In order to obtain the final form of the leading order asymptotics of the Gr and G as
|r| — oo, we note that for a fixed vector p € R? (which will be taken to equal either 7 or 7’

in what follows) we have

[p[* T-p 1
=|r—p|l= ]'r|\/1—2——|— e = |r| 1_W+O e as |r| — oo,

(2.69a)

where 7 = r/|r|. But, letting r = |r|(cos ¢ cos @, sin b, sinpcosh) (0 € [0,7/2), ¢ € [0,27]),
and using (2.69a) with p = 7/, the second equation in (2.63) yields

‘ ly/ 7o |’I“/|2 —-1/2 . 1
sin § = 51n9—|—— 1-2 + =sinf+0|(—]),
|| el frf? 7]
(2.69D)

cos B = 1—sin25—c089—|-(’)<| |> as |r| — oo.

Therefore, replacing the asymptotic expansions (2.69) in (2.68) and subsequently replacing
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the resulting expressions for fg and fr in (2.65), we obtain

1 . 6— . 20_ 2 o, ik1|r| 1
) LT e 81 G (V)
A7 sin 0 + ivv/cos?  — n? || kd
(2.70a)
and
: ik (sin @—iv/cos?2 6—n?2)y’ 7
Gr(r, ') ~ v sin @ etk (sin6—iveos? f-n2)y ok il

27 sinf + ivy/cos? 6 — n? 7| (2.70b)

1
X{l‘f’@(ﬂ)}, T’EDhTIEDQ,
r
=

where ' = (2/,y/,2'), ¥ = (2/, —y/, 2') and 7 = |r|(cos 0 cos ¢, sin §, cos f sin p).
A similar procedure yields the far-field form of the gradients of Gr and G with respect

to " and 7; the results are

by (| —7) —cosfl cos p
ki sind — ¢ 20 _ 2 oiki(lr|—77 ]
v'r-/GR(T,T’/) ~ 7/_1Sln %Vme Slne {1 N O (_) },
AT sin 6 + iv/cos? 6 — n? kd 7|
—cosfsin
(2.71)
for »,r' € Dy, and
o (sin O iv/eoTT TNy i (] ) —cosfcos
ikqv sin @ ek1(sin0—iveos®0—nZ)y" giki (Jr|—7r-r )
Vi Gr(r,r') ~ i O =2 {1+O(_)},
) e im0t e G ] iVeos?d —n? =
—cosfsinp
(2.72)

for r € Dy and v’ € Ds, as |r| — oc.

The far-field pattern of the layer Green function and its gradient with respect to =’ in
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the direction 7 € S2 = {r € R* : |r| = 1, y > 0} are then given by

1 oo, sinf —ivvcos?l —n? . L
- e—zk1r~'r' + : : e—zk1r~'r' ’ ’I"/ c Dla
A sin 0 4 ivv/cos? 0 — n?

GOO ’f',’r’/ — 273
( | U sin f etk (sin—iveos? 8—n2)y’ ( )

- e—ikl'/r‘\"r" ,r/ c ‘D2
. . Y )
27 sin @ + ivv/cos? 6 — n?
and
(
cos f cos
. o T3
ik ik i sinf — ivy/cos?f —n ki’ sing € D,
4m sin 6 + ivy/cos? 0 — n? ’ 7
cos @ sin
A
H (r,r") =
—cosf cos
ik v sin 0 otk (sin 0—iv/cos? 0—n2)y’ o
e T _i\/cos2 0 — nZ r' € D,
2w sin + ivy/cos? 0 — n? ’ ’
\ —cosfsing
(2.74)

where 7 = (cos @ cosf,sinf,sin g cosfh), 0 € [0,7/2] and 6 € [0, 27].

2.3.5 Numerical evaluation of the layer Green function

In this section we present a algorithm for the numerical evaluation of the Sommerfeld in-
tegrals @g) and @gf), i = 1,2 (equations (2.34b) and (2.41b)) and their derivatives, in both
two and three dimensions. This approach, which results as a combination of the contour
integration method described in [103] together with the smooth-windowing approach put
forth in [25, 93] for evaluation of oscillatory integrals, can in fact be utilized to approximate
Green functions for an arbitrary number of layers in two and three dimensional space. A
survey on other methods available for the numerical evaluation of layer Green functions and
related Sommerfeld integral can be found in the recent review paper [89].

This section presents details of the proposed numerical method for the evaluation of @g)
(equation (2.34b)) with real wavenumbers k; and ko; the remaining integrals in (2.34b)
and (2.41b) and the case of complex ky can be treated by means of a completely analogous

procedure.
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The evaluation of @g) requires integration of the function

e VFIGH) cos(2(z — 1))
V21V =1+ V22 = n?[V2 — 1+ vV22 —n?]

f(z) =

on the positive real z-axis. The function f is expressed in terms of dimensionless variables
7 and 7 which are defined by kir = 7 = (Z,9), kiv’ = 7 = (¥',¢). Clearly, f is highly
oscillatory for wide ranges of values of the spatial variables 7 and 7', and it is additionally
singular at z = 1 and z = n. Note that f,0f/07 and 0f/0y" decay exponentially fast as
z — oo when ¢ + ¢ > 0. However, f decays as |z|™2 and 0f /9y and 0f /0y decay as |z|~2

as |z| — oo when y = ¢’ = 0.

Im z

Figure 2.6: Integration path in the complex z-plane for the numerical evaluation of Som-
merfeld integrals.

To proceed with the numerical evaluation of the needed integral of f we write
/ f(Z)dZ:[1+IQ,
0

where [} = fOL f(z)dz and I, = [[° f(z) dz, and where L =1 + n.

Note that the singularities of f pose a difficulty to the direct numerical evaluation of I,
which arises as a result of the presence of branch point singularities on the interval [0, L]. In
the presence of a layered medium composed by more than two-layers, further, the integrands

possess polar singularities for which Cauchy principal value integrals result. Both the present
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integral as well as those arising in the multilayer case can be evaluated numerically by first

using contour integration to express /; in the form

L= jz)de= / " HC@)IC ) dt, (2.75)
Cq 0

where (] is a simple curve in the fourth quadrant which is parametrized by ¢ : [0, 7] — C
satisfying ((0) = 0 and {(7) = L (see Figure 2.6). Throughout this thesis the curve C} is

the ellipse

Ct) = {L(l + cos(t +))

5 —1—2’Hsin(t+7r):t€[0,7r]}.

Note that on C; the function f grows exponentially as ¢ increases from 0 to 7/2. To estimate

the largest value attained by |f(¢(¢))| for ¢ € [0,7/2] we note that by the definition of the
square root /(% — 1, we have that

90-'-71'
2

—argy/(*—1<m, (e,
where 6y = —arctan(H /(1 + L/2)) < 0. Therefore we obtain

oIV < it IVE Tl eostOot7/2) < it IVIGPH sty < JI4T1H ¢ e 0y (2.76a)

where (o = ((7/2) = L/2 —iH. On the other hand, we have

olF—#[Im¢ 4 (|37 Tm¢

< eI (2.76h)

jcos (7 — )| < . <

Thus, in order to control the exponential growth towards the negative imaginary axis, we
select H = {max{10,|% — ¥| + |7+ ¥|}} . With this simple procedure, certain versions of
which have often been used in the literature [89], we ensure that the exponenents on the
right-hand sides of (2.76) are smaller than one.

In our approach the resulting expression for the integral I; is then approximated by
means of the Clenshaw-Curtis quadrature rule [106]—which, for the smooth integrand under

consideration, yields rapid convergence. In view of the oscillatory behavior of the integrand,
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on the other hand, and in order to maintain the same accuracy for all 7 and 7', the number

of quadrature points is chosen to grow linearly with | — Z’| (see Table 2.1).

D H N Relative error

10 | 020 | 98 | 431 x107%
20 | 0.10 | 192 | 2.44 x 107%
40 | 0.05 | 382 | 3.28x 107
80 | 0.025 | 762 | 6.34 x 107
160 | 0.0125 | 1523 | 4.49 x 107%

Table 2.1:  Approximation of I; for ¥ = (D,10), ¥ = (0,1), n = 2 and L = 3, using N
Clenshaw-Curtis quadrature points.

In order to evaluate the oscillatory integral I, on the other hand, we utilize the windowing

method put forth in [25]. Hence I is approximated as

A+L

bzi/Aﬂt+me@yh=i/ fwa(t — L)dt, (2.77)

where the window function w4 is defined as follows.

Definition 2.3.3 (Window function). Let 0 < ¢ < 1 and n € C§°(R) be given by

(

17 |t| S tU)
2e /v t|—t
U(t;toah) = 4§ eXp , o < ’t| <t,u= | | O, (278)
u—1 f— 1o
0, |t| > 1.

\

Then the window function is defined as

wa(t) =n(t; cA, A).

As in the case of Ij, the integral in (2.77) is approximated by using Clenshaw-Curtis

quadrature. In virtue of the oscillatory behavior of the integrand when |Z — #’| # 0, and
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exponential decay of the integrand when § + ¢’ # 0, the integral in (2.77) converges to I,

faster than any negative power \/(Z — #’)% + (g + §/)2A as A goes to infinity—as established

in the following

Lemma 2.3.4 (Superalgebraic accuracy of windowed integration). Let g : [L,00) — C,

g € C®([L,0)) satisfy

Ch
S forall t>L, n>0, (2.79)

d"g(t)
dn

for some positive constants C,, and 1, and consider the improper integral
]’ _ / efvt271a+iﬁm g(t) dt,
L

where ae > 0, B € R and \/a? + B2 # 0. Then, for any n > 0 there exists a constant M,, > 0,
independent of A, such that

M, Yo !
I —14] < (a2+52>(n+1)/214ne for all A>AO>E7

where

Iy :/ e~ V1At o (P (¢ — L) dt,
L
where wy denotes the window function introduced in Definition 2.3.3.

Proof. Let E = I — I4. From Definition 2.3.3 and utilizing the change of variables t = As

we obtain
o / o VIO (111 (¢ — L)] dt
cA+L
=A o™ VYA AHIABE [ (AGV[] — w4 (A(s — ()] ds,
c+L
where ¢ = L/A. Note that by construction, the window function satisfies wa(As) =

n(As;cA, A) = n(s;c,1) = wi(s). Thus, letting wi(s — ) = 1 — wy(s — ¢) we express E
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as

E = A/ " A520) g(As)iy (s — £) ds,
c+l

where ¢(s) = (—/1 — (As)2a+if)/(—a+if) and Kk = —a + if. Integrating by parts we

obtain

[e.9]

E:(%%%MMW@Q

1 o0
D, g(As) (s - 0] s,
K: C

c+t +¢

where we have introduced the operator

d 1
Do = ol

Clearly the boundary term vanishes in virtue of the fact that wi(c) = 1 — wy(c) = 0 and
because of the decay of g as t = As — oo. Similarly, integrating by parts (n + 1)-times we

obtain
R i / " e As000) DI (g(As) (s — )] ds
KL An ot ¢ 1 ’

(since all the boundary contributions vanish), and we consequently obtain

1 = —a 5)2— n ~
1< s YO 15 (a9 - 1 s

e—a\/(Ac+L)2—1 oo ) ~
c+4

In order to complete the proof we need to show that ||D:;Jrl [9(As)wi(s — O)] || 11 (jere,00)) < M
for some constant M,, independent of A. Expanding the derivatives in DZH [g(As)w (s — 0)]

we obtain a linear combination of terms given by products of functions of the form

—a p+1 b—1 q
(i[s¢(s)]> ( d [s¢(s)]) d [g(As)wy (s — £)] with integers a,b,p,q > 1. (2.80)

ds dsptl ds?

Thus, in order to prove the existence of the constant M, it suffices to show that any function
of this form belongs to L ([c+ ¢, 00)) N L>®([c+¢,00)) and has L'- and L>-norms which are

independent of A. (The L™ requirement ensures that the aforementioned products of these
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L'-norm-bounded functions are also in L!'-norm-bounded.) To achieve this we rely on the

easily-checked lower bound

—a+ify/T= (A2

‘ (—a+1i6)/1— (As)~2

_ { o + 51— (As)%) 1
( ,

d
‘E[S“)(S” - T A= (As) )]

and upper bound

Qy
A(Q)sp”[l _ (Aoc—i— L)fQ](Qerl)/Q?

dr+l
‘ p>1, s>c+l, A> Ay,

o590l =

(Q, positive constants). Therefore,

d —a dp+1 b—1 Qp b—1
(o)™ (o) | < (g cacts o)+ @50
and
d _ K drm dm
gm0l = 32 (1) e | game -0
= %gAs +Z< )‘d;r:; H—wls—é‘

Cy L Com
< A;L q+p + leHCq 1[c 1] <8 - A_o) Z ( )W (2 82)

m=1

where the last inequality follows from the boundedness of the ¢-th derivative of the window
function w; (which itself follows directly from Definition 2.3.3 and the bound (2.79)). Finally,
from (2.81) and (2.82) we conclude that the functions in (2.80) belong to L*([c + £,00)) N

L*>([c + ¢, 00)) with norms which are independent of A, and thus, the lemma follows. [

Proposition 2.3.4 demonstrates the fast convergence of the windowed integral in (2.77)

to I, as A — oo for source and observation points satisfying the condition \/a? + 2 =

V(@ — #)2 + (§ + )% # 0—a dimensionless relation which is only violated for r = 7' € II;.
In the special case r = ' € II;, however, the integrand f is slowly decaying and does not

oscillate, thus, it leads to slow convergence of the windowed-integral approximation (2.77)
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to the integral Iy as A — oco. In fact, utilizing the notation introduced in Proposition 2.3.4,

we have

|1 = La| = O((cA)™),

for « = f = 0 for a function g that decays as |z|™* as z — 0.
The super-algebraic/exponential convergence of the windowed integral allows I to be

approximated with a fix accuracy and a fixed computational cost by choosing A inversely

proportional to \/(Z — )2 + (§ + §')2. The example in Table 2.2 illustrates this property.
Throughout this thesis the value ¢ = 0.1 is utilized in the numerical computation of Som-
merfeld integrals. But some other important uses are made of the windowing function (2.78)
(see e.g. Chapters 4, 5 and 6) for which a different values of ¢, which was found more

advantageous, is used.

D | A | Relative error with windowing
10 | 100 2.89 x 10712
20 | 50 2.13 x 10710
40 | 25 1.60 x 10710
80 | 125 6.58 x 10710
160 | 6.25 2.50 x 10710

Table 2.2: Approximation of I for 7 = (D,0), ¥ = (0,0), n = 2 and L = 3, using a fixed
number of Clenshaw-Curtis quadrature points.

Figures 2.7 and 2.8 display the real part and the absolute value of the two-layer Green
function (for a source point in the upper half-plane) that was evaluated by means of the

numerical algorithm introduced in this section.

2.4 Scattering by obstacles in a layered medium

To illustrate the utility of the layer Green function methods introduced in Section 2.3.5 we
now present and demonstrate an associated boundary integral equation algorithm for prob-

lems of scattering by PEC obstacles embedded in a layered medium. The integral equation
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Figure 2.7: Plots of the two dimensional layer Green function G(r,r’) as a function of r
with source point ' = (0,1), Iy = {y = 0}, v = (k1 /k2)? and under TM-polarization.

method described in this section, that we refer to as the Layer Green Function (LGF) method,
is further extended in Chapter 3 to a much larger class of problems of scattering in layered
media—including problems for which defects intersect the planar interface II;. In the discus-
sion provided below in this section we focus primarily on the two-dimensional electromagnetic
problem, but problems of acoustic scattering by sound-soft and sound-hard obstacles in two-
and three-dimensional space can be treated in a similar fashion. The results presented herein

for PEC obstacles (boundary conditions (2.11)) in TM- and TE-polarizations in the electro-
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i
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(c¢) Re@ for k1 = 40 and ko = 20. (d) |G| for k1 = 40 and ko = 20.

Figure 2.8: Plots of the three dimensional layer Green function G(r,r’) as a function of r
with source point 7’ = (0, 1,0), II; = {y = 0} and with v = 1.

magnetic case correspond to sound-hard and sound-soft boundary conditions in the acoustic
case, respectively.

Let us thus consider a domain 2 C R? occupied by a smooth bounded PEC obstacle
placed upon the dielectric half-plane D5, and assume the structure is illuminated by an
electromagnetic plane wave (E™ H"®) as defined in (2.12). We assume the obstacle §2 lies
entirely within one of the half-planes D; or Dy and has a smooth boundary 02 = I'. As
shown in Section 2.2.1, the transverse component of the resulting total electric and magnetic
fields, u = E, in TE-polarization, and uv = H, in TM-polarization, satisfy the Helmholtz
equation Au + k?u =0in D; \ Q, j = 1,2, and, furthermore, they satisfy PEC boundary
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conditions: u = 0, in TE-polarization, and du/dn = 0, in TM-polarization, on the boundary
of the obstacle I'. In oder to formulate the problem of scattering, we thus express the total
field as
w=u'+u® in R?\Q, (2.83)

where u/ denotes the total field that corresponds to the solution of the problem of scattering
of the plane-wave by the layered medium in absence of the PEC obstacle, which is given
in (2.13) for both polarizations, and where u® denotes the scattered field produced by the
interaction of u/ with the PEC obstacle in presence of the layered medium. The scattered

field thus satisfies:

[ Auw k2wt = 0 in D\Q, =12,
us’y:m = u’ =0~ on I,
ou _ Vau on TI,.
Y |,—o+ Y |y=o-
2.84
u = —uf on I', (in TE-polarization) (2.84)
ou® ou’
81:1 = —8—1; on I', (in TM-polarization)
. o . ,
lim +/|r|{ 57— —ikju’p =0 in D, j=12.
\ |r|—o0 (9|’r|

As it was shown by Kristensson [74], the boundary value problem (2.84) admits at most one
solution u* : R?\ Q — C.

In order to solve (2.84) we seck a scattered field given by the single-layer potential u®(r) =
S[Y](r) where, letting G denote the layer Green function (2.27), S : C(T') — C*(R*\ {T U
I1;}) N C(R?) is given by

S[Y)(r) = /FG(T,T’)w(T’) ds,, r€R*\T, (2.85)

where 1 : ' — C is an unknown density function. In view of the transmission problem (2.20)

satisfied by the layer Green function, it can be easily shown that, for a continuous density
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1 € C(T) the single-layer potential (2.85) is a smooth function in R*\ {T'UII; } that satisfies
the Helmholtz equation with wavenumbers k; in D, \ Q, 7 = 1,2 as well as the appropriate
transmission conditions (2.9) on II; and the radiation condition at infinity. Enforcing the

remaining PEC boundary condition on I' we thus obtain the integral equations

S = —uf (TE-polarization) (2.86a)
¥ du! .
5 T K[y = — . (TM-polarization) (2.86b)

on I'. The single-layer and the adjoint double-layer integral operators S : C(I') — C(I") and
K :C(I') = C() in (2.86) are given by

/ !/ aG / /
Slr) = | Glr,7)o(r')ds, and  K[p](r) = (r,7)¢(r)ds,, Tel (2.87)
r

T 3717,

respectively.

The mapping properties of the single-layer potential and associated integral operators
are well-known for problems of scattering by obstacles in free-space [45, 97]. Similar results
can be obtained for the present layer-media scattering problem as it can be shown that the
single-layer potential (2.85) is a smooth perturbation of the free-space single-layer potential,
and that the operators S and K (2.87) are compact perturbations of the corresponding
integral operators associated with the free-space problem (since the layer Green function in
the layer D; that contains the obstacle is given by G(r,r') = Gy, (r, ') + ®;(r, '), where
the Sommerfeld integral ®; : D; x D; — C is a smooth function ® € C*°(D; x D;)). It thus
follows that the integral equations (2.86) are of Fredholm type.

It can shown, on the other hand, that the integral equations (2.86) admit unique continu-
ous solutions except for a countable (real) set of wavenumbers known as spurious resonances;
which correspond to Dirichlet or Neumann eigenvalues (depending on the polarization) of
the Laplace operator —A in the interior of 2, cf. [45, 97]. For a wavenumber k; that is
not a spurious resonance, the single-layer potential (2.85) provides the unique solution of
the exterior boundary value problem (2.84) where the density ¢ is obtained by solving the
relevant integral equation (2.86a) or (2.86b) in TE- or TM-polarization, respectively.
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Figure 2.9: Solution of the problem of scattering of a TE-polarized plane-electromagnetic
wave uPc(r) = eth1(@cos(r/9)=sin(x/9y) by o PEC kite-like obstacle buried in a dielectric half-
plane, for wavenumbers k; = 20, ky = 40. (a) Real part of the total field. (b) Absolute
value of the total field. (c¢) Absolute value of the far-field pattern in the upper half-plane for
all observation angles in the upper half-plane. (d) Relative errors in the far-field u.(7) in
maximum-norm for various discretizations the integral equation (2.86a).

There are various approaches to tackle the spurious resonance problem. Perhaps the most
popular one is the so-called combined field integral equation (CFIE) [19, 78, 99], which relies
on a certain field representation that involves a linear combination of single- and double-
layer potentials. Such representation leads to an integral equation that is uniquely solvable
for all (physically meaningful) wavenumbers. Although effective, this approach requires to
duplicate the number of boundary integral operators that must be discretized. A CFIE based

on use of the layer Green function entails a significantly larger computational cost than the



59
simple single-layer formulation (2.85), as the CFIE approach requires to at least duplicate the
number of Sommerfeld integral evaluations necessary to form the associated linear system,
even when £k; is far from a spurious resonances. In Section 3.3.2 we present a methodology
which, at the expense of a reduced number of additional evaluations near spurious resonances,
overcomes the spurious resonance problem without requiring duplication of the number of
Sommerfeld integral evaluations.

In order to numerically approximate the unknown density ¢ we utilize the Nystrom
method put forth independently by Martensen [84] and Kussmaul [75] which, for a smooth
obstacle with boundary I' of class C*, yields super-algebraic convergence: the maximum
error in 1) decreases faster than any negative power of the number of discretization points
used. To illustrate the excellent convergence properties of the overall Nystrom approach we
first consider the problem of scattering of a kite-shaped PEC obstacle buried in a dielectric
plane. Figures 2.9a and 2.9b display the real part and the absolute value of total field
u = uf + u®, respectively, which is obtained by solving the corresponding integral equation
in TE-polarization (2.86a) by application of the Nystrom method and by evaluating of the
field through the representation formula (2.85). Figure 2.9d, in turn, displays the relative

errors (in semi-log scale) in the far-field pattern:

Uoo (T°) :/FGoo(f‘,r')w(r') dsy, (2.88)

for 7 = (cos0,sinf), 0 € [0, 7], where G, is given in (2.59). The far-field pattern is displayed
in Figure 2.9c.

We now consider the problem of scattering of a plane-wave acoustic wave by a three-
dimensional sound-hard bounded obstacle  C R? with smooth boundary I' = 9. The
discussion presented above for the two-dimensional electromagnetic problem carries over

directly to the three-dimensional acoustic scattering problem by letting the scattered field
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Q &g

a) Bean-shaped obstacle. b) Overlapping surface patches.

Figure 2.10: Bean-shaped obstacle [29, Section 6.4] and overlapping surface patches utilized

for its parametrization.

be given by the solution of:

( Au® + ka-us = 0 in
u’ |y:0Jr = |y:0* on
ou’ ou’
= v on
Y |,—o+ Y |,—o-
ut = —uf on
ou’ oul
= —— on
on on
ou’
lim || =— —iku’ > =0 in
\ |7'|—>oo| | {8|7°| J }

and by letting the single-layer potential be given by

/Grr ") ds,,

D;\Q, j=1,2,

H17

Hh

I',  (sound-soft)

I, (sound-hard)

Dj7 j:1727

r e R\ T,

(2.89)

in terms of the three-dimensional layer Green function (2.40). (A more detailed description

of the three-dimensional acoustic scattering problem is presented in Section 6.1.)

The single-layer representation (2.89) of the scattered field u® leads to the second-kind

integral in (2.86b). In order to numerically solve (2.86b) in the present three-dimensional con-

text we utilize the high-order Nystrom method put forth in [27, 29]. To illustrate this solution
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procedure, we consider the smooth bean-like scatterer shown in Figure 2.10. Figures 2.11a
and 2.11b (resp. Figures 2.11d and 2.11e) display the total field u® + u/ solution of the
problem of scattering of the plane-acoustic wave u™®(r) = e1(cos(r/9z=sin(m/9y) Ly the bean
scatterer embedded in the upper half-space D; (resp. lower half-space D,), while Figure 2.11c
(resp. Figure 2.11f) displays the far-filed pattern (2.88) for 7 = (cos ¢ cos 6, sin 6, sin ¢ cos 6),
6 € [0,7/2] and 0 € [0, 27|, obtained using the far-field form the layer Green function (2.73).

(d) (e) (f)

Figure 2.11: Solution of the problem of scattering of the acoustic incident plane-wave
u™C(r) = etkr(@cos(r/9)=sin(r/4)y) by a sound-hard bean-shaped obstacle lying above (first row)
and below (second row) the plane II; = {y = 0}, in a two-layer medium with wavenumbers
ki = 5 and ke = 10. First and second columns: absolute value of the total field. Third
column: absolute value of the far-field pattern.
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Chapter 3

Layer Green function Method for
problems of scattering by defects in
layered media

This chapter extends the LGF high-order integral equation methods developed in Section 2.4
so as to enable solution of problems of scattering of a plane electromagnetic wave by cylin-
drical dielectric defects that lie at the interface between two half-planes. Eight such classical
problems are tackled in this chapter: scattering by a dielectric bump on 1) a perfectly
electrically conducting (PEC) or 2) a dielectric half-plane (Figure 3.1a), scattering by a
dielectric-filled cavity on 3) a perfectly-conducting or 4) a dielectric half-plane (Figure 3.1b),
scattering by a dielectric-overfilled cavity on 5) a perfectly-conducting or 6) a dielectric half-
plane (Figure 3.1¢), and scattering by a void cavity on 7) a perfectly-conducting or 8) a
dielectric half-plane (Figure 3.1d). From a mathematical perspective these eight different
physical problems reduce to just three problem types for which this chapter provides nu-
merical solutions on the basis of highly accurate and efficient boundary integral equation
methods.

In all cases the proposed methods utilize field representations based on single-layer poten-
tials for appropriately chosen Green functions, including the layer Green function obtained
in Section 2.3.1. As is known, such single-layer formulations lead to non-invertible integral
equations at certain spurious resonances—that is, for wavenumbers that coincide with in-
terior Dirichlet eigenvalues for a certain differential operator—either the Laplace operator

or an elliptic differential operator with piecewise constant coefficients (see Section 3.3.2 for
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details). We nevertheless show that solutions for all wavenumbers can be obtained from such
non-invertible formulations—including wavenumbers at which non-invertible integral equa-
tions result. Our method in these regards relies on the analyticity of the PDE solution as
a function of the wavenumber together with a certain approach based on use of Chebyshev
approximation.

(The use of field representations which give rise to non-invertible operators is advanta-
geous in two main ways: on one hand this strategy allows one to bypass the need to uti-
lize hypersingular operators, whose evaluation is computationally expensive and, otherwise,
highly challenging near corner points; and, on the other hand, it leads to systems of integral
equations containing fewer integral operators—with associated reduced computational cost.)

The problems considered in this chapter draw considerable interest in a wide range of
settings. For example, the problem of scattering by bumps and cavities on a (perfect or
imperfect) conducting half-plane is important in the study of the radio-frequency absorption
and electric and magnetic field enhancement that arises from surface roughness [111, 140].
The problem of scattering by open groove cavities on a conducting plane, in turn, impacts
on a variety of technologies, with applicability to design of cavity-backed antennas, non-
destructive evaluation of material surfaces, and more recently, modeling of extraordinary
transmission of light and plasmonics resonance, amongst many others (e.g. [8] and references
therein).

There is vast literature concerning the types of problems considered in this chapter. For
a circular bump a separation-of-variables analytical Fourier-Bessel expansion exists [109].
Related semi-analytical separation-of-variables solutions are available for other simple con-
figurations, such as semi-circular cavities and rectangular bumps and cavities (e.g. [36, 37,
55, 77,100, 101, 102, 127, 128, 137] and references therein), while solutions based on Fourier-
type integral representations, mode matching techniques and staircase approximation of the
geometry are available for more general domains (e.g. [12] and references therein). Even for
simple configurations, such as a circular cavity or bump on a perfectly conduction plane, the
semi-analytical separation-of-variables method requires solution of an infinite dimensional

linear system of equations that must be truncated to an n x n system and solved numer-
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ically [60, 101, 102, 112, 127, 128]. As it happens, the resulting (full) matrix is extremely
ill-conditioned for large values of n. In practice only limited accuracy results from use of
such algorithms: use of small values of n naturally produces limited accuracy, while for large
values of n matrix ill-conditioning arises as an accuracy limiting element.

Finite element and finite difference methods of low order of accuracy have been used ex-
tensively over the last decade [7, 8, 11, 54, 79, 129, 133, 135]. As is well known, finite element
and finite difference methods lead to sparse linear systems. However, in order to satisfy the
Sommerfeld radiation condition at infinity, a relatively large computational domain contain-
ing the scatterer must be utilized (unless a non-local boundary condition is used, with a
consequent loss of sparsity). In view of the large required computational domains (or large
coupled systems of equations for methods that use non-local domain truncation) and their
low-order convergence (especially around corners where fields are singular and currents are
infinite), these methods yield very slow convergence, and, therefore, for adequately accurate
solutions, they require use of large numbers of unknowns and a high computational cost.

Boundary integral equation methods, on the other hand, lead to linear systems of reduced
dimensionality, the associated solutions automatically satisfy the condition of radiation at
infinity, and, unlike finite element methods, they do not suffer from dispersion errors. Integral
equation methods have been used previously for the solution of the problem of scattering by
an empty and dielectric-filled cavity on a perfectly conducting half-plane; see e.g. [61, 132,
136]. However, previous integral approaches for these problems are based on use of low-order
numerical algorithms and, most importantly, they do not accurately account for singular
field behavior at corners—and, thus, they may not be sufficiently accurate for evaluation of
important physical mechanisms that arise from singular electrical currents and local fields
at and around corners.

The present chapter is organized as follows. Section 3.1 presents a brief description of
the various problems at hand and Section 3.2 introduces a new set of integral equations for
their treatment. Section 3.3 then describes the high-order solvers we have developed for
the numerical solution of these integral equations, which include full resolution of singular

fields at corners. The excellent convergence properties of the equations and algorithms
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introduced in this text are demonstrated in Section 3.4. In particular, the high accuracy of
the new methods in presence of corner singularities can be used to evaluate the effects of
corner singularities on currents and local fields on and around bumps and cavities, and thus
on important physical observables such as absorption, extraordinary transmission, cavity

resonance, etc.

61 b /"Ll 81 9 /’Ll
€4, 4,04
€3, 43,03
€2, 2,02 or PEC €2, l42, 02 or PEC
(a) Dielectric bump on a half-plane. (b) Dielectric-filled cavity on a half-plane.
€1, M1
€1, 1
€2, 2,02 or PEC €9, l4a, 09 or PEC
(¢) Dielectric-overfilled cavity on a half- (d) Void cavity on a half-plane.
plane.

Figure 3.1: Schematics of the eight physical problems considered in this chapter.

3.1 Problem of scattering

All the problems considered in this chapter can be described mathematically following the
compact depiction presented in Figure 3.2. Thus, a plane electromagnetic wave (E¢ H™c),
which is defined in (2.12), impinges on a defect formed by the subdomains Q3 and €y,
which lies on the boundary of an otherwise planar horizontal interface between the infinite
subdomains 2; and €25. As we showed in Section 2.2.1, the z components u = E, and u = H,

of the total electric and magnetic field satisfy the Helmholtz equation

Au+kju=0 in € (3.1)
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where, letting w, €; and p; denote the angular frequency, the complex electric permittivity
and the magnetic permeability of the medium (2;, the wavenumber k;, defined in (2.7), is
given by k;]2 = w?e;p;, 1 < j < 4. Throughout this chapter it is assumed that €2 is a lossless
medium (oy = 0).

In order to formulate transmission problems for the transverse components of the elec-
tromagnetic field, u is expressed as

U in Qj, j=3,4,

u=1{ "’ (3.2)
w;+u in Q j=1,2,

where u/ is the solution of the problem of scattering by the lower half-plane in absence of
the dielectric defect. Note that, in particular, u’ satisfies appropriate transmission/boundary
conditions at the flat interface I'1 between €y and Q,. The solution u/ can be computed
explicitly for each one of the problems considered in this chapter. For the problems in which
Qs is a perfectly flat PEC half-plane, v/ is given in (2.15), while for the problems in which

Q) is a flat dielectric or conducting half-plane, u/ is given in (2.13).

I'is \

Q T
' I's4 ™~ Q3 f 2
Qu Y

N

Figure 3.2: Compact mathematical description of the problems considered in this section.

Additionally, u satisfies the transmission conditions (2.9) which can be expressed as

ou_ 0w, og

U; = Uj + g, and Vij% = an + an, (33)

at the interface I';; between ; and €2;, where v;; = p;/p1; in TE-polarization and v;; = ¢; /¢;
in TM-polarization. For each one of the problems considered in this chapter, transmission

conditions (3.3) are satisfied on T';3 with ¢ = u/. In the case in which Q, is filled by a
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dielectric material the transmission conditions (3.3) are also satisfied with boundary data
g = u/ on Ty, and they are satisfied with boundary data ¢ = 0 on I's;. On the other hand,
from (2.11) we have that for the problem in which € is a PEC half-plane, us = 0 and, thus,
the boundary conditions

Ou,

u; =0 and a—n:0, j=2,3 (3.4)

are satisfied on I'y; in TE- and TM-polarization, respectively. Additionally, we require that
the scattering fields, which in this formulation correspond to u;, j = 1,2 in (3.2), satisfy the

Sommerfeld radiation condition [45] at infinity:

Ous
lim +/|r| ﬂ(7“) —ikju;(r) p =0 uniformly in all directions L Q;, j=1,2.
|r|—o0 0 "l"‘ ”l"l
(3.5)
Uniqueness results for the problems of scattering considered in this chapter can be found
in [74, 110] for the cases in which €, is occupied by a dielectric or conducting material, and
in [9, 139] for the cases in which € is occupied by a PEC. In what follows of this chapter

we assume that there exist unique, sufficiently regular, solutions to all of the problems of

scattering considered.

