
73

C h a p t e r 3

SHORT-TIME DIFFUSION OF COLLOIDAL SUSPENSIONS

[1] M. Wang, M. Heinen, and J. F. Brady, “Short-time diffusion in concentrated
bidisperse hard-sphere suspensions”, the Journal of Chemical Physics 142,
064905 (2015) doi:10.1063/1.4907594,

3.1 Introduction
Short-time diffusion in Brownian suspensions has been a topic of extensive research
for many years, which has pushed forward the development of various computer
simulation methods including Lattice Boltzmann simulations [1–3], Dissipative
Particle Dynamics [4, 5], Stochastic Rotation / Multiparticle Collision Dynamics
[6–8], hydrodynamic force multipole methods [9, 10], boundary integral methods
[11, 12], and (Accelerated) Stokesian Dynamics [13–15]. Each of these simulation
methods is rather involved, which is one reason for the on-going development of
approximate (semi-) analytical theoretical schemes for colloidal short-time dynamics
[16–25].

In spite of extensive simulations and analytical theoretical studies, substantial gaps
remain in the colloidal suspension parameter space that has yet been explored, which
is due both to the large number of tunable parameters in soft matter systems, and
the complexity of the salient hydrodynamic interactions (HIs) among the suspended
particles. The purpose of this chapter is to assess the short-time diffusive dynamics
in mixtures of hard spheres with two different hard-core diameters using a gen-
eralization of Stokesian Dynamics (SD) simulations and an analytical-theoretical
scheme. While similar theoretical studies have so far been limited to suspensions
in which at least one of the species is very dilute [16, 19, 22, 26], in the present
chapter we cover a large range of packing fractions including both dilute and dense
bidisperse hard-sphere fluids. All results presented here can be straightforwardly
generalized to suspensions of more than two particle species.

Experiments on polydisperse suspensions have so far been limited to very high
densities [27–29], where polydispersity suppresses crystallization and facilitates
studies of the glass transition, or to fluid mixtures of charged particles which exhibit
strong pair correlations already at low volume fractions [30]. Moderately dense,
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polydisperse equilibrium suspensions are experimentally underattended to date,
despite their resemblance of many substances handled in industrial, biological, and
medical applications. Polydispersity is the rule rather than the exception in naturally
occurring suspensions and should therefore receive more attentions in experimental,
theoretical, and computational studies. One reason for the lack of experimental
studies may be the poor theoretical understanding of diffusion in polydisperse fluid
suspensions. Providing a semi-analytical theoretical scheme that applies in a wide
range of volume fractions and compositions, the present chapter should help to close
this gap in the theory of suspensions and facilitate future experiments.

In addition to the steric no-overlap constraint, the suspended hard spheres interact
via solvent-mediated HIs. Accurate inclusion of HIs into theory and simulation
is essential, since the linear transport coefficients for colloidal suspensions are
governed entirely by the HIs in the colloidal short-time regime. However, the
peculiar properties of HIs render their computation a formidable task. In particular,
HIs are long-ranged, non-pairwise-additive, and exhibit steep divergences in case
of lubrication, i.e., when particles move in close contact configurations.

A semi-analytical theoretical scheme for short-time suspension dynamics, with
multi-body HIs included in an approximate fashion, has been devised by Beenakker
and Mazur [17, 18, 20], and has quite recently been re-assessed by Makuch and
Cichocki [25]. This method, commonly referred to as the δγ scheme, makes use of
resummation techniques by which an infinite subset of the hydrodynamic scattering
series [31] is computed, including all particles in suspension. Nevertheless, a
complementary infinite subset of scattering diagrams is omitted in the δγ scheme
which, moreover, fails to include the correct lubrication limits of particle mobilities.
Comparisons of the original δγ-scheme predictions to experimental and computer
simulation data have revealed a shortcoming of the δγ scheme in its prediction
of self-diffusion coefficients [23, 24, 32–34], which can be largely overcome by
resorting to a modified δγ scheme in which the computation of the self-diffusion
coefficients is carried out by a more accurate method [23, 24, 33]. To date the
(modified) δγ scheme remains the only analytical-theoretical approach that captures
the essential physics of diffusion in dense suspensions, making predictions at an
acceptable accuracy level. Unfortunately, the δγ scheme has so far been formulated
for monodisperse suspensions only, and a stringent generalization to mixtures poses
a tedious task.

Here we propose a simple rescaling rule that allows the application of the numer-
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ically efficient, easy to implement standard δγ-scheme expressions to mixtures of
bidisperse hard spheres. The rescaling rule is based on the notion of describing
either species as an effective, structureless host medium for the other species to
move in. By comparing to our SD simulation results we show that the rescaled,
modified δγ scheme predicts both species’ partial hydrodynamic functions with a
surprisingly good accuracy, for suspension volume fractions as high as 40%. The
proposed, rescaled δγ scheme can be particularly useful in the analysis of scatter-
ing experiments, where only a limited part of the hydrodynamic function can be
measured due to the limited range of accessible wave vectors.

The remaining part of this chapter is organized as follows: In Sec. 3.2 we define
the hard-sphere mixtures under study, and discuss the prevailing interactions among
the particles. Section 3.3 contains a discussion of colloidal short-time diffusion
and the partial hydrodynamic functions that are calculated in this chapter. Our SD
simulations are outlined in Sec. 3.4, which is followed by a a discussion of the static
pair correlation functions in Sec. 3.5. The proposed, rescaled δγ scheme is outlined
in Sec. 3.6. In Sec. 3.7 we present our results for partial hydrodynamic functions of
various suspensions, and we draw our finalizing conclusions in Sec. 3.8.

3.2 Bidisperse hard-sphere suspensions
We study unbounded homogeneous equilibrium suspensions of non-overlapping
Brownian hard spheres with hard-core radii aα and aβ. The pairwise additive direct
interaction potentials between the particles can be written as

uαβ (r) =



∞ for r < aα + aβ,

0 otherwise
(3.1)

in terms of the particle-center separation distance r and the particle species indices
α, β ∈ {1, 2}. The suspensions’ thermodynamic equilibrium state, studied in this
chapter, is entirely described by the three non-negative dimensionless parameters

λ = a2/a1, (3.2)

φ = φ1 + φ2, and (3.3)

y = φ1/φ, (3.4)

where λ is the size ratio and φα = (4/3)πnαa3
α is the volume fraction of species α in

terms of the partial number concentration nα = Nα/V . In taking the thermodynamic
limit both the number, Nα, of particles of species α, and the system volumeV diverge
to infinity while their ratio nα is held fixed. The remaining parameters in Eq. (3.3)
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and (3.4) are the total volume fraction φ and the composition ratio y, which satisfies
0 ≤ y ≤ 1. Without loss of generality, we assume a2 ≥ a1 in the following. We
denote the total number of particles as N , and obviously, N = N1 + N2.

