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Chapter 3

SHORT-TIME DIFFUSION OF COLLOIDAL SUSPENSIONS

[1] M. Wang, M. Heinen, and J. F. Brady, “Short-time diffusion in concentrated
bidisperse hard-sphere suspensions”, the Journal of Chemical Physics 142,
064905 (2015) doi:10.1063/1.4907594,

3.1 Introduction

Short-time diffusion in Brownian suspensions has been a topic of extensive research
for many years, which has pushed forward the development of various computer
simulation methods including Lattice Boltzmann simulations [1-3], Dissipative
Particle Dynamics [4, 5], Stochastic Rotation / Multiparticle Collision Dynamics
[6-8], hydrodynamic force multipole methods [9, 10], boundary integral methods
[11, 12], and (Accelerated) Stokesian Dynamics [13—15]. Each of these simulation
methods is rather involved, which is one reason for the on-going development of
approximate (semi-) analytical theoretical schemes for colloidal short-time dynamics
[16-25].

In spite of extensive simulations and analytical theoretical studies, substantial gaps
remain in the colloidal suspension parameter space that has yet been explored, which
is due both to the large number of tunable parameters in soft matter systems, and
the complexity of the salient hydrodynamic interactions (HIs) among the suspended
particles. The purpose of this chapter is to assess the short-time diffusive dynamics
in mixtures of hard spheres with two different hard-core diameters using a gen-
eralization of Stokesian Dynamics (SD) simulations and an analytical-theoretical
scheme. While similar theoretical studies have so far been limited to suspensions
in which at least one of the species is very dilute [16, 19, 22, 26], in the present
chapter we cover a large range of packing fractions including both dilute and dense
bidisperse hard-sphere fluids. All results presented here can be straightforwardly

generalized to suspensions of more than two particle species.

Experiments on polydisperse suspensions have so far been limited to very high
densities [27-29], where polydispersity suppresses crystallization and facilitates
studies of the glass transition, or to fluid mixtures of charged particles which exhibit

strong pair correlations already at low volume fractions [30]. Moderately dense,
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polydisperse equilibrium suspensions are experimentally underattended to date,
despite their resemblance of many substances handled in industrial, biological, and
medical applications. Polydispersity is the rule rather than the exception in naturally
occurring suspensions and should therefore receive more attentions in experimental,
theoretical, and computational studies. One reason for the lack of experimental
studies may be the poor theoretical understanding of diffusion in polydisperse fluid
suspensions. Providing a semi-analytical theoretical scheme that applies in a wide
range of volume fractions and compositions, the present chapter should help to close

this gap in the theory of suspensions and facilitate future experiments.

In addition to the steric no-overlap constraint, the suspended hard spheres interact
via solvent-mediated HIs. Accurate inclusion of HIs into theory and simulation
is essential, since the linear transport coefficients for colloidal suspensions are
governed entirely by the HIs in the colloidal short-time regime. However, the
peculiar properties of HIs render their computation a formidable task. In particular,
HIs are long-ranged, non-pairwise-additive, and exhibit steep divergences in case

of lubrication, i.e., when particles move in close contact configurations.

A semi-analytical theoretical scheme for short-time suspension dynamics, with
multi-body HIs included in an approximate fashion, has been devised by Beenakker
and Mazur [17, 18, 20], and has quite recently been re-assessed by Makuch and
Cichocki [25]. This method, commonly referred to as the 6y scheme, makes use of
resummation techniques by which an infinite subset of the hydrodynamic scattering
series [31] is computed, including all particles in suspension. Nevertheless, a
complementary infinite subset of scattering diagrams is omitted in the 6y scheme
which, moreover, fails to include the correct lubrication limits of particle mobilities.
Comparisons of the original ¢7y-scheme predictions to experimental and computer
simulation data have revealed a shortcoming of the 6y scheme in its prediction
of self-diffusion coeflicients [23, 24, 32-34], which can be largely overcome by
resorting to a modified 6y scheme in which the computation of the self-diffusion
coeflicients is carried out by a more accurate method [23, 24, 33]. To date the
(modified) 6y scheme remains the only analytical-theoretical approach that captures
the essential physics of diffusion in dense suspensions, making predictions at an
acceptable accuracy level. Unfortunately, the 6y scheme has so far been formulated
for monodisperse suspensions only, and a stringent generalization to mixtures poses

a tedious task.

Here we propose a simple rescaling rule that allows the application of the numer-
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ically efficient, easy to implement standard 6y-scheme expressions to mixtures of
bidisperse hard spheres. The rescaling rule is based on the notion of describing
either species as an effective, structureless host medium for the other species to
move in. By comparing to our SD simulation results we show that the rescaled,
modified 0y scheme predicts both species’ partial hydrodynamic functions with a
surprisingly good accuracy, for suspension volume fractions as high as 40%. The
proposed, rescaled 6y scheme can be particularly useful in the analysis of scatter-
ing experiments, where only a limited part of the hydrodynamic function can be

measured due to the limited range of accessible wave vectors.

The remaining part of this chapter is organized as follows: In Sec. 3.2 we define
the hard-sphere mixtures under study, and discuss the prevailing interactions among
the particles. Section 3.3 contains a discussion of colloidal short-time diffusion
and the partial hydrodynamic functions that are calculated in this chapter. Our SD
simulations are outlined in Sec. 3.4, which is followed by a a discussion of the static
pair correlation functions in Sec. 3.5. The proposed, rescaled ¢y scheme is outlined
in Sec. 3.6. In Sec. 3.7 we present our results for partial hydrodynamic functions of

various suspensions, and we draw our finalizing conclusions in Sec. 3.8.

3.2 Bidisperse hard-sphere suspensions
We study unbounded homogeneous equilibrium suspensions of non-overlapping
Brownian hard spheres with hard-core radii a, and ag. The pairwise additive direct

interaction potentials between the particles can be written as

oo forr <a,+ag,

uqp(r) = { (3.1

0 otherwise

in terms of the particle-center separation distance r and the particle species indices
a, B € {1,2}. The suspensions’ thermodynamic equilibrium state, studied in this

chapter, is entirely described by the three non-negative dimensionless parameters

A = az/al, (32)
¢ = ¢1+ ¢ and (3.3)
y = ¢1/4, (3.4)

where A is the size ratio and ¢, = (4/3)nn, af’, is the volume fraction of species « in
terms of the partial number concentration n, = N, /V. In taking the thermodynamic
limit both the number, N,, of particles of species «, and the system volume V diverge

to infinity while their ratio n, is held fixed. The remaining parameters in Eq. (3.3)
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and (3.4) are the total volume fraction ¢ and the composition ratio y, which satisfies
0 < y < 1. Without loss of generality, we assume a, > a; in the following. We
denote the total number of particles as N, and obviously, N = N; + N,.