3.2 Integral equation formulations

Three main problem types can be identified in connection with Figure 3.2, namely Problem
Type I, where transmission conditions (3.3) are imposed on I'13 and I'yy (which, in our context,
characterize the problem of scattering by a dielectric bump on a dielectric half-plane as well
as the problems of scattering by a filled, overfilled or empty cavity on a dielectric half-
plane); Problem Type II, where transmission conditions (3.3) are imposed on I';3 and the
PEC boundary condition (3.4) is imposed on I'y4, which applies to the problem of scattering
by a (filled, overfilled or empty) cavity on a PEC half-plane; and Problem Type III, where
transmission conditions (3.3) are only imposed on I'j3, with application to the problem of

scattering by a dielectric bump on a perfectly conducting half-plane. In the following three
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sections we derive systems of boundary integral equations for each one of these problem

types.

3.2.1 Problem Type I

In Problem Type I the domains ©; (1 < j < 4) contain dielectric media of finite or zero
conductivity; we denote by k; the (real or complex) wavenumber in the domain €2;. Note

that

— For the problem of scattering by a dielectric-filled cavity on dielectric half-plane we
have kfl = k?g, k?g 7é k4,k4 7& k’g, k’l 7é k?g,

— For the problem of scattering by an overfilled cavity on dielectric half-plane we have

ki # ks, ks = ky, ky # ko, k1 # ko; and

— For the problem of scattering by a wvoid cavity on a dielectric half-plane we have ki =

ks, ks = ka, kg # ko, k1 # ko.

To tackle the Type I problem we express the total field w in (3.2) by means the single-layer-

potential representation

Sint [wint] in Q3 U Q4>
u= (3.6)

Sext[r(/)ext] + uf in Ql ) 927

in terms of the unknown density functions v, and 1.y where, letting Gl,zj = (G denote
the layer Green function (2.27) of the Helmholtz equation for the two-layer medium with
wavenumbers k; and k; in the upper and lower half-planes respectively (see Section 2.3.1 for

details), we have set

Sine[tV](r) = /F . Gy (r, v ) (r') ds,, (3.7a)
Sext[](r) = /F . G (r, ) (r') dsp. (3.7b)
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The Green functions G’,z; satisfy the transmission conditions (3.3) on I';; (with (i5) equal to
either (12) or (34)) and, therefore, they depend on the polarization (through the parameter
v;;). Note, further, that for k; = k; = k the Green function G],; equals the free space Green
function with wavenumber k.

It is easy to check that the representation (3.6) for the solution u satisfies the Helmholtz
equation with wavenumber k; in the domain €; (1 < j < 4) as well as the radiation
conditions (3.5) at infinity (see Section 2.3.4 for details). Since the two-layer Green functions
satisfy the relevant transmission conditions on I'15 and I's4, there remain only two boundary
conditions to be satisfied, namely, the transmission conditions (3.3) on the boundary of
the defect 23 U Q4. Using classical jump relations [45] for various layer potentials, these

conditions lead to the system

S’ll;llt3 Wint} - ‘S'eIz‘xlt3 [wext] = uf>
Yin 15 Yex s ou'
13 {Tt + K W}int]} + 9 = K o] = o
(3.8)
St int] — St o] = 0,
¢in 24 77Dex 24 auf
v {Tt + Kilzlt [wint] + 2 - — Kel;ct [wext] 8_71

of boundary integral equations on the open curves I';3 and I'y4 for the unknowns v, and

Yexs- The boundary integral operators in (3.8) for (ij) = (13) and (ij) = (24) are given by

Slrr‘lltj [w] (r) = /I" - Gzi (ra T/)w(”'/) dsr"a T E Fz]a
13Ul'24

ST ) (r) = / Gl sy, T,
13Ul'24
(3.9)

ks
KL - | Ok (g, 2y (") dsw, 7 € Ty,

13UlN24 an"

k1
KLl = | O 0 (r') sy, 7 € Ty,

13UlN24 an"

The following lemma establishes the uniqueness of solutions of the integral equation

system (3.8):
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Lemma 3.2.1. Under the assumptions laid out in Section 3.1 on the physical parameters
kj, j =1,...,4, the system of integral equations (3.8) admits at most one solution, unless

the exterior wavenumbers ki and ko are such that there exists an interior Dirichlet eigen-

function v : Q3 U Qy — C that satisfies:

;

Av+kiv=0 in Qs

Av+kiv=0 in Q,

U|y:0Jr = U‘y:(r on I3,
v O . (3.10)
Vig— = — on
2only=or — only=o- M

\

Proof. Let 1y, and ey be solutions of the homogeneous (uf = 0) integral equation sys-
tem (3.8) and assume that, for the given exterior wavenumbers k; and ko, the interior
boundary value problem (3.10) admits only the trivial solution. Defining the single-layer

potentials

v = Sext [wext] and w = ’Sint [wint]a (311)

it then follows, by uniqueness of the PDE boundary value problem (cf. [74]), that v = 0 in
0 Uy and w = 0 in Q3 U Q4. Furthermore, since v satisfies (3.10), it follows by hypothesis
that v = 0 in Q3 U Q4. Thus the single layer potential v vanishes throughout R? and, in
view of the jump relation for the normal derivative of the single-layer potential, we conclude
Yext = 0 on I'y3 U Toy.

On the other hand, the relation S.7[thn] = 0 for (ij) = (13), (24) tells us that w is a
solution of the Helmholtz equation in the exterior domain €2 U2y, with wavenumbers k3 in €2,
and k4 in €25, which satisfies homogeneous Dirichlet boundary conditions on I'13UI'y4 as well as
homogeneous transmission conditions on I'15. But, under the conditions Re k3 > 0, Im k3 > 0
and Reky > 0, Im kg > 0 that are generally satisfied by the physical constants (Section 3.1)

the exterior Dirichlet problem admits an unique solution (cf. [74]). Consequently, w = 0 in
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0, U Q,. Thus, the single-layer potential w vanishes throughout R?. Invoking once again
normal-derivative jump relations we conclude that;,; = 0 on I';3 U I'y4. The proof is now

complete. [

3.2.2 Problem Type II

In Problem Type II the domain 2, contains a PEC medium, and the domains €25, j =1, 3,4

contain dielectric media of finite or zero conductivity. Clearly,

— For the problem of scattering by a dielectric-filled cavity on PEC" half-plane we have
ki = ks, k3 # ku;

— For the problem of scattering by an overfilled cavity on PEC half-plane we have ki #
k‘g, kﬁg = k’4, and

— For the problem of scattering by a void cavity on PEC half-plane we have ki = k3, k3 =
ky.

For Type II problems we express the total field u by means of the single-layer-potential

representation
.
Sint [wint] in Qg U Q4,
U= Sext[wext] + uf in Ql, (312)
0 in QQ,
\

where, defining GZZ as in Section 3.2.1 and letting G’]O’Cl denote the Green function that satisfies

the PEC boundary condition (3.4) on I'j5, the potentials above are defined by

Sint [¢] (7;) = /I‘ ur GZE (T, ’I”/)l/J(T'/) dSr’; (313&)

Sext[V](r) = G (r, 7 )b (r') dsy. (3.13b)

I'is
As mentioned in Section 3.2.1 the Green function ng depends on the polarization; the
same is of course true for GE', which is given by GE(r,7') = Gi(r,7') — Gi(r,7) in TE-

polarization, and GE(r,r') = Gi(r,7') + Gi(r,7') in TM-polarization, where ¥ = (2, —y')
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and where Gi(r,r') = iHél)(k:]'r —7'|)/4 is the free-space Green function. By virtue of the
integral representation (3.12) the field satisfies the Helmholtz equation in the domain €;
with wavenumber k;, j = 1, 3, 4, the radiation condition at infinity, transmission conditions
on I'yy and the PEC boundary conditions on I'y5. Imposing the remaining transmission

conditions (3.3) on I';3 and PEC boundary condition (3.4) of I'y4, we obtain the equations

SE Wing) — Sei [es] = /),

. o ou'
V13 {Q/J -+ KIE&S Wint]} - ¢2 - Ko W] on’

(3.14a)

on I'y3 (valid for both TE- and TM- polarizations provided the corresponding constant v;;

and Green functions are used) and

%“t + K} 2*[thins] =0 (TE-polarization) (3.14b)

Si2 ] =0 (TM-polarization) (3.14c)

int

on I'yy. In accordance with the definition of the single-layer potentials (3.13), the boundary
integral operators in (3.14) for (ij) = (13) and (ij) = (24) are given by

SO (r) = / G el sy T E Ty,
13Ul'24

ext / le T ’l" )dSr/, e Fija
INE
1n 4 7' 7'/)¢ Ir/) dST'/a rc Fi‘?
t A13UF24 an" ( ’
le
ext / an ( /) dST./, rc FU

The following lemma, whose proof is analogous to the one given for Lemma 3.2.1, establishes

the conditions for uniqueness of solutions of the integral equation system (3.14).

Lemma 3.2.2. The system of integral equations (3.14) admits at most one solution unless

the exterior wavenumber ky is such that there exists an interior Dirichlet (in TE-polarization)
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or mized Dirichlet-Neumann (in TM-polarization) eigenfunction v : Q3 — C satisfying

Av+kv=0 in Qs

v=0 on Iz,

(3.16)
v=0 on I'sy in TE-polarization,

0
—U:0 on I'sy in TM-polarization.
\ 5’n

3.2.3 Problem Type III

For Problem Type III the domains €;, 7 = 1,3, contain dielectric media of finite or zero

conductivity and the domains 2;, j = 2,4, are filled by a PEC material. Note that
— For the problem of scattering by a dielectric bump on PEC half-plane we have k3 # k;.

As in the previous cases, for Type III problems the total field u is expressed by means of

the single-layer-potential representation

.

Sint [wint] in Qg ,
U= Sext[text] +u/ in Qi (3.17)
0 in QQ U Q4,

\

where the potentials above are defined by

Simt[¥](r) = /F G (v, ") (r') sy, (3.18a)

Sext[V](r) = /F GE (v, 7" )b (') dsp. (3.18b)

As mentioned in Section 3.2.2, the Green functions G§' and G%* depend on the polarization
and satisfy the PEC boundary condition on I'15 and I'sy respectively. The total field, as given
by the potentials (3.18), satisfies Helmholtz equations with wavenumber k; in the domain
), 5 = 1,3, PEC boundary condition on I'yy and I'1, as well as the radiation condition at

infinity. Imposing the transmission conditions (3.3) on I'13 the following system of boundary
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integral equations is obtained for the unknown density functions ¥, and tey:

oot [Vint] = Seit [West] = 0/,
3.19)
Ps [ Yine RET Yext T'13 — 8_uf (
ﬁl{ 9 _Kint [wmt] + 9 _Kext [wext] = ana

on I'y3, where the boundary integral operators are defined by

Sispl(r)y = [ Gg(r,?)b(r') dsw, v € Ty,
INE}

SLEWI) = [ Gl ds, 7€ T
INE

KLl = [ 5 (e r () dsw, 7 € T,
F13 n’!’

oGk

‘l(erxlt3 WJ] (’I") - ) 9 ('I”, 7"/)1/1<T/) dSr/7 T e P13.

F13 n’!’

The conditions under which the integral equation system (3.19) admits a unique solu-
tion are the ones established in Lemma 3.2.2 for the uniqueness of solutions of the integral

equation system (3.14).

3.3 Nystrom method

3.3.1 Discretization of integral equations

The integral equations (3.8), (3.14) and (3.19) involve either a) Integrals over I'y3 UT'94 with
equality enforced on I'y3 U I'yy, or given by b) Integrals over I'y3 with equality enforced on
I'13. All of these integral equations can be expressed in terms of parametrizations of the

curves I'13 and I'y4, or, more precisely, in terms of integrals of the form

/OFL(t,T)gb(T) dr and /OTFM<25,T)¢(T) dr, (3.21)
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with kernels
L(t,7) = G(rt),r(7)|r"(1)],
(3.22)
M(t,m) = Vi[G(r(t),r'(1) - n(®)[r"(7)],
where i) each of the functions r(t) and 7/(7) denote either a parametrization for the curve I'y3
or of the curve I'yy with parameters ¢ and 7 in the interval (0, 27); ii) n(t) = (a4(t), =2 (t))/|r'(t)]
denotes the unit normal on I';3 or I'y4, as appropriate, which points outward from the defect;
iii) ¢(1) = (v’ (1)), where ¥ stands for the unknown density function under consideration;
and iv) G denotes the relevant Green function. Indeed, in case a) above, the integral over
['y3UT'94 can be expressed as a sum of integrals on I';3 and I'o4. In case b), in particular, we
take r = 7’.
Our discretization of the integral equations (3.8), (3.14) and (3.19) is based on corre-
sponding discretizations of the integrals (3.21). Following [44] we thus proceed by expressing
the kernels (3.22) in the form

L(t,7) = Li(t,7)logr*(t,7) + Lo(t, ), (3.23a)

M(t,7) = M(t,7)logr*(t,7) + My(t,T), (3.23b)

where L; and M; (j = 1,2) are smooth functions on (0,27) x (0,27) and where r(t,7) =
r(t) — (1) and r(t,7) = |r(¢t,7)|. In cases for which r(¢) and 7'(7) parametrize the same

open curve we have

Litr) = == dolkr(t D)l ()],
Ly(t,7) = L(t,7) — Ly(t,7)logr*(t, 7),

k r(t,7), ,
Mit7) = Akt - DD ),
My(t,7) = M(t,7) — My(t,7)logr?(t, 7).

The diagonal terms Ls(t,t) and Ms(t,t) can be computed exactly by taking the limit of
Lo(t,7) and My(t,7) as 7 — t (see [44, p. 77] for details). On the other hand, when (¢)

and 7'(7) parametrize different curves, L and M are smooth on (0,27) x (0,27) and, thus,
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Ly =0, L= Ly, M; =0 and M = M,. (Note that although in the latter case L and M are
smooth functions, these functions are in fact nearly singular, for t near the endpoints of the
parameter interval (0,27) for the curve r, and for 7 around the corresponding endpoint of
the parameter interval for the curve 7'.)

Letting K denote one of the integral kernels L or M in equation (3.23), in view of the
discussion above K may be expressed in the form K (t,7) = K, (t,7)logr?(t,7) + Ks(t, 7) for
smooth kernels K; and Ks. For a fixed ¢ then, there are two types of integrands for which
high-order quadratures must be provided, namely integrands that are smooth in (0, 27) but
have singularities at the endpoints of the interval (that arise from corresponding singularities
of the densities ¢ at the endpoints of the open curves; cf. [32, 88, 130]), and integrands that
additionally have a logarithmic singularity at 7 = ¢. To handle both singular integration
problems we follow [44, 70] and utilize a combination of a graded-meshes, the trapezoidal
quadrature rule, and a quadrature rule that incorporates the logarithmic singularity into
its quadrature weights—as described in what follows. Interestingly, the graded meshes and
associated changes of variables gives rise to accurate integration even in the near-singular
regions mentioned above in this section.

To introduce graded meshes we consider the polynomial change of variables ¢ = w(s)

where

wls) = Esz]zpw — 0<s<om (3.24)

() 1 1 T— 3§ 3+1s—7r+1
v(s) = - — = - —
p 2 T p T 2’

and where p > 2. The function w is smooth and increasing on [0,27], with w®(0) =

w® (27r) = 0 for 1 < k < p — 1. Using this transformation we express K as

K<t7 T) = K<w(s)7 w(0>>

= Ki(w(s),w(o))log <4 sin? >

— 0

) + Ky(s,0),
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where

Ra(s,0) = Ki(w(s),w(o))log <”2

and where the diagonal term is given by Ko (s, o) = 2K,(t,t) log(w'(s)|r'(t)])+ Ka(t, t). High-
order accurate quadrature formulae for the integral operators (3.21) based on the (2n — 1)—
point discretization o; = jw/n, 1 < j < 2n — 1 (which, via the correspondence 7 = w(o)
gives rise to a discrete quadrature formula for the integral over the curve parametrized by
r'(7)) at evaluation points t = t; = w(s;) with s; = in/q, 1 <i < 2 — 1 (which correspond
to evaluation of the integral operator at points on the curve parametrized by r(t)) can easily
be obtained [44] from the expressions

2n—1
> floy) (3.25)

Jj=0

2 ™
/o flo)do = -

and

27 _ 2n—1
/0 f(o)log (4sin2 i 5 U) do~ > R(s)f(0y),

=0
0 < s < 2m, (which, for smooth functions f, yield high-order accuracy), where the weights

R;(s) are given by

n—1
2 1
R;(s) = —% Ecosm(s—aj) —%cosn(s—aj).
m=1

Clearly setting s = o, in this equation gives R;(0;) = Rj;—;|, where

n—1
2 1 k —1)k
Rk:__ﬂ- —cosmﬂ—< 27
n £=m n n

Using these quadrature points and weights and corresponding parameter values t = t; =

w(s;) for the observation point (s; = im/q) we obtain the desired discrete approximation for
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the integrals (3.21): for an approximation ¢; ~ ¢(7;) = ¢(w(c;)), we have
2 2n—1 -
/0 K(tl,T)QS(T) dr = Z {Kl(tiaTj)VVij+K2(ti77_j>ﬁ}¢j ’U}/(Oj) (326)

Jj=1

for 1 <i <2¢q—1, where 7; = w(o;) and where the quadrature weights are given by

T r2(t;, t;
Wi = By + n log (4 sin2(ii —jij)/2> .
Note that for sufficiently large values of p the product ¢(w(o))w'(c), (an approximation
of which appears in (3.26)) vanishes continuously at the endpoints of the parameter inter-
val [0, 2m]—even in cases for which, as it happens for corners or points of junction between
multiple dielectric materials, ¢(w(o)) tends to infinity at the endpoints.

The systems of boundary integral equations (3.8), (3.14) and (3.19) are discretized by
means of applications of the quadrature rule (3.26) to the relevant integral operators (3.9),
(3.15) and (3.20), respectively. This procedure leads to linear systems of algebraic equations
for the unknown values of the density functions i, and . at the quadrature points.
The presence of the weight w'(o;) in (3.26), which multiplies the unknowns ¢; ~ ¢(7;) and
which is very small for o; close to 0 and 27, however, gives rise to highly ill conditioned
linear systems. To avoid this difficulty we resort to the change of unknown 7; = ¢,;w’(0;) in
(3.26); for the equations which contain terms of the form /2 and ey /2 it is additionally
necessary to multiply both sides of the equation by w'(c;) to avoid small denominators.
In what follows, the resulting discrete linear systems for the problems under consideration
are generically denoted by An = f where, in each case n is a vector that combines the
unknowns that result from the discretization procedure described above in this section for
the various boundary portions I';; (cf. Figure 3.2). Once n has been found, the numerical
approximation of the scattered fields at a given point r in space, which in what follows will be
denoted by @ = @(r), can be obtained by consideration of the relevant representation (3.7),
(3.13) or (3.18). For evaluation points 7 sufficiently far from the integration curves these

integrals can be accurately approximated using the change of variable t = w(s) together
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with the trapezoidal rule (3.25); for observation points near the integration curves, in turn,
a procedure based on interpolation along a direction transverse to the curve is used (see [3]

for details).

3.3.2 Solution at resonant and near-resonant frequencies

As mentioned in the introduction, despite the fact that each one of the physical problems
considered in this contribution admit unique solutions for all frequencies w and all physically
admissible values of the dielectric constant and magnetic permeability, for certain values of
w spurious resonances occur: for such values of w the systems of integral equations derived
in Section 3.2 are not invertible. In fact, as it was shown in Propositions 3.2.1 and 3.2.2,
spurious resonances for these systems arise whenever the wavenumber k1, which will also be
denoted by r in what follows, is such that —k? = —k? equals a certain Dirichlet eigenvalue.
Note, in particular, that the values of s for which spurious resonances occur are necessarily

real numbers (and, thus, physically realizable), since the eigenvalues —r?

are necessarily
negative).

It is important to note that, in addition to the spurious resonances mentioned above,
the transmission problems considered in Section 3.1 themselves (and, therefore the corre-
sponding systems of integral equations mentioned above) also suffer from non-uniqueness for
certain non-physical values of k (Im (k) < 0) which are known as “scattering poles” [123];
cf. Figure 3.4 and a related discussion below in this section.

The non-invertibility of the aforementioned continuous systems of integral equations at
a spurious-resonance or scattering-pole wavenumber x = k* manifests itself at the discrete
level in non-invertibility or ill-conditioning of the system matrix A := A(k) for values of x
close to k*. Therefore, for k near £* the numerical solution of the transmission problems
under consideration (which, in what follows will be denoted by @ := @, (7) to make explicit
the solution dependence on the parameter x) cannot be obtained via direct solution the
linear system An = f. As is known, however [123], the solutions u = u, of the continuous

transmission problems are analytic functions of x for all real values of k—including, in par-

ticular, for k equal to any one of the spurious resonances mentioned above and for real values
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of Kk near a scattering pole—and therefore, the approximate values u,(r) for £ sufficiently
far from k* can be used, via analytic continuation, to obtain corresponding approximations
around Kk = k* and even at a spurious resonance Kk = k*.

In order to implement this strategy for a given value of x it is necessary for our algorithm
to possess a capability to perform two main tasks, namely, Task I: Determination of whether
k is “sufficiently far” from any one of the spurious resonances and scattering poles x*; and
Task II: Evaluation of analytic continuations to a given real wavenumber o which is either
close or equal to a spurious resonance x*, or which lies close to a scattering pole k*. Once
these capabilities are available the algorithm can be completed readily: if completion of Task
I leads to the conclusion that x is far from all spurious resonances then the solution process
proceeds directly via solution of the associated system of integral equations. Otherwise,
the solution process is completed by carrying out Task II. Descriptions of the proposed

methodologies to perform Tasks I and II are presented in the following two sections.

3.3.2.1 Task I: matrix-singularity detection

Consider a given wavenumber x’ for which a solution to one of the problems under consid-
eration needs to be obtained. As discussed in what follows, in order to determine the level
of proximity of x’ to a spurious resonance or scattering pole x*, the matrix-singularity de-
tection algorithm utilizes the minimum singular value oy, (k') of A(k’). (Note that in view
of the discussion concerning Task I above in the present Section 3.3.2 it is not necessary to
differentiate wavenumbers ' that lie near to either a spurious resonance or to a scattering
pole: both cases can be treated equally well by means of one and the same Task II (analytic
continuation) algorithm (Section 3.3.2.2).

To introduce the matrix-singularity detection algorithm consider Figure 3.3: clearly,
with exception of a sequence of wavenumbers (spurious resonances and/or real wavenumbers
close to non-real scattering pole) around which the minimum singular value is small, the
function o, (k) maintains an essentially constant level. This property forms the basis of
the matrix-singularity detection algorithm. Indeed, noting that there are no singularities

for k smaller than certain threshold (as it follows from the spectral theory for the Laplace
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operator), we choose a wavenumber ky > 0 close to zero and we compare opi,(Kg) with
Omin(K'). If Omin(K') < Omin(Ko), 8aY Omin(K') < & omin(ko) for an adequately chosen value of
&, k' is determined to be close to a some singularity «*, and therefore the Task-II analytic-
continuation algorithm is utilized to evaluate i, (7). The parameter values ko = 0.1 and
&€ = 10~* were used in all the numerical examples presented in this chapter.

(A remark is in order concerning the manifestations of resonances and scattering poles
on the plots of the function oy,(k) as a function of the real variable k. By definition
the function o,;,(k) vanishes exactly at all spurious resonances. The four sharp peaks
shown in Figure 3.3, for example, occur at the spurious resonances listed in the inset of
Figure 3.4. The first peak from the left in Figure 3.3, in contrast, is not sharp—as can be
seen in the inset close-up included in the figure. The small value o, (k) ~ 10~" around
k = 0.5708 is explained by the presence of a scattering pole k*: o (£*) = 0 at the complex
wavenumber x* = 0.57807113743881 — 0.000074213015953¢. Thus scattering poles can in
practice be quite close to the real s axis, and thus give rise to rather sharp peaks which are
not associated with actual spurious resonances. As mentioned above, however, the analytic
continuation algorithm presented in what follows need not differentiate between these two
types of singularities: analytic continuation is utilized whenever a sufficiently small value of

Omin 18 detected.)

3.3.2.2 Task II: analytic continuation

Analytic continuation of the numerical solution %, (r) to a given wavenumber ' detected
as a matrix singularity (Section 3.3.2.1) is carried out via interpolation. Note, however,
that, since A(k) is generally extremely ill-conditioned for values of x in a narrow interval
around such wavenumbers «’, fine interpolation meshes cannot be utilized to achieve arbi-
trary accuracy in the approximation. To overcome this difficulty we utilize an interpolation
method based on use of Chebyshev expansions, for which the meshsize is not allowed to
be smaller than a certain tolerance, and within which convergence is achieved, in view of
the analyticity of the scattered field with respect to the wavenumber k, by increasing the

order of the Chebyshev expansion. To do this for a given wavenumber x’ identified by the
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matrix-singularity detection algorithm (Section 3.3.2.1), the analytic continuation algorithm

2m
=1

proceeds by introducing a Chebyshev grid of points {x; (cf. [63]) sorted in ascending
order such that the two middle points in the grid, x,, and k.11, lie at an appropriately
selected distance 6 > 0 from the wavenumber £: k,, = k' — 0 and k,,;1 = k' + 9.

The accuracy of the numerical evaluation of the field u,; at each one of the interpolation
points x; is ensured by running the matrix-singularity detection algorithm at each x; and
adequately changing the value of ¢ if a matrix-singularity is detected at one or more of the
(m

mesh points «;. Letting @ ) denote the Chebyshev expansion of order 2m — 1 resulting for a

Chebyshev mesh selected as indicated above, the sequence ﬂg,n) convergences exponentially
fast to @, as m grows—as it befits Chebyshev expansions of analytic functions. If the matrix-
singularity condition owin(kj,) < & - Omin(ko) occurs at one of more of the interpolation

points k;, say k;,, 1 < ¢ < L', the algorithm proceeds by selecting the smallest value of

2m/

the parameter 0" > ¢ and a new set of Chebyshev points {x}}5™ (m' > m) satisfying

/
m

Kyy = K — 0", K, = K 4 ¢, such that none of the new interpolation points lie on the
region Uéil(/ij[ —0, Kj,+0). If the condition oy (k) < &§-Omin(ko) occurs for some of the new
interpolation points, say 7,, 1 < ¢ < L", the algorithm proceeds as described above, but for
a new value ¢” > ¢’, and so on. Note that in practice the interpolation procedure described
above is rarely needed, and when it is needed, a suitable interpolation grid is usually found
after a single iteration: in practice the choice 6 = 0.01 has given excellent results in all the
examples presented in this chapter.

In order to demonstrate the fast convergence of 1],(;,”) to U, as m increases we consider the
problem of scattering by a dielectric unit-radius semi-circular bump on a PEC half-plane.
For this problem the wavenumbers «* for which the system of integral equations (3.19) is non-
invertible can be computed explicitly: spurious resonances are given by real solutions of the
equation J,(k) = 0, n > 0, where J,, denotes the Bessel function of first kind and order n [134],
and scattering poles are complex valued solutions of nHﬁl)(n)JlL(kg) = ngn(kg)Hfll)/(n), where
HY denotes the Hankel function of first kind and order n (see Appendix B.2). The function
omin(k) is displayed in Figure 3.3. The x* values identified in that figure coincide (up to

machine precision) with the first four positive solutions of the equation J,(k) = 0. On
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0.5708 .

Figure 3.3: Minimum singular value of A as a function of kK = k; for the problem of scattering
by a semi-circular bump on a PEC half-plane in TE-polarization.
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—v— k" = 5.135622301840682
—A— ¥ = 5.520078110286311
S
s
107"k
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2m

Figure 3.4: Error in the approximation of .- by Chebyshev interpolation/analytic-
continuation for various spurious resonant frequencies x* as a function of the order 2m
of the Chebyshev expansion.

the other hand, this problem admits an analytical solution u, in terms of a Fourier-Bessel
expansion (see Appendix B.1). The availability of the exact solution allows us to quantify the
magnitude of interpolation error by evaluating the maximum of the error function E(r) =
|ﬁg?)(1°) — u,~(7)| at a polar grid II (consisting of points inside, outside and at the boundary
of the semi-circular bump). Figure 3.4 shows the error max,cy £(r) versus the number of
points used in the Chebyshev interpolation of 4.+, which is computed for the four spurious

resonances k* shown in Figure 3.3, and where a sufficiently fine spatial discretization is used.
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In all the calculations k3 = 6, the curve I'y3 is discretized using 128 points, and § = 0.01 is

utilized to construct the Chebyshev grids.

3.4 Numerical examples

This section demonstrates the high accuracies and high-order convergence that result as the
proposed boundary integral methods are applied to each one of the mathematical problems
formulated in Section 3.2. For definiteness all dielectric media are assumed non-magnetic
so that v;; = 1 for TE-polarization and v;; = kj/k} for TM-polarization. In all the nu-
merical examples shown in this section the incident plane-wave is parallel to the vector

T a = —m/3, and the graded-mesh parameter (3.24) is p = 8.

d = (cos a, sin «)

We thus consider the problem of scattering by a dielectric filled cavity on a dielectric
half-plane (Problem Type I); the problem of scattering by a dielectric filled cavity on a
PEC half-plane (Problem Type II); and the problem of scattering by a dielectric bump
on a PEC half-plane (Problem Type III). With reference to Figure 3.2, in the first two

examples the cavity is determined by the curve I'yy = {(z,y) € R* : © = —cos(5),y =

cos(4t)
40

t(t — 2m) —sin(%),t € (0,2m)}, and the curve '3 (which, in view of the formulation
in Section 3.2, may be selected rather arbitrarily as long as it lies in the upper half plane
and has the same endpoints as I'y4) is given by the semicircle of radius one in the upper half
plane that joins the points (1,0) and (—1,0). For the problem of scattering by a dielectric
bump (Type III Problem), in turn, the boundary of the bump is given by I'iz3 = {(z,y) €
R?: 2z = cos(%),y = %t@w —t) +sin(%),t € (0,2m)}.

To estimate the error in the aforementioned numerical test problems, the systems of
boundary integral equations (3.8), (3.14) and (3.19) were discretized utilizing five different
meshes I1;, 1 < j < 5 consisting of P = 277 — 1 points distributed along each one of the
relevant boundaries: P points on I'yy and P points on I'i3 in the case of Type I and II
problems, and P points on I'i3 in the case of Type III Problem. The sequence of meshes is
chosen to be nested (II; C II; for j < ¢) in order to facilitate the convergence analysis; in

what follows the numerical solution that results from the discretization II, is denoted by ;.
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(e) TM-polarization. (f) TE-polarization.

Figure 3.5: Diffraction pattern resulting from the scattering of a plane-wave by; a dielectric-
filled cavity on a dielectric half-plane ((a) and (b)); a dielectric-filled cavity on a PEC
half-plane ((c¢) and (d)); a dielectric bump on a PEC half-plane ((e) and (f)).

The error in the numerical solution @; is estimated by means of the expression

maxren, |i;(r) = s(r)]
maxyer, [Us(7)|

Ej:

. 1<j<d4

Table 3.1 presents the numerical error estimates £;, 1 < j < 5 for the three different
problem types (including real and complex wavenumbers); clearly high accuracies and fast
convergence is achieved in all cases. To further illustrate the results provided by the proposed
method, the real part of the total field is presented in Figures 3.5 and 3.6 for the cases consid-
ered in Table 3.1, including examples for TM- and TE-polarization. Thus, Figures 3.5a-3.5b
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(b) TE-polarization.

(c) TM-polarization. d) TE-polarization.

——

(e) TM-polarization. TE polarization.

Figure 3.6: Diffraction pattern resulting from the scattering of a plane-wave by; a dielectric-
filled cavity on a dielectric half-plane ((a) and (b)); a dielectric-filled cavity on a PEC
half-plane ((c) and (d)); a dielectric bump on a PEC half-plane ((e) and (f)).

(ks = 15) and Figures 3.6a-3.6b (k4 = 15+ 5i) present the diffraction pattern for the prob-
lem of scattering by the dielectric-filled cavity on the dielectric half-plane (problem Type
I); Figures 3.5¢-3.5d (k4 = 15) and Figures 3.6¢-3.6d (k4 = 15 + 5i) present the diffraction
pattern for the problem of scattering by the dielectric-filled cavity on the PEC half-plane
(problem Type II); and Figures 3.5e-3.5f (k3 = 15) and Figures 3.6e-3.6f (k3 = 15 + 5i)
present the diffraction pattern for the problem of scattering by the dielectric bump on the
PEC half-plane.