All particles are assumed neutrally buoyant in an infinite quiescent, structureless
Newtonian solvent of shear viscosity η0. No external forces or torques act on the
suspended particles. The solvent is assumed to be incompressible, and the Reynolds
number for particle motion is assumed to be very small, such that the solvent velocity
field v(r ) and dynamic pressure field p(r ) satisfy the stationary Stokes equation
with incompressibility constraint,

η0∆v(r ) = ∇p(r ), (3.5)

∇ · v(r ) = 0, (3.6)

at every point r inside the solvent. Equations (3.5) and (3.6) are supplemented
with hydrodynamic no-slip boundary conditions on the surface of each suspended
sphere. The linearity of Eqs. (3.5) and (3.6) suggests a linear coupling between the
translational velocity of particle l, Ul , and the force exerted on particle j, Fj :

Ul = −

Nj∑
j=1

µtt
l j · Fj, (3.7)

where the mobility tensor µtt
l j has a size of 3 × 3. By placing the tensor µtt

i j as
elements of a larger, generalized matrix, we construct the suspension grand mobility
tensor µtt of size 3N × 3N . The minimum dissipation theorem [35] requires µtt to
be symmetric and positive definite.

3.3 Short-time diffusion
Here we are interested in diffusive dynamics at a coarse-grained scale of times t that
satisfy the two strong inequalities [36]

τH ∼ τI � t � τD, (3.8)

defining the colloidal short-time regime. The hydrodynamic time scale τH =

a2
2 ρ0/η0, involving the solvent mass density ρ0, quantifies the time at which solvent

shear waves traverse typical distances between (the larger) colloidal particles. The
criterion t � τH implies that HIs, being transmitted by solvent shear waves, act ef-
fectively instantaneously at the short-time scale. Therefore, the elements of the grand
mobility matrix µtt depend on the instantaneous positions rN = {r1, r2, · · · , rN } of
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all particles, but not on their positions at earlier times. The momentum relaxation
time τI = m2/(6πη0a2) in terms of the mass, m2 of a particle of species 2, is similar
in magnitude to τH . At times t � τI , many random collisions of a colloidal particle
with solvent molecules have taken place, the particle motion is diffusive, and inertia
plays no role. The colloidal short time regime is bound from above by the (diffusive)
interaction time scale τD = a2

1/d
1
0, given in terms of the Stokes-Einstein-Sutherland

(SES) translational free diffusion coefficient, d1
0 = kBT µ1

0 of the smaller particle
species. Here, µα0 = (6πη0aα)−1 is the single particle mobility of species α, kB is
the Boltzmann constant and T is the absolute temperature. During times t & τD,
diffusion causes the spatial configuration of the (smaller) particles to deviate appre-
ciably from their initial configuration, and in addition to the HIs, rearrangements of
the cage of neighboring particles start to influence particle dynamics. This results
in a sub-diffusive particle motion at times t & τD preceding the ultimate diffu-
sive long-time regime t � τD at which a particle samples many independent local
neighborhoods. Unless the particle size-ratio λ is very large, τD is some orders
of magnitude larger than both τH and τI , and the colloidal short-time regime in
Eq. (3.8) is well defined [36].

Scattering experiments on bidisperse colloidal suspensions, including themost com-
mon small angle light scattering [37] and x-ray scattering [38, 39] techniques, allow
the extraction of the measurable dynamic structure factor [21]

SM (q, t) =
1

f 2(q)

2∑
α,β=1

√
xαx β fα (q) f β (q) Sαβ (q, t), (3.9)

which contains the scattering amplitudes, fα (q), for particles of either species, the
mean squared scattering amplitude f 2(q) = x1 f 2

1 (q) + x2 f 2
2 (q) in terms of the

molar fractions xα = Nα/N , and the partial dynamic structure factors Sαβ (q, t). In
the case of scattering experiments, Nα is the mean number of α-type particles in
the scattering volume. The microscopic definition of the partial dynamic structure
factors reads

Sαβ (q, t) = lim
∞

〈
1√

NαNβ

∑
l∈α
j∈β

exp
{
iq · [rαl (0) − r

β
j (t)]

}〉
, (3.10)

with the summation carried out over all particles l that belong to species α and
all particles j that belong to species β, with i =

√
−1 denoting the imaginary

unit, lim∞ indicating the thermodynamic limit, the brackets 〈. . .〉 standing for the
ensemble average, and r

γ
k (t) denoting the position of particle number k (which
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belongs to species γ) at time t. From the microscopic definition it follows that
Sαβ (q) = Sβα (q), and that the functions Sαα (q) are non-negative, while the Sαβ (q)
for α , β can assume either sign. In the special case of t = 0, the partial dynamic
structure factors reduce to the partial static structure factors Sαβ (q) = Sαβ (q, 0) and,
likewise, SM (q, 0) = SM (q) is the measurable static structure factor.

A useful approximation in the analysis of experimental scattering data for suspen-
sions with a small degree of particle polydispersity (typically 10% or less relative
standard deviation in the particle-size distribution) is the decoupling approximation
[21, 33] in which all functions Sαβ (q, t) in Eq. (3.9) are approximated by a monodis-
perse, mean structure factor S(q, t). For the strongly size-asymmetric hard-sphere
mixtures studied here, the Sαβ (q, t) show distinct mutual differences, which rules
out the application of the decoupling approximation.

In some experiments, the fα (q) for different species α may be tuned independently.
An example is the selective refractive index matching of solvent and particles in
light scattering experiments [40]. Under such circumstances, the three independent
functions Sαβ (q) for α, β ∈ {1, 2} may be singled out individually. When all
functions Sαβ (q, t) are known, the dynamic number-number structure factor

SN N (q, t) =
2∑

α,β=1

√
xαx β Sαβ (q, t), (3.11)

can be determined, which reduces, for t = 0, to the static number-number structure
factor SN N (q). In computer simulations, the Sαβ (q, t) and SN N (q, t) are easily
extracted once that all the time-dependent particle positions r

γ
k (t) are known, but

the challenge lies in the accurate computation of the latter.

