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ABSTRACT

This thesis is a computational investigation on several aspects of the constant stress
and pressure rheology of dense polydisperse colloidal suspensions. Using bidisperse
suspensions as a model, we first study the influences of size polydispersity on short-
time transport properties. The hydrodynamic interactions are calculated using
a polydisperse implementation of Stokesian Dynamics (SD) via a Monte-Carlo
approach. We carefully compare the SD computations with existing theoretical
and numerical results, and critically assess the strengths and weaknesses of the SD
algorithm. For suspensions, we find that the Pairwise Additive (PA) approximations
with the Percus-Yevick structural input is valid up to volume fraction ¢ = 0.1. We
also develop an semi-analytical approximation scheme to predict the wavenumber-
dependent partial hydrodynamic functions based on the dy-scheme of Beenakker &
Mazur [Physica 120A (1983) 388 & 126A (1984) 349], which is shown to be valid
up to ¢ = 0.4.

To meet the computation requirements of dynamic simulations, we then developed
the Spectral Ewald Accelerated Stokesian Dynamics (SEASD) based on the frame-
work of SD with extension to compressible solvents. The SEASD uses the Spectral
Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for
mobility computation with flexible error control, a novel block-diagonal precondi-
tioner for the iterative solver, and the Graphic Processing Units (GPU) acceleration.
For further speedup, we developed the SEASD-nf, a polydisperse extension of the
mean-field Brownian approximation of Banchio & Brady [J. Chem. Phys. 118 (2003)
10323]. The SEASD and SEASD-nf are extensively validated with static and dy-
namic computations, and are found to scale as O(N log N) with N the system size.
The SEASD and SEASD-nf agree satisfactorily over a wide range of parameters for

dynamic simulations.

Next, we investigate the colloidal film drying processes to understand the structural
and mechanical implications when the constant pressure constraint is imposed by
confining boundaries. The suspension is sandwiched between a stationary substrate
and an interface moving either at a constant velocity or with constant imposed stress.
Using Brownian Dynamics (BD) simulations without hydrodynamic interactions, we
find that both fast and slow interface movement promote crystallization via distinct
mechanisms. The most amorphous suspension structures occur when the interface

moves at a rate comparable to particle Brownian motion. Imposing constant normal



vi

stresses leads to similar suspension behaviors, except that the interface stops moving
when the suspension osmotic pressure matches the imposed stress. We also compare
the simulation results with a continuum model. This work reveals the critical role

of interface movement on the stress and structure of the suspension.

Finally, we study the constant shear stress and pressure rheology of dense colloidal
suspensions using both BD and SEASD-nf to identify the role of hydrodynamic inter-
actions. The constant pressure constraint is imposed by introducing a compressible
solvent. We focus on the rheological, structural, and dynamical characteristics of
flowing suspensions. Although hydrodynamic interactions profoundly affect the
suspension structure and dynamics, they only quantitatively influence the behaviors
of amorphous suspensions. The suspension becomes glassy, i.e., exhibits flow-arrest
transitions, when the imposed pressure is high, and reveals the Shear Arrest Point
(SAP) in the non-Brownian limit. From a granular perspective, we find that the
suspensions move away from the arrested state in a universal fashion regardless
of the imposed pressure, suggesting the critical role of the jamming physics. The
hydrodynamic simulations quantitatively agree with the experiments of Boyer et
al. [Phys. Rev. Lett. 107 (2011) 188301] with a volume fraction shift. The results at
all imposed stresses and pressures reveal a generalized Stokes-Einstein-Sutherland
relation with an effective temperature proportional to the pressure. We develop a
model that accurately describes the rheology and diffusion of glassy suspensions.
Our results show the critical role of pressure on the behaviors of dense colloidal

suspensions.
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are shifted by 0.1 for y = 0.5 and by 0.2 for y = 0.9 for clarity
(also indicated in the figure). The left, middle, and right columns
correspond to volume fractions ¢ = 0.1, 0.25, and 0.5, respectively.
For each ¢ we show the SD measurements for composition y = 0.1
(©O), y =05 @), and y = 0.9 (A). The results for the fitted oy
scheme are shown as solid curves, and results of the parameter-free
rescaled 6y scheme with f,, from Eq. (3.39) and f, s from Eq. (3.34)
are shown as dashed curves. . . . .. ... ... ... .......
The fitted g-independent scaling factors (a): f1, (b): f2, and (c): fi2
in the rescaled oy scheme for the bidisperse suspensions with 4 = 2.
The curves are calculated according to Eq. (3.39) for f, with ¢ = 0.1
(solid), 0.25 (dashed), 0.35 (dash-dotted), 0.4 (dash-double-dotted),
and 0.5 (dotted). . . . . . . .. ... e
The number-number hydrodynamic functions Hy y(g) for bidisperse
suspensions with A = 2 and full hydrodynamics for volume fractions
(a): ¢ = 0.1, (b):¢ = 0.25, and (c): ¢ = 0.5. For each ¢, we show
the SD measurements for composition y = 0.1 (O), y = 0.5 (1J), and
y = 0.9 (»). The Hyy(g) from the 6y scheme with fitted f, and f,p
are shown as solid curves, and the results of the parameter-free theory
with f,, according to Eq. (3.39) and f, g according to Eq. (3.34) are
shown as dashed curves. . . . .. ... ... ... .........
The number of far-field iterations, i.e., the number of the grand
mobility tensor M evaluations, as a function of the GMRES residual

with (solid line) and without (dashed line) the far-field preconditioner
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4.2