Figure 3.7, finally, presents diffraction patterns (real part) for the problem of scattering
by a dielectric filled cavity on a dielectric half-plane (Problem Type I) for the wavenumbers
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Type 1 Type I1 Type I11
k4 k4 k3

P 15 154 57 15 15+ 52 15 15+ 51
63 | 3-107% | 6:1079 | 7.107%1 | 1.107% | 2.107° | 7-107%2
T™ | 127 | 7-107% | 4.107% | 2.107%9% | 1.107°7 | 2.107%3 | 1-107%®
255 | 1-1071° | 7.1072 | 3-1071! | 6-107'2 | 5-107%8 | 8.1078
511 | 6-10712 | 5.10712 | 1-107'2 | 3-10713 | 1.10713 | 8-10713
63 | 9-10792 | 31079 | 2.107% | 6-107%* | 4.107%1 | 4.10792
TE | 127 | 3-107% | 7-107% | 1.107%* | 2.107°7 | 1.10793 | 3.10~ ™
255 | 3-10712 | 2.10712 | 3-10712 | 7-10712 | 2.107%® | 2.107*®
511 | 1-1072 | 2.10712 | 4.107" | 1-1074 | 1.10713 | 2.10713

Table 3.1: Convergence test for the numerical solution of Problem Type I (k3 =5, ky = 15
or 15+ 5i, ky =5, and ke = 7), IT (k3 = 5, ky = 15 or 15+ 5¢, and k; = 5) and 11T (k3 = 15
or 15+ 5¢, and ky = 5).

ki = ks = 15, ky = 10, ky = 5 and the angle of incidence &« = —7/3 in TM- and TE-
polarization, as well as the corresponding transmission patterns for the dielectric half-plane
in the absence of the cavity. For these specially selected numerical values of the physical
constants the phenomenon of total internal reflection [18, 64] takes place: in absence of the
cavity the field transmitted below the interface decays exponentially fast with the distance
to the interface. Interestingly (although not surprisingly), placement of a defect in this con-

figuration gives rise to transmission of electromagnetic radiation to the lower half plane.

3.5 Applications

This section concerns applications of the LGF method presented above in the present chapter
to studies of the effects of surface roughness on the absorption properties of a material surface,

and their relation to pseudo-resonant phenomena that take place in open cavities.
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(a) TM-polarization. (b) TM-polarization.

(¢) TE-polarization. (d) TE-polarization.

Figure 3.7: Scattering and transmission of an incident plane-wave, with & = —7/4, by a
dielectric half plane in absence (resp. presence) of a dielectric-filled cavity (Problem Type I
with wavenumbers ky = k3 = 15, k4, = 10 and ko = 5. The parameters are selected so as to
give rise to total internal reflection in absence of the cavity.

3.5.1 Electromagnetic power absorption due to bumps and trenches

on flat surfaces

Our first study concerns assessment of the enhanced electromagnetic power absorption due
to a small local surface defect, where we assume the size of the defect a > 0 is much smaller
than the free space wavelength A > 0 (a < \) and the radius of curvature of the surface at
the location of the defect (in the absence of the defect) is much larger than A, so that the

surface can be considered as locally flat in the absence of the defect. The 2D surface defect
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is assumed to be in the form of either a single semi-cylindrical bump or trench located on an
otherwise flat surface, where, letting ¢ > 0 denote the conductivity at the RF frequency w,
the (complex) permittivity in the conducting medium equals €5 = €5, + i0/w in the pristine

conducting half-space (see Figure 3.8).

€1, 11
[ y
4/’;{
Hy;
€9, 2,0 > 0 €9, 2,0 > 0
(a) Bump. (b) Trench.

Figure 3.8: A semi-cylindrical (a) bump, and (b) trench, on a conducting surface of finite
conductivity. The bump is made of the same material as the flat surface.

The permittivity €; in the region outside the conducting structure is taken as a real con-
stant, and the magnetic permeability p = p; = po is assumed real and constant throughout
space. Clearly, letting 6 = (2/wpui0)"/? denote the skin depth associated with the conducting
material, the ratio d/a may take on an arbitrary value ranging from zero to infinity: 6 — oo
corresponds to an insulating surface and § = 0 corresponds to a perfectly conducting surface.

We consider the power dissipation that results from three different types of incident
electromagnetic fields for which 1) the electric field Eq is perpendicular to the conducting
surface with wavevector k perpendicular to the cylinder axis, where the complex amplitude
of the electric field equal to (€1 + e~™*1%) /2 = cos(k;x); 2) the magnetic field H (denoted in
this case by Hyy) is perpendicular to axis of the defect with wavevector k perpendicular to the
planar interface, where the complex amplitude of the incident magnetic field is equal to e~#1¥;
and 3) the magnetic field H (denoted in this case by Hyy) is parallel to the conducting surface
and to the axis of the defect, where the complex amplitude of the magnetic field equal
to (et*1% 4 e~*12) /2 = cos(kyx). The resulting problems of scattering are two-dimensional
and are solved utilizing the LGF method presented above in this chapter (see also [104]).

For each of the three cases Ey, Hy;, and Hys, we compute the power absorption per unit
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Figure 3.9: AP/ Py, for various values of d/a for the case of the bump (top row) and the
trench (bottom row) on the plane of finite conductivity for the three incidences considered.

axial length, Py,, due to the flat surface (when the defect is absent) using

ou
pP= EP?dr = 24 p=_2_ / Ty k:Q/ 24z (3.27
[ olrar= [ olufds o w2,€2|2[wu28n s 43 [ Juf de| (32)

depending on the polarization, integrating in the domain D = Dy, = [—2a, 2a] X [0, —4a].
Note that us = E., or us = H., depending on the polarization, satisfies Helmholtz equation
Auy + k3us = 0 in the conducting domain and the boundary of the flat conducting plane is
taken to be I} = {y = 0}. Similarly, the power absorption per unit axial length, P,ougn, due
to the rough surface (when the defect is present) is computed using formula (3.27) integrating
in the domain D = Digyen = Dpay U B in the case of the bump, and D = D,ugh = Dgat \ B in
the case of the trench, where B = {(z,y) € R?: \/22 + 42 < a}. All the required integrals
in (3.27) are computed with high-order accuracy by means of a combination of Clenshaw-
Curtis quadratures in polar and Cartesian coordinates. Figures 3.9a, 3.9b, and 3.9¢ (resp.

Figures 3.9d, 3.9e, and 3.9f) plot the ratio of the enhanced power absorption due to the



91

Power absorption

0.5
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Figure 3.10: Power absorption curve for various values of the dimensionless wavelength \/a
(top) and location of scattering poles (bottom) for the problem of scattering by cavity in
conducting plane for Hy, incidence.

bump (resp. trench) to the ohmic loss of the pristine flat surface,

AP _ Prough - Pﬁat _ Prough 1
P flat Py flat Py flat 7

as a function of d/a, for various values of A/a, and for the three incident fields under con-
sideration.

Interestingly, from Figures 3.9c and 3.9f we observe that for the Hy, incident field and
for large wavelength values (A\/a > 10) the quotient AP/ Pp,; seems to approach the limit
AL/Lgat = (Lrough — Lfiat) / Liat = (m —2)/4 = 0.2854 as § — 0, where Lyougn = a(m +2) and
Lgat = 4a denote the length of the curve representing the boundary of the conducting surface
on which the skin depth effect takes place in presence and absence of the defect respectively.
This phenomenon may be explained by the fact that in these cases the skin depth effect pro-

duces an uniform boundary layer near the boundary of the conducting surface. Surprisingly,
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in Figures 3.9d, 3.9e and 3.9f we observe that, for some values of §/a, the electromagnetic
absorption is actually reduced (not increased!) by the presence of the trench, specially in
the cases E¢ and Hy;.

Another interesting phenomenon observed in this study is that for certain narrow regions
in wavenumber space significantly enhanced power absorption occurs. This can be observed
in the absorption curve in Figure 3.9f corresponding to A/a = 10, for small values of the
skin depth §/a. In order to study this phenomenon in more detail we compute the power
absorption for various values of wavelength for a fixed skin depth 6/a = 1. The result-
ing absorption curve is displayed at the top of Figure 3.10, where a local maximum arises
around kja = 2ma/\ = 0.4. A possible explanation for the observed enhanced power absorp-
tion concerns the existence of so-called scattering poles near the real axis. The scattering
poles correspond to values of the wavenumber at which the homogeneous scattering problem
admits non-trivial solutions, or equivalently, they correspond to poles of the meromorphic
continuation of solution operator [123]. From the well-posedness of the problem of scat-
tering for physically meaningful values of the wavenumber, it follows that such scattering
poles lie in the lower complex half-plane. When the selected (real) wavenumber k; is close
to one of these scattering poles—which may occur when a scattering pole lies close to the
real axis—an incident field can give rise to a total field that results in energy concentration
within a certain region of the domain under consideration; a phenomenon that we refer to as
“pseudo-resonance”. In our case, for example, that region may correspond to the cavity and
the resulting pseudo-resonance phenomenon could give rise to enhanced power absorption
due to the the large values that the electric field can attain on and around the cavity walls.
To establish an actual connection between the pseudo-resonance phenomenon and the en-
hanced power absorption in this case, we compute some of the scattering poles of the solution
operator, which can be numericaly found by searching for complex kja-values at which the
system matrix (resulting from the LGF method) becomes singular. In order to find such
values we resort to a stabilization procedure similar to the one put forth in [4]—which relies
on use of certain “interior points” for eigenfunction normalization. The resulting minimum

singular o, function, which vanishes at the scattering poles, is displayed at the bottom of
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Figure 3.10. The location of the pick in the absorption curve in this figure corresponds to the
projection of the closest scattering pole onto the real kja-axis, which suggests a connection
may exist between the scattering poles and the enhanced power absorption observed in this
case. This interesting question is not pursued any further in this thesis and is left for future

work.

3.5.2 Surface plasmon polariton scattering by defects in conduct-

ing surfaces

In this study we consider the aforementioned pseudo-resonance phenomenon in the context of
problems of scattering of surface plasmon polaritons (SPP) by micro-cavities in conducting
surfaces [83, 107]. SPP are waves that travel along an interface and which decay exponentially
with the distance to the interface. As an example we consider an SPP given by [83, Section

2.2]
NI
H}znc(xay) = 7 o 6 = kl =2 )
eiﬂx+\/62—k§y7 y <0, €1+ €2

(3.28)

(where Re \/m > 0 and Re \/m > 0) which effectively amounts to a TM-polarized
electromagnetic wave that decays exponentially as y — +oo, and which propagates along
the planar interface II; = {y = 0} between air (1 = gy, where gy denotes the permittivity of
the vacuum) and a metal (silver in our example). In our example the frequency dependent
permittivity of the conducting medium is assumed to be given by the Drude model [83,

Section 1.2]:

w2
= 1——P2
#2(w) = <o ( w? + ivw) ’

where v and w,, denote the so-called characteristic collision and plasma frequencies, respec-
tively. Figures 3.11a and 3.11b display the incident magnetic field (3.28) and the total field
solution of the problem of scattering of a micro-cavity of aperture a = 2400pum. The spatial
wavelength of the incident field is A = 600um = 27/k;, while g5 = €9(—15.59 + 0.17¢) and
B = k1(1.033 + 0.0044).

In order to study the pseudo-resonance phenomenon in this case we consider the void
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(a) Real part of the surface plasmon po- (b) Real part of H,; the total field so-
lariton HI"® (3.28). lution the problem of scattering of Hi
by a cavity.

Figure 3.11: Surface plasmon polariton (left) in a flat metallic half-plane, and total field
(right) solution of the problem of scattering of the surface plasmon polariton (3.11b) by a
void cavity in a metal half-plane. Figure 3.11b displays the artificial curve I'y3 utilized by
the LGF method.

cavity of Figure 3.11b, for which we compute the power flow, with and without the cavity,
through the open artificial curve placed on the upper half-plane that is utilized by the
LGF method (I'y3 in Figure 3.2, which is shown in Figure 3.11b for this example) for various
wavenumbers k| = /z1ujw. To demonstrate further the influence of pseudo-resonance on

the field localization inside the cavity, we consider the plot, presented in Figure 3.12, of the

ratio oH
JRCR R [ m. st‘
|Pcavity| — T3 — I3 an
P o . _ —ine Hinc
| fl t’ / (Emc % Hmc) . ds HZ 0 2 ds
INF) INE) on

of the power flow through the artificial curve, in presence of the cavity and without any
cavity, respectively. This figure shows a number of sharp peaks and valleys. It may thus be
conjectured that a correspondence exists between energy-transfer characteristics and pseudo-
resonant phenomena; such a study, which lies beyond the scope of this thesis, is left for future

work.
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Figure 3.12: Power flow ratio and plots of the absolute value of the total fields resulting
from solutions of the problem of scattering of a SPP by a micro-cavity corresponding to the
frequencies marked by the red arrows.
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Chapter 4

Windowed Green Function Method
for layered media scattering

The solution of problems of scattering by obstacles or defects in the presence of planar
layered dielectric or conducting media has typically required use of Sommerfeld integrals
and associated layer Green functions—which automatically enforce the relevant transmission
conditions on the unbounded flat surfaces and thus reduce the scattering problems to integral
equations on the obstacles and/or defects (see Section 2.4 and Chapter 3). As is well known,
however, the numerical evaluation of layer Green functions and their derivatives, which
amounts to computation of certain challenging Fourier integrals [41, 117], are extremely
expensive and give rise to a significant bottleneck in layer-media simulations (see e.g. [38]
for details). This chapter presents a novel integral-equation approach for problems involving
layered media. The new approach, which is based on use of certain “windowing” functions
and considerations associated with the method of stationary phase, does not require use of
expensive Sommerfeld integrals. Our analysis and numerical experiments demonstrate that
both the near- and far-field errors resulting from the proposed approach decrease faster than
any negative power of the window size.

A variety of methods have been provided for the solution of problems of scattering by
obstacles in the presence of layered media. Amongst the most effective such approaches we
mention: 1) methods which evaluate Sommerfeld integrals on the basis of path-integration in
the complex plane [38, 39, 103, 104] (such approaches require numerical evaluation of integrals

of functions that oscillate, grow exponentially in a bounded section of the integration path
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and, depending on the relative position of the source and observation points to the interface
between the two media, may decay slowly at infinity; 2) the complex images method reviewed
in [5] (a discussion indicating certain instabilities and inefficiencies in this method is presented
in [39, section 5.5]); 3) the steepest descent method [47, 48] which, provided the steepest
descent path is known, reduces the Sommerfeld integral to an integral of an exponentially
decaying function (unfortunately, however, the application of the steepest descent method for
each observation point can be challenging and expensive [38, 39, 47]); 4) the contribution [80]
which, utilizing Laplace transforms in addition to the Fourier transforms in the Sommerfeld
method, demonstrates an improved performance over direct integration of the Sommerfeld
integrals—but, as the authors stress, this is probably due to the straightforward character
of the Sommerfeld integration method they use; and 5) a method [98] that relies on a
combination of Sommerfeld integral representations as well as the method of images for a
related application to the impedance problem, and which is demonstrated in low-frequency
contexts. As is known, in any case, all of these methods entail significant computational
costs [38, 80, 98].

The ideas embodied in the windowed Green function method proposed in this chapter
are related to apodization techniques used in optics, as well as tapering or Hann functions
utilized widely in signal processing. Apodization is used in the design of certain optical
devices to eliminate edge effects; the Hann functions, in turn, are used to produce signals of
finite duration from infinite-time signals while reducing distortions in the spectrum caused
by the windowing process itself. From a computational perspective in a problem related to
wave scattering, finally, the approach proposed in this chapter bears similarities with certain
“finite-section” methods in the field of rough-surface scattering. These methods utilize ap-
proximations based on truncated portions of a given unbounded rough surface [86, 113, 141]
and, in some cases, they incorporate a “taper” [92, 118, 141] to eliminate artificial reflections
from the edges of the finite sections. In fact the smooth taper function utilized in [92] (Fig-
ure 2 in that reference) resembles the smooth windowing function we use (Figure 4.2 below
and references [26, 93]). But as indicated in comments provided in Section 4.2.1 in regards

to certain slow-rise windowing functions, essential differences exist between the finite-section
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approaches and the methods proposed in this chapter. In particular, with exception of the
slow-rise windowing function method [26, 93], none of the previous tapered rough surface
algorithms has demonstrated high-order convergence as the width of the finite sections tend
to infinity.

In Section 4.4 the proposed WGF method is compared to the high-order integral equation
method introduced in Chapter 3 (see also [104]), which is based on the accurate and efficient
evaluation of Sommerfeld integrals. In the examples considered in that section the proposed
method is up to thousands of times faster, for a given accuracy, than the corresponding layer-
Green-function method. A similar improvement in computational costs has been observed
for problems of electromagnetic scattering by defects and obstacles in multi-layer structures
in two and three dimensions; a detailed discussion of such problems is left for Chapters 5
and 6.

This chapter is organized as follows. After some basic preliminaries are presented in
Section 4.1, the proposed methodology is introduced in Section 4.2. A formal error analysis
of the method, based on multiple-scattering perturbation theory, then follows in Section 4.3.
A variety of numerical results presented in Section 4.4, finally, demonstrate the accuracy and

speed of the proposed approach.

4.1 Preliminaries

We consider two-dimensional problems of reflection and transmission by dielectric or con-
ducting media under TE and TM polarizations. As was shown in Section 2.2.1, the z com-
ponents u = E, and u = H, of the total electric and magnetic fields satisfy the Helmholtz
equation Au + k;?u = 01in Q;, j = 1,2 (see Figure 4.1), where calling yyp > 0 and w > 0
the magnetic permeability of vacuum and the temporal frequency, and letting ¢; > 0 and
o; > 0 (01 = 0) denote the electric permittivity and the electrical conductivity in €2;, the
corresponding wavenumbers k; are defined by & = w?(e; +io;/w)uo, j = 1,2. The interface

between the two unbounded media 2; and €2, is denoted by I'. In either case the total field
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resulting from a plane-wave incident field
uinc(,’,,) _ eikl(azcosa+ysina) (41)
with incidence angle o € (—m,0) measured from the horizontal (see Figure 4.1) is given by

ur(r) +ue(r), r €,
D A (4.2)
U,Q('r'), r e QQ,

where u; and uy denote the reflected and transmitted waves, respectively. As is known (see

e.g. Section 5.2 or [52, Section 5]), the scattered and transmitted fields u; and uy admit the

representations
8U1
Ul(’f') = Dl [U1|F] (’I”) — 81 a— (’l"), rc Ql, (43&)
nlp
ou
w(r) = —Dyfusle) (1) + S, [% } (") +ul(r), e, (43b)
r
where
ghireose if Ly = k| cosal,

ul(r) = (4.4)
0 if ko # kq| cosal,

and where, letting
i

110 (ke =), =12,

Gy(r,r")

denote the free-space Green function for the Helmholtz equation with wavenumber k;, the

single- and double-layer potentials in (4.3) are defined by means of the improper integrals

_ [ 9G;

T 871,4

Sjlel(r) = /F Gj(r,7)o(r) ds, and  D;g](r) (r, 7)o (r") dsy, (4.5)

respectively—whose convergence is conditioned upon the oscillatory behavior of the inte-
grand. Throughout this chapter the interface I' is assumed to be a piecewise smooth curve

that coincides with the flat interface II = II; = {y = 0} for large enough values of |z|; see
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e.g. Figure 4.1.

Figure 4.1: Description of the problem under consideration: scattering by a defect on a
penetrable planar dielectric or conducting layer. I' denotes the interface between the two
media and II denotes the interface between the upper- and lower-half planes.

By evaluating the fields (4.3) and their normal derivatives on I' and using the transmission

conditions

8u2 _

Uy — up = u™c, v

on

3u1

a inc
o Y on I

on ’

(with v = 1 and v = /&5 in TE- and TM-polarizations respectively) we obtain the second-

kind system of integral equations [68]

E¢+T[p]=¢™ on T (4.6)
for the surface currents ¢. Here
L0 tzlr N e
S R R T R e ARl
2 on Ir on r
and
Dy—D; —S,+vS
_ 2 1 2 1 7 (@7
N2 — N1 —KQ + VK1
where, using the potentials (4.5), the entries in the matrix operator T are defined by
G, , ,
Silel(r) = S;lel(r),  Djlel(r) = ' on (r,r)o(r) dsp,
" (4.8)
dD; ¢ 0G; , ,
Nl = 2wy ki) = [ 25 () dye

r 8”1«
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for r € I" and for j =1, 2.

4.2 Windowed Green Function Method: Basic con-
cepts

Instead of solving the problem (4.6) on the entire infinite interface I', a locally windowed
problem could be used in an attempt to obtain the local currents over all relevant portions
of I' in an inexpensive manner. To pursue this idea we may utilize a smooth windowing
function w4 in Definition 2.3.3 and depicted in Figure 4.2, which is non-zero in an interval

of length 2A, and which has a slow rise—that is
wa(x) = n(z/A;c,1) (4.9)

for the fixed window function 7 defined in (2.78) (see Definition 2.3.3). Clearly, wy rises
from zero to one in regions of length proportional to A > 0.
In order to motivate the use of the smooth window function w4 in the following section

we consider a highly illustrative integration example.

4.2.1 Slow-rise windowing function

Following example [26] concerning the numerical evaluation of the elementary integral

00 eik:):
g / dz, k>0, (4.10)
0

which in fact can be computed in closed form: I = |/7-(1 +4). Note that this integral has
certain elements in common with the integrals that define the operators S;, D;, K; and N;
in (4.8): as is the case in those operators, the integrand in the present integrand is both slowly
decaying (like 1/+/]z]) and oscillatory (like e?#I#l). Tn fact, the integrands in (4.10)(and (4.8))
are not even absolutely integrable, and, as it can be checked directly via integration by parts,

it is the oscillatory nature of the integrands that renders these improper integrals convergent.
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For our example we consider the approximations

ezkx

VT

A eikx A
Iy :/ dz and Iy :/ n(x,cA, A)— dx, (4.11)
0 0

VT

of the integral I in (4.10), where 7 is the slow rise window function (2.78). Table 4.1

A | U—Tul | |I—-1Iwl
4 179%1072 | 43x107°
16 | 4.0 x 1072 | 9.1 x 107
64 | 1.9%x 1072 | 9.3x 107
256 | 9.1 x 107% | 1.1 x 107*3

Table 4.1: Errors in the approximation of I in (4.10) by the definite integrals Iy and Iy
in (4.11) for various values of A, for k = 27 and ¢ = 0.5.

demonstrates the convergence properties of Iy and Iy as A increases. The slow convergence

above: we have

rate of Iy can be easily explained by the simple integration-by-parts calculation mentioned
e8] eika}

oo L 1kAt
/ € dt‘
A VT RYA?
eik:A 1 fe') eikAt 1
_ VA|- At =0 ———
‘/_‘ kA T 2ikA /1 1372 ' (\/E\/k:A)

as A — oo: the error tends to zero like A=1/2.

11— Iy| = dz| = VA

(4.12)

The extraordinarily fast rate of convergence of Iy, that is demonstrated by this example
deserves especial mention, and can be explained as follows. Letting n = 1 — 1 and noting
that by construction of the window function we have 7j(z, cA, A) = 7j(%,1, 1), we see that

the error in this case is given by

00 ik
u—fwy—/ iz, cA, A) = dz| = VcA

00 eik’cAt
(1, 1/e) S dt|.
A Vi /1

Vit

Upon successive integration by parts that involves multiple differentiation of the smooth

bounded function 7(t, 1,1/c)/+/t that vanishes at ¢t = 1 along with all its derivatives (so that
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no boundary contributions exist!), we obtain

< dr /n(t, 1,1 -
/ - (n( ) ) /C>> ezkcAt dt‘
g der Vit

) as A— oo, forall p>1,

1
VE(cAk)r=1/2
1

—@(W

| — Iy| =

(4.13)

which demonstrates the super-algebraic convergence observed in the example above.
As demonstrated in [26, 93] and in the example above, the slow rise character of the
window function w4 is essential to ensure super-algebraically fast convergence (i.e., faster

than any power of 1/A) of windowed oscillatory integrals.

4.2.2 Windowed integral equation: preliminary considerations

In view of the discussion in Section 4.2.1 it is reasonable to attempt to produce an accurate
windowed version of equation (4.6). Thus, letting I'y = {(z,y) € I' : wa(z) # 0} (where I is
the 2 x 2 identity matrix) and calling W4 = w4 - I, we consider the preliminary approximate
equation

E¢* + T[Wagp*] = 0™ on Ty, (4.14)

where ¢* denotes a new unknown defined on I'4. In order to assess the errors inherent in

the approximation (4.14) we also consider the form
E¢+T[Wag) =™ —T[(I —Wa)p] on Ty (4.15)

of the exact equation (4.6).

1—wgu WA 1—wy
_____ N\ /___________‘\ s T T T T
_ N/ N -
A
Ty r/\./\/g S Ta
Ty

Figure 4.2: Window function w4 and windowed sections I" 4 and r 4 of the unbounded curve I'.
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Remark 4.2.1. For notational simplicity our derivations in the remainder of Section 4.2 are
presented for cases for which the corrugations on the surface I' are the only departures from

planarity (see e.g. Figure 4.1). Cases in which additional scatterers ezist (e.g. Figures 4.13
and 4.16) are considered in Sections 4.3 and 4.4.

Remark 4.2.2. Throughout the rest of this thesis the function wa, which only depends on
x, is viewed as a function defined for all values of (x,y) € R? which is constant with respect

to y for each fixed value of x.

Remark 4.2.3. In what follows, the parts of the boundary I" where wa(z) # 0 and wa(z) =
1 —wyu(x) # 0 will be denoted by 'y and fA, respectively. With reference to Remark 4.2.2,
the window-width 2A > 0 is only restricted by the requirement that wa(x) vanishes on any
corrugations that exist on the surface I' as well as on any additional obstacles that may exist
above and/or below T'. As shown below in this text, solutions converge rapidly as A increases

beyond the bound posed by this restriction.

As indicated below in Section 4.3, arguments based on integration by parts and the con-
cept of stationary-phase can be used to establish that both the right-hand side T [(I — W) |
in (4.15) and the approximation error |¢ — ¢*| are super-algebraically small—i.e., smaller
than CA™™ for any positive integer m as A — oo, where the constant C' is independent of
A—throughout the center region {w4 = 1} of the surface I'y. However, large window sizes
may be required in such a scheme to correctly account for all fields reflected and refracted by
the planar surface—a difficulty that can be visualized easily for incidence angles approaching
grazing.

In order to demonstrate this difficulty (which is in fact overcome in Section 4.2.4 by
incorporating certain closed-form and numerically evaluated expressions) here we consider a
test case in which equation (4.14) is used to approximate the solution of the TE problem of
scattering of a plane-wave by a semi-circular bump of radius a = 1 placed directly on top of
a planar dielectric surface (see e.g. Figure 4.6). The problem was discretized using a direct
generalization of the Nystrom method presented in [69] which, relying on graded meshes

over the surfaces of the bump and the windowed portion of the planar interface, accurately
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accounts for the singularities of the currents at and around corners. For this example the
wavenumbers k; and ks in the regions above and below the plane were set to 47 and 8,
respectively, and approximately 20 points per unit length of the surface of the bump and the
surrounding were used.

Figure 4.3 shows that, as suggested above, the naive windowing approach embodied
in (4.14) requires, for a given accuracy, large values of A—well beyond the extent of the
non-planar local geometry—as the incidence angle decreases. A correction that resolves this
difficulty, and which results in super-algebraic convergence uniformly for all incidence angles,

is presented in Section 4.2.4.

102 ‘ 102
O;\X‘N‘N‘\x\)\ Oh\’\x\x\x\
. 10%, 10
o o
5 =
<) <)
£ 10° £ 10° i
) ]
< <
e =
10 |~ 7/4 1074 ——7/4
——7/32 ——7/32
— /256 —— /256
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0.25 1 4 16 64 256 40 80 120 160 200 240
A/ A/

Figure 4.3: Relative errors (see Remark 4.4.1) in the integral densities resulting from nu-
merical solution of (4.14) by means of a naive implementation of the WGF method for a
semi-circular bump-shaped defect, for various window sizes (measured in numbers A/ of
wavelengths, where A = 27 /k; denotes the free-space wavelength) and angles of incidence
a = —n/4 (blue), —7m/32 (green) and —m/256 (red). Left: log-log scale. Right: semi-log
scale. Clearly, the window size required by the naive method to produce a given accuracy
increases dramatically as the angle of incidence approaches grazing.

4.2.3 Error sources in equation (4.2.2)

In order to provide an insight into the source of the errors displayed in Figure 4.3 we present
Figure 4.4. Figure 4.4(a) depicts rays incident on the left planar region as well as their
reflection and transmission. Clearly, in view of the incidence angle considered in this exam-

ple, these reflected fields subsequently illuminate the defect and thus give rise to multiple
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scattering.

Remark 4.2.4. In the present section we make free use of standard geometrical optics
nomenclature, with mention, in particular, of shooting and bouncing rays. Additionally,
we make reference to the property of super-algebraic convergence that arises from window-
ing of integral representations of scattered fields around points of stationary-phase [28]. A
justification of the geometrical-optics and integral-asymptotics arguments used throughout
Section 4.2 is provided in Section 4.3—on the basis of the concept of stationary phase, and

the methods of contour integration and multiple-scattering perturbation theory.

Continuing with our argument concerning Figure 4.4(a), then, let us consider separately
the rays shown in blue and red (or, in gray-scale, dark-gray and light-gray, respectively) in
that figure. The blue rays represent the reflections that are correctly taken into account in
the solution of equation (4.14) (since they impinge within the windowed region), but, clearly,
the red arrows represent reflections that are neglected in this equation. Figure 4.4(b), on the
other hand, represents reflections by the defect. The color-code in the left figure carries over
to the right figure: the blue (resp. red) rays in Figure 4.4(b) represent the fields scattered
by the defect which arise from the blue (resp. red) arrows in Figure 4.4(a). It is natural to
suggest that, as justified in Section 4.3, the omission of the incident fields represented by
the red arrows causes the errors observed in Figure 4.3. We also note that the relatively
fast convergence demonstrated by the blue curves in Figure 4.3 can be explained by the fact
that for near normal incidence (o ~ —m/2) there is not a significant “red field” interacting
with the defect. In contrast, for incidence near grazing («a ~ 0), “red fields” from regions
far away from the windowed area do interact with the defect, and therefore give rise to
significant errors if neglected. As shown in Section 4.2.4, introduction of adequate corrections
in equation (4.14) which account for such neglected terms allows us to establish super-
algebraically fast convergence uniformly over the domain [—m, 0] of all possible incidence

angles.



Figure 4.4: Physical concepts underlying the WGF method.

4.2.4 Uniform super-algebraically fast convergence for all inci-

dence angles

To address the difficulties demonstrated in Figure 4.3 we consider again the exact integral
equation (4.15), and we replace the unknown density ¢ on the right-hand side of this equation
by the corresponding (known) density ¢ﬁ associated with the problems of scattering and
transmission of a plane-wave by a perfectly-flat infinite interface 11 = {(z,y) € R? : y = 0}.
A closed form expression for the density ql)lfT = qbﬂ(x) is derived in Appendix C. We thus

obtain the approximate equation
E¢” + T[Wap"] = ¢™ — T [(I . WA)qbﬂ} on T, (4.16)

whose solution ¢" is (see Remark 4.2.5) a super-algebraically close approximation of the
exact solution ¢ which is valid throughout the region I'y N {w4 = 1}, and which does not
deteriorate as the incidence angle a tends to zero.

In order to evaluate the term T [(I - WA)QSH we first consider the flat interface II and,
in view of (4.7), we switch the integrations over I' of integrands involving (I — WA)(ﬁﬁ into
integrations over II. To do this we rely on the fact that, since both qz.’)ﬁ and W, are a
functions of x only, these quantities and their product (I — WA)gbﬂ can be trivially extended
to corresponding functions defined for all values of (z,y) € R?—as constant functions of
y for each fixed xr—which, in fact, vanish whenever wq = 1. The modification is thus
straightforward: since (I — W,)¢d; vanishes on T'\ II (at least for A large enough), we may

substitute the integration of an integrand equal to zero over the region I'y N {w4 = 1} by
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the integral over an integrand equal to zero over the region IT N {w4 = 1}. We thus obtain
T (1= Waeh] (r) = Tu [(1 = Wa)ef] (), rer,

where, letting the layer potentials Sj' and D} (j = 1,2) be given by

stolr) = |

1II

G;(r,r")o(r')ds,  and D]H[qb](r):/ oG, (r, 7)o (r") ds,, (4.17)

I anrl

for all x € R?, and defining the boundary integral operators

SMolr) =S¢l (r),  DJlel(r) = Hgfj

ST O ey

(r,r")o(r") ds,,
rel,j=1,2,

NJgl(r) (7, 7)(r") sy,

I anr

the operator Ty is defined by

DI — DI _gm 5
Tn=| B |- (4.18)
NI — N K4 K]

An important subtlety to be noted concerns the fact that Tn maps density functions defined
on II to functions defined on T'.

Thus equation (4.16) becomes
:E¢w4-T[wg¢w}=(ﬂmt—TH[¢g}+ﬂfn[wg¢g] on Ta. (4.19)

(Clearly the expression Tn [WAQ')H can be evaluated by means of numerical integration over

the bounded region I, = ITN {(z,y) € R? : wa(z) # 0}. As shown in Appendix C, on the
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other hand, the expression TH [qﬁﬂ] can be computed in closed form:

7
[ug (A +v)duy IR
~ fl _ inc ’ 2 871 ’
Tn || = ¢ { o]’ (4:20)
u, — on I['\IIL
’3n}

The expressions on the right-hand side of equation (4.19) can thus be evaluated numerically
throughout the surface I' 4, and the corresponding bounded-domain integral equation can be
solved by means of any available integral equation methodology—such as, for example, the
highly accurate Nystrom method [44, 69] we use.