Colloidal dynamics at times t � τH ∼ τB are governed by the Smoluchowski
diffusion equation [36] which quantifies the temporal evolution for the probability
density function P(t, rN ) of the particle configuration rN at time t. It can be shown
[41] that the 2× 2 correlation matrix S(q, t) with elements Sαβ (q, t) decays at short
times as

S(q, t) ≈ e−q2D(q)t · S(q), (3.12)

with a diffusivity matrix D(q) that can be split as

D(q) = kBTH (q) · S−1(q), (3.13)

into a product of the matrix H (q) of partial hydrodynamic functions Hαβ (q) and
the inverse partial static structure factor matrix S−1(q).
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The functions Hαβ (q) can be interpreted as generalized wavenumber-dependent
short-time sedimentation velocities: In a homogeneous suspension, the value of
Hαβ (q) quantifies the spatial Fourier components of the initial velocity attained by
particles of species α, when a weak force field is switched on that acts on particles
of species β only, dragging them in a direction parallel to q with a magnitude
that oscillates harmonically as cos(q · r ). The microscopic definition of the partial
hydrodynamic functions reads [21]

Hαβ (q) = lim
∞

〈
1√

NαNβ

∑
l∈α
j∈β

q̂ · µtt
l j (r

N ) · q̂ exp
{
iq · [rαl − r

β
j ]

}〉
, (3.14)

where q̂ = q/q is the normalized wave vector, and the summation ranges are the
same as Eq. (3.10). Note that the positive definiteness of the µtt implies that the
functions Hαα (q) are non-negative, whereas the functions Hαβ (q) can assume both
positive and negative values for α , β. In particular, the latter functions assume
negative values at small values of q due to the solvent backflow effect: when a weak
spatially homogeneous external force acts on particles of species β only, it causes
the β-type particles to sediment in a direction parallel to the applied force, which
corresponds to Hβ β (q → 0) > 0. Mass conservation requires the collective motion
of β-type particles to be compensated by an opposing backflow of solvent, which
drags the α-type particles in the direction anti-parallel to the applied force. Hence,
Hαβ (q → 0) < 0 for α , β.

By splitting the sum in Eq. (3.14) into the self (l = j) and the complementary
distinct contributions, the functions Hαβ (q) can each be decomposed, according to

Hαβ (q) = δαβ
dαs

kBT
+ Hd

αβ (q), (3.15)

into a sum of a wavenumber-independent self-part and the wavenumber-dependent
distinct part of the partial hydrodynamic function, Hd

αβ (q), which tends to zero for
large values of q. In case of infinite dilution, or in the (purely hypothetical) case of
vanishing hydrodynamic forces, Hαβ (q)/µα0 reduces to the Kronecker delta symbol
δαβ. The short-time translational self diffusion coefficient dαs is equal to the time
derivative of the mean squared displacement Wα (t) = 1

6

〈
[rαl (t) − rαl (0)]2

〉
of a

particle of species α at short times. At infinite dilution, dαs = dα0 .

If all functions Hαβ (q) are known, then the number-number hydrodynamic function

HN N (q) =
2∑

α,β=1

√
xαx β Hαβ (q) (3.16)
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and the measurable hydrodynamic function

HM (q, t) =
1

f 2(q)

2∑
α,β=1

√
xαx β fα (q) f β (q) Hαβ (q), (3.17)

can be computed, which quantify the short-time decay of the dynamic number-
number structure factor

SN N (q, t) ≈ SN N (q)e−q2DNN (q)t (3.18)

and the measurable dynamic structure factor

SM (q, t) ≈ SM (q)e−q2DM (q)t, (3.19)

through the number-number diffusion function DN N (q) = kBT HN N (q)/SN N (q) and
the measurable diffusion function DM (q) = kBT HM (q)/SM (q).

3.4 Stokesian Dynamics simulations
The framework of the Stokesian Dynamics (SD) has been extensively discussed
elsewhere [13, 15, 42, 43] and here we only present the aspects pertinent to this
chapter. For rigid particles in a suspension, the generalized particle forces F and
stresslets S are linearly related to the generalized particle velocitiesU through the
grand resistance tensor R as [35]

*
,

F

S
+
-
= −R · *

,

U −U∞

−e∞
+
-
, (3.20)

whereU∞ and e∞ are the imposed generalized velocity and strain rate, respectively.
The generalized force F represents the forces and torques of all particles in the
suspension, and the generalized velocityU contains the linear and angular velocities
for all particles. The grand resistance tensor R is partitioned as

R = *
,

RFU RFE

RSU RSE

+
-
, (3.21)

where, for example, RFU describes the coupling between the generalized force and
the generalized velocity, RFE describes the coupling between the generalized force
and the strain rate, etc.. In the SD method the grand resistance is approximated as

R = (M∞)−1 +R2B −R
∞
2B, (3.22)

where the far field mobility tensorM∞ is constructed pairwisely from the multipole
expansions and the Faxén’s laws of the Stokes equation up to the stresslet level,
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and its inversion captures the long-range many-body hydrodynamic interactions.
The near-field lubrication correction (R2B − R

∞
2B) is based on the exact two-body

solutions with the far field contributions removed, and it accounts for the singular
HIs when particles are in close contact. The SD method recovers the exact solutions
of two-particle problems and was shown to agree well with the exact solution of
three-particle problems [44].

Extending the SD method to polydisperse systems retains the computational frame-
work above. The far-field polydisperse mobility tensorM∞ is computed using the
multipole expansions as in Ref. [45] and the resulting expressions are extended to
infinite periodic systems using Beenakker’s technique [46, 47]. The lubrication
correction (R2B −R

∞
2B) for particle pair with radii aα and aβ are based on the exact

solution of two-body problems in Ref. [48–51] up to s−300, where s = 2r/(aα+aβ) is
the scaled center-to-center particle distance. In our simulations, the lubrication cor-
rections are invoked when r < 2(aα + aβ), and the analytic lubrication expressions
are used when r < 1.05(aα + aβ).

Our simulations proceed as follows. First, a random bimodal hard-sphere packing at
the desired composition is generated using the event-driven Lubachevsky-Stillinger
algorithm [52, 53] with high compression rate. After the desired volume fraction φ
is reached, the system is equilibrated for a short time (10 events per particle) at zero
compression rate. This short equilibration stage is necessary as the compression
pushes particles closer to each other than in thermodynamic equilibrium. Prolonging
the equilibration stage does not alter the resulting suspension structure significantly.

