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1.1 HYDROGEN-TERMINATED SILICON SURFACES 

Hydrogen-terminated Si (Si–H) is the fundamental surface termination on which 

the vast majority of surface modification is based.1-4 The semiconductor industry relies on 

the production of Si–H surfaces in order to produce high-quality silicon oxide films with 

low electrical defect density. Consequently, the Si–H surface has been widely studied and 

characterized. Si–H surfaces can be prepared by a number of techniques, including 

cleavage of Si in vacuum followed by exposure to H2(g),5 electrochemical etching,6-9 or 

wet-chemical etching in aqueous fluoride solutions.10-12 Wet-chemical etching of Si is the 

simplest method to produce Si–H surfaces, resulting in widespread use of this technique to 

produce Si–H surfaces.  

Early reports of Si–H surfaces prepared by exposure of oxide-terminated Si to 

aqueous HF solutions suggested that the surface was terminated by Si–F bonds.13 The basis 

for this initial conclusion is the known strength of the Si–F bond, which was hypothesized 

to form the dominant surface termination after fluoride etching based on thermodynamic 

arguments. However, the kinetics of the fluoride etching of Si surfaces dominates the 
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thermodynamics in this case; as the atop Si atoms are fluorinated, they are removed from 

the surface quickly because the kinetics of the cleavage of Si–Si bonds by HF drives the 

removal of fluorinated surface sites. The result is a surface that is free of detectable Si–F 

containing species. This was first demonstrated by surface infrared (IR) spectroscopy, 

which was used to show the presence of Si–H stretching and bending peaks on the 

surface.11, 14 Vibrational spectroscopy remains a very powerful surface analytical tool, 

particularly when used together with other surface sensitive techniques such as X-ray 

photoelectron spectroscopy, because it can inform functional group assignments as well as 

the orientation of bonds on the surface. 

HF etching of Si can be performed on any crystal face, including amorphous Si, 

nanocrystalline Si, or microstructured Si substrates to yield H-terminated surfaces. When 

etched with unbuffered HF(aq) solutions, Si surfaces are terminated by a distribution of 

monohydride (SiH), dihydride (SiH2) and trihydride (SiH3) surface sites. By adjusting the 

pH of the HF(aq) solution by addition of NH4F solution, the etch rate can be controlled in 

order to select for the desired surface termination.14 Anisotropic etching the (111) crystal 

face of silicon in 40% NH4F(aq) solutions allows for exceptional control over the surface 

hydride composition, yielding primarily the monohydride H–Si(111) surface.15 H–Si(111) 

is known to exhibit broad atomic terraces with >100 nm width and nearly every Si–H bond 

is oriented perpendicular to the surface. H–Si(111) is an extremely convenient starting 

surface for studying the surface chemistry of silicon because modification of H–Si(111) 

with halogens or organic groups results in substitution of the Si–H bonds for Si–X (X = Cl, 

Br, I), Si–C , or Si–O bonds. Spectroscopic methods allow for the loss of Si–H bonds to be 

observed, and the nature of the new bonds formed on the surface can be more readily 
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studied because of the inherent nature of the Si(111) surface, which has reactive Si bonds 

that are oriented perpendicular to the surface. 

Transmission infrared spectroscopy (TIRS) was the primary vibrational 

spectroscopic method used throughout this work. Compared with attenuated total 

reflectance infrared (ATR-IR) spectroscopy, TIRS is more effective at observing low 

energy modes (<1500 cm–1), including Si–C stretching and C–H bending modes.15 TIRS 

can readily observe the orientation of bonds with respect to the sample surface by 

modifying the angle of incidence on the surface. Figure 1.1 shows TIRS data for a H–

Si(111) surface to demonstrate its utility as a surface analytical tool.  