Results on the existence and uniqueness of solutions for the second-kind integral equa-
tion (4.16) are provided in Appendix D, under the assumption that 'y is of class C2. In
practice, it has been observed that (4.16) is uniquely solvable for all physically meaningful
wavenumbers k; and k.

To conclude this section, in Figure 4.5 we demonstrate the fast and angle-independent
convergence of ¢" to ¢: clearly the value of A required to obtain an accurate approximation
of the exact solution has been reduced substantially and the errors are uniformly small as

the incidence angle decreases to zero.

Remark 4.2.5. As mentioned above in this section, the solution of equation (4.16) is a
uniform-in-a, super-algebraically close approximation of the exact solution ¢ throughout the
curve I'yN{ws = 1}. This is established by means of a formal error analysis in Section 4.3.
But a brief rationale may be provided within the geometrical-optics framework considered in
the present section. Indeed, notice at first that, in view of the theory of asymptotic evaluation
of integrals [16], the value of the surface potentials S; and D; in (4.5) which, in view of (4.3),
are needed to evaluate the field at a point r, can be obtained with super-algebraic accuracy by
means of windowed integration in a region which contains all points of stationary phase [16,
Section 3.3]. But the points of stationary phase that arise for a given observation point v are
precisely the points on the scattering surface where the rays reflect prior to their incidence

upon r. Thus, the windowed region in Figure 4.4, for example, contains (reps. does not
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Figure 4.5: Relative errors (see Remark 4.4.1) in the integral densities ¢ on the surface of
the defect resulting from numerical solution of (4.19), for a semi-circular bump-shaped defect,
and for various window sizes and angles of incidence a« = —7/4 (blue), —7/32 (green) and
—m/256 (red)—including extremely shallow incidences. Left: log-log scale. Right: semi-log
scale. Clearly, this version of the WGF method computes integral densities with super-
algebraically high (but not exponential) accuracy uniformly for all angles of incidence (cf.
Figure 4.3).

contain) the points of stationary phase associated with the blue rays (resp. the red rays).
But the contributions from red rays are re-incorporated per equation (4.19), and, thus, all
of the incidences that impact upon the curve I'a N {wa = 1} on the first multiple-scattering
iteration are taken into account with super-algebraically small errors. There remain fields
that are not accounted for in equation (4.19), such as the field reflected by the windowed region
which impacts outside of the windowed region. But these fields do not result in significant
errors within the windowed region in any of the subsequent multiple-scattering iterations:
examination of the associated reflection points shows that only a super-algebraically small
portion of the field reflected by the windowed region into the plane outside the windowed
region reflects back into the windowed domain. We may thus conclude that the error arising
from the substitution of ¢ by qbﬂ ought to give rise to super-algebraically small errors in

equation (4.19) throughout the curve I'a N {ws = 1}.

As mentioned in Remark 4.2.5, certain fields reflected by the windowed region, which
do not affect the accuracy of the solution within the region I'y N {w4 = 1}, are not taken

into account within the formalism described in this section. These neglected fields do affect
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near fields and far fields in certain areas, however, as suggested by the ray description used
throughout Section 4.2. But, as shown in Sections 4.2.5 and 4.2.6 below, the solution ¢*
can be used to produce both the associated near field u everywhere in space as well as far

fields in all directions.

4.2.5 Field evaluation: Near fields

The discussion in Remark 4.2.5 extends directly to evaluation of near fields. Indeed, that
remark tells us that substitution of ¢ by wagp" + (1 — wA)qﬁﬂ (¢)ﬂ = [gof,wf}T) in the
integral equation (4.15) leads to super-algebraically small errors e = ¢ — ¢ within the
curve 'y N {ws = 1}. Similar arguments can be used to establish that an analogous set
of substitutions into the representation formula (4.3) produces the near field u with super-
algebraically small errors throughout the strip [—cA, cA] x R (but see Remark 4.3.1). The
necessary substitutions are as follows: substitution of u;|r and duy/On|r by wae® + (1 —
wa)! —u™|r and v(w A +(1—w4)p) ) —Ou™ /On|p, respectively, in (4.3a), and substitution
of ug|pr and duy/On|r by wap® + (1 —wa)e’ and wa® + (1 —w4)Y’, respectively, in (4.3b)
(see (C.13)).
These substitutions together with the relation

auinc

on

0="D; [u™|r] =& {

:| in Ql
r
(see [52]) leads to the expression

U™+ Dy [wap® + (1 —wa)p! | —vSi [war® + (1 —wa)p/] in
o (4.21)

ul — Dy [wAgpw + (1 - wA)gof} + 8, [wA¢w + (1 - wA)wf] in o,

for the approximate total near field u" in terms of the layer potentials defined in (4.5). After

some manipulations similar to those presented in the derivation of equation (4.20), and using
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the relations (C.1), (C.2a) and (C.2b), the formula in (4.21) is re-expressed in the forms

u? = Dy [wap”] — vSy [warh”]
u/ — DI [wAgof] +vSH [wAwf] in {y> 0},
(1-5) o = DI [wag] + S [war’] on {y=0%}, (4.22a)

%uf — DP [wAgof} + VS{I [U)Al/Jf} on {y=0"},

—D [wap!] + vST [warp'] in {y <0},

within 2, and

u’ = =Dy [wap®] + Sa [war)"]
, DY [wap!] — SY [war] i {y>0),
! + DJf fwag’] = SY [wav’] on {y =07}, (@22b)
(1 - %) ul + Dy [wap’] — 83 [wav!] on {y =07},

u/ + DY [wap!] — SIF [war?] in {y <0},

within 2, in terms of various surface potentials and operators defined either on I' or on II—
namely, the potentials S; and D; defined in (4.5), the potentials S;' and Dj' defined in (4.17)
and the operators SJH and D}T, j = 1,2, defined in (C.3). Note that, by construction the
straight finite-length segments [IN€);, j = 1,2, are contained in the region {—cA < z < cA}
for A large enough; see Figures 4.1 and 4.7. Thus, for such values of A the second and third
expressions in both (4.22a) and (4.22b) give rise to an overall continuous and, indeed, smooth
solution u", across the finite segments I1 N ; and I1 N Qy, respectively (Figure 4.1)—as it
behooves a solution of the Helmholtz equation away from the dielectric interface T'.

Figure 4.6 displays the total near field produced by means of both, the WGF method and
the layer-Green-function (LGF) method [104], for the solution of the problem of scattering of
a plane-wave by a semi-circular bump of radius a = 1 in TE-polarization—with wavenumbers

k1 = 10 and ks = 15, and under two different incidence angles: @« = —7/2 and a = —n/6.
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The WGF solutions were obtained from the integral equation (4.19) followed by evaluation of
field values on the basis of (4.22) (but see also the last paragraph is Section 4.2.6 in regards
to near-field evaluation with higher accuracy and/or over extended regions). The absolute
errors (see Remark 4.4.1) in the WGF solutions displayed in Figures 4.6a and 4.6d over the

complete range shown are 1-107* and 2 - 10~%, respectively.

4.2.6 Field evaluation: Far fields

In view of the analysis in Section 4.3 it follows that formulae (4.22) do not generally provide
an accurate approximation of either far fields or near fields outside bounded subsets of
[—cA, cA] xR (see, in particular, Remark 4.3.1). In order to tackle this difficulty we consider
the boundary S of a disc B such as the one depicted in Figure 4.7. The curve S encloses
the portion of I' that differs from the flat interface II; as indicated above, super-algebraic
convergence of the fields u; and usy takes place everywhere on and within such a curve S.
As shown in the following lemma, application of the Green identities, integration over
the region exterior to S and use of the layer Green function (2.27) leads to the integral

representation

u(r) = /S {(9875' (r, P u’(r'") — G(r,r’)%(r')} dsy (4.23)

of the scattered field u* = u — u/ which is valid for r everywhere outside S. Here G denotes
the layer Green function for the Helmholtz equation with wavenumbers k; in D; = {y > 0}
and ke in Dy = {y < 0}. Note that the necessary values of the scattered field u® and its
normal derivative on S can be computed directly utilizing (4.22), since, by construction, S

lies inside the region where (4.22) provides an accurate approximation of the total field w.

Lemma 4.2.6. The scattered field u® = u—u’ : R2\ B — C admits the integral representation

u(r) = /S {;i/ (r, P u®(r") — G(r,r’)%(r’)} ds, in R?*\ B, (4.24)

in terms of the layer Green function G (2.27).
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Figure 4.6: Real parts of the total fields produced by the WGF method and the layer-Green-
function (LGF) method for the problem of scattering of a plane-wave by a semi-circular
bump. Figures 4.6a and 4.6b: « = —7 /6. Figures 4.6d and 4.6e: « = —x /2. The width of
the support of the selected window function is 24 = 16\ =~ 10.053 in all these calculations.
The black lines represent the domains where the respective integral equation formulations
are posed. (Note that in addition to the surface of the bump itself, the LGF method [104]
entails discretization of a certain transparent boundary in the lower half-plane—so that, in
the present bump cases, for example, the LGF integral equations are actually posed on the
full circles depicted in Figures (b) and (d)).
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Figure 4.7: Curve S utilized in (4.23).

Proof. As is known [74], u® is an element of C?(R? \ {B UII}) N C(R? \ B) which satisfies

the equations

Au® + ku® = 0 in D;\B, j=1,2,
u® ’y:m = u ’y:O* on IT\ B,
ou’ ou’ —
! = ¢ on I\ B
ay y:0+ ay y=0—

as well as the radiation condition

r
7] €D, (4.25)

a S
lim +/|r| {i - ik‘jus} =0 uniformly in all directions
7|00 Olr|

where f,g: S — C are piecewise continuous functions.
Let f =u®|s, g = 8u5/8n‘s and R > 0, and consider the domains B; p = (Dj \E) N Bgr

where Br = {|r| < R} for j = 1,2. Let us also call G = G| o=, H* = g—g

y/:():i: ’

9w’ the limit values of G and u® at the planar interface IT\ B.

J— S —
v=1u ‘y:07 and w = dy |y:0

From Green’s third identity, integrating over the domain B; g, and then taking the limit as

R — o0, we obtain

/S1 { oG (r, ) f(r') — G(r,r’)g(rf>} ds.

8nT:

w(r), reD\B, (4.26)

+/H\B {H*(r, v (') —vG*(r, v w(r)} ds, = 0. reD\B

where S; = SN D;. (Note that the integral over 0B N D; vanishes in the R — oo limit—a
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fact which can be checked by adding and subtracting ik,u®(r")G(r, 7’) to the integrand and
appealing to the |r'| — oo radiation conditions (4.25) and (2.31) that are satisfied by u*(r’)
and G(-,r’), respectively. Similarly, from Green’s third identity integrating now over Bs g,

we obtain

/sz {;i, (r, 7)) f(r') = G(r, ’r")g(?"’)} ds,p

- (4.27)
0, reD\B,
—/ CLH (e )o(r) — G (Y w(r)} dsy = €Di\B
B u*(r), re€ Dy\ B.
Adding the expressions (4.26) and (4.27) we arrive at
u(r) = /s {(’3875/ (r, 7)) f(r'") — G(r,r/)g(r’)} ds,
- m\B { [H+ - H_} (r,m")v(r") — [G+ - VG_} (7“7"“,)@0("“/)} ds,, v € (D1 UDy)\ B.
(4.28)

From the transmission conditions (2.30) satisfied by the layer Green function we see that
the last integral in the identity above vanishes for » € (D; U D,) \ B. Thus, equation (4.24)
follows from (4.28) for » € (D; U Dy) \ B, and, by continuity of u® across I \ B, finally,
throughout R? \ B. The proof is now complete. O

The far-field pattern us(7), which is related to the scattered field by the asymptotic

formula
eik1|'r|
u(r) = Uo(P) + O (7%, |r| = 00, #=—

vig ul

can be produced by replacing G and its normal derivative in equation (4.23) by their corre-

sponding leading order asymptotic expansions as |r| — oo. As shown in Section 2.3.4, the
first order term of the asymptotic expansion of the layer Green function in a given direction

7 = (cosf,sinf), 0 < 0 < 7 can be obtained by the method of steepest descent. Substitution
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of the result in equation (4.23) yields the expression

oo () = /S {n(r’)-Hoo(f,r’)us(r’)—Gm(?,r’)%l:;(r’)} ds,. (4.29)

for the far field u. (7), where the far-field kernels G, and H , are given in (2.59) and (2.60),
respectively. Thus, unlike the layer Green function G itself for small values of |r — 7|,
the far-field associated with G can be computed inexpensively by means of the explicit
expressions (2.59) and (2.60). Figure 4.8 provides a comparison of the far-field patterns
computed using the LGF and WGF methods for the problem considered in Section 4.2.5.

0 45 —WGFM 90 5 —WGFM
120 60 | - LGFM 120 "~ 60| - LGFM
o 1
150 {

[ 30 150 30
‘,‘ ‘: 0.5
x :
180 - WM"::; 0 180 = 0

Figure 4.8: Far-field patterns obtained using the layer-Green-function method [104] (red
dotted curve) and the WGF method (continuous blue line) for the solution of the problem
of scattering considered in this section at incidences & = —7/2 (left) and o = —7/6 (right) .

In view Section 4.2.5 and the discussion above in the present Section 4.2.6, equations (4.22)
and (4.29) can be used to accurately and efficiently evaluate near-fields and far-fields, re-
spectively. These are typically the quantities of interest in scattering simulations involving
layered media. The evaluation of the fields in an intermediate region, such as the complement
of a bounded domain within the strip [—cA, cA|] (where (4.22) yields an accurate approxima-
tion) can be approximated efficiently on the basis of equation (4.23). Indeed, in such cases,
for which source points ' lie on S and observation points r are at a large distance away
from S, the Sommerfeld integrals in (2.27) (which by Cauchy’s theorem can be expressed
in terms of complex contour integrals with highly oscillatory and/or exponentially decaying
integrands) can be obtained rapidly by means of asymptotic numerical methods [10, 28]—
based on localization around critical points and the method of steepest descents in very small

regions around saddle points.
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4.3 Formal error analysis

A formal multiple-scattering error analysis introduced in Section 4.3.4 validates the ray-
based discussions presented in Section 4.2. The arguments presented in Section 4.3.4 rely on
the WGF approximation properties for certain simple “obstacle-free problems”: the problem
of scattering by a planar interface in absence of a defect or obstacle, and including point-
source incident fields. Useful insights in these regards can be obtained by consideration of
obstacle-free problems under plane-wave incident fields with possibly complexr wavevectors—
which, via integration, can be used to represent an arbitrary point source by complex con-
tour evaluation of the integral in equation (4.41). The preliminary discussion concerning
plane-wave incidence is advantageous in a number of ways, as 1) The error of the com-
plete range of relevant plane-wave approximations is dominated by the “worst-case” errors
which arise for real wavevectors at normal incidence (see e.g. Figures 4.9 and 4.10); 2) The
worst-case errors can be characterized by a single parameter (namely the number of wave-
lengths A/\ = k1 A/(27) contained in the windowed region; and, as will be shown elsewhere,
3) The windowed obstacle-free problem lends itself more directly to analysis under plane-
wave incidence—since, unlike the WGEF solutions for point-source problems, the plane-wave
WGF solutions (for either real or complex incident wavevector) can be expressed as the
product of the incident field times a function whose derivatives decay as A — oo.

Section 4.3.1 presents a discussion of the WGF method for the plane-wave obstacle-
free problem, and Sections 4.3.2 and 4.3.3, further illustrate and augment these discussions
through a variety of numerical examples for both plane-wave and point-source illumina-
tion. As mentioned above, our formal multiple-scattering error analysis is then presented in

Section 4.3.4.

4.3.1 WGF solution of plane-wave-illuminated planar interface
4.3.1.1 WGTF error sources

With reference to equation (4.41) and its complex contour representation used in Sec-

tion 4.3.3, for a given point ' = (2/,v), ¥’ > 0 and complex wavevector (5, —iy (5)) we
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consider the problem of scattering by a dielectric half-plane illuminated by a (generalized)

inc

plane wave ug* of the form

eié(@—a") =1 (&)ly—y'|

M1 (5)

ug(r) = = Cgeotn@y (4.30)

ey ()Y
(Cg o 71(€)

tion). Here v, (&) = /&2 — k} = /€ — k1/€ + Ky with branches selected as indicated in Sec-

) with ¢ > y (y = 0 for the planar interface considered in this sec-

tion 2.3.1. Note that the quantity |y —¢/| in (4.30) equals ' —y under the y’ > y assumption
included in the equation, of course, but the absolute values are kept in order to match the
form of the integrand in the plane-wave integral expression (4.41) for a point-source incident

field.

Following Section 4.1 we obtain the integral equation formulation
E ¢ + Trlp] = ¢ on 1l (4.31)

for the present problem, where the operator Ty is defined as in equations (4.7)—(4.8) with
[' =11, and where letting ¢ = [, wg]T, the right-hand-side is given by

inc inc | duifnc
d) = |u _—
¢ ¢4y In

The solution of (4.31) can be obtained by letting £ = kj cosa in the relevant expressions
in Appendix C: with this identification we have ¢*¢ = ¢i£nc /Ce, and, thus, the exact solution
of (4.31) coincides with (C.13). In terms of & we thus have

celt) = CeTee® and ) = WEECZT e (1.32)
where T; = 2n(8) , and where V(&) = /&2 — k2 (with a choice of branches as
() +v72(8)

specified in Section 2.3.1.
Our analysis relies on use of a certain approximate solution ¢y = [gog”,wg”f of (4.31)

which is obtained by means of the windowing approximation but without use of a correction
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term akin to T[(I — Wa)¢/] in (4.16): the density ¢ satisfies

E¢y + Tu[Wagy] = ¢ on Iy, (4.33)

where [Ty =IIN{—A < x < A}. As shown in what follows, both ¢¢ itself and the reflected

and transmitted fields it produces according to

DI lwap?| (r) — vST [war¥] (r), 0},
ug’(’r): [ Spg]() [ ¢§]() {y >0} (4.34)

=Dy [wapy] (r) + S [wav] (r), {y <0},

(cf. (4.3)), are highly accurate for a certain range of complex values of é—a fact that is
relevant in the analysis presented at various points in Section 4.3.4.

In order to appreciate the need for consideration of complex values of £ we first study
the errors that result from use of the approximate equation (4.33) for a given real value of
¢. To gain an insight into the extent of such errors we subtract (4.33) from (4.31) and we

thus find that the error ef = ¢, — @, satisfies the equation
Eef + Tn[Waef] = T [(I — Wa)ge] on Il

The error source Ty [(I — WA)qbg} provides an important indication of the expected error
sizes. For definiteness we focus on one of the various contributions to this quantity, namely
T2 [(1 — wa)te| (see equation (4.7)); all other contributions can be treated similarly.

The error source term Ty [(1 — wa)te] is given by a linear combination of the single-layer

potentials
. 7 o0 )
5 (1= wa()e€] (0 =5 [ HUyle = 7L = walr)] ¢ dr
_i e H(l) k ~ i&r 4.35
=1 o (kjlt = T)wa(r)e™ dr (4.35)

w1 [ H Gk = s e an,
cA

(7 = 1,2). We consider the last term first. Introducing the change of variables t = As and
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7 = Ao the last integral in (4.35) is expressed in the form

AeiAkjS/ hQ(Ak'j|S — a|)’&71(0) eiAa(ijrQ dO’, (436)
which we estimate in what follows for values of s throughout the interval [—c,¢| (that is,
throughout the region {s : wa(As) = 1} = {s : w(s;¢,1) = 1}) under the assumption

k; + & # 0. Here, given k > 0 and d > 0, the (non-oscillatory) function hy(x) = e Hg(l)(x)
(¢ >0, x > 0) satisfies the estimates

(5) i

for some constants Cy,,, > 0, m > 0. (This follows from the well known asymptotic expres-

Cooo(kz) V2™ if kx> d,
< Cro(kz) ™tz if 0<kz <dand m+ (>0, (4.37)
Coo(1+|logkz|) if 0<hkr <dandm=/{=0,

sion [76, Section 5.11] for the Hankel function; see also [50, Lemma 1].)
To estimate the error source (4.36) for a given & we note that, in view of the absence

points of stationary phase in the region {|o| > ¢}, after m integrations by parts we obtain

_1)m A o—iAkjs oo m |
Tl rar () Bk ohm@le o

since all the boundary contributions vanish. This can be checked by taking into account that
(a) the function w; and its derivatives vanish at o = ¢, and that, in view of (4.37), (b) the
function ho(Ak;|s — o) and its derivatives decay as o — oo.

(The integration-by-parts procedure used above requires that for all s € [—c, ¢ the in-
tegrand in (4.36) be an infinitely smooth function of o throughout the integration domain.
This is straightforward for s € [—c¢,¢), and it holds for s = ¢ as well—in spite of the fact
that, for s = ¢, ho(Ak;(0 — s)) and its derivatives are singular at ¢ = ¢—since the window
function wy(0) = 1 — w(o; ¢, 1) vanishes along with all of its derivatives at the endpoint
og=c.)

Utilizing (4.37) it additionally follows that the value of the integral in (4.38) remains
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bounded for all A > 0. We therefore conclude from (4.38) that for |s| < ¢ the last integral
in (4.35) is a super-algebraically small quantity (it decays faster than any integer power of
1/A) as long as k; + £ # 0. Similarly, it can be shown the next-to-last integral in (4.35) is
super-algebraically small as long as k; —& # 0, and thus we conclude that provided k; ££ # 0
the term Ty [(I — WA)Q’)J decreases super-algebraically fast as A — oo within the interval
[—cA, cAl.

Clearly, increasingly larger values of A are necessary to keep the error-source term (4.38)
below a given tolerance as |k; & &| — 0. The last column of Table 4.2 demonstrates that,
as expected, the corresponding errors e’ arising in the integral equation (4.33) exhibit slow
convergence for small values of |k; £ as well. Fortunately, however, small values of |k; +¢]
can be completely avoided in the analysis presented in Section 4.3.4 by representing point
sources as a contour integral in the complex ¢ plane. A discussion concerning the errors e
that arise in the integral equation (4.33) as a result of the aforementioned errors sources,

but with allowance for complex values of &, is presented in the following section.

4.3.1.2 Error estimation for complex values of ¢

As mentioned in Section 4.3.1.1, the formal multiple-scattering error analysis presented in
Section 4.3.4, which applies to the case in which the WGF method is used to produce
the solutions of problems of scattering by a bounded obstacle in the presence of a planar
dielectric layer, can be established provided corresponding estimates for the error e’ on
[—cA, cA] for the obstacle-free problem are available for certain complex values of £. Under
certain smoothness assumptions on ¢, which have been verified numerically, such estimates
on ey’ can be obtained (for { € C, Re¢ -Im& < 0, § # *k;) on the basis of the “improper”

integral equation
Eeg + Tn[eg] = (I — WA) {d)ignc — TH [WA¢2U]} on II (439)

that is satisfied by a new error density e¢ = Wag; — ¢,. Note that, by definition, e = e’
on [—cA, cA|.
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We call this integral equation improper in view of its infinite-domain exponentially-
growing integrand. Note, for example, that the related integral equation (4.31), which for
such complex values of & entails a closely related exponentially growing integrand, admits
the exact solution (4.32). Equation (4.31) represents the most singular term in (4.39); the
remaining terms do not present difficulties. (The numerical values of e presented in Table 4.2
for complex values of £, for example, were evaluated as the difference of the numerical WGF
solution and the exact solution (4.32).) The integral equation (4.39) could alternatively (and
more generally) be interpreted via an appeal to analytic contour integration in the complex
plane.

Relying on 1) The convolution character of the operator T to explicitly solve (4.39) by
means of Fourier transform techniques, together with 2) An extension of the integration-by-
parts arguments presented in Section 4.3.1.1 to complex values of £, and 3) The aforemen-
tioned smoothness assumptions on ¢y, it can be shown that, as illustrated by the numerical
examples in Section 4.3.2, the error e is super-algebraically small throughout the region
[—cA, cA]. Additionally, the error estimates can be extended to the values of the scattered
fields in certain regions around the windowed domain (but see also Remark 4.3.1). Rigorous
proofs of these estimates are currently being completed and will be presented elsewhere.
The next section presents a variety of numerical results demonstrating that, as suggested
in the present section, the WGF method for the obstacle-free case does give rise to super-

algebraically convergent integral-equation solutions and scattered fields.

Remark 4.3.1. It is important to note that the aforementioned near-field convergence is not
uniform in the strip [—cA, cA] x R: for points in this region with larger and larger values of
y, correspondingly larger and larger values of A > 0 are necessary to reach a prescribed error

tolerance; see also Figures 4.9, 4.10 and 4.12.
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Error

A £ = E=20—1i | £ =40 —i £ =50 £ =19.99
2\ [ 1.26-1072 | 1.06-1072 | 2.10-107'7 | 1.42-10722 | 2.04-107°
220 1329-107% | 5.72-107* | 1.04- 10717 | 9.21-1072% | 1.95-107°
235\ | 5.04-107* [ 8.98-107% | 1.35-1071 | 1.38-1072* | 3.70 - 107!
240 1295-107° | 7.91-1077 | 8.28-1072! | 1.31-1072° | 2.36-10*!
25\ | 5.57-1077 | 1.57-107% | 3.68-1072! | 8.65-1072" | 1.45 107!

Table 4.2:  Errors ||e¢||zoo(—ca,ca)) = ||el£u||Loo([,cAycA]) = ||p¢ — &¢ || ((—cacay for various
window sizes and values of the parameter £ obtained in the solution of the problem of
scattering of u®, defined in (4.30) for ' = (0,1), by a dielectric plane for wavenumbers
k1 = 20 and ky = 40. As demonstrated by the £ = 19.99 column in this table, which is
included for completeness, slow convergence takes place for values of ¢ for which |k; £ £] is
small. As indicated in the text, however, such situations are bypassed in the error analysis
presented in Section 4.3.4 by an appropriate selection of complex integration contours.

4.3.2 Obstacle-free problem under plane-wave incidence: Numer-

ical illustrations

To illustrate the WGF approximation properties considered in Section 4.3.1, here we present
Table 4.2 and Figures 4.9 and 4.10. With reference to the notations in that section, Ta-
ble 4.2 displays the maximum throughout [—cA, cA] of the numerical errors e’ that result
for incident waves uiglc with various relevant complex values of £ (cf. equation (4.30) and as-
sociated text). As demonstrated in these experiments, ¢¢ does indeed approximate ¢, with
super-algebraically small errors within the region [—cA, cA] for £ € C, Re¢ - Im¢ < 0, such
that & # £k or & # £ks. In accordance with the discussion in Section 4.3.1, it is clear that
large values of A are generally required for convergence to a given error whenever |k; £ &|
is small. But this does not impact upon the multiple-scattering error analysis presented
in Section 4.3.4 since the complex integration contour used in that section (Figure 4.11)
completely avoids a neighborhood of the points & # +k;.

The errors introduced by the obstacle-free WGF method in the scattered field for values

of ¢ along the aforementioned complex contour are also considered in the context of the

multiple-scattering error analysis presented in Section 4.3.4. The field errors resulting for a
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2 0 2 ' 2 0 2
(c) € = 40 —i. (d) € = 50,

Figure 4.9: Logarithm of the field errors log,q |ug(r) — u¢(r)| obtained by means of WGF
method with A = 16X\ (A = 2IT/k;) for the problem of scattering of w"® defined in (4.30) for
r’ = (0,1), by a dielectric plane for various values of £ and wavenumbers k; = 20 and ks = 40.
The quantity u¢ is defined in (4.34) and u¢ equals the exact reflected field C¢(Te—1) e/4" " ©y
in the upper half-plane {y > 0}, and the exact transmitted field C¢Ty e*+72()¥ in the lower
half-plane {y < 0}.
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Figure 4.10: Logarithm of the field errors logq [ug(r) — u(7)| obtained by means of WGF
method for the problem of scattering of uign‘ﬂ ¢ = 0, defined in (4.30) for ' = (0,1), by a
dielectric plane for various window sizes A = 8\ (left), 16\ (middle) and 32\ (right) and
wavenumbers k; = 20 and ky = 40 (A = 2II/k;). As in Figure 4.9, ug is defined in (4.34)

and u, equals the exact reflected field C¢(T; — 1) €¥*=7(¥ in the upper half-plane {y > 0},
and the exact transmitted field C¢Ty 6728 in the lower half-plane {y < 0}. The absolute
errors on the segment {(x,y) : —1 < z < 1 and y = 4}, for example, are 10738 10718
and 10779 for A = 8\, A = 16\ and A = 32), respectively, thus demonstrating super-
algebraic convergence. Note that given the highly oscillatory character of the error, in both
the horizontal direction and, at a much lower frequency, in the vertical direction, it is difficult
to obtain a clean (non-oscillatory) convergence pattern at any given point in space.

few relevant complex-wavevector incidences £ are presented in Figure 4.9. Note the extremely
small field values that arise for the relatively small window size A = 16\. In fact, the largest
such errors take place for the case & = O—which corresponds to an incident field with a
real wavevector (that is, a physically realizable incident field) under normal incidence. As
demonstrated in Figure 4.10, even in this case fast convergence takes place. For example,
use of windows of sizes the A = 8\, A = 16\ and A = 32\ suffices to produce solutions with
errors of the order of 10739 107%18 and 1077, respectively, on a certain representative

segment in space (details are presented in the figure caption).
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4.3.3 Obstacle-free problem under point-source incidence: Nu-

merical illustrations

To conclude this section we study the errors introduced by the WGF method in the solution
of the problem of scattering of a point-source incident field (where the source is located at a
point ' = (2,y') with ¥/ > 0) by a flat dielectric half-plane in the region {—cA < x < cA}.

The resulting integral equation formulation for this problem is once again
E ¢, + Tulo,.| = % on I, (4.40)

where the right-hand-side is now given by

inc i
o =~ | HEY (ka| - 7))

0
Ty —HM (k| - =)

I’ ay

J

Im¢

—ko  —ki

Figure 4.11: Complex integration path utilized in the evaluation of the integral in (4.41).

According to well-known formula

] 1 —ly=y'l
SH (gl ') = — / e (4.41)
4 Am Jeo
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(where £ = (—00, 00)), the field produced by a point source can be expressed as a superposi-
tion of incident fields uiglc as defined in (4.30). But, to obtain a superposition which includes
favorable plane waves only (that is, plane waves for which, like the ones considered in Sec-
tion 4.3.1 and above in the present section, the WGF method gives rise to super-algebraic
convergence) we resort to Cauchy’s theorem to deform the integration contour in the inte-
gral (4.41) so that the modified integration contour in the complex plane, denoted by C (see
Figure 4.11), avoids the singular points £ = +ky and £ = +k; at which the WGF method
fails. According to section 4.3.2, for each £ € C the WGF method approximates, with super-
algebraically small errors, the field resulting from the scattering of uiénc. Thus, in view of
equation (4.41) with £ = C, we see that the solution of the integral equation (4.40) for point
source illumination is also approximated with super-algebraically small errors throughout

the interval [—cA, cA].

8 T 8 -1
2
6 1 6
-3
4 4

-10

-1

-12

-8

-1 0 1

Figure 4.12: Base-10 logarithm of the absolute error (see Remark 4.4.1) in the WGF-
computed reflected and transmitted fields for the problem of scattering of a point-source
incidence field by a dielectric plane.

Remark 4.3.2. The approximation properties demonstrated above in this section for inci-

dent fields given by point sources can easily be extended to illuminations given by surface
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distributions of point sources of the form

/ HO (k| — #/)o(r') dsw, (4.42)

where S is a bounded curve contained in the upper-half plane {y > 0} (Figure 4.13), and
where o denotes a given surface density. Indeed, letting ¢™ = [4"|, 0u™/On|n]”,

solutions ¢ = ¢(r) and ¢ = ¢ (r) of the exact and windowed integral equations
E¢+ Ty =™ on 1T (4.43)

and

E@" + Ty [Wag”] = ¢™ on Tly, (4.44)

are given by integrals of the form

/S 0, () () dsp,

where N, = ¢, (resp. N, = @) is the exact solution (resp. the WGF approzimation of the
solution) of equation (4.40). Since, in view of the discussion presented above in this section,
¢, is a super-algebraically uniformly accurate approximation of the corresponding solution
¢, throughout the region [—cA, cA] for all point sources ' € S, it follows that ¢ must itself
be a super-algebraically accurate approximation of ¢ within the region [—cA, cA|. Similarly,
use of the representation formula (4.34) with densities ¢* produces the associated reflected
and transmitted fields with super-algebraically small errors within the strip [—cA, cA] x R,
and, in particular, throughout the curve S. An entirely analogous discussion applies, finally,

to illumination by incident fields given by dipole distributions of the form

™ ( 5nw l{;l]'r' —7r'\)o(r’) ds,, (4.45)

The contents of this remark play an important role in the multiple scattering error analysis

presented in Section 4.5.4.
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4.3.4 Formal error analysis via multiple-scattering

In order to place the descriptive discussions in Section 4.2 within a more mathematically
precise framework, this section presents a formal error analysis based on multiple scattering
iterations. For clarity and simplicity we limit the discussion in this section to geometrical
configurations in which a defect, in the form of a dielectric obstacle bounded by the curve

S, lies completely above the dielectric planar interface II-—as depicted in Figure 4.13.

~a “

k1

k2

Figure 4.13: Description of the domain consisting of an obstacle above a dielectric half-plane
utilized in the multiple-scattering discussion in Section 4.3.4. For notational simplicity the
wavenumber within S was selected to equal the “ground” wavenumber k. But this is
otherwise an absolutely unessential assumption.