To avoid singularities in the grand resistance tensor due to particle contact, we
enforce a minimum separation of 10−6(ai+a j ) between particles in our simulations.
The resistance tensor R is then constructed based on the particle configuration rN .
The partial hydrodynamic functions are extracted from µtt , a submatrix of the grand
mobility tensor

R−1
FU =

*
,

µtt µtr

µrt µrr
+
-
, (3.23)

which contains coupling between the translational (t) and rotational (r) velocities
and forces of a freely-mobile particle suspension. Typically each configuration
contains 800 particles and at least 500 independent configurations are studied for
each composition.

The partial hydrodynamic functions Hαβ (q) extracted from the simulations exhibit
a strong 3√N size dependence due to the imposed periodic boundary conditions [9,
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23, 54, 55]. The finite size effect can be eliminated by considering Hαβ (q) as a
generalized sedimentation velocity. The sedimentation velocity from a finite size
system with periodic boundary conditions is a superposition of the velocities from
random suspensions and cubic lattices [54, 55]. This argument is straightforwardly
extended to bidisperse suspensions, where the size correction, ∆N Hαβ (q), for the
partial hydrodynamic functions computed from the N-particles system, Hαβ,N (q),
is

∆N Hαβ (q) =
1.76µ1

0[1 + (λ3 − 1)y] 1
3 Sαβ (q)

λ

η0
ηs

(
φ

N

) 1
3
. (3.24)

In Eq. (3.24), ∆N Hαβ (q) = Hαβ (q) − Hαβ,N (q), Hαβ (q) is the hydrodynamic
function in the thermodynamic limit, and ηs/η0 is the high frequency shear viscosity
of the suspension, which is obtained from the same simulation. Note that the shear
viscosity ηs/η0 changes little with system size, and that the scaling for Hαβ (q) in
Eq. (3.24) is chosen to be µ1

0 regardless of the choice of α and β.

3.5 Static pair correlations
Fig. 3.1 features the partial radial distribution functions gαβ (r) (upper panel) and
the partial static structure factors Sαβ (q) (lower panel) generated by the simulation
protocol described in the previous section for a bidisperse suspension of λ = 2,
y = 0.5, and φ = 0.5, the highest volume fraction studied in this chapter. The
function gαβ (r) quantifies the probability of finding a particle of species β at a center-
to-center distance r from a particle of species α [56]. Themeasured functions gαβ (r)
and Sαβ (q) (open circles in both panels of Fig. 3.1) are compared with the solutions
of the Percus-Yevick (PY)[57–59] and the Rogers-Young (RY)[60] integral equations
at the same system parameters. We solve the polydisperse RY scheme as described
in Ref. [61] with a single mixing parameter that ensures the partial thermodynamic
self-consistency with respect to the total isothermal osmotic compressibility of the
mixture in the virial and the fluctuation routes[56]. The RY-scheme equations are
solved numerically by means of a spectral solver that has been comprehensively
outlined in Refs. [62, 63]. The PY scheme is simpler, but it is thermodynamically
inconsistent. It predicts the static pair-correlations of particles with repulsive pair
interactions less accurately than the RY scheme [64]. Differences between the PY-
and RY-scheme solutions are most prominent in the functions gαβ (r), in particular
around the contact values gαβ (r = aα + aβ). Nevertheless, observing the lower
panel Fig. 3.1 we note that the PY scheme predicts the partial static structure factors
accurately, and in nearly perfect agreement with the RY-scheme and the simulations,
even at the high volume fraction φ = 0.5. We have checked that the nearly perfect
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Figure 3.1: The bidisperse suspension partial radial distribution functions gαβ (r)
(upper panel) and partial static structure factors Sαβ (q) (lower panel) for φ = 0.5,
y = 0.5, and λ = 2, directly measured from the simulations (open circles), and
computed via the Percus-Yevick (PY) and Rogers-Young (RY) integral equation
schemes. Note that the function S22(q) has been shifted upwards by one unit along
the vertical axis for clarity.
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agreement between the PY- and RY-scheme predictions for the functions Sαβ (q)
remains for other composition parameters (from y = 0.1 to y = 0.9), and that
the final predictions of our combined, semi-analytical theoretical scheme (i.e., the
hydrodynamic functions plotted in Fig. 3.3, 3.4 and 3.6) do not change significantly
when the RY-scheme functions Sαβ (q) are used instead of the PY-scheme solutions.

Therefore, the simple, analytically solvable PY scheme is sufficiently accurate to
generate the static structure input for the rescaled δγ scheme described in the
following sections. The main source of error of our method is from the various
approximations made in the δγ scheme and its modifications, rather than the slight
inaccuracy of the structural input. Consequently, we have used the PY-scheme
static structure factors in generating all results presented further down this article.
In future applications of our method, the reader may use the RY-scheme or other
more accurate integral equation schemes, particularly when studying systems with
different pair potentials. In addition, a related line of research is concerned with tests
and improvements of the different δγ-scheme approximations (for monodisperse
suspensions) [34]. Such assessment relies critically on an accurate static structure
input and hence the RY-scheme is used there.

3.6 Rescaled δγ scheme
The δγ scheme, originally introduced by Beenakker and Mazur [18, 20] and quite
recently revised by Makuch et al. [25, 34] predicts short-time linear transport
coefficients of monodisperse colloidal suspensions with an overall good accuracy,
for volume fractions of typically less than 40%. A modified version of the δγ
scheme with an improved accuracy has been proposed in Ref. [23, 24, 32, 33]. The
modification consists of replacing the rather inaccurate, microstructure-independent
δγ-scheme expression for the self-diffusion coefficient ds by amore accurate expres-
sion. The hydrodynamic function for a monodisperse suspension is then calculated
as the sum of this more accurate self-term and the distinct part of the hydrodynamic
function, with the latter retained from the original δγ scheme (c.f., the special case
of Eq. (3.15) for monodisperse suspensions). This replacement of the self-diffusion
coefficient does not only result in an improved accuracy of the predicted hydro-
dynamic functions for hard spheres, but also allows computation of hydrodynamic
functions of charge-stabilized colloidal particles with mutual electrostatic repulsion
of variable strength.