4.3

4.4

4.5

The wave-space accuracy measured by e, (E) [Eq. (4.78)] as a
function of the interpolation point P (a—c) and the CPU wall time
in seconds (d-f) with various shape parameter m at M = 64 and
&éay; = 0.1. The particle size effects are incorporated using (a), (d):
the real-space, (b), (e): the hybrid, and (c), (f): the wave-space
approaches in Sec. 4.3. The values of m are annotated in each figure.
The solid and dashed lines represent the case of vy = 0 and 0.5,

respectively. The dashed dotted lines show the exponential minimum

error decay, e (E) ~exp(=Pm/2). . . . ... ...

(Color online) The overall accuracy measured in e, -(E) as a func-
tion of the splitting parameter £a; and the shape parameter m at
M = 64 for a real-space cutoff radius r. = 2(a; + a;) (left column),
4(a; + a;) (middle column), and 6(a; + a;) (right column), and the
interpolation point P = 9 (top row), 15 (middle row), and 21 (bottom
row). The thick black lines represent m = Yz P. The simulation cell
is orthogonal (y = 0), and the particle size effects are accounted using

the hybrid approach. . . . . . . .. ... ... . 00

(Color online) The overall accuracy measured in e, - (£) as a function
of the splitting parameter £a; and the shape parameter m with M = 32
for a real-space cutoff radius r. = 2(a; + a;) (left column), 4(a; + a;)
(middle column), and 6(a; +a;) (right column), and the interpolation
point P = 9 (top row) and 15 (bottom row). The thick black lines
represent m = V7 P. The simulation cell is orthogonal (y = 0), and
the particle size effects are accounted using the hybrid approach. . .
(Color online) The overall mobility accuracy measured in e (E) as
a function of the splitting parameter & with N = 50, 100, and 200,
and M = 32 (filled symbols) and 64 (open symbols) for (a): constant
box size L/a; = 23.5 and (b): constant volume fraction ¢ = 0.05.

Changes are based on the baseline case in Sec. 4.5. Other parameters

are P=13,m=67andr. =4(a; +a;). . .. ... ... ... ...
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4.6

4.7

4.8

4.9

The accuracy of GPGPU mobility computation measured in e« - (E).
(a): the wave-space accuracy as a function of P for various m with the
same parameters in Fig. 4.2b. The GPU results are shown in black
lines, and the CPU results in Fig. 4.2b are reproduced in gray lines.
The values of m are annotated in the figure. The solid and dashed
lines represent the case of y = 0 and 0.5, respectively. (b): The
overall mobility accuracy from the GPU (solid lines) and the CPU
(dashed lines) computations as a function £a; with r. = 4(a; + a;)
and m = VrP. The corresponding M and P are annotated in the
figure. . . . ...
(Color online) The wall times (in second) of 100 time steps in dy-
namic simulations at Pe = 1 as functions of the particle number N
using the conventional SD, SEASD, and SEASD-nf. The open sym-
bols represent the CPU mobility computation and the filled symbols
the GPU mobility computation. The dashed line show the O(N??)
scaling, and the dash-dotted line show the O(N log N) scaling. The
suspension is bidisperse with 4 = 2, y, = 0.5, and ¢ = 0.45 starting
from equilibrium configurations. . . . . .. ... ..o ...
(Color online) The species short-time (a): translational and (b): ro-
tational self-diffusivities, d} , and d; , respectively, as functions of
the total volume fraction ¢ for monodisperse and bidisperse hard-
sphere suspensions with 4 = 2, y, = 0.5. The results are scaled
with the single particle translation and rotational diffusivity, dgﬂ and
e

conventional SD results from Wang & Brady [11] are shown as lines.

respectively. The SEASD results are shown in symbols and the

(Color online) The species far-field short-time translational and rota-
tional self-diffusivities, diﬁfx and d;:g, respectively, as functions of the
total volume fraction ¢ for bidisperse hard-sphere suspensions with
A =2 and y, = 0.5. The results are scaled with the single parti-
cle translation and rotational diffusivity, d(’)’a and daa, respectively.
The symbols are the computation results, and the dashed and the
dash-dotted lines are polynomial fittings for the small and the large

particles, respectively. . . . . . . .. ... L
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4.10

4.11

4.12

4.13

4.14

4.15

XXi

(Color online) The scaled species instantaneous sedimentation ve-
locities, Us,/Up,q, as functions of the total volume fraction ¢ for
monodisperse and bidisperse hard-sphere suspensions with 4 = 2

and y, = 0.5. The single particle sedimentation velocity is Uy, . The
SEASD results are shown in symbols and the conventional SD results

from Wang & Brady [11] are shown as lines. . . . . ... ... ... 146
(Color online) The high-frequency dynamic (a): shear viscosity 7

and (b): bulk viscosity «; as functions of the total volume fraction ¢

for monodisperse and bidisperse hard-sphere suspensions with 4 = 2

and y, = 0.5. The results are scaled with the solvent viscosity

1o, and only the particle contributions, n5/n0 — 1 and (ks — k) /10

are presented. The SEASD results are shown as symbols and the
conventional SD results [11] are shown as lines. . . . ... ... .. 148
(Color online) The equilibrium osmotic pressure I1/(nkgT) of monodis-
perse and bidisperse Brownian suspensions with 4 = 2 and y, = 0.5,