The specifics in the context of the configuration in Figure 4.13 are as follows. Upon
illumination of such a structure by a plane-wave u™(r) = e*1(zcosatysing) “and letting
me = [ui“C|H,(‘)uinC/8n|H]T, = [ui“]s,ﬁuinc/@mg}T, the integral equations (4.6) may

be re-expressed as the equation system

E¢y+Tuldn] = ¢n°+Rglgg] on II, (4.46a)

E¢g+Ts[ps] = ¢§°+Riloy] on S (4.46D)

for the unknowns ¢g = [usls, 6u2/8n|5]T and ¢ = [ualm, 8u2/8n|H}T (whose components
are the values of the total field and its normal derivative at the boundaries S and II, respec-

tively). Here the operators T and Tg are defined as in equations (4.7)—(4.8) with I' = II
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and I' = S, respectively, and the operators RY and Ry are given by

/ {gfl, (r, 7)1 (1) — vGi(r, T’)¢2(r’)} ds,
RUglr) = | 05 Lo I

2
_/S {837’5,',1%/ ('r'; ’r”)ﬁbl (’I",) — ygi’: (,r.7 r1)¢2(T1)} dSr/

/ {gfll (7, 7)o1(r") = vG(r, "“/)¢2(T')} ds
Rilglr) = | 0O e

2
_/n {328(;7;, (r.r)u(r') — V??ij (7, 7"/>¢2(’l°/)} ds,

In order to estimate the errors that arise as the system (4.46) is solved by means of
the WGF method, we reformulate (4.46) in terms of the new unknowns (EH = ¢y — qbﬁ
on IT and (~ﬁ5 = ¢pg — q’)é on S. Here, denoting by ug and u/ the exact transmitted field
and the total field for the obstacle-free problem, respectively (see (C.1)), we have set ¢!, =
[u£|n,5u£/3n|H]T and ¢l = [uf|5,8uf/8n|s}T. Using the identities: E@f + Ty [qﬁlﬂ =
o on II, RY [q’)é} = 0 and R [q’)ﬁ} = ¢é — ¢2°, which follow from Green’s theorem
(using (C.12) and (C.2)) and replacing ¢ = ¢y + ¢l and ¢y = b + ¢ in (4.46a)

and (4.46b), respectively, we obtain the following integral equation system

E ¢y + T [&H] — RI [%} on I, (4.49%)
Edg+ Ts [2135] = ¢L+RS [Eén} on 8. (4.49h)

The multiple-scattering character of the problem embodied in (4.49) (or, equivalently, (4.46))

can be elucidated by means of the formal Neumann series solution

] s fw] [ 0 wemem 0
g)s n=0 &Eqn) = | (BE+Ts)" 'Ry 0 (E“‘TS)_ld’g

Clearly (}%0 ) _ 0, and cﬁg)) is the solution of the integral equation

E@Y + Ts [a)g”] — ¢, on S (4.50)
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The n > 0 terms in the series, in turn, satisfy the recurrence relation

< (n) . (n-1)
¢H | (E+Ty)™! 0 0 R ou
oo 0 (E+Ts)t | | RY o0 (1) 1
or, equivalently
< (n) 1 [ (1)
Eéy + Tn [¢ ] — RI [qss ] on I, (4.51a)
By +Ts [[p(”)] ~ RS [[pf{“”] on S (4.51b)

The corresponding “multiple-scattering” form of the windowed integral equations (4.16)

for the configuration depicted in Figure 4.13, in turn, is given by the system

Btpy+ T W] = i — T [(1 - Wa)h| +RE[wg] on 11
Ets+ Ts[ths] = ‘“C+RS Watpn] + R (1= Wa)gh] on s,

which, letting 17)11 =Yy — ¢ff[ on IT4 and 1~b5 =Yg — q’)é on S, becomes

By + Tn [WAJJH] ~ RI [17)5} on Tl (4.53a)
EQNPS +Ts [;Ps] = ¢£ + Rﬁ |:WA"ZH:| on 5, (4.53b)

where 114 = II N [—A, A]. Thus, comparison with (4.49) shows that, similarly, the multiple-

scattering recursion for the windowed problem is initialized by {pﬁ) ) 0 on IT4 and
~ (0 ~ (0
Egy + T [w‘s)} — ¢! on S (4.54)

with n > 0 terms given by the solutions of the equations

~ (n—1)

Egi + Ty [WAQZJ(T}‘)] - [1/;5 } on I, (4.558)
E¢.) 4+ Ts [{p(s”)] ~ RS [an ] on . (4.55b)
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Since equations (4.50) and (4.54) coincide so do their solutions: the n = 0 approximation
produced by the WGF method, which is given by 1,~b(5?), coincides with the exact solution &)(5?)
throughout S. Similarly, {pﬁ) ) 0 coincides with the restriction of éﬁ) ) 0 to IT4. And,
the same is true about the n = 1 approximation on S: 'L,ZS) = é’)fgl) = 0. But then =1
approximation on II as well as all subsequent approximations do not coincide on either II
or S. As shown in what follows, however, the WGF iterates '(Z*Eqn) approximate the exact
iterates g?)fgn) with super-algebraic accuracy.

In order to establish this approximation result (and thus complete our multiple-scattering
error analysis) we rely on the fact that the right-hand-sides in equations (4.51a), (4.55a),
(4.51b) and (4.55b) can be interpreted as scattered field by either S or II resulting from
illumination by fields scattered in previous stages of the multi-scattering recurrence. For
example, the right-hand-sides in equations (4.51a) (resp. (4.55a)) coincides with the values
on II (resp. T14) of the fields scattered by S under illumination given by R [(};n _2)] (resp.
Ry [WAﬂ)(;iQ)] ). Similarly, the right-hand-side in (4.51b) (resp. (4.55b)) coincides with the
values on S of the fields scattered by II (resp. II4) under illumination given by RY [&g‘_”]
(resp. R [9¢7]).

On the strength of this observation, then, let us consider once again the n = 1 terms
(2)%1 " and {pg : (on II4) which, as indicated above, do not exactly coincide. Noting that the
incident fields in equations (4.51a) and (4.55a) are given by identical distributions of point
sources along S, however, Remark 4.3.2 tells us that the WGF solution {bg) approximates
&S ) with super-algebraically small errors.

Continuing with the multiple-scattering process let us now consider the n = 2 instance of
equations (4.51b) and (4.55b). Relying once again on Remark 4.3.2, the established super-
algebraic convergence of @Nbg ) to 553 ) throughout [—cA, cA] implies, in turn, that RS [WA{bg )]
approximates Rﬁ [&S )] with super-algebraically small errors as well, and thus the stability
of the integral equation posed on S permits us to conclude that {bg) approximates &5?) with
super-algebraically small errors. In view of equations (4.51a) and (4.55a), on the other hand,

we note that &g) = 0 on II and {bg) = 0 on II4, as both equations have null right-hand
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sides.

(Clearly, this argument can be carried out to all orders in perturbation theory, allowing
us to conclude, within this formal framework, that, at least for the configuration depicted in
Figure 4.13, the overall WGF method produces scattering solutions with super-algebraically
small errors over the strip [—cA, cA] xR (but see Remark 4.3.1). As indicated in Sections 4.2.5
and 4.2.6, once such solutions are available, equally accurate solutions can easily be obtained

over prescribed regions in space as well as in the far-field regions.

4.4 Numerical Experiments

This section illustrates the proposed methodology with a variety of numerical results con-
cerning dielectric media, including relevant efficiency and accuracy studies as well as generic
application examples. For the sake of definiteness in all the examples considered throughout

this section, the value ¢ = 0.7 is utilized for the evaluation of the window function (4.9) wa4.

Remark 4.4.1. In most cases considered in this chapter, errors are reported as “relative
errors in the L norm”, or just “relative errors”, for short, but absolute L> errors are used
as well. The “absolute error” over a given region is defined here as the maximum value of the
error over every numerical grid point in that region. The relative error over a region, on the
other hand, s defined as the quotient of the absolute error over the region by the marimum

value of the solution over the region.

Our first example demonstrates the efficiency of the new approach by comparing the
computing times required to create the systems of equations (which is the operation that
dominates the computing time in all of the examples considered) for the WGF method (4.19)
and the layer-Green-function method [104, 7]. To do this we consider once again the
configuration associated with Figure 4.5, i.e. the problem of scattering by a semi-circular
bump defect on a dielectric plane under TE-polarization. Figure 4.14 displays the computing
times for various wavenumbers k; and ko = 2k; for each method. The discretization density
was held proportional to k; to properly resolve the oscillatory character of the integrands,

and, in order to easily allow for pointwise comparison of the corresponding integral-density
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Figure 4.14: Computing times required to form the linear systems of equations resulting
from the Nystrom discretization of the relevant integral equations for the WGF method (red
line) and the layer-Green-function method [104] (blue line), as functions of the wavenumber
ki. The wavenumber ko was taken to equal 2k;. Comparable ratios in computing times
were obtained in cases in which complex ko values (ks = wy/(g2 + i02/w)pg ) Were assumed,
with either large or small values of the conductivity c—including values for materials such
as limestone, saturated sand, silt and clay.

ki | ko | LGF time | WGF time | ratio
T |27 588 s. 3.07 s. 192
m | 47 | 3579 s. 9.10 s. 393

Table 4.3: Computing times required by the layer-Green-function method and the WGF
method to produce integral equation solutions with an accuracy better than 5 x 1073 for
the city-like geometry displayed in Figure 4.15. We note that the LGF computing times
for this problem are significantly larger than those considered in Figure 4.14 for similar
wavenumbers. Such large costs arise in the present problem from the relatively large number
of discretization points that need to be used near the plane y = 0 to resolve the solution’s
corner singularity, and from the high cost required by the associated Sommerfeld integral
evaluation at such points.

solutions, the same discretization was used for both methods on the semi-circular bump. For
each run the WGF parameters were optimized to produce ¢ with a relative error which does
not exceed 5x 107° on the bump surface. Similarly, the key parameters in the implementation
of the layer-Green-function method (including the parameters associated with the numerical
evaluation of the Sommerfeld integrals) were adjusted to yield the fastest computation of

the corresponding integral density solution within a relative error of 5 x 107°. Note that the
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data points around k; = 87 & 25.1 in Figure 4.14 (which is the last data point presented for
the layer-Green-function method) shows that for such frequencies the WGF is approximately

three orders of magnitude faster than the layer-Green-function method [104].

(==} — (V) w = [ (=2} -1 oo ©

|
—

Figure 4.15: City-like geometry and windowing function used. The windowing function w4
was vertically stretched by a factor of 8 for visualization purposes.

The problem of scattering by the city-like structure depicted in Figure 4.15 is considered
next. Figure 4.15 also displays the window function utilized in this example. In contrast with
the results presented previously in this chapter, the case of TM-polarization was considered
for this test. Table 4.3 reports the computing times required to form the relevant system
matrices for both the WGF method and the layer-Green-function method. Both solvers were
optimized to produce a absolute error of 5 x 1073 in the solutions of the integral equation,
and the same computational grids were utilized to discretize the buildings for both methods.

Table 4.3 compares the computing times required by the WGF method and the layer-
Green-function method for two values of ky. In particular we note that, not only is the new
method much faster than the previous approach, but also that the speed-up factor grows: a
speed up factor in the hundreds for the value ks = 27 is doubled as ks is itself doubled to the
value ko = 4m. Additionally, application of the layer-Green-function method in this context
requires use of fictitious curves underneath each building [104] each one of which (curves)
must itself be discretized, while the WGF method requires discretization of the ground
between the buildings and in the region where the windowing takes place. In the present

case the layer-Green-function method produced a system of 2384 unknowns while the WGF
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method produced a system of nearly identical size: 2406 unknowns. At higher frequencies,
the WGF method requires fewer unknowns than the layer-Green-function method, since, as
demonstrated in Table 4.4, at higher frequencies the width of the windowing function can

be decreased while maintaining accuracy.

ki | ko A
T | 27 6.5
2w | 4w 3.5
4w | 87 1.75
&t | 167 | 1.1875

Table 4.4: Extent of the windowed region required by the WGF method (4.19) to maintain
an accuracy of 5x 1079 in the approximation of the surface fields for the problem of scattering
from a semi-circular bump of unit radius with various wavenumbers. The angle of incidence
was taken to equal o = —7/8 .

In our next numerical example we consider an obstacle over a rough ground which contains
indentations below ground level. Figure 4.16 displays the geometry under consideration,
together with a selection of window function (which yields an relative error of approximately
1% in the integral equation solution) and corresponding near fields under TE polarized
plane-wave illumination with incidence angle « = —7/8 and with k; = 27 and ke = 47.
As demonstrated in Figure 4.17 super-algebraic convergence is once again observed as A/\
grows.

In our last example we consider a range of conducting materials with widely varied
electrical conductivities. The materials and their corresponding permittivities and electrical
conductivities are listed in Table 4.5. The value of the constant for air is included for
reference. Table 4.6 presents the ratio of the computing times for each one the examples;
these results, which correspond to the value k; = 2.095845023 of the free-space wavenumber
are in rough agreement with the corresponding results presented in Figure 4.14 above, for
similar values of k. The corresponding values of the wavenumber k, are included in the first
column of Table 4.6. The fact that ko is complex leads to a reduction of the computational
cost of the layer Green function, as the overall length of the integration path Cj in (2.75)

is somewhat reduced (as compared to the length of integration path required to evaluate
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Figure 4.16: Obstacle over a rough ground containing indentations below ground level and
associated near fields. Interestingly, the rather narrow window function used (which was
scaled vertically in this image for visual clarity) is wide enough to produce a relative error
smaller than 1% in the integral equation solution.
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Figure 4.17: Relative errors in the integral densities resulting from numerical solution
of (4.19) for the structure depicted in Figure 4.16 by means of the full WGF method, for
various window sizes and angles of incidence—including extremely shallow incidences. Left:
log-log scale. Right: semi-log scale. Once again we see that, the WGF method computes
integral densities with super-algebraically high accuracy uniformly for all angles of incidence.

the Sommerfeld integrals in the case n = ky/k; > 1; see Section 2.3.5 for details). As

show in Table 4.6, however, this fact does not yield a significant reduction of the overall
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computational cost of the LGF method. Table 4.7, in turn, displays the errors in the total
field relative to the maximum value of the field, which were obtained by means of the WGF
method for the solution of the problem of scattering of a plane-wave by a semi-circular bump

for various window sizes A > 0.

Material Relative dielectric | Electrical conductivity
constant &/, o (mS/m)
Air 1 0
Limestone 6 2
Saturated sand 20 1
Silt 30 100
Clay 40 1000

Table 4.5: Typical electromagnetic properties of soil materials at 100 MHz [94]. The wave

number in the domain €2, is given by kg = w\/uoso(d + uf—go) where w = 27 f, f = 100 x 10°

Hz, gy = 8.8541878176 x 107'%F /m and jp = 47 x 10~"H/m. The wavenumber in €2y, in turn,
is given by k1 = w,/J10€0, and it corresponds to the numerical value k; = 2.095845023 = 27 /.

Material Wavenumber | Computing-time ratios
ko Ratio = LGF/WGF
Limestone | 5.136 4+ 0.1537: | 23.52 = 84.745/3.73s
Sat. sand | 9.373 4+ 0.04217 | 28.11 = 83.765/2.98s
Silt 11.95 4 3.3048; | 17.92 = 72.945/4.07s
Clay 2219+ 17.793; | 12.45 = 76.18s/6.12s

Table 4.6: Comparison of the computing times required for solution of the problem of scat-
tering of a plane-wave by a semi-circular bump of radius 1m using the LGF method and
the proposed WGF method. The values of the parameters utilized in the computation of
both the WGF solution and the LGF solution were optimized so each one would result, with
optimal computational cost, in integral-equation solutions at the surface of the bump which
lie within a maximum relative error of 10~ of the exact values. The same quadrature points
were used to discretize the surface of the bump for both the LGF and WGF methods. The
window size A = 3.5\ was utilized in all WGF calculations.
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Window Relative error for a =
size A —m/4 —m/32 | —m/256
1A 5.19E-03 | 4.52E-03 | 4.51E-03
2\ 5.04E-04 | 4.56E-04 | 4.55E-04
4\ 2.56E-05 | 2.40E-05 | 2.39E-05
8A 7.57TE-08 | 1.64E-08 | 2.08E-09

Table 4.7: Relative errors obtained in the solution of the problem of scattering of a semi-
circular bump of radius 1m obtained with the WGF method for various window sizes and
plane-wave incidences, where the domain €2y is assumed filled with clay for which ky =
22.18765822 + 17.79296274¢ at f = 100MHz.

Figures 4.18a, 4.18a and 4.18c, lastly, display the total fields solution of the problem of
scattering of the plane-wave with o« = —m /4 by defects in half-planes occupied by limestone,
silt and clay, respectively. The clay image (Figure 4.18¢) demonstrates that very limited
electromagnetic energy penetrates the highly conducting clay ground at this frequency. A
small fraction of the energy can be viewed in the Silt image (Figure 4.18b), and a rich

electromagnetic pattern in the low-conductivity Limestone image (Figure 4.18a).

T r

T

(a) Limestone (ky = 20.54+0.157).  (b) Silt (ks = 46.05 + 3.43). (c) Clay (ky = 59.33 + 26.62i).

Figure 4.18: Total fields (real part) obtained for the scattering of a plane-wave with o = —7 /4
by defects on conducting planes made of three different materials at f = 400MHz.
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Chapter 5

Windowed Green Function Method
for layered media scattering: Multiple
layers

This chapter presents an extension of the Window Green Function (WGF) method intro-
duced in Chapter 4 to two-dimensional problems of electromagnetic scattering by surface
defects in the presence of layered media containing an arbitrary number layers. As shown
below in this chapter, the main features of the two-layer WGF approach (namely, the super-
algebraic convergence of the windowed integral equation solutions as the window size in-
creases and the efficiency of the WGF approach as compared to the LGF approach introduced
in Chapter 3) are maintained by the proposed multi-layer solver. Some of the numerical ex-
amples presented here, concerning problems of scattering by a surface defect in a three-layer
medium, demonstrate that the proposed WGF method is up to hundreds of times faster than
the LGF method in producing the corresponding integral equation solution, and it is up to
thousands of times faster than the LGF approach in producing the near-fields in a regions
around the defect.

This chapter is organized as follows: Section 5.1 introduces notations and necessary multi-
layer radiation conditions. The integral representation formulae for the fields are then derived
in Section 5.2 on the basis of Green’s third identity and the ideas introduced in [52]. Sec-
tions 5.3 and 5.4 present the integral equations for the field values at the multiple unbounded
material interfaces and the associated windowed integral equations, respectively. The cor-

responding expressions for the evaluation the near-fields are then presented in Section 5.5.
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Section 5.6 deals with a reformulation of the integral equations obtained in Sections 5.3
and 5.4 which significantly simplifies the numerical implementation of the multi-layer WGF
method for problems of scattering by smooth surface defects. (This new formulation will
be extensively utilized in Chapter 6 to tackle problems of scattering in thee-dimensional
space.) Section 5.7, finally, presents a variety of numerical examples which demonstrate the

super-algebraic convergence and the high efficiency of multi-layer WGF approach.

5.1 Preliminaries

In this chapter we consider localized (bounded) surface defects in a planar layered dielectric
medium composed by N > 1 dielectric layers, such as the one depicted in Figure 2.1. The
underlying two-dimensional planar dielectric layers are given by D; = R x (—d,;, —d;_;) for
j=1,...,N, withd; > d;_; and dj > 0 for j = 1,...,N — 1, and with dy = —oco and
dy = oo. The planar boundary at the interface between the layers D; and D;,; is denoted
by II; = R x {—d;} where j =1,..., N —1 (see Figure 2.1). For convenience we set d; = 0.

The locally perturbed planar dielectric structure results as localized bounded defects
are introduced at the planar interfaces II;—as illustrated in Figure 5.1 for the particular
case N = 3. The locally perturbed structure is given by the union of the homogeneous
dielectric domains €2, j = 1,... N, each one of which amounts to a local perturbation of
the corresponding domain D;. The wavenumber in €; is given by k; = w, /5y > 0. The
corresponding local perturbations of the planar interfaces 11, j = 1,..., N — 1, are denoted
by I';, j = 1,..., N — 1, respectively. Throughout this chapter it is further assumed that
IyNT; =0 foralli,j=1,...,N—1, so that the boundaries of the subdomains €2, are given
by 09y =T,00; =T,_1Ul';,7=2,...,N =1 and 0Qy =I'y_;.

Our derivations utilize the polar-coordinate systems centered at (0, —dy), (0, —(d;—; +

d;)/2),j=2,...,N —1, (0,—dy_1) whose radial variables are given by

Vi + (y+dy)?, Jj=1,
ri=9{ 2+ (y+(dj_1+4d;)/2)? j=2,...,N—1, (5.1)
Va? + (y+dn-1)?, j=N,
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(see Figure 5.2). We further consider the domain
Br=((—R,R) X (—dn_1,—dq))U{(x,y) : "1 < R} U{(z,y) : vy < R} (5.2)

and we select a value of R > 0 large enough that By contains all of the surface defects, as
illustrated in Figure 5.2 for the case N = 3. Throughout this chapter, finally, we use the
notations 2 = Ujvzl Q;, D= Ujvzl D; and Qf =Q;NBrforj=1,...,N.

) Q&
\<\ kl kl

D, 3 Ql
T ’ I >z I, T " . Iy
D, ks 0 k2
" I, " W
Ds ks Q4 ks
(a) Planar layered medium. (b) Locally perturbed planar layered medium.

Figure 5.1: Geometry description of a planar layered medium (a) and a locally perturbed
planar layered medium (b) for the case N = 3.

As in the previous chapters, we consider an incident plane wave ui"¢(r) = eif1(@cosatysina)
that impinges on I'; as indicated in Figure 5.1, where o« € (—m,0) denotes the angle of
incidence measured with respect to the z-axis. As shown in Section 2.2.1, u = FE., the
z-component of the total electric field in TE-polarization, or v = H,, the z-component of

the total magnetic field in TM-polarization, satisfies the homogeneous Helmholtz equation

Au+kju=0 in Q, j=1,... N (5.3)
Letting
: du :
ulj+(r) = 6li>ré1+u(r + n(r)) and ol (r) = 515(% Vu(r £on(r)) -n(r) for rely,

(5.4)
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the transmission conditions at the interfaces between the dielectric media can be expressed

in the form

0
ul;+ = ul;~ and ou

on

ou

ﬁ:ljj% on I'y, 7=1,...,N—1, (5.5)

§-

where v; = ¢;/e;41 in TM-polarization and v; = p;/pj+1 in TE-polarization. Here the unit
normal n = n(r) at a point r € I'; is taken to point into ;.

Outside Bg = U;VZI Q7 the total field u can be expressed as
u=u’ +u* in Q\ Bg, (5.6)

where u/ denotes the total field solution of the problem of scattering of the plane-wave u™® by
the planar layered media D = Ujvzl D; (see Section 2.2.3), and where u® = u — u/ quantifies
the scattered field produced by the presence of the local defects.

The solution of the problem of scattering by the unperturbed structure D was obtained
in Section 2.2.3. In the TE case, for example, u/ = E, where E, is given by (2.16); the
corresponding expression for the TM case follows easily as indicated in that section. In

particular, in both the TE and TM cases u/ can be expressed in the form

ul = u} —|—uj- in Dy, (5.7)
where letting k;, = ki cosa and kj, = kf — k?-r, the up-going and down-going plane-waves

(see Sections 2.2.2 and 2.2.3) are given by

’LL,JF(’I") = p; eik:jzx—i—ikjyy and uj(r) = ¢ eikaa:—ik:jyy7 (58)

2ikjyd; A}“E,TMRTE,TM

TE,TM
i1 and g = A;

respectively, where the constants p; = e are expressed

in terms of the generalized reflection coefficients EJT;}JFTIM and the amplitudes A;.FE’TM defined
in (2.14a) for the polarization considered (TE or TM). Note that the only down-going wave

in the uppermost layer corresponds to the incident field, i.e., u% = 1", and that there is no
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up-going wave in the lowermost layer, i.e., uj\, = 0 (see Section 2.2.3 for details).

The radiative character of the scattered field u* is as follows [66]:

w4+ uf in Q\ Bp, j=1N,
us™ in Q\Bgr, j=2,...,N—1,

J

where
au;ad . rad -1/2 . o .
o) — ikjuj :O<Tj ) in Q;\Bg, j=1,N, (5.10)
and
M;
ufui(r) = Z o' ui'(r) + O (T'j_ﬁj) : (5.11a)
m=1
oust W 8\ .
5o —iyargrr| = 0(r7) oo (5.11b)
m=1

as r; —» 00, j = 1,...,N, where §; = 1for j =2,...,N—1and 3; =2/3 for j = 1,N
(see (5.1) for the definition of r;). Here u}* denote the guided modes

iy | (e ) s () =2 N
u™(r) = )
’ e~ 1yl ei|$\5§n’ j=1,N,

which are expressed in terms of the so-called propagation constants {7 > 0, and ;" =

(&) — k:?, m = 1,..., M;. The propagation constants " are given by the real poles
(sometimes called surface wave poles [39, 42]) of the corresponding N-layer Green function
in spectral form. The condition for the existence of the propagative modes in the inner layers
Qj, j=2,...,N —1,is given by ky < " < k;. For the outer layer {; (resp. Qy), on the
other hand, it holds that £ = &5" (resp. N = EN_y) and & > ki (resp. X > ky) so that
u" (resp. u}y) corresponds to a surface wave that travels along the interface I'; (resp. I'n_1)
and decays exponentially fast towards the interior of €y (resp. Q).

The rigorous derivation of the radiation condition (5.10)-(5.11) for the scattered u® should

follow from the integral representation of u* in the region '\ Br by means of the layer Green
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function of the planar layered medium D—similar to the one presented in Lemma 4.2.6 for
N = 2—and the asymptotic analysis of the N-layer Green function—similar to the analysis
presented in Section 2.3.4 for the case N = 2. An analysis of this kind is presented in the

reference [66] for a three-layer-medium in three-dimensions.

Figure 5.2: Depiction of the various domains, boundaries and variables involved in the
derivation of the integral representation formula (5.15). The relevant curves are marked
with a dashed line and junctions between the curves are marked with the symbol [J.

5.2 Integral representation

We are now in position to derive the integral representation of the total field u. For simplicity
we restrict the discussion to the three-layer problem; the general N-layer problem with N > 3
can be treated in an analogous manner. Our derivation uses the curves I'f;, I'¥,, S and S’

and corresponding normals n, as depicted in Figure 5.2. Following [52], further, for a given
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curve C we define

il = [ {520l - Gy rr) 320 | dse

in order to facilitate repeated use of Green’s third identity in our calculations; here we have
called Gy, (r, ') = %Hél)(kﬂr —1'|) the free-space Green function for the Helmholtz equation

with wavenumber k; > 0. In what follows, finally, we make frequent use of the asymptotic

identities
,l'e—iTr/él ' ) ,
sz(’f‘,T'/) = —e’k’(|"' |[—r-#") {1 +0O (|T/|_1)}
\/8mk|r!| (A/ 'r’ "
T =17 | — 00,
k —in/4 , , ”l"/‘
oGy = YR i (14 0 (1) 1))

NG

(5.13)
that are obtained from the asymptotic expansion of the Hankel functions [76] and the relation
lr =2 =|r'|—7"-r/|r|+ O(r']) as |r'| = .

Utilizing Green’s third identity, where integration is performed over the domain QF,

whose boundary is given by 9Q%f = T U SE (see Figure 5.2), we obtain:

u(r), reQf,
L [w T (r) = L [u; ST (r) = (5.14a)
0, reR*\QK

where the total field on 90 is obtained by taking the limit of u and its gradient (required
to evaluate the normal derivative of u at 9Q%) from the interior of Q. Similarly, integrating
over the domains Q& and QI whose boundaries are given by Q% = ' U I‘QT uTrky Fgl

and 90 = TE U SE respectively, we obtain

u(r), reQf
I, [u; FQR} (r) — I [u; Fﬂ (r) — I [u; ngl] (r)— I [u;Fgr} (r) =
0, reR*\OQF
(5.14b)
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and

u(r), reQF
—I3 [w;TF] (r) — I3 [u; S5 (r) = (5.14¢)
0, reR?\QL

We now study the limit values of the various integrals in (5.14) as R — oo. In view of
the decay of the integral kernels (5.13) and the fact that the total field u remains bounded
throughout €y, it follows that the terms Iy involving integrals over the vertical curves Fgr

and T'}}; tend to zero as R — oo. In fact
LluTh] =Ll ] =0(R3) as R o

In order to estimate the values of the terms I; that involve integrals over the semi-
circular curves Sf* and S£, in turn, we observe that for v’ € SJR with j =1 and j = 3 we
have |7/| = R+ O(1) and 7/ = (cosf;,sin6,) + O(R™) as R — oo where the definition
of the angles §; given in Figure 5.2. Since u;ad, Jj = 1,3, in (5.9) satisfies the Sommerfeld
radiation condition (5.10), utilizing standard arguments [45] it can be shown that

]j[ugad;Sﬂzo(l), j=1,3, as R — oc.

Let us now consider I; [u‘%ui; Sﬂ , which is given by a linear combination of terms of the

form I; [ui”; Sﬂ, where letting 7" = /(£1")2 — k% > 0, the surface wave mode is given by
u(r) = e WIHENRl - Thus, from (5.13) and the fact that uf(r') = e 1" Rsinfi+igi" Rl cos 01|

for v’ = R(cosfy,sinb,) € ST, 6, € [0, 7], we obtain

k: R > ;T
[ SE) () /S e

/7r {W{n sin 0 + | cos 0§71 B 1} otk # —R(9]" sin 01 —i€" | cos 01 ) 6,
k
0 1

as R — oo. Therefore

m m /2
|11 [ul; ST ()] < Latis {1 4 mk—j—gl}/ oW Rsind g
0
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The integral in the expression on the right-hand-side can be bounded utilizing the inequality
sinf > 26/m, 6 € [0,7]. Doing so we conclude that Iy [u]*; ST = O (R_%> as R — oo.
Similarly, it can be shown that I3 [ugn; Sﬂ =0 <R’%), and consequently, in view of (5.11),

1

we conclude that I [ufm; SJR} =0 (R‘E ,j=1,3,as R — oo.
Next we consider the term I |u]; Sf*| which involves the up-going plane-wave ui('r) =
eik1=rtikiyy - Thus we have that ul(r) = ef1Eeos(@i+e) for ¢/ ¢ SB and consequently integra-

tion by parts yields

kiR a7 VR
[1 [UI, SlR] (’r) ~ 81_7T ezklRM/ {008(61 + Oé) _ 1} eflkyr'-r ezk1Rcos(91+a) d91
0
_ eZ/ﬂR-H% T Sin<91 + Oé) efikyr'.f-’ @ eikchos(91+a) del
V 87T]{31R 0 1+ COS<91 + Oé) d@l

s

eik1R+ig { Sin(el N a) eikl(—r~i"+Rcos(01+a))

V8Tki R 1 + cos(0; + «) .

/W oik1 Reos(01+a) d ([ sin(f; 4+ a)e "
0 do, 1+ COS(Ql + a)

= O(R_%> as R — oo.

Considering now the term [, [ui, Sf] with u%(r) = eF1e2=h1Y e have that the down-going

plane-wave is given by ul(r') = eF1cos(i=a) for ¢/ ¢ SR Thus

[ onss [ o
I [U%, SF] (r) ~ 81—e”“1R_Z4/ {cos(fy — a) — 1} e7thir® gikiReos(Bi—a) qg,
T
0

Notice that since a € (—m,0), we have that 0 < #; —a < 2w. Thus, there is only one point of
stationary phase within the domain of integration, which is given by 6, = o+ w. Therefore,

the application of the method of stationary phase [16] yields
L [u{, Sﬂ (1) = — ehr(@eosatysine) 4 (R’%) = —u™(r)+ O (R’%> as R — oo.

(Notice that integrating by parts yields that the limit points of the integral give rise to

contributions that decay as R™'.)



150

Finally, we consider the term I3 [u3, SR} with wg(r') = es=2=suy  where ks, = k; cos o
and ks, = \/k2 — k2,. We distinguish three possible cases, namely: (a) k3 < ki|cosal,
(b) k3 = ki|cosa| (ks = —kycosa for o € (—m,—7/2] or k3 = kycosa for a € (—7/2,0)),
and (c) ks > k| cosa|. Since in case (a) we have that ks, = iy/k? cos?a — k2, a calculation
completely analogous to the one carried in the estimation of the term I; [u’ln; Sﬂ allows us
to show that I3 [u37 SR} =0 <R_%>. In case (b), in turn, we first consider a € (—7/2,0).

In this case we have uf(r') = e#3R<s0s for ' ¢ SE and consequently

0
|:U37 SR:| ( ) k83R eikgR—i% / {COS 93 . 1}e—ik2(d2 sin 03+r-7')+iRks cos 03 d03
™ T
Splitting the integration domain and using the identity cosf — 1 = —sin?/(1 + cos ) we

obtain

k’gR ; s 0 SiIl2 03 ; ; N
I |: i;SR] ) ~ ezkg,R—zZ _/ e—zkg(d251nc93—'r'~1‘ )+iRks cos 03 do +
3 |59 ] (7) 8 _x 1+ cos s 3

—3 ) . N
/ {COS 93 . 1} e—zkg(dg sin @3+7-7')+iRks3 cos 03 deg} ]
-

Integration by parts yields that the first integral above amounts to a quantity of order
@ (R_%>. The stationary point at # = —x in the second integral, on the other hand, leads

to
ezkdx

st 15" w0 ().