All particles are assumed neutrally buoyant in an infinite quiescent, structureless
Newtonian solvent of shear viscosity 79. No external forces or torques act on the
suspended particles. The solvent is assumed to be incompressible, and the Reynolds
number for particle motion is assumed to be very small, such that the solvent velocity
field v(r) and dynamic pressure field p(r) satisfy the stationary Stokes equation

with incompressibility constraint,

noAv(r)
V-v(r)

Vp(r), (3.5)
0, (3.6)

at every point r inside the solvent. Equations (3.5) and (3.6) are supplemented
with hydrodynamic no-slip boundary conditions on the surface of each suspended
sphere. The linearity of Egs. (3.5) and (3.6) suggests a linear coupling between the
translational velocity of particle /, U;, and the force exerted on particle j, F;:

N;
U=-) u-F (3.7)

j=1
where the mobility tensor u;; has a size of 3 x 3. By placing the tensor ,uZ as
elements of a larger, generalized matrix, we construct the suspension grand mobility
tensor u'' of size 3N x 3N. The minimum dissipation theorem [35] requires u" to

be symmetric and positive definite.

3.3 Short-time diffusion
Here we are interested in diffusive dynamics at a coarse-grained scale of times ¢ that

satisfy the two strong inequalities [36]
TH~ T <Lt K T, 3.8)

defining the colloidal short-time regime. The hydrodynamic time scale 77 =
ag 0Po0/Mno, involving the solvent mass density pg, quantifies the time at which solvent
shear waves traverse typical distances between (the larger) colloidal particles. The
criterion ¢ > 7y implies that Hls, being transmitted by solvent shear waves, act ef-
fectively instantaneously at the short-time scale. Therefore, the elements of the grand

N

mobility matrix g’ depend on the instantaneous positions r ri,ry---,ry}of
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all particles, but not on their positions at earlier times. The momentum relaxation
time 17 = my/(6mnpay) in terms of the mass, m, of a particle of species 2, is similar
in magnitude to 7. Attimes ¢ > 77, many random collisions of a colloidal particle
with solvent molecules have taken place, the particle motion is diffusive, and inertia
plays no role. The colloidal short time regime is bound from above by the (diffusive)
interaction time scale 7p = a% /d}, given in terms of the Stokes-Einstein-Sutherland
(SES) translational free diffusion coefficient, d(l) = kBT,ué of the smaller particle
species. Here, ug = (6mnoaq)~! is the single particle mobility of species «, kp is
the Boltzmann constant and 7 is the absolute temperature. During times ¢ 2 7p,
diffusion causes the spatial configuration of the (smaller) particles to deviate appre-
ciably from their initial configuration, and in addition to the HIs, rearrangements of
the cage of neighboring particles start to influence particle dynamics. This results
in a sub-diffusive particle motion at times ¢ 2 7p preceding the ultimate diffu-
sive long-time regime ¢ > 7p at which a particle samples many independent local
neighborhoods. Unless the particle size-ratio A is very large, 7p is some orders
of magnitude larger than both 75 and 77, and the colloidal short-time regime in
Eq. (3.8) is well defined [36].

Scattering experiments on bidisperse colloidal suspensions, including the most com-
mon small angle light scattering [37] and x-ray scattering [38, 39] techniques, allow

the extraction of the measurable dynamic structure factor [21]

1
7

2
) Z VXaXp fa(q)f5(q) Sap(q.1), (3.9)
q9) a,p=1

SM(q’t) =

which contains the scattering amplitudes, f,(g), for particles of either species, the
mean squared scattering amplitude ]Tz(q) = X1 flz(q) + X2 fzz(q) in terms of the
molar fractions x, = N, /N, and the partial dynamic structure factors S, (g, ). In
the case of scattering experiments, N, is the mean number of a-type particles in
the scattering volume. The microscopic definition of the partial dynamic structure

factors reads

Sap(g:1) = h;n( 2 exp{iq- 7 (0) - rf(t)]}>, (3.10)

1
VNaNﬁ’ lea
iB
with the summation carried out over all particles / that belong to species @ and
all particles j that belong to species B, with i = V-1 denoting the imaginary
unit, lime, indicating the thermodynamic limit, the brackets (. ..) standing for the

ensemble average, and rZ (t) denoting the position of particle number k& (which
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belongs to species y) at time . From the microscopic definition it follows that
Sap(q) = Sga(q), and that the functions S,,(q) are non-negative, while the S, 5(q)
for @ # B can assume either sign. In the special case of t = 0, the partial dynamic
structure factors reduce to the partial static structure factors S, 5(q) = S.p(q, 0) and,

likewise, Sy(gq,0) = Spr(q) is the measurable static structure factor.

A useful approximation in the analysis of experimental scattering data for suspen-
sions with a small degree of particle polydispersity (typically 10% or less relative
standard deviation in the particle-size distribution) is the decoupling approximation
[21, 33] in which all functions S, g(g, t) in Eq. (3.9) are approximated by a monodis-
perse, mean structure factor S(g,t). For the strongly size-asymmetric hard-sphere
mixtures studied here, the S, (g, 1) show distinct mutual differences, which rules

out the application of the decoupling approximation.

In some experiments, the f,(g) for different species @ may be tuned independently.
An example is the selective refractive index matching of solvent and particles in
light scattering experiments [40]. Under such circumstances, the three independent
functions S,g(g) for a, f € {1,2} may be singled out individually. When all
functions S, g(g, ) are known, the dynamic number-number structure factor

Snn(g,1) = VXaXpg Sap(g:1), (3.11)

2
a,B=1
can be determined, which reduces, for r = 0, to the static number-number structure
factor Syy(g). In computer simulations, the S,g(g,7) and Syy(g,t) are easily
extracted once that all the time-dependent particle positions rZ(t) are known, but

the challenge lies in the accurate computation of the latter.