as a function of volume fraction ¢. The dashed line represents the

CS equation of state, Eq. (4.86), and the dash-dotted line represents

the BMCSL equation of state, Eq. (4.87). . . . . .. ... ... ... 150
(Color online) The high-frequency dynamic moduli: (a) the bulk
modulus Kc’x,a?/(kBT), and (b) the shear modulus G;oa?/(kBT), as
functions of volume fraction ¢ for equilibrium monodisperse and
bidisperse Brownian suspensions with 4 = 2 and y, = 0.5. The
results are computed from SEASD (filled symbols) and SEASD-nf
(opensymbols). . . . . ... L 152
(Color online) Different viscosity contributions to the rheology of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brow-

nian viscosity n8/no and (b) the flow viscosity n% /no, as functions

of Pe. The volume fraction ¢ = 0.45 in both cases, and the bidisperse
compositionisd =2and y, =0.5. . ... ... ... 153
(Color online) Different contributions to the osmotic pressures of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brow-

nian contribution scaled with nkgT, I18/(nkgT), and (b) the flow
contribution scaled with noy, II¥/(yng), as functions of Pe. The
volume fraction is ¢ = 0.45 in both cases, and the bidisperse compo-
sitionisd =2andy, =0.5. . .. ... ... ... .. 155



4.16

4.17

4.18

4.19

4.20

4.21

5.1

(Color online) The normal stress differences: (a) the first normal
stress difference N; and (b) the second normal stress difference N,
as functions of Péclet number Pe. The volume fraction is ¢ = 0.45
in both cases and the bidisperse composition is 4 = 2 and y, = 0.5.
(Color online) The fraction of stresses taken up by the small particles
(species 1) in a bidisperse suspension: (a) the fraction of the shear
stress and (b) the fraction of the normal stress. The stress fractions
are shown as functions of Pe. The composition of the bidisperse
hard-sphere suspension is ¢ = 0.45, 4 =2,and y, =0.5. ... ..
(Color online) The species long-time self-diffusivities: (a) the veloc-
ity gradient direction diffusivity dioy‘yl and (b) the vorticity direction
diffusivity dfxff, of monodisperse and bidisperse hard-sphere suspen-
sions as functions of Pe. The volume fraction is ¢ = 0.45 for both
cases, and the bidisperse composition is 4 = 2 and y, = 0.5.

(Color online) The velocity-velocity gradient (xy-) plane projection
of the pair-distribution function g(r) and the partial pair-distribution
functions g,p(r) at various Pe for bidisperse suspensions with ¢ =
045, 2=2,andy, =0.5. . . . .. ...
(Color online) The velocity-vorticity (xz-) plane projection of the
pair-distribution function g(r) and the partial pair-distribution func-
tions g, g(r) at various Pe for bidisperse suspensions with ¢ = 0.45,
A=2andy, =05, . . ...
(Color online) The velocity gradient-vorticity (yz-) plane projection
of the pair-distribution function g(r) and the partial pair-distribution
functions g,g(r) at various Pe for bidisperse suspensions with ¢ =
045,4=2,andy, =0.5. . ... ... ...
(Color online) (a): A sketch of the colloidal film drying process.
Colloidal particles of radius a are sandwiched between a stationary
substrate at z = 0 and an interface at z = H, moving either at constant
velocity U,, or in response to a constant normal stress X, in the —z
direction. The interface allows the solvent, but not the particles,
to pass. (b): A snapshot of the simulation cell at Pey = 50 and
H = 15a. The blue particles are amorphous while the red particles

are crystalline. . . . ... ... o oo
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5.2

5.3

54

5.5

5.6

(Color online) The terminal gap width H as a function of Péclet
number Pey for constant velocity interface movement. The error
bars corresponds to variations in 300 independent simulations. The
inset shows the gap width H as a function of the volume fraction
¢ for the initial Hy and ¢ in the simulations. The H(¢) operating
curve is superimposed over the H-¢ equilibrium phase diagram of
confined hard-sphere systems from Fortini and Dijkstra [30] (with
permission). The terminal gap widths in the simulations are also
shown as circles in theinset. . . . . ... ... ... ... ... ..
(Color online) The interface position H/a as functions of the scaled
time raX./{ for constant normal stress interface movement with
Pey = 0.5, 1, 2, 10, and 50, annotated in the figure with the same
color as the curve. Solid lines are simulation results and dashed lines
are from the continuum model. The dash-dotted line refers to the
constant velocity interface movement Hy — ta*z,/ ({ay,). The inset
shows the the deviation from the constant velocity interface move-
ment, H — [Hy — ta*%,/ ({ay,)], at short times. The corresponding
Pes arealsoshown. . . . . . . . .. ... ... ... ... ..., .
(Color online) The overall order parameter = as a function of gap
width H/a with (a): constant velocity interface motion with Pey =
0.1, 1, 2, 5, 10, and 50, and (b) constant normal stress interface
motion with Pey = 0.5, 1, 2, 5, 10, and 50. The main figure and the
inset show the same data with different axis scaling. . ... ... ..
(Color online) Cut-plane views of the simulation cells at z = H — a,
z = H—-27a, and z = a at different gap locations H for (a):
Pey = 0.1, (b): Pey = 2, and (c): Pey = 50. The crystalline
particles are colored red, and amorphous particles are colored blue.
The corresponding evolution of 2 as functions of H is also presented.
(Color online) The average planar radial distribution function in the
xy-plane, gy (ryy), measured at z = H — a for Pey = 0.1, 2, and
50 when the gap width H = 6a. The results at Pey; = 2 and 50 are
shifted up by 2 and 4, respectively, for clarity. The insets show the 2D
planar pair distribution function corresponding to the top snapshot in
the middle column in Fig. 5.5a, 5.5b,and 5.5¢. . . . . ... ... ..
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5.7