 

Figure 1.1. TIRS data for the H–Si(111) surface. The bottom spectrum was collected at 74° 
incidence angle and shows modes that are parallel or perpendicular to the surface. The top 
spectrum was collected at 30° incidence and primarily shows modes parallel to the surface. 
Si–H stretching (ν) and Si–H bending (δ) modes are indicated in the plot. The data is 
referenced to the SiOx surface, and the negative peaks show the longitudinal optical (LO) 
and transverse optical (TO) Si–O–Si modes of the SiOx surface.15 
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Si–H surfaces were shown to be capable of undergoing wet-chemical reaction with 

1-alkenes and 1-alkynes via a hydrosilylation mechanism in 1995.16 This discovery spurred 

a flurry of research aimed at achieving self-assembly of monolayers on Si–H surfaces and a 

new appreciation for the use of semiconductor surfaces as reactants in wet chemical 

reactions. Hydrosilylation of 1-alkenes and 1-alkynes on Si–H surfaces remains the most 

common, and one of the simplest, methods for imparting organic functionality to Si 

surfaces. Substrates prepared by hydrosilylation have been used to attach reversible redox 

species to the surface,17-19 seed the growth of metal oxides by atomic layer deposition 

(ALD),20-21 and attach biomolecules, such as DNA, to the surface.22-23 

One of the major drawbacks of hydrosilylation reactions on Si–H surfaces is the 

mechanism by which it proceeds. The (111) crystal plane has the lowest density of reactive 

Si–H bonds and is, therefore, the least sterically crowded surface. Still, steric 

considerations preclude the smallest substrates suitable for undergoing hydrosilylation on 

H–Si(111) surfaces, such as acetylene or ethylene, from effectively terminating all of the 

reactive surface sites.24 Incomplete termination of the Si surface with Si–C bonds leaves 

unreacted Si–H bonds on the surface, which are susceptible to the formation of surface 

electronic trap states, also known as surface states. Moreover, hydrosilylation has been 

proposed to occur via a radical mechanism that propagates across the surface, leaving a 

high density of surface states after the reaction completes.25 The high density of surface 

states results in a high surface recombination velocity (S), which correlates with current lost 

to recombination at the interface and negatively impacts the energetics of surfaces prepared 

by hydrosilylation. 
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1.2 HALOGENATED SILICON SURFACES 

Halogenated Si surfaces are typically used as intermediates in the synthesis of target 

semiconductor surfaces.26-33 Chlorine-terminated Si (Si–Cl) surfaces, which are the most 

commonly used halogenated Si surface, have been prepared by methods that include the 

gas-phase reaction of Cl2(g) with Si–H34-40 or the solution phase reaction of PCl528, 31, 33, 36, 

41-43 with Si–H in chlorobenzene. The Si–Cl surface is the least sterically crowded of the 

halogenated surface, allowing for a greater density of Si–Cl bonds capable of undergoing 

reaction with an alkylating reagent. While all Si–Cl preparation methods yield Si–Cl bonds 

on the surface, different methods can yield different surface coverage and etch pit density. 

Bromine-terminated Si (Si–Br) surfaces can be prepared in similar ways by gas-phase 

reaction of Si–H surfaces with Br2(g), solution phase reaction with Br2(l), or solution phase 

reaction with N-bromosuccinamide.44-47 Both Br and Cl are sterically able to terminate all 

Si atop sites on the (111) crystal plane, allowing for both Cl–Si(111) and Br–Si(111) 

surfaces to serve as generally interchangeable reactive surfaces in sample preparation. 

Iodine terminated silicon (Si–I) surfaces have been prepared by reaction of Si–H 

surfaces with I2 in benzene48 and by exposure of vacuum-cleaned Si to CH3I vapor.49-51 The 

van der Waals radius of I is too large to terminate all Si(111) atop sites, and a maximum 

coverage of ~0.33 ML Si–I was observed for reaction of H–Si(111) with I2/benzene. The 

steric bulk of I could be potentially exploited in order to form mixed monolayers on Si 

surfaces by partial iodination followed by reaction of the Si–I sites with Grignards and 

reaction of the residual Si–H sites by hydrosilylation. The differences in the reactivity of 

the Si–Cl, Si–Br, or Si–I surfaces have additionally not been clearly documented. 
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1.3 METHYL-TERMINATED SILICON SURFACES 

Alkyl termination of Si surfaces by a two-step halogenation/alkylation procedure 

was first reported in 1996.28 Generally, this two-step procedure involves the reaction of a 