There are several possibilities for choosing the self-diffusion coefficient in the mod-
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ified δγ scheme. It can be treated as a fitting parameter [32], calculated by computer
simulation [23], or in the approximation of pairwise additive HIs, which is specially
well-suited for charge-stabilized suspensions [24, 33]. In case of monodisperse
hard-sphere suspensions,

ds

d0
≈ 1 − 1.8315φ(1 + 0.1195φ − 0.70φ2), (3.25)

where d0 = kBT µ0 and µ0 = (6πη0a)−1, is a highly accurate approximation provided
that φ . 0.5 [24]. Expression (3.25) coincides with the known truncated virial
expression [10] to quadratic order in φ. The prefactor of the cubic term has been
determined as an optimal fit value that reproduces numerically precise computer
simulation results for ds/d0 [23, 65].

The distinct part of the monodisperse hydrodynamic function is approximated in the
δγ-scheme as:

Hd (q)
µ0

=
3

2π

∞∫
0

dy′
[
sin(y′)

y′

]2
·

[
1 + φSγ0 (φ, y′)

]−1

×

1∫
−1

dµ(1 − µ2)
[
S(|q − q′|) − 1

]
. (3.26)

In Eq. (3.26), y = 2qa is a dimensionless wavenumber, µ = q · q′/(qq′) is the
cosine of the angle between q and q′, and the volume-fraction and wavenumber-
dependent function Sγ0 (φ, y) (not to be confused with a static structure factor) has
been specified in Ref. [20, 32].

For monodisperse suspensions, the δγ scheme requires only the static structure
factor S(q) and the suspension volume fraction φ as the input for calculating the
hydrodynamic functions, namely,

H (q)
µ0
≈ Hδγ[S(q), φ], (3.27)

where Hδγ[·, ·] denotes the modified δγ-scheme result based on Eq. (3.15), (3.25)
and (3.26).

Extending the δγ scheme to the more general case of bidisperse suspensions is a
non-trivial task. The size polydispersity affects (i) the structural input through the
partial static structure factors Sαβ (q), and (ii) the hydrodynamic scattering series
[31], upon which the δγ scheme is constructed [25]. For bidisperse suspensions,
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the structural input in (i) can be computed by liquid integral equations, e.g., the PY
scheme [57–59, 66] which we use in the present study. However, the evaluation of
the bidisperse hydrodynamic scattering series is more difficult since each scattering
diagram for monodisperse suspensions has to be replaced by multiple diagrams
describing the scattering in particle clusters containing particles of both species.
Even if the resummation of the bidisperse hydrodynamic scattering series can be
achieved, the accuracy of the results remains unknown without a direct comparison
to experiments or computer simulations.

Here we bypass the difficult task of bidisperse hydrodynamic scattering series re-
summation and adopt a simpler idea based on the existing (modified) δγ scheme for
monodisperse particle suspensions. The partial hydrodynamic functions Hαα (q)
can always be written as

Hαα (q)
µα0

= fαHδγ[Sαα (q), φα], (3.28)

where the factor
fα = fα (q; λ, φ, y) (3.29)

describes the wave-number dependent HIs due to the other species β not captured
in the δγ scheme, and also depends on the suspension composition.

For the interspecies partial hydrodynamic functions Hαβ (q) (α , β), the limiting
value at q → ∞, like Sαβ (q), goes to zero. Therefore, only the distinct part in the
δγ scheme is relevant, and to maintain consistency with Eq. (3.26), a shifted distinct
static structure factor Sαβ (q) + 1 (α , β) is used as the input. Similar to Eq. (3.28),
a scaling factor fαβ = fαβ (q; λ, φ, y) provides the connection to the δγ scheme by

Hαβ (q)
µα0

= fαβHd
δγ[Sαβ (q) + 1, φ], (α , β), (3.30)

when Hd
δγ[Sαβ (q)+1, φ] is computed according to Eq. (3.26). Note that in Eq. (3.30)

the total volume fraction φ is used in the δγ scheme. This is motivated by the physics
of Hαβ (q) (α , β)—from a generalized sedimentation perspective, it describes the
q-dependent velocity response of species α due to an application of q-dependent
forces on the β species. Since both species are present, the total volume fraction
φ should be used. For monodisperse suspensions with artificially labeled particles,
we expect fαβ ∼ 1. In bidisperse suspensions the deviation from unity in fαβ is due
to the size effects in HIs.
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Figure 3.2: Schematic representation of the effective medium concept. Straight red,
green and black lines indicate the αα, β β and α , β correlations, respectively.
Either species α, β is approximated as an effective structureless fluid for the other
species to move in (left and right panels). The distinct species contributions (α , β,
central panel) are approximated by those of a hydrodynamically monodisperse fluid
of fictitious γ-type particles in pure solvent. The size of γ-type particles is chosen
such that φγ = φ = φα + φβ, and their center of mass positions coincide with those
of the α− and β− type particles in the bidisperse suspension (top panel).

A simplification for the hydrodynamic interactions in bidisperse suspensions is to
assume that the HIs are of a mean-field nature, and consequently the factors in
Eq. (3.28) and (3.30) become q-independent, i.e.,

fα (q; λ, φ, y) ≈ fα (λ, φ, y) (3.31)

fαβ (q; λ, φ, y) ≈ fαβ (λ, φ, y). (3.32)

In this way, the monodisperse δγ scheme is extended to bidisperse suspensions
by introducing composition dependent scaling constants. We call the resulting
approximation scheme the rescaled δγ scheme. As we will see in Sec. 3.7, this
simplification describes the SD measurement surprisingly well—providing an a
posteriori justification for Eq. (3.31) and (3.32). Note that the rescaling rules in
Eq. (3.28) and (3.30) can be straightforwardly generalized to the polydisperse case
with more than two different particle species.

Fig. 3.2 succinctly illustrates the rescaled δγ scheme. In computing the functions



88

Hαα (q), we ignore the particulate nature of species β which is replaced by an
effective medium for species α to move in (left and right panels in Fig. 3.2). The
effective translational free diffusion coefficient is therefore fαdα0 , and is expected
to be smaller than the SES diffusion coefficient dα0 for diffusion in the pure solvent,
leading to fα < 1. The distinct species partial hydrodynamic function Hαβ (q)
for α , β is approximated by the corresponding function in a hydrodynamically
monodisperse suspension of fictitious particles (γ-type particles in Fig. 3.2) in pure
solvent, which occupy the same center of mass positions as the α- and β- type
particles in the bidisperse suspension. The size of the γ-type particles is chosen
such that φγ = φ = φα + φβ. We stress again that the fidelity of our approach cannot
be easily estimated, but rather is validated a posteriori by comparing with the SD
simulation results.