5.8

59

5.10

(Color online) The normal stress profiles X,./(nokgT) in drying
processes with constant velocity interface movement at (a), (b):
Pey = 0.1, (¢), (d): Pey = 2, and (e), (f): Pey = 50. Simulation
measurements are shown in (a), (c¢), and (e), and continuum model
results are shown in (b), (d), and (f). To reduce noise, simulation
stress measurements are averaged over 0.01a. The normal stresses
on the moving interface are shown in red, and the stress profiles at
the denoted H/a are shown in blue. Near the boundaries, the contact
stress and the suspension stress are connected by green dashed lines,
visible only at high Pey due to stress concentration. . . . . . . ..
(Color online) The normal stress profiles .. /(nokgT) in drying pro-
cesses with constant normal stress interface movement at (a), (b):
Pey = 0.5, (¢), (d): Pex = 2, and (e), (f): Pey = 50. Simulation
measurements are shown in (a), (c¢), and (e), and continuum model
results are shown in (b), (d), and (f). Other arrangements are identical
toFig.5.7. . . . .
(Color online) The scaled suspension stress on the moving interface
as functions of the gap width H/a for (a): X,/ (PeynokgT) for drying
with an interface at constant velocity at (from right to left) Pey = 1,
2,5, 10, and 50 and (b): X,,/(PesnokgT) for drying with an interface
subject to constant normal stress at (from right to left) Pey = 1, 2,
5, 10, and 50. The insets show the stress on the stationary boundary
X/ (nokgT) as functions of gap spacing for the same Pey; or Pes. The
simulations results are shown in solid lines and model computations
are shown in dashed lines. . . . . .. ... ... ..........
(Color online) Local volume fraction profile ¢(z) in drying process
with constant velocity interface movement at (a), (b): Pey = 0.1, (c),
(d): Pey = 2, and (e), (f): Pey = 50. Simulation measurements are
shown in (a), (c¢), and (e), and continuum model results are shown
in (b), (d), and (f). The local volume fractions next to the moving
interface are shown in red, and the volume fraction profiles at the

denoted H/a are showninblue. . . . . . . . .. ... ... ....
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6.1

6.2

6.3

6.4

6.5

(a): The suspension steady shear viscosity ns/no (left triangles)
and the long-time self-diffusivity d2, /dy (right triangles), with dy =
kgT /(6mnoa), as functions of Pe, in constant shear stress and pres-
sure simulations at an imposed pressure ITa®/kgT = 5. The filled
(open) symbols represent the flowing (arrested) states. Typical accu-
mulated strain y (top) and volume fraction ¢ (bottom) at Pe, = 0.5

(b), 5 (¢), and 10 (d) as functions of dimensionless time to/ng are

also presented, with the corresponding Pe, annotated in (a). . . . . .

(Color online) The steady shear rheology of hard-sphere colloidal
suspensions with constant shear stress and pressure, (a): u = o /Il as
a function of I, = noy/Il and (b): u as a function of ¢. Simulations at
the same imposed pressure ITa>/kgT are shown in the same symbols.
For suspensions exhibiting flow-arrest transitions, the filled (open)
symbols represent the flowing (arrested) states. The raw and the
scaled data of Boyer et al. [19] are shown in diamonds and triangles,
respectively. In (b), the dashed lines outline the boundary of the
flowing region, and the solid lines are contours of the shear viscosity
ns/no. The Shear Arrest Point (¢sap, Usap) is shown as a star.

(Color online) Universal viscosity divergences (a): the shear viscosity
ns/no and (b): the incremental normal viscosity 1, /1o as functions
of (¢, — ¢), the volume fraction difference from arrest, for flowing

suspensions with IT > 3.5. The inset of (a) shows ¢,, as a function

of T1. The legends are identical to those in Fig. 6.2. . . .. ... ..

(Color online) The system size dependence on (a): the suspension
shear viscosity 15/n0, (b): the long-time self-diffusivity d2,/dy. and
(c): the maximum of the dynamic susceptibility max( y4) as functions
of Pe, for constant stress and pressure simulations at a3 /kgT = 5.