Similarly it can be shown that I3 (uﬁ, S{f) ~ —e kst 1240 (R*%> in the case k3 = —Fk; cos

for € (—m,m/2]. For case (c), the transmitted wave to the lowermost layers is a plane-wave

1

. 1 s
which can be expressed as uz(r') = a e’fsfeoss—a’)

—iksds sin o’

;7' € SE wherea = e and where

the angle o/ € (—m,0) is determined by the Snell’s law k3 cos @’ = ky cos . Thus, once again,



151

integration by parts yields

ksR

0
[3 |:U§, S?I)%] (,,,) ~oan ] 22 eikgRiZ/ {008(93 . a’) o 1}efik3(d2 sin Oz +r-7') eikchos(Bgfa’) d<93

&

—T

. U(’l")7 rc Ql,
I fu; T (r) +u™(r) = _
0, reR2\Q,

U(’I”), T c QQ,
Lu; Do) (r) = L [u; T (r) = _
O, T c R? \ QQ,

| u(r), reQs,
—I3[u; Ty) (r) +ug(r) = _
O, S R? \ Qg,

where ug in (5.15¢) is given by

ik1x cos a
| v € 5 if ky = ki|cosal,
uy(r) =
0 if ky # k1| cosal,

for N = 3.

(5.15a)

(5.15b)

(5.15¢)

(5.16)

Remark 5.2.1. The total field representation (5.15) presented above in this section for the

three-layer problem can easily be extended to problems of scattering by defects in the presence

of layer media composed by N > 3 dielectric layers. In fact, as in (5.15b), the total field

within an inner layer ), 7 = 2,...,N — 1, can be expressed as a linear combination of

layer-potentials applied to the total field and its normal derivative at the relevant interfaces
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I'j_1 and T';. Consequently, such generalization leads to

. u(r), T c Ql,
L [u; T () +u™(r) = B (5.17a)
O, rc R2 \ Ql;
u(r), r e,
LTy () = [ [Ty (7). = j=2. N1 (517b)

0, reR*\Qy,
U('I”), S QN,

Iy [ Tyoa] () +ull(r) = B (5.17¢)
0, reR2\Qy.

5.3 Integral equation formulation

In this section we establish an integral equation for the unknown values of total field v and
its normal derivative at each one of the dielectric interfaces I';, j = 1,...,N — 1. Asin

Chapter 4 we utilize the improper-integral single- and double-layer potentials

5 gl(r) = / Gy (ry1)3(r) dspe and D)) = [ S 1) o) dsyr, (5.1

T; T 8”"’/

respectively, whose convergence is conditioned upon the oscillatory behavior of the integrand.
Throughout this chapter the interfaces I'; are assumed to be piecewise smooth curves that
coincide with the flat interfaces II; sufficiently far from the origin; see e.g. Figure 5.1b.

As is known [45], the layer potentials (5.18) satisfy the jump relations

0 T
. F-+ K¢ if i=4,
50| , =59, 835%] =y 2
e e K] it iAo,
6 (5.19)

o . Z i +-+DV[g] it i=¢,
5D =N, Dl = 2

0

(£,3) . .
Dj [¢] lf ¢ 7& év
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where the relevant integral operators are defined as

. , 0G},.
S0 () (r) = / Gy (r.r)o(r) dsw, DIl = | S )o(r) dsye
| e . 0 [ G, el
Kg)(r) = A (o) dse, N lgl(r) = o 5 5 (r,1)o(r) dsy,
‘ Z (5.20)

Note that according to the notation (5.20) the super-index (¢,7) refers to the fact that
integration is performed over the curve I';, while evaluation is performed over the curve I',.
The sub-index j indicates that the wavenumber £; is used in the integral kernel.

In order to formulate an integral equation for the total field we define the unknown

density functions ¢; : I'; > Cand ¢, : I'; = C (j=1,...,N—1) by

ou
p; =ul;- and ;= ol o Ly, (5.21)

J

where the notation (5.4) was used. Similarly, we call ™ = «¢|;— and ™ = Qu'™/On|,-

the values of the incident field and its normal derivative on I'y, and we denote by gp” = U'z'v‘ N—1

and ¥l = 8u|]|\, /On|n—1 the values of ulll\, (equation (4.4)) and its normal derivative on I'y.
Utilizing the notations (5.19), (5.20) and (5.21) and using the transmission condi-

tions (5.5), equation (5.17) becomes

(1) (1) e u(r), r e,
Dy [pa](r) — Sy [i](r) + u™(r) = B (5.22a)
0, 7eR*\Q,

, , , , u(r), r Qj,
DV, )(r) — v; 8V [,)(r) — DY Vi) (r) + SV V] (r) = ) re -
O, rc RQ \ Q],

(5.22b)
fory=2,...,N—1, and
U(’I”), rc QN,

~DY Vpn_i](r) + S§ P [on-a]() + uly () = L (5.22c)
0, r € R? \ Qp.
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We are now in position to derive the equations that govern the field interactions at the
interfaces I';, j = 1,..., N — 1. Indeed, evaluating the layer-potentials in (5.22a) and their
normal derivatives on I'y (taken from the interior of ;) and utilizing the jump relations (5.19)

we obtain

L o' = DIV 1] — i STV ]
(5.23a)

Mg~ e = N{V(or] — KD [g].

Similarly, evaluating the expression in (5.22b) as well as its normal derivative on I';_; taken

from the interior of Q; for j =2,..., N — 1 we obtain

©j—1 i1, i—1,j i—1,j—1 1,1
L = DY) — 1S T[y) — DY Vs ) + 8V [y ],

2 (5.23Db)
Vict _ UL, 1y g [ NU-LID FULi=Dr,
o 1Y [903] VilAy W)J] j [90]—1] + i [wj—l]v
on I';4, 7 = 2,...,N — 1, while evaluating the expression in (5.22b) and their normal
derivatives on I';, 7 = 2,..., N — 1, yields
SO- .7. 474 .7 - .’.7
Ej _ D§JJ)[¢j] - ij](JJ)[wj] _ DJ(JJ 1)[%71] _i_SJ(JJ 1)[%71]’ ( )
5.23¢
Vi N1 -y KD ] — NGO, 4 Gy,
Vj o — Vi [pi] — v j [15] j [pj—1] + j [1hj-1].

Evaluating the expression in (5.43c) and its normal derivative on I'y_; (taken from the

interior of {2y), finally, we obtain

901\21—1 _ gp“ _ D](VN—I,N—I)[SON_I] i S](VN—I,N—I)[wN_IL
Y1 (N—1,N—1) (N—1,N—1) (5.23d)
B gl — = N o)+ KT )

In order to express the integral equations satisfied by the integral densities at I'; in a
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more compact form, we introduce the following notation:

: . inc I 1 0
b, = ¥j . P = 90. ’ ¢|I — 90” , B = e | (5.24a)
V; e (0 0 —*
- i i i
_D§JJFJ1+ ) Vj+15j(i]1+ ) D§JJ ) _SJ(JJ )
Rjjm = (Gg+1) G+ | Rjj = (Gj—1) GJ-1 |’ (5.24b)
=Nt Vi K5 N; —K;
and  T; = J(;jl) ) J(jjl) j ) (5.24c)
N = NP K2+ v K

Using these notations and adding the expressions in (5.23a) and the expressions in (5.23b)

for 7 = 2 we obtain

Ei1 ¢, + Ti[¢y] + Rz [¢o] = ¢inc on [I. (5.25a)

Similarly, adding the j = 3,..., N — 1 instances of the equations in (5.23b) and the j =

2,..., N — 2 instances of the equations in (5.23c), we obtain

Ej ¢j + Rj,j—l [¢j71} + Tj [d)j} + Rj7j+1 [¢j+1} =0 on Fj, (525b)

for j = 2,..., N — 2. Finally, combining the expressions (5.23c) for j = N — 1 and (5.23d)

we obtain

Ev_1¢0n_1+Rnin-2 [dy_s] + Tnoi [Oon_] = ¢! on Tn_;. (5.25¢)

The coupled systems of integral equations (5.25) can be further compressed into one large

system of integral equations. Letting & and 7 denote the block-diagonal matrix and the
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block-tridiagonal integral operator whose block components are given by

(

R,m',l if ]:’l—l and QSZSN—L
E; if j=1, T; if =i and1 <1< N -1,
[5]” = and [%]” =
0 otherwise, Rijy1 if j=14+1 and1 <i< N -2,
\ 0 otherwise,
(5.26a)

respectively, and letting ¢ and ¢™ denote the block-vectors of unknown densities and

right-hand sides, whose block-components are given by

o it j=1,
[b];=¢;, j=1,...,.N—1, and [q;inC}j: ol i j=N, (5.26b)
0 otherwise,

respectively, the equations in (5.25) can be combined into the following integral equation

system:

N-1
Ep+ [P =™ on TI'=[]T; (5.27)
j=1

5.4 Multilayer Windowed Green Function Method

Following the ideas presented in Chapter 4, instead of attempting to solve the problem (5.27)
on the unbounded interfaces I';, 7 = 1,..., N — 1, a locally windowed problem is used to
obtain the local currents over all relevant portions of I';, j = 1,..., N — 1. In order to do so
we first introduce the block-diagonal matrix function #} : R +— R2N=Dx2(V=1) whose block
components are given by

w0 i

0 w A

(Walij = (5.28)

it i # 7,
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in terms of a smooth window function wy defined in (4.9). (In fact, different values of A;
of the window-size A could advantageously be used for the various layers. For notational
simplicity, however, the following discussion does not include this additional degree of gen-
erality.)
Utilizing #4 we obtain the windowed version

N-1

Ed + T [Wad] = &™ — T (S = #a)d] on Ta=|]JTja (5.29)

J=1

of equation (5.27), where .# € RZN=2x(2N=2) denotes the identity matrix, and where
Fia=T;Nn{ws #0} =T;N{[—A4, A] x R}.

In order to provide an approximation for 7 [(.# — #4)®] in terms of known expressions,
we introduce an integral operator that maps density functions defined on the flat interfaces
II; to density functions defined on I';. Such operator is denoted by J; = [%]M, 1,] =
1,...,N —1, and is given by

( ~

Ri,i—l if j:Z—]_ and QSZSN—]_,

T; if =7 and1<:< N —1,
[T, = (5.30)
Ri,iJrl if j:Z+1 andlgng—Q,

0 otherwise,
\

where the block integral operators in (5.30) are given by

e BUID G _ [ pwry _guy
jgtl = o oo ji—1 o SO ,
_N](iﬂlﬂ) Vj+1KJ(iJ1+1) N](m 1) R Ud=1)
_ DY) _ pba) - _gla) 4, glid)
+1 +1 J
and T;,=| 7 J -
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in terms of the integral operators

~lp ~p 0G .
S 1)) = / Gy (1, 7)o(r) s, Do) = | G o) dsw,

. i r ’I"EF@.
_ G, , ., (0 O [ 0Gk
Kl = | o) dsy, Nl = 5= | G () ds,

‘ 1 (5.31)

We also the consider the scalar densities gof and @/}f for j=1,..., N — 1, which are defined

as

ou'
! S i) — 1 _ _ .
pj(r) = lim w'(z,y —0) and ¢j(r) = lim 3y (x,y—9), r=(z,y) €l

in terms of u/ defined in (5.7): u/ denotes the total field (2.16) that results from the scattering
of the plane electromagnetic wave u® by the planar layer medium D = Ujvzl D;.

Following the procedure in Chapter 4 we now express the correction term 7 [(ﬂ i }
on the right-hand-side of equation (5.29) as

T [(J = W)ST] = =Tu [Vad] + T [¢]. (5.32)
Thus, the windowed integral equation (5.29) becomes
EQY + T Wad"] = &™ + T [Wad!| — T [@'] on Ty, (5.33)

which can be solved numerically provided the quantity 71 [(bf } can be evaluated. A conve-
nient closed form expression for this quantity is derived in what follows.

Utilizing the integral representation formulae (5.22) with <p§ , w;f , D; and II; instead of

e, ¥, Q; and I';, respectively, we obtain

~ ~ f ) ‘D )
B0 [of] () - 30 [uf] (r) +umey = 0 TE D (5312
0, rcR?\Dy,
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DY [f] () = 1,82 [ (1) = DY [of | (1) + SV [wl | ()
ul(r), r € D;, o (5.34b)

0, reR\Dj,

and —5](\],\[71) [gp{vfl] (r)—l—‘fS’V](VN*l) [@51{171} (r)—l—u‘]‘v(r) =  (5:34¢)

in terms of the layer potentials:

@”[w(r):A_ij<r,r'>¢<r’>dsrf and DOfl(r) = [ T o) dsy (5.35)

II; anr/

Thus, evaluating the expressions in (5.34) as well as their normal derivatives on the curves I';
we obtain the following closed-form expression for [(bf ] in (5.32): calling u = J; [d)f }

we have

E1 QZ’){ on Fl N Hl,
W, =Ty [cﬁ{] +Rig [qbﬂ = P — uf (5.36a)
on Fl M (Dl U D2>7
Vul - n
E;j¢/  on I;NIL,
[H’]j = Nj,j—l |:¢;—1i| + Tj [‘b;] +ﬁj,j+1 [¢f+1] = - uf

on F] N (D] U Dj+1)
Vul - n

(5.36D)

forj=2,...,N —2 and

Ex 19y, on Ty NIy,
My 1= f{N—l,N—2 [d){v_g] +TNn s [Qb{\/—l} = ¢l ul

on FN,1 N (DN,1 U DN)
Vul -n

(5.36¢)

As demonstrated in Section 5.7 through a variety of numerical examples, the vector



160
density function ¢, which is the solution of the windowed integral equation (5.33), converges
super-algebraically fast to the exact solution ¢ of (5.27) within I'yN{w4 = 1} as the window
size A > 0 increases. This observation can be justified via arguments analogous to those

presented in Chapter 4 above.

Remark 5.4.1. Note that the terms N](ijl) —N;j’j) that arise along the diagonal blocks of I,
which are given the difference of two hypersingular operators, are in fact weakly singular
integral operators. Therefore, the windowed integral equation system (5.33) can be discretized
utilizing the Nystrom method presented in Section 3.3, which accurately accounts for possible

corner singularities of the integral equation solutions that arise due to the presence of corners

on the defect itself and at the junctions of the defect and the flat portions of T';.

Remark 5.4.2. A difficulty arises in the evaluation of the correction term I [WAd)f}
in (5.33) whenever a curve I'; (I'; # 11;), for some j = 1,...,N — 1, is smooth. This
difficulty stems from the cusps that take place at the points at which the curves I'; and II;
depart from each other. Since the numerical evaluation of i [WA(I)f } entails integration on
II; and evaluation I';, the presence of cusps at the junctions of I'; and 11, gives to boundary
integrals involving nearly-singular kernels for which graded meshes (such as the ones intro-
duced in Section 3.8) are not sufficient to render high-order accuracy. Section 5.6 introduces

a reformulation of the integral equation system (5.33) that completely avoids this difficulty.

5.5 Field evaluation

In order to provide expressions for the numerical evaluation of total near-fields, we approxi-
mate the exact solution ¢ of the integral equation system (5.27) by #ad® + (& — #4) P’
where " is the solution of the windowed integral equation system (5.33). Thus, letting
[P”]; = [gog’,wﬂT, j =1,...,N — 1, denote the block components of ¢, we substi-
tute the scalar densities ¢; and ; by the approximate densities wap} + (1—-w A)goj-c and
way + (1 —w A)wf , respectively, in the field representation formulae (5.22). In view of the

expressions in (5.34)—which suffice to evaluate explicitly the terms involving integrals over
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u? =DV [wapt] — S [way)

unbounded curves for all operators in equation (5.22) —such substitutions yield:

(Wl — 1551) [UJASO{] + V1§£1) [wA?ﬂﬂ in Dy,
—5?) [wAgof] + Vlgl(l) [wAw{] in R2\ Dy,
(1- _) _pm [wAgpf] + S [wwﬂ on TIf,

u? =DV (wag?] — ;8P [wars?] — DY Vlwagt 1] + 8P war ]
(Wl — 15§j) [wAcp]} + VjS](j [wAQ/Jﬂ +

DY [wagly| =8V [wapl| D,
DY [wa]| + 1,8 [wawf] +

DY [wagl ] = 897 [wavl ] i R\,
(1= "2) oy = B [wael] + 0389 [wavd] +

o et - 8 o] en 1
Bt B [wag!] + 1,89 [uwas]] +

D?j’l [wAgof_l] — S;-ijl -wAi/JJJ-C_J on IIT,,
(1=F) ¢l =D [wagl | + 08" [wa]] +

I [wAwf_l} _§uD [ww;‘_l] on I,
Aot B [wag!] + 1,89 [was]] +

D [wagl | = 857 fwav] | on 107,

(5.37a)

(5.37D)
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within Q;, 7 =2,...,N — 1, and

= =D fwapl ] + S8 [wad_]
(W —i—ﬁj(\J,V_l) [wAgO{V_l} — gj(\,N_l) |:U)A¢]{[_1i| in Dy,
DR [wagho ] = S [wavh_ | in B2\ Dy, (5.37)
. %@%—1 + DENA [UJASO{V—J - SJI\T/]W1 [wA¢{V—1] on Ty 4,
\ (1 — %) h o+ DY [wASO{v_J — Sy [IUA%{[A] on Iy ;.

within Qy, in terms of the layer potentials 551) and 5]@ defined (5.35) and the boundary

integral operators D]Hi and Sjni which are defined as

OGh,

I, anrl

S]H[gb] = /H Gy, (r,r")o(r") ds,  and D? (6] = (r,r)o(r')ds,, 7 ell,.

Numerical examples presented in Section 5.7 demonstrate that formulae (5.37) provide
an accurate approximation (in fact, super-algebraically accurate approximation) of the total
near-fields within a region containing the surface defects. Once again, this observation can
be better understood by following the arguments presented in Chapter 4.

A procedure for evaluation of the far-field pattern, similar to the one presented in Sec-
tion 4.2.6 for the two-layer case, can then be obtained by utilizing suitable generalizations
to the multi-layer case of the the two-layer expressions (2.59) and (2.60) for the far-field of
the layer Green function.

Although perhaps most natural, the formulations used in Chapter 4 and above in this
chapter lead to the somewhat complicated formulae (5.37) for the evaluation of the total
near-field. In the following section we present a slightly different integral formulation of the
problem which not only gives rise to significantly simpler near-field expressions, but which

also greatly facilitates the developement of numerical methods for smooth surface defects.
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5.6 Alternative integral equation formulation

This section presents an alternative representation formula for which the resulting integral
equation formulation does not suffer from the difficulties mentioned in Remark 5.4.2.
We start then by expressing the total field as u = u® + u/ where the function u/ is given
by
P c_
w =wu;+u; in Q j=1,...,N,

5
in terms of the up-going (uj) and down-going (uj) plane-waves defined in (5.8). Notice that
w =uf in D;\Q;for j=1,...,N.

Clearly u’ satisfies the Helmholtz equation with wavenumber k; within the layer Q; for
j =1,...,N. Consequently, from the derivations presented in Section 5.2 we infer that
u/ admits an integral representation in terms of the layer-potentials D](-i) and SJ(»i) defined

in (5.18). Letting

~ ou’r
90 u |] ) QID an A77
J
and
ou’ ou'
g i I P
f] - |j+ u ‘j—’ 95 = on i+ vj on j_’ (538)

we thus obtain:

_ . al(r), reQy,
DY F + £3] () = 80 [vid] + g5 () +um(r) = R\ (5.39)
0, T e 1,

DY (2] + ] 1) = 8P [vid] + 93] (7)

- o u'(r), reqQ, (5.39b)
=DV EL ] )+ 890 [ | ) = _
O, rc R2 \ Qj,

forj=2,...,N—1, and
al(r), reQy,

D ] 07+ 80 [ 0+ ki - N
0, r e R\ Q.
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Evaluating the expressions (5.39) as well as their normal derivatives—utilizing the jump
~ ~ T
relations (5.19)—at the dielectric interfaces I';, and letting cbf = [cbf] = [@;,wﬂ L] =
j
1,...,N — 1, we obtain

£+ 7 [0 =™+ ] on T, (5.40)
where

T+ M,y if i=j,
N)]J - ’l/)j and ['///]i,j =9 M if j=i+1,

0 otherwise,
fore,7=1,...,N — 1, with
Vi = . C M= e e | D Mign = ](j ;+1) ]5;1)
9; Ny =K Njt —Kih
Subtracting (5.40) from (5.27) we thus obtain the exact integral equation
EO"+ T [d°] =—A#[Pp] on T, (5.41)

for the new unknown vector density function ¢* which is defined as ¢* = ¢Pp — gjv)f.
Similarly, subtracting (5.40) from (5.33) and utilizing the identity i | (& — WA)(T)f =
T [(ﬂ — W) d! } —which follows directly from the fact that Elv)f = ¢/ on T'\ II—we obtain

the windowed integral equation
EP® + T W P*] = —A Pp] on Ty, (5.42)

. . ~f . . .
whose solution ¢**, which equals @ — ¢, approximates ¢* with super-algebraically small

errors within I'y N {w4 = 1}.

Remark 5.6.1. A difficulty offsets, at least to some extent, the benefits provided by the

formulation (5.42): The presence of hypersingular operators NUI) along the block-diagonal of
j
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the right-hand side operator A gives rise to significant challenges in the numerical solution of
the integral equation system (5.42) in the non-smooth case. The integral equations presented

above in the previous section, in contrast, completely avoid such challenges.

Remark 5.6.2. Note that since 0/ satisfies the transmission conditions at the planar inter-
faces 11;, so it does at the planar portions of I'; for j = 1,...,N — 1. Thus the functions
fi and g;, which are defined in (5.38) in terms of the jumps of u/ at T;, are supported on
I'; \II; as they vanish exactly on I'; N1L;, j = 1,...,N — 1. Furthermore, for smooth di-
electric interfaces of class C*°, we have that f;,g; € C3°(L';); this fact makes it possible to
reqularize the hypersingular operator N, J(”) that arises in the right-hand-side term .#\p] and
it facilitates the use of the Nystrém method to solve (5.42) (see Remark 5.6.3 below).

Remark 5.6.3. Unlike (5.33), the new system of integral equations (5.42) where the curves
', j=1,...,N—1, are assumed to be smooth of class C*°, can be discretized by means of the
original Nystrém method introduced by Martensen [84] and Kussmaul [75] (cf. [44]) which
yields super-algebraic convergence as the number of discretization (trapezoidal quadrature)
points increases. Such Nystrom method, which relies on the smoothness and periodicity of
the relevant density functions, is suitable to discretize (5.42) as the functions wap3”, was?,
f; and g;, can be extended periodically as smooth functions of the parameter s € [0,27]
utilized to parametrize the curve I'j 4. Note, however, that an additional difficulty arises in
the evaluation of A [\P] as it is needed to evaluate the hypersingular operators Nj’j [fi] (see
Remark 5.6.1). In order to do so in the present context, we resort to Maue’s identity [71, 85]:

NP = K- 5P g+ s [ 2]
where n denotes the unit normal vector to the curve I'; 4 and where d/ dr denotes the tangen-
tial derivative along the curve I'j 4. Since f; can be viewed as a smooth periodic function, the
numerical evaluation of the terms n-SJ(.j’j)[n fil and Sg’j[dfj/ dr] from values of f; at an equi-
spaced grid {s;} C [0,27] is straightforward. The numerical evaluation of dS?’j[dfj/ dr]/dr,
however, requires special treatment. Since Sg’j[d fi/ dr] can not in general be smoothly ea-

tended as periodic function of the parameter s € [0, 2], the direct numerical differentiation
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of the S?’j[dfj/dT] obtained from its point-values at {s;} gives rise to Gibbs phenomenon
that destroys the accuracy of the numerical evaluation of right-hand-side A [\p), thus leading
to numerical errors in integral equation solution ¢°*.

In order evaluate dS?’j[dfj/dT]/dT with high (super-algebraic) accuracy, we first evalu-
ate the trigonometric interpolant of Sj’j[dfj/ dr| —which is explicitly provided by the Nystrom
method—on a Chebyshev grid {5,} C [0,2x]. Differentiating the Chebyshev interpolating
polynomial, which is constructed from the approzimate values of Sj’j[d fi/dr] at {3}, and
evaluating it back on the equispaced grid {s,}, we obtain the desired values of dSJj’j[dfj/ dr]/dr

at the original equispaced grid {s;} with super-algebraically small errors.

We now derive expressions for the evaluation of the total near fields. Letting

@i =u’|;- and = Ou’/On|;-,

J

we obtain that the scattered field u® = u — @/ satisfies the following jump conditions at I';:

s s ou’
u'l; =i — f; and o

= v — g;.

j+
From the derivations presented in Section 5.2, it thus follows that u® admits the integral

representation:

(D s (1) s u’(r), e,
Dy [} — fil (r) = 817 ] — ] (r) = o (5.43a)
O, rE RQ \ Ql)

DJ(-j) [905 _ f]] (r) — Sj(j) [l/ﬂﬁ - 9]’} (7)
ui(r), reQ,, (5.430)

DY ] () + SY Y [a] () = (5.43¢)
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Therefore, the substitutions: ¢} by wa@$”, and ¥ by w41;* in the formulae (5.43) yield

the following expression for the total near-field:

v = af+usw

;

DY [wagi” — fi] = S{” [way® — i) in Q,
a4 D [wags” = fi] = v3Sy [warss” — gj] (5-44)
DY [wapy] + SV [was] i Q, j=2,...,N -1,
L _DJ(VNil) [wA@f\}{J +S](VN71) [wAwf\}‘LJ in Qp,
where we have set [¢p™]; = [cp?w,ij]T, j=1,...,N — 1. Here the field u*" approximates

u® with super-algebraically small errors within a region around the surface defects.

Notice that the densities ¢* and ¢3*, j = 1,..., N —1, needed to produce the near-fields
utilizing (5.44) can also be obtained from the windowed integral equation (5.33) by setting
v =@ — {5; and 5" = ¥ — ij in (5.44). Thus, clearly, formula (5.44) provides a much

simpler formula than (5.37) to numerically evaluate the near-fields.

Remark 5.6.4. Note that, of course, the problem of scattering by smooth defects in a two-
layer problem can also be tackled by this method. In this case the resulting windowed integral
equation reads

E1 " + Ti[Wa@i"] = =My [¥p] on Tig, (5.45)

and the near-field approrimation is given by

DY fwagi® — fi] = i8S [wavys — g1] in Qi
W= (5.46)
—DfY [wagi] + S5 [wary”] in Q.
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(a) Defects with corners. (b) Smooth defects.

Figure 5.3: Dielectric structures utilized in the numerical examples presented in the present
Chapter 5.

5.7 Numerical examples

In this section we present a set of numerical examples designed to demonstrate the accuracy
and efficiency of the proposed multi-layer WGF method. In all the illustrations presented in
this section we consider problems of scattering of a plane electromagnetic TE-polarized wave
that impinges on a layered medium which contains localized surface defects (both smooth
and non-smooth) at the dielectric planar interfaces II;. The numerical results reported in
this section were produced using a Matlab implementation of our algorithms in a MacBook
Air laptop (early 2014 model). For the sake of definiteness, in all the examples considered
throughout this section, the value ¢ = 0.7 is utilized for the evaluation of the window
function (4.9) wa.

This section presents numerical results for the various LGF and WGEF algorithms in-
troduced in this thesis. Numerical errors for both the LGF and the WGF method were
evaluated by resorting to convergence analyses based on numerical-resolution/convergence
studies and/or increases in window sizes. Additionally, adequately accurate LGF solutions
(with accuracy guaranteed by convergence studies) were used to evaluate the accuracy of
the WGF approach. All of these methods for error evaluation are considered in this section.
Brief indications will be provided when necessary to indicate which method is being used in

each case.
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Figure 5.4: Relative errors in the integral densities resulting from numerical solution of (5.33)
for the structure depicted in Figure 5.3a by means of the WGF method, for various window
sizes and angles of incidence—including extremely shallow incidences. Left: log-log scale.
Right: semi-log scale. Once again we see that, the WGF method computes integral densities
with super-algebraically high accuracy uniformly for all angles of incidence.

In our first example we consider the dielectric structure depicted in Figure 5.3a, in which
semi-circular defects of radii a = 1 are placed at the planar interfaces II; = R x {0} and
II, = R x {—3/2} of the three-layer dielectric medium with wavenumbers k; = 10, ky = 20
and k3 = 30. Since the junctions of the defect with the planar interfaces give rise dielectric
interfaces I'y and I's with corners (see Figure 5.3a), we utilize the windowed integral equation
system (5.33) which is discretized by means of the Nystrém method described in Section 3.3
for various windows sizes A > 0 and incidences a. Figure 5.4 displays the maximum relative
errors in the total field produced by the WGF method on the surface of the semi-circular

defects (the curves marked in red in Figure 5.3a). Errors in log-log and semi-log scales for the
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various window sizes considered are provided in the left and right graphs, respectively. The
number of quadrature points was selected in such a way that for any given A > 0 the Nystrom
discretization error in the integral equation solution is not larger than 107°. The WGF
solution obtained for A = 32\ is utilized as the reference for the error estimation. As it can
be inferred from the error curves displayed in Figure 5.4, super-algebraic but not exponential
convergence is observed as A increases. These results, on the other hand, demonstrate that

the fast convergence of the WGF is independent of the plane-wave incidence.

’

(@) a=—m/2. (b) o = —m/32. (c) @ = —m/256.

(«m»)))

{({(

Figure 5.5: Total near field obtained for the solution of the problem of scattering by the
structure depicted in Figure 5.3a for various incidences. The near fields were computed
utilizing the expression (5.37)

In our second example we consider the three-layer medium presented in Figure 5.3b, with
the same interplane distances and layer dielectric constants, but for which the defects do not
give rise to corners: the overall scattering surfaces are smooth. The dielectric interfaces
'y and I's displayed in that figure are infinitely-smooth curves which are constructed by
suitably utilizing the graph of the function 7(t;ca,a), t € R, with @ = 1 and ¢ = 0.1,
where 7 is the function defined in (2.78). The windowed integral equation system (5.42)
is utilized in this case, which is discretized by means of the classical Nystrom method as
none of the dielectric interfaces has corners (see Remark 5.6.3). As in the previous example,
the integral equation system (5.42) is solved for various window sizes A > 0 and incidences
a € (—m,0). Once again, the maximum relative errors in the total field values on the surface
of the smooth defects—which correspond to the curves marked in red in Figure 5.3b—are

reported. The number of quadrature points is selected in such a way that for any given
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A > 0 the Nystrom discretization error in the integral equation solution is not larger than
10710, The reference solution utilized to estimate the error corresponds to the WGF solution
obtained with A = 32\. The resulting error curves are displayed in Figure 5.6 in log-log and

semi-log scales, which, once again, clearly demonstrate super-algebraic but not exponential

convergence as A increases.
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(a) Defect on T'y.
10° 10°
5 102 g5 102
50 g 10
(<5 5]
< [
5 2
-~ -~
= s
T 10 S 107
~ ~
—o—17/2 —o—171/2
——7/32 il ——7/32 i
o] | /256 ] o | 1/256 ]
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A/X

(b) Defect on I's.

Figure 5.6: Relative errors in the integral densities resulting from numerical solution of (5.33)
for the structure depicted in Figure 5.3b by means of the full WGF method, for various
window sizes and angles of incidence—including extremely shallow incidences. Left: log-log
scale. Right: semi-log scale. Once again we see that, the WGF method computes integral
densities with super-algebraically high accuracy uniformly for all angles of incidence.

In our third example, for which we compare the computational cost of the LGF and WGF
methods for a given accuracy, we consider a planar three-layer structure similar to those
considered previously, but now containing only one surface defect: a semi-circular cavity of

radius a = 1 at I1;. (The use of a single defect reduces somewhat the LGF cost which seemed
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Figure 5.7: Total near field obtained for the solution of the problem of scattering by the
structure depicted in Figure 5.3b for various incidences. Near fields were computed utilizing
the expression (5.44)

WGF method LGF method
K 2 4 8 16 32 2 4 8 16 32
Number of
unknowns 1232 | 1272 | 1348 | 1496 | 1800 | 68 148 300 596 1204
Matrix

3.44 | 3.53 | 3.98 | 5.78 | 7.29 | 6.49 | 22.15 | 82.86 | 319.46 | 1.9-10°

construction (s)

Table 5.1: Computing times required by the WGF and LGF methods to construct the
system matrices for the numerical solution of the problem of scattering of a plane-wave by

a semi-circular cavity or radius @ = 1 on a three-layer medium with wavenumbers k; = &,
ky = 2k and ks = 3k, with k =27/, j =1,...5.

inordinately large for the two-defect problem.) A plane-wave u™™® with o = —7 /6 illuminates
the dielectric structure. Five sets of wavenumbers given by ki = k, ky = 2k and k3 = 3k
with kK = 2/, j = 1,...,5 are considered. The resulting problems of scattering are then
solved by employing a Nystrom discretization of the WGF equations (5.33), and a numerical
version of (5.37) is used to evaluate near-fields. The same problem of scattering is then
solved, with a relative error not larger than 10~*, by means of a generalization to the present
three-layer case, of the two-layer LGF method presented in Chapter 3. The necessary layer
Green function for the three-layer medium was obtained in Section 2.3.3. The three-layer
Green function is numerically evaluated using a direct extension of the method described
in Section 2.3.5. The reference solution used to estimate the accuracy of the LGF solution

is obtained by solving the resulting LGF integral equation with an error not larger 10~
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(this accuracy is achieved by utilizing a large number of Nystrom quadrature points and

evaluating the layer Green function with an error not larger than 10719).

i s

5
(a) WGF solution for k = 8 and (b) LGF solution for x = 8 pro- (¢) Logarithm of the absolute value
A = 8 produced in 50 secs. duced in 9.6 - 10 secs. of the difference.
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(d) WGF solution for k = 16 (e) LGF solution for x = 16 pro- (f) Logarithm of the absolute value
and A = 8\ produced in 52 secs. duced in 2.6 - 10* secs. of the difference.
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(g) WGF solution for k = 32 and (h) LGF solution for k = 32 pro- (i) Logarithm of the absolute value
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Figure 5.8: Total near fields (real part) and logarithm of the absolute value of the difference
of the total near fields obtained by means of the WGF and LGF methods for the solution of
the problem of scattering of a semi-circular cavity of radius @ = 1 on a three-layer medium.
The angle of incidence is @« = —7/6 and the wavenumbers considered are k1 = K, ky = 2k
and k3 = 3k for kK = 8 (1st row), 16 (2nd row) and 32 (3rd row). The black lines represent
the domains where the respective integral equation formulations are posed.
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Table 5.1 displays the computing times needed by both methods to construct the system
matrices. In order to allow for a fair comparison of the computing times and the field values
on the surface defect, the same set of quadrature points is utilized to discretize the currents
on the surface of the cavity in each case. The number of quadrature points was increased
in direct proportion to the value of k. The maximum of the absolute value of the difference
between the LGF and WGF solutions (using A = 8\) on the surface of the defect is no larger
than 10~* in all the examples considered. Remarkably, in the x = 32 case the proposed WGF
method is 260 times faster than the LGF method.