For our rescaled δγ scheme to be useful, estimations of the scaling factors fα and fαβ
are required. To estimate the factor fα, recall that fαdα0 describes the translational
free diffusivity of one particle of species α in an effective medium of many β

particles. Equivalently, for many α particles, fαds (φα)/d0, where ds (φα)/d0 is the
self-diffusivity of monodisperse suspensions at volume fraction φα, represents the
species self-diffusivity dαs (φ, λ, y)/dα0 in the bidisperse mixture, i.e.,

fα =
dαs (φ, λ, y)/dα0

ds (φα)/d0
, (3.33)

where the monodisperse self-diffusivity ds (φ)/d0 is given in Eq. (3.25), and the
estimation of the species self-diffusivity is discussed next. For the interspecies
factor fαβ, we assume the mean-field description of HIs is sufficient and the size
effect is weak, i.e.,

fαβ = 1. (3.34)

Note that both Eq. (3.33) and (3.34) are physically motivated and are validated by
the SD measurements in Section 3.7.

The estimation of fα in Eq. (3.33) requires an approximation of the species short-
time self-diffusivity dαs /d

α
0 in the mixture. For dilute systems where HIs can be

decomposed into sums of pairwise additive contributions, dαs /d
α
0 can be calculated

to linear order in the volume fractions as [19, 22]

dαs
dα0
= 1 +

∑
β=1,2

Iαβφβ + O(φ2
1, φ

2
2), (3.35)
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with the integrals

Iαβ =
(1 + λ βα)3

8λ3
βα

∫ ∞

2
s2

[
xa

11(s) + 2ya
11(s) − 3

]
ds (3.36)

in terms of s = 2r/(aα+aβ) and λ βα = aβ/aα. The scalar hydrodynamic two-body
mobility functions xa

11(s) and 2ya
11(s) describe the relative motions of two spheres

in the direction parallel and orthogonal to a line that connects the sphere centers,
respectively, and can be calculated with arbitrary precision [35, 48, 67]. A series
expansion in the inverse particle separation yields the leading order far-field terms
of the integrand

xa
11 + 2ya

11 − 3 =
−60λ3

βα

[s(1 + λ βα)]4 +
480λ3

βα − 264λ5
βα

[s(1 + λ βα)]6 + O(s−8). (3.37)

Here, we employ the two-body mobility coefficients from ref. [48] up to s−300 to
ensure a smooth crossover to the analytically known close-contact (lubrication)
expressions [68]. For particle size-ratio λ = 2, numerical integration of Eq. (3.36)
yields the values I11 = I22 = −1.8315, I12 = −1.4491 and I21 = −2.0876.

Computation of the quadratic and higher order terms of the virial expansion in
Eq. (3.35) is an elaborate task, even when three-body HIs are included in their
leading-order far-field asymptotic form only [22]. In place of such cumbersome
computation of the dαs /d

α
0 , we propose a simple Ansatz

dαs
dα0
≈ 1 + *.

,

∑
β=1,2

Iαβφβ
+/
-
×

(
1 + 0.1195φ − 0.70φ2

)
(3.38)

which reduces to the accurate expression in Eq. (3.25) for λ = 1, and is correct to
linear order in the volume fractions for all values of λ. In Eq. (3.38), the effects
of different particle sizes are incorporated in the linear term while the effects of
different volume fractions are treated in a mean-field way, i.e., independent of the
size ratio. It is important to note here that Eq. (3.38) is merely an educated guess for
the quadratic and cubic terms in the virial expansions of the dαs /d

α
0 . The accuracy of

(3.38) will be tested by comparison to our SD results in Sec. 3.7. With Eqs. (3.25),
(3.34), and (3.38), the analytical estimation for fα is

fα =

1 + *.
,

∑
β=1,2

Iαβφβ
+/
-
×

(
1 + 0.1195φ − 0.70φ2

)
1 − 1.8315φα

(
1 + 0.1195φα − 0.70φ2

α

) . (3.39)



90

3.7 Results and discussions
In this section we compare results of the rescaled δγ scheme described in Sec. 3.6
to the results of the SD simulations outlined in Sec. 3.4. For each suspension
composition, the SD simulations typically take a few days, while computations
using the rescaled δγ scheme only require at most a few minutes. This great
performance incentive renders the rescaled δγ scheme more convenient for many
applications.

The rescaled δγ scheme relies on the monodisperse δγ scheme to capture the
structural features in the hydrodynamic functions of bidisperse suspensions, using
bidisperse static structure factors as input. The validity of this Ansatz can be directly
validated by studying a bidisperse suspension where one of the species, say, species
β, only influences the suspension structurally but not hydrodynamically, i.e., fα = 1
in Eq. (3.28). An experimental realization of such system would be a mixture of
hard-sphere particles and highly permeable porous but rigid particles of different
size. In the SD simulations, we generate a bidisperse suspension configuration and
then exclude the inactive species β from the hydrodynamic computations. The
resulting hydrodynamically monodisperse, but structurally bidisperse suspension’s
function H (q) is influenced by the partial static structure factor Sαα (q).

Fig. 3.3 compares the partial hydrodynamic functions Hαα (q) of bidisperse suspen-
sions containing hydrodynamically inactive particles from the rescaled δγ scheme
[Eq. (3.28) with fα = 1] and the SD simulations. Recall that, for example, H11(q)
corresponds to suspensions with hydrodynamically inactive large particles. Com-
paring to the SD measurements, the monodisperse δγ scheme accurately captures
the structural features in the hydrodynamic functions with structural input S11(q),
including in particular the minimum in H11(q) for qa1 ≈ 1.7 due to cages formed by
the large particles. However, the monodisperse δγ scheme systematically overesti-
mates the magnitude of the hydrodynamic functions at all wave-numbers, since the
species self-diffusivity in this case is different from the self-diffusivity in Eq. (3.25)
for monodisperse suspensions, due to the different suspension structures.

Turning now to the true (structurally and hydrodynamically) bidisperse suspensions
where both species are hydrodynamically active, Fig. 3.4 features the SD mea-
surements (symbols) of the partial hydrodynamic functions Hαβ (q) for bidisperse
suspensions with λ = 2 over a wide range of the compositions y and total volume
fractions φ, covering both the dilute (φ = 0.1) and the concentrated (φ = 0.5)
regimes. The qualitative and quantitative aspects of the functions Hαβ (q) are ex-
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Figure 3.3: The partial hydrodynamic functions H11(q) and H22(q) for a bidisperse
suspension of φ = 0.4, y = 0.5, and λ = 2 with the respective other species being
hydrodynamically inactive. The hydrodynamic functions are scaled with the single
particle mobility µα0 = (6πη0aα)−1 and the wave number is scaled with a1, the
radius of the smaller particles.

tensively examined and discussed in a companion paper [69], and here we focus on
the performance of the rescaled δγ scheme.