The filled (open) symbols represent the flowing (arrested) suspension

States. . .. e e e e e e

(Color online) The initial condition dependence on (a): the average
volume fraction ¢ and (b): the average strain rate )'/a2 /do, with dy =
kgT /(6mnoa), as functions of the number of independent simulations
in the group Ngamp. The simulations are performed at Ha?/kgT = 5
(open symbols) and 50 (filled symbols). The stress Péclet number

Pe, are annotated in on the graph. The dashed lines show the overall

average of all 50 independentruns. . . . . ... ... ........
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7.1

7.2

7.3

7.4

7.5

The suspension equilibrium osmotic pressure [1/(nkgT) as a function
of the volume fraction ¢, computed using constant pressure Brownian
Dynamics simulations. The suspension size polydispersity p.d. =
0.1. The dashed line is the osmotic pressure from Carnahan-Starling
equation of state for monodisperse suspensions. The error in ¢ is
smaller than the symbol size. . . . . . ... ... ... ... ....
(Color online) Simulation results as functions of the stress Péclet
number Pe, = 6w0-a’/kgT at an imposed pressure IT = a3 /kgT =
50. (a): the shear and the normal viscosities, r7; and 77, respectively,
and (b): the volume fraction ¢. In (b), the arrested results are shown
as open symbol. The insets of (a) show the time evolution of the
accumulated strain y at Pe, = 145 and 215. The inset of (b) presents
the corresponding time evolution of ¢ at the same Péclet numbers.

Equatorial slices of pair distribution function in the velocity-velocity

XXVi

. 236

gradient g1 (r), velocity-vorticity g;3(r), and velocity gradient-vorticity

g23(r) planes at various Pe, with an imposed pressure I1 = 50. The
slice width is 0.7a. On the panel for gi,(r) at Pe, = 145 the com-
pressional and the extensional axis are also highlighted. . . . . . .
(Color online) The peak values of the pair distribution function in the
compressional and the extensional axes, max(gcomp) and max(gext) as
functions of Pe,, at the imposed pressure IT = 50. The vertical dashed
line represents the estimated yield Pe, beyond which the suspension
begins to flow. The inset presents the radial variation of gcomp(r)
(solid line) and gex¢(r) (dashed line) at various Pe,, which are also
pointed out by arrows in the main figure with their corresponding
color. The curves are shifted for clarity when Pe, > 215. . . . ..
The static structure factors S12(q), S13(q), and S>3(q) at various Pe,

with an imposed pressure IT = 50. Each panel depicts the structure

factor S(q) in the wave space from —10ga to 10ga in both directions. 241



7.6 (Color online) Diffusive dynamics of suspensions as functions of Pe

7.7

7.8

at IT = 50. The dash-dotted vertical lines represent the estimated ar-
rest Pe,. The measurements in the vorticity direction, denoted by
subscript 33, are shown as filled symbols in the main figures and
solid lines in the insets. In the velocity gradient direction, denoted by
subscript 22, the results are shown as open symbols and dashed lines.
(a): The scaled long-time self-diffusivities, dZ,33/do and dZ, 22/dp.
The inset shows the time evolution of the mean-square displacement
in the 3- and 2-directions, <x§> and <x§>, at various Pe,, which
are highlighted by arrows for flowing suspensions, and by vertical
dashed lines for arrested suspensions in corresponding colors. (b):
The scaled wave-number dependent diffusivities, D33(gmin)/do and
D57 (qmin)/do, where gmin is the smallest measurable wave number
in the unit cell. The inset shows the time evolution of the func-
tions f33(q,t) and f22(q,t) defined in Eq. (7.25) at various Pe,. (¢):
The scaled a-relaxation times, 7,,33d0 /a? and Ta22d0/ a?, measured
from the decay of the self-intermediate scattering function F;(qg,t) at
ga = 3.5. The inset shows the time evolution of the corresponding
F;(g,t) in different directions at various Pe,. (d): The maximum
of the dynamic susceptibilities, max( y433) and max(ya422), mea-
sured at wave number ga = 3.5 in different directions. The inset
shows the time evolution of the corresponding dynamic susceptibili-
ties Y4.00(g,t) in different directions at various Pe,.. . . . . . . ..
(Color online) The time evolution of the accumulated strain y with
(11, Pe,) = (50, 145). Different solid lines represent results from
different runs. The dashed lines are averaged from 50 independent
TUNS. & v v v e v e e e e e e e e e e e e e e e e e
(Color online) The probability distribution of the strain rate yno/o
at various Pe, with the averaging time #,,0/n9 = 50. The imposed
pressures are I1 = 50 (a) and IT = 5 (b). The inset shows the strain