Continuing with the single cavity problem, Figure 5.8 now presents a comparison of the
near fields obtained by means of the WGF and LGF methods for some of the wavenumbers
considered in Table 5.1. The first two columns in Figure 5.8 display the real-part of the
total near-fields produced by the WGF method (1st column) and by the LGF method (2nd
column), while the third column displays the (base ten) logarithm of the absolute value of
the difference between the LGF and WGF solutions for three different sets of wavenumbers.
The fields are evaluated in the rectangular region [—3,3] x [=7/2,2] at an uniform grid
of 280 x 200 points. Note that, as it follows from consideration of the figure captions, in
the k = 32 case the WGF near field evaluation procedure is up to 1200 times faster than
the corresponding LGF near field evaluation procedure—in spite of the fact that a (larger)
window size A = 16\ had to be used to produce accurate near fields throughout the plotted
region.

Our next example considers a dielectric structure consisting of nested circular surface
defects in a 9-layer medium given by I, = R x {(j —1)/5}, j = 1,...,8. The corresponding
wavenumbers are kgj_; = 15 for j = 1,...,5 and ky; = 30 for j = 1,...4. The structure
is illuminated by a plane-wave at normal incidence. The total field solution of the problem
of scattering is obtained by solving the integral equation system (5.33) with A = 12A.
Formulae (5.37) are utilized to evaluate the near field. The real part and the absolute value
of the total field are displayed in Figures 5.9a and 5.9b, respectively. A 97 seconds overall
computing time sufficed to compute the solution and produce the near field presented in

Figure 5.9. Note that, interestingly, a propagative mode that travels within the fourth layer
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is excited by the plane-wave incidence considered.

In the last example of this chapter we consider a 18-layer dielectric structure consisting
of smooth surface defects in a planar-layered medium given by II; = R x {(;7 — 1)/4},
J = 1,...,17. The wavenumbers in this example are given by ko;—1 = 15 and ko; = 30,
7 =1,...,9. The dielectric structure is illuminated by a plane-wave at normal incidence.
The total field is approximated by solving the integral equation system (5.42) with A = 12.
The expression (5.44) is utilized to evaluate the near field. The real part and the absolute
value of the total field are displayed in Figures 5.10a and 5.10b, respectively. The overall

computing time required to produce the solution displayed in the Figure 5.10 was 241 seconds.

-3 0 3

(a) Real part of the total field. (b) Absolute value the total field.

Figure 5.9: Real part (a) and absolute value (b) of the total field solution of the problem
of scattering of a plane electromagnetic wave impinging on a layered medium composed of
9 layers: koj—y = 15, j =1,...,5and ky; =30, j =1,...,4and II; = R x {(j — 1)/5},
j=1,...,8
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(a) Real part of the total field. (b) Absolute value the total field.

Figure 5.10: Real part (a) and absolute value (b) of the total field solution of the problem
of scattering of a plane electromagnetic wave impinging on a layered medium composed of
18 layers: kgj—; =15 and ky; =30, j=1,....9and I; =R x {(j —1)/4}, j=1,...,1T7.
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Chapter 6

Windowed Green Function Method
for layered media scattering: Three
dimensional case

This chapter extends the WGF method introduced in Chapters 4 and 5 to problems of
acoustic and electromagnetic scattering in three spatial dimensions. Integral field repre-
sentations and equations are presented for both acoustic and electromagnetic scattering
problems. The main features of the WGF approach are demonstrated through numerical
examples for problems of acoustic scattering. Once again, errors are evaluated as indicated
in the second paragraph of Section 5.7. In particular, the accuracy and performance of the
proposed WGF method are established in Section 6.1.4 by means of convergence studies as
well as comparisons with solutions produced by means of the LGF method introduced in
Section 2.4 for problems of scattering by sound-hard obstacles in two-layer media.

This chapter is structured as follows: Section 6.1 presents the WGF method for acoustic
three-dimensional scattering problems in the presence of two-layer media, including problems
of scattering by smooth defects and obstacles, and Section 6.2 extends these methods to the

electromagnetic case.

6.1 Acoustics scattering

This section extends the WGF method to acoustic three-dimensional scattering problems by

obstacles and surface defects in the presence of layered media. Such problems play important
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roles in a variety of contexts—in underwater ocean acoustics, for example, where the ocean
acoustic environment is often modeled as a layered medium; cf. [33, 65].

The problems of three-dimensional acoustic scattering bear many similarities with the
two-dimensional problems of electromagnetic scattering (or, equivalently, two-dimensional
acoustic scattering) considered in Chapters 3, 4 and 5. As a matter of fact, most of the results
presented in those chapters can be directly extended to three-dimensional acoustic problems.
For variety, this section presents examples incuding different types of configurations—such
as scattering problems involving two-layer waveguides and sound-hard bounded obstacles.

Throughout this section the fluid pressure in a layered acoustic medium is denoted by wu.
The pressure field satisfies Helmholtz equation Au + k*u = 0 with wavenumber k = w/c
where, as usual, w > 0 denotes the angular frequency, and where ¢ > 0 denotes the speed of
sound of the fluid layer. The Dirichlet boundary condition u = 0 is satisfied at sound-soft
surfaces such as, for example, the interface between a liquid and a gas; while the Neumann
boundary condition du/0n = 0 is satisfied at sound-hard surfaces such as, for example, the
interface between a liquid and a solid. Transmission conditions, on the other hand, which
correspond to the continuity of the pressure field v and continuity of the normal velocity

0 '0u/On (where o denotes the fluid density) are satisfied at the interface between two

different fluids; cf. [72].

6.1.1 Surface defect in a two-layer medium

We first consider the problem of scattering of a plane acoustic wave u™¢(r) = eF1ee=H1yy,
where ki, = ky cosa and ky, = m = —ky sin o, with incidence angle a = (—m,0), by
a smooth localized surface defect at the interface IT; between the half-spaces D; = {y > 0}
and Dy = {y < 0}. The resulting layered medium is composed by the unbounded domains
Q; and 5 whose common interface is denoted by I'y, which is assumed of class C*°.

The total acoustic field u—which satisfies the Helmholtz equation Au + k;?u = 01in Qj,

Jj = 1,2, and the transmission conditions u|;+ = u|;- and Ou/0n|;+ = vou/On|;- on I'y,
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where v equals p;/0,—is expressed as
u=u’ + ﬂf in Ql U QQ, (61)

Where, lettlng ko, = k1, and kgy = \/ l{?% — k%x if ky > ko, and kgy = 14/ I{Z%x — k% if ky < ]ng,
the field @/ is given by

_ eikmx—ik’lyy +R12 eiklmaf—&-iklyy in Qla
T12 elk%xilk%y n QQ,

in terms of the reflection and transmission coefficients

_ ]ﬁy — Vk?gy
kly + Vka

2k,

R — 7
2 kv + Vs,

and T12 =

respectively. In view of the derivations presented in Section 2.2.2, it is clear that 4/ coincides
with the total field solution of the problem of scattering of a plane wave 4™ by the planar two-
layer medium composed by the half-spaces Dy and D, in the regions D;N€2y and D>N€2;. In
particular, u/ satisfies the Helmholtz equation with wavenumber k; in €; and, furthermore,
it satisfies the transmission conditions |+ = /|- and du’ /On|1+ = vOu/ /On|,- at the
planar portions of the interface I'y: T'y N 15,

We thus obtain that u® = u — @/, which we refer to as the scattered field, satisfies:

Au® + Eu® = 0 in Q, j=1,2,
uS‘H = uslr"’_f on I,
ou® ou® (6.3)
= r
on L Uay 17 +g on 1y,
I \|{8“S k } 0 in Q) j=12
im |r|{—=—— —ikju’p =0 in g =1,2
\ [r|—o0 8|’r| J 7
where the functions f and g are given by
- ~ ou’ o’
f=u|.,-a_ and g=—| —v-—oI| . 6.4
|1+ |1 an |, on |, (6.4)
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Note that f,g € C°(I';) are supported on the (bounded) surface defect I'; \ II;.
From the results put forth in the contribution [53], which concern the integral represen-
tation of scalar fields scattered from two-dimensional unbounded rough surfaces, we obtain

that u® admits the integral representations:

u*(r), 7€,
Di[p* = fl(r) = Si[vy* =gl (r) = - (6.5)
O, TERs\Ql,

U,S(T‘), S QQ,

=Dy [¢*] (r) + S [¥°] (r) = - (6.5b)
0, reR3\D,

where ¢* = u’|;- and ¥* = Ou®/On|;-. The layer potentials in (6.5) are defined by the

two-dimensional (conditionally convergent) integrals

S0 = [ G (o) dse and Dol - [ Ok e e )p(r) s, (6.6)

T an:,-l

in terms of the three-dimensional free-space Green function:

eikﬂ'r—r’\

G, (r,7") (6.7)

T dxfr— 7|

In view of the discussion presented by DeSanto and Martin in [53], no additional terms
involving plane- or cylindrical-waves arise in the expressions (6.5), as the scattered field
u® satisfies the Sommerfeld radiation condition, and both surface densities f and g are
compactly supported functions.

Hence, following the procedure described in Section 5.6, which entails combining the
expressions that result from evaluating (6.5) and their normal derivatives on I'y and using

the jump relations:

Sl =510l Sld| =75+ Kifg),
5 1= 5 (6.8)
Dildl| =Nl Difell. =5 + Dylol

A 2
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where
/ !/ aGkJ !/ /
Silolr) = [ Guaor)dse Dol = [ G o) dsy,
1 1 T
(6.9)
aGk:‘ / / 0 aij / /
KJ [¢]<T) - I anr (7’, r )¢(T ) ds'r"7 NJ [Qb]('r') - anr I anrl (’l”, r )Qb('r' ) dSr/,
for r € I'; and for j = 1,2, we arrive at the integral equation system
E¢°+T[p°]=—M[p] on Iy, (6.10)
where
, o f 1 0
¢ = ) 'l,b = s E = 1w
P 9 0 =5
D, -8 Dy— Dy =S, +vS
M:%Id—i- ' ' and T = 2 ! 2T
Nl _Kl NQ—Nl —K2+I/K1
Letting W4 = wal, where [ is the 2 x 2 identity matrix and
x z
wa(z,2) = wa(z)walz) =n (Z’C’ 1) n <Z’ c, 1> , (6.11)

with 7 denoting the window function defined in (2.78), the resulting windowed integral

equation system is then given by

E¢™ + T[Wap™] = —M[p] on Ty (6.12)

As in the two-dimensional case presented in Chapter 4, the window size A > 0 is selected
in such a way that the truncated interface Iy = I'y N {wy # 0} contains the surface
defect T'y \ T1;.

Results on the existence and uniqueness of solutions for the integral equation (6.12) can
be obtained, at least for smooth surfaces I'y 4, in view of the fact that the integral operators
Dy — Dy, Sy —vSy, Ny — Ny and Ky — v K are given in terms of weakly singular (integrable)
kernels (cf. Appendix D).
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Letting then ¢*" = [p**, 1**]T denote the solution (6.12) and following the substitutions:
©® by wae®™ and 1° by wa1)*” in the representation formula (6.6), we obtain the following

expression for the total near-field:

D, [WAQDW - f] - vS [WAWUS - g] in €,
u’ =ul + (6.13)

—Ds [wap®™] + So [War)®™] in €,

where the function @/ is defined in (6.2).

6.1.2 Two-layer waveguide

In this section we consider the open waveguide structure composed by the acoustic media
Dy ={y >0} and Dy = {—dy < y < 0}, with wavenumbers k; > 0 and ky > 0, respectively,
and the half-space D3 = {y < —dy} which is assumed such that either sound-hard (Neumann)
or sound-soft (Dirichlet) boundary conditions are satisfied at the planar boundary Iy = {y =
—dy}. For the sake of presentation simplicity we only consider the sound-hard boundary
condition (the case of the sound-soft boundary condition is completely analogous). Structures
of this kind receive various names in the literature, including two-layer waveguide, Pekeris
waveguide, and acoustic substrate.

As is well-known, the finite thickness layer D, can support modes that propagate along
any horizontal direction such as e.g., the direction of the x-axis. These modes u,, are obtained
by solving the Helmholtz equation by the method of separation of variables and enforcing
the conditions Ou,,/On = 0 at Ily, boundedness as y — 400 and continuity across Il;; the
result is

e_\/my in Dy,
U (T, ) = €677 L cos (m(x I d2)> | (6.14)
o (ﬂ@) in Ds.

Enforcing the condition Oup,/On|p+ = vOum/On|y- at II; = {y = 0} we thus obtain the
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following algebraic equation for the constants &,,:

V€2 — k2 = v\ /K2 — €2 tan (,//cg—ggn@). (6.15)

Solutions &,, > 0 of (6.15) satisfying the condition k; < &,, < ks are known as propagation
constants and the associated solutions u,, are known as propagation modes.

We thus consider the problem of scattering of a propagation mode u,, by a surface defect
at the planar interface II;. In order to formulate the corresponding integral equation we

express the total field u in the form u = u* 4+ @/ where @/ is now given by

_ 2 _ 1.2 .
e~ Vém—kiy in Qq,

W (z,y) = ¢ cos (\/kg e (z+ dQ)) (6.16)
in 9.
cos <\//<:§ — f?nd2> n

Utilizing the results put forth in [53] once again, it can be shown u® admits the representa-
tion (6.6) in terms of the functions f and g in (6.4) (with u/ defined in (6.16)) and the layer
potentials Dy and S, in (6.5b) which are defined by the expression that is obtained as the

Green function
ékz (’l", ’I"/) = GkQ (’I", r/) + sz (er/)’ ¥ = (x/a _y/ - 2d27 Z’),

is used instead of the free-space Green function in equation (6.6). Thus, the unknown field
values u®|;- = ¢® and Ou®/dn|;- = 1* at the interface I'; can be approximated by solving
the WGF integral equation system (6.12), and the near-field can be evaluated utilizing the

expressions in (6.13).

6.1.3 Sound-hard obstacle in a two-layer medium

We now consider the problem of scattering of a plane acoustic wave by a sound-hard obstacle

in a two-layer medium. The obstacle, which is denoted by D, is assumed to be completely
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embedded in one of the layers. The total field thus satisfies

ou Oou oul

In this case the integral representation formula for the scattered field u® = u — @/ (with o/

defined in (6.2)) in the exterior of the obstacle R®\ D, is given by

u*(r), »€ U\ D,
Dilg® — f1(r) = Si [vy® — g (r) + DY [u] (r) = ST o] () = (6.17a)

0, reR3\Q,

u*(r), 7€y,
=Dy [¢*] (r) + S2 [¥°] (r) = _ (6.17b)
O, T e RS \ QQ,

if D c Qy, and

u*(r), 7€ Q,
Dile® = fl(r) = Si [y — gl (r) = _ (6.18a)
0, T c Rg \ Ql,

us('r), S QQ\E,
~Da "] (r) + S [v°] (r) + D3 [u] (r) = S [o] (r) = __ (6.18Db)
0, T E Rg \ QQ,

if D C Qy, where u®|g = p and 8u3/8n’5 = —E)ﬂf/(?n}s = 0. The layer potentials D and
SJS are defined by the expression that is obtained as the surface of the bounded obstacle S

is used instead of the interface I'y in equation (6.6).

Letting
D} [u]
R =—| 5 : and R |7 | = (D [e] - S W]} |
=D [u]| v

for 7 = 1,2, the resulting WGF integral equation system (for the unknown densities ¢** and
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1** defined on I'1 4, and the density p* defined on the surface of the obstacle S) is given by

(
) / S
E¢’ 4+ T [Wag™ ]|+ R[] = —M — P on I'i4,
g |
on r (6.19a)
w y WASosw
5+ D) + RS =S¥ [o] +{D1[f] = Silglt |5 on S,
I/WA¢8w
if D C )y, and it is given by
( S
g f Sy o] -
E¢®™ + T [Wa™ ]+ R[] =—-M - 5 on I'ig,
g ]
on r (6.19b)
B DS - R | | =85 on S,

if D C €, where the integral operators SJS and Df are defined as in (6.9) but in terms of
integrals over S instead of I';.

The total near-field can then be approximated by means of the expressions

Dy [wap™ — fl = vSy [way™* — g] + DY [u] (r) = S [o] (r) in Q1 \ D,

uw’ =ul +
—Ds [Wap™] + S [warp™] in Q,
(6.20)
it D CQ, and
D1 [wap®™ — f] — vS1 [wah™® — g in €y,
u" =ul + (6.21)
—Dy [Wap™] + Sa [wath™] 4+ D3 [1] () = S5 [0] (r) in O\ D,
if D C Q.

For problems of scattering by obstacles in a planar layered medium without surface defects

(I'y = II;) the far-field pattern of the scattered field u® can be directly evaluated from the
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field values at the surface of the obstacle. In fact, following the derivation in Lemma 4.2.6
but utilizing the two-layer Green function in three-dimensions (2.40), it can be shown that

the scattered field is given by the expression

u(r) = /S { oG (ry Y u(r') + G(r,r’)a(r’)} ds,, re€R*\D.

anw

Thus, using the far-field pattern of the layer Green function (2.73) and its gradient (2.74)

we obtain

Uoo (T) = /S{n('r’) cH (P, 7 )pu(r') + G (7, 7)o (')} ds,. (6.22)

6.1.4 Numerical examples

This section presents numerical examples concerning the acoustic problems described above
in this section. The relevant systems of integral equations are discretized by means of (an
unaccelerated version of) the high-order Nystrém method put forth in the contributions [27,
29] which has been coded in Fortran 90. The material interfaces present in these examples are
assumed to be infinitely smooth. For the sake of definiteness in all the examples considered
throughout this section, the value ¢ = 0.7 is utilized for the evaluation of the window
function (4.9) w4. The resulting linear systems of equations are solved iteratively by means
of the GMRES algorithm. For simplicity, no acceleration of any kind has been utilized to
perform the matrix-vector products, so that a cost of O(N?) operations, where N is the
number of unknowns, is required for each GMRES iteration. Much better computational
times would be obtained, of course, should an accelerated iterative or non-iterative linear
algebra solvers were used; cf. [13, 17, 29, 59].

Our first example deals with the problem of scattering of the plane-wave u™(r) =
giki(zeosatysine) with o = —7 /4, by a sound-hard sphere (of radius 1 and centered at (0, 3,0))
above a flat penetrable acoustic half-space. The wavenumbers are k; = 5 and ky = 10 in
the upper and lower half-spaces Dy = {y > 0} and D, = {y < 0} respectively (see Fig-
ure 6.1c). The scattering solution is obtained by means of the integral equation (6.20) for

various window sizes A > 0. Figures 6.1a and 6.1b display the resulting maximum field
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(a) Relative maximum error on the obstacle in log-  (b) Relative maximum error on the obstacle in
log scale. semi-log scale.

(c) Absolute value of the total field for the smallest (left) and largest (right) windowed regions
considered. The section of the planar interface shown in each case coincides with the region in the
plane where the corresponding windowing function w4 does not vanish.

Figure 6.1: Convergence of the WGF method applied to a problem of scattering of a spherical
sound-hard obstacle in a two-layer medium of wavenumbers k&, = 5 and k; = 10, at an
incidence of & = —m /4 with respect to the planar interface.

errors on the surface of the sphere in log-log and semi-log scales, respectively. The reference
solution used for error estimation is the WGF solution obtained with A = 25 &~ 19.9\. The
number of quadrature points is selected in such a way that for any given A > 0 the Nystrom
discretization error in the integral equation solution is not larger than 1075, The GMRES
tolerance utilized in this example was set at 1075. Clearly, super-algebraic convergence is
observed as the window size A > 0 increases. Figure 6.1c, on the other hand, displays the
absolute value of the total fields ¢ +u/ on I'i4 and p® + u/ on S for A = 2.5 (left) and
A = 25 (right)—where, remarkably, the WGF field is produced with an accuracy better than
1072 for the small window size displayed in left image in Figure 6.1c A/\ = 1.99.
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z
(a) Far-field pattern us (7) in absolute (b) Difference between the WGF and LGF
value. far-field patterns.

Figure 6.2: Far-field pattern obtained by means of the WGF and LGF methods for the
solution of the problem of scattering of a sound-hard bean-like obstacle in a two-layer medium
with wavenumbers k; = 10 and k; = 20. Only the WGF pattern is displayed in (a); the
LGF pattern appears identical.

In our second example we consider the problem of scattering by a sound-hard bean-like
(see Figure 2.10) scatterer centered at (0, 3,0) in the two-layer medium of the example above
with wavenumbers k; = 10 and ks = 20 under plane-wave illumination with « = —7/4. The
resulting problem of scattering is solved by means of the WGF method, using the integral
equation (6.20) and the formulae (6.20) for the near-field evaluation; and by means of the
LGF method described in Section 2.4.

The layer Green function (2.40) used for the LGF method is approximated with a rel-
ative error of at most 10~* by means of the algorithm presented in Section 2.3.5. In the
present example the obstacle is located relatively far from the interface II;, which implies
that the integrands in the corresponding Sommerfeld integrals (2.41b) decay exponentially.
Consequently, the needed Sommerfeld integrals are easier to evaluate than those arising in
problems of scattering by surface defects, such as the ones considered in Chapters 3, 4 and 5.
The exact same Nystrom quadrature points are utilized by both WGF and LGF methods
to discretize the surface of the bean obstacle, which is parametrized using two overlapping
patches containing 100 x 100 quadrature points each. The maximum value of the difference
between the far-field patterns, given by (6.22) in the case of the WGF method and by (2.88)
in the case of LGF method, is 7.2 x 1073 (Figure 6.2 displays the far-field pattern as well
as the absolute value of the difference). Utilizing a GMRES residual tolerance of 10~ the
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(b) Two views of logarithm of the absolute value of the difference between the WGF and LGF solutions.

Figure 6.3: Solution of the problem of scattering of a plane acoustic wave by a sound-hard
obstacle in a two-layer medium using the WGF method. First row: total fields. Second row:
solution errors, evaluated as the absolute value of the difference between the WGF solution
and a well-resolved LGF solution. Wavenumbers k; = 10 and ko = 20.

WGF linear system for A =5 ~ 4\, with 40,000 unknowns, required 66 iterations to achieve
the imposed tolerance; while the LGF linear system with 20,000 unknowns required only 36
iterations to achieve the tolerance. In spite of the differences in the number of unknowns and
the number of GMRES iterations, the proposed WGF method was 94 times faster than the
LGF method in producing the corresponding integral equation solution (the WGF method
was 173 times faster than the LGF method in performing one GMRES iteration). For the

same scattering configuration with the obstacle now centered at (0,3/2,0), the WGF method
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(b) Absolute value of the total field.

Figure 6.4: Total field solution of the problem of scattering of the plane acoustic wave
u™(r) = etkr(@eosatysing) with o = —7 /4, by a cavity in a two-layer medium with wavenum-
bers k; = 5 and kg = 10.

computes the solution 123 times faster than the LGF method. Figures 6.3a, finally, display
the absolute value of the fields obtained by the WGF method on I'y 4 (for A = 10 = 8)), S
and a plane-perpendicular to II;, while Figures 6.3b display the logarithm of the absolute
value of the difference between the WGF and LGF solutions on the same aforementioned
surfaces.

Our next example concerns the problem of scattering of a cavity in a two-layer medium
with wavenumbers k; = 5 and ks = 10 under plane wave illumination: uinc('r) — gtki(zcosatysina)
with @ = —m/4. The smooth material interface I'; coincides with the graph of the function

y = —2n (\/ x? + 22, ca, a), where 7 is the window function defined in (2.78) with a = 5 and
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Figure 6.5: Absolute errors for the three-dimensional surface defect problem described in the
caption of Figure 6.4 for A = 8,12 and 16. The section of the planar interface shown in each
case coincides with the region in the plane where the corresponding windowing function w4
used does not vanish.

H T

(b) Absolute value of the total field.

Figure 6.6: Total field solution of the problem of scattering of a plane acoustic wave u™¢(r) =
gihi(weosatysine) with o = —7/4, by a bump on a two-layer waveguide, with wavenumbers

]{Zl =5 and kQ = 10.

¢ = 1073. The problem of scattering is solved by means of the windowed integral equa-

tion (6.10) and the near field is evaluated by means of (6.13). Two different views of the real



192
part and the absolute value of the total field are displayed in Figure 6.4. In order to assess
the error in the scattering solution we consider various window sizes: A = 8,12 and 16.
The resulting scattering solutions for the aforementioned three window sizes are compared
against the solution obtained for A = 20 in Figure 6.5, which displays the absolute value of
the difference of the fields values on I'; 4.

The final example of this section concerns the problem of scattering by a surface bump
in a two-layer waveguide with wavenumbers k; = 5 and ko = 10 in the D; = {y > 0} and
Dy = {—4 <y < 0}. A Neumann boundary condition is enforced at II, = {y = —4}. The
incident field is taken to be equal to the the mode u,, defined in (6.14) for &,, = 7.62899157,
which is obtained by solving equation (6.15). Figure 6.6 displays two views of the real part
and the absolute value of the total field.

6.2 Electromagnetic scattering

This section presents our derivation of the WGF method for the numerical solution of prob-
lems of electromagnetic scattering of plane waves by surface defects in the presence of planar
two-layer media. These derivations can easily be generalized to problems of scattering by
defects in multi-layer media and two-layer waveguides as well as problems of scattering by
PEC bounded obstacles in the presence of layered media in three spatial dimensions, by
following the procedures described in Section 5.6 for the two-dimensional electromagnetic
and in Section 6.1 for three-dimensional acoustic scattering problems.

We thus consider the underlying two-layer flat-interface medium containing the dielectric
or conducting half-spaces D; = {y > 0} and Dy = {y < 0} with material properties as
described in Section 2.2.2. The incident plane-electromagnetic wave (E™¢, H™) we use is
defined in (2.12). The dielectric interface bearing the bounded surface defect, which is
assumed infinitely smooth, is denoted by I';. The resulting layered medium is composed by
the domains €2; and 2.

Following the ideas presented in Section 6.1.1 for the three-dimensional acoustic case, we

express the total electromagnetic field (E, H)—which satisfies Maxwell’s equations (2.1)—in
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the form

(E,H) = (E*,H*) + (E/ H/),

where (E/, H/) is given by

B = 2=z .- — E.e.,, 6.23
we Oy T o oz v T (6:23)

. i OF i OF ~
H = ———Ze, + ——= H.e,, 6.24
wu@ye+wuaxey+ © ( )

in terms of
e—iklyy +R'1I‘2E eiklyy in Ql7

E.(z,y) = Eye*a® ' (6.25)
TIBe-ikay  in O,
and
~ A e thwy 4 RTIM eihiy in - Q)
H.(z,y) = Hyerree 12 ! (6.26)

TEM e=ikzyy in Qo
and where, as detailed in equation (6.27) below, (E®, H®) satisfies a condition of radiation at
infinity. (The definitions of the constants k., k;, for j = 1,2, and R]M, RIF, TLF and THHM
are given in Section 2.2.2.) In view of derivations presented in Section 2.2.2 we find that, in
the domains Dy Ny and Dy N Q,, (E/, HY) coincides with the exact solution (Ef, HY) of
the problem of scattering by the flat plane.
In what follows we seek an integral equation for the scattered field (E*, H?). This field

satisfies the equations

(

curl E* — jwy,;H? = 0 in Q, j=12

curl H* + iwe ; E° = 0 in Q;, j=12,
an5‘+—n><Es|_ = f on I'h,
anS‘+—anS|_ = g on I'y, (6.27)

lim (Her—m ﬁES) =0, req;, j=12

|r|—o00

J

Jim (Eer+|r| ﬁHS) — 0, reQ, j=12
L r—00 J
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where the tangential vector fields f, g € C°(I'y), which are given by
f:nxf}f|_—nxﬁf‘+ and g:nxﬁf_—nxﬁf+,

are supported on the defect T'; \ II;. Here, for a field F defined around the surface I'; we
have used the notation

F|, =limF(r+hn), rely.

+ h—0
h>0

Existence and uniqueness results for the solution E*, H* € H..(curl; R?) can obtained by a
slight generalization of the results presented in the contribution [49].

From the Stratton-Chu integral representation formulae [45, 121] and the ideas put
forth in the contribution [53] for the integral representation of the scattered field by a two-

dimensional rough surface, it can be shown that the electromagnetic scattered field satisfies

curl [ Gy, (r,r") [m(r") + £(r")] ds, + Lg curlcurl [ Gy, (v, 7")[j(r') + g(r")] ds,
Iy we Iy

Es(’l“), S Ql,
0, reR\Q,

curl/F Gr, (r, ) [§J(r") + g(r")] dsp — . curl cuﬂ/F Gi, (r,r") [m(r") + £(r")] ds,

Wi
H*(r), r e Q,
0, reR\O
(6.28a)

and

i . —E*(r), r € Qy,

curl [ G, (r,r")m(r") ds,, + — curl curl/ Gr,(r,7")j(r") dsp = -

Iy We2 Iy 0, re R3 \ s,

' —H?*(r), r € Q,

curl [ Gy, (r,r)j(r") ds, —  curl curl/ Gr,(r, " )m(r")ds, = (r) _2

I WHz2 Iy 0, re R3 \ Q,

(6.28b)
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where

j=nxH’_ and m=nxE°’_

denote the tangential component of the magnetic and electric fields respectively and where G,
denotes the free-space Green function (6.7).

From the identity curlcurl A = Vdiv A — AA and the fact that Gi(- — r) satisfies the

homogeneous Helmholtz equation in R* \ {r # v’} and V,Gi(r,7") = —V,.Gi(r,r'), we

obtain

curl curl/ Gr(r,r)a(r')ds, = =V [ VuGi(r,r")-a(r')ds. + k:2/ Gr(r,r")a(r’) ds,.
I Iy I

Utilizing the surface integration-by-parts formula in [45, Equation 2.73] this identity becomes

curlcurl/ Gr(r,7Na(r')ds,, = V Gk(r,r’)diva(r’)dsr/+k2/ Gr(r,r)a(r’) ds,,
I

Fl l—‘1

where a and diva are assumed to be continuous on I';.
Evaluating the expressions (6.28)—utilizing the jump relations of the associated poten-
tials [45, Theorems 2.17 and 2.26]—and taking cross product with the normal n from the

left, we obtain the identities

DKl + ST = - Kilf) - —Tifgl (6.203)
—y K- T = D - Kfgl+ T, (6.29b)
5 + Kalm) + WL@Tz[J] = o, (6.29¢)
J +Ko[j] - LTﬂm] = 0, (6.29d)
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on I'y, in terms of the boundary integral operators

Kfal(r) = n(r) x /F el Gy (r.7)a(r) sy (6.30a)
S;fal(r) = n(r) x /F G 7)) dy. (6.30b)
NJfal(r) = n(r) x [ V.G () dive,alr)dsy (6.30¢)
Tfr) = i) x cmlewl [ Gy (r.r)alr) ds, (6.30d)

= Njla](r) + k2S;[a](r),

defined for » € I'y and j = 1,2. Clearly, as corresponding operators in the two- and three-
dimensional acoustic cases, the scattering operators in (6.30) are given by integrals which
are only conditionally convergent.

Suitably combining the identities in (6.29) we obtain

(&;&)m+@ﬂ9‘”&HM+£““—TNH=—%fwﬂam+£ngL
» (6.31)
(Ml ;M) J+ (peKe — mKy) [j] - é (Ty — Ty) [m] = —%g + Ky [f] — £T1[g]-

The system of integral equations (6.31) for the surface currents j and m can be expressed in

the form
E¢+T[¢]= Mg on T, (6.32)
where
€2+ €1
[m : (5) o
o= |, = . E= ,
J g 0 M
2
1 1
EQKQ — €1K1 — (T2 — Tl) —% Id +€1K1 _Tl
T = ‘ w and M = ) w
1 1
—— (T —T1) pKo—mK, ——T; —% Iy +m Ky
w w

Therefore, the resulting windowed integral equation system for the three-dimensional elec-
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tromagnetic scattering problem is given by

E¢®™ + T[Wad™] = —M[th] on Iy, (6.33)

where, using the 2 x 2 identity matrix [ together with the window function wy defined

in (6.11), we have denoted W4 = wal and I'y4 = 'y N {wa # 0}.