Colloidal dynamics at times t > 7ty ~ 7p are governed by the Smoluchowski
diffusion equation [36] which quantifies the temporal evolution for the probability
density function P(z, r"V) of the particle configuration " at time ¢. It can be shown
[41] that the 2 X 2 correlation matrix S (g, ) with elements S, g(g, ) decays at short
times as

S(g.1) ~ e TP 5(g), (3.12)

with a diffusivity matrix D(g) that can be split as
D(q) = ksTH(q) - S™'(q), (3.13)

into a product of the matrix H(g) of partial hydrodynamic functions H,z(q) and

the inverse partial static structure factor matrix $~'(q).
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The functions H,g(g) can be interpreted as generalized wavenumber-dependent
short-time sedimentation velocities: In a homogeneous suspension, the value of
H, 3(g) quantifies the spatial Fourier components of the initial velocity attained by
particles of species @, when a weak force field is switched on that acts on particles
of species £ only, dragging them in a direction parallel to q with a magnitude
that oscillates harmonically as cos(q - r). The microscopic definition of the partial

hydrodynamic functions reads [21]

Hap(q) = 1gp< > a-pieY) - q expfiq-[rff - rf]}>, (3.14)

1
\/N oN B lea
B

where q = q/q is the normalized wave vector, and the summation ranges are the
same as Eq. (3.10). Note that the positive definiteness of the u’’ implies that the
functions H,,(q) are non-negative, whereas the functions H, z(g) can assume both
positive and negative values for @ # . In particular, the latter functions assume
negative values at small values of ¢ due to the solvent backflow effect: when a weak
spatially homogeneous external force acts on particles of species £ only, it causes
the B-type particles to sediment in a direction parallel to the applied force, which
corresponds to Hgg(q — 0) > 0. Mass conservation requires the collective motion
of B-type particles to be compensated by an opposing backflow of solvent, which
drags the a-type particles in the direction anti-parallel to the applied force. Hence,
Hy,p(qg = 0) < Ofora # S.

By splitting the sum in Eq. (3.14) into the self (! = j) and the complementary
distinct contributions, the functions H,z(q) can each be decomposed, according to

@

Hap(q) = 605% + HY 5(q), (3.15)
into a sum of a wavenumber-independent self-part and the wavenumber-dependent
distinct part of the partial hydrodynamic function, H C‘f 5 (q), which tends to zero for
large values of ¢. In case of infinite dilution, or in the (purely hypothetical) case of
vanishing hydrodynamic forces, H, 5(q)/ 1y, reduces to the Kronecker delta symbol
0qp- The short-time translational self diffusion coeflicient df is equal to the time
derivative of the mean squared displacement W, () = %([rl“(t) — rl“(())]2> of a
particle of species « at short times. At infinite dilution, d§ = d.

If all functions H, g(g) are known, then the number-number hydrodynamic function

2
Hyn(q) = ) \¥aXp Hap(q) (3.16)
a,B=1
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and the measurable hydrodynamic function

2

1
Hula.) == — D VEa5 (@) f5(q) Hap(q), (3.17)
q) a,p=1

can be computed, which quantify the short-time decay of the dynamic number-

number structure factor
Sun (g 1) = Sww(g)e PNV (@" (3.18)
and the measurable dynamic structure factor
Sw(g,1) = Su(g)e™ " Pua, (3.19)

through the number-number diffusion function Dyy(q) = kgTHyn(q)/Snn(q) and
the measurable diffusion function Dy;(q) = kT Hp(q) /Sy (q).-

3.4 Stokesian Dynamics simulations

The framework of the Stokesian Dynamics (SD) has been extensively discussed
elsewhere [13, 15, 42, 43] and here we only present the aspects pertinent to this
chapter. For rigid particles in a suspension, the generalized particle forces # and
stresslets S are linearly related to the generalized particle velocities U through the

grand resistance tensor R as [35]

I I

S —e”

where U™ and e are the imposed generalized velocity and strain rate, respectively.
The generalized force # represents the forces and torques of all particles in the
suspension, and the generalized velocity U contains the linear and angular velocities

for all particles. The grand resistance tensor R is partitioned as

R R
R=|"FU TFE) (3.21)
Rsuy Rse

where, for example, Ry describes the coupling between the generalized force and
the generalized velocity, R g describes the coupling between the generalized force

and the strain rate, etc.. In the SD method the grand resistance is approximated as
R = (M) + Ryp — RS, (3.22)

where the far field mobility tensor M® is constructed pairwisely from the multipole

expansions and the Faxén’s laws of the Stokes equation up to the stresslet level,
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and its inversion captures the long-range many-body hydrodynamic interactions.
The near-field lubrication correction (Rop — R3}) is based on the exact two-body
solutions with the far field contributions removed, and it accounts for the singular
HIs when particles are in close contact. The SD method recovers the exact solutions
of two-particle problems and was shown to agree well with the exact solution of

three-particle problems [44].

Extending the SD method to polydisperse systems retains the computational frame-
work above. The far-field polydisperse mobility tensor M is computed using the
multipole expansions as in Ref. [45] and the resulting expressions are extended to
infinite periodic systems using Beenakker’s technique [46, 47]. The lubrication
correction (Rop — R5y) for particle pair with radii a, and ag are based on the exact
solution of two-body problems in Ref. [48-51] up to 57300 where s = 2r/(aq,+a B)is
the scaled center-to-center particle distance. In our simulations, the lubrication cor-
rections are invoked when r < 2(a, + ag), and the analytic lubrication expressions

are used when r < 1.05(a, + ag).

Our simulations proceed as follows. First, a random bimodal hard-sphere packing at
the desired composition is generated using the event-driven Lubachevsky-Stillinger
algorithm [52, 53] with high compression rate. After the desired volume fraction ¢
is reached, the system is equilibrated for a short time (10 events per particle) at zero
compression rate. This short equilibration stage is necessary as the compression
pushes particles closer to each other than in thermodynamic equilibrium. Prolonging

the equilibration stage does not alter the resulting suspension structure significantly.