XXVvii

rate distribution with different averaging time ¢,, at the annotated Pe. 248



7.9

7.10

7.11

7.12

(Color online) The volume fraction, ¢ (a), and the stress scaled long-
time self-diffusivity in the vorticity direction, d%,no/(a’c) (b), as
functions of the time-averaged strain rate yno/o in simulations at
Pe, = 145, 175, and 215 for I1 = 50 and at Pe, = 5, 8, 10 for [T = 5.
The averaging time ¢,,0° /19 = 50. The crosses and pluses symbols
are results averaged from the entire simulations at these pressures.
The inset of (b) presents the corresponding non-Gaussian parameter
a3 as a function of yno/o measured at t,,0/no =50. . . ... ..
(Color online) Typical time evolution of a suspension at Pe, = 145
and IT = 50 near an arrest-event transition: (top) the accumulated
strain v; (center) the average radius of the minimum enclosing circle
of the particle trajectory (ryp); (bottom) the fraction of the fast
particles Np,/N. In computing ryg, the trajectory of the past 50nq /o
time units in the velocity gradient-vorticity plane are considered. The
transition from the flowing to the arrested states are highlighted, with
the arrows pointing out three time instances A, B, and C. The
horizontal dashed lines highlight the cutoff radius r. in the middle
panel and the lower and upper limiting fast particle fractions. . . . .
(Color online) (Top panel) The probability distribution of the radius
of the minimum enclosing circle ryg at time instances A, B, and C
highlighted in Fig. 7.10. The cutoff radius r. is shown in the vertical
line. Also shown are the definition of ryg and a typical particle
trajectory, with more recent positions in darker color. (Bottom panel)
The suspension snapshots at instances A, B, and C. The “fast”
particles are shown in red in their full size, and the remainder are
shownasbluedots. . . . . . .. ... ... . L.
The fraction of the neighboring particles of a fast particle that are also
fast, f,, as a function of the fraction of fast particles in the suspension,
Npast/ N, near the flow-arrest transitions at (I1, Pe,) = (50, 145) (filled
symbols) and (5, 5) (open symbols). The plus and cross symbols are
the results when the fast particles are randomly selected. The inset
highlights the difference f;, — Npast/N. . . . . . o . o o o o o oL L.
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7.13

7.14

7.15

7.16

7.17

(Color online) The suspension shear viscosity 775/1n¢ (a), the volume
fraction ¢ (b), and the macroscopic friction coefficient u as functions
of the viscous number 7, over a wide range of the imposed pressure
I1. The shaded area bounded by dashed lines are from the rheological
model in Sec. 7.5, outlining the boundary of glassy suspensions.
(Color online) The stress-scaled normal stress differences N;j/o (a)
and N, /o (b) as functions of viscous number /, for a wide range of
imposed pressure I1. The symbols are identical those in Fig. 7.13.
(Color online) The peak values of the pair distribution function
along the compressional and extensional axes, max(gcomp) (a) and
max(gext) (b), as functions of the viscous number 7, over a wide
range of imposed pressures I1. The symbols are identical to those in
Fig. 7.13. . . o
(Color online) Different characterizations of suspension dynamics as
functions of the viscous number I, over a wide range of imposed
pressures I1. The symbols are identical to those of Fig. 7.13. In (a)—
(c) the diffusive quantities are characterized by the pressure diffusion
scale dpp = ITa?/ no. All the measurements are taken in the vorticity
direction. (a): the long-time self-diffusivity d3,/dm; (b): the wave-
number dependent diffusivity measured at gmin, D(gmin)/dm1; (€):
the a-relaxation time 7,d/a® from the self-intermediate scattering
function at ga = 3.5; (d): the peak of the dynamic susceptibility
max( y4). In (a), the shaded area bounded by dashed lines highlights
the glassy suspension behaviors from Eq. (7.43). . . ... ... ...
(Color online) The wave-number dependent diffusivity measured at
Gmin> D(gmin) (a), and the a-relaxation time 7, (b), as functions of
the corresponding long-time self-diffusivity d3, over a wide range of
imposed pressures I1. The symbols are identical to those of Fig. 7.13.
The solid line in (a) represents D(gmin) o< d2, and in (b) represents
T, I« d?,. In the insets, the ratio, D(gmin)/d2, (a), and the product,
Tod5, (b), are presented as functions of /,. The solid lines in the insets

are horizontal. All measurements are taken in the vorticity direction.
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7.18

7.19

7.20

7.21

(Color online) The incremental volume fraction d¢ = ¢,, — ¢ (a) and
the incremental friction coefficient Su = u — u,, (b) as functions of
the viscous number I, for glassy suspensions with I > 3.5. The
dashed lines in the main figures highlight the power law relation of
Eq. (7.36). The insets show the limiting volume fraction ¢,, (a) and
the limiting friction coefficient w,, (b) as functions of the imposed
pressure I1. The dashed line in the inset of (a) shows Eq. (7.37), and
the dashed line in the inset of (b) is the non-Brownian ugap. The
legends are identical to those in Fig. 7.13. . . . . . ... ... ...
(Color online) The macroscopic friction coefficient u = o /Il as
functions of the volume fraction ¢ for different imposed pressures IT
for constant stress and pressure simulations. The legends are identical
to Fig. 7.13. The shaded region bounded by the dashed lines are from
the rheology model outlining the region of glassy behavior. The
viscosity contours up to 775/179 = 10 are shown in solid lines with
annotated viscosity. The crosses show the arrest location (u,,, ¢,,) at
different imposed pressure, and the dash-dotted line outlines the yield
surface from Eq. (7.38). The Shear Arrest Point (SAP) is highlighted
as a star at the intersection of the arrested, the forbidden, and the
flowing region. . . . . .. ... Lo
(Color online) The shear viscosity 175/10 as a function of the volume
fraction distance to the arrest 6¢ = (¢, — ¢) for glassy suspensions
with IT > 3.5. The yellow shaded region bounded by dashed lines
are predictions from Eq. (7.39). The legends are identical to those in
Fig. 7.13. . . o
(Color online) The stress scaled long-time self-diffusivity in the
vorticity direction, d2,/d,, with the stress diffusion scale d, =
(a%0) /10, as functions of the inverse viscosity no/ns = yno/o over
a wide range of imposed pressures I1. The symbols are identical to
those of Fig. 7.13. The shaded region bounded dash lines outlines

the glassy suspension state from the model. . . . . ... ... ...
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7.22 (Color online) (a) The interaction friction coeflicient, ,uI =u—(1+