Si–Cl or Si–Br intermediate surface with a Grignard, organolithium, or organosodium 

reagent.15, 24, 26-27, 31-33, 52-53 This method allows for the facile and rapid attachment of short-

chain alkyl groups, including methyl, ethyl, and phenyl, which would not be achievable by 

hydrosilylation chemistry. While long-chain alkyl groups are also readily attached by 

halogenation/alkylation, the interest in methyl-terminated Si(111) (CH3–Si(111)) has been 

the most intense. The novelty of CH3–Si(111) surfaces is centered around the unique ability 

of the –CH3 group to terminate nearly all of the atop Si(111) sites,54-58 affording CH3–

Si(111) surfaces exceptional chemical stability26, 31-32 and very low surface recombination 

velocity.59 While CH3–Si(111) surfaces have been the subject of numerous scientific 

studies over two decades, my work as a graduate student initially focused on achieving 

control over the preparation of CH3–Si(111) surfaces, and I reproduced much of the data 

that has been reported previously. The following section is a consolidated overview of 

CH3–Si(111) surface characterization using the data I collected for control CH3–Si(111) 

samples. 

TIRS data for CH3–Si(111) surfaces are given in Figure 1.2.15 The C–H stretching 

(ν) region shows modes at 2961, 2926, 2910, and 2856 cm–1 with the signals at 2961 and 

2910 cm–1 having been assigned to the asymmetric (νa) and symmetric (νs) C–H stretching 

motions of the –CH3 group, respectively, and the signals at 2926 and 2856 cm–1 having 

been assigned to –CH2– groups on adventitious C species. The presence of a signal at 1257 
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cm–1 at 74° with respect to the surface normal but not at 30° indicates the presence of a  

(C–H)CH3 symmetric bending (δs), or “umbrella,” motion polarized perpendicular to the 

surface. This signal, in addition to a Si–C stretching peak at 678 cm–1 polarized 

perpendicular to the surface, provides a strong indication that the Si–CH3 group is oriented 

normal to the surface. Additionally, a CH3 rocking (ρ) mode at 753 cm–1 is observed at 

both angles of incidence.  

 

Figure 1.2. TIRS data for CH3–Si(111) surfaces, referenced to the H–Si(111) surface, 
collected at 74° (bottom) and 30° (top) from the surface normal. Panel a shows high-energy 
region, and panel b shows the low-energy region. The negative peaks in panel b resulted 
from the H–Si(111) background. A sharp negative peak observed in panel b at 30° 
incidence marked with ∗ at 667 cm–1 resulted from CO2 in the atmosphere. The subscripts 
“CH3” and “CH2” indicate C–H stretching signals arising from the –CH3 and –CH2– groups, 
respectively. The peak positions and assignments are indicated. The 30° spectrum is offset 
vertically for clarity. 
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HREELS data for CH3–Si(111) surfaces,60 shown in Figure 1.3, allows for 

detection of vibrational signals that could not be readily observed by TIRS. HREELS data 

for CH3–Si(111) surfaces exhibited peaks centered at 747, 1267, and 2927 cm–1, 

corresponding to CH3 rocking, (C–H)CH3 symmetric bending, and (C–H)CH3 symmetric and 

asymmetric stretching motions, respectively, all of which were observed using TIRS. 

Resolution limitations of the HREELS instrumentation yielded a single C–H stretching 

peak for the asymmetric and symmetric stretching modes. The use of HREELS allowed for 

observation of Si–C stretching (665 cm–1) and bending (477 cm–1) signals in addition to the 

IR-inactive (C–H)CH3 asymmetric bending (δa) motion at 1399 a cm–1. A small amount of 

silicon oxide (SiOx) gave rise to a signal that was centered at 1066 cm–1. These results 

compare favorably with previously published spectra of CH3–Si(111) surfaces. 

 

Figure 1.3. HREELS data for CH3–Si(111) surfaces. The data were collected in the 
specular geometry using an incident beam energy of 5.0 eV, and the fwhm of the elastic 
peak was 13.3 meV. The raw spectrum (bottom) is shown with the magnified spectrum (top) 
superimposed for clarity. The peak positions and assignments are indicated in the figure.  
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Table 1.1 summarizes the vibrational modes detected by TIRS and HREELS for 

CH3–Si(111) surfaces along with the orientation of the modes with respect to the surface 

plane.  