To avoid singularities in the grand resistance tensor due to particle contact, we
enforce a minimum separation of 10%(a; +a i) between particles in our simulations.
The resistance tensor R is then constructed based on the particle configuration r.
The partial hydrodynamic functions are extracted from u'’, a submatrix of the grand

mobility tensor
1t

tr

Ryy = (”n ”) (3.23)
I

which contains coupling between the translational (t) and rotational (r) velocities

and forces of a freely-mobile particle suspension. Typically each configuration

contains 800 particles and at least 500 independent configurations are studied for

each composition.

The partial hydrodynamic functions H,g(q) extracted from the simulations exhibit

a strong VN size dependence due to the imposed periodic boundary conditions [9,
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23, 54, 55]. The finite size effect can be eliminated by considering H,z(q) as a
generalized sedimentation velocity. The sedimentation velocity from a finite size
system with periodic boundary conditions is a superposition of the velocities from
random suspensions and cubic lattices [54, 55]. This argument is straightforwardly
extended to bidisperse suspensions, where the size correction, Ay H,g(g), for the
partial hydrodynamic functions computed from the N-particles system, H, g n(q),

is

1763[1 + (2 = Dyl Sap(@) n E ) (3.24)

AnHyp(q) = g n \N
In Eq. (3.24), ANHop(q) = Huop(q) — Hopn(q), Hep(q) is the hydrodynamic
function in the thermodynamic limit, and 15/n¢ is the high frequency shear viscosity
of the suspension, which is obtained from the same simulation. Note that the shear
viscosity 775/m9 changes little with system size, and that the scaling for H,(q) in

Eq. (3.24) is chosen to be ,u(l) regardless of the choice of @ and S.

3.5 Static pair correlations

Fig. 3.1 features the partial radial distribution functions g,g(r) (upper panel) and
the partial static structure factors S, g(g) (lower panel) generated by the simulation
protocol described in the previous section for a bidisperse suspension of 4 = 2,
y = 0.5, and ¢ = 0.5, the highest volume fraction studied in this chapter. The
function g, g (r) quantifies the probability of finding a particle of species j at a center-
to-center distance r from a particle of species a [56]. The measured functions g, g(r)
and S, 3(q) (open circles in both panels of Fig. 3.1) are compared with the solutions
of the Percus-Yevick (PY)[57-59] and the Rogers-Young (RY)[60] integral equations
at the same system parameters. We solve the polydisperse RY scheme as described
in Ref. [61] with a single mixing parameter that ensures the partial thermodynamic
self-consistency with respect to the total isothermal osmotic compressibility of the
mixture in the virial and the fluctuation routes[56]. The RY-scheme equations are
solved numerically by means of a spectral solver that has been comprehensively
outlined in Refs. [62, 63]. The PY scheme is simpler, but it is thermodynamically
inconsistent. It predicts the static pair-correlations of particles with repulsive pair
interactions less accurately than the RY scheme [64]. Differences between the PY-
and RY-scheme solutions are most prominent in the functions g, g(r), in particular
around the contact values g,g(r = a, + ag). Nevertheless, observing the lower
panel Fig. 3.1 we note that the PY scheme predicts the partial static structure factors
accurately, and in nearly perfect agreement with the RY-scheme and the simulations,

even at the high volume fraction ¢ = 0.5. We have checked that the nearly perfect
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Figure 3.1: The bidisperse suspension partial radial distribution functions g, g(r)
(upper panel) and partial static structure factors S,3(g) (lower panel) for ¢ = 0.5,
y = 0.5, and A = 2, directly measured from the simulations (open circles), and
computed via the Percus-Yevick (PY) and Rogers-Young (RY) integral equation
schemes. Note that the function S»;(q) has been shifted upwards by one unit along
the vertical axis for clarity.
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agreement between the PY- and RY-scheme predictions for the functions S,z3(q)
remains for other composition parameters (from y = 0.1 to y = 0.9), and that
the final predictions of our combined, semi-analytical theoretical scheme (i.e., the
hydrodynamic functions plotted in Fig. 3.3, 3.4 and 3.6) do not change significantly

when the RY-scheme functions S, 5(q) are used instead of the PY-scheme solutions.

Therefore, the simple, analytically solvable PY scheme is sufficiently accurate to
generate the static structure input for the rescaled 0y scheme described in the
following sections. The main source of error of our method is from the various
approximations made in the 67y scheme and its modifications, rather than the slight
inaccuracy of the structural input. Consequently, we have used the PY-scheme
static structure factors in generating all results presented further down this article.
In future applications of our method, the reader may use the RY-scheme or other
more accurate integral equation schemes, particularly when studying systems with
different pair potentials. In addition, a related line of research is concerned with tests
and improvements of the different 6y-scheme approximations (for monodisperse
suspensions) [34]. Such assessment relies critically on an accurate static structure

input and hence the RY-scheme is used there.

3.6 Rescaled 6y scheme

The 6y scheme, originally introduced by Beenakker and Mazur [18, 20] and quite
recently revised by Makuch er al. [25, 34] predicts short-time linear transport
coeflicients of monodisperse colloidal suspensions with an overall good accuracy,
for volume fractions of typically less than 40%. A modified version of the oy
scheme with an improved accuracy has been proposed in Ref. [23, 24, 32, 33]. The
modification consists of replacing the rather inaccurate, microstructure-independent
oy-scheme expression for the self-diffusion coefficient d; by a more accurate expres-
sion. The hydrodynamic function for a monodisperse suspension is then calculated
as the sum of this more accurate self-term and the distinct part of the hydrodynamic
function, with the latter retained from the original 6y scheme (c.f., the special case
of Eq. (3.15) for monodisperse suspensions). This replacement of the self-diffusion
coefficient does not only result in an improved accuracy of the predicted hydro-
dynamic functions for hard spheres, but also allows computation of hydrodynamic
functions of charge-stabilized colloidal particles with mutual electrostatic repulsion

of variable strength.

There are several possibilities for choosing the self-diffusion coefficient in the mod-
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ified 0y scheme. It can be treated as a fitting parameter [32], calculated by computer
simulation [23], or in the approximation of pairwise additive HIs, which is specially
well-suited for charge-stabilized suspensions [24, 33]. In case of monodisperse

hard-sphere suspensions,

dy
=5 21— 1.83154(1 +0.1195¢ — 0.70¢2), (3.25)

where dy = kgT o and o = (67r770a)_1 ,is ahighly accurate approximation provided
that ¢ < 0.5 [24]. Expression (3.25) coincides with the known truncated virial
expression [10] to quadratic order in ¢. The prefactor of the cubic term has been
determined as an optimal fit value that reproduces numerically precise computer
simulation results for d;/dg [23, 65].