We first discuss the central assumptions of the rescaled δγ scheme: thewave-number
independence of the fitting parameters fα and fαβ in Eq. (3.31) and (3.32), respec-
tively. The q-independent parameters fα and fαβ were computed by least-square
fitting the SD measurements and the rescaled δγ scheme as in Eq. (3.28) and (3.30).
The fitted partial hydrodynamic functions are presented as solid curves in Fig. 3.4.
For Hαα (q), the fitted data capture all the qualitative and most quantitative features
in the SD measurements at all q for both species. The best agreement is found at
y = 0.5, where both species are present in large enough amounts for the mean-field
description of the HIs to be valid. For more asymmetric compositions, such as at
y = 0.1 and y = 0.9, the agreement deteriorates slightly at low q with increasing
φ. For the dilute suspensions at φ = 0.1, we find excellent agreement between
the fitted functions and the SD measurements. At φ = 0.25, despite the excellent
overall agreement for both species, the discrepancies are slightly more pronounced
for the smaller species. The mean-field description is more appropriate for the
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Figure 3.4: The partial hydrodynamic functions Hαβ (q) of bidisperse suspensions
with full hydrodynamics. The size ratio is λ = 2. The top, middle, and bottom
rows are H11(q) and H22(q), and H12(q), respectively. The interspecies partial
hydrodynamic functions H12(q) are shifted by 0.1 for y = 0.5 and by 0.2 for
y = 0.9 for clarity (also indicated in the figure). The left, middle, and right columns
correspond to volume fractions φ = 0.1, 0.25, and 0.5, respectively. For each φ we
show the SD measurements for composition y = 0.1 (©), y = 0.5 (�), and y = 0.9
(4). The results for the fitted δγ scheme are shown as solid curves, and results of the
parameter-free rescaled δγ scheme with fα from Eq. (3.39) and fαβ from Eq. (3.34)
are shown as dashed curves.
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hydrodynamic environment of the large particles, as each of them is surrounded by
multiple small particles. On the other hand, the small particles are strongly affected
by the presence of large particles, and the respective hydrodynamic environment
exhibits more fluctuations. This leads to the slight differences in H11(q) at y = 0.9
in Fig. 3.4(b). At φ = 0.5, the accuracy of the δγ scheme breaks down since
the unaccounted hydrodynamic scattering diagrams become important. However,
despite some disagreements the fitted scheme still captures many qualitative fea-
tures of Hαα (q). The discrepancies are particularly apparent in the low q limit
with asymmetric compositions, e.g., H11(q) at y = 0.9 in Fig. 3.4(c) and H22(q)
at y = 0.1 in Fig. 3.4(f). In these cases, the q-independent scaling factor fα is not
sufficient to describe the hydrodynamic interactions from the minority species β.
For Hαβ (q) (α , β) shown in Fig. 3.4(g)–(i), the agreement between the measured
and fitted H12(q) is excellent for all φ except at small q. Note that the modulations
of H12(q) first increase from φ = 0.1 to φ = 0.25 due to the enhancement of hydro-
dynamic interactions, and then decrease from φ = 0.25 to φ = 0.5, possibly due to
hydrodynamic shielding effects. The q-modulations in H12(q) are small compared
to H11(q) and H22(q). Overall, the agreement between the SD measurement and
the fitted scheme validates the assumption of q-independence of fα and fαβ, up to
relatively high volume fractions.

It seems appropriate to discuss the role of the near-field lubrication interactions on
the partial hydrodynamic functions Hαβ (q) here. In many cases, the lubrication
effects play a critical role in transport properties of bidisperse hard-sphere suspen-
sions. For example, when computing the pairwise additive shear viscosity of dilute
bidisperse suspensions, neglecting the lubrication effects can lead to quantitatively
and qualitatively wrong results on the composition dependence of the viscosity [70].
To assess the influences of lubrication here, we recomputed Hαβ (q) of bidisperse
suspensions at λ = 2 and φ = 0.5 using SD without the lubrication corrections.
Relative to the full results in Fig. 3.4, the resulting Hαβ (q) are much larger in mag-
nitude and exhibit more pronounced modulation with respect to q. However, unlike
the pairwise additive shear viscosity, the Hαβ (q) without the lubrication effects are
qualitatively similar to the results in Fig. 3.4, i.e., the shape of the curve at each com-
position and the relative features with different compositions remain unchanged. In
fact, the Hαβ (q) results with and without the lubrication correction can be brought
to quantitative agreement with a q-independent factor. For this reason, the results
without the lubrication corrections are not presented. Apparently, the lubrication
effects only play a quantitative, rather than qualitative, role in the determination of
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Hαβ (q) for bidisperse hard-sphere suspensions.

The fitted q-independent scaling factors f1, f2, and f12 as a function of the com-
position y for bidisperse suspensions with λ = 2 at different volume fractions φ
are presented in Fig. 3.5. As expected, at a fixed volume fraction φ, fα decreases
monotonically from 1 with the increasing presence of the other species β. At a
fixed value of y, fα also decreases from 1 when the volume fraction φ is increased.
Both decreasing trends in fα are due to the enhanced HIs from the other species.
The scaling factor f12 for the interspecies hydrodynamic interactions exhibits more
peculiar behaviors. For φ = 0.1 and 0.25, the factor f12 is close to unity, suggesting
that the mean-field hydrodynamic interaction assumption in the rescaled δγ-scheme
is valid. However, f12 does become smaller with increasing y, i.e., for H12(q),
adding larger particles to the suspension is not equivalent to adding smaller parti-
cles, which becomes particularly clear for φ ≥ 0.25 in Fig. 3.5(c). For φ = 0.4
and 0.5, f12 becomes much smaller than unity and decreases monotonically with
increasing y. At these volume fractions, it appears that f12 is extremely sensitive to
the presence of the other species in the mixture, as we expect f12 to recover to unity
when y → 0 or y → 1.