Table 1.1. Summary of the Positions and Assigned Modes for the Vibrational Signatures 
Observed for the CH3–Si(111) Surface.  

 TIRS 
Frequency 
(cm–1) 

HREELS 
Frequency 
(cm–1)a 

 Assigned 
Modeb 

Orientation to 
Surfacec 

2961 2927 νa(C–H)CH3  
2926 2927 νa(C–H)CH2  
2910 2927 νs(C–H)CH3  
2856 2927 νs(C–H)CH2  
– 1399 δa(C–H)CH3  
1257 1267 δs(C–H)CH3 ⊥ 
weak 1066 ν(Si–O–Si)TO not ⊥ 
753 747 ρ(CH3) not ⊥ 
678 665 ν(Si–C) ⊥ 
– 477 δ(Si–C)  

 

aIn some cases, HREELS signals do not resolve multiple vibrational modes that are 
observed by TIRS. The HREELS signal with the closest energy to the resolved TIRS signal 
is paired in the table. bThe symbols ν, δ, and ρ signify stretching, bending, and rocking 
motions, respectively, with subscripts a and s indicating whether the mode is asymmetric or 
symmetric, respectively. Subscripts “CH3” and “CH2” indicate C–H stretching signals 
arising from –CH3 and –CH2– saturated hydrocarbons, respectively. The subscript “TO” 
indicates a transverse optical Si–O–Si motion. cThe orientation of the vibrational mode 
with respect to the plane of the sample surface determined by TIRS is given. 
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X-ray photoelectron spectroscopy (XPS) data provides quantitative information 

about the species present on CH3–Si(111) surfaces. Survey spectra indicate that only 

signals ascribable to Si, C, and O are observed, and high-resolution spectra are shown for 

the C 1s and Si 2p core levels in Figure 1.4. CH3–Si(111) surfaces exhibit three distinct C 

1s signals, the most prominent of which is centered at 284.3 eV. This photoemission peak 

is ascribed to C bonded to Si (CSi),61 while the remaining two signals at 285.2 and 286.4 eV 

arise from adventitious C species. The fractional monolayer coverage (Φ) of –CH3 groups 

on the prepared CH3–Si(111) surfaces can be estimated using a substrate-overlayer model 

discussed in Chapter 2 (section 2.2.3),62-63 to yield ΦSi–CH3 =1.13 ± 0.07 ML, which 

supports the conclusion that CH3–Si(111) surfaces exhibit nearly full termination of the Si 

atop sites with Si–C bonds. While the calculated ΦSi–CH3 is higher than the maximum 1 ML 

of –CH3 groups, the reported value is fairly typical for the magnitude of error expected 

when quantifying XPS data. Only the photoemission signal at 284.3 eV was used in the 

estimation of ΦSi–CH3 because this signal arises directly from the bound –CH3 group. 

Previous work has shown that annealing CH3–Si(111) surfaces to 450 °C in vacuum 

removes the majority of adventitious species and reveals two additional C 1s 

photoemission signals resulting from the vibrational fine structure of the –CH3 group.61, 64 

However, due to resolution limitations of the instrumentation used in this work, these peaks 

are omitted from the fitting process for all alkyl-terminated surfaces. No detectable amount 

of SiOx was observed by XPS on CH3–Si(111) surfaces.  
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Figure 1.4. High-resolution XP spectra of the (a) C 1s and (b) Si 2p regions for CH3–
Si(111) surfaces. The low binding-energy C photoemission signal at 284.3 eV has been 
ascribed to C bound to Si (blue, CSi), with the C 1s signals at 285.2 and 286.4 eV arising 
from C bound to C (red, CC) and C bound to O (green, CO), respectively. The region from 
102–105 eV in the Si 2p spectrum is magnified to show the absence of detectable high-
order SiOx. 