The distinct part of the monodisperse hydrodynamic function is approximated in the

0y-scheme as:

H 3 r i
0

X fd,u(l - 1) [Slg-ga'h)-1]. (3.26)

-1

In Eq. (3.26), y = 2ga is a dimensionless wavenumber, u = q - q'/(gq’) is the
cosine of the angle between q and (', and the volume-fraction and wavenumber-
dependent function S, (¢, y) (not to be confused with a static structure factor) has
been specified in Ref. [20, 32].

For monodisperse suspensions, the dy scheme requires only the static structure
factor S(q) and the suspension volume fraction ¢ as the input for calculating the

hydrodynamic functions, namely,

H(q)

~ Hsy[S(q), 9], (3.27)

where Hg,[-, -] denotes the modified Jy-scheme result based on Eq. (3.15), (3.25)
and (3.26).

Extending the 6y scheme to the more general case of bidisperse suspensions is a
non-trivial task. The size polydispersity affects (i) the structural input through the
partial static structure factors S,s(q), and (ii) the hydrodynamic scattering series

[31], upon which the 6y scheme is constructed [25]. For bidisperse suspensions,
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the structural input in (i) can be computed by liquid integral equations, e.g., the PY
scheme [57-59, 66] which we use in the present study. However, the evaluation of
the bidisperse hydrodynamic scattering series is more difficult since each scattering
diagram for monodisperse suspensions has to be replaced by multiple diagrams
describing the scattering in particle clusters containing particles of both species.
Even if the resummation of the bidisperse hydrodynamic scattering series can be
achieved, the accuracy of the results remains unknown without a direct comparison

to experiments or computer simulations.

Here we bypass the difficult task of bidisperse hydrodynamic scattering series re-
summation and adopt a simpler idea based on the existing (modified) 6y scheme for
monodisperse particle suspensions. The partial hydrodynamic functions H,,(g)

can always be written as

Hoza/
qu) = fa/Héy[Saa/(CI)’ ¢01]’ (328)
Hy
where the factor
fo = fa(q; A, ¢, y) (3.29)

describes the wave-number dependent HIs due to the other species 8 not captured

in the 0y scheme, and also depends on the suspension composition.

For the interspecies partial hydrodynamic functions H,g(g) (a # ), the limiting
value at g — oo, like S, 5(q), goes to zero. Therefore, only the distinct part in the
07y scheme is relevant, and to maintain consistency with Eq. (3.26), a shifted distinct
static structure factor Sy g(q) + 1 (a # B) is used as the input. Similar to Eq. (3.28),
a scaling factor f,3 = fop(q; 4, ¢, y) provides the connection to the 6y scheme by

H,
Ba(q) = faﬁHgy[Saﬁ(Q) + 1,81, (@ # ), (3.30)

0

when H gy[Sa p(q)+1, ¢]is computed according to Eq. (3.26). Note that in Eq. (3.30)
the total volume fraction ¢ is used in the 6y scheme. This is motivated by the physics
of H,p(q) (o # p)—from a generalized sedimentation perspective, it describes the
g-dependent velocity response of species @ due to an application of g-dependent
forces on the B species. Since both species are present, the total volume fraction
¢ should be used. For monodisperse suspensions with artificially labeled particles,
we expect f, 3 ~ 1. In bidisperse suspensions the deviation from unity in f, g is due

to the size effects in HIs.
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Figure 3.2: Schematic representation of the effective medium concept. Straight red,
green and black lines indicate the e, B and @ # S correlations, respectively.
Either species a, 8 is approximated as an effective structureless fluid for the other
species to move in (left and right panels). The distinct species contributions (@ # S,
central panel) are approximated by those of a hydrodynamically monodisperse fluid
of fictitious y-type particles in pure solvent. The size of y-type particles is chosen
such that ¢, = ¢ = ¢, + ¢, and their center of mass positions coincide with those
of the a— and B— type particles in the bidisperse suspension (top panel).

A simplification for the hydrodynamic interactions in bidisperse suspensions is to
assume that the Hls are of a mean-field nature, and consequently the factors in
Eq. (3.28) and (3.30) become g-independent, i.e.,

fa(@; 4, 8,5) = fo(A,0,y) (3.31)
Jap(@: 4, ¢, y) = fap(d, ¢, y). (3.32)

In this way, the monodisperse 6y scheme is extended to bidisperse suspensions
by introducing composition dependent scaling constants. We call the resulting
approximation scheme the rescaled 0y scheme. As we will see in Sec. 3.7, this
simplification describes the SD measurement surprisingly well—providing an a
posteriori justification for Eq. (3.31) and (3.32). Note that the rescaling rules in
Eq. (3.28) and (3.30) can be straightforwardly generalized to the polydisperse case

with more than two different particle species.

Fig. 3.2 succinctly illustrates the rescaled 7y scheme. In computing the functions
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H,.(q), we ignore the particulate nature of species S which is replaced by an
effective medium for species @ to move in (left and right panels in Fig. 3.2). The
effective translational free diffusion coefficient is therefore f,dy, and is expected
to be smaller than the SES diffusion coefficient d; for diffusion in the pure solvent,
leading to f, < 1. The distinct species partial hydrodynamic function H,g(q)
for @« # B is approximated by the corresponding function in a hydrodynamically
monodisperse suspension of fictitious particles (y-type particles in Fig. 3.2) in pure
solvent, which occupy the same center of mass positions as the a- and S- type
particles in the bidisperse suspension. The size of the y-type particles is chosen
such that ¢, = ¢ = ¢, + ¢. We stress again that the fidelity of our approach cannot
be easily estimated, but rather is validated a posteriori by comparing with the SD

simulation results.