Remark 6.2.1. The operators K;, j = 1,2, (equation (6.30a)) and Ty — T; (see equa-

tions (6.31) and (6.30d)) are weakly singular. This follows directly for K; by consideration
of the identity

n(r) x Curl/r Gr(r,r)a(r’) ds, :/1“ n(r) x curl, {a(r)Gg(r,r")} ds,

1

— [ L) n)) - a6V, Gurr) - L rae) L ds,
/F1 { on,

To establish the corresponding property for To — T4, on the other hand, we define the scalar
function ¢ = Gp,(-,7") — Gg,(-,7") and we consider a vector field a(r") tangential to the

surface I'y at the point v' € I'y. Then, utilizing the identity

curlcurl(pa) = curl (V¢ x a) = —a Ao+ (a- V)Vo
we obtain

curlcurl(¢p a) = a {k3Gp, (-, ') + 6 — ki Gy, (-, 7") — 6, }
+ (a ’ V)V {sz('> 'I“/) - Gk1('v TI)} (634>
=a {kSGb("T,) - k%Glﬂ('?’r,)} + (a ’ V)V {Gk2("r,) - Gk1('7 T/)} :

Letting v = (x1, 22, x3) and " = (y1, Y2, y2), the second partial derivatives of the free-space

Green function can be expressed as

PGy ., f(r) rf" = f'(r)
. pu— 52' >
pikr e (r2k? + 3ikr — 3) .
- g 47r5 (i —wi)(z; —y5), 45 =1,2,3

(zi —yi)(zj — y5)
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where f(r) = e*" /(47nr), r = |r| and r = r — v'. Therefore we have

1 .. .
(a-V)Vo¢ = o {e™" (ikyr — 1) — ™7 (ikyr — 1)} a

1 , 4
s {e™"(r*k3 + 3ikor — 3) — ™7 (ki + 3ikyr — 3)} (- 7))
r
k3 — k2 k3 — k2
s 2T g (a-7r) r+0(1)

as r — 0, and consequently

(13- k), K= I

- oy (a-r)r+0O(1) as r—0,

curlcurl(pa) =

which embodies the weakly singular character of the operator To — T4.

Results on the existence and uniqueness of solutions for the integral equation (6.12) can
be obtained, at least for smooth surfaces I'y 4, in view of the fact that the integral operators
eoKo — 61Ky, Ty — T and oKy — 11Ky are given in terms of weakly singular (integrable)
kernels (cf. Appendix D).

Once the solution ¢ = [m®,j*]7 of the windowed integral equations (6.33) have been
obtained, the corresponding near fields can be by substituting m* by wym® and j by wuj"

in (6.28). We thus obtain the near-field expressions

EY(r) = E/(r)+curl [ Gy, (r,r") {wam® (") + £(r')} ds,
'
—|—L5 curlcurl [ Gy, (r,7") {waj*(r') + g(r")} ds,,
w
N ! = (6.35a)
H"(r) = H/ (r)+curl | Gy, (r,7) {waj(r") + g(r")} ds,

'

— cwlewl G, (r, ") {wam®” (r") + £(r")} ds,,
W I
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in €4, and

E"(r) = E/(r)— curl / Gy (7, 7 ) wam®™ (r') s,
I'
' el Curl/ Gy (7, 7" )wa j(r") ds,,
we i (6.35b)
H"(r) = H/ (r)— curl / Gy (7,7 )wa j° () dspe
I'

T Curlcurl/ G, (r, ") wam® (r') ds,,
W2 Iy

in QQ.



200

Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis has introduced a variety of highly-efficient high-order boundary integral equation
methods, including, most notably, the WGF method, for the numerical solution of problems
of acoustic and electromagnetic scattering in the presence of planar layered media in two and
three dimensions. The WGF method, which is based on use of smooth windowing functions
and integral kernels that can be expressed directly in terms of the free-space Green function,
does not require evaluation of expensive Sommerfeld integrals. It was shown that, indeed,
the WGF approach is fast, accurate, flexible and easy to implement. The formal analysis and
numerical experiments presented throughout this thesis demonstrate that both the near- and
far-field errors resulting from the proposed WGF approach decrease faster than any negative
power of the window size.

A number of other efficient algorithms and studies applicable to various layered media
scattering problems have been also presented in this thesis, including a Sommerfeld-integral-
based high-order integral equation method for problems of scattering by defects in presence
of PEC half-planes and dielectric/conducting layered media as well as studies of resonances
and near resonances at surface defects and their impact on the absorptive properties of rough

surfaces.
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7.2 Future work

This thesis work points to a variety of interesting future research projects. For example,
unlike the LGF method, the WGF method can directly be utilized in conjunction with
the convolution quadrature method put forth in [82], to effectively tackle layered-media
scattering problems in the time domain. In order to construct a time-domain solution,
the convolution quadrature approach requires solution of a large number of time-harmonic
problems that can be efficiently solved by means of the WGF method. Another promising
research direction concerns an extension of the WGF method to wave propagation and
scattering problems in linear elasticity (cf. [56]). For example, a WGF method in this context
would be well suited to handle various problems in geophysics and seismology. Yet another
possible extension of the WGF method would make it applicable to problems of scattering by
complex highly heterogeneous obstacles in layered media, by coupling the WGF method with
a finite element method or other volumetric solver through an artificial boundary enclosing
the obstacle.

The multi-scattering phenomenon that naturally arises in the multi-layer configurations—
as the fields inside finite-thickness layers might get reflected infinitely many times by the
unbounded dielectric interfaces—leads to larger number of GMRES iterations. The design
of the an efficient preconditioners to accelerate the convergence of the GMRES algorithm,
in this case, is indeed another topic that should be addressed in future contributions.

The pseudo-resonance phenomenon and its connection to electromagnetic power absorp-
tion in rough conducting surfaces, discussed in Section 3.5, certainly deserves further study.
It would be interesting, for instance, to establish a clear mathematical connection between
the location of the scattering poles and the enhancement of electromagnetic power absorption
that takes place at certain anomalous frequencies. From a numerical analysis perspective,
in turn, the problem of finding the scattering poles by analyzing the (non-linear) spectrum
of the relevant integral operators poses a challenging but tractable problem which could ad-
ditionally give rise to potentially important understanding in the area of power absorption
by rough surfaces.

To conclude this section we mention, among a variety of possible future applications and



202

dielectric substrate

D

PEC

Figure 7.1: Idealized microstrip antenna configuration.

extensions, the important problem of simulation of printed circuit boards and microstrip
antennas (sometimes called patch antennas). A more detailed description of this problem

and the progress so far achieved in these regards are presented in the following section.

7.2.1 Accurate and efficient microstrip-antenna simulation

Dielectric layer-media models are often utilized in the analysis of printed circuits and mi-
crostrip antennas [6, 43, 67, 95, 96]. A microstrip antenna, for example, consists of a ra-
diating patch on one side a dielectric substrate, which has a PEC plane on the other side
(see Figure 7.1). Microstrip antennas enjoy several advantages compared to conventional
micro-wave antennas: they are lightweight, they require a reduced volume, they can be fab-
ricated inexpensively, and they can be designed for dual-frequency and dual polarization
operation [57).

As is known, the numerical simulation of patch antennas encounters two main mathe-
matical difficulties, namely, the singular character of the surface currents along the edge of
PEC patches, and the presence of the air-substrate dielectric interface (often assumed to be
flat and unbounded) at which suitable transmission conditions have to be enforced. In fact,
standard analyses of microstrip antennas rely on the layer Green function and associated in-
tegral equation on the PEC patches. Typically, such integral equations are then discretized
by means of (low-order) boundary element methods [108]. This solution procedure suffers
from several difficulties. On one hand it does not accurately account for the singularity of
the surface currents at PEC patches and, on the other hand, it is extremely costly (as the

Sommerfeld integrals have to be numerically approximated for the source and observation
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points right at the dielectric interface; see discussion in Section 2.3.5).

This problem can in fact be efficiently and accurately solved by means of the WGF
method. To illustrate this fact in the two-dimensional case, we consider the problem of
scattering by a PEC patch placed at the planar interface between two dielectric half-planes.
The windowed integral equation (4.19) is suitably modified to enforce the corresponding
(TE or TM) PEC boundary conditions on the patch. The resulting new integral equation
system is then discretized by means of a Nystrom method that properly resolves the edge
singularities of the surface currents at the patch endpoints. Figure 7.2 displays the diffraction
patterns that result from the scattering of a point-source (Figures 7.2a) and a pane-wave

(Figure 7.2b) by the aforementioned structure.

N

Ii

(b) Plane-wave incidence.

Figure 7.2: Scattering by the PEC patch S = {(z,y) € R?: |z| < 1,y = 0} at the interface
I, = {y = 0} of a two-layer medium with wavenumbers k; = 20 and ky = 30 in TE
polarization. First row: real part (left) and absolute value (right) of the total field solution
of the problem of scattering of a point source (centered at ' = (—1,0.2)). Second row: real
part (left) and absolute value (right) of the total field solution of the problem of scattering
of a plane-wave (o = —m/4).

In order to extend this solution procedure to the three dimensional case, a suitable open
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surface scattering solver is required. The following section presents our progress in this
direction. The resulting open surface scattering solver could then be suitably combined with
the three-dimensional electromagnetic WGF method presented in Section 7.2.2 to provide

an effective solver for the patch antenna problem.

7.2.2 Electromagnetic scattering by three-dimensional open sur-

faces

Let S C R3 be a bounded open infinitely smooth surface that models an infinitely thin perfect
electric conductor (PEC) sheet, and consider an incoming time-harmonic electromagnetic
field (E"¢, H'™) (2.12) that impinges on S, giving rise to a scattered electromagnetic field
denoted by (E*, H®). As the surface is assumed perfectly conducting, the total electric field
tangent to the surface, n x (E* + E"™) (where n denotes the unit normal on S), vanishes

on S. The scattered electric field is then determined as the solution of the Maxwell’s problem

curlcurl B¢ — k?E* = 0 in R3\S,
nxE* = —nxE"™ on S, (7.1)

lim (curl E® x r — ik|r|E®) = 0.

|r|—o00

In view of the Stratton-Chu formula, on the other hand, the scattered electric field admits

the integral representation
E’(r) = zk/ Gr(r, ) j(r") ds, + %V/ Gr(r,r") divs j(r') ds,., reR¥*\S, (7.2
S 5

in terms of the surface current density j. From the boundary condition on the PEC surface
it follows that j (which physically corresponds to the jump of the tangential magnetic field:
j=+/¢e/un[n x H? on S) is a solution of the boundary integral equation

T[j]::ikS[j]+%N[j]:—aninc on S, (7.3)
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where for » € S we have denoted

S[jl(r) = n(r) x /Gk(r,r’)j(r’) ds,. and
o (7.4)
N[j](r) = n(r) x p.v. /S Vo G(r, 7)divei(r') dsy.

The integral equation (7.3), usually known as the Electric Field Integral Equation (EFIE),
has been extensively studied. In particular, it has been shown that the operator T :

f[;l/ (8) — H;il/ ?(S) defined in (7.3), is an isomorphism for all wavenumbers k € R,
from where it has been further shown that the problem of scattering (2.1) by an open PEC
surface has an unique solution in Hio(curl, R3 \ S) (see Abboud & Starling [1] and Buffa
& Christiansen [35]). These results establish the well-posedness and regularity of solutions
of both the integral equation (7.3) and the boundary value problem (2.1); however, they
do not provide an explicit form of the edge singularity of the current, which has been long
known in the physics literature for certain particular cases (cf. [87]). This issue was resolved

by Costabel et al. [46] who proved that the tangential j; and normal j, components of the

current with respect to the edge, satisfy
Je=i(r) t(r') = O0(d™?) and j, := {n(r) x j(r)} - t(r') = Od'?)  (7.5)

as d — 0, where d(r) = |r — | = inf,cpg [r — z| denotes the distance from a point r € S to
the edge 05, and t(7') denotes the tangent vector at the point 7’ € 9S. Furthermore, [46]
established that, in fact

Je=w(d)J; and j,=J,/w(d) (7.6)

where w(d) ~ v/d as d — 0 and where J, and J, are infinitely differentiable functions in a
neighborhood on the edge.

We thus see that the numerical solution of the integral equation (7.3) poses several chal-
lenges. On one hand the edge singularity (7.5) prevents the use of both standard boundary
element (BE) methods based on the polynomial spline approximation of the unknown cur-

rent density, and existing high-order Nystrom methods (cf. [23]) that rely on the global
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smoothness of the integral equation solution. Without special treatment of edge singulari-
ties the problem becomes severely numerically ill posed. A treatment of the edge singularity
significantly improves the situation, although some of the resulting methods possess a very
low order of convergence and, to the best of our knowledge, none of these methods have
been implemented in practice in the context of electromagnetic scattering; some relevant
background in these regards can be found in [14, 35|, and related results in the scalar case
can be found in [119]. On the other hand, the numerical discretization of vectorial integral
equations in three dimensional space yields linear systems of large dimensionality, whose
solution is impractical by means of direct methods (in view of their sizes), but which can-
not be treated by means of iterative linear-algebra solvers such as GMRES—owing to the
poor spectral properties of the EFIE (7.3) and resulting extremely large numbers of itera-
tions. The contributions [30, 31, 81] tackle the related acoustic problem for both the cases
of sound-soft and sound-hard problems (Dirichlet and Neumann boundary conditions, re-
spectively). These methods, which incorporate the edge singularity and which completely
eliminate all negative spectral characteristics, do not directly generalize to the full electro-
magnetic problem: in view of its boundary conditions which couple all field components, the
electromagnetic problem does not easily allow for application of the spectral regularization
techniques introduced in [30, 31, 81]. But significant progress in these regards has been
obtained as part of this thesis work; preliminary results in these regards, including a novel
high-order super-algebraically convergent Nystrom method that tackles both difficulties in
the full electromagnetic case, is briefly described in what follows.

In order to provide high-order approximations of each one of the integral operators de-
fined in (7.4), we introduce an overlapping-patch representation of the open surface S =
(UqQ:ll Pf) U (Uqul Pg), where P{ and P denote interior and edge patches respectively.
Associated to each patch there is a C'* invertible mapping r? cH; — 73;-’ , 7 = 1,2, where
Hi=(—1,1) x (—1,1) and Hy = (—1,1) x [0,1) € 9S. The mappings ri, ¢ =1,...,Q>,
associated to the edge patches are such that the section of the edge contained in a patch Pg
corresponds to the set {rd(u,v) € R®: v = 0,u € (—1,1)}. In view of the edge singular-

ity (7.6), on an edge patch Pj the surface current j can be expressed in terms of a smooth
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vector field J = J,r, + J,7, and the tensor V' defined by

1 1+ w?)F 1
j=vi=— {Ju - %J} ru+ = {w A}, (7.7)

where r, = 0ri/0u, r, = Ori/ov, and where E =r,-r,, F =r,-r, and G = r, - 1,
denote the first fundamental coefficients. The purpose of tensor V' is to factor out the edge
singularity of both the tangential and the normal components of the current (note that the
functions inside the curly brackets are smooth functions of u and v). In fact, from (7.7) it

can be easily shown that
Jy=JF—J,F and J,=-J,VEG— F?

are smooth functions of v and v. On the other hand, by letting w = /v we get that the

surface divergence of the current density is given by the following expression

diVSj = diVS vV

1 {g{m(ﬁ—mJy)}Jr%

VB o {vEe=maal]

(7.8)

that involves partial derivatives of smooth functions only. Identities (7.7) and (7.8) and the
use of the partition-of-unity functions defined on each patch allow to redefine the singular
unknown vector field j in the EFIE (7.3), as the smooth vector field J in the regularized
electric field integral equation (V-EFIE):

Ty[J]:=T[VJ]=-nxE"™ on S&. (7.9)

The integral kernels involved in the definition of Ty possess two kinds of singularities:
singularities due to free-space Green function (6.7), and 1/w singularities arising from the
tensor V. High-order quadrature rules we produced for these problems, which significantly

extend the methodologies [23, 31] and which are thus applicable to the full vector problem,
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Figure 7.3: GMRES convergence history in the solution of the discretized integral equa-
tion (7.10) for various wavenumber and incidences.

were developed and implemented as part of the work leading to this thesis.

Numerical experiments demonstrate that the V-EFIE (7.9) maintains the poor spectral
properties of the EFTE (7.3), and thus direct use of the GMRES algorithm leads to an ex-
tremely large, highly impractical number of GMRES iterations for convergence. Inspired by
the two-dimensional case, for which the spectral properties of the relevant integral operators
are well-understood [22, 23, 81], we propose the operator preconditioner

T[] = kS [V + éN W]

(early versions of which were outlined in [125]). In order to demonstrate the character of the
resulting solvers we consider various problems of scattering of plane electromagnetic waves
by a unit PEC disc for various wavenumbers at normal and grazing incidence. Figure 7.3
displays the GMRES convergence history that occurred in the solutions of the discretized
preconditioned regularized electric field integral equation (R-EFIE)

(T, oTy)[J]=-T, [n xE™] on &S. (7.10)

We emphasize: without use of the preconditioner no convergence takes place—and, thus, the
new preconditioner actually amounts to an enabling technique in this context. Current work,

however, does seek to further reduce the required numbers of iterations, and to produce a
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preconditioned equation which requires iteration numbers that do not grow as the frequency
increases.

The corresponding diffraction patterns are shown in Figure 7.4. Interestingly, the normal-
incidence near-field images in Figure 7.4 clearly demonstrate the existence of the famous
Poisson spot (also known as Arago spot and Fresnel bright spot). This is a small circular
illuminated region at the center of any orthogonal cross-section of the disc shadow, that,
in fact, played a fundamental role in the discovery of the wave nature of light. Table 7.1
demonstrates the high-order convergence in each one of the components of the electric field
solution of (2.1) that resulted from use of this method for the test problem in which a plane
wave impinging normally on a unit disc for £ = 10. The error is evaluated on a plane parallel

to the disc at certain distance away from the disc.

FE R
gE g

Figure 7.4: Magnitude of the total electric field |E| for the problem of scattering of a plane
electromagnetic wave by a PEC disc under normal incidence (columns one and three) and
grazing incidence (columns two and four).

k=4

k=16
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Ny +2- N, E, E, E.
162+2-20x 16 | 1.62x 1072 | 3.20 x 1072 | 2.08 x 1072
3224+2-40x32 |512x107*|1.07x 1073 | 6.45 x 10~*
642 +2-80 x 64 | 1.14x 107° | 1.04 x 107° | 8.42 x 10~¢

1282 +2-160 x 128 reference

Table 7.1: Convergence of the solution of the problem of scattering of a plane electromagnetic
wave by a unit PEC disc at normal incidence with k& = 10. Here N; = n? denotes the number
of grid points on the interior square patch, and Ny = n, X n, denotes the number of grid
points on the edge patches.

(b) [E[.

(d) 151 (e) 13 (£) 1]

Figure 7.5: Solution of the problem of scattering of a plane electromagnetic wave by a
paraboloidal PEC open surface. Magnitude of the total electric field (first row) and magni-
tude of the regularized smooth surface current (second row) for various incidences.
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Appendix A

Method of steepest descents

The Sommerfeld integrals in (2.46) can be expressed as a contour integral

) = /C g(2) ) 4z, (A1)

where the contour C' corresponds to an indented path along the real axis. In order to apply
the method of steepest descents we first find all the critical points of the phase function
¢ on the path C'. As we will show below in this subsection the only the critical points of
the phase function (2.47c) are saddle points and, in fact, there is only one simple saddle
point on C'. Subsequently we determine the path of steepest descent, D, that passes through
the saddle point and proceed to deform C' into D. By means of Cauchy-Goursat theorem
and Jordan’s Lemma [15], it can be shown that this process maintains the value of the
integral 7(\) unchanged. Two main asymptotic contributions arise from this analysis; one
due to a localized integral around the saddle point and, possibly, another one arising from
integration around one of the branch cuts.

As is well-known [15, Section 7.3], the leading-order asymptotics of an integral I; of the
form of equation (A.1) but along the path of steepest descent passing through a simple
saddle point 2y and directed towards one of the two steepest descent directions is given

by [15, Equation 7.3.11]

L) ~ g(z0) W o) i {1 L0 G)} as A — oo, (A2)
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provided the function g is continuous at zg and g(z9) # 0. Here, using the principal argument
function arg z € (—m, 7], the two steepest-descent directions are given by a, = —a/2+ (2p+
)m/2, with p = 0,1 and « = arg ¢"(2o).
For a function of the form g(2) = go(z — 2)°~! (8 € R), on the other hand, 2, is a
branch point of g and the value of g at z = zy is either zero or infinity. The leading-order

asymptotics of I; along the steepest-descent path for such a function g are given by [15,

Equation 7.3.14]

9o 2 2 (B soo)—ibarz { ipnjr_ i3y
] A ~ 2 - ~ zZo)—ipa 107 _ (2 T A . A.
1(A) 5 <)\|¢”(Zo)|> S<2>e {e e } as — 00 (A.3)

The second important contribution may arise when the path of steepest descent intersects
one of the various branch cuts. In this case D has to be deformed locally around the branch
cut and, consequently, the resulting path is no longer a path of steepest descent but rather
a path of descent only. The contribution of a localized integral starting at the branch point

along a direction of descent gives rise to a contribution that amounts to [15, Equation 7.3.16]

[9015(B)  ro(zo)iB(r—a)
Iy(A) ~ ————e¢ as A — 00, A4
N ool - A

where the function [¢](z), which corresponds to the jump of the integrand ¢ at the branch cut,

satisfies [g](2) = [go](2—20)?~! as z approaches the branch point zy, and where o = arg ¢'(z).
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Appendix B

A dielectric semi-circular bump on a
PEC half-plane

B.1 Exact solution

For reference and testing we consider the problem of scattering of a plane-wave by a unit-
radius semi-circular dielectric bump Q3 = {(rcosf,rsinf) € R* 0 <r < 1,0 < § < 7}
on a PEC half-plane Qs (Problem Type III), for which an exact solution in terms of a

Fourier-Bessel expansion exists. In detail, the solution of (3.1) can expressed as

ur(r,0) = D b HV (kr)®,(6) in Qi (B.1a)
n=0

us(r,0) = Y anJu(ksr)®,(0) in Qs (B.1b)
n=0

where J,, and HY are the Bessel and Hankel functions of the first kind and order n, where
®,,(0) = cos(nf) in TM-polarization and ®,,(f) = sin(nf) in TE-polarization. The Fourier

coefficients in (B.1) are given by

cnkr + (dy, — ney) Ay,
[Vlgkgj,r/l(kfg) — TLJn(k’g)] An + kljn(k3)7
Cnks + (va1d, — ney) By,

Vgller(Ll)/(k’l) — nHT(Ll)(kl) Bn + k3HT(Ll)(k1)

by = —
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(1)
where A, — [7[(”1)_(’“1) = Inlks)
H, . (k) Jn1(k3)
2 m 2 Tof
= - 1,0)®,,(0)do d d = —F —(1,0)®,,(0) do.
o (1+5n0)7r/0 f( ’ ) ”( ) o " (1+5n0)ﬂ- 0 aT( ’ ) ”< )

B.2 Scattering poles

As discussed in Section 3.3.2, scattering poles are complex wavenumbers k for which there
exists a non-trivial solution of a transmission problem without sources. In the context of the
problem of a dielectric bump on a PEC half plane, for example, scattering poles correspond
to existence of non-zero solutions of Problem Type III with f = 0. In the particular case
considered in Appendix B.1 (semi-circular bump), the problem of evaluation of scattering
poles can be further reduced to the problem of finding zeroes of certain nonlinear equations.

Indeed, in order for k; to be a scattering pole the conditions

(9u1 8u3
u; =uz and vi3—-

87“:W

must be satisfied on the boundary r = 1 of the bump. From Equation (B.1) it follows that

ky is a scattering pole if and only if there exist non-trivial constants a,, and b,, such that

andn(ks) — b HV (k) = 0,
annsksd (ks) — bki HV' (k) = 0,

for some non-negative integer n. Clearly such constants exist if and only if the determinant
of the matrix associated to the linear system above vanishes at k;. Therefore, scattering

poles are given by complex valued solutions k; of the equation
visks HO (k) T} (ks) =y Jo(ks) HO' (o)

for some non-negative integer n.
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Appendix C

Dielectric half-plane under plane-wave
illumination

The derivations presented in Chapter 4 rely on the exact solution for the problem of scattering
by a flat dielectric half-plane illuminated by the incident field (4.1). This appendix presents
an integral equation formulation and associated exact solution for this problem.
As is shown in Section 2.2.2 the corresponding exact expression for the total field is given
by the Fresnel formulas
ul (r) +u™(r) in Dy ={y>0},

o (r) = o (C.1)
uéC(r) in Dy = {y < 0}7

where letting

R _ikysina — vy/kf cos? a — k3 and T, — 2iky sin «

o T . . : ’
iky sina + v\/k? cos? a — k3 iky sina + vy/k? cos? a — k3

we have

' s a—y s j 2 cos? a— k2
u{(,r.) =R, giki(zcosa—ysina) g uf(r) =T, pik1@ cos aty/kf cos® a—k3

2

The square root branches in these expressions are determined so as to ensure that

Re \/k?cos?a — k3 > 0 and Im /k cos? a — k3 < 0.
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In order to produce the desired integral formulation we use the relations

f .
ou! uj(r) in Dy,
of [ui] o -t | 3] | o = {7 oo
m 2
oul 0 in Dy,
D |uln] (m) + S5 | S2| | (1) +ulr) = () W D (C.2b)
uy(r) m Do,
- duine 0 in Dy,
D [ueln] () + T | 5] | ) = 20

u(r) in Dy,

for the reflected, transmitted and incident fields, respectively, in terms of the quantity w!
defined in (4.4) as well as the layer potentials D' and S} in (4.17). These relations constitute
straightforward generalizations of corresponding expressions presented in [52, Sec. 5].

Defining the boundary integral operators

S l(r) = ST 1] (r), Wmmzfmﬂm%wmm

I @nr/
_ [ 9G;

I anr

(C.3)

Ni'[nl(r) = 5n (r),  Kj'nl(r) (r, 7)n(r') ds,

for » € II and for j = 1, 2, and utilizing the well-known jump conditions satisfied by the

single- and double-layer potentials [45], we obtain

f f
uy o, f _oll duy
f f
Yo puf,f i | Ouy
5 u' — Dy [u2|n} + 55 o H] on I, (C.5)
uinc ine 8uinc
5 = —Dln |:U |H} + S{[ |:W H:| on H, (06)
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for the fields, and

10u! ul

S5 = NI [uﬂn} KT 8—71111] on I, (C.7)
1 0uj oull dul

3on = an M ] A a—n] on 1L (©8)
1auinc e auinc

5 on = —N; [u |H}+K1H{(9n H} on II, (C.9)

for their normal derivatives. Therefore, subtracting the expression for 4™ in (C.6) from

the expression for u! in (C.4) and using the transmission conditions u) = u/ + «™® and
1 g 2 1

voul /on = du! /dn + Ou™/dn on II, we obtain

¢’ Il I

7— =D{'[¢/] —vST' [¥f] on I, (C.10)

where we have set ¢/ = uj |H and ¢/ = 8u£ /On|n. Similarly, combining the normal derivatives
of the fields we obtain

vipf  oune

2 on

=N'[¢/] —vK]"[¢/] on IL (C.11)

Now, adding (C.10) to (C.5) and adding (C.11) to (C.8) we obtain the integral equation

E¢f+Tn|¢h] = ol on 1 (C.12)
for the vector density
T
T ou
¢£ = [@fa¢f] = [ |H7 0712‘1'[] ) (C'l?’)

where ¢} = [(u™ + ull)|rr, d(un u”)/an\n] and where the operator Ty is defined by

Dy - Di' -S4+ vSt
NE— NI gy KH

Ty =

Equations (C.2), (C.12) and (C.13) provide the desired integral formulation and correspond-
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ing integral equation and exact solution for the planar interface problem.
To conclude this section we mention that since Tii[¢’] coincides with Ti[¢'] on SNII, the
first line in the correction term (4.20) follows directly from (C.12). The second line in (4.20),

in turn, can be obtained by means of expression
ul = um 4l - (D} — DY) [¢] + (83 —vS) [W/] in R*\IIL (C.14)

which results from addition of equations (C.2a), (C.2b) and (C.2¢). Indeed, using (C.14) to
evaluate the fields and (by differentiation) their normal derivatives on S\ II, directly yields

the second line in equation (4.20).
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Appendix D

Existence and uniqueness

In this appendix we establish existence and uniqueness of a solution ¢ € C(T'4) x C(T'4) =

C(T'4)? of the windowed integral equation

for a smooth curve I'4, as defined in Chapter 4 (which here we additionally assume is

of class C?) provided the contrast n = ky/k; is sufficiently close to one. The right-hand

side is assumed to be continuous, ¥ € C(T'4)?, where C(T'4) denotes the Banach space of

continuous complex-valued functions on the closure I'4 of I'4 equipped with the maximum

norm ||| = max,r, |©(r)]. This result on the existence and uniqueness of a solution ¢ of

the windowed integral equation is then further extended to L?(T'4) x L*(T) = L*(T'4)%.
Letting ¢ : I'y — C and T" be the block operator matrix

[T%]i; =T

YR

1,j=1,2, (D.2)
whose block components are given by

Tilel = (D2 = Di)[wag],  Tislel = (52 — v5)wagl,

T3] = (Ne — N)[wag],  Tylp] = (Ko — vEy)[wagl,
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the windowed integral equation (D.1) can be equivalently expressed as

E¢+T"[¢p] =1 on Iy (D.4)

Note the integral operators (D.3) can be expressed as:

Thr) = /F [0 (k) — kO (ks R) ) 220 s (1) (0) s, (D.50)
T3 = 1 [ {0~ B W) fwal)o(r) dsn (D.5b)
g / 3 (b R)wa(r')p(r') dsy,

R'?’Lr/

15l = 5 [ {mEP 0B - B R} T e dse (D)

La
— 1) R -n,
- A )Z/ ko HY (| — ') Rn wa(r)e(r') ds,
Ca

and

116l = 2 [ (a0 - #0 ) R pr) ds

i Ny Ny 2(R-np) (R -1y /
+Z/FA{ R ( };g )}{@H{”(kﬁ)—/lef”(klR)}wA(r’)@(r)dsr,

(1.2 1.2 . o
08 =KD) [ gy (B o) (B )
TR S R

+ wa(r)e(r') dsp,

(D.5d)

for r € 'y, where R =r —r’ and R = |R|.
Lemma D.0.1. The integral operator T, defined in (D.2), is compact on C (T 4)%.

Proof. In view of the estimates R - n, = O(R?) and R - n,» = O(R?) as R — 0 (cf. [45,
Theorem 2.2]) and the asymptotic identities Hél)(k;jR) = O(log R), H{l)(k:jR) = O(R™1)
and kngl(l)(kgR) - k:lHl(l)(k:lR) = O(Rlog R) as R — 0 (which follow from the asymptotic
expansion of the Hankel functions H{" and H{" for small arguments [76]), we obtain that all
integral kernels in the expressions (D.5) are weakly singular. Therefore, from [45, Theorem

1.11] we obtain that T

¥, 4,7 = 1,2 are compact (and bounded) on C(T4). Consequently,
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T* is compact on C(T'4)%. The proof is now complete. ]

Note that T* is given in terms of the parameter v, which equals (ki/k2)?> = n™? in

TM-polarization and equals one in TE-polarization, and the operators S}, D}, K}” and
N’ which depend analytically on k; for k; € O = {k € C\ {0} : |argk| < 7}, j = 1,2.
Hence, for a fixed wavenumber k; > 0 and setting ky = nky, it follows that T* = T"(n)

is a compact, operator-valued, analytic function of n € O. From the analytic Fredholm

theorem [44, Theorem 8.26] we then obtain the following result:
Lemma D.0.2. Either:
1. (E+T"(n))~! does not exist for anyn € O = {k € C\ {0} : |argk| < 7} or,
2. (E+T"(n))"! exists for alln € O\ A, where A is a discrete subset of O.
The following lemma establishes that the first statement in Lemma D.0.2 does not hold.

Lemma D.0.3. There exists 6 > 0 such that (E+T"(n))™! exists for alln € O such that

In —1] < 9.

Proof. Let B(n) = E+T%(n) and n # +i. Since E is invertible for all n # +i we have
E'B(n) = I; +E ' T¥(n) where I; denotes the identity operator in C(T"'4)2. Clearly, the
fact that T (1) = 0 and the analyticity of T*(n) at n = 1 imply that there exists § > 0
such that ||[E™'T%(n)|| < 1 for all n € O such that |n — 1] < §. Hence, the Neumann
series B(n)'E =Y (—=1)" (E7' T%(n))" converges (in the operator norm) for all n € O,
In—1| < §. Finally, multiplying by E™* from the right on both sides of the identity above we

demonstrate the existence of B(n)~! for |[n— 1] small enough. The proof is now complete. [J

We thus conclude that given A > 0 the windowed integral equation (D.4) has a unique
continuous solution ¢ € C(T4)? for all k; > 0 and ky € {k € C\ {0} : Jargk| < 7} \ A,

where A is a discrete set.

Remark D.0.4. Note that Lemma D.0.1 and Laz’s theorem [73, Theorem 4.13] imply that
T is compact on L*(T'4)?. Consequently, Lemmas D.0.2 and D.0.3 are still valid for T"
defined on L*(T4) x L*(T4). It thus follows that given A > 0 and a right-hand side 1 €
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L*(T'4)?%, the windowed integral equation (D.4) has a unique solution ¢ € L*(T'4)* for all
ki >0 and ke € {k € C\ {0} : largk| < 7} \ A, where A is a discrete set.
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