7.23

8.1

%¢)Iv, as a function of the long-time Péclet number ya?/ds, = Pe
over a wide range of imposed pressure I1. The dashed line shows
the linear relation of Eq. (7.42). The inset shows the scaled product
n'ds,/(I1a?) as a function of the volume fraction ¢, with the inter-
action viscosity ' = u!/I,. Also presented are the constant volume
Brownian Dynamics simulation results [51] at different ¢. (b) The
peak difference A, = max(gcomp) —max(gex) as a function of Pe. The
dashed line represents the linear relation A, = K pP_e with K, = 0.19.
In (a) and (b), the symbols are identical to those of Fig. 7.13.

The shear viscosity 775 (a) and the incremental normal viscosity 7;,
(b) as functions of the volume fraction distance from arrest §¢ =
¢m — ¢. The dashed lines present the algebraic viscosity divergence
(s M} o< 54°. The inset shows the arrest volume fraction difference
A¢ = ¢,y — b as a function of the imposed pressure I1, with ¢,, from
the inset of Fig. 7.18a. The legends are identical to those of Fig. 7.13.
(Color Online) The constant stress and pressure rheology of a poly-
disperse suspension with polydispersity p.d. = 0.1 as functions of
Pe, at I1 = 1.5 [(a), (¢)] and at IT = 50 [(b), (d)]. In (a) and (c), the
results with full HIs are shown in open symbols in the main figure
and dashed lines in the inset, and the results with near-field Brownian
approximation are shown in filled symbols and solid lines. In (b) and
(d), the thin lines indicate the Pe, for the insets with corresponding
colors, and the black dashed line outlines the flow-arrest transition.
(a) The suspension shear viscosity 15/n9. Inset: the time evolution
of the accumulated strains y at Pe, = 0.3, 1.8, 7.1, 28.3, and 178.4.
(b) The suspension shear viscosity 7r,/n¢ (filled circle), the Brown-
ian contribution nB /1o (up triangle) and the flow contribution nE /10
(down triangle). Insets: time trace of the accumulated strain y at
Pe, = 150 and 170. (c) The steady state volume fraction ¢. Inset:
time traces of the instantaneous volume fraction at the same Pe, as
(a). (d) The steady state volume fraction ¢. The arrested results are
shown in open circles and the flowing results in filled circles. Inset:

time trace of the volume fraction ¢ at Pe, = 150 and 170. . . . . . .
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8.2

8.3

8.4

8.5
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Equatorial slices of the pair distribution function g(r) on the velocity-
velocity gradient (12), velocity-vorticity (13), and velocity gradient-
vorticity (23) planes of suspensions with an imposed pressure IT = 1.5
at various Pe,. The suspension size polydispersity p.d. = 0.1. The
width of the slice is 0.7a. The compression and the extension axes
are also highlighted. . . . . ... ... ... ... ..........
Equatorial slices of pair distribution function g(x) on the 12-, 13-
, and 23-planes of suspensions with imposed pressure IT = 50 at
various Pe,. Other parameters are identical to Fig. 8.2. . . . . . . ..
(Color online) The maximum value of the pair distribution functions
on the compressional and the extensional axes, max(gcomp) (filled
symbols) and max(gex) (open symbols), respectively, as functions of
Pe, at (a) IT = 1.5 and (b) I1 = 50. The insets show gcomp(r) (solid
lines) and gex((r) (dashed lines), obtained from the equatorial slices
of g(r) inthe 12-plane with a width of 0.7a, at selected Pe, annotated
by arrows in the main figure. The geomp(r) and gex (r) results are
shifted for clarity. In (b) the estimated flow-arrest transition Pe, is
shown in the vertical dashed line. . . . . . ... ... ... .....
(Color online) Long-time self-diffusivity in the vorticity (3-) and the
velocity gradient (2-) direction, dfx)’33/ do and dio,22 /do, respectively,
at (a) II = 1.5 and (b) II = 50. (a): dio,33/d0 computed with full
HIs (open symbols) and with the near-field Brownian approximation
(filled symbols). Inset: the time trace of the mean-square displace-
ment in the 3-direction, <Ax§> at different Pe,. The solid lines are
from the near-field Brownian approximation and the dash-dotted lines
are from full calculations. (b): d? 33 /dy (filled circles) and d’ 2 /do
(open squares) from near-field Brownian approximation as functions
of Pe,. Inset: the time trace of the mean-square displacement in
the 3-direction <Ax§> (solid lines) and the 2-direction <Ax§> (dashed
lines) at differentPe,-. . . . . . . .. . ... ... ... .. ...,
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8.6