For our rescaled 6y scheme to be useful, estimations of the scaling factors f, and f, 5
are required. To estimate the factor f,, recall that f,d{ describes the translational
free diffusivity of one particle of species @ in an effective medium of many g
particles. Equivalently, for many « particles, f,ds(dq)/do, where ds(¢q)/dy is the
self-diffusivity of monodisperse suspensions at volume fraction ¢, represents the
species self-diftusivity dg (¢, 4, y)/d;) in the bidisperse mixture, i.e.,

(A, y)/dY
¢ ds(¢a)/d0 ’

where the monodisperse self-diffusivity d;(¢)/do is given in Eq. (3.25), and the

(3.33)

estimation of the species self-diffusivity is discussed next. For the interspecies
factor f,p, we assume the mean-field description of HIs is sufficient and the size

effect is weak, i.e.,
fap = 1. (3.34)

Note that both Eq. (3.33) and (3.34) are physically motivated and are validated by
the SD measurements in Section 3.7.

The estimation of f, in Eq. (3.33) requires an approximation of the species short-
time self-diffusivity d/d in the mixture. For dilute systems where Hls can be
decomposed into sums of pairwise additive contributions, df /d{ can be calculated

to linear order in the volume fractions as [19, 22]

=1+ > lupdp+O0(@} 3), (3.35)

a
s
a
do B=12
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with the integrals

(4 )

QIB 3
843,

foo 52 [x‘fl(s) +2y1,(s) — 3] ds (3.36)
2

interms of s = 2r/(a, +ag) and Ag, = ag/a,. The scalar hydrodynamic two-body
mobility functions x{, (s) and 2y{, (s) describe the relative motions of two spheres
in the direction parallel and orthogonal to a line that connects the sphere centers,
respectively, and can be calculated with arbitrary precision [35, 48, 67]. A series
expansion in the inverse particle separation yields the leading order far-field terms
of the integrand

~6047, . 48043, — 2644;

Ba -8
= 0] ) 337
SOt Bsagmpe o G

x{ +2y7; -3
Here, we employ the two-body mobility coefficients from ref. [48] up to s> to
ensure a smooth crossover to the analytically known close-contact (lubrication)
expressions [68]. For particle size-ratio 4 = 2, numerical integration of Eq. (3.36)
yields the values 11| = I, = —1.8315, I} = —1.4491 and I; = —2.0876.

Computation of the quadratic and higher order terms of the virial expansion in
Eq. (3.35) is an elaborate task, even when three-body HIs are included in their
leading-order far-field asymptotic form only [22]. In place of such cumbersome

computation of the d¥ /d{, we propose a simple Ansatz

Z—gz 1 +(Z Iaﬁ@;)x (1+0.1195¢ — 0.70¢7) (3.38)
B=1.2

which reduces to the accurate expression in Eq. (3.25) for 4 = 1, and is correct to
linear order in the volume fractions for all values of 4. In Eq. (3.38), the effects
of different particle sizes are incorporated in the linear term while the effects of
different volume fractions are treated in a mean-field way, i.e., independent of the
size ratio. It is important to note here that Eq. (3.38) is merely an educated guess for
the quadratic and cubic terms in the virial expansions of the d§ /d{j. The accuracy of
(3.38) will be tested by comparison to our SD results in Sec. 3.7. With Egs. (3.25),
(3.34), and (3.38), the analytical estimation for f, is

1+ ( D zwﬁ¢ﬂ) x (1+0.1195¢ — 0.7047)
=1,2
fo- B - (3.39)

1 - 1.8315¢, (1+0.1195¢, — 0.70¢7)
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3.7 Results and discussions

In this section we compare results of the rescaled ¢y scheme described in Sec. 3.6
to the results of the SD simulations outlined in Sec. 3.4. For each suspension
composition, the SD simulations typically take a few days, while computations
using the rescaled 6y scheme only require at most a few minutes. This great
performance incentive renders the rescaled 6y scheme more convenient for many

applications.

The rescaled 6y scheme relies on the monodisperse 6y scheme to capture the
structural features in the hydrodynamic functions of bidisperse suspensions, using
bidisperse static structure factors as input. The validity of this Ansatz can be directly
validated by studying a bidisperse suspension where one of the species, say, species
B, only influences the suspension structurally but not hydrodynamically, i.e., f, = 1
in Eq. (3.28). An experimental realization of such system would be a mixture of
hard-sphere particles and highly permeable porous but rigid particles of different
size. In the SD simulations, we generate a bidisperse suspension configuration and
then exclude the inactive species S from the hydrodynamic computations. The
resulting hydrodynamically monodisperse, but structurally bidisperse suspension’s

function H(gq) is influenced by the partial static structure factor Sy (q).

Fig. 3.3 compares the partial hydrodynamic functions H,, (¢g) of bidisperse suspen-
sions containing hydrodynamically inactive particles from the rescaled 6y scheme
[Eq. (3.28) with f, = 1] and the SD simulations. Recall that, for example, H;(q)
corresponds to suspensions with hydrodynamically inactive large particles. Com-
paring to the SD measurements, the monodisperse dy scheme accurately captures
the structural features in the hydrodynamic functions with structural input S1;(q),
including in particular the minimum in H;;(gq) for ga; = 1.7 due to cages formed by
the large particles. However, the monodisperse y scheme systematically overesti-
mates the magnitude of the hydrodynamic functions at all wave-numbers, since the
species self-diffusivity in this case is different from the self-diffusivity in Eq. (3.25)

for monodisperse suspensions, due to the different suspension structures.

Turning now to the true (structurally and hydrodynamically) bidisperse suspensions
where both species are hydrodynamically active, Fig. 3.4 features the SD mea-
surements (symbols) of the partial hydrodynamic functions H,g(g) for bidisperse
suspensions with 4 = 2 over a wide range of the compositions y and total volume
fractions ¢, covering both the dilute (¢ = 0.1) and the concentrated (¢ = 0.5)

regimes. The qualitative and quantitative aspects of the functions H,g(g) are ex-
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Figure 3.3: The partial hydrodynamic functions H11(q) and H;(q) for a bidisperse
suspension of ¢ = 0.4, y = 0.5, and 4 = 2 with the respective other species being
hydrodynamically inactive. The hydrodynamic functions are scaled with the single
particle mobility ,ug = (671770610/)_1 and the wave number is scaled with a;, the
radius of the smaller particles.

tensively examined and discussed in a companion paper [69], and here we focus on

the performance of the rescaled 6y scheme.