The f1 and f2 predicted by Eq. (3.39) are shown in Fig. 3.5(a) and (b) as curves. The
predicted f1 agrees well with the fitted value up to φ = 0.25, and at higher volume
fractions, the equation overestimates f1 by 10% at φ = 0.35 and y = 0.1 and by 20%
at φ = 0.45 and y = 0.1. The predicted f2 for the larger species, however, agreeswell
with the fitted value up to φ = 0.4 at all compositions except when y is close to unity.
Since Eq. (3.39) is motivated by a mean-field model of dαs /d

α
0 , Eq. (3.38), Fig. 3.5

again suggests that the larger particles in bidisperse suspensions experience themean
field from the small particles, while the hydrodynamic environment of the smaller
particles shows stronger fluctuations. Specifically, since Eqs. (3.38) and (3.39)
are exact in the dilute limit when the pairwise HIs dominate, the error must come
from the many-body HI term which is based on the monodisperse results. Both
the near-field and far-field effects contribute to the many-body HI, and both depend
on the bidisperse suspension compositions. For dense suspensions, it is difficult
to separate one contribution from another, and any improvements must consider
both in tandem. Based on Fig. 3.4 and 3.5, any improvement of the rescaled δγ
scheme requires a better estimation of dαs by explicitly considering the composition
dependence of the many-body HIs. For practical purposes here, from Fig. 3.5 we
note that the parameter-free analytical estimation of fα and fαβ is satisfactory up to
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φ ∼ 0.35–0.4 at all compositions, for λ = 2.

The parameter-free partial hydrodynamic functions, predicted by the rescaled δγ
scheme with factors fα from Eq. (3.39) and f12 from Eq. (3.34), are presented in
Fig. 3.4 as dashed curves. The agreement with the SD measurements is satisfactory
for Hαβ (q) at all compositions at φ = 0.1 and 0.25. In Fig. 3.4(b) the predicted
f1 slightly overestimates H11(q) at y = 0.1 at φ = 0.25, primarily due to the
overestimation of the small particle diffusivity in Eq. (3.38). At φ = 0.5, the
prediction breaks down, and the discrepancy is most pronounced at y = 0.1 for
the overestimation of H11(q) in Fig. 3.4(c) and at y = 0.9 for the underestimation
of H22(q) in Fig. 3.4(f). Moreover, Eq. (3.34) overestimates the q-modulations in
H12(q) in all compositions at φ = 0.5 in Fig. 3.4(i), as the hydrodynamic shielding
in dense systems cannot be captured by f12 = 1.

In practice, individual partial hydrodynamic functions Hαβ (q) cannot be conve-
niently measured in scattering experiments and the measured quantity HM (q) is a
weighted average of the Hαβ (q). Note from Eq. (3.16) and (3.17), that HM (q) dif-
fers from the similar number-number hydrodynamic function HN N (q) only trough
its dependence on the particle-specific scattering amplitudes fα (q). To test the ac-
curacy of the rescaled δγ scheme, it is sufficient to test its predictions of HN N (q). In
Fig. 3.6 we compare the HN N (q) from the SD measurements and from the rescaled
δγ scheme, with factors fα and fαβ obtained from optimal least square fittings
(solid curves) and from the parameter-free analytic Eq. (3.39) and (3.34) (dashed
curves). Results for the same bidisperse suspensions are depicted in Fig. 3.6 and
3.4. For φ = 0.1, the rescaled δγ scheme captures the SD results with high precision
in the entire q-range, at all studied compositions y. Small discrepancies occur most
noticeably in the q → 0 limit. At φ = 0.25, the difference in HN N (q) from both
the fitted and the parameter-free analytical expression is less than 5% in the entire
q-range, which demonstrates the validity of our proposed rescaling rules for the
δγ scheme. For the very dense suspensions, φ = 0.5, we see how the rescaled δγ
scheme breaks down. With the fitted fα and fαβ, the scheme is only capable of
capturing the qualitative features in the measured HN N (q). With the fα and fαβ
from Eq. (3.39) and (3.34), the scheme exhibits significant differences from the SD
measurements with decreasing y.

The performance of the rescaled δγ scheme for size ratios λ , 2 (and in particular
for λ > 2) remains to be explored. In representative tests for λ = 4 we found
that the scaling approximation of Eq. (3.33) remains valid, but Eq. (3.39) breaks
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down around φ = 0.25 and y = 0.5, particularly for the smaller particles. This
is due to the breakdown of Eq. (3.38) for the short-time self-diffusivity dαs /d

α
0 .

Note that Eqs. (3.38) and (3.39) are exact in the dilute limit φ → 0, and that they
remain valid in a decreasing φ-range with increasing size ratio. At a given λ and
φ, the approximations are expected to be better for the larger particles than for the
smaller particles, due to the more mean-field-like HIs among the larger particles.
However, establishing an accuracy measure of the rescaled δγ scheme in the full
suspension parameter range requires direct comparison with accurate hydrodynamic
computations. Unfortunately, this is a very elaborate and computationally expensive
task because of the system size that increases with increasing values of λ, and
because of accuracy limitations of the SD method. In future, obtaining an accurate
expression of dαs /d

α
0 for dense suspensions with arbitrary values of λ will be the key

to further improvement of the rescaled δγ scheme.

3.8 Conclusions
In this chapter we have proposed a rescaled δγ scheme to compute approximations
of the partial hydrodynamic functions Hαβ (q) in colloidal mixtures. We found
that the Hαβ (q) from the Stokesian Dynamics measurements differs from the δγ
scheme with appropriate structural input by a q-independent factor, suggesting that
the hydrodynamic environment for one species can be described as a mean field due
to the HIs from the other species and the solvent. This constitutes the fundamental
assumption of the rescaled δγ scheme.

We extensively tested the rescaled δγ scheme with the SD simulation measurements
for bidisperse suspensions over a wide range of volume fractions φ and compositions
y, and provided approximate analytical estimates for the scaling factors fα, and fαβ.
Comparing with the SD measurements, the rescaled δγ scheme with analytical
scaling factors can accurately predict the number-number hydrodynamic function
HN N (q) up to φ ≈ 0.4 at all studied composition ratios y, for a particle-size ratio as
high as λ = 2.

The proposed rescaled δγ scheme is the first semi-analytical method for estimating
the bidisperse hydrodynamic functions up to φ = 0.4, and it can be readily extended
to polydisperse and charged systems. It will be a valuable tool for interpreting
dynamic scattering experiments of moderately dense bidisperse systems.
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