 

Figure 1.5 gives a representative atomic-force microscope (AFM) image of a CH3–

Si(111) surface. The surface generally exhibits broad atomic terraces with relatively few 

etch pits. The difference in height observed at terrace step edges is ~0.3 nm, which is 

consistent with the height difference between terraces observed on vacuum cleaved 

unreconstructed Si(111) surfaces.65 The surfaces often exhibit particulates that are shown as 

raised spots in the AFM images. The size and concentration of these spots tends to vary, 

and could be correlated with the batch and manufacturer of the Grignard reagent 

(CH3MgCl) used in the synthesis process. XPS data shows no detectable metal 

contaminants, suggesting that these spots are organic in nature and could be the physical 

manifestation of the adventitious carbon observed in high-resolution C 1s XP spectra of 

CH3–Si(111) surfaces. 
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Figure 1.5. Representative topographical AFM image of the CH3–Si(111) surface. The 
image is 1 µm × 1 µm with a z-scale of 1.2 nm (–0.6 to +0.6 nm).      

 

Figure 1.6 shows a representative low-energy electron diffraction (LEED) image 

collected for a CH3–Si(111) surface.61 The LEED pattern exhibits 3-fold symmetry, which 

is indicative of a (1 × 1) surface unit cell. The image pictured shows 6 bright spots of 

approximately equal intensity. Adjusting the energy slightly above or below the 43 eV 

incident beam energy in Figure 1.6 reveals the 3-fold symmetry, as 3 spots remain bright 

and 3 spots lower in intensity. The spots appear as very bright and sharp relative to the 

background. This high contrast between the diffraction spots and the background is a 

strong indication that the CH3–Si(111) surface exhibits exceptional long-range ordering. 

Thus, the LEED data supports the conclusion that CH3–Si(111) surfaces are exceptionally 

well-ordered and have nearly complete termination of the atop Si sites with Si–C bonds.  
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Figure 1.6. Representative LEED pattern for a CH3–Si(111) surface collected at 43 eV 
incident beam energy. 

 

Surface recombination velocity (S) measurements are typically acquired using a 

time-resolved microwave conductivity setup, but can also be measured using time-resolved 

radio frequency conductivity measurements. The microwave conductivity setup used in this 

work is described in detail in section 2.2.2. The microwave conductivity decay curves can 

be fitted to an exponential decay to obtain a charge carrier recombination lifetime, τ. 

Section 2.2.3 describes how to convert τ to a surface recombination velocity in cm s–1. A 

decrease in S represents a decrease in the electrically active surface state density. Figure 1.7 

shows S for a CH3–Si(111) surface as a function of exposure to air. A typical initial S for a 

CH3–Si(111) surface immediately after preparation and cleaning was 40 cm s–1, which 

corresponds to an electrical defect density of 1 defect per 2 × 105 surface sites (eq 2.4).66 

Remarkably, S for CH3–Si(111) surfaces decreases to ~15 cm s–1 after 72 h exposure to air. 

This decrease results in a lower surface state density of 1 per 5 × 105 surface sites. Over 
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time, a small increase in S is typically observed, but the increase does not represent a 

significant increase in the electrically active surface state density. Over the same amount of 

time, the CH3–Si(111) surface would be expected to form a measureable amount of SiOx,31 

but the formation of SiOx does not appear to contribute significantly to an increase in S. 

One hypothesis for the initial decrease in S observed over the first 72 h of air exposure 

could involve the initial passivation of surface states, such as dangling bonds, by reaction 

with H2O and O2 in the air, with long-term oxidation of the surface in air having little effect 

on S. This is in contrast to H–Si(111) surfaces, which undergo comparatively rapid 

oxidation in air, and exhibit high S after just 15 min air exposure.59 Thus, CH3–Si(111) 

surfaces exhibit improved stability in air relative to H–Si(111) surfaces and have 

remarkable electrical properties. 

 

Figure 1.7. S behavior as a function of time exposed to air for CH3–Si(111) surfaces. The 
error bars represent 1 standard deviation about the mean.  
1.4 SURFACE CHEMISTRY APPLICATIONS 
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Functionalization of semiconductor surfaces is motivated by a variety of 

applications, often inspired by the conventional uses for semiconductors in transistors, 

photovoltaics, and photoelectrochemical cells. In particular, surface chemistry offers the 

opportunity to control the interface between semiconductors and other functional device 

components, which may include catalysts, metals, conductive polymers, or protecting 

layers (e.g. metal oxides). Organic scaffolds grafted to semiconductor surfaces can 

potentially allow for molecular-level control over the interface between the semiconductor 

and other device components to achieve optimal interactions from a mechanical, physical, 

and electrical perspective.  