We first discuss the central assumptions of the rescaled 6y scheme: the wave-number
independence of the fitting parameters f, and f,g in Eq. (3.31) and (3.32), respec-
tively. The g-independent parameters f, and f,g were computed by least-square
fitting the SD measurements and the rescaled 7y scheme as in Eq. (3.28) and (3.30).
The fitted partial hydrodynamic functions are presented as solid curves in Fig. 3.4.
For H,,(q), the fitted data capture all the qualitative and most quantitative features
in the SD measurements at all g for both species. The best agreement is found at
y = 0.5, where both species are present in large enough amounts for the mean-field
description of the HIs to be valid. For more asymmetric compositions, such as at
y = 0.1 and y = 0.9, the agreement deteriorates slightly at low g with increasing
¢. For the dilute suspensions at ¢ = 0.1, we find excellent agreement between
the fitted functions and the SD measurements. At ¢ = 0.25, despite the excellent
overall agreement for both species, the discrepancies are slightly more pronounced

for the smaller species. The mean-field description is more appropriate for the
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Figure 3.4: The partial hydrodynamic functions H,g(q) of bidisperse suspensions
with full hydrodynamics. The size ratio is 4 = 2. The top, middle, and bottom
rows are Hji(q) and H»(q), and Hi,(q), respectively. The interspecies partial
hydrodynamic functions Hi2(g) are shifted by 0.1 for y = 0.5 and by 0.2 for
y = 0.9 for clarity (also indicated in the figure). The left, middle, and right columns
correspond to volume fractions ¢ = 0.1, 0.25, and 0.5, respectively. For each ¢ we
show the SD measurements for composition y = 0.1 (O), y = 0.5 (1), and y = 0.9
(A). The results for the fitted 6y scheme are shown as solid curves, and results of the
parameter-free rescaled 6y scheme with f,, from Eq. (3.39) and f, s from Eq. (3.34)
are shown as dashed curves.
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hydrodynamic environment of the large particles, as each of them is surrounded by
multiple small particles. On the other hand, the small particles are strongly affected
by the presence of large particles, and the respective hydrodynamic environment
exhibits more fluctuations. This leads to the slight differences in Hy1(g) at y = 0.9
in Fig. 3.4(b). At ¢ = 0.5, the accuracy of the 6y scheme breaks down since
the unaccounted hydrodynamic scattering diagrams become important. However,
despite some disagreements the fitted scheme still captures many qualitative fea-
tures of H,,(g). The discrepancies are particularly apparent in the low ¢ limit
with asymmetric compositions, e.g., H11(g) at y = 0.9 in Fig. 3.4(c) and H>;(q)
at y = 0.1 in Fig. 3.4(f). In these cases, the g-independent scaling factor f, is not
sufficient to describe the hydrodynamic interactions from the minority species £.
For H,g(q) (@ # B) shown in Fig. 3.4(g)—(i), the agreement between the measured
and fitted H,(q) is excellent for all ¢ except at small g. Note that the modulations
of Hy»(q) first increase from ¢ = 0.1 to ¢ = 0.25 due to the enhancement of hydro-
dynamic interactions, and then decrease from ¢ = 0.25 to ¢ = 0.5, possibly due to
hydrodynamic shielding effects. The g-modulations in H;>(g) are small compared
to Hi1(g) and Hy;(q). Overall, the agreement between the SD measurement and
the fitted scheme validates the assumption of g-independence of f, and f,g, up to

relatively high volume fractions.

It seems appropriate to discuss the role of the near-field lubrication interactions on
the partial hydrodynamic functions H,g(g) here. In many cases, the lubrication
effects play a critical role in transport properties of bidisperse hard-sphere suspen-
sions. For example, when computing the pairwise additive shear viscosity of dilute
bidisperse suspensions, neglecting the lubrication effects can lead to quantitatively
and qualitatively wrong results on the composition dependence of the viscosity [70].
To assess the influences of lubrication here, we recomputed H,g(q) of bidisperse
suspensions at 4 = 2 and ¢ = 0.5 using SD without the lubrication corrections.
Relative to the full results in Fig. 3.4, the resulting H,g(q) are much larger in mag-
nitude and exhibit more pronounced modulation with respect to g. However, unlike
the pairwise additive shear viscosity, the H,z(g) without the lubrication effects are
qualitatively similar to the results in Fig. 3.4, i.e., the shape of the curve at each com-
position and the relative features with different compositions remain unchanged. In
fact, the H,g(q) results with and without the lubrication correction can be brought
to quantitative agreement with a g-independent factor. For this reason, the results
without the lubrication corrections are not presented. Apparently, the lubrication

effects only play a quantitative, rather than qualitative, role in the determination of
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H, g(q) for bidisperse hard-sphere suspensions.

The fitted g-independent scaling factors fi, f>, and fi; as a function of the com-
position y for bidisperse suspensions with 4 = 2 at different volume fractions ¢
are presented in Fig. 3.5. As expected, at a fixed volume fraction ¢, f, decreases
monotonically from 1 with the increasing presence of the other species 5. At a
fixed value of y, f, also decreases from 1 when the volume fraction ¢ is increased.
Both decreasing trends in f,, are due to the enhanced HIs from the other species.
The scaling factor fi, for the interspecies hydrodynamic interactions exhibits more
peculiar behaviors. For ¢ = 0.1 and 0.25, the factor fi; is close to unity, suggesting
that the mean-field hydrodynamic interaction assumption in the rescaled 6y-scheme
is valid. However, f1, does become smaller with increasing y, i.e., for Hi2(q),
adding larger particles to the suspension is not equivalent to adding smaller parti-
cles, which becomes particularly clear for ¢ > 0.25 in Fig. 3.5(c). For ¢ = 0.4
and 0.5, f12 becomes much smaller than unity and decreases monotonically with
increasing y. At these volume fractions, it appears that f1, is extremely sensitive to
the presence of the other species in the mixture, as we expect f1, to recover to unity

wheny - Oory — 1.

The f1 and f; predicted by Eq. (3.39) are shown in Fig. 3.5(a) and (b) as curves. The
predicted f; agrees well with the fitted value up to ¢ = 0.25, and at higher volume
fractions, the equation overestimates f1 by 10% at ¢ = 0.35 and y = 0.1 and by 20%
at¢ = 0.45and y = 0.1. The predicted f> for the larger species, however, agrees well
with the fitted value up to ¢ = 0.4 at all compositions except when y is close to unity.
Since Eq. (3.39) is motivated by a mean-field model of d{ /d{, Eq. (3.38), Fig. 3.5
again suggests that the larger particles in bidisperse suspensions experience the mean
field from the small particles, while the hydrodynamic environment of the smaller
particles shows stronger fluctuations. Specifically, since Egs. (3.38) and (3.39)
are exact in the dilute limit when the pairwise HIs dominate, the error must come
from the many-body HI term which is based on the monodisperse results. Both
the near-field and far-field effects contribute to the many-body HI, and both depend
on the bidisperse suspension compositions. For dense suspensions, it is difficult
to separate one contribution from another, and any improvements must consider
both in tandem. Based on Fig. 3.4 and 3.5, any improvement of the rescaled oy
scheme requires a better estimation of d{ by explicitly considering the composition
dependence of the many-body HIs. For practical purposes here, from Fig. 3.5 we

note that the parameter-free analytical estimation of f,, and f, g is satisfactory up to
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¢ ~ 0.35-0.4 at all compositions, for A = 2.

The parameter-free partial hydrodynamic functions, predicted by the rescaled oy
scheme with factors f, from Eq. (3.39) and fi, from Eq. (3.34), are presented in
Fig. 3.4 as dashed curves. The agreement with the SD measurements is satisfactory
for H,p(q) at all compositions at ¢ = 0.1 and 0.25. In Fig. 3.4(b) the predicted
Jf1 slightly overestimates Hij(g) at y = 0.1 at ¢ = 0.25, primarily due to the
overestimation of the small particle diffusivity in Eq. (3.38). At ¢ = 0.5, the
prediction breaks down, and the discrepancy is most pronounced at y = 0.1 for
the overestimation of Hi;(g) in Fig. 3.4(c) and at y = 0.9 for the underestimation
of Hx(g) in Fig. 3.4(f). Moreover, Eq. (3.34) overestimates the g-modulations in
Hi2(q) in all compositions at ¢ = 0.5 in Fig. 3.4(i), as the hydrodynamic shielding

in dense systems cannot be captured by fi; = 1.

In practice, individual partial hydrodynamic functions H,g(q) cannot be conve-
niently measured in scattering experiments and the measured quantity Hy(q) is a
weighted average of the H,(q). Note from Eq. (3.16) and (3.17), that Hy(g) dif-
fers from the similar number-number hydrodynamic function Hyy(g) only trough
its dependence on the particle-specific scattering amplitudes f,,(g). To test the ac-
curacy of the rescaled 6y scheme, it is sufficient to test its predictions of Hyy(g). In
Fig. 3.6 we compare the Hyy(g) from the SD measurements and from the rescaled
0y scheme, with factors f, and f,s obtained from optimal least square fittings
(solid curves) and from the parameter-free analytic Eq. (3.39) and (3.34) (dashed
curves). Results for the same bidisperse suspensions are depicted in Fig. 3.6 and
3.4. For ¢ = 0.1, the rescaled dy scheme captures the SD results with high precision
in the entire g-range, at all studied compositions y. Small discrepancies occur most
noticeably in the ¢ — 0 limit. At ¢ = 0.25, the difference in Hyxy(g) from both
the fitted and the parameter-free analytical expression is less than 5% in the entire
g-range, which demonstrates the validity of our proposed rescaling rules for the
07y scheme. For the very dense suspensions, ¢ = 0.5, we see how the rescaled oy
scheme breaks down. With the fitted f,, and f,g, the scheme is only capable of
capturing the qualitative features in the measured Hyy(g). With the f, and f,p
from Eq. (3.39) and (3.34), the scheme exhibits significant differences from the SD

measurements with decreasing y.

The performance of the rescaled 0y scheme for size ratios 4 # 2 (and in particular
for 4 > 2) remains to be explored. In representative tests for 4 = 4 we found

that the scaling approximation of Eq. (3.33) remains valid, but Eq. (3.39) breaks
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down around ¢ = 0.25 and y = 0.5, particularly for the smaller particles. This
is due to the breakdown of Eq. (3.38) for the short-time self-diffusivity d/d.
Note that Egs. (3.38) and (3.39) are exact in the dilute limit ¢ — 0, and that they
remain valid in a decreasing ¢-range with increasing size ratio. At a given 4 and
¢, the approximations are expected to be better for the larger particles than for the
smaller particles, due to the more mean-field-like HIs among the larger particles.
However, establishing an accuracy measure of the rescaled dy scheme in the full
suspension parameter range requires direct comparison with accurate hydrodynamic
computations. Unfortunately, this is a very elaborate and computationally expensive
task because of the system size that increases with increasing values of A, and
because of accuracy limitations of the SD method. In future, obtaining an accurate
expression of df /d(j for dense suspensions with arbitrary values of A will be the key

to further improvement of the rescaled 6y scheme.

3.8 Conclusions

In this chapter we have proposed a rescaled ¢y scheme to compute approximations
of the partial hydrodynamic functions H,g(q) in colloidal mixtures. We found
that the H,3(q) from the Stokesian Dynamics measurements differs from the oy
scheme with appropriate structural input by a g-independent factor, suggesting that
the hydrodynamic environment for one species can be described as a mean field due
to the HIs from the other species and the solvent. This constitutes the fundamental

assumption of the rescaled dy scheme.

We extensively tested the rescaled ¢y scheme with the SD simulation measurements
for bidisperse suspensions over a wide range of volume fractions ¢ and compositions
v, and provided approximate analytical estimates for the scaling factors f,, and f, .
Comparing with the SD measurements, the rescaled 6y scheme with analytical
scaling factors can accurately predict the number-number hydrodynamic function
Hypn(g) up to ¢ = 0.4 at all studied composition ratios y, for a particle-size ratio as
high as 4 = 2.

The proposed rescaled 6y scheme is the first semi-analytical method for estimating
the bidisperse hydrodynamic functions up to ¢ = 0.4, and it can be readily extended
to polydisperse and charged systems. It will be a valuable tool for interpreting

dynamic scattering experiments of moderately dense bidisperse systems.
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