8.7

8.8

8.9

8.10

(Color online) The suspension shear viscosity 775/1n¢ (a), the volume
fraction ¢ (b), and the macroscopic friction coefficient u = o /Il
as functions of the viscous number I, = yno/Il with different im-
posed pressures I1. Also presented are the non-Brownian results from
experiments [24] (black open diamonds) and Accelerated Stokesian
Dynamics (ASD) simulations at fixed strain rate y and volume frac-
tion ¢ [54] (black open left triangles). The shaded area bounded by
dashed lines are from the rheological model outlining the boundary
of glassy suspensions. The experimental results shifted upwards to
¢sap are also presented in (b) (black open down triangles). . . . . .
(Color online) The first and the second normal stress differences
scaled with the shear stress, Ni/o (a) and N,/o (b), as functions
of the viscous number /, at various imposed pressures I1. Also
presented are the non-Brownian ASD simulation results [54]. The
legends are identical to those of Fig. 8.6. . . . ... ... ... ..
(Color online) The peak values of the pair distribution function
along the compressional and the extensional axes, max(gcomp) (a)
and max(gex¢) (b), as functions of the viscous number 7, at various
imposed pressures I1. The legends are identical to those of Fig. 8.6.
(Color online) The long-time self-diffusivity in the vorticity direction
scaled with the pressure diffusion scale d2,/dr, where d; = a1/ 1o,
as functions of the viscous number [, at various imposed pressures
I1. Also presented are the non-Brownian ASD simulation results [43,
54]. The yellow shaded region bounded by dashed liens are predic-
tions from Eq. (8.43). The legends are identical to those of Fig. 8.6.
(Color online) The incremental volume fraction d¢ = ¢, — ¢ (a)
and friction coefficient 6 = u — w,, (b) as functions of the viscous
number I, for glassy suspensions with IT > 3.5. The dashed lines
in the main figures show Eq. (8.33) with parameters in Table 8.1.
The insets show the limiting volume fraction ¢,, (a) and the limiting
friction coefficient u,, (b) as functions of the imposed pressure I1.
The dashed line in the inset of (a) shows Eq. (8.34), and the dashed
line in the inset of (b) is the non-Brownian ugap. Also presented are
the non-Brownian experimental results [24] in open black diamonds.

The legends are identical to those in Fig. 8.6. . . . . ... ... ..
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8.11 (Color online) The macroscopic friction coefficient u = o /Il as
functions of the volume fraction ¢ over a wide range of imposed
pressures I1 for constant stress and pressure simulations. Also shown
are the original and shifted non-Brownian experiments Boyer et al.

[24], and the ASD simulations of Sierou and Brady [54]. The shifted
experimental results shift the volume fraction data by (¢sap — ¢c)
with ¢. = 0.585. The legends are identical to Fig. 8.6. The shaded
region bounded by the dashed lines are from the rheology model
outlining the region of glassy behavior. The viscosity contours up
to n5/no = 10° are shown as solid lines with annotated viscosity.
The crosses show the arrest location (u,,, ¢,,) at different imposed
pressures, and the dash-dotted line outlines the yield surface from
Eq. (8.35). The Shear Arrest Point (SAP) is highlighted as a star at
the intersection of the arrested, the inaccessible, and the flowing region.326

8.12 The shear viscosity 15/n¢ and its flow and Brownian contributions,
n%/no and n®/no as functions of stress Péclet number in constant
stress and volume simulations at ¢ = 0.60 with the particle size
polydispersity p.d. = 0.1. The duration of each simulation is 7 =
2000 with astepsize Ar=0.01. . . . . . ... ... ... ... ... 328

8.13 (Color online) The shear viscosity r7,/n¢ as a function of the volume
fraction distance to the arrest 6¢ = (¢,, — ¢) for glassy suspensions
with IT > 3.5. The non-Brownian experimental results of Boyer et al.

[24] are also presented as black open diamonds. The yellow shaded
region bounded by dashed lines are predictions from Eq. (8.36). The
dash-dotted line shows an alternative viscosity divergence o §¢~2.
The legends are identical to Fig. 8.6. . . . . . ... ... ... .... 330

8.14 (Color online) (a) The interaction friction coefficient p! = u — (1 +
%¢)IV as functions of the strain rate scale ya”/d?,. The dashed line
indicates the linear relation ! = Kyya?/dS, with K, in Table 8.1.

The black open left triangles are the non-Brownian ASD simulation
results [43, 54]. Inset: the product (nldgo/ (TI1a?) as functions of
volume fraction ¢. The interaction viscosity n' = u!'/I,. (b) The
peak difference A, = max(gcomp) — Max(gext) as functions of the
strain rate scale ya®/d?,. The dashed lines represents a linear relation
Ay = p)'/az/dio with K, = 0.19. In (a) and (b), the legends are
identical to those of Fig. 8.6. . . . . . . ... ... ... .. ..... 331



8.15

8.16

The mean far-field translational and rotational diffusion coefficients,
<d§ﬁ> and <d§’ﬁ>, respectively, as functions of volume fraction ¢ for a
polydisperse suspension with polydispersity p.d. = 0.1. The dashed
and dash-dotted lines are cubic polynomial fit to the calculation re-
sults. . . L
(Color online) The total suspension viscosity 775/n9 and its flow and
Brownian contributions, n¥ /59 and 7% /59, respectively, as functions
of the strain rate Péclet number Pey for a bidisperse suspension with
size ratio 2 and equal volume ratio at ¢ = 0.45. All computations are
from SEASD method with full hydrodynamic interactions. The lines
are from constant strain rate simulations [56]. The symbols are from
constant stress simulations with dimensionless step size At = 1073
(filled symbols) and At = 1072 (open symbols). . . . .. ... ..
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