As part of the development of efficient and cost-effective photoelectrochemical 

water splitting cells for fuel generation, the interface between catalysts and semiconductors, 

depicted in Figure 1.8, is critical to the performance of the device. The 

catalyst/semiconductor must exhibit favorable mechanical interactions such that the 

catalyst remains closely associated with the surface, but the energetics at the interface must 

be favorable to effect the maximum output potential. Surface chemistry provides an 

exceptional opportunity to control the mechanical properties of the catalyst/semiconductor 

interface while also allowing for favorable energetics at the interface.  

Some of the common catalysts that have been developed for use in 

photoelectrochemical water splitting cells include Pt, MoSe2,67 CoP,68 and Fe3P69 for 

proton reduction and IrO2 and NiOx
70-71 for water oxidation. These catalysts are all metals, 

metal oxides, or alloys that have defined work functions that may not form highly 

rectifying junctions between Si and the catalyst. Additionally, these catalysts can be 
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deposited by a number of methods, including electrodeposition, drop-cast and sinter, or 

oxidation of a metallic film. Surface chemistry can be used to (1) tune the semiconductor 

band edges such that the energetics at the semiconductor/catalyst interface produces the 

maximum output voltage and (2) to improve the mechanical and physical robustness of the 

semiconductor/catalyst interaction so the catalyst film or particles remain bound to the 

semiconductor during long-term device operation. Organic linkers between Si and the 

catalysts could provide a scalable and robust method of improving Si/catalyst interfaces to 

achieve the properties required my photoelectrochemical systems. 

 

Figure 1.8. Example of linker chemistry that could be used to integrate catalyst 
nanoparticles (green circles) with semiconductor surfaces. The linker would be designed to 
impart a favorable surface dipole that positions the semiconductor band edges relative to 
the catalyst work function to effect the maximum device performance. Additionally, the 
mechanical interaction between the Si and the catalyst would be improved by the organic 
linker layer. 

 

Related to Si/catalyst interfaces are Si/metal interfaces (Figure 1.9). The 
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established device manufacturing processes. In some cases, an ohmic Si/metal contact is 

desired, while other applications require a rectifying Si/metal interaction. Deposition of 

metals directly on Si–H surfaces by common materials processing methods (e.g. 

evaporation and sputtering) typically results in the formation of metal silicides that are 

detrimental to the formation of rectifying contacts. Even soft deposition methods, such as 

electrodeposition or drop-cast and sinter, can yield high surface recombination velocity 

because of the propensity of the Si–H surface to oxidize and form surface states.  

Organic modification of Si surfaces with molecules that impart a surface dipole that 

favorably positions the semiconductor band edges to effect the maximum energy out of the  

 

Figure 1.9. Example of linker chemistry that could be used to control metal deposition on a 
Si surface. The surface chemistry can be used to impart favorable band-edge positions to 
produce a maximum voltage at the Si/metal interface. Additionally, the reactivity of 
organic groups on the surface can be exploited to direct metal deposition and form 
nanopatterns on the surface. 

Si/metal interface. Organic modification, such as methyl termination, has been 
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deposited on CH3–Si(111) surfaces by soft deposition methods (e.g. electrodeposition or 

drop-cast and sinter).72-73 Additionally, many organic groups, such as the C–Br bond in 

Figure 1.9, are reactive towards metals in solution and could be used to direct and control 

the deposition of metals on semiconductor surfaces. By pattering the surface with reactive 

organic groups, metals can conceivably be deposited in a controlled manner to yield 

nanopatterned semiconductor/metal contacts. Organic modification of silicon surfaces 

offers a unique opportunity to achieve unprecedented control over the deposition of metals 

on semiconductor surfaces. 

Hybrid organic/inorganic solar cells have been developed as alternatives to 

conventional photovoltaics and photoelectrochemical cells. The polymer can serve as a 

light absorber as well as a conductive medium to direct charge transfer in solid state 

devices. Additionally, conductive polymers are generally less susceptible to oxidation or 

corrosion than inorganic semiconductors and thus could potentially be used as protection 

layers in photoelectrochemical cells. Moreover, polymer layers are typically flexible, and 

the development of robust semiconductor/polymer interfaces could allow for the 

development of improved flexible devices that are more cost effective than traditional 

photovoltaics.  

Covalent bonding between silicon and monomer units for polymers, including 

thiophene and other conductive polymers,45, 74-75 has been investigated previously. Figure 

1.10 gives an example in which the monomer 3,4-ethylenedioxythiophene is used to 

covalently bind poly(3,4,-ethylenedioxythiophene) to the Si surface. The electrical 

properties of the silicon/polymer junction could conceivably be influenced by the nature of 
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the bonding at the Si/polymer interface, with covalent bonds allowing for improved 

interfacial conductivity and performance. In particular, poly(3,4,-ethylenedioxythiophene) 

(PEDOT)-poly(styrenesulfonate) (PSS) has been proposed for use in photoelectrochemical 

devices as a means of providing an ohmic electrical contact between the photoanode and 

photocathode, while allowing for proton transfer through the membrane and flexibility of 

the device.76 Silicon surface chemistry offers a means of providing molecular-level control 

over the interface between silicon and conductive polymers in order to develop efficient 

and novel device architectures. 

 

Figure 1.10. Example of a silicon/polymer junction formed by a covalent bond between 
the two materials. The surface of Si could be modified with monomers, in this case 3,4-
ethylenedioxythiophene, and electropolymerization of the corresponding conductive 
polymer on the surface could allow for improved electrical conductivity and performance. 

 

 

 

One of the current most challenging aspects in the development of stable and cost 

effective photoelectrochemical cells for water splitting is the corrosion or passivation of 

photoanodes in aqueous electrolyte. Silicon, for example, rapidly oxidizes and passivates, 

forming an electrically insulating layer on the surface, when used as a photoanode without 
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sufficient protection from oxidation on the surface. Recently, metal oxide layers, such as 

TiO2 and NiOx, deposited on Si substrates by atomic-layer deposition (ALD) or sputtering 

have been shown to allow for long-term operation of Si and other semiconductors as 

photoanodes.70-71, 77 The interface between the Si and the metal oxide could conceivably be 

controlled on a molecular level by seeding the metal oxide deposition on the surface using 

a molecular scaffold that is reactive toward the metal oxide precursor.  

Currently, semiconductors are most widely used by the microelectronics industry, 

which has increasingly relied on semiconductor-based integrated circuit technology to 

manufacture increasingly powerful computers and other electronic devices. A common 

motif in integrated circuit technology is the development of increasingly smaller nodes in 

the pursuit of increased power efficiency and performance. Currently, 14 nm nodes are the 

smallest commercially available technology, with 10 nm nodes set to be available in the 

near future. At such small node sizes, the surface of the semiconductor material becomes a 

significantly larger percentage of the overall node. The deposition of metal oxides, which 

are commonly used as gate materials in processor nodes, by ALD can be controlled using 

surface chemistry to direct the metal oxide deposition. Figure 1.11 presents an example of 

using reactive surface groups, such as aldehydes or alcohols, to direct the assembly of 

ALD-grown films, like aluminum oxide or titanium dioxide, on silicon surfaces. 
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Figure 1.11. Example of a silicon/metal oxide junction formed by atomic layer deposition 
of trimethylaluminum (TMA) on a mixed methyl/propionaldehyde surface. The aldehyde 
groups on the surface are reactive toward the TMA precursor, allowing for growth of the 
TMA to be controlled by the chemical nature of the surface.21 

 

This thesis presents a collection of studies that are intended to advance the field of 

silicon surface chemistry toward achieving the applications described above. Chapters 2 

and 3 are focused on the characterization of short-chain unsaturated alkyl groups covalently 

bound to Si and investigating the reactivity of these groups. This work is broadly applicable 

to the development of improved interfacial chemistries at Si interfaces. Chapter 4 is 

focused on achieving control over the molecular surface dipole and band-edge positions 

through surface functionalization in order to improve the interfaces between silicon and the 

functional device components described above. Finally, Chapter 5 describes a mechanistic 

study into the reaction of H–Si(111) surfaces with methanol to improve the understanding 

of self-limiting, molecular charge transfer reactions at Si surfaces